ENEE 230

Final Exam

Solutions

BIRZEIT UNIVERSITY

Electrical & Computer Engineering Department ENEE2301-Network Analysis 1 Final Exam-January 19th, 2016

Instructors: M. Jubeh , N. Ismail & Khader Mohammad

Student Name:

ID:

Section:

Notes and Instructions:

- Read each question carefully before starting your solution and answer in the assigned space.
- Write neatly and clearly and leave only one answer for each question.
- Use of cell Phones is categorically prohibited so please make sure to turn them off.
- Percentage (%) of total mark is given for each question. Budget your time accordingly.
- The results of this exam will be evaluated according to ABET "a" and "e" student outcomes and the questions are designed for that.

Part One:

Problem1. (15 points) To assess "a" student outcome Choose the correct Answer:

Choose the correct Answer:						
1. 7	L. The equivalent resistance R_{eq} between the two					$\frac{2 \Omega}{\sim \infty}$
terminals A and B is						$A \longrightarrow \begin{array}{c} 2 \Omega \\ \\ \end{array}$
(J) 2	Ω	(II) 2.8 Ω	(JII) 1 Ω	(IV) 2.5 Ω	R_{eq}	$\Rightarrow 2\Omega^{2}$ $\lessapprox 2\Omega$
(V)	1.2 Ω	(VI) 3 Ω	(VII) 1.5 Ω	(VIII) 3.3 Ω		B •
2. In the circuit shown below, the value of V_x is					+	ξ 5Ω
(I) 1	10 V ((II) $-10 V$	(III) 4 V	(IV) -4 V		+ \(\frac{10}{10}\)
(V)	-6 V	(VI) 0 V	(VII) 6 V	(VIII) 5 V	ν ₁	$\stackrel{+}{{\scriptstyle v_x}} \left\langle \downarrow \right\rangle 0.4 \ v_1$
3. In the circuit shown below, the value of i_s and						3 A -3 A
		absorb by R (II) $-6A$, -30 (V	1 are W (III) 6 <i>A</i> , 30W	(IV)-6A, 30 W	R_3	$10 \text{ V} \stackrel{\text{\tiny \downarrow}}{=} R_{i}$
C	V) 3 <i>A</i> , <i>–3</i> 0 W	V (VI) -6A, -60	W (VII) -3 <i>A</i> , 60W	(VIII) 3 <i>A</i> , 60 W	1	

4. In the circuit shown below , the value of V_2 is

(I) 2 V

(II) -2 V

(III) -5 V

(IV) 5 V

(V) -3 V

(VI) 3 V

(VII) 0.5 V

(V∭) −0.5 V

5. In the circuit shown below , the value of $\,i\,$ is

- $(II) -\frac{6}{5}A \qquad (III) \frac{6}{5}A$
- (IV) 2

(V)
$$-\frac{24}{5}A$$
 (VI) $-8A$ (VII) $8A$

- (VIII) 2.

Problem2. (10 points) To assess "a" student outcome For the circuit of Fig.(2), determine Vx using Superposition.

Fig.(2)

$$2V_{x}+2=V_{1}(\pm +\pm)$$
 $V_{x}=-V_{1}$

$$\therefore -2V_{1}+2=V_{1}\cdot \frac{3}{2}$$

$$-2.5V_{1}=-2=>V_{1}=0.8V$$

$$|\therefore V_{x}=-0.8V$$

$$\begin{array}{c}
32 \\
+ \sqrt{x} \\
+ \sqrt{x}
\end{array}$$

$$\begin{array}{c}
62 \\
4
\end{array}$$

$$2(18-V'') = \frac{1}{2}V'' - 6$$

$$36+6 = 2.5V''$$

$$V'' = \frac{42}{2.5} = 16.8V$$

$$V'' = 18 - 16.8 = 1.2V$$

3)
$$V_X = V_X + V_X'' = -0.8 + 1.2 = 0.4 \text{ T}$$

Problem3: (10 points) To assess "a" student outcome For the circuit of Fig.(3), find power dissipated in the 0.2375 Ω resistor.

$$2500 \angle 0^{\circ} = (0.25 + j2) I_{1} + V_{1}$$

$$V_{1} = 10 V_{2}$$

$$V_{2} = I_{2} (0.2375 + j0.05)$$

$$U_{1} = 10 \cdot I_{2} (0.2375 + j0.05)$$

$$U_{1} = 10 \cdot 10 I_{1} (0.2375 + j0.05) \dots (1)$$

$$V_{1} = 2500 \angle 0 - (0.25 + j2) I_{1} \dots (2)$$

$$egnalizins 0) V(2)$$

$$100 I_{1}(0.2375+j0.05) = 2500 \angle 0 - (0.25+j2) I_{1}$$

$$((23.75+0.25)+j7) I_{1} = 2500 \angle 0^{\circ}$$

$$I_{1} = \frac{2500 \angle 0}{27+j7} = \frac{2500 \angle 0^{\circ}}{25} = 100 \angle -16.26^{\circ}$$

$$I_{2} = 10 I_{1} = 1000 \angle -16.26^{\circ}$$

$$P_{0.2375 L} = |I_{1005}|^{2} R = \frac{1000}{V_{2}^{2}} R = 118.75 \text{ Wath}$$

Problem4. (15 points) To assess "e" student outcome

The following three loads are connected in parallel to a 240Vrms 60 Hz Ac generator:

Load #1 has P₁= 600KW and has a pf₁=0.8 lagging.

Load #2 has $P_2 = 400 \text{KW}$ and has a $|S_2| = 500 \text{KVA}$ and has a lagging power factor.

Load #3 has $Q_3 = -207KVARs$ and has a $pf_3 = 0$ leading.

- a) Determine the total apparent power of the three loads.
- b) Determine the power factor of the combined load.
- c) Determine the value of capacitance or inductance that will need to be added in order to make the overall pf = 1.0, assuming that the voltage across the load is to be kept at 240 Vrms (with $\omega = 377 \text{rad/sec}$)

Solution load !

$$O_1 = \cos^2 p f_1 = \cos^2 0.8 = 36.87^\circ$$
 $|S_1| = P_{A1} = \frac{P_1}{p f_1} = \frac{600}{0.8} = 750 \text{ KVAR}$
 $|S_1| = P_{A1} = \frac{P_1}{p f_1} = \frac{600}{0.8} = 750 \text{ KVAR}$
 $|O_1| = |S_1| \sin 36.87^\circ = 950 \text{ KVAR}$
 $|O_2| = |S_2| \sin 36.87^\circ = 300 \text{ KVAR}$
 $|O_2| = |S_2| \sin 36.87^\circ = 300 \text{ KVAR}$
 $|O_3| = |O_1| + |O_2| + |O_3| = (1000 + 1) + |O_3| + |O_3| + |O_3| = (1000 + 1) + |O_3| + |O_3$

2)

Qc = -WC Vrms = -543 KVAR

: C = 543 RVAR = 25 mf

ENEE2301-Network Analysis 1 Final Exam-January 19th, 2016

Instructors: M. Jubeh , N. Ismail & Khader Mohammad

Student Name:

ID:

Section:

Part Two:

Problem5. (15 points) To assess "e" student outcome

The switch in Fig.(5) has been in position (a) for a long time.

At t = 0, it moves to position (b).

Calculate ix(t) for all t > 0.

 $ix(+) = ix(-) + (cx(-) - ix(-)) e^{+/T}$

$$(x|3) = \frac{24-70}{6} - \frac{20}{3}$$
 $(x|3) = -6A$

$$T = R_{TH} C$$
; $R_{TH} = 6 \text{ nll } 2n = 2n - 8 T = 4 \frac{5}{2}$
 $ix(4) = -6 \text{ e}^{4} A \text{ for } 4 > 0$

Problem 6. (10 points) To assess "a" student outcome

After being open for a long time, the switch in the circuit of Fig.(6) is closed at t=0.

- a) Find vc(0) and il(0).
- b) Find the differential equation describing il(t), for t > 0.
- c) Find the characteristic equation of the circuit of Fig.(6).

d) Find
$$\frac{di_L(0^+)}{dt}$$

٠:

ENEE2301-Network Analysis 1 Final Exam-January 19th, 2016

Instructors: M. Jubeh , N. Ismail & Khader Mohammad

Student Name:

ID:

Section:

Part Three:

Problem7: (12 points) To assess "a" student outcome

For the circuit of Fig.(7), use the thevenin's equivalent circuit to find voltage Vo (note that the two inductors have a mutual inductance between them)

$$:I = \frac{dY}{J3Q} = -j0.75$$
 Arms

=
$$j24(2.5I2)-j16I2$$

 $V_5=j60I2-j16I2=$) $I_2=\frac{24}{j44}=\frac{-j6}{1}$

$$U_{S} = J60 \pm 2 - J16 \pm 2 = J \pm 2 - J44$$
 $I_{SC} = I_{1} - I_{2} = (2.5 - 1)I_{2} = 1.5I_{2} = 1.5(-J\frac{6}{11}) = -j0.818$ Arms 10

Problem8: (13 points) To assess "a" student outcome For the following balanced three phase system shown in Fig.(8), the source is Δ – connected positive sequence and the load consists of parallel Δ -Y loads, given:

$$\vec{V}_{AB} = 380 \ (30^{\circ} \ V; \ Z_T = (0.1)\Omega; Z_Y = (-j1)\Omega; Z_{\Delta} = (6+j9)\Omega$$

- 1) Calculate the phase currents of the delta connected load: $\vec{I}_{AB\Delta}$, $\vec{I}_{BC\Delta}$, $\vec{I}_{CA\Delta}$
- 2)Calculate the phase currents of the Y connected load : \vec{I}_{AN} , \vec{I}_{BN} , \vec{I}_{CN}
- 3)Calculate the magnitude of the line current I_{aA}

Fig.(8)
$$\overline{I}_{AN} = \frac{\overline{V}_{AN}}{Zy};$$

$$\overline{V}_{AN} = \frac{\overline{V}_{AB}}{\overline{I}_{3} \angle 30^{\circ}} = \frac{380 \angle 30^{\circ}}{\overline{I}_{3} \angle 30^{\circ}} = 219.4 \angle 0^{\circ} V$$

$$\overline{I}_{AN} = \frac{219 \angle 0^{\circ}}{-JI} = \frac{219 \angle 0^{\circ}}{\overline{I}_{2} - 90^{\circ}} = 219.4 \angle 90^{\circ} A; \overline{I}_{BN} = 219.4 \angle -50^{\circ} A$$

$$\overline{I}_{CN} = 219.4 \angle 10^{\circ} A$$

11

3) To find IAA, we construct single-phase equivalent

$$I_{ANL} = \frac{V_{AN}}{\frac{Z_{A}}{3}} = \frac{219.4 \times 10^{\circ}}{\frac{6+j9}{3}} = \frac{219.4 \times 10^{\circ}}{21j3} = \frac{219.4 \times 10^{\circ}}{3.606} \times 10^{\circ}$$

$$I_{AA} = 219 \cancel{\cancel{4}} \cancel{\cancel{90}} + 60.87 \cancel{\cancel{4}} \cancel{\cancel{56.3}} = 36.504 + \cancel{\cancel{1}} \cancel{\cancel{1}}$$

$$\frac{QR}{24A} = \frac{VAN}{2y/|\frac{Z_0}{3}} = \frac{219 \cdot y \cdot L_0^{\circ}}{-j! ||2+j|^3} = \frac{219 \cdot L_0^{\circ}}{1\cdot 275 \cdot L_0^{\circ}} = \frac{219 \cdot L_0^{\circ}}{1\cdot 275 \cdot L_0^{\circ}} = \frac{172 \cdot 1}{1275 \cdot L_0^{\circ}} = \frac{172 \cdot 1}{$$

$$\frac{3-j^2}{-j^2(2+j^2)} = \frac{-j(2+j^2)}{-j+(2+j^2)} = \frac{3-j^2}{2+j^2} = \frac{3.605(2-53.76)}{2.83(2+j^2)} = \frac{3-j^2}{2+j^2} = \frac{3.605(2-53.76)}{2.83(2+j^2)} = \frac{3-j^2}{2+j^2} = \frac{3.605(2-53.76)}{2.83(2+j^2)}$$

GOOD LUCK

Mohammad Jubeh, Nasser Ismail & Khader Mohammad