

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part1- Sunday January 24, 2021 - Time: 14:00 - 15:15

Started on State Completed on Time taken	Sunday, 24 January 2021, 2:00 PM Finished Sunday, 24 January 2021, 3:15 PM 1 hour 14 mins
Question 1 Incorrect Mark 0.00 out of 5.00	A certain computer becomes inoperable if two components A and B both fail. The probability that A fails is 0.01 and the probability that B fails is 0.04. However, the probability that B fails increases by a factor of 7 if A has failed. Calculate the probability that computer A fails if B has failed. 0.7 [The answer should be a number rounded to five decimal places, don't use symbols such as %]
	Your answer is incorrect.
Question 2 Correct Mark 5.00 out of 5.00	A factory has two production lines A and B , production line A works 7 days a week, production line B works only 5 days a week. Production line A produces 5000 items each day where 93% of the produced items are high quality and the rest are of medium quality. Production line B produces 3500 items each day where 66% of the produced items are high quality, 12% medium quality, and the rest are of low quality. All items produced after working for many weeks are accumulated in a warehouse.
	What is the probability that a high-quality item is produced? 0.84 [The answer should be a number rounded to five decimal places, don't use symbols such as %]
	• One possible correct answer is: 0.84
	Your answer is correct.
Question 3 Correct Mark 5.00 out	Let X be a random variable with a uniform distribution over the interval [-9, 1]. Determine the mean of X. -4 [The answer should be a number rounded to five decimal places, don't use

symbols such as %]

 \checkmark

of 5.00

One possible correct answer is: -4

places, don't use symbols such as %]

Determine the standard deviation of X. 2.88 [The answer should be a number rounded to five decimal

 \checkmark

One possible correct answer is: 2.8867513459481

Question 4 Correct Mark 5.00 out of 5.00

A bus company knows that 6 percent of the people making reservations on a certain trip will not show up. Consequently, their policy is to sell 44 tickets for a trip that can hold only 42 passengers.

What is the probability that at least one passenger will be left unseated? 0.25([The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.25025382918504

Your answer is correct.

Correct

Mark 5.00 out of 5.00

Let X be a random variable that follows the normal distribution with zero mean and unity standard deviation.

Probabilities for the standard normal distribution

Table entry for z is the probability lying to the left of z

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

1

Compute $P(X \leq 1.12)$. $|.868_{
m c}|$ [The answer should be a number rounded to five decimal places, don't use

symbols such as %]

One possible correct answer is: 0.86859089933526

Compute $P(X \ge 0.28)$. .389; [The answer should be a number rounded to five decimal places, don't use symbols such as %] ✓

One possible correct answer is: 0.38886779318394

Compute $P(X \leq -2.07)$. 0.019 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

 \checkmark

	One possible correct answer is: 0.019302220550924 Compute $P(X \ge -0.52)$ 698. [The answer should be a number rounded to five decimal places, don't use symbols such as %]
	One possible correct answer is: 0.69932485949491
	Your answer is correct.
Question 6 Correct Mark 5.00 out of 5.00	Let $f_X(x)$ be the probability density function of the random variable X. $f(x) = \begin{cases} \frac{2}{81} x & 0 \le x \le 9; \\ 0, & \text{otherwise.} \end{cases}$ Compute $F_X(2.3)$ 0.06! [The answer should be a number rounded to five decimal places, don't use symbols such as %]
	Your answer is correct.
 Short Exam Tuesday J 	- Chapters 4 and 5, Jump to Final Exam-Part2 - Sunday January 24, 2021 - Time: 15:30 - 16:45 ►

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part2 - Sunday January 24, 2021 - Time: 15:30 - 16:45

Partially

Suppose that X and Y have the following joint probability distribution:

correct Mark 3.33 out of 5.00

Joint Probability Mass Function of X and Y

	Y=1	Y=3	Y=5
X=1	0.06	0.09	0.06
X=2	0.14	0.14	0.51

Determine the mean of X (μ_X). {._0} [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 1.79

Determine the mean of Y (μ_Y). 3.75 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 3.74

Determine the standard deviation of X (σ_X). 0.16! [The answer should be a number rounded to five decimal places, don't use symbols such as %]

×

One possible correct answer is: 0.40730823708833

Your answer is partially correct.

You have correctly answered 2 part(s) of this question.

Correct

Mark 5.00 out of 5.00

An electronic company manufactures resistors that have a mean resistance of 139 Ω and a standard deviation of 13 Ω .

Probabilities for the standard normal distribution

Table entry for z is the probability lying to the left of z

_

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Find the probability that a random sample of n = 30 resistors will have an average resistance less than 137.7 Ω .

✓

0.29[°] [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.2972098773158

Partially correct Mark 3.33 out of 5.00 Let X be a Gaussian random variable with mean μ = 4.5 and standard deviation σ = 2.5. A new random variable Y is defined as: Y = 2.2 X + 2.3.

Find the mean value of Y. 12.2 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

~

One possible correct answer is: 12.2

Find the standard deviation of Y. 5.5 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

\checkmark

One possible correct answer is: 5.5

Find the correlation coefficient between X and Y. 1.3 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

×

One possible correct answer is: 1.0

Your answer is partially correct.

You have correctly answered 2 part(s) of this question.

Correct Mark 5.00 out of 5.00 We take a sample of size 12 from a Gaussian population representing the service time at a gas station. The sample average is 6.2 minutes and the sample standard deviation is 1.8 minutes. Calculate the 90% confidence interval for the population mean

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part1- Sunday January 24, 2021 - Time: 14:00 - 15:15

Started o Stat Completed o Time take Grad	 Sunday, 24 January 2021, 2:00 PM Finished Sunday, 24 January 2021, 3:14 PM 1 hour 14 mins 30.00 out of 30.00 (100%)
Question 1 Correct Mark 5.00 out of 5.00	A box contains 9 non-defective (N) items and 2 defective (D) items. Three items are drawn without replacement. Find the probability that exactly one defective item is obtained. 0.43([The answer should be a number rounded to five decimal places, don't use symbols such as %] Cone possible correct answer is: 0.4363636363636364
Question 2 Correct Mark 5.00 out of 5.00	Your answer is correct. A factory has two production lines A and B, production line A works 7 days a week, production line B works only 5 days a week. Production line A produces 5000 items each day where 81% of the produced items are high quality and the rest are of medium quality. Production line B produces 3500 items each day where 70% of the produced items are high quality, 15% medium quality, and the rest are of low quality. All items produced after working for many weeks are accumulated in a warehouse. What is the probability that a medium quality item is produced? 0.17 (The answer should be a number rounded to five decimal places, don't use symbols such as %]
	One possible correct answer is: 0.176666666666666667 Your answer is correct.
Question 3 Correct Mark 5.00 out	The lifetime X of a certain electronic component is an exponential random variable with a mean of 3 hours. Assuming 3 of these components operate independently in a device. The device operates if all components operate.

Find the probability that the lifetime of any electronic component is at least 4 hours. 0.26. [The answer should be a number rounded to five decimal places, don't use symbols such as %] \checkmark One possible correct answer is: 0.26359713811573 Find the probability that the device operates for at least 4 hours. 0.018 [The answer should be a number] rounded to five decimal places, don't use symbols such as %] \checkmark One possible correct answer is: 0.018315638888734

Question 4 Correct Mark 5.00 out of 5.00

A bus company knows that 5 percent of the people making reservations on a certain trip will not show up. Consequently, their policy is to sell 46 tickets for a trip that can hold only 44 passengers.

What is the probability that at least one passenger will be left unseated? 0.32: [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.32318083520805

Your answer is correct.

Let X be a random variable that follows the normal distribution with $\mu_X=-1$ and $\sigma_X^2=1.$

Probabilities for the standard normal distribution

Table entry for z is the probability lying to the left of z

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Question 5 Correct

Mark 5.00 out of 5.00

symbols such as %]

One possible correct answer is: 0.60727865662529

_

Compute $P(X \ge 1.09)$. 0.018 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.018378863906791

Compute $P(X \leq -3.41)$. [The answer should be a number rounded to five decimal places, don't use symbols such as %]

 \checkmark

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part2 - Sunday January 24, 2021 - Time: 15:30 - 16:45

One possible correct answer is: 1

Correct Mark 5.00 out of 5.00 Let X denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

Joint Probability Mass Function of X and Y

	Y=1	Y=3	Y=5
X=1	0.09	0.02	0.09
X=2	0.07	0.01	0.01
X=3	0.08	0.04	0.59

Find the P(X = 3). 0.71 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

~

One possible correct answer is: 0.71

Find the P(X = 3/Y = 5). 0.85: [The answer should be a number rounded to five decimal places, don't use symbols such as %]

~

One possible correct answer is: 0.85507246376812

Find the $F_{X,Y}(3,2)$. [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.24

Correct Mark 5.00 out of 5.00 The heights of students are approximately normally distributed with a mean of 167 centimeters and a standard deviation of 12 centimeters. Suppose random samples of size 48 are drawn from this population and the sample means recorded to the nearest tenth of a centimeter.

Probabilities for the standard normal distribution

Table entry for z is the probability lying to the left of z

z

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Determine the probability that the sample mean ($\hat{\mu}$) is falling below 167.71 centimeters. 0.65. [The answer

should be a number rounded to five decimal places, don't use symbols such as %]

\checkmark

One possible correct answer is: 0.6600247494927

Correct Mark 5.00 out of 5.00 Let X be a Gaussian random variable with mean μ = 4.2 and standard deviation σ = 2.9. A new random variable Y is defined as: Y = 3.7 X + 3.1.

Find the mean value of Y. 18.6. [The answer should be a number rounded to five decimal places, don't use symbols such as %]

~

One possible correct answer is: 18.64

Find the standard deviation of Y. 10.7: [The answer should be a number rounded to five decimal places, don't use symbols such as %]

✓

One possible correct answer is: 10.73

Find the correlation coefficient between X and Y. 1 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

✓

One possible correct answer is: 1.0

Correct Mark 5.00 out of 5.00 Suppose 230 randomly selected people are surveyed to determine if they own a tablet. Of the 230 surveyed, 92 reported owning a tablet. Using a 95% confidence level, compute a confidence interval estimate for the true proportion of people who own tablets.

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part1- Sunday January 24, 2021 - Time: 14:00 - 15:15

Question 3 Correct Mark 5.00 out of 5.00	The lifetime X of a certain electronic component is an exponential random variable with a mean of 3 hours. Assuming 3 of these components operate independently in a device. The device operates if at least two components operate.
	Find the probability that the lifetime of any electronic component is at least 5 hours. 0.18{ [The answer should
	be a number rounded to five decimal places, don't use symbols such as %]
	One possible correct answer is: 0.18887560283756
	Find the probability that the device operates for at least 5 hours. 0.09: [The answer should be a number
	rounded to five decimal places, don't use symbols such as %]
	One possible correct answer is: 0.093546086043586
	Your answer is correct.
Question 4 Correct Mark 5.00 out of 5.00	A test consists of 9 MCQs (multiple choices questions) with every MCQ having its four options out of which only one is correct. A student passes the test if he answers 7 or more questions correctly.
	If an unprepared student only guesses the correct answer out of the four possible choices, what is the
	probability that he passes the test? 0.00 ¹ [The answer should be a number rounded to five decimal places,
	don't use symbols such as %]
	One possible correct answer is: 0.0013427734375

Let X be a random variable that follows the normal distribution with $\mu_X=0.1$ and $\sigma_X^2=9.$

Probabilities for the standard normal distribution

Table entry for z is the probability lying to the left of z

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Question 5 Correct

Mark 5.00 out of 5.00

symbols such as %]

One possible correct answer is: 0.66368243520011

Compute $P(X \ge 2.8)$. 0.18 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 0.18380624763342

Compute $P(X \leq -7.31)$. 0.00([The answer should be a number rounded to five decimal places, don't use symbols such as %]

 \checkmark

Dashboard / My courses / PROBABILITY AND ENGINEERING STATISTICS-Lecture-1201 - meta / Final Exam - January 24, 2021 / Final Exam-Part2 - Sunday January 24, 2021 - Time: 15:30 - 16:45

Partially

Suppose that X and Y have the following joint probability distribution:

correct Mark 3.33 out of 5.00

Joint Probability Mass Function of X and Y

	Y=1	Y=3	Y=5
X=1	0.07	0.12	0.11
X=2	0.1	0.06	0.54

Determine the mean of X (μ_X). {._0} [The answer should be a number rounded to five decimal places, don't use symbols such as %]

One possible correct answer is: 1.7

Determine the mean of Y (μ_Y). 3.96	[The answer should be a number rounded to five decimal places, don't
use symbols such as %]	
✓	

One possible correct answer is: 3.96

Determine the standard deviation of X (σ_X). 0.21 [The answer should be a number rounded to five decimal places, don't use symbols such as %]

X

One possible correct answer is: 0.45825756949558

Your answer is partially correct.

You have correctly answered 2 part(s) of this question.

Correct Mark 5.00 out of 5.00

Question **5**

Mark 5.00 out

Correct

of 5.00

A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer i has mean $\mu_i = 4.1$ (minutes) and standard deviation $\sigma_i = 2.7$. We assume that service times for different bank customers are independent. Let Y be the average time the bank teller spends serving 32 customers.

Find the standard deviation of Y. 6.38 [The answer should be a number rounded to five decimal places, don't use symbols such as %]
Cone possible correct answer is: 6.38
Find the correlation coefficient between X and Y. 1 [The answer should be a number rounded to five decimal places, don't use symbols such as %]
Cone possible correct answer is: 1.0

Correct

Mark 5.00 out of 5.00 We take a sample of size 12 from a Gaussian population representing the service time at a gas station. The sample average is 6.6 minutes and the sample standard deviation is 1.3 minutes. Calculate the 90% confidence interval for the population mean

