Single Random Variables and Probability Distributions: Basic Concepts

Informal Definition: A random variable is avariable whose wvalues depend on
the outcomes of a random experiment.

Formal Definition: A random variable is a real-valued function whose domain is the sample
space defined on a probability space. It maps outcomes from the sample space along with
their probabilities on the real line.

The random variable is given an uppercase letter X, Y, Z, ... while the values assumed by
this random variable are given lowercase letters X, y, z, ...

Associated with each discrete r.v (X) 1s a Probability Mass Function P(X = x). This density
function is the sum of all probabilities associated with the outcomes in the sample space
that get mapped into (x) by the mapping function (random variable X)|

Associated with each continuous r.v (X) is a Probability Density Function (pdf) fx(x). This
fx(x) is not the probability that the random variable (X) takes on the value (x), rather fx(x)
1s a continuous curve having the property that:

Sample Space
Si

X(si) Real Line

b
P(a<X<b) = jfx(x) dx

>



Examples on Discrete Random Variables

* Example: The sample space for an experiment is S={-1, 0O, 1, 5}. List all
possible values of the following random variables:

* X = (s —1)°
*Y =1+5s+5°

e Solution: We note that the random variable is a real-valued function
of the elements of the sample space.

e X assumes the values X={4, 1, 0, 16}; (one to one mapping)

* Y assumes the values Y ={1, 3, 31}; (note that both -1 and 0 get
mapped into 1)



Examples on Discrete Random Variables

EXAMPLE: A chance experiment has two possible outcomes, a success with probability 0.75
and a failure with probability 0.25|Define the random variable X (mapping function) as:

X =1 1f outcome Is a success

X =0 1if outcome is a failure
SOLUTION:

Sample Space

F S :
(0.25) (0.75) The random Variable is a

mapping function X(s)

P(X = x) 0.75
0.25 |
X(F)=0 X(S)=1
J ' Real Line
» X
0 1

Probability Mass Function




Examples on Discrete Random Variables

EXAMPLE: A chance experiment has two possible outcomes, a success with probability 1 2 3

0.75 and a failure with probability 0.25. The experiment is independently repeated 3 times (S,F) (S,F) (S, F)

2*2%*2=8 outcomes
Example:
P(FFF)=0.25*%0.25*0.25

In a row.
a. Find the sample space.
b. Define a random variable (X) as: X = number of successes in the three trials.
c. Find the probability mass function P(X = x).

SOLUTION: in the table below we show the possible outcomes and the mapping process.

Sample Outcome P(si) X P(X=x) @ Frs \
F F F (0.25)3 0 (0.25)3 = 0.015625 , FSF , <
F F S (0.75) (0.25)> ; ey ) - |
S F F (0.75) (0.25)2 | 1 | 3x(0.75)(0.252=0.140625 | |  PMF | 0421875 | 0421875
F S F (0.75) (0.25)2 i ; ; i
S S F (0.75)2 (0.25) ; — ! ;
S F S (0.75)2(0.25) | 2 | 3x(0.75)%(0.25)=0.421875 | 0140625 | |
F S S (0.75)* (0.25) | PX=0) L ; | ;
S S S (0.75)3 3 (0.75)3 = 0.421875 "l
0 1 2 3



Examples on Discrete Random Variables

EXAMPLE: A chance experiment consists of flipping a fair coin twice. The outcome of the coin is

independent from trial to trial. The profit, X, is a random variable, that 1s related to the experiment

outcome as follows:

TT (0.25), TH(0.25)

X =10, 1if no heads appear HT(0.25), HH(0.25)

X =40, 1f one head appears
X =100, 1f two heads appear

Find the probability mass function of X
SOLUTION
P(X=10)=P(TT) =P(T)P(T) =(0.5)(0.5)=0.25;
P(X=40)=P(HT)+P(TH) =2(0.5)(0.5)=0.5
P(X=100)=P(HH) =(0.5)(0.5)=0.25
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EXAMPLE: Suppose that 5 persons including you and your friend line up at random. Let
(X) be the number of people standing between you and your friend. Find the probability P(X=0)= 4x21x 3 —04
mass function for the random variable (X). 3 ;T 2
x 21 3
SOLUTION: PX=D)=—70
Number of different ways by which the 5 people can arrange themselves = 5! P 5 ir w3
This is the total number of points in the sample space. P(X=2)= - =0.2
Let A denotes your position in the line 5 4 3 2 1 Server I 2 1'3_: 30
B denotes the position of your friend P(X=3)= ——=0.1
The random variable (X) assumes four possible values 0, 1, 2, 3 as shown below: sl
ABOOO)] \ —
AT OO AOBOO PO=x)
Probability Mass
. > (X =0); OAOBO} = (X=1 % )
OOABO O( ) ( ) 0.3 Function
OOAOB
OOOAB] i 0
SO0 X =2) AOOOB} (X 3)
e = 2): — =3
OAOOB| n
Any sequence similar to what 1s shown can be done in: %L e :il
vou and your the other »X
friend people 0 1 2 3



Discrete and Continuous Random Variables
The Cumulative Distribution Function
The cumulative distribution function of a r.v. X defined on a sample space (S) is given by:

This is a general definition
Fp(x)=P(X £X) which applies to discrete as
well continuous distributions,

Properties of /. (x) as we shall see next.
1- Fx(—®)=0
2- F}{(«I‘e) =1

3- 0 < Fx(x) <1

4- Fx(x1) < Fx(x2) if x1 <x0

5- Fx(x")=Fx(x); function is continuous from the right
6- P{X] < X < Xg} = F:{(}(z')—l:}:(}(l)

X - axis



Discrete Random Variables and Distribution

Definition: A random variable and its distribution are of discrete type when the sample space
of the random experiment is of countable nature and the corresponding cumulative distribution
function Fx(X) can be given as a summation of the form:

F(x) = Z P (X = u); Cumulative Distribution Function

where P(X =x) is the probability mass function (pm). P(X=x)
Properties of P(X = x)
1- P(X =x)>0; non-negative Probability Mass Function

> P(X=u)=1 o

e . 0.1
3- P(x,<X<x,)=> P(X =u);

u=%, > 3 > X
x1 X2
X - axis



Continuous Random Variables and Distribution

Definition: A random variable and its distribution are of continuous type when the sample space
of the random experiment is uncountable and the corresponding cumulative distribution function
Fx(x) can be given as an integral of the form:

Fy (x) = [ /i (w) du

where f (X) is the probability density function related to Fx(x) by

d
fX(X)_EFx(K)

x1 X2 N e
X - aXl
Properties of f (X) X <X

I- fx(X) 20 ; nonnegative

2- I f () du=1; Total area under the pdf is one.

3- PX,fX<X,)= I f,(u)du ; Probability is the area under f(X) between x; and xa.

1



Cumulative Distribution Function of a Discrete Random Variable

The pmf of a discrete
random variable X is .

i i Probability
shown in the figure. Mass
Construct the cumulative Function
distribution function
defined as

Fy(x) =P(X < x)
Cumulative
Fx(=0.5) = P(X < -0.5) =0  PRLod o
Fy(07)=P(X<07)=0
Fx(0Y) =P(X < 0") = P(X =0)
Fyx(0.5) =P(X<0.5) = If}x =0)
Fy(1H =PX<1H) =PX =0)+P(X = 1)

P(X=2 BX =1) i i
D_%IS% 018 rs Thls pmf was derived
in the previous
lecture. X is the
PX =1) number of successes
e in 3 trials where
P(X=0) P(S)=0.75
0.015625
I Real Line X
-

0 1 2 3

4 Fx(x)=P{X < x} BO)+2(1)+(2) +P()
— >

P(0)+P(1) +B(2)
=0.578125
B(0)+P(1)
=0.15625
P(X = 0)
O =0.015625
I > E
0 1 2 3



EXAMPLE: Cumulative Distribution of a Continuous Random Variable
Let X be a random variable with the pdf: £, (x)=0.751-x"), -1 <x<1

1- Verify that fx(x) is indeed a valid pdf.

2- Find:
a- Fy(x) 0.75
b- P(-0.5<X <0.5)

SOLUTION: / /
1- Tj_;,(x) =1 = 2}0.?5 1 -x°)de A

3 1

"

J fie) dr=2x(0.75 u - 0.75% =10

Fy(x) = j_lfxm)du o

2-a) Fy(x) = jo.?s 1-u")du=05 + 075x — 025x° -1<x<1 1

0

0.5
2b) P(—0.5< X <0.5) = j 0.75 (1 - ) du 0.5

. Fy(x) =P(X <x)

Fy(x)=1,x=>1

05
P(-0.5<X <0.5)== F;(0.5) — F;+(0.5) =0.6875 0 ', :
EXERCISE: Find x, such that 7, (x,) =P(X < x,)=0.95_ ! X 1

P(X <x,)=0.95=0.5 + 0.75x,— 0.25x, = x, =0.73




Examples on Discrete Random Variables

The pmf of a random variable X is as shown in the figure. For

this distribution, we can compute a number of probabilities P(X=x)
as. 0.4
0.3

P(X<0.5)=P(X=0)=0.4
« P(X<2)=PX=0)+PX=1)+PX=2)=0.9

- P(X<2)=PX=0)+PX=1)=0.7

Probability Mass Function

0.2

0.1

0 |
« P1<X<2)=PX=1)+P(X=2)=0.5

- P1<X<2)=PX=1)=0.3



Example on the Cumulative Distribution Function

* Example: Let X be a continuous random variable that has the following cumulative
distribution function 0 x<0
F(x) =

Kx? 0<x<10
100K x> 10

Find K so that F(x) is a valid cumulative distribution function.
Find P(X < 5).
Find the probability density function

Solution: From the properties of the CDF, we should have
Fy(10)=1=100K=K =1/100

¢+ Fy(5) = P(X < 5) = (i) 52 =1

100 4
(0 x <0

d 2
'f(X)—aF(X)—<EX 0<x<10
L0 x > 10




Mean and Variance of a Random Variable

Definition: The mean value or expected value or average value of a random variable X is_

defined as: ,
— . L The mean is analogous to
ty =E{X}= Z x; P(X=x;) if X is discrete the center of mass of a
- weight distribution
u, =E{X}= I X Iy (X)dx if X is continuous
' P(X=x)
fx(x) 04
0.3
0.5 Probability Mass Function
fx(x)Ax 0.2
0.1
X
1 \ 4 1 > X
0 1 2 3
Mean 4L

Mean Point of equilibrium



Mean and Variance of a Random Variable

Definition: The variance of a random variable X is defined as: The variance is
rmmmmm—n—n—m—— analogous to the

ox =E{(X-pn,)’}= Z (X-u,)” P(X=x,) if X is discrete centralized moment

of inertia

oy =E{(X-n,)’}= j(}{ -u, )’ fy(x)dx  if X is continuous

Oy =+/0% is the standard deviation
The variance is the measure of the spread of the distribution.
os JJx() fx (20 P(X=x)
2 0.4
0.3
Probability Mass Function
fx (x)Ax
0.2
0.1
-2 4 x 2 05 & *os | . x

0
Mean Mean




Mean and Variance of a Random Variable
Definition: For any random variable (X) and any continuous function Y = g (X), the expected
value of g(X) is defined as:

E{g(X)} = Zg(x?.) P(X = x,); x1s discrete
Elg(X)} = T g(x) f,(x) dx: x 1s continuous

Examples of g(X) are: g(X)=X ; g(X)=X* ; g(X)=(X-p,)}* ; g(X)=(X-p1)/ 0

Theorem: Let (X) be a random variable with mean [, then:

2 _ 2 2
oy = E(X7)- 15

Proof: We assume that X is a continuous random variable (for a discrete r.v. we replace

integration with summation and the result is the same)

oy = E{(X - 1)} = j (¥ - p) fr(x)dx = j (¥ - 2xpy + pry) [ (x)

© Analogous to the parallel axis
Oy = J. X" fx(x) dx - 20, J. fo (x)dk + M J. fx(x) dx theorem: centralized moment of
® inertia equals the centralized plus

o]

Oy = E(X) 2y + #X — c:r —E(X) y the square of the center of mass



Theorem: Linear Transformation of a Random Variable

Let be a random variable with mean and variance 0'2 .
(X) Hx X Here, we only find the

Define Y = aX + b : (a) and (b) are real constants, then: mean and variance of Y. In
, =apu +b ... (1) a later lecture, we will find
| | also the pdf of Y.
ol =d oL )

Proof: We assume that X is a continuous random variable (for a discrete r.v. we replace

integration with summation and the result is the same) x
n, =E{X}= _[:s-;fx (x) dx

- 1y = EfaX + b}=f(ax+ b) £ (x) i

oD

—~ fox(x)derbij(x)dx-) H, =ap +b

The variance is not influenced by the
— constant b. Only the mean is affected.
2- 07 = E{(Y - 14)"} Y

=E{[(ax + b) - (auy + D)} = E{fa(x - u)l}
=’ E{(x - 1,)"} > o, =a’o;



Some Useful Properties of Expectation

E{a}=a a is a constant

E{b g(X)} = b E{g(X)} b is a constant
E{ag (X) +bg,(X)} = aE{ g (X)} +bE{g,(X)]

Proof of the third result

E{ ag,(X) +bg,(X)} = [ (ag,(X) +bg,(X))/y ()

= [ (ag, (X)) fre () + [ (b, (X)) f (¥)dl = aE{ (XD} +bE{g,(X)}
Ex:;nples h

E{2X +3} = 2E{X} +3

E{2X* +3X -1} = 2E{X*} +3E{X}+1

E{(X -1 +e +4} = E{ (X -1)*} +E{e'} +4



EXAMPLE: Mean and Variance of a Discrete Random Variable
Find the mean and the variance of the random variable with the pmf in the table below.

P(X =2) P(X =2)

SOLUTION: Mean = u, = E{X} = Zx?. P(X = x,) omt 4 PR8I
> x, P(X = x)=225 = (3)(0.75) =np i
S
- I:I i Real Lineh
Var(X)=o} = E(X*) - [E(XX)] ; E{X’} = >’ P(X = x) \ 4
Mean
X x? P(X =x) x.P(X=x) | xX2.P(X=x)
0 0 0.015625 0 0
1 1 0.140625 0.140625 0.140625
2 4 0.421875 0.843750 1.687500
3 9 0.421875 1.265625 3.796875
> 2.25 5.625
o =5.625-(2.25)* =0.5625=np(1- p)
|




EXAMPLE: Mean and Variance of the Uniform Distribution
Find the mean and the variance of the uniform distribution shown in the figure.

SOLUTION:
= A &)

More examples in
the next lecture

The Uniform Distribution

b
Hyx :jx 1

fo

Var(X)=o0> = E(X?) - [E(X)T
o, 1
E{X* =[x P—

a
5 a’+ab+b’
* 3

_bg—ag _ﬂz-l—ﬂb—l—bz
- 3(b-a) 3

) (aerjz_(ba)z
2 ) 12

Mean

Note that as (b — a) becomes
larger, the variance also becomes
larger but the mean value remains
the same.




Median and Mode of a Continuous Distribution

Definition: Median of a Continuous Distribution

For a continuous random variable (X), the median of the distribution of (X) is defined to be a
point (Xo) such that:

.‘L'D o 1
P(X <x) = PX = x)= fo(x)dr:-[fx(x)gbgza
—a .‘ED
Definition: Mode of a Continuous Distribution

If a random variable (X) has a pdf [, (x), then the value of X at which f, (x) is maximum is

called the mode of the distribution.
MODE: Most probable value of X



Median and Mode of a Continuous Distribution

EXAMPLE: Median and Mode of a Continuous Distribution

Find the median and the mode for the random variable X with pdf: f () = 2"
SOLUTION: The median 1s a point (x,) such that

o

o 2 2 2
f 2xe " dx =f 2xe ¥ dx =e %0 =1/2
0

Xp

r >0

)

(xg) 1s the solution to ¢~% — 0.5 which results in (x, = 0.832554)
To find the mode we differentiate f_(z) with respect to x and set the derivative to zero

df ()
dx

— 2" — 42’ =0, the solution of which st =1/ \6 ., Mode

1

0.8

0.6

The Rayleigh Distribution
>

0.4r

0.21

P=1/2 | P=1/2

0

0 0.5 1 1.5 2 2.5

X0=0.832: Median



Median and Mode of a Discrete Distribution

Definition: Median of a Discrete Distribution

For a discrete random variable (X), the median of the distribution of (X) 1s defined to be a point
(xo) such that:

P(X < x,)>0.5

P(X > x,)>0.5

Definition: Mode of a Discrete Distribution MODE: Most probable value of X
Given a discrete random variable X with a pmf P(X = X), its mode is the value x,__, that is
most likely to occur. Hence, the mode 1s equal to the value of Xx__,. at which the probability
mass function P(X = X) reaches its maximum. P(X=x)
Example: The mode of the distribution is the point x=0 since it
has the highest probability of occurrence. Probability Mass Function
As for the median, it is the point x=1 since
PX<1)=0.4+0.3=0.7>0.5 0.1
PX>1)=0.3+0.2+0.1=0.6>0.5 > X




Review of Last Lecture and Additional Examples

From the Previous Lecture: Mean and variance

i, = E{X} = > x, P(X = x); xis discrete oy = E{(X - 1)’} = DY (X - u) P(X = x,); xis discrete

u, =E{X} = Ixf.r(x) dx: X is continuous oy = E{(X - 1)} = I(x - 1)’ fr(x) dx; X is continuous

Variance in terms of first and
second moments
Linear Transformation of a random variable

2 2
0-}2{ — E(X ) = ‘u Y Let (X) be a random variable with mean 4, and variance O';.
Define Y = aX + b ; (a) and (b) are real constants, then:
U, =apu +b ... (1)

Expected value of a function
of a random variable

E{g(X)} = > g(x)P(X = x,); xis discrete

crf, = a’ O'i* ............ (2)

E{g(X)} = T 2(x) fy(x) dx; X 1s continuous



Review: Mean and Variance of a Discrete Random Variable
EXAMPLE: Let X be a discrete random variable with the following pmf:

P(X=0)=04, PX=1)=03 P(X=x)
PX=2)=02, PX=3)=01.
Find the mean and variance of X. Probability Mass Function
SOLUTION:
0.1
> X

iy = E{X} = > x P(X = x,)|=(0)(0.4)+(1)(0.3) + (2)(0.2) + (3)(0.1) = 1

E{X"} = > x’ P(X =x)=0(04)+10.3)+(2)(02)+ (3)"(0.1)=2

Var(X)=loy = E(X°) - [E(X)]'=2-1=1




EXAMPLE: The Standard Random Variable

. . ) X-u,
Let X be ar.v. with mean £/, and variance o . Define £ = ‘
o) ¥
Find the mean and variance of Z.
SOLUTION:
. X My
7 can be written as: | £ = — which is of the form Z =aX + b
Oy Oy
1 1
Mean(Z)=pt, = E{Z} = —E{(X =)} = —{E(X)~E(tt,)} =0
Oy Oy
1 Let (X) be a random variable with mean (i, and variance O'f{
2 2 Define Y = aX + b :(a) and (b) are real constants, then:

VGF(Z)=O-Z — > O-X=1 M, =au +b ... (1)

X O = Oy e )

Hence, the transformation above results in a standard random wvariable with mean 0 and
variance = 1




Example on a Continuous Random Variable 0.75

(025, 0<x<1

The pdf of a random variable Xis: f(x) =<0.75, 1 <x <2

KO otherwise

* Find the mean and variance

* Find P(X < 1.5)

e Construct the cumulative distribution function

E(X) = [ xf(x)dx = [;(0.25)xdx + [ (0.75)xdx = 1.25

EX?)=[__x

(0.0)

0% = E(X?) —u® =1.833 — (1.25)? = 0.27

F(x) = 9

\

[ [7(0.25)dx = 0.25x

1 X
[,(0.25)dx + [(0.75)dx = 0.25 + 0.75(x — 1)

1

f(x)
0.25
0 0
0 1 2
1
L
F(x)

0

2f(x)dx = [, (0.25)x%dx + [ (0.75)x?dx = 1833 |0 1 7




Example: Mean Value of a Continuous Random Variable

EXAMPLE: In the kinetic theory of gases, the distance, X, that a molecule travels between

collisions is described by the exponential density function

fX(x)—— ef x>0

Find the mean free path, defined as the average distance between collisions,

Solution: Mean Free Path is calculated as:

pe =E{X} = [xfi(x)dx
0

Ix[ ]e dx =)

¥

; Use integration by parts to reach the final answer




Maxwell’s Distribution Law: The speed of gas molecules follows the distribution:

3 .
E 2 , ¥ M ALOV
f(V):4fr[ d ] vie? v2>20;, k=——
2 RT
where v 1s the molecular speed
T is the gas temperature in Kelvin

R is the gas constant (8.31 J/mol.K)
M is the molecular mass of the gas

a- Find the average speed, v
b- Find the root mean square speed vims
c- Find the most probable speed

SOLUTION:

=V

[ 8

a- v=E()= g ey =

2 2 F v 3 3
b- £V} = (VRMS) :";V‘f(v) dv = EDVRM‘S: i

c- The most probable speed (mode of the distribution) is the speed at which f(v) attains
its maximum value. Therefore, we differentiate f(v) with respect to (v), set the

2

derivative to zero and solve for the maximum. The result is: V,_ de .
"




The Binomial Distribution
Definition: The Binomial Experimenﬂ

Consider the random experiment consisting of n repeated trials such that:

a. The trials are independent.
b. Each trial results in only two possible outcomes, a success with probability p and a

failure with probability (1-p)
c. The probability of a success, p, on each trial remains constant.

This experiment is called the binomial experiment. 1 2 3 4 . n
The Binomial Distribution (S,F) (S,F) (S,F) (S,F) (S,F) (S,F)

Let X be the random variable representing the number of success in the n repeated trials. The

random variable X is called the binomial distribution with parameters n and p and its probability

(';) Number of sequences with x successes, order not

important
] p*(1 — p)™*: probability of any one of the sequences

mass function (pmf) is given as:

PX (1- P)”_x:x =0,L,...,m The mean and variance of X are
E(X) = np; Var(x) = np(1-p)

.F’?
P(X—x)—{+

X



Illustration of the Binomial Distribution

Let n in the above experiment be n = 4. 1
The possible outcomes along with their probabilities are given in the table below. (S,F)
’
Sample Outcome Probability Value of X Probability of X
FFFF 1—p)* X=0 4
FFES p(1—p)3 X=1 4p(1 —p)3
FFSF p(1—p)3 X=1 =
FSFF p(1—p)3 X=1 4 3
SEEF p(1—p)° X1 (1) p(L—p)
FFSS p*(1—p)’ =2 6p*(1 —p)?
FSSE p’(1-p)? X= =
SSFF p?(1 - p)> = N e
SFFS p*(1 - p)’ =2 (2) P(1=p)
SFSF p%(1 —p)? X=
FSFS p?(1 —p)? =2
SSSF p*(1—p)! =3 4p*(1—p)’
SSES p°(1—p) =3 _
SFSS p*(1—p)’ =3 N
FSSS p’(—p)’ =3 (3) p-1-p)
SSSS 4 =4 4
" (4) Pt =p

2 3 4
(S,F) (S,F) (S,F)

Arrangements of
elements of two
different types k, n-k

n n!
(k) " kl(n—k)

0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1
1 0 1 0
0 1 0 1
(4) _ 4! — e
2 2! (2)!

(1;) p*r(1—p)"**



EXAMPLE: Suppose that the probability that any particle emitted by a radioactive material
will penetrate a certain shield 1s 0.02. If 10 particles are emitted, find the probability that

a- Exactly one particle will penetrate the shield.
b- At least two particles will penetrate the shield.|

n _ :
SOLUTION: |P(X =x) —( ] p(A-p),n=10,p=0.02 P=0.02
v

a- P(X =1) = [lﬂ (0.02)'(1-0.02)"°"

Radioactive Substance

10 particles are emitted

X

b P(X 22)= f[lg] (0,02~ 0.02)*"

Note that
P X=0)+P(X=D+P(X=22)=1 Usually, the shield is

made of lead
P(X>2)=[1-P(X =0)—P(X =1)]

10 0 10-0 10 1 10-1
P(X >2) _1—[[ 0] (0.02)°(1—0.02) +[ 1 ] (0.02)'(1-0.02) }




EXAMPLE: Reliability of a Parallel System
Consider the parallel system shown in the figure. The system works if at least three of the five
machines making up the system work. Find the reliability of the system assuming that the reliability
of each unit is 0.9 over a given period.

SOLUTION: P(X =x) = (})p*(1 — p)" %, n=5, p=0.9

Let X be the number of operating machines.

X: has a binomial distribution.

P(system works) = P(number of operating machines = 3)
PX>3)=PX=3)+P(X=4)+P(X=5)

5 ,
P(system works) = P(X 2 3) = [3] (p)(1-p)" + 4 (p)'(1- p)+ (p)

P(X >3)= GJ (0.9)°(1-0.9)" + GJ (0.9)°(1-0.9)+ [3 (0.9)° =0.9914




EXAMPLE: The process of manufacturing screws is checked every hour by inspecting 10
screws selected at random from the hour’s production. If one or more screws are found
defective, the production process is halted and carefully examined. Otherwise, the process
continues. From experience, it is known that 1% of the screws produced are defective.

a. Find the probability that the production process continues at the end of an hour.
b. Find the probability that the production process is not ha_ted for two consecutive hours.

SOLUTION: Let X be the number of defective items in the sample of 10 items.

a. P(system is not halted in one hour) = P(humber of defective items is zero)

P(X=x)= (:)px(l — p)"*, n=10, p=0.01

10 0 10 - 0
P(X=0)= [0] (p) A-p) |

First hour | Second hour

P(X =0)= [13] (0.0D°(0.99)"° " ° =(0.99)" = 0.9043 P(X=0) P(X=0)

P(ANB)=P(A)P(B); independent events
b. P(system is not halted for two hour) = P(X=0 in first hour)(PX=0) in second hour)

P(process continues for two hours)=(0.9043)(0.9043)



EXAMPLE: The captain of a navy gunboat orders a volley of 50 missiles to be fired at
random along a 500-foot stretch of shoreline that he hopes to establish as a beachhead. Dug
into the beach 1s a 30-foot long bunker serving as the enemy's first line of defense.

a. What 1s the probability that exactly three shells will hit the bunker?
b. Find the number of shells expected to hit the bunker. 500 ft

SOLUTION: Let X: be the number of shells that hit the bunker 30 ft
30
Plsuccess) = 500 006 P(X =x) = (1)p*(1 — p)" %, n=50, p=0.06

n

] (py(-py

P(x successes in n trials) = [
X

For p=0.06 and n =50
) 50 3 25 - 3 50 3 22
P(3 successes in 50 shells) = | | (0.06)°(1-0.06)"""= | _ |(0.06)°(0.94)

J 2

b. E(X) =np = 50(0.06) = 3 shells. |




Theorem: Mean Value of the Binomial Distribution

It (X) 1s a binomial r.v with parameters (n) and (p), then the expected value of X is

=E(X) =np Hy = E{X} = Zx? P(X = x); xis discrete

Proof: i, = E(X)

1 \
Zﬂx[;} (»)'A-p) Zx — (p)'A-p)"°

= x’(n x)!

i

n! .
My = é(x_l)!(n_x)! (p)'A-p)

Change of Variables: let 27 = X — 1. In terms of u, the summation above can be expressed as

n—1 H(” _ 1)! . e m m . . .
_ usl ) _ )i u(1 _ pym-u — 1 Binomial with
o ; ul(n—1—u)! (py-(=p) uzz(:) (“) ey parameters m, p

Now, make the substitution 72 =7 — 1 and take n and p out of the summation, we get

D) ,(m_u), (p)' A= p)" “an(u](m“(l Py =n

17

u=>0 n=>0

Note that the summation on the right hand side 1s one since this is the summation of all
probabilities of a binomial distribution with parameters m and p.




Theorem: Variance of the Binomial Distribution
If (X) 1s a binomial r.v with parameters (n) and (p), then the variance of X is

Var(x)=o3 = np (1- p)
Proof: We find it convenient to first evaluate the term £ (X(X -1)) as follows:

4] n _ |
E(X(X-1) = Zx(x—l{xJ (p)'d-p)"~

Zx(x l)x!(n )| (p)y d-p)
n! s
_EX(x_l)x(x_l)(JC—2)!(n—x)! (p)y (=p)
¥ n!

= ~(x— 2)!(.;? Y (p) (- p)™

Change of Variables: As we have done before, let # =x—2 or x =u + 2. The summation
above becomes

E(X(X -1)) =”Z_:in(n—l)(n—2)!

= ul(n—2-u)!

(p)u+2 (1 _ p)H—Z—u




Theorem: Variance of the Binomial Distribution

2 0 — 1)1 —2)!

E X X'l _ u+2 1_ n—2—u
(XX -1) =37 (o - p)
Next let 1 =n — 2, and take out of the summation the terms n, (n-1) and p?. The result is
2 = m! 7l m—1
E(X(X-D)=n(n-Dp° ) — (p) d-p)
—ul(m—u)!
Again, the summation on the right hand side is one since it represents the sum of probabilities
for a binomial distribution with parameters m and p. Therefore, Binomial with
E(X(X-1))= n(n- 1)}3’2 N parameters m, p
2 2 z (m) p"(1—-p)™ =

But E(X(X-1)= E(X*-X)=EX?)-E(X) Z\u

Or E(X2)=E(X)+E(X(X-l))
From which we conclude that: sz = E(X?)- (U, Y =np+nn-1)p* - (np)’

This simplifiesto & > =np(1- p);  This concludes the proof.



The Geometric Distribution
The Geometric Distribution

Trial(S, F)
o Letthe outcome of a trial be either a success with probability (p) or a failure with probability S \F
(1 —p). This is often called the Bernoulli trial. End Experimént Repeat Trial
e The trials are repeated independently until a success appears for the first time, at which the S \ F

experiment ends. !
End Fxperlment Repeat Trial

e Let X be the number of times the experiment 1s performed to the first occurrence of a .
success. Then X i1s a discrete random variable with integer values ranging from one to / l F

infinity. The probability mass function of X is: End Experiment

Repeat Trial
P(X=x) =PFFFF .. FS)-= P(F)'T'IP(S)
x -1 X=1 S
=(1-p)"Vp: x=1, 2.3, ..
: : . X=2 F S
Details: Experiment Always Ends with a Success
X = 1 means a success was obtained on the first trial with prob. P(X =1)=p  y=3 F F S

X = 2 means a failure on first trial and a success on second: P(X =2)=(1—-p)p

X = 3 means a failure on first two trials and a success on third: P(X =3)=(1-p)’ p 1



The Geometric Distribution

Example: It is known that 5% of the items produced by a certain machine are defective. An

inspector takes out one item at a time from the machine’s production and examines it.

a. Find the probability that the first defective item is the fifth inspected item.

b. What is the probability that it takes the inspector less than 6 inspections to find a
defective item.

Solution: p=0.05; P(X = x) = p(1 —p)*!

a.PX=5=>01-p)" DV p=1(095)*(0.05)

b. Here, we need to find

S F S F F S

P(X<6)=PX<5)=PX=1)+PX=2)+P(X=3)+P(X =4)+P(X =5)
P(X < 5) = (0.05) + (0.95)(0.05) + (0.95)2(0.05) + (0.95)3(0.05) + (0.95)4(0.05)
P(X <5) = 0.05[1 + (0.95)* + (0.95)2 +(0.95)3 +(0.95)*]

Will prove this result in the next example: P(X < k) =1— (1 —p)*
P(X <5)=1—(0.95)° 2



The Geometric Distribution

Example: A production line has a 10 % defective rate. Find the probability that it takes 10 or
more inspections to observe the first defective item.

Solution: p=0.1, k=10
P(X — x) — (1 . p)(x—l) D F (1) F (2) ....... F (9) S (10)
Need to find P(X = k), for any p and k.

PX=>k)=PX=k)+PX=k+1D)+PX=k+2)+-

PXzK)=0-p'"®+0A-p@)+A-p)"" @+
PX=k)=p(1 - p)k_l[l +(1-p)+@-p) 2+ —p)+-];, 1+tu+P+u’+..=

P(X=>k)=p(1—p)k1? (1_(11_p)) =p(1—p)F1 %; geometric series
PX=>k)=(1-p)!

In our example, p=0.1, k=10, hence P(X > 10) = (0.9)° = 0.3874

B
l1—u

From this we also conclude that: P(X < k) =1 — (1 —p)*1

ALSO: P(X < k) = 1 — (1 — p)¥; cumulative distribution function :



The Geometric Distribution

Example: A production line has a 20% defective rate. What is the minimum number of
inspections, that would be necessary, so that the probability of observing a defective is more
that 75%7?

S(1)

Solution: p=0.2

PX=x)=1-p)*Yp F(1) | S(2)
Need to find k so that P(X < k) = 0.75

F(1) | F(2) | S(3)

From the previous example, we have

PX=k)=(1-p)!

PX<k)=1-(1-p)k

What is the value of k such that
PX<k)=1-(1-02)%>0.75

This inequality is satisfied with k=7 (P(X < 7) = 0.79028).

That is, we need at least 7 inspections to get the first defective item with a probability = 0.75.

F(1) F(2) | ...... | S(k)

4



Theorem: Mean Value of the Geometric Distribution

The mean value of the geometric distribution with parameter p is given as:

1
fy =E(X) = —
P
Proof: w4, =E(X) = Y xp(l-p)" = p[1+ 2(1- p)+3(1-p)’ +4(1- p) +]

Recall the geometric series ‘

lvu+u”+u +..=—— = 5 =5
1-u 1-A-p)* p

The derivative of the series is

d( : }: : 2=l+2u+31r2+31r2+...
du\l-—u) (1—-u)

Making use of this result (with u = 1-p), the expected value of X becomes
1 1

Paap)y p

Hx



Theorem: Variance of the Geometric Distribution

1-p
2

P

The variance of the geometric distribution with parameter p is giv|en as UZY =Var(X) =

Proof: To find the variance, we first find E(X (X -1))

&

E(X(X-1)) = Y x(x-D)pl-p)" =p2M)A-p)+3(2)A-p) +43)1-p)’ +..}

x=1

EQX(X-D) = p(-p)| 20+3Q)0-p) #4002 +..| = p-p) 5 =20

Differentiating the geometric series twice with respect to u
Recall the geometric series

d(ll ] I =1+2u+3u” +4u’ + ...

du\l-u) (1=u) 1+u+u3+u3+...:—1
1-u
d : ~ | = 2 -=2+3(2u+43)u’ ...
dul (1—u) (I—u)
. . o 2 2(1-P)
Making use of this result (with u = 1-p), we get E(X (X -1)) = p(1-p)— = 5
p p

But, E(X(X-1)= E(X*-X)=E(XY)-EX) = E(X)=EX)+E(X(X-D)
1,2d-p) 1 _d-p)

2 2 2

P p P P

From this we conclude that: o'_\_z =E(X)-( Ly ) =




The Geometric Distribution

Example:
A production line has a 20% defective rate. What is the average number of

inspections to obtain the first defective?

Solution: p = 0.2

PX=x)=1-p¥Yp
1 1
EX)=2=5=5

On the average, we need 5 inspections to get one defective item
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