

Faculty of Engineering & Technology Electrical & Computer Engineering Department

SIGNALS AND SYSTEMS

Matlab_Ass-1-

Prepared By:

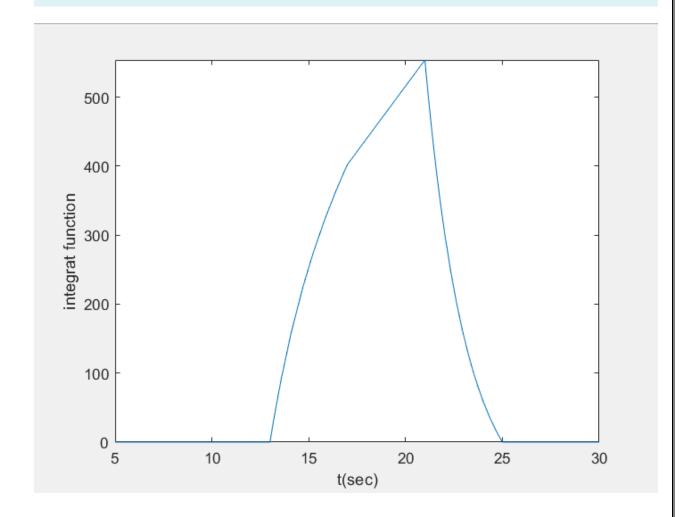
*Anas Nimer 1180180

Instructor: Dr. Ashraf Al-Rimawi

Section: 1

Date: 15/6/2020

Abstract:			
The aim of this assignment:			
1- To learn how use matlab	to solve any fu	nction	

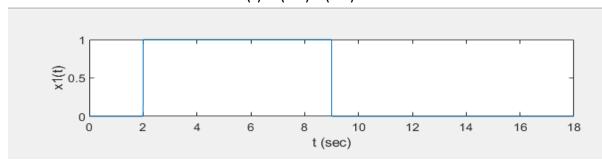

Table of Contents

Abstr	ract	2
Proce	edure	8
A.	Question 1	4
В.	Question 2	5
C.	Question 3	8
Concl	lusion	12
Rofor	cences	12

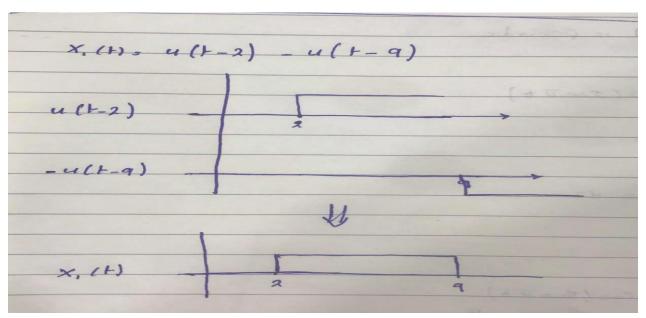
Procedure:

Q1)

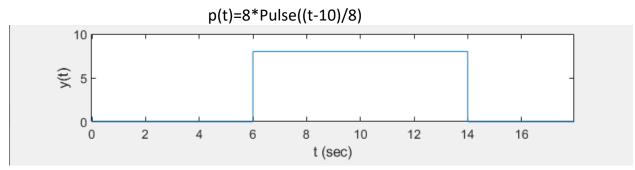
Write a program that computes and plots the convolution of the functions $x(t) = (10e^{-0.5t}) \prod (\frac{t-7}{4}), \text{ and and } y(t) = (10te-0.5t) \prod (\frac{t-12}{8})$

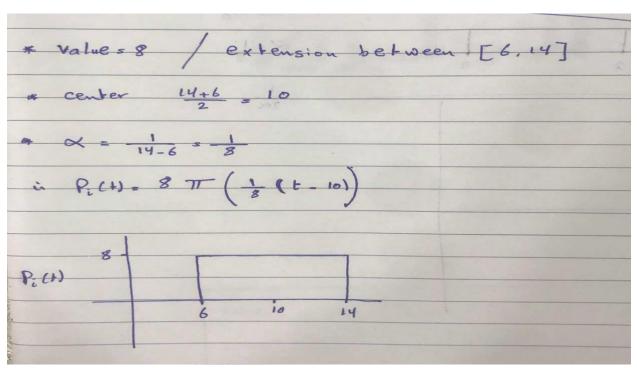

Generate and plot the following signals using MATLAB: 1. $X_1(t)=u(t-2)-u(t-9)$

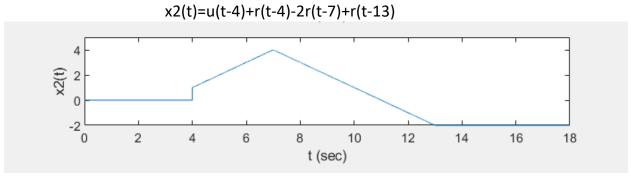
2. A finite pulse (Pi(t)) with value = 8 and extension between 6 and 14

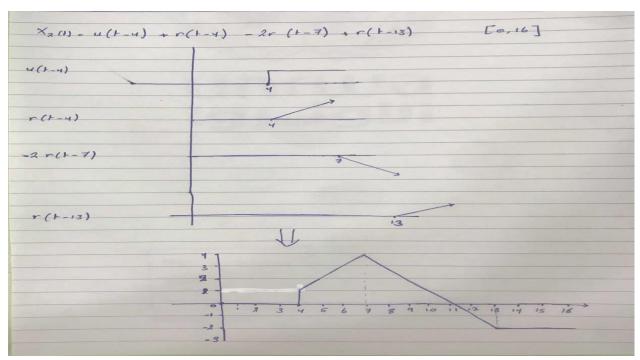

3.
$$X_2(t)=u(t-4)+r(t-4)-2r(t-7)+r(t-13)$$
 in the time interval [0 16]

1-

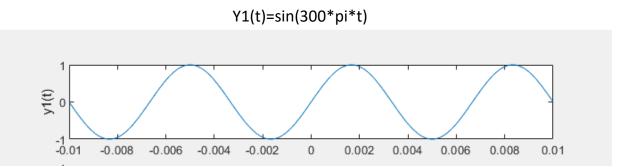

$$X(t)=u(t-2)-u(t-9)$$

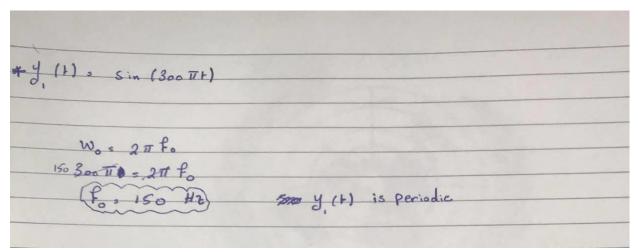

MATLAB solution


Personal solution


MATLAB solution

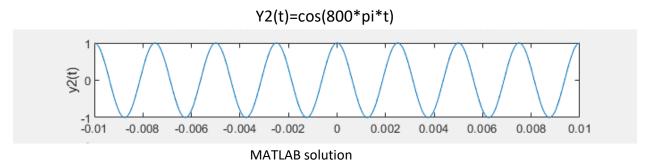
Personal solution

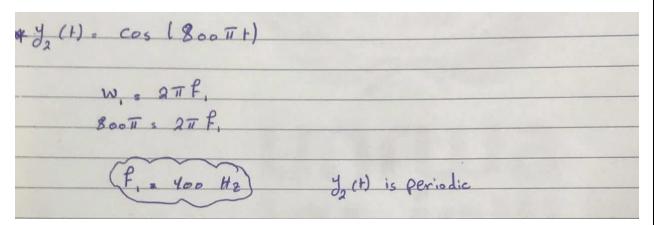

MATLAB solution


Personal solution

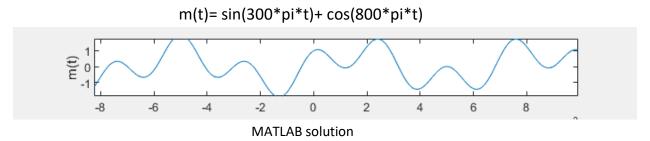
Q3)

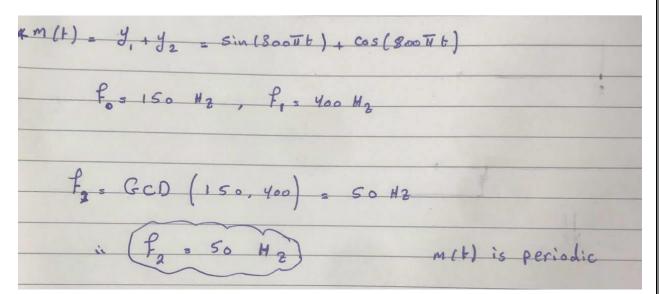
- 1. Generate and plot the signals $y_1(t)=sin(300\pi t)$, $y_2(t)=cos(800\pi t)$, then determine and plot the signals $m(t)=y_1+y_2$ and $n(t)=y_1-y_2$.
- 2. Determine, using the MATLAB plots, if the generated signals are periodic. In case asignal is periodic, determine its fundamentalfrequency.



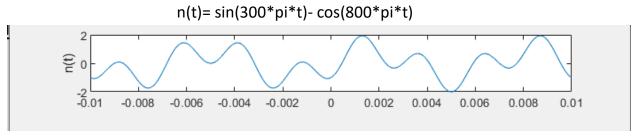

MATLAB solution

Personal solution


- ❖ Notes: As shown by MattLab solution that sin(300*pi*t) is a periodic function because of function (sin(300*pi*t)) repeats itself periodically. In addition to, the personal solution shown the function is periodic.
- Conclusion: The result is correct so that the solution for the MattLab and Personal solution are similar.



Personal solution


- ❖ Notes: As shown by MattLab solution that cos(800*pi*t) is a periodic function because of function (cos(800*pi*t)) repeats itself periodically. In addition to, the personal solution shown the function is periodic.
- **Conclusion**: The result is correct so that the solution for the MattLab and Personal solution are similar.

Personal solution

- ❖ Notes: As shown by MattLab solution that m(t)= sin(300*pi*t)+ cos(800*pi*t) is a periodic function because of function m(t) repeats itself periodically. In addition to, the personal solution shown the function is periodic.
- Conclusion: The result is correct so that the solution for the MattLab and Personal solution are similar.

MATLAB solution

$$n(t)$$
 = $y_1 - y_2 = \sin(300 \pi t) - \cos(800 \pi t)$
 $f_0 = 150 \text{ Hz}$
 $f_3 = GCD (150, 400) = 50 \text{ Hz}$
 $f_3 = 50 \text{ Hz}$
 $f_3 = 50 \text{ Hz}$
 $f_3 = 600 (150, 400) = 50 \text{ Hz}$

Personal solution

- ❖ Notes: As shown by MattLab solution that n(t)= sin(300*pi*t)+ cos(800*pi*t) is a periodic function because of function n(t) repeats itself periodically. In addition to, the personal solution shown the function is periodic.
- **Conclusion**: The result is correct so that the solution for the MattLab and Personal solution are similar.

Conclusion:					
The matlab is a very easy program and can use it to solve any function, whether difficult or easy.					

References:		
	e.com/playlist?list=PLnyw1IVZpaTu08ss_vLUk5gl	HC2wK0rWzE Accessed on