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CHAPTER

Signal and System Modeling Concepts

1-1 Introduction

This book deals with syszems and the interdction of signals in systems. A system, in its most general
form, is defined as a combination and interconnection of several components to perform a desired task.t
Such a task might be the measurement of the acceleration of a rocket or the transmission of a message
from New York to Los Angeles. The measurement of the acceleration might make use of visual obser-
vation of its position versus time. An equally unsophisticated solution to the message delivery problem
might use a horse and rider. Obviously, more complex solutions are possible (and probably better). Note,
however, that our definition is sufficiently general to include them all.

We will be concerned primarily with /inear systems. Such a restriction is reasonable because many
systems of engineering interest are closely approximated by linear systems and very powerful tech-
niques exist for analyzing them. We consider several methods for analyzing linear systems in this book.
Although each of the methods to be considered is general, not all of them are equally convenient for
any particular case. Therefore, we will attempt to point out the usefulness of each.

A signal may be considered to be a function of time that represents a physical variable of interest as-
sociated with a system. In electrical systems, signals usually represent currents and voltages, whereas
in mechanical systems, they might represent forces and velocities (or positions).* In the example men-
tioned above, one of the signals of interest represents the acceleration, but this could be integrated to
yield a signal proportional to velocity. Since electrical voltages and currents are relatively easy to
process, the original signal representing acceleration, which is a mechanical signal, would probably be
converted to an electrical one before further signal processing takes place. Examples illustrating these
remarks will be given in the next section.

Just as there are several methods of systems analysis, there are several different ways of represent-
ing and analyzing signals. They are not all equally convenient in any particular situation. As we study
methods of signal representation and system analysis we will attempt to point out useful applications
of the techniques.

So far, the discussion has been rather general. To be more specific and to fix more clearly the ideas
we have introduced, we will expand on the acceleration measurement and the message delivery prob-
lems already mentioned.

"The Institute of Electrical and Electronics Engineers dictionary defines a system as “an integrated whole even though com-
posed of diverse, interacting structures or subjunctions.”

*More generally, a signal can be a function of more than one independent variable, such as the pressure on the surface of an
airfoil, which is a function of three spatial variables and time.
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7 2 Examples of Systems Solution:
{ (a) The force, Ma, on the weight due to acceleration is baianced by the force, Kx, due to the spring
A AMPLE 1-1 tension. Thus
[ An accelerometer, consisting of a spring-balanced weight on a frictionless slide, is shown schemat- Ma = Kz (a-n
ically in Figure 1-1. It is to be used to measure the longitudinal acceleration of a rocket whose ac- o
celeration profile is shown in Figure 1-2a. (a) If the weight used to indicate acceleration is 2 g, where x is the departure from the equilibrium position, taken to be x = 0, M is the mass of the
Hdetermine the Spring constant K such that the deparmre of the Wﬁighl from its qullhbrlllm pOSitiOﬂ weight’ K is the Spring constant, and a represgnts acceleration of the rocket. Sl)l\-"lﬂg for K, we
at the maximum acceleration of 40 m/s2, achieved at ¢ = 72 s from launch, is 1 cm. (b) If a minimum obtain
increment of 0.5 mm of movement by the weight can be detected, to what minimum increment of 3
acceleration does this correspond? (c) Derive the profile for the longitudinal velocity of the rocket K= Mayq, = (0.002 kg)(40 m/s") = 8 kg/s? (1-2)
and sketch it. X max 0.01 m
. (b) With Ax,;, = 0.5 mm = 0.0005 m, we have
I i K Axp,  (8)(0.0005)
RTET 3 { Aa_, = = =2 m/s? 1-3
' X\\\&\\\\\‘G&S\\\\\\ \ : : 0 M 0.002 / e
§ ‘ 1 \ ! (¢) Fort = 0, let the acceleration as a function of time be represented as*
W—o— M—uu—\ : _[a =g
i t)= 1-4
§ § | W=\o, >4 -
‘1) \ ‘ where t, = 72 s and o = 5/9 m/s? for this example. The velocity is obtained by integration of
! 2
- _|at?f2, t=4
FIGURE 1-1. System for measuring the acceleration of a rocket. , v, (1) = o2/2, >0, (1-5)
' Using the given value for e, the velocity at ¢ = ¢, (burnout) is
i 5 (72 _
40 | v, (72) = 9 2 - 1,440 m/s = 4,724 ft/s = 3,221 mi/hr (1-6)
2 i
:E: i : The velocity as a function-of time is shown in Figure 1-2b.
L > 1,5 EXAMPLE 1-2
0 36 72 ) ] ]
tal Accelerition profile 3 To determine velocity by means of the accelerometer of the previous example, an operational am-
plifier integrating circuit is used as shown in Figure 1-3. The wiper of the potentiometer at the in-
put is tied to the accelerometer weight and can provide a maximum input voltage of 0.1 V depending
1500 : on whether the acceleration is positive or negative. The operational amplifier is ideal (infinite in-
. put resistance and infinite gain). However, its maximum output is limited to 10 V. Choose RC such
W N ! that the operational amplifier output will not be overdriven for the maximum velocity expected (as-
: i sume R, < < R).
J g - Solution: Kirchhoff’s current law at the node joining R, C, and the amplifier input can be ex-
pressed as
1 i >[5 vy — U d
0 36 72 Rl + C&r (v, —vy) =0 (1-7)

(b) Velocity profile
FIGURE 1-2. Acceleration and velocity profiles for rocket.

"But for a few exceptions, the signals in this chapter are assumed to be zero for 1 < 0.
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. c
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FIGURE 1-3. Integrator circuit used to determine velocity from the accelerometer analyzed in Example 1-1.

However, v, = 0 at the negative input of the operational amplifier since its infinite gain consl:rail:!s
voltages at its inverting and nonintverting inputs to be approximately equal, and the positive input is
grounded. Thus Kirchhoff’s current law equation, when rearranged, simplifies to

e T TSP R——
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alt)
6
a(6T) |
5 | a(7T)
I
]
4 - | [
Trapezoidal
(N a(3T) | -«-1""’ rule: area
I | | | for this
| I | { T step is
a(2T) | Rectangular | 2 [a(6T) + a(1T)]
2 ”J(/ rule:area || 2
| | for this | |
- -
1 | | Ta(3T) 1 |
[ | |
0 | ] | L ] | |

1
0 T 2T it 4r 5T 6T T

(1

FIGURE 1-4. lllustration of discrete-time integration rules.

Wi ot = 3y
vo(t) = — o v,(A) dA (1-8) where v(nT) is the approximation to the velocity at sampling time nT, T'is the sampling interval, and
0 a(nT) s the acceleration at sampling time nT. If trapezoidal integration is used, the area under a curve
where the capacitor is assumed initially uncharged. From the previous example, we take the voltage is approximated as a sum of contiguous trapezoids of width T seconds. The algorithm for finding the
at the potentiometer wiper to be velocity from the acceleration in this case is given by
v () = B, O=st=1y (1-9) i ol(n + 1)T] = U(nT) + {a(nT) + al(n + DTINTR) (1-13)
where v (t,) = 0.1 V, giving 8 = 0.1/72 = 1.4 X 1073 V/s. Thus, at t,, the operational amplifier out- |
put veltage is . TABLE 1-1
: 2 Numerical Resuits for Example 1-2
vo(ty) = oo | (1-10)
RC 2 n nT,s v(nT), rect. v(nT), trap.
Setting this equal to —10 V, which is the constraint imposed by the operational amplifier at its out- 5 5 . :
put, and solving for RC, we obtain R 1 4 8.9 Lk
2 2 2 8 26.7 17.8
2
re = Bo _ QU72)@2)° _ (¢ (1-11) 3 12 53.3 40.0
20 20 . 4 16 88.9 711
‘ _ 5 20 1333 111.1
= Cis 7.2 pFE.
For R = 50 k{2, the required value of C'is 7.2 pu 6 24 186.7 160.0
T 28 248.9 217.8
EXAMPLE 1-3 8 32 320.0 284.4
. : . ; ional 9 36 400.0 360.0
Another way to carry out the integration operation of the previous example (ql‘ 31!)’ signal process- 10 40 488.9 444.4
ing function, for that matter) is by sampling the voltage analog to the acc.elerauon signal 6&01'.1 T sec- 1 a4 5867 Hivk
onds, quantizing the samples so that they can be represented numerically, and pgrfor{mng the 12 48 693.3 £40.0
integration numerically. It will be shown in Chapter 8 that all the information present in a signal can (3 52 808.9 7511
be represented by sample values taken sufficiently often if the signal is bandlimited (a term to be pre- 14 56 933.3 8711
cisely defined later). Two simple integration methods that might be used are the rectangular and 15 60 1066.7 1000.0
trapezoidal rules. These are illustrated in Figure 1-4, The former approximates the area unde.r acurve i 16 64 1208.9 1137.8
as the sum of a series of “boxcars” or rectangular areas, and can be carried out as the algorithm g :; ?3 Ilgggg 1234_3
i . 1440,
o[(n + 1)T] = o(nT) + Tal(n + 1)T] (1-12) i
§
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I Note that these algorithms are recursive in that the next approximate value for the velocity is com-
puted from the old approximate value plus the sample value for the acceleration. The recursive struc-

( ure can be removed by writing the equations forn = 0, 1, 2, . . . and doing a substitution of the one

( for n = 0 into the one for n = 1, then this result into the one for n = 2, and so on. In the case of the

trapezoidal rule, two sample values for the acceleration are used—the present one and the immedi-

( 1te past one. Note, also, that the T in the argument of the various sampled signals is unnecessary—
the index n is the independent variable. More will be said about integration algorithms in Chapter 9.
To finish this example, we give a table of values for both algorithms. Note that for the acceleration

[ profile shown in Figure 1-2, the trapezoidal rule gives exact results. Had the acceleration profile not

~ been linear, this would not have been the case.

( The starting point of any systems analysis or design problem is a model which, no matter how
fined, is always an idealization of a real-world (physical) system. Hence the result of any sys-
tems analysis is an idealization of the true state of affairs. Nevertheless, if the model is sufficiently
( urate, the results obtained will portray the operation of the actual system sufficiently accurately
t~be of use.
( The previous examples illustrate the concept of a system and the design of systems to accomplish desired
( ks. Each example involved the concept of a signal. In Example 1-1, the signal was the displacement of the
acceleration measuring weight. This was coupled to the operational amplifier system of Example 1-2 to pro-
—..ce voltage signals, one proportional to acceleration and the other proportional to velocity.
Another concept demonstrated by the first two examples is that of a subsystem. When taken sepa-
rately, we can speak of each as a system, whereas both taken together also compose a system. To avoid
_nfusion in such cases, we refer to the separate parts (accelerometer and signal-processing integrator
(' this case) as subsystems. The third example illustrated the idea of digital signal processing, a con-
cept explored later in the book.
( After considering one more example, which is somewhat different from the first three, the remain-
tar of this chapter will be concerned with an introduction to usefidl signal models. In Chapter 2, meth-
uds for describing and analyzing systems in the time domain will be examined. Throughout the rest of
(e book we consider other methods of signal and system analysis.

— - —

{ _XAMPLE 1-4 Communications Link

( Figure 1-5 is a pictorial representation of a two-way communications link as might exist, for ex-
( ample, between New York and Los Angeles. It might consist entirely of earth-based links such as
| wire lines and microwave links. Alternatively, a relay satellite could be employed. Regardless of the
( particular mechanization used, the systems analyst must decide on the most important aspects of the
| physical system for the application and attempt to represent them by a model.
( | Let us suppose that the link employs a synchronous-orbit satellite repeater, stationed 35,784 km
( above the earth’s equator. At this altitude the satellite is stationary with respect to the earth’s sur-
| face since the period of the satellite’s orbit is equal to one day. Let us also suppose that the analyst
( is concerned primarily about echoes in the system due to reflections of the electromagnetic-wave
( carriers at the satellite and at the receiving ground station. Assume that the transmitter and receiver
| are equidistant at a slant distance d = 40,000 km from the satellite, and that the delay (up or
{ down) is
( __d _ (40,000 km)(1000 m/km)
| ¥ 3 X 1P m/s

P, C

| =013s
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Satellite
repeater

ax(r—r)

7 afx(t—27) I/

Y. LA

L

FIGURE 1-5. Satellite communications link.

where ¢ = 3 X 108 m/s is the velocity of electromagnetic propagation in free space. The slant dis-
tance d accounts for the satellite being located above the earth’s equator midway between the

ground stations, each of which is assumed to be at a latitude of 40° north. The signal received at
the satellite is

Se(8) = ax(t — 1), r=t=T+r (1-14a)

where x(f) is the transmitted signal and [0, T) is the interval of time over which the transmission takes
place. The parameter « is the attenuation, which accounts for various system characteristics as well
as the spreading of the electromagnetic wave as it propagates from the transmitter antenna. A por-

tionlof S4a(?) is reflected and returned to the New York ground station terminal to be received by the
receiver at that end; we represent it as

Senlt) = afx(t — 27), (1-14b)

whtj.re B is another attenuation factor. The remainder of s, () is relayed to the Los Angeles ground
station after processing by the satellite repeater. A portion of this signal may be reflected, but we will
assume its effect to be negligible compared to that of afBx(¢ — 27) when received at the New York
station. Thus a speaker at New York will hear

s(t) = x(1) + apx(r — 27), (1-15)

That is, the speaker will hear his undelayed speech as well as an attenuated version of his speech de-
layed by approximately

2r=t=T+ 27

0=t=T+ 27

AT=2r=026s

‘Psychologic:ally, .th‘e effect of this can be very disconcerting to a speaker if the delayed signal is suf-
ficiently strong; it is vuftually impossible for the person to avoid stuttering. Thus a systems analyst
would proceed by relating « and B to more fundamental systems parameters and designing for an
acceptably small value of af.

L VERSIDADE FEDERAL DO PARA
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8 Ch.1 / Signal and System Modeling Concepts
1-3 Signal Models

Examples of Deterministic Signals
In this book we are concerned with a broad class of signals referred to as deterministic. Deterministic
signals can be modeled as completely specified functions of time. For example, the signal
AL
D= ——=
® B+

where A and B are constants, shown in Figure 1-_6a,/is a deterministic signal. An example of a deter-
ministic signal that is not a continuous function of time is the unit pulse, denoted as I1(¢) and defined as

I(r) = {1' "=

0, otherwise

—m<t<® (1-16)

(1-17)

1t is shown in Figure 1-6b.

A second class of signals, which will not be discussed in this book, are random signals. They are sig-
nls taking on random values at any given time instant and must be modeled probabilistically. A ran-
dom signal is illustrated in Figure 1-6¢. 3

Continuous-Time Versus Discrete-Time Signals

The signals illustrated in Figure 1-6 are examples of continuous-time signals. It is important to note that
“continuous time” does not imply that a signal is a mathematically continuous function, but rather that
it is a function of a continuous-time variable.

In some systems the signals are represented only at discrete values of the independent variable (i.e.,
time). Between these discrete-time instants the value of the signal may be zero, undefined, or of no in-
terest. An example of such a discrete-time or sample-data signal is shown in Figure 1-7a. Often, the in-
tervals between signal values are the same, but they need not be.

A distinction between discrete-time and quantized signals is necessary. A quantized signal is one
whose values may assume only a countable! number of values, or levels, but the changes from level to
level may occur at any time. Figure 1-7b shows an example of a quantized signal. A real-world situa-
tion that can be modeled as a quantized signal is the opening and closing of a switch.

Discrete-time signals will be considered in Chapter 8. The following example provides an illustra-
tion of two such signals.

EXAMPLE 1-5

Two common discrete-time signals are the unit pulse and unit step signals. The first is defined by the
equation*

1 n=>0
8nl=4. : 1-18
(7] {0, otherwise (18
and the second by the equation
: 1 n=0
— ki 1-19
uln] { 0, s (1-19)

where n takes on only integer values.

A countable set is a set of objects whose members can be put into one-to-one correspondence with the positive integers. For
example, the sets of all integers and of all rational numbers are countable, but the set of all real numbers is not.

*The brackets are used to indicate a discrete-time signal.

T Tt o m
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x(t)

A=2;8=1

=3 _a _; t
(a) Signal of Equation I-16
(e
y ]f_-"-__| 1
| |
I I
:'l t ' .
o 4
(b) Unit pulse signal
4 T T T T T T T T T
ol ..
; [ I | Il
Ot I I
| I | : | 1
2L
4 1 1 ! ] L L ! 1 1
0 1 2 3 4 5 6 7 8 9 10

t
(c) Random signal

;I;I;IFIE 1-6. Graphical representation of two deterministic continuous-time signals and a random

O.th_er discrete-timt:: signals may be built from these elementary signals. For example, a pulse con-
sisting .of five 1's in a row starting at n = 0 and ending at n = 4 and 0’s elsewhere may be repre-
sented in terms of the discrete-time unit step as

1, O=n=4
0, otherwise

pln] = u[n] — uln — 5] = {

The student should veri fy this by sketching uln], u[n — 5], and their difference.
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xg(1)

,.--r"“T-m
i e 0
| T.--- T | | | | Y
| | | | | | | |
| | | I | | | |
l | | ] ] i | | ¢
(a) Sample-data signal
xq(t)
Z""___'__"—I'”'I
- L] 1
m |
- ;
r l I '
0 1t ty fa s Ig fy ]

(b) Quantized signal

EIGURE 1-7. Sample-data, or discrete-time, and quantized signals.

Periodic and Aperiodic Signals
3 A signal x(r) is periodic if and only if

X Xt + Ty = 300, (1-20)

—oo < [ < o0

alue of T, such that (1-20) is satisfied is referred to

? where the constant T, is the period. The smallest v
referred to as the period. Any deterministic signal

as the fundamental period, and is hereafter simply
not satisfying (1-20) is called aperiodic.
A familiar example of a periodic signal is

x(r) = A sin(2mfyt + 6),

and @ are constants referred to as the amplitude, frequency in hertz,t and relative phase, re-
= 27f, is sometimes used, where w, is the frequency in rad/s. The period
1/f,, which can be verified by direct substitution and use of trigonomet-

a sinusoidal signal that may be expressed as

— << (1-21).

where A, fi,
spectively. For simplicity, oy

of this signal is Ty = 27w, =
ric identities as follows. We wish to verify that

x(f 4 :—ZE) = x(f), allt (1-22)
(r.)o
But
2
x(r + 2—”) =A sin[wo(r + —w) + 6]
ay L Wy
= Asin(ayt + 27 + 6)

(1-23)

= Alsin(wyt + 8) cos 27 + cos(wt + g) sin 2]

1One hertz is one cycle per second.

T RN S
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2mfeag

(a) Sinusoidal signal

X (0

at

=

(b) Triangular signal

xg (1)

A\

gt ) L

e o7
P

(c) Sawtooth signal
FIGURE 1-8. Various types of periodic signals.

?‘mfgi;).ri, 2_11' =1 and s‘m 27 = 0, the required relationship for periodicity is verified. Note that

Ty o 18 Fhe smallest value of T, such that x(1) = x(r + T). Several types of periodic signal

lllu_s[;hirated in Figure 1-8 together with the sinusoidal signal. y it i

tweene t;:::l n:: t\a;(:. or more sinusoids may or may not be periodic, depending on the relationships be-

e pective per.lods or frequencies. If the ratio of their periods can be expressed as a rational
er, or their frequencies are commensurable,* their sum will be a periodic signal

*Two frequencies, f; and f, if
2 . fi and f;, are commensurable if they have a common i i i i
each an integral number of times. Thus, if £, is the largest such number, i L G S

fi=nf and fr = nyofy

where n, and n, are integers; f, is called th i
e 4 blel,.r'r: " :;__,M I‘, u e fundamental frequency. The periods, T, and T, corresponding to f, and f,, are there-
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12 Ch. 1 / Signal and System Modeling Concepts
EXAMPLE 1-6

Which of the following signals are pericdic? Justify your answers.
(a) x,(t) = sin 1072

(b) x,(r) = sin 20w

{c) xy(t) =sin3ls

(@) x,(0) = x,(0) + x(8)

(&) x5() = x,(8) + x35(D)

Solution: Only (g) is not periodic. To show that waveforms x,(£), x,(f), and x;() are periodic, we
note that

/) A
sin(wyt + ) = sin wo(r + :,;) = sin wyt (1-24)

if @ is an integer multiple of 2ar. Taking the smallest such value of 8, we see that the (fundamental)
period of sin(awyt + 6) is ' AR

5 :
S (1-25)
gy

Thus the periods of x,(1), x,(f), and x,(1) are 1/5, 1/10, and 27/31 ) respegtively.

The sum of two sinusoids is periodic if the ratio of their respective periods can be expressed as a
rational number. Thus x,(#) is periodic. Indeed, we see that the second term goes through two cycles
for each cycle of the first term. The period of x,(r) is therefore 1;":.3 8.

After a little thought, it is apparent that there is no 7, for which x5(2) - xs(t + 7o), becalfse the
ratio of the periods of the two separate terms is not a rational number (i.e., their frequencies are
incommensurable).

Phasor Signals and Spectra

Although physical systerms always interact with real signals, it is often mathematically convenient to
represent real signals in terms of complex quantities. An example of this is the use of phasors. The stu-
dent should recall from circuits courses that the phasor quantity

X = A = A6 (1-26)
is a shorthand notation for the real, sinusoidal signal'
x(f) = Re(Xe/™) = A cos(wyt + 6), —oo <t <o (1-27)
We refer to the complex signal
x(1) = Aefw9, —n<t<®
= Xe/™ (1-28)

We could also project the sinuscidal signal onto the imaginary axis. Projection onto the real axis is used throughout this book,
however.

ey A I i T v

PERC SES

o e
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as the rotating phasor signal.! It is characterized by the three parameters A, the amplitude; 6, the phase;
and wy > 0, the radian frequency. Using Euler’s theorem, which is exp(ju) = cos u + j sin u, we may
readily show that X(¢) is periodic with period 7, = 2/ Wyt

In addition to taking its real part, as in (1-27), to relate it to the real, sinusoidal signal A cos (wyt + 6),
we may relate x() to its sinusoidal counterpart by writing

x(1) = 3%(1) + Lex(r) (1-29)

= A ot L A ) o cw

2 2 ?
which is a representation in terms of conjugate, oppositely rotating phasors. These two procedures, rep-
resented mathematically by (1-27) and (1-29), are illustrated schematically in Figure 1-9. These ex-
pressions for x(r) = A cos{awyt + 6) are referred to as time-domain representations.

Note that (1-29) can be thought of as the sum of positive-frequency and negative-frequency rotating
phasors. This mathematical abstraction results from the fact that it is necessary to add complex conju-
gate quantities to obtain a real quantity. It is emphasized that negative frequencies do not physically ex-
ist, but are merely convenient mathematical abstractions that result in mnicely symmetric equations and
figures such as (1-29) and Figure 1-9b,

A rotating phasor signal is not necessarily associated with any physical quantity that rotates. It is simply a mathematical con-
venience to represent sinusoids by the Re(-) operation.

*Complex algebra basics: Many times students will do more work than necessary in complex algebra manipulations. This
footnote hopefully will give some pointers to minimize such manipulations. A complex may be rep d in the alter-
native forms of cartesian and polar;

X=a+jb=Re®=Rcos @+ R sinp

where a is its real part, b its imaginary part, R its magnitude or modulus, and @ its argument or angle. The latter equation follows
by virtue of Euler’s relationship, or exp(j#) = cos(f) + j sin(6). Matching real and imaginary parts, we see that Re(X) = a =
R cos(#) and Im(X) = b = R sin(#), where Re(-) and Im(-) denote the real and imaginary parts, respectively. The inverse rela-
tionships are R = (a? + 5?12 and = tan~'(b/a). Most programmable calculators have built-in routines for going back and forth
between the cartesian and polar forms. Consider a second complex number, defined by

Y =c¢+ jd = Sei* = S cos ¢ + j§ sing
Addition and subtraction are facilitated with cartesian representation; i.e.,
XZ1f'=(a+jb)i(c+jd)=(a:c‘)+j(btd)

Multiplication and division may be carried in either cartesian or polar form, but usually the polar form is most convenient. For
example, multiplication in cartesian form becomes £

XY = (a + jb)c + jd) = (ac + j2bd) + jlbe + ad) = (ac — bd) + j(bc + ad)
where /2 = —1 has been used. In polar form, multiplication is more simply performed as
XY = (Re/)(Sei#) = RSeX# = RS cos( + ¢) + jRS sin(8 + ¢b)
Division in cartesian form is facilitated by the process of rationalization as
X @b =La+jb)(c—jd}_ (ac + bd) + j(bec — ad) _ac+bd | bc—ad

Y c+jd (c+jd)c—jd) +d? crat e
This fairly lengthy process is shortened considerably by rep ion of the s in polar form:
X _Re* R

: R R
= _ o Ty 2 s i
Y sk s¢ G cos(B — ) + j G sin(@ — ¢)

As a numerical example, consider X = 8 + j6 and ¥ = 3 + j4. Their sum is (8 +j6) + (3 + j4) = 11 + j10 and their difference
is (8 +j6) — (3 + j4) = 5 + j2. Their product computed in cartesian form is (8 + j6)3 + j4) = (24 — 24) + j(18 + 32) =
J30. In polar form it is {10 expltan~'(3/4]) {5 exp[tan=1(4/3)]} = 50 exp(jn/2) = J50. Their quotient in polar form is
{10 exp[tan=1(3/4)]}/(5 exp[tan—'(4/3)]} = 2 expj{tan—!(3/4) — tan~'(4/3)]} = 2 exp[—j0.284] = 1.92 — j0.56, which fol-
lows by Euler’s relation. If the rationalization procedure is used, the same result in cartesian form is obtained.

R R R A - S S S T LD A _: m——y
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< wyt + 0 I
L Re
A cos (wot +8) |
(a) Projection of a phasor onto the real axis
Im
L3
.‘"‘\
— Re
//
A cos (wpt +8)

h

(b) Addition of lex conj P
FIGURE 1-9. Two ways of relating a phasor signal to a sinusoidal signal.

An alternative representation for x(r) is provided in the frequency domain. Since x(® =
A explj(wyt + )] is completely specified by A and 0 for a given value of f, this alternative frequency-
" domain representation can take the form of two plots, one showing the amplitude A as a function of fre-
quency £, and the other showing # as a function of f. Because X(1) depends only on the single frequency f;,
the resulting plots each consist of a single point or “line” at f = f;, as illustrated in Figure 1-10a. Had we
considered a signal that is the sum of two phasors, each plot would have had two points or lines presfent.
The plot of amplitude versus frequency is referred to as the single-sided amplitude spectrum. The modifier
“single-sided” is used because these spectral plots have points or lines only for positive frequencies.

If a spectral plot corresponding to (1-29) is made, spectral lines will be present at f = f afxd at
f= —f, since x() is obtained as the sum of oppositely rotating phasors. Spectral plots for the single
sinusoidal signal under consideration here are shown in Figure 1-10b. Such plots are referred to as
double-sided amplitude and phase spectra. Had a sum of sinusoidal components been present, the spec-
tral plots would have consisted of multiple lines. Note that because of the convention of taking the real
part [see (1-27)], any signal expressed as a sine function must first be converted to a cosine function be-
fore obtaining the spectrum. For this purpose, the identity sin(wyf + 6) = cos(wyt + 8 — /2) is useful.

It is important to emphasize two points about double-sided spectra. First, the lines at negative fre-
quencies are present precisely because it is necessary to add complex conjugate phasors to obtain the real
sinusoidal signal A cos(wyt + 6). Second, we note that the amplitude spectrum has even symmetry about

P

£ A

S
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Amplitude Phase
ALl 1
r i/ — 1
! I
I |
| |
1 f t f
a fo 0 fo
(a) Single-sided
Amplitude Phase
3 i m B
e = :
: : 5 B
f f ! f— + f
e 0 fo I! 0. fo
I
I
{ SO — i

(b) Double-sided

FIGURE 1-10. Amplitude and phase spectra for the signal A cos(w,t + 6).

the origin, and the phase spectrum has odd symmetry. This symmetry is again a consequence of x(¢) be-
ing a real signal, which implies conjugate rotating phasors must be added to obtain a real quantity.
Figures 1-10a and b serve as equivalent spectral representations for the signal A cos(wyt + 8) if we are
careful to identify the spectra plotted as single-sided or double-sided, as the case may be. We will find later
that the Fourier series and Fourier transform lead to spectral representations for more complex signals.

.

EXAMPLE 1-7
‘We wish to sketch the single-sided and double-sided amplitude and phase spectra of the signal

x(f) = 4sin(20m—%), —o < <o
To sketch the single-sided spectra, we write x(£) as the real part of a rotating phasor and plot the
amplitude and phase of this phasor as a function of frequency for r = 0. Noting that cos(u — #/2) =
sin u, we find that

x(1) =4 cns(ZOm — = —)

= 4005(20111 — 232)

- Refaexpj{20m - 27) |}

(1-31)

FEDERAL DO PARA
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Phase shift
Amplitude (radians)
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4 ? 0 i f,Hz
|
2 | I
' fHz |
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S
(a) Single-sided
Amplitude
' 21 1
I ! ‘i
4 4 f,Hz
—10 (1] 10
Phase (radians)
2_1
1 3
|
I
|
! 10
; +— /. Hz
]
—l0 |
|
1
2 i
.__3.,-_.'..

(b) Double-sided
FIGURE 1-11. Amplitude and phase spectra for Example 1-6.

which results in the amplitude and phase spectral plots shown in Figure l-l.la. To p]ot‘the double-
sided amplitude and phase spectra, we write x(f) as the sum of complex conjugate rotating phasors.
Recalling that 2 cos u = exp(ju) + exp(—ju), we obtain

. 2 | 20 G
x(t) =2 cxp{;(ﬂ]m‘ = ?)] + Zexp[-—;(Z(}m = ?)] (1-32)
from which the double-sided amplitude and phase spectral plots of Figure 1-11b result.
EXAMPLE 1-8
As an example involving a sum of two sinusoids, consider the spectrum of the signal
x(1) = 2 cos(107t + w/4) + 4 sin(307r — 7/6) (1-33a)

T A O T W
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Changing the second term to a cosine function gives

x(1) = 2cos(10mt + w/4) + 4 cos(30m — w/6 — m/2)
= 2 cos(107t + 7/4) + 4 cos(30m — 27/3)

This can be written in terms of the real part of the sum of rotatin
the single-sided spectra as

(1-33b)

g phasors in preparation for plotting

x(1) = Re[2ei10m+miay 4 4ej(30'm'—2m’3J]

(1-33c)
In order to plot the double-sided spectra, we write the signal as a sum of counterrotating phasors as

x(t) = eiI0m+ma) + o={10m+wie) 4 I pi30m—2uf3) 4 D -{30m—2m13) (1-33d)

Single-sided and double-sided spectral plots are shown in Figure 1-12.

Singularity Functions

An important subclass of aperiodic signals is the singularity functions, which we now discuss. We be-
gin by introducing the unit step and unit ramp functions and using them to represent more complicated
signals, such as in the acceleration in Example 1-1.

Consider the unir step function, u_ (1), defined as

0, <0

ww=u,p={} !5 (1-34)

The value of u(r) at t = 0 will not be specified at this time except to say that it is finite. Other singular-
ity functions are defined in terms of u_,(7) by the relations

() =f w(Md\, i=...,-2,-1,0,1,2... (1-35a)
Amplitude Amplitude
4[
2' l i 2
o 5 s (R
0 5 R AR A AL B
(a) Single-sided amplitude (c) Double-sided amplitude
spectrum spectrum
Phase, rad. Phase, rad.
i T
-5
30k, 15
0 s L l 0 5 5 e
-2n/3 =213
(b) Single-sided phase (d) Double-sided phase
spectrum spectrum

FIGURE 1-12. Spectra for Example 1-7.
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or

du,(t)

T (1-35b)

ui'+ l(r) ==
Figure 1-13a shows the unit step. We may graphically integrate it to obtain u«_,(¢), shown in Figure
1-13b. This singularity function is referred to as the unit ramp function, r(t), and can be expressed al- ,
gebraically as’

1 5 t=0
B =u_ ()= 1-36
=ua={g 12 (1-36)
Carrying this discussion one step further, we see that a unit parabolic function is given by
22, t=0
£ = 1-37
u_s(e) {0, t<0 (13

This singularity function is sketched in Figyre 1-13c. It is clear that the unit ramp and unit parabolic
functions would be convenient for representing the acceleration and velocity of Example 1-1.

We may shift any signal on the tinie axis simply by replacing tby ¢ — t,. If t;, = 0, the signal is shifted
to the right; if ¢, < 0, it is shifted to the left. For example, replacing ¢ by ¢t — 4 in the definition of the
unit step, (1-34), we obtain

1
0, t—5<0
u(t — 1) = { 2 (1-38a)
1, I_E>U
or
0, t<i
w-p=b 1<
? 74

Similarly, replacing ¢ by ¢ + 4 results in a unit step that “turns on” at t = —3. Using this technique, we
can represent other signals in terms of singularity functions. For example, the unit pulse function, de-
fined by (1-17), can be represented as

L 1 . 1
() = ult + 3) —"ut - 3)
For the definition of I1(¢) given by (1-17), it would be consistent to define u(0) = 1.
We note, also, that replacing ¢ by — ¢ turns a function around.* Doing this in (1-36), we obtain

) t=0
r(—t)={0 Cean (1-40)

which is a ramp that starts at ¢t = 0 and increases linearly as t decreases.

Also, we can obtain a change of scale on the abscissa simply by multiplying ¢ by a constant, say, 8.
If B = 1, the signal is compressed. If 8 < 1, the signal is expanded.

To summarize, consider an arbitrary signal represented as x(ft + a). We rewrite it as

x(Bt + a) = x[B(t + a/B)] (1-41)

"The subscripts are needed on (1-35a) and (1-35b) to identify different members of the class of singularity functions. Since
the step and ramp are very commonly used members, they are often denoted by the special symbaols u(1) and r(1), respectively.

*The negation of the independent variable is often referred to as folding, since the resulting reversal of the signal in time can
be viewed as folding a paper on which the signal has been plotted along its ordinate and viewing it from behind the paper.

ult)=u-1(r)

i
i
" t
(a) Unit step function
r(t)=u_2(1)
) I
|
|
|
|
i
0 1 !
(b) Unit ramp function
u_3(0)
20}
15
i
4 10 -
1
E
sk
! . RN ; ‘
(c) Unit parabolic function
FIGURE 1-13. Examples of three singularity functions.
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Consider the following signals. Sketch each, discussing how the individual plots are obtained.
(a) x, () =II2r + 6)

(b) x,(r) = cos(20mt — 5m)

() xy(t) = r(—0.5t + 2)

Solution: For (a), we write

x, () = 1[2(¢ + 3)]

by factoring out the 2 multiplying . The 3 added to ¢ means that the rectangular pulse function is
shifted left by 3 units, and the 2 results in the original 1-unit-wide pulse function being compressed
by a factor of 2 to a 3-unit-wide pulse function. The result is shown in Figure 1-14a.

For (b), the 207 multiplying ¢ is factored out to give

x(1) = cos[207(t — 0.25)]

which shows that x,(¢) is a cosine waveform shifted right by 0.25 time unit (assumed to be seconds)
with a period of T, = 27w, = 2204 = 0.1 5. This is a shift of 2.5 periods. The result is sketched
in Figure 1-14b.

For x,(t), we write

(1-42)

(1-43)

X0 = A-05¢ - 9] X

which says r(¢) is reflected about ¢ = 0, expanded by a factor of 2 (1/0.5 = 2), and delayed or shifted
right 4 units. A sketch is shown in Figure 1-14c.

It is sometimes useful to check results by writing out the definition of a singularity function. For
part (c), tpis takes the form

(1-44)

-05t+2 —05t+2>=0
— = ! 1-45
L i {0, otherwise (1-490)
:{—O.S(r—4), t<4 _ (145b)
0, otherwise

From this, it is clear that x,(/) = 0 for ¢t = 4. Checking a few values, we see that x,(3) = 0.5,
x(2) = 1, and x3(0) = 2 so that the result is a reflected or reversed ramp starting at t = 4 and in-
creasing 1 unit for each 2-unit decrease in .

EXAMPLE 1-10

Express the signals shown in Figure 1-15 in terms of singularity functions.

Solution: One possible representation for x () is

x,() =u(t) — r(t — 1) + 2r(¢ — 2) — r(t — 3) + u(t — 4) — 2u(t — 5) (1-46)

e}

If £, & /B is positive, x(r) is shifted left by a/B; if ¢ is negative, it is shifted right by o/B. If B < 0, x(1) (2 + 6)
is reversed or reflected through the origin. If | ,Bl > 1, x(f) is compressed; if ] ,81 < 1, x(t) is expanded.
An example will illustrate these remarks. ; 1
EXAMPLE 1-9
L L 1 1 1 | 1 1
—5 =3 0

(a)

g iy
WNAAA
JURAVAVAVAY

(b)

0.1s

r(—0.5t +2)

e

(c)
FIGURE 1-14. Signals relating to Example 1-9.

The step function u(f) is unity for t > 0. At t = 1, the ramp function —r(t — 1) goes downward with
slope — 1. The sum of ramps —r(t — 1) + 2r(t — 2) goes upward with slope +1 starting at ¢ = 2.
The ramp —r(t — 3) then flattens out this upward ramp starting at ¢ = 3, and the step u(t — 4) in-
creases the plateau of unity height to a value of 2. The final step, 2u(t — 5), “shuts off” the preced-
ing sum of singularity functions so that x(z) = 0 for ¢t > 5.

For x,(1) we use a product representation. A possible representation is

x () = 2u(u(2 — ) + u(t — 3u(S — 0 (1-47)

The product of unit step functions 2u(f)u(2 — £) forms the first pulse, and the product u(t — 3)u(5 — 1)
forms the second pulse. Note that u(2 — £) and #(5 — ¢) are step functions that are unity from¢ = —c
tor= 2 and ¢ = 5, respectively, and zero thereafter.

The student should attempt to find other possible representations for x,(f) and x,(1).
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(1) by impulse functions. In neither case are we able to measure, nor are we particularly interested in, what

( happens at exactly the moment the action takes place. Rather we are able to observe only the conditions
1t ——————— - i beforehand and afterward.

Other examples of physical quantities that are modeled by mathematical entities having infinitely
small dimensions and infinite “weight” are point masses and point charges.

| |
| I
] |
( 1 ! ) S ;
1| ‘l I : Since it is impossible for any conventional function to have the properties (1-48), we attemnpt to pic-
( t . : : ; t } ture the unit impulse function by considering the limit of a conventional function as some parameter
( 0 1 2 3 4 5 approaches zero.’ For example, consider the signal
¢ ]
: () 4 i 5.00) 1]_[ r) 2’ = e
. Xpit L . P X
( ¥ , 7 P £ 2e  \2e (149
f 2 ————— ,/;\/ S 0, e > e
| 2 3 g e
1 : which is shown in Figure 1-16. We see that, no matter how small € is, 8,() always has unit area. Fur-
( ko ! e | 7 A —E’_' thermore, this area is obtained as the integration is carried out from t = —€tot = €. As € — 0 this area
( lI 1| 1 —T1 i i is obtainedsin an infinitesimally small width, thus implying that the height of 8,(r) — = such that unity
t + — + — t ) areq lies between the function and the t-axis. This limit is shown as a heavy arrow in the figure.
( . . . 3 4 3 Many other signals exist that provide heuristic visualizations for &() in the limit as some parameter
FIGURE 1-15. Signal to be expressed in terms of singularity functions. approaches zero. Examples are
1 [sin(t/€) |?
( EXERCISE _ _ 8,(1) = [—1;;; (1-50)
Represent the acceleration and velocity of the rocket of Example 1-1 in terms of singularity functions. which iy sketehed in Figure 1-178; and
2 — S — -_—
Answers: a(f) = 40u_,(t/72u_(72 — 1) m/s2. v(f) = au_3(r)u_1(’!2 £+ 1440u_,(t — 72) m/s. | g - |{|/e)f,€‘ M B
. (Other answers are possible.) : (1) = 0, o ? (1-51)
We turn next to the unit impulse function or delta function,! &(t), which has the properties . "The present discussion is aimed at providing an intuitive understanding of the unit impulse function. We will give a more
formal mathematical development shortly.
an =0, 1+ 0 (1-48a)
and ) x
o H / e—=+0
j 8(¢) de = 1 (1-48b) _ ;
oS 5 - . x . P 3 P | 2
Equation (1-48b) states that the area of a unit impulse function is unity, and (1-46a) indicates that this | !
unity area is obtained in an infinitesimal interval on the -axis. : :
The motivation for defining a function with these properties stems from the need to represent phe- 1| e %.‘
nomena that happen in time intervals short compared with the resolution capability of any measuring !
apparatus used, but which produce an almost instantaneous change in a measured quant{ty. Examples |
are the nearly instantaneous increase in voltage across a capacitor placed across the terminals of a bat- = | =]
tery, or the nearly instantaneous change in velocity of a billiard ball struck by a rapidly moving cue bfall, : I ! !
In the first example, the voltage across the capacitor is the result of an extremely large current flowing |4 i
for a very short time interval, whereas the billiard ball’s velocity changes almost instant:meo_usly due to ! |! ]| 3
the transfer of momentum from the cue ball at the moment of impact. The current flowing into the ca- l I |
pacitor and the force transmitted by the cue ball are examples of guantities that are usefully modeled F } |= .
S {0 N R T
“The iwo names stem from the use of this function in engineering and physics; the u:rm"dgiw function” _is Iassoc]alcd wit_h Dirac, | 2 4 4 2
a physicist, who introduced the notation 8() into quantum mechanics. We will refer to 8(f) simply as a unit impulse function. FIGURE 1-16. Square-pulse approximations for the weliimdiin tneion:
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-0 0 0.1 0.2 0.3 04 05

; 2
(a) &g() =% ]:%l}

05 —04 -3 —02

t f f —t f
-05 —04 —03 —02 —01 O 01 02 03 04 05

(b) Triangular

FIGURE 1-17. Two approximations for the unit impulse. .

shown in Figure 1-17b. Although the three families of functions illustrated in Figures 1-16 and 1-17 are
symmetric about ¢ = 0, an equally good example of an approximation for a unit impulse function in
terms of the properties (1-48) is e~ ! exp(—#€)u(t), which is asymmetric about ¢ = 0. These examples
illustrate that it is not the actual behavior of &(r) at ¢t = 0 that is important but rather the integral of 8(¢).

Note that by integrating the square-pulse approximation of Figure 1-16 between —c and t we obtain

T
L‘“ =1 e

In the limit as € — 0, the right side becomes a unit step function. It will be shown later that u(¢) of (1-
35b) and 6(f) have the same properties as expressed by (1-48).

(1-52)

EXERCISE

Verify that all the families of approximating functions &,(¢) discussed above satisfy (1-48) in the
limit as € — 0.
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The considerations above illustrate that the unit impulse function is not really a function in the nor-

mal sense. Indeed, it was not until the 1950s that Laurent Schwartz’s pioneering work with the theory

of distributions provided a firm mathematical basis for the unit impulse function. A more formal math-
ematical definition of the unit impulse function proceeds by defining it in terms of the functional

j " x()8() dt = x(0) (1-53)

where x(f) is continuous at ¢ = 0. That is, 8(¢) is a functional as defined by (1-53), which assigns the
value x(0) to any function x() continuous at the origin.*

Several useful properties of 8(7) can be proved by insisting that (1-53) obey the formal properties of
integrals. For example, by considering &(ar), where a is a constant, we may show that

1
8at) = o %0 (1-54)

by changing variables of integration and considering the cases a > 0 and a < 0 separately. If we let
a = —1 in (1-54), we have

2 &(—n = 8(n (1-55)

which agrees with the definition of an even function. Even though 8(r) is not a function in the conven-

tional sense, we may make use of (1-55) in manipulations involving unit impulse functions as long as we

remember that it was a consequence of the defining relation (1-53) and the formal properties of integrals.
A second useful property of the delta function is the sifting property, which is

-

- <

J xX()8(t — 1) dt = x(1;) (1-56a) §

where x() is assumed to be continuous at ¢ = ¢,. This property can be proved from (1-53) by letting =%
A =t — 1, in the integral (1-56a) to obtain ‘1
f X(A + 1)8(A) dA = x(ty) (1-56b) =3

e [

-t

If we define y(A) = x(A + t,), this integral is the same as ( 1-53); ¥(A) is continuous at A = 0 as required ‘f;

because x(1) is continuous at = ¢,.
An alternative form of (1-53) which will prove useful in Chapters 2 and 3 is

J'w X(A)8(t — A) dA = x(t)

—u

(1-57)

which is obtained by simple renaming of variables in (1-56a) and by using the “even” property of the
delta function expressed by (1-55). The form of the integral in (1-57), known as a convolution, is dealt
with in more detail in Chapter 2.

Integrals with finite limits can be considered as special cases of (1-56a) by defining x(f) to be zero
outside a certain interval, say 1, < ¢ < t,. Thus (1-56a) becomes

J-"1 x()8(t — ty) dt = {x(rﬂ), h<t<t

1-58
Y 0, otherwise o8]

*For a further discussion, see A. Papoulis, Signal Analysis (New York: McGraw-Hill, 1977), or R. N. Bracewell, The Fourier

Transform and Its Applications, 2nd ed. (New York: McGraw-Hill, 1978).
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A fourth property of 6(r) is that
x(D8(1 — ty) = x(t)8(t — 1) (1-59)
if x(f) is continuous at ¢ = t,, which follows intuitively from &(t — t;) = 0 everywhere except at
=1
We may find integrals similar to (1-56a) involving derivatives of x(r). For example, assuming x(t)

to have a first derivative that is continuous at r = f, and using the chain rule for differentiation, we
obtain

d ; .
Eum&rwm=xmar—@+xm&r~@ (1-60)

where the overdot denotes differentiation with respect to time.t Assuming x(#) to be continuous at t = t;
and using (1-59), we have

' ::3 [x()8(t — t)] = x(t)(t — t5) + x(D)5(t — 1) (1-61)

* Integrating from t = ¢, to t = t,, where 1, <1, <1,, we obtain

b d b, & .
f 2 (08— o) dz=J- Ht)8(t — 1) de + j WO — ) dr, 4 <t <p

or

4 f
0= 3(t,) + j OB - ) d, H<t<h (1-62)
where we have used

5
=0 o Sl (1-63)
I

1

J: :& [(0)5(¢ — 1,)] dt = x(6)8(t — 1)

and
ty = 1 "
J' 08t — 1) dt = X(t5) f 8t —t)dt =%(ty), H<t<t * (1-64)
f h

which follow because (1 — t,) = 0 everywhere except at 1 = ¢, and x() is continuous at t = f;, so that
x(t,) is defined. Rearranging (1-62), we obtain

t . .
f x(O8(t — )y dt = —x(t), H<lH<h (1-65)
Ll

In general, if the nth derivative of x(¢) exists and is continuous at z = f,, it can be shown that

sz(r)ai"i(: —t)dt= (1)), H<h<h (1-66)

*The derivative of the unit impulse function is sometimes referred to as the unit doublet, or simply doublet. It can be visual-
ized by graphically differentiating the triangular approximation for the unit impulse shown in Figure 1-17b. Again, we empha-
size that 8(1) is to be interpreted in the context of an integral similar to (1-53}. Tt is not simply two opposite-sign impulses located
at the origin.

1-3 / Signal Models 27

where
(1) A %EQ - and 8" — 1) A % [8(t — to)]

A unit impulse function and its derivatives may be treated as generalized functions in the sense that if
F(O) = ayd(t) + ad(t) + -+ + a,8(t) (1-67a)

and
g(t) = byd(t) + byd(t) + -+ + b,8"(0) (1-67b)

then
£2) + 8(0) = (@y + bp)8(1) + (ay + by)a(t) + - (1-68)

Equation (1-68) applies also if a,, b,, a,, b,, a;, bs, . . . are functions that are continuous at ¢ = 0.7

EXERCISE .

Evaluate the following integrals: *

@) j e ' 3(¢ — 10) dt

) f e~ 8t + 10) dt
[i]

© j e 5(t — 10) dt

(d) f i [58(r) + e "D§(r) + cos Smt 8(¢) + e~ 8(6)] dt

Answers: (a) e~10a; (b) 0; (c) 20ae~1%=; (d) 6 + e.

We now return to the assertion made earlier that

u) =u = [ mydr=[ s0)dr (1-69)
or, equivalently, that
_du(1)
8(t) = —dr (1-70)

P'I‘]'J.Ls again, is formally proved by using (1-53). Another question that may vex the student is, “What about 0 - )7 To show
that this is zero, use (1-53) to write

r 0 8(0)x() de = 0 - f 8(0)x(r) = 0 x(0) = 0

where x(¢) is continuous at ¢ = 0.
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which is (1-35b) with i = — 1, Letting x(r) be continuous at t = 0, we consider
o d o
[ 50 % de = souto| - [t 5 ar
» " dx_(f)
= x() ot

= x(®) — x(1)f
= x(») — x(=) + x(0)
= x(0) (1-71)

which was obtained through integration by parts, That is, du(t)/dt has the same property as () as ex-
pressed by (1-53).

1-4 Energy and Power Signals

Quite often the pamcular representation used for a signal depends on the type of signal mvolvad Itis
therefore convenient to introduce a method for signal classification at this point. It is useful to classify
signals as those having finite energy and those having finite average power. Some signals have neither
finite average power nor finite energy.

To introduce these signal classes, suppose that e(?) is the voltage across a resistance R producing a
current i(f). The instantaneous power per ohm is

e(2)i(t)
R

p(t) = = i*(1) (1-72)

Integrating over the interval |r| = T, we define the total energy and the average power on a per ohm ba-
sis as the limits

T
E = lim f 2(f)dt  joules (1-73)
Baaet |
and
1 T
P = Jim z—fJ_sz(r) dt  watts (1-74)
respectively.

For an arbitrary signal x(z), which may, in general, be complex, the total energy normalized to unit
resistance is defined as

T
E & lim J ()P d:  joules (1-75)
B
and the average power normalized to unit resistance is defined as

P £ lim ZLJ' (O dt  watts ~(1-76)
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Based on the definitions (1-75) and (1-76), the following classes of signals are defined:

1. x(z) is an energy signal if and only if 0 < E < =, so that P = 0.

2. x(#) is a power signal if and only if 0 < P < o, thus implying that E = .
3. Signals that satisfy neither property are therefore neither energy nor power signals.t

EXAMPLE 1-11

Consider the signal
x,(t) = Ae™"u(r), a >0, (1-77)
where A and « are constants. Using (1-75), we can verify that x,(r) has energy
= ‘2-% (1-78)
Letting & — 0, we obtain the signal :
x,(1) = Aur) - (1-79)

which has infinite energy but finite power, as can be verified by applying (1-76):

AZ
Pr=i— 1-80
| 2 (1-80)
Thus x,(#) is a power signal.
EXAMPLE 1-12
Consider the periodic, sinusoidal signal
x(r) = A cos(wyt + 6) (1-81)
The normalized average power of this signal is &
P = lim E—J A? cos*(wyt + ) dt (1-82a)

Using appropriate trigonometric identities, we may rewrite this integral as

2

= A
P = lim ZTJ [2 -cos 2wyt + O] dt = > (1-82b)

which follows because

lim 4TJ' cos 2(ayt + 0) dt = - (1-83)

tIt is easy to contrive examples of signals with infinite énergy and zero average power that are nonzero over a finite range of
t, but we classify such signals as neither energy nor power. An example is x(r) = =¥, ¢ = 1, and zero otherwise.

AAL DO PARA

i
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Average Power of a Periodic Signal

We note that there is no need to carry out the limiting operation to find P for a periodic signal, since an
average carried out over a single period gives the same result as (1-76); that is, for a periodic signal, x,(1),

1 + Ty
P=— J Ik, () dt (1-84)
TU Ty
where 7, is the period. The proof of (1-84) is left to the problems.
EXAMPLE 1-13
From (1-84), the power of a rotating phasor signal of the form (1-28) is
[t ™ : }
p=2 |Aeit O dr = A2 (1-85)
2
Using Euler's theorem, we may write .
AeHot® = A cog(wyt + ) + jA sin(wyt + 0) (1-86)
The power of the real and imaginary components is A%2. Thus we may associate half the power in
a rotating phasor with the real component and half with the imaginary component.

1-5 Energy and Power Spectral Densities

It is useful for some applications to define functions of frequency that when integrated over all fre-
quencies give total energy or total power, depending on whether the signal under consideration is, re-
spectively, an energy signal or a power signal, For an energy signal, a function of frequency when
integrated that gives total energy is referred to as an energy spectral density. Denoting the energy spec-
tral density of a signal x(¢) by G(f), we have, by definition, that '

z ‘E= f G(f) df (1-87) *

where E is the signal’s total energy. We will give a means for obtaining G(f) for an arbitrary energy sig-

nal in Chapter 4.
Denoting the power spectral density of a power signal x(r) by S(f), we have, by definition, that

P=[ sthdr (1-88)
where P is the average power of the signal. From our consideration of amplitude spectra for periodic
signals, we can deduce what their power spectral densities are like. Since, for a single sinusoid of am-
plitude A and frequency.f,, the two-sided amplitude spectrum has a line at —f;, of amplitude A/2 and a
line at f; of amplitude A/2, we associate half of the power of the sinusoid, or AZ/4, with the frequency
—f; and the other half, or A%4, with the frequency f;. Since the power spectral density is integrated to
give total average power, its representation at f = —f; must be (A%/4) 8(f + f) and that at f = f, must
be (A%4) 8(f — f;). A plot is shown in Figure 1-18a. Generalizing, for any signal possessing a two-
sided line (amplitude) spectrum, we obtain the corresponding power spectral density by taking each
line of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function located
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A2 A2
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(a) Power spectral density for a single sinusoid
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1
4 ¥ 4
‘ 1 1 1 ‘ f
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{b) Power spectral density for the sinusoidal sum of Example 1-14

FIGURE 1-18. Power spectral densities for sinusoidal signals (numbers by impulses show weights).

at that particular frequency to get its power spectral density at that frequency. Note that the power spec-
tral density of any signal is an even function of frequency, and it possesses no phase information about
the signal.

EXAMPLE 1-14
Consider the signal P
x(t) = 10 cos(10mt + «/7) + 4 sin(30mt + w/8)

(1-89)

(a) Plot its power spectral density.
(b) Compute the power lying within a frequency band from 10 Hz to 20 Hz.

Solution:
(a) The power spectral density is shown in Figure 1-18b. Analytically,
S(f) = 258(f + 5) + 258(f — 5) + 48(f — 15) + 48(f + 15)

(b) The power in the frequency band from 10 to 20 Hz is obtained by integrating S(f) from f = —20
Hz to —10 Hz and from /' = 10 Hz to 20 Hz since two-sided spectra show equal portions of the
signal’s spectrum on either side of f = 0. The result is 8 W. The total power of the signal is

(1-90)

P=f S(f)df=50+8=58W (1-91)
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1-6 MatLAB in Signal Analysis

It is handy to be able to verify the material presented in this chapter on signal analysis and in fu-
ture chapters on system analysis with computer programs. This book will utilize MatLAB for this
purpose for several reasons, not the least of which is that it includes very good plotting capabilities.
MATLAB is an array-based programming language in that every variable is treated as a matrix. Ap-
pendix A gives several helpful hints for using MATLAB. The reader is also referred to The Student
Edition of Matr.AB, Version 5 and Marrag User's Guide, Version 5 listed in the references at the end
of this chapter.

The purpose of this section is to introduce several MATLAB functions that are used throughout the
book for signal and system analysis. These include functions used in MATLAB and user-defined func-
tions to be given here.

One has the option of executing MATLAB statements one at a time from the command window, cre-
ating a program and saving it in an M-file for future executation, or creating a function and executing
that from the command window. Several useful functions are given below for generating the singular-
ity and other elementary functions defined in this chapter:

t '

% Function for generating a unit step
%

function u = stp_fn(t)

=u = 0.5%(sign(t+eps) + 1): % The constant eps is used te ensure

% against the sign argument being O,

% where it's value is 0 giving u = 0.5

oL

Note that a sign, or signum, function is used to generaté this step because it can handle vectors.

The same result could have been achieved by using a for loop, but since MATLAB is an interpretive

. .language, this is considerably less efficient than using vector operations. The function stp_fn may

" be used for generating several other signals defined in this chapter. For example, function pro-

" grams for generating a unit impulse approximation, a ramp function, and a square pulse signal are
given below:

% A function generating a rectangular approximation for
% the unit impulse function; width is delta

%

function imp = impls_£n(t, delta)

imp = (stp_fn(t+delta/2)-stp_fn(t-delta/2))/delta;

% Function for generating a unit ramp
%
function r = rmp_£fn(t)

r=0.5"t."(sign(t)+1):

% This function generates & unit-high pulse centered at zerc
% and extending from -1/2 to 1/2

K

function y = pls_fn(t)

y = stp_fn(t+0.5) - stp_fn(t-0.5-eps);

"

EXAMPLE 1-15

delta(t+3) u(t-2)

2r(4-t)
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To demonstrate the use of these functions we generate and plot the following:

1. A step starting at + = 2 and going to the right;
2. A unit impulse occuring at ¢ = —3.5;
3. Aramp of slope 2 going backward from ¢ = 4.

Note that to give the appearance of continuous-time signals in many cases we must choose the inde-
pendent variable values sufficiently close together so that the plots appear to be smooth curves. The
normal plot routine for MATLAB connects adjacent points with straight lines. In the cases considered
here, the signals chosen will appear as they should when plotted because they consist of straight line
segments. The MATLAB program listing below is in the form of an M-file. What is given below is ex-
actly what one sees in the command window of The Student Version of Marrag if the “echo on” switch
command is executed first (a switch command stays in effect until the off switch command is executed,
in this case “echo off”” where the quotation marks are not typed but are used here to set the command
off from the rest of the text). The results of the program are given ia- '1

! UNIVER 0 PAR

SIUADE FEGERAL

EDU»clexl5 ' Al b
% M-file for Example 1-15 BIBLIGTECA CENTRAL
% 232 A0
£=-10:.005:10; ZNes A0

i
x=gtp. fn(t - 2); % Generate step sta N e i
y=impls_fn(t+3.5, 0.05): % Generate unit impulse at t=-3.5
z=2*rmp_fn(4 - t):; % Generate backwards ramp starting at t = 4
subplot(3,1,1),plot(t,x).axis([-10 10 0 1.5]), xlabel('t'),
ylabel('u(t - 2)')

L5 T T T T = T T T —T

=R AL DO PARA

_!:
BIRLIOTEC A CENTRAL

1=

05 -

0
-10 -3 -6 -4 = 0 2 4 6 8 10

RSIDADE F

-
bl

MY

20 -

IK
=
do
&1
L
b
[=]
(=]
IS
o
oS
=

FIGURE 1-19.
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subploi[?.l.E].plmt(t.y)_axis([ 10 10 0 25)).xlabel('t’).
ylabel('delta(t + 3)') ¢
subplot{3,1.3),plot(t.z} .xlabel('t').ylabel('2r(4 - t}')

Further examples of elementary signal generation and the building up of more complex signals
from these are suggested in the computer exercises at the end of the chapter.

EXAMPLE 1-16

As a final example, we plot a sample-data signal using a special plotting feature of MATLAB. T}.xe
chosen signal is a sinewave of frequency 0.5 hertz sampled at 0.2 second intervals. wpat appears u:
the MATLAB command window when the program is executed is given below (assuming “echo on
has been executed first). The output plot, which uses a stem plot function, is shown in Figure 1-20.

“EDU», clexl®

% M-file for Example 1-16; plots a sample-data sinewave
",

del _t = 0.2:

O =2y

n = 0:10;

x = sin(2*pi*n*del_t/T0}:

stem(n*del_t,x).xlabel('n*del _t'), ylabel(' x(n*del_t)')

0.8

0.6

0.2+

x(n*del_t)
3

-0.2r

0.8} | | <L S

1.2 1.4 1.6 1.8 2

15 0.2 0.4 0.6 0.8 1
n*del_t

FIGURE 1-20. A sample-data sinewave plotted with the aid of MarLAB.
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Summary

In this chapter, the concepts of a signal and a system were introduced. Two simple examples of systems
were given. The remainder of the chapter then concentrated on models for signals. The following are
the main points made in this chapter.

1.

2.

3.

o

A system is a combination and interconnection of several components to perform a desired task.
Systems may be interconnected with each other to form other systems. In such cases the com-
ponent systems are referred to as subsystems.

A signal is a function of time that represents a physical variable of interest. Signals may repre-
sent voltages, currents, forces, velocities, displacements, etc.

Signal processing is necessary to convert signals to more convenient forms and to produce de-
sired quantities from measured quantities. An example was provided with the accelerometer,
where the displacement of the mass, which was proportional to acceleration, was converted to
an electrical voltage proportional to the acceleration, and this voltage was integrated to produce
a signal proportional to velocity. A second integration would have produced a signal proportional
to distance.

. Signals can be deterministic or random. A deterministic signal is modeled as a completely speci-

fied function of time, whereas a random signal takes on a random value at any given time in-
stant. This book is concerned only with deterministic signals.

. Signals can be further categorized as continuous time or discrete time. The former type of sig-

nal is a function of a continuous-time variable, and the latter is a function of an independent vari-
able assuming values from a discrete set. A quantized signal is one whose values are taken from
a discrete set and should not be confused with a discrete-time signal. All signals discussed in this
paragraph may be deterministic or random.

Signals may also be categorized as periodic or aperiodic. A periodic signal is one for which

x(t + T) = x(2), —m << ®

where T}, is termed the period. The smallest value of T, for which the above equation holds is
called the fundamental period. (It should be clear that if T, is the fundamental period, then any
integer multiple of 7}, is also a period.)

. A useful periodic signal is the rotating phasor signal; defined as

x(t) = Ael@t)  _p <<

where A is the amplitude, wy is the frequency in radians per second, and @ is the phase angle in
radians. The quantity A exp(j6) is called a phasor. Rotating phasor signals are convenient in that
a cosinusoidal signal can be represented either as the real part of a rotating phasor signal or as
one-half the rotating phasor plus one-half its complex conjugate. A signal which is the sum of
sinusoids can be represented as the sum of rotating phasor signals, with either the real part or
half the rotating phasor sum plus half its complex conjugate taken.

. Representation of sums of sinusoids in terms of rotating phasor sums allows one to plot signal

spectra easily. Single-sided spectra are obtained by representing the sum of sinusoids as the real
part of the corresponding rotating phasor sum; the phasor amplitudes are plotted versus fre-
quency to obtain the amplitude spectrum, while the phasor phase angles are plotted versus
frequency to obtain the phase spectrum. Since only positive-frequency components are present,
the spectra exist only for frequencies greater than zero, which is the reason for the adjective
“single-sided.” Double-sided spectra are obtained by representing the sum of sinusoids as one-
half the corresponding rotating phasor sum plus one-half its complex conjugate; the phasor
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10

11.

12.

13.

1 / Signal and System Modeling Concepts

amplitudes are plotted versus frequency to obtain the amplitude spectrum, while the phasor
phase angles are plotted versus frequency to obtain the phase spectrum. Since both positive- and
negative- (due to the conjugation) frequency components are present, the spectra exist for both
positive and negative frequencies, which is the reason for the adjective “double-sided.”

. Important examples of singularity functions are the unit impulse, the unit step, and the unit ramp.

The unit impulse is defined by the property that

f " 8(o)x() dt = x(0)

where x(¢) is any signal continuous at ¢ = 0. From this property, it can be deduced that a unit im-
pulse as a “function” can be viewed as occurring at the origin and being infinitesimally narrow
and infinitely high such that its area is unity. The unit step is defined to be unity for ¢ > 0 and
zero for ¢ < 0, with the value at zero immaterial as long as it is finite. The unit ramp is a func-
tion that is zero for ¢ < 0 and that increases linearly with unit slope for ¢ > 0. The unit step is the
derivative of the unit ramp, and the unit impulse is the derivative of the unit step. Likewise, a
“unit doublet” could be defined as the derivative of the unit impulse, and a “unit parabola” could
be defined as the integral of the unit ramp. The differentiation process or integration proce'ss can
be carried out indefinitely to obtain a doubly infinite class of singularity functions. For purposes
of the analyses carried out in this book, the unit impulse, step, and ramp functions will suffice.
More complex functions can be built up of sums or products of singularity functions.

The sifting property of the unit impulse function mentioned above can be generalized to

&
J' X8 — ) dt = (~1)x(), <t <h

[ &
where the superscript (1) denotes the nth derivative, and the nth derivative of x(f) is assumed to
exist and be continuous at t = ;.
Another classification of signals is that of energy, power, or neither. To define this classification,
we first define the energy of a signal to be

T
E & lim f (o a

and the power of a signdl to be

T—om

1 T
PAJ —J' (0)? dt
m o[ b
The following classes of signals can then be defined:

1. x(1) is an energy signal if and only if 0 < E < o, so that P = 0.
2. x(1) is a power signal if and only if 0 < P < %, thus implying that E = =,
3. Signals satisfying neither property are neither power nor energy signals.

The energy spectral density of a signal G(/), is a function which, when integrated over frequency
from —o < f <o (fin hertz), gives the total energy in the signal.

The power spectral density of a signal, S(f), is a function which, when integrated over frequency
from —oo < f < oo, gives the total power in the signal. For any signal possessing a two-sided line
(amplitude) spectrum, we obtain the corresponding power spectral density by taking each line
of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function lo-
cated at that particular frequency.
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Further Reading

Many circuits books have a simplified treatment of some of the material in this chapter. Recent ones are:

L. S. BoBrow, Elementary Linear Circuit Analysis. New York: Holt, Rinehart, and Winston, 1987

W. H. HaYT, JR. AND J. E. KEMMERLY, Engineering Circuit Analysis. New York: McGraw-Hill, 1993

D. R. CUNNINGHAM AND J. A. STULLER, Circuit Analysis. 2nd ed. New York: John Wiley, 1995

L. P. HUELSMAN, Basic Circuit Theory, 3rd ed. Upper Saddle River, NI: Prentice Hall, 1991

The spectrum analysis ideas introduced in this chapter are also treated in various communications texts. One ex-

ample is:

R. E. ZIEMER AND W. H. TRANTER, Principles of Communications: Systems, Modulation, and Noise, 4th ed. New
York: Wiley, 1995

There are many other books treating continuous- and discrete-time signal and system theory with the order of top-

ics not necessarily the same as used here. Recently published examples are:

A. V. OPPENHEIM AND A.S. WILLSKY, Signals and Systems, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997

E. W. KAMEN anND B. 8. HECK, Fundamentals of Signals and Systems Using MaTLAB. Upper Saddle River, NI:
Prentice Hall, 1997

C. L. PHILLIPS AND J. M. PARR, Signals, Systems, and Transforms. Upper Saddle River, NJ: Prentice Hall, 1995

Several older books treating signal and system theory should be mentioned to recognize the pioneering efforts in

this field. A by-no-means-complete list is:

R. A. GABEL AND R. A, ROBERTS, Signals and Linear Systems, 3rd ed. New York: Wiley 1987

W. M. SiEBERT, Circuits, Signals, and Systems. New York: McGraw-Hill, 1986

C. D. McGILLEM AND G. R. CooPER, Continuous and Discrete Signal and System Analysis. New York: Holt,
Rinehart, and Winston, 1974

R. J. ScCHWARZ AND B. FRIEDLAND, Linear Systems, New York: McGraw-Hill, 1965

5. J. Mason aND H. I. ZIMMERMAN, Electronic Circuits, Signals, and Systems. New York: John Wiley, 1960

The following books provide further reading on the treatment of singularity functions from the standpoint of gen-

eralized function theory:

A. PapoULIS, Signal Analysis. New York: McGraw-Hill, 1977

R. N. BRACEWELL, The Fourier Integral and Its Applications, 2nd ed. New York: McGraw-Hill, 1978.

For programming help with MATLAB, see the following references:

The MaTLaB User's Guide, Version 5, Natick, MA: Mathworks, 1996

The Student Edition of MarLas, Version 5. Upper Saddle River, NJ: Prentice Hall, 1997

Problems .
Section 1-2

1-1. (a) Derive an expression for the distance traveled by the rocket of Example 1-1 valid up to the
time of burnout.

(b) Suppose a voltage analog to distance is to be provided by another operational amplifier inte-
grator circuit cascaded with the one of Example 1-2. If the same RC value is used, design a
voltage divider to be placed at the output of the first operational amplifier integrator so that
the second one is not overdriven at burnout (t = 72 s).

1-2. (a) For the rectangular integration rule given in recursive form in Example 1-3, show that the
nonrecursive form up through time NT is

B(NT) = 5(0) + Ti a(nT)
n=1

Check this using some of the values given in Table 1-1 (page 5).
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(b) For the trapezoidal integration rule given in recursive form in Example 1-3, show that the 1-7. Idca% sampling is represented in two ways depending on whether the signal is considered to be
nonrecursive form up through time NT is continuous-time or di.scretfe—tlmc,
: N T (a) The continuous-time signal cos(27rt) is to be represented in terms of samples by multipiying
B(NT) = 5(0) + {a((}) + a(NT) + 2 E a(n?)}( ...... ) by a train of impulses spaced by 0.1 seconds. Let the impulse train be written as
n=1 2 g 2
Check this, using values from Example 1-3. > 8~ 0.1n)

| nm—m

1-3. Rework Example 1-1 if the acceleration profile for the rocket is i siow thatthe idsalimpulse-Sanplad waverols give by

a(t) = 20 m/s?, 0=1=50s m
> cos(02mm)8(t — 0.1n)

n=—os

and zero otherwise. Assume the same parameter values as given in Example 1-1. Find and

plot the velocity profile. by using appropriate properties of the unit impulse.

1-4. Rework Example 1-1 with the acceleration profile shown. Sketch the resulting velocities. (b) Show that the discrete-time representation is the same, except that the continuous-time unit
impulse is replaced by a discrete-time unit pulse function, 6[n], appropriately shifted. Sketch
aft), mis’ __ for the signal cos(27r7) sampled each 0.1 seconds

20 : 1-8. Sketch the following signals:
r : ; (a) TI(0.15) 2
| | (b) TI(100)
0 10 20 30 40 / (c) II(r — 1/2)
FIGURE P1-4 _ (d) TI[(r — 2)/5]
(e) II[(r— 1)/2] + II(z — 1)

i

ARA

(a) Assume an initial velocity of zero. *

8 (b) Assume an initial velocity of 1500 m/s. 1-9. What are the fundamental periods of the signals given below? (Assume units of seconds for thg é
' i -vari -

', 1-5. In the satellite communications example, Example 1-4, let the transmitted signal be x(r) = cosa. Ea‘;m:;b;i;-: 2 €

(a) Show that the received signal can be put into the form (B) cos 60mt }- ﬂ:

z _y_@Bsin 2w,T ) (c) cos 70t g

3 E— e AL ol oo =G

y(t) = V1 + 2aB cos 2wy + (aB) cob(moi R e o . Vil s O 5

. (e) sin 50wt + cos 707t 2

(b) Plot the envelope of the cosine in the above equation versus w,t for a8 = 0.1. Note that g 3:]3.

the received signal will “fade” as  varies due to satellite motion. 1-10. Given the two complex numbers A = 3 + j3 and B = 10 exp(jn/3). M

Section 1-3

1-6. (a) A sample-data signal derived by taking samples of a continuous-time signal, m(?), is often
represented in terms of an infinite sequence of rectangular pulse signals by multiplication.
That is,

(b) Compute their sum. Show as a vector in the complex plane along with A and B.

(¢) Compute their difference. Show as a vector in the complex plane.

(d) Compute their product in two ways: by multiplying both numbers in cartesian form and by
multiplying in polar form. Show that both answers are equivalent.

(e) Compute the quotient A/B in two ways: by dividing with both numbers expressed in carte-
sian form and by dividing with both numbers expressed in polar form. Show that both an-
swers are equivalent.

X,a(t) = m(z) i H("‘_T”‘n)

n=-—m

If m(r) = exp(—#/10)u(t), 7= 0.5 5, and 1, = 2 s, sketch xgHfor—1=t=10s.
(b) Flat-top sample representation of a signal is sometimes preferred over the above scheme. In
this case, the sample-data representation of a continuous-time signal is given by

=S ming) II(’ ~an0)

n=-—=

1-11. Find the periods and fundamental frequencies of the following signals:
(a) x,(r) = 2 cos(10mt + 7/6)
(b) xy(1) = 5 cos(17mr — m/4)
4 (€ x(H) =3 sin(19m — #/3)
: (d) x (6 = x,(0) + x,(0
(e) x,(n= x,(1) + x (1)
® x{0) = x,(0) + x (1)

Sketch this sample-data representation for the same signal and parameters as given in
part (a). Discuss the major difference between the two representations.

(a) Put A into polar form and B into cartesian form. What is the magnitude of A? The argumenl-i-f_-
of A? The real part of B? The imaginary part of B? =

L
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1-12. (a) Write the signals of Problem 1-11 as the real part of the sum of rotating phasors.
(b) Write the signals of Problem 1-11 as the sum of counterrotating phasors.
(¢) Plot the single-sided amplitude and phase spectra for these signals.
(d) Plot the double-sided amplitude and phase spectra for these signals.

1-13. (a) Write the signals given in Problem 1-9 as the real parts of rotating phasors.
(b) Write each of the signals given in Problem 1-9 as one-half the sum of a rotating phasor and
its complex conjugate.
(¢) Sketch the single-sided amplitude and phase spectra of the signals given in Problem 1-9.
(d) Sketch the double-sided amplitude and phase spectra of the signals given in Problem 1-9.

1-14. (a) Express the signal given below in terms of step functions. Sketch it first.
x,(0) = T[(r — 3)/6] + [[(r — 4)12]

(b) Express the derivative of the signal given above in terms of unit impulses.

1-15. Suppose that instead of writing a sinusoid as the real part of a rotating phasor, we agree to usé
the convention *

sin(wgt + 6) = Im explj(wyt + N1}
or
sin(ayt + 6) = expljlwg + N2 — exp[—j(wyt + B)/2f
(a) What change, if any, will there be to the two-sided amplitude spectrum of a signal from the
case where the real-part convention is used?

(b) What change, if any, will there be to the two-sided phase spectrum of a signal from the case
where the real-part convention is used?

1-16. Sketch the following signals:
(@) uf(rt—2)4] (@) I(-3¢+ 1)
() i+ 1¥3]  (e) 1[(¢ — 3)12]
(€) r(—2t+3) i

1-17. Derive expressions for singularity functions u() fori = —4andi = —5. Generalize to arbitrary
negative values of i.

1-18. Plot accurately the following signals defined in terms of singularity functions:
(@) x,(t) = r(Ou2 — 1)
M) x,) =r®)—r(t—1) —rt—=2) +r(t = 3)
(¢) x(t) = 27, x,(t — 2n) (Plot for 0 = =8, and use three dots to indicate its semi-infinite
extent.)
(d) x(n) =22 4x,(t — 3n) (Plotfor 0 == 9 and use three dots to indicate its semi-infinite
extent.)

1-19. (a) Sketch the signal y(f) = Zr_ u(t — 2mu(l + 2Zn — 1).
(b) Is it periodic? If so, what is its period? If not, why not?
(¢} Repeat parts (a) and (b) for the signal y(t) = 3r_ou(t— 2mu(l + 20 — 6.

Problems 41

1-20. Express the signals shown in terms of singularity functions (they are all zero for ¢ < 0):

(0 %0
2
1
] _l |—_| e :
0 5 0 2 4 6
(a) (b)
%, (0 “'“(j X, ()
({ ﬁ ;
; t N >J '
0 25 5 7.5 0 3 6
(e) (d)

FIGURE P1-20

1-21. Represent the signals shown in terms of singularity functions.

Parabolic
X0
: .l 1 I L :
0 1 2 3 4 5 6
(a)

FIGURE P1-21

1-22. Write the signals shown in Figure P1-22 in terms of singularity functions.
1-23. (a) Show that

e—!.-"ﬁ
- ul)

8/1) =

has the properties of a delta function in the limit as € — 0.
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{
xy () x262)

1-26. Evaluate the following integrals.

10
(a) J cos 2wt 8(t — 2) dt
5

5
(b) J' cos 2mt 8(t — 2) dt
0

W ———
o ————

>
I
=1 5

4 0 1 s
(@) _ ll (c) J; cos 2mt 8(t — 0.5) dt
I. (b) o
; e
' x3(1) s (d) j_w(r 2)*8(t — 2) dt

@ [ " P8t - 2)dt

1+=——

L}
v
v

1-27. Evaluate the following integrals (dots over a symbol denote time derivative).

I |
0 15 . " .a
. / | (@) f A8t — 2) dt

—1

10 i
( FIGURE P1-22 (b) f cos(2m)5(t — 0.5) dt
0

(©) J'm [ + cos(2m)]8(r) dt

(b) Show that exp[—/20?}/ \/2mo? has the properties of a unit impulse function as o — 0.
W : i P " . .
(Hint: Look up the integral of exp( - ot ) in a table of definite integrals.) . Find the unspecified constants, fi'cnuted O .o i TSI

( 1-24. (a) By plotting the derivative of the function given in Problem 1-23(b) for o= 0.2 and o = 0.05, (@) 108(1) + C,8(0) + (2 + C)8(1) = (3 + C)&(1) + 58(1) + 65(1)
deduce what a unit doublet must “look like.” (b) (3 + C)EN) + C,8(1) + C;8(1) = C,8(1) + Cs8(0)
i (b) By plotting the second derivative of the function given in Problem 1-23(b) for the same val-

ues of o as given in part (a), deduce what a unit triplet must “look like.” . (a) Sketch the following signals:

(D xO=rt+2)—2r(n + r(t — 2)

(
( 1-25. In taking derivatives of product functions, one of which is a singularity function, one must exer- (2) xt) = w(Du(10 — 1)
cise care. Consider the second derivative of (3) x3(r) = 2u(r) + &(t — 2)
( (4) x,(0) = 2u()d(t — 2)
( B = e~ou(l) (b) For the signal shown, write an equation in terms of singularity functions.
( Blindly carrying out the derivative twice yields
x(t)
{ 4%h "
f‘—l = ofeu(r) — 2ae”*8(r) + e "3(1)

( dt 44

|
[ |
( Use the fact that /-—J !

|
( ! I

ae~8(t) = ae”"5(1) = ad(t) !; } oy i
—4 0 N T T % 4

to obtain the correct result. FIGURE P1-29
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1-30. For the signal shown, write an equation in terms of singularity functions. xa(1)
x{” 24 -*I
: X . T
! . T :
'. i 0 T 2T 3T !
|+ : i (a)
|
!
0 2 4 6 g Al
FIGURE P1-30 1 -L i _atin)
|
1-31. Evaluate the integrals given below. |
@ [ o -3)d : N :
L I
|
o . r e Bo e
() j (3t + cos 2mt)d(t — 5)d ; .
g e : ) .
© J (A + )d(t — 1.5) dt : o
1-32. Write the signals in Figure P1-32 in terms of singularity functions.
1.5
; 1.0
Section 1-4
0.5

1-33. Sketch the following signals and calculate their energies. ]
(a) e 'Om(r) 3 0
(b) u(t) — u(t — 15) ) §
(c) cos 107t u()u(2 — t)
d r(t) -2t = 1) +rlt —2)

1-34. Obtain the energies of the signals in Problem 1-22. 2

1-35. Which of the signals given in Problem 1-18 are energy signals? Justify your answers. | _ x(f) = 2 cos(6mt — 7/3) + 4 sin(1077)
] (a) Is it periodic? If so, find its period.
: S | (b) Sketch its single-sided amplitude and phase spectra.

1-37. Obtain the average powers of the signals given in Problem 1-11. i (c) Write it as the sum of rotating phasors plus thl; Poviinconiugiion
1-38. Which of the following signals are power signals and which are energy signals? Which are nei- | (d) Sketch its two-sided amplitude and phase spectra.

ther? Justify your answers. (e) Show that it is a power signal.

(a) u(d) + Su(t — 1) — 2u(t — 2) 4 1-40

() w(H) + Su(t — 1) — 6u(t — 2) j

(€) e=>u(h)

(d) (e—5+ 1u(t)

(e) (1 — e uls)

() )

(@ r—re—1)

(h) V(s — 3)

FIGURE P1-32

1-39. Given the signal

1-36. Obtain the average powers of the signals givén in Problem 1-9.

. Which of the fi ing si : i ? Fi i
eaChCSi ;1 % e following signals are energy signals? Find the energies of those that are. Sketch

@) w(r) — u(t — 1)

®) rt) —rc = 1)~ r(t—2) + r(t — 3)
(©) rexp(—20u(n)

@ r)—rt—2)

() u®) — Ju(t — 10)
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1-41. Given the following signals:
(1) cos 57t + sin 61t
(2) sin 2t + cos mt
(3) e~10u(r)
(4) eXu(t)
(a) Which are periodic? Give their periods.
(b) Which are power signals? Compute their average powers.
(c) Which are energy signals? Compute their energies.

1-42. Prove Equation (1-84) by starting with (1-76).

1-43. Given the signal
x(t) = sin¥(7m — 7/6) + cos(3mt — 7/3)
(a) Sketch its single-sided amplitude and phase spectra.

(b) Sketch its double-sided amplitude and phase spectra aftes writing it as the sum of complex
conjugate rotating phasors. 3

Section 1-5
1-44. Plot the power spectral density of the signal given in Problem 1-43.

1-45. Given the signal
x(f) = 16 cos(20mt + /4) + 6 cos(307r + /6) + 4 cos(40mt + 7l3)

(a) Find and plot its power spectral density.
(b) Compute the power contained in the frequency interval 12 Hz to 22 Hz.

Computer Exercises

1-1. Use the functions given in Section 1-6 for the step and ramp signals to plot the signal shown in
Problem 1-30 using MATLAB.

1-2. Use the functions given in Section 1-6 for the step and ramp signals to plot the signals shown in
Problem 1-32 using MATLAB.

1-3. Use the elementary function programs given in Section 1-6 to compute and plot the following:
(a) A step of height 3 starting at ¢ = 3 and going backwards to 1 = —o;
(b) Asignal thatstarts at# = 1, increases linearly to avalue of 2att = 2, and is constant thereafter;
(¢) A stairstep signal thatis 0 forr < 0, jumpstoa value of 1 atz = 0,2 value of 2 att = 1,a value
of 3 at ¢ = 2, a value of 4 at + = 3, and stays at 4 thereafter;
(d) A ramp starting at t = 2 and going downward with a slope of —3.

1-4. (a) Generate a cosine burst of frequency 2 Hz, lasting for 5 seconds; (b) generate a sine burst of
frequency 2 Hz and lasting for five seconds; (¢) combine the results of (a) and (b) to produce a si-
nusoidal burst of frequency 2 Hz, 5 seconds long, and with starting phase at = 0 of /4 radians.
[Hint: recall the trigonometric identity sin(x + y) = 0.5(sin x cos y — cos x sin y). Sety = nf4d.]

'y

Computer Exercises 47

1-5. (a) Write a MATLAB function to generate a sequence of impulses spaced by an arbitrary amount
t_rep, lasting fort_widthandcenteredont = 0.Callitemb_fn(t,t_rep, t_width,delta)
(b) Generate an impulse comb with spacing between impulses of 1.25 seconds and containing
5 impulses starting at r = 0,

1-6. (a) Write a MATLAB function to generate a unit parabola singularity function.
(b) Write a MATLAB function to generate a unit cubic singularity function.
(c) Use them to generate a plots of the signals shown in Problem 1-21.




CHAPTER

System Modeling and Analysis
in the Time Domain

2-1 Introduction

Having discussed some continuous-time signal models, we now wish to consider ways of rfmdcling sys-
tems and to analyze the effects of systems on signals. The systems analysis problem is: given a system
and an input, what is the output? System design or synthesis is important also, but generally is more
difficult than analysis. In addition, analysis procedures also suggest synthesis techniques.

We will discuss several mathematical characterizations for systems in this chapter, but our main fo-
cus throughout the book will be on linear, time-invariant systems. The reasons for this are threefold:
First, powerful analysis techniques exist for such systems. Second, many real-.wor!d systfzms ca:n be
closely approximated as linear, time-invariant systems.! Third, analysis techniques for linear, time-
invariant systems suggest approaches for the analysis of nonlinear systems. o

There are three basic approaches for finding the response of a fixed, linear system to a given input:
(1) Obtain a solution to the modeling equations through standard methods c?f solving differential equa-
tions. (2) Carry out a solution in the time domain, using the superposition integral. (3) Use frqugncy—
domain analysis by means of the Fourier or Laplace transforms. The first method should be familiar to
the student from circuits courses. The objective of this chapter is to examine the second method. The
third method is dealt with in later chapters. . ‘

In passing, we note that the condition of time invariance is not necessary in many of the ana]ym_s pro-
cedures presented in this chapter, but computational problems are simplified under the assumption of
time invariance. ‘ .

We begin our consideration of systems in the time domain with appropriate cla.smﬁcat:qn procedures
and modeling techniques. The primary tool for analysis of linear, time-invariant systems will be the con-
volution integral, discussed in Section 2.4,

2-2 System Modeling Concepts

Some Terminology

We now wish to look at ways of representing the effects of systems on signals; ‘that iS,‘Wt: need to be
able to construct appropriate system models that adequately represent the interaction of slagnals and sys-
tems and the relationship of causes and effects for that system. Usually, we refer to certain causes of in-

The terms “linear” and “time invariant™ will be given precise mathematical definitions shortly. Alt?hou@ it is possible to an-
alyze systems that are time varying, it is more difficult than for time-invaniant systems. Because of this, and because many sys-
tems are time invariant, we restrict our attention to this category.
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terest as inputs and certain effects of interest as ourputs. For example, in the accelerometer example of
Chapter 1, the input of interest could be the position of the weight and the output could be a voltage
proportional to velocity.

An obvious choice for input and output quantities may not always be readily apparent, easily isolated,
or physically distinct. For instance, in the communications link example, the input, x(1), and output of
interest, s(f), appear at the same physical location: the transmitter. The relationship governing their in-
teraction was very simple: that is,

(1) = x(t) + apx(t — 27),
Usually, we will not have such simple input-output relationships.

It is convenient to visualize a system schematically by means of a box, as shown in Figure 2-1,
(Sometimes symbols other than x and y may be used.) On the left-hand side of the box we represent the
inputs (excitations, causes, stimuli) as a series of arrows labeled x, (1), x,(1), .. . , x,,(2). The outputs (re-
sponses, effects), y (2), y(2), . . ., ¥,(2), are represented as arrows emanating from the right-hand side of
the box. In general, the inputs and outputs vary with time, which is represented by the independent vari-
able 7; sometimes it will not be shown explicitly in order to simplify notation. The number of inputs and
outputs need not be equal. Quite often, however, we will be concerned with situations where there is a
single input and a single output. Such systems are referred to as two-port or single-input, single-output
systems since they have one input port and one output port. ’

O0=t=T+ 27 (1-15)

Representations for Systems

Usually, we are interested in obtaining explicit relationships between the input and output variables of
asystem, and we discuss systematic procedures for doing so shortly. For now, however, we will express
the dependence of the system output on the input symbolically as

y(t) = H[x(0)] (2-12)
Eliminating the explicit use of #, we can write this more compactly as
y = ¥x (2-1b)

which is read

y(2) is the response of ¥ to x(r)

where initial conditions are included if pertinent. The symbol 3, which is known as an operator, serves
the dual role of identifying the system and specifying the operation to be performed on x(f) to produce
¥(t). (For a multiple-input, multiple-output system, x(z) and y(f) are vectors.)

Several examples of system input-output relationships are given below to illustrate more clearly
some of the basic concepts.

X (1) Ot 0 y, (1)

x2(t) ot f—c y1(t)

SYSTEM
H -]

X () O 0 y,, (1)

FIGURE 2-1. Block diagram representation of a system.
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1. Instantaneous (Nondynamic) Relationships. Many systems are adequately modeled for many
situations by relationships such as

y(6) = Ax(t) + B (2-23)

or

y(t) = Ax(t) + Bx(t) (2-2b)

where A and B are constants. The former equation could represent an amplifier of gain A with a dc bias
of B volts at its output, and the latter equation would be a possible model for an amplifier that intro-
duces nonlinear distortion, BX3(f), into the amplified output, Ax(1). The concept of nonlinearity for a
system will be explicitly defined later. : i

2. Linear, Constant-Coefficient, Ordinary Differential Equations. The student is assumed to be fa-
miliar with obtaining the relationships between currents and voltages in an electrical circuit composed
of passive elements (resistors, capacitors, and inductors) in terms of ordinary integrodifferential equa-
tions through the application of Kirchhoff’s voltage and current laws. If all integrals are removed
through repeated differentiation, the general form for 'such equations may be written as

d"y(1) a"ty(n d™x(1) d™ 'x(1)

R e SRR e et NI o (4 2-3
n df" aﬂ- 1 df"_l' ﬂ;)y(f] bm dfm bm--l d!m_l bOx( ) ( )
where a,, a, _y, ..., Qy by by - - -, by are constants that depend on the structure of the system and

where nonzero initial conditions may be specified. For systems whose input-output relationships can be
represented in this manner, the order of the system is defined as the order of the highest derivative of the
' dependent variable, or system output, present (integrals on the input might still be present in some cases)."

Three variations of (2-3) sometimes result from the modeling and analysis of systems. First, time-
varying components may be presentin the system (e.g., a capacitor whose capacitance varies with time).
Tn such cases one or more of the coefficients of (2-3) will be functions of time. These are examples of
time-varying systems, although the class of time-varying systems is broader than that described by or-

" dinary differential equations with nonconstant coefficients.

A second situation that results in a governing differential equation of different form than (2-3) is
where one or more nonlinear components are present in the system. Consider a voltage source v (1) in
series with an inductor and a resistor whose resistance depends on the current through it: for example,

"' R = Ry + ai(f), where R, and « are constants. Then application of Kirchhoff’s voltage law results in
s di

[Ry + ai(O)i()) + L = v,(1) (2-4)

and the relationship between the input, v,(#), and the output, i(#), is no longer linear. This is an example

of a nonlinear system. Precise definitions for time-varying and nonlinear systems are given later.

The third departure from (2-3) which may result is that of a system described by a partial differen-
tial equation. Such systems are said to be distributed, in contrast to lumped systems, for which the
cause-effect properties of the system can be ascribed to elements modeled as infinitesimally small in
the spatial dimension. This is permissible if their dimensions are small compared with the wavelength
of the variable quantities within the system (voltages, currents, etc.), where the wavelength is given by

A= = meters
f

The order of a multiple-input, multiple-output system can be determined through state-variable techniques, which are dis-
cussed in Chapter 7.
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?.vhere ¢= 3x ‘]_0“ m/s is mg speed of electromagnetic radiation and f is the frequency of the oscillat-
mg_ waveform in hertz. A light bulb. for example, has dimensions that are small compared with
A =3 X 10%60 = 5 X 108 m, which is the wavelength of the 60-Hz power-line voltage.

3‘ [ g { RP’I(IHO?L”’H‘ 5. \;\'E discusg an inie ; a sy tem I]l])ﬂ[-(l]lll'llt I Ia{l()ll
ntegra g P28, b grﬂl representation of
p 5Ys €.

y(1) = .E A(A)x(t — A) dA (2-5a)

= f (DAt — A) dA (2-5b)

which is known as a superposition integral. The function A(A) is called the impufse response of the sys-

tr:'m and is its response to a unit impulse applied at A = 0. All systems that can be represented b )c(lr-

dinary, constant-coefficient, linear differential equations can also be represented by an equation u)lf' the

form (2-5). However, not all systems that can be represented by a relationship of the form (2-5) can be

reprcsentt?d by ordinary, constant-coefficient linear differential equations. !
For a time-varying system, the generalization of (2-5) is

y(0) = f; h(t, )x(A) dA (2-6)

where A(z, A) is the response of the system at time  to a unit impulse applied at time A.

EXAMPLE 2-1

To show this, let x(¢) = B(1), so that x(t — A) =
. " X = &t — A). = ifti it i
o R respmsc}m &(61(}‘ A). Then ¥(t) = h(r) by the sifting property of the unit impulse func-

FAn example is an ideal low-pass filter whose impulse response is
I )

2wBt
where 8 is the bandwidth. This type of fi

Iter will be discussed i o i i
sannck becrealizad eyt it sed in Chapter 4. Ideal filters are convenient mathematical models, but

P
‘(
. . . . =
C{m§1d¢:r the RC.‘ cm:m.t deplclefl in Figure 2-2 with input x(z) and output y(r) as shown. We wish to 8
obtz}m (a) the differential equation relating y(z) to x(t), and (b) convert this differential equation to =
the integral form (2-5). Assume that x(¢) is applied at ¢ = 1y and y(ty) = y,. A
Solution: :
(a) The differential equation relating i iti i 3
. ¥(#) and x(#) is found by writing Kirchhoff’s voltage law (K =
around the loop indicated by i(f). This results in the equation ke o)
- U?
x(t) = Ri(t) + y(z) @7) £
where y(1), the voltage across the capacitor, is related to i(¢), the current through it, by =
* =
Loy dy(D)
in=cC dr (2-8)
Eliminating i(¢) in the KVL equation, we obtain
dy(t)
RC—+* =
o Hy0 =30 @9
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R
AW ©
i
x(t) ift) = C y(r)

FIGURE 2-2. RC circuit to illustrate the derivation of input-output relationships for systems.

(b) To write the input-output relationship as an explicit equation for y(#) in terms of x(f), we first ob-
tain the solution to the homogeneous differential equation

dy,(t
RC—);"_E—) +y,(8) =0 2-10)
Assuming a solution of the forth
’ ya(t) = Ae” @2-11) *
and substituting into the homogeneous equation, we find thatp = — 1/RC, so that
' —t
w0 = A exp(ﬁ) 2-12)

The total solution consists of y,(f) plus a particular solution for a specific x(z). Assume that the input
x(1) is applied beginning at ¢ = £, but is otherwise arbitrary. Also assume that the value pf ¥ at.r = rn_
is y,. To find the total solution we use the technique of variation of parameters, which consists of
assuming a solution of the form of y,() but with the undetermined coefficient A replaced by a func-

tion of time to be found. Thus we assume that

~t
- == 2-13)
Y = AQ) exp{ ) (
Differentiating by means of the chain rule, we obtain
dy(t) _ [dA() _ @] (__f) (2_14).
aa | a  Rc|™™\Rrc ]

Substituting the assumed solution and its derivative into the nonhomogeneous differential equa-

tion, we have

o 4 dA(t) i .15
RC exp(R C) — x() (2-15)

where the term —A(f) exp(—#RC) has been canceled by y(t) in the differential equation. S.ohiing for
dA(f)/dt and integrating, we get an explicit result for the unknown “varying parameter.” It is given by

AN = RI—CL x(A) exp(;—c) d\ + Alty) (2-16)

where A is a dummy variable of integration and A(z,) is the initial value of A(f) at the time #, !;hat ll'!e
input x(#) is applied. Since y(r) = A(f) exp(—#/RC), it follows that A(ty) = ¥, exp(ty/RC). Using this
result together with the expression for A(f), we obtain

2-2 / System Modeling Concepts 53

il

£=1 X exp[— (£ — A)/RC]
=Y, {:xp(— U) + X /\) dA 2-17
¢ RC J, ( RC el
If we assume that the input x(¢) is applied at t = —o0 and that y, & y(—o0) = 0, then
¢ exp[—(t = A)/RC]
= A ——— AT =
0 =[x = dr 2-18)
If we define
exp(—t/RC)
h = ———- -
(1) RC u(t) (2-19)
so that

h(f — )0 = Mu({ = 1\_) (2-20)

RC

then the solution for y(¢), as determined by the variation-of-parameters approach, is exactly of the
form given by (2-5b).

Propénies of Systems

We now give precise definitions of several system properties, some of which were mentioned in the pre-
vious discussion.

Continuous-Time and Discrete-Time Systems. If the signals processed by a system are continuous-
time signals, the system itself is referred to as a continuous-time system. I, on the other hand, the sys-
tem processes signals that exist only at discrete times, it is called a discrete-time system. The signals in
a system may or may not be quantized to a finite number of levels. If they are, the system is referred to
as quantized. A quantized system may be continuous time or discrete time, although usuaHly a quantized
system is also a discrete-time system and is then referred to as a digital system. Discrete-time systems
are discussed in Chapter 8.

: Examples of continuous-time systems are electric networks composed of resistors, capacitors, and
fnductors that are driven by continuous-time sources. An example of a quantized, discrete-time system
is the optical-wand sensing system of a department store cash register.

' Fix.ed and Time-Varying Systems. A system is time invariant, or fixed, if its input-output rela-
tlonsl.'up does not change with time. Otherwise, it is said to be time varying. In terms of the symbolic
notation of (2-1a), a system is fixed if and only if

Hlx(t — ] = y(t — 1) (2-21)

for any x(1) and any 7. The system must be at rest' prior to the application of x(z). In words, (2-21) states
that if (1) is the response of the system to an input x(z), then its response to a time-shifted version of

"A system is at rest, or relaxed, prior to some initial instant, say { = &, if all energy storage elements have zero initial energy
:leEd For an nth-order system deseribed by an nth-order ordinary linear differential equation, this means that the dependent vari-
e and all its derivatives up through the (n — 1)st are zero for ¢ < 1,
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this input, x( — 7), is the response of the system to x(f) time-shifted by the same amount, or y(t — 7).
For example, the system with input-output relationship

y() = x(t) + Ax(t = T)

is fixed if A and T are constants, and time varying if either or both are functions of time. Thus the satel-
lite communication system is fixed if a8 and 7are constants. Similarly, a system described by a differ-
ential equation of the form (2-3) is fixed if the coefficients are constant, and time varying if one or more
coefficients are functions of time.

(2-22)

Causal and Noncausal Systems. A system is causal or nonanticipatory if its response to an input
does not depend on future values of that input.t A precise definition is that a continuous-time system is
causal if and only if the condition

x,(1) = x,(0) (2-23a)

fort=t,
implies the condition
#x,(0)] = Hlxy(0)]

for any f,, x,(f), and x,(¢). Stated another way, if the difference between two system inputs is zero for
t = t,, the difference between the respective outputs must be zero for t = ¢, if the system is causal. Thus
the definition applies to systems for which the response to zero input is not zero, such as a system con-
taining independent sources, as well as systems with nonzero inputs.

fori=t, (2-23b)

EXAMPLE 2-2

Consider a system described by (2-2a). Let x)(1) = u(t) and x,(t) = r(t). For t = £, < 0, both inputs are
equal. The outputs for ¢ = ¢, for both inputs are y,() = y,(f) = B. In general, it is seen from
(2-2a) thatif x,(1) = x,(1), £ = &, then (1) = y,(f) = Bfort = i, because Ax(f) = Ax,(1). Itis easy to see
that this holds for any pair of inputs for which it is true that x(1) = x,(8),t = t,. Thus this system is causal.
An easy way to see that the system is causal is to note that y(¢) cannot do anything in anticipation of x(f).

Dynamic and Instantaneous Systems. A system for which the output is a function of the input at
the present time only is said to be instantaneous (or memoryless, or zero memory). A dynamic system,
or one which is not instantaneous, is one whose output depends on past or future values of the input in
addition to the present time. If the system is also causal, the output of a dynamic system depends only
on present and past values of the input. Mathematically, the input-output relationship for an instanta-
neous system must be of the form

y(1) = flx(0), ] (2-24)

where fi-) is a function, possibly time dependent, which depends on x(t) only at the present time, 1.
The systems described by (2-2a) and (2-2b) are instantaneous. Systems described by differential equa-

tions are dynamic (nonzero memory). For example, an inductor is a system with memory. This is easy to

see if the input is taken as the voltage across its terminals and the output as the current through it so that

(2-25)

1 o
i(t) = — A) dA
=7 v
It is clear that i(f) depends on past values of v(f) through the integral.

tAnother way of informally defining a causal system is that such a system does not anticipate its input.
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Linear and Nonlinear Systems. From your circuits courses, you should already be familiar with

the concept of linearity. It allows the analysis of circuits with multiple sources by means ol super-

position, or addition of currents or voltages calculated when each source is applied separately. A pre-

cise mathematical definition of a linear system is that superposition holds, where superposition for a
system with any two inputs x,(r) and x,(r) is defined as

K, (1) + axy(0)] = e #x; (0] + & [x(0)]
a y,(1) + ayy,(0)

In (2-26), y,(f) is the response of the system when input x,(¢) is applied alone, and y,(1) is the response
of the system when input x,(¢) is applied alone; @, and «, are arbitrary constants.

1l

(2-26)

EXAMPLE 2-3

Show that the system described by the differential equation

dy(1)

2+ o) = x(0) .

is linear.

Solution: The response to x,(1), y,(£), satisfies

dy,

Eth + 9
and the response to x,(t), y,(f), satisfies

dy,

_dr Ty, =X,

wher‘e t}1e time dependence of x,, x;, v,, and y, is omitted for simplicity. Addition of these equations
multiplied, respectively, by «, and a, results in
’ dy, dy,
@ g Tia g Yyt adyy = afytay

or
d
E(“L}'l + ayyy) + tay, + ay,) = e + o,

That is, the response to the input a,x, + a,x, is ayy; + a,y,. Thus superposition holds and the sys-

tem is linear.

EXAMPLE 24

The system described by the differential equation

dy(t)
dt

+ 10y(0) + 5 = x(f)
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is nonlinear. This is demonstrated by atterpting to apply the superposition principle. Letting y,(f)
be the response to the input x,(#) and y,(¢) be the response to the input x,(f), we write

dy
_dfl+10y‘+5:x1
and
dy
-d_tz + 10y, + 5=1x,
where the time dependence is again dropped for simplicity. Multiplying the first equation by an ar-
bitrary constant e,, the second equation by the arbitrary constant a,, adding, and regrouping terms,
we obtain.
d
dt (ayy; + epyy) + 10(eyy, + ayy) + 5(ey + @) = axy + Xy (2-27)

We cannot put this equation into the same form as the original differential equation for an arbitrary
choice of @, and a,. Thus the system is nonlinear. .

2-3 The Superposition Integral for Fixed, Linear Systems

:In this section we show that (2-5) can be used to obtain the output of a fixed, linear system in response
eto an input, x(#), where the response of the system to a unit impulse applied at £ = 0 is h(f) [h(?) is re-
* ferred to as the impulse response of the system]. In this context, (2-5) is called the superposition inte-

{ gral. We must emphasize that this integral is more general than for just the computation of the response

O

of a linear, time-invariant system. Some of the other applications of the superposition integral are dis- ~

cussed in Chapter 4.
A short, mathematical derivation of (2-5) is as follows. Represent the input signal to the linear, time-
invariant system in terms of the sifting property of the unit impulse as

|

“x(f) = I X8t — 7) dr (2-28)
In terms of the system operator, 7€, the output i:
(1) = H[x(1)]
- %Uw X(7)5(t — 7) d-r] (2-29)

Assuming that the order of integration and operation by the system can be interchanged, (2-29) becomes

Y1) = r AnH[S( — 7)) dr (2-30)

By definition, #[8(t — 7)] is the response of the system to a unit ihpulse applied at t = 7. Fora fixed

system, we can write this as A(f — 7), where h(z) is the system’s response to a unit impulse applied at

¢ = 0. Substitution of k(s — 7) for #[8(t — D] in (2-30) results in (2-5).
In addition to being strictly mathematical, an additional difficulty with this derivation is the blind

faith required in the interchange of the improper integral and the 9-operator. Thus we consider another |

derivation that is more graphic in nature.
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' Assyme‘for the time being that the input to the fixed, linear system is a continuous function of time
in the time interval T, < ¢t = T, and zero elsewhere. Figure 2-3a illustrates an arbitrary input, x{¢), in the

time interval 7, = ¢ = T, which has been a i i ion x X
_ pproximated by a stairstep function x(¢). That i
expressed in terms of the unit pulse function I1(z) as the summationp A

Ny

x(t) = 2 x(n A)‘_)H(ﬂ)
sy AX
Y 1 _ft—nAA
= -n
%}V XnAX) H(——»M ) A, Ty=t=T, (2-31)

where T} d= ™, = 1I2! Aland T, = (N, + 1/2) AA. The reason for multiplying and dividing by AA to obtain

:I;;jleco; I::qua.n{m W%ﬂ be apparent shortly. Clearly, the approximation of X(¢) to x(f) improves as AA gets

smaller. In fact, in the limit as AA — 0, (2-31) becomes the sifting integral for the unit impulse function since
lim I[(t — n AX)/AX] .

AA50 AX 8(t - f\)l (2-32)

where n AA has been replaced by the continuous variable A. *

AL DO PARA

i

|
|
|
! i
I iy |
| 1
I i
} 1
; ;

]
I
I
!
II
I
1
+

FVEH

F".-..

Ty = (N P

2 Ty = (N + 3)an

(a) Input to a fixed, linear system and a stairstep approximation

Superposition of all
pulse responses; Fi{r)

// Response to rectangular
pulse occurring at + = A\

UNIVERSIDAD

(b) Qutput of a fixed, linear system due to the stairstep approximate input.

FIGU - i i
RE 2-3. Input and output signals for a fixed, linear system used to derive the superposition integral.
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Now consider the response of a fixed linear system to the summation of pulses (2-31). Let the re-
sponse of the system to TT(t/AX) AA be h(f). That is, in terms of the operator notation

AN (2-33)

E(r) =% {
where %]-] signifies the operation that produces the system output in response to a particular input.
We want the output of a fixed, linear system in response to the input (2-31). In terms of the operator
H[-], itis

5(1) = (D] = 3{{ % (n AX) 1o (’;f‘—f‘—“) M] (2-34)
PR Ok = BN AA
Because #[-] represents a linear system, superposition holds and (2-34) can be written as
N -
A 3 1 t—nAA
= | —II| ——— | | AA 2-
y(6) Z; x(n AX) l — n( = )] (2-35)

where we assume that all initial conditions are zero. More will be said about nonzero initial condi-
tions shortly. Although the superposition property is stated by (2-26) for inputs of the form
x(f) = ayx,(t) + aux,(1), we may generalize it easily to the linear combination of any finite number of
terms (Problem 2-15).

Because the system is assumed to be fixed, it follows that

%[1\17 H(f _:AM)} = hie = nAd)

(2-36)

where , was defined as the response of the system to [I(/AA)/AAX in (2-33). That is, the system’s re-
sponse to a pulse centered at f = nAA is simply A (f) shifted by f = nAA. Using (2-36) in (2-35), we can
express the system output, y(#), in response to the stairstep approximation to x(1), x(r), as
N, -
(@) = > x(n AMR(t — n AX) AA

n=N,

(2-37)

which shows thaty is the superposition of N = N, — N, elementary repsponses, ﬁ(f — n AA), of the
system to I1[(t — n AA)/AA]/AA, each of which is weighted by the value of the input signal at the time
t = n AA. A typical superposition of elementary responses is shown in Figure 2-3b corresponding o
the stairstep input of Figure 2-3a. Note that h (1) is a characteristic of the system in the sense that it tells

us how the system responds to the test pulse TT(#/A/A)/AX of width AA and height 1/AA. To remove the §

dependence of h(#) on AA, we define the impulse response of the system as

- TI(t/AA
o = Jim 50 = fim o |

where we recall that zero initial conditions were assumed. By interchanging the order of the limit and
the operator #[-], which is a linear operator by assumption, and recalling that limy, o [I(#/AA)/AA has
the properties of a unit impulse function, it is seen that the impulse response of a system is its response
to a unit impulse applied at time t = 0 with all initial conditions of the system zero. That is,

h(r) L %[8(1)]  (zero initial conditions) (2-39)

Returning to (2-37) and taking the limit as AA — 0 and n AA — A, a continuous variable, we recog- §

nize (2-37) as an approximation to the integral

—_—

(2-38) _f
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1

y(1) = L

Assuming that the input may have been present since the infinite past and may last indefinitely into the
future, we have, in the limitas 7, — —=< and T, — =,

x(Mh(t - AN dr, T, st=T, (2-40)

£

1) = f x(A)h(t — A) dA

—

(2-41)

for the response of a system characterized by an impulse response A(¢) and having an input x(z).

With the lower limit of ¢ = —o on (2-41), we can include the response due to initial conditions by
identifying it as the response due to x(f} from ¢ = —=toan appropriately chosen starting instant, £, usu-
ally chosen as £, = 0. In Chapter 5 we consider another way to handle initial conditions. Making the
substitution ¢ = t — A, we obtain the equivalent result

y) = j"’ x(t — o)h(o) do (2-42)

Because these equations were obtained by superposition of a number of elementary responses due to
each individual impulse, they are special cases of what are referred to as superposition integrals.t A
simplification results if the system under consideration is causal. We defined such a system as being
one that did not anticipate its input. For a causal system, A(t — ) = 0 for # < 7, and the upper limit of
(2-41) can be set equal to £. Furthermore, if x(t) = 0 for t < 0, the lower limit becomes zero, and the re-
sulting integral is given by

) = f{x()t)h(f —A)dAr, =0 (2-43)
i 0

for a causal system with input zero for ¢ < 0 and zero initial conditions.

EXAMPLE 2-5

A concrete example of the previous discussion will help to make the derivation clearer and lend
credence to the stairstep approximation to x(t) being convolved with A(r) actually providing a good
approximation to y(#). The signals x(¢) and A(¢) in this example are given by

x(t) = (t + 10)e "4+ 10%(¢ + 10)
and
k(1) = e”'u(r)

A MATLAB program (not given here, since the purpose of this example is to illustrate the preceding
discussion) provides the plots shown in Figure 2-4. The top figure gives x() and the stairstep ap-
proximation to it, X(#), where the step length is 0.5. The signal k(z) is shown in the second figure, and
the result of convolving X(#) and A(r) is shown in the third figure. Finally, the actual convolution of
x(f) and h(r), computed analytically, is shown in the fourth figure. The approximate and actual re-
sults are amazingly close for the step length of 0.5. As this step length is decreased, the correspon-
dence will be closer and closer, and it is not hard to believe that (2-37) actually converges to (2-40).

In this special case (i.e., a linear, time-invariant system) they are of the same form as the convolution integral to be con-

zlﬁaetﬁi)ln more detail in Section 2-4. A general form for the superposition integral for a linear time-varying system was given
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o’ W= ; : - T . ; ; Applying (2-42), we obtain the output
5 1
@
b o 1

% = a(t) = J_m u(t — a) RC e "RCu(a) do
s .
b . , . . . . : - - = [ mge o, 120 (2-46)

=10 -8 -6 -4 -2 0 2 4 6 8 10 0 RC

t =1- e—r,fRC, t=0
Since a(r) = 0 for ¢ < 0, this output, referred to as the step response of the system, can be written
: . ; : ; : ; . . compactly as
1
—
- a(r) = [1 — exp (:R—Cﬂum (2-47)
Zo0s5
Note that a(r) = J* _h(}) dA.
I 1 I 1 i L L : =
P‘!G -8 -6 -4 -2 ? 2 4 6 8 10 . [
2-4 Examples lllustrating Evaluation of the Convolution Integral )

, ! | - : : , The convolution of two signals, x(f) and A(2), is a new function of time, y(£), which is given by (2-5). A
= 1 ' ' useful symbolic notation often employed to denote (2-5a) and (2-5b), respectively, is <
- v
o () = h(t) * x(1) (248) %
- ¥(0) = x(0) * () 249 %

| L | ] 1 1 I + 4 = i i o i . ksl
5 % o = 2 0 5 4 6 8 10 It is possible to prove several properties of the convolution integral. These are listed below, but their =
t proofs are left to the problems. el
= wd
1. A(t) * x(t) = x(2) * h(t). <
2. h(t) * [ax(f)] = a[h(?) * x(1)], where « is a constant. 'E
| | . 3. h(1) * Dx(8) + (0] = h(t) * x,(8) + h(t) * x(2). 52
1 ! ) ' ' : : 4. (D) * [x,() * x,(0] = [AQ) * x,(D] * x,(0). =
P i 5. If A(r) is time-limited to (a,b) and x(¢) is time-limited to (c,d), then A(z) * x(1) is timne-limited to %
Zos 4 T (a+c, b+ d).
i ' e s 6. If A, is the area under h(t) and A, is the area under x(1), then the area under h(f) * x(t) is A|A,.
4 T - - —_——
oL . I ! :Ia 6 fl—_' _A _'6_ S _é e In these relations, A(f), x, (1), and x,(¢) are signals. The parentheses and brackets show the order of car-
-10 -8 -6 -4 = :

- rying out the operations.

The integrand of (2-5a) is found by three operations: (1) reversal in time, or folding, to obtain x(— A);
(2) shifting, to obtain x(t — A); and (3) multiplication of A(A) and x(t — A), to obtain the integrand. A
similar series of operations is required for (2-5b).

X Four examples will be given to illustrate these three operations and the subsequent evaluation of the
Integral to form y(z).

FIGURE 2-4. Plots for Example 2-5 showing a specific example for the stairstep approximation to the &
derivation of the superposition integral.

EXAMPLE 2-6

Consider the system with impulse response

ol 2l EXAMPLE 2-7
= — ¢ REY(¢ 2 3
A RC® ® E Consider the convolution of the two rectangular-pulse signals
i b it step: f (=5
Let the input be a unit step o < 158 (1) = 21-[(_ 2__) (2-50)
x(f) = u(?) (2451

—
E
tad
o

BIBLIOTECA
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and

h(t) = H(f I 2) (2-51)

These signals are sketched in Figures 2-5a and b. _

We base our evaluation of the convolution of x(z) and A(t) on (2-5a). Thus x(f) is reversed ?und the
variable changed to A, which results in x(—A), also shown in Figure 2-5. Finally, J.r( — A) is shifted so
that what was the origin now appears at A = 1. It is sometimes helpful loh think of x(t — }) as
[ —(A — n]; that is, ¢ in x(f) is replaced by A — 1, with A thought of as the independent variable,

x(r)

| I
| |
| 1
| |
| |
| I .
+ F + + f } 1 t
0 1 2 3 4 2] 6 7 .
(a)
hith
| 1
|
} t 1 : f 1 t
0 1 2 3 4 5 6
(b}
X=X}
——— 2
£ I
| |
I | 1
I |
| |
| |
t t + } + } A
—a =5 —4 —3 -2 =1 0
{c)
xr — A)
r—-——-————1 2
| I . .
| | Note: r=2
| |
| | i
| |
| |
g f f 1 + A
—6 =5 —4 —3 2 -1 0

(d)
FIGURE 2-5. Signals to be convolved in Example 2-7.
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whereupon the function x(A — ) is reversed or folded (its mirror image about the ordinate is taken).
The result of these operations is x(t — A), which is shown in Figure 2-5d for t = 2.

The product of x(t — A) and h(A) is formed, point by point, and this product integrated to form
y(1). Clearly, the product will be zero if ¢ < 4 in this example. If 1 = 4, the rectangles forming h(A)
and x(t — A) overlap until ¢ > 10, whereupon the product is again zero.

After a little thought, we see that three different cases of overlap result. These are illustrated in
Figure 2-6. In each case, the area of integration is shaded; because the height of h(z) is unity, the area
is simply the width of the overlap times the height of x(r — A). Thus the area for Case I is 2(r — 4);

|

.

Case l: 4<t=6

.,
g U—

'(a)

Casell: 6<r=8

i

1

|

|
T 1 T + 4
0 1 2 3 4
t—6 t—4

(b)

CaseIlII: 8<r=10

. 7

T T T T
0 1 2 3 4 5 6
t—=6 t—4
(c)
+ } + } } 1 I '
g 2 3 4 5 |l5 7 8 9 |'|}_
(d)

FIGURE 2-6. Steps in the convolution of Example 2-7 and the final result.
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that is, it is linearly increasing with ¢. For Case I1, it is 2[(t — 4) — (t — 6)] = 4. Finally, for Case m, 1 2-7 in that part of the area under the product x(A)h(t — A) is negative. Our first step is to express
it is 2[4 — (t — 6)] = 2(10 — ); that is, the area linearly decreases with «. The result for (1) is Bt — A) mathematically. Since
sketched in Figure 2-6d. % o O EED

h(t) = (2-52)
EXAMPLE 2-8 . 0, otherwise
As a second example of the convolution operation, we consider the signals sh.own in Figure 2-7a. -
We use the convolution integral (2-5b) in obtaining the result. This example differs from Example weo
: = A
4 s 0st-A=<2 or t—2=A=st
x(0) n(n) _ he—-2=1 2 (2-53)
x| 5 g 0, otherwise
1 | : e .
i il h{t—X) : 1 ] The signals x(A) and h(t — A) are sketched in Figure 2-7b. Some thought on the part of the student
! i | ! 1 : should result in the four cases of nonzero overlap illustrated in Figures 2-7c¢ through f. The resultin,
| | 1 | Bp g
| ) H P I } } A convolutions for, these cases are expressed mathematically by the following equations:
' ' % : 2 R !
= I 0 2 r= = I
r e ] . ! . (O, t<-1 or t>3 :
I | 5
A i K LSS (t — A) da, -1=1<0
=1
0 t
) | j (r—A)dA—f(:—A)dA, 0=r<1
¥ : : ¥y ={ ) o (2-54)
0 1
(1 - )\)d)(—J’ (t—Ndy, 1=t<2
-2
x(h) : g 1 ;
£ <) —j (t-A)dr, 2=t<3
e 1 e ! \ i
Re=2) | k(=2 * BUE=NL " ; : . o
I 3 | +1 ! \ Integration of these expressions results in the following for y(z):
i | 1 1 :
;\'§\ — Ty A AT ; A i 0, t<-=1 or t>3
=2 4t | = l: ; i £ +1y, —1s1<0
i i
[ ! 1 Yy w2
_-2-__{1 - ‘_.—{ il ) y(f) == 2( te + 2t + 1), 0=t<1 (2_55)
_ M-P-2+1)+2, 1=t<2
© @ ) - Wr—uen-=2- 2=t<3
The resulting signal, which is the convolution of x(r) with h(z), is shown in Figure 2-7g.
x(h) y(n
=2
: Marrap Application
1+ 1 ;
i Wﬂ : MATLAB can be used to do convolutions with the conv (x,h) function. The MATLAB program given
H ' F A ; ; \.!/'3 t ] below implements the convolution of the signals of Example 2-8 (echo on):
=1 t—2 t =
| |
i
| E EDU» cZex8
2 e 4 % MATLAB plot of Example 2-8
® ; %
® 3 del_t=.005;
FIGURE 2-7 Waveforms pertinent to the convolution of Example 2-8. 1 terdidel vig;
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L=length(t);

gp=[2*t(1) :del t:2*t(L)];

x=2‘(pis_fn(r+.3)-pls_fn(t-.S)): % Defined in Chapter 1

h+.5’rmp_fn(t).*stp_fn(z—t); % Defined in Chapter 1 _

y=del_t*conv(x.,h): % Multiply by step size to approximaie
N % rectangular rule integratiomn.

subplot(3,1,1). plot(t.x). xlabel{'t'), ylabel ('=(t)').

axis([t(1) =(L) -3 3])

subplot(3.1,2), plot(t.h), xlabel('t'), ylabel('h(t)'),

axis[(t(1) (L) 0 2]) .

subplot{3.1,3), plot(tp.y). xlabel('t'), ylabel('y(t)').

axis([t(1) t(L) -2 21}

The plot output of the program, given in Figure 2-8, is seen to be identical to Figure 2-7g.

EXAMPLE 2-9

In this example, we consider the convolution of a ramp and the decaying exponential signal of the
form x(¢) = exp(— afu(t). The convolution integral in this case is

’_ 1 T T T T
2—
% 0
-2 : 5
| 1 4 L
-2 | 0 1 2 3 4
1
2 T T T T T
1.5} i
g 1t
05F |

y(t)

FIGURE 2-8. MarLag verification of the result of Example 2-8.
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¥ = J‘m r(re Mt — 1) dr

i
=f e dr =0
0

=e"“‘f e d, t=0
]

t 1 -
=ioSa-en =0 (2-56)

Note that the first term increases linearly like the ramp, but with a slope of 1/e. The second term ap-
proaches —1/a? as t — . The student should sketch the result of the convolution along with the
components of the integrand for different values of ¢ to provide justification for the result.

2-5 Impulse Response of a Fixed, Linear System

We have shown in Section 2-3 that the response of a fixed, linear system with impulse response A(f) to
an input x(¢) is the convolution of A(f) and x(z). In this section we therefore consider the impulse re-
sponse of a linear system. Although the impulse response of a time-varying system can be defined also,

' we limit our consideration to fixed linear systems.

We have defined the impulse response, denoted h(r), of a fixed, linear system, assumed initially un-
exited, to be the response of the system to a unit impulse applied at time t = 0. Since the system is as-
sumed to be fixed, the response to an impulse applied at some time other than zero, say ¢ = 7, is simply

. h(t — 7). We now illustrate by example two techniques for obtaining the impulse response of a system.

- EXAMPLE 2-10

Find the impulse response of a system modeled by the differential equation

dy(1)

TD? + y(1) = x(t), —co < [ << o0 (2-57)

where x(f) is the input and y(f) the output.
Solution: Setting x(f) = &(¢) results in the response y(£) = k(). For t > 0, 8(r) = 0, so that the gov-
erning differential equation for the impulse response is
dh(1)
"t h(ty=0, >0 (2-58)

t

Assuming a solution of the form
h(f) = AP (2-59)

and substituting into the equation for A(f), we obtain

(myp + 1)Ae” =0 (2-60)
which is satisfied if

e (2-61)




68 Ch. 2 / System Modeling and Analysis in the Time Domain
Thus
h(t) = Ae™v, 1>0 (2-62)

To fix A, we require an initial condition for h(r). The system is unexcited for # < 0. Therefore, from
the definition of the impulse response,

h(t) =0, t<0 (2-63)
From (2-57) it follows that the impulse response for ¢ = 0 obeys the differential equation
dh(i
-rn—dEl + k() = 8(), t=0 (2-64)

For the left-hand side to be identically equal to the right-hand side, one of the terms on the left-hand
side must contain an impulse at t = 0. Tt cannot be h(?), for then Ty[dh(t)/df] would contain a dou-
blet,t and there is no doublet on the right-hand side [recall (1-68)]. Thus A(z) is discontinuousatt = 0,
but ne impulse is present in h(f). Therefore, its integral through 7 = 0 must be zero,

o+ :

J. h(f)dt =0 (2-65)
=0~

and the integral of (2-64) from ¢ = 0~ tot = 07 gives
o

5 : .
f iy d};(t’) di + j h(t) dt -j 8(0) dt
=0 =0~ =0

1-0[!1(0+) — h(07)] + 0 = 1 (2-66)
Since A(0~) = 0, it follows that

Wo*) = 7 @-67)

Setting this result equal to (2-62) with ¢ = 0* shows that

1 (2-68)
’TQ =

Thus

is the impulse response of the system.

EXAMPLE 2-11

Considering next the RC circuit shown in Figure 2-9, we see that the governing differential equation 2
is (2-57) with 7, = RC. We will find the impulse response by considering the physical properties of 1§

the resistor and capacitor.

A doublet was defined as d8(1)/dt in Chapter 1.

R ———

h(e) = 269 §
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R -

"
+0

5(r) C == hir)

O <

FIGURE 2-9. RAC circuit to illustrate the calculation of impulse response.

Att - 0=, the capacitor is uncharged and acts as a short cireuit (infinite charge sink) to any cur-
rent flowing through R. With x() = (t), the current through R at t = 0 is given by

o 8() s +
i(t) = R’ 0=r=0 (2-70)
The charge stordd in C due to this initial current flow is :
o .
t) 1
Wiogh i o
0= k=g @71

Thus !h(.i capacitor voltage is v,(0*) = 1/RC. For t > 0, x(f) = 0; that is, the input is a short circuit
and C discharges. The voltage across C exponentially decays according to

v () = Ae™RC >0 (2-72)

Setting v (0*) = A = 1/RC and noting that A(t) = v (f), we obtain the same result for A(f) as in Ex-
ample 2-10 with 7, = RC.

- EXAMPLE 2-12

Find the impulse response of the LC circuit shown in Figure 2-10.

Solution: For the unit impulse input, the differential equation governing the response of the circuit is
dh(p)
LC—5~ +h() = &) @-73)
For 1 > 0 the right-hand side is zero, and the solution to the homogeneous differential equation is
h(t) = (A cos wyt + B sin wy)u(t) (2-74)

where w, = I/LC and the fact that A(f) = 0 for ¢ < 0 has been incorporated into the expression
for h(z) by multiplying by a unit step function. To obtain the unknown constants A and B, we

al

FIGURE 2-10. Circuit for Example 2-12.
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differentiate A(f) twice with respect to ¢ and substitute the result back into (2-73). The first differen-

tiation gives
dh(t) ; ;
i (— Awy sin wyt + Boy cos wpt)u(t) + (A cos wyt + Bsin wyt)8(t)

= — wy(A sin oyt — B cos wyt)u(t) + A1) (2-75)
where we used the facts that 0 - 8(f) = 0 (see Problem 1-25 and the footnote on page 27). A second
differentiation gives

2
h
Ci T wi(A cos wyt + B sin wet)u(t) — wy(A sin ayt — B cos wt)8(t) + A %Eﬁ

—7
2 : ds(r)
= — wi(A cos wyt + B sin wptu(t) + wB(r) + A ol (2-76)
_Substitution of this resulf into (2-73) along with the assumed h(1), (2-74), gives
. db
LC{— wi(A cos axt + Bsin ag)u(t) — wpBa(1) + A %] ¥
+ (A cos wyt + B sin wyt)u(t) = 8(1) (2-77)
But @} = (LC)~!. Canceling like terms, we have
LC[%BB(t) + A d_fi{rg] = (1) (2-78)

By equating coefficients of like derivatives of &(r), we obtain A = 0 and B = w,. Thus the result for
the impulse response of this circuit is

h(f) = w,sin (wyt) u(t) (2-79)

2-6 Superposition Integrals in Terms of Step Response

We saw in Example 2-6 that the step response of the RC circuit shown in Figure 2-11 is simply the in- |
tegral of the impulse response of the circuit. We now ask: Can the response of a system to an arbitrary §

input be expressed in terms of its step response? The answer is yes.
To find the appropriate relationship, consider the superposition integral in terms of impulse response.
Repeating (2-5a) here for convenience, we have

o) = [ " x(t — DA dA @-5)

We employ the formula for integration by parts:

b b ;
j wdv = uw lﬁ—f v du (2-80) |

u

with # = x(t — A) and dv = h(A) dA. Thus

() = J R(D) dL & a()) sy §
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is simply the step response, and
du(A) = —x(t — A) dA (2-82)

where the overdot denotes differentiation with respect to the argument. Substituting these expressions
into (2-80), we obtain

y(1) = a(A)x(t — M) [7-_. + f i x(t — A)a(A) di (2-83)

The system is initially unexcited, so that a{ —o) = 0 and x(t — A)l, - ., = 0. Thus the first term is zero
when the limits are substituted, and the final result is

1) = f #(t — Aa(r) dA (2-84)

The change of variables 1 = ¢ — A results in the alternative form

"

y(©) = [ ima(e - m) dn (2-85)

—o

Thus inl ter.ms of the step response a(t), the response of a system to an input x(¢#) is the convolution of
the derivative of the input with the step response. Equations (2-84) and (2-85) are known as Duhamel’s
integrals. Note the similarity to (2-5a) and (2-5b), respectively.

EXAMPLE 2-13

Consider a system with a ramp input for which
x(6) = tu(r) (2-86a)
x(1) = u(t) (2-86b)
Applying (2-85), we obtain the response to a ramp as I

o

ya(t) = J u(t — A)a(A) di

4

= j_ a(A) dAa (2-87)

Thus the response of a system to a unit ramp, which is the integral of the unit step, is the integral of

~ EXAMPLE 2-14

the step response.

Generalizing, we conclude that for a fixed, linear system, any linear operation on the input produces

. _the same linear operation on the ouiput.

Find the response of the RC circuit of Figure 2-9 to the triangular signal

X By =r(t) = 2r(t — 1) + r(t — 2) (2-88)




72 Ch.2 / System Modeling and Analysis in the Time Domain i 2-6 / Superposition Integrals in Terms of Step Response 73
subplot(3,1,1).plot(t.x _del _dot).xlabel('t'),ylabel('der.of input'),
; axis([t_min t_max -1.5 1.5])

subplot(3,1,2),plot{t,a"),xlabel('t') ylabel('step resp.'),axis{[t_min

—A
J:w [1 T BXP(EE)] u(h) da t_max 0 1.5])
subplot(3,1,3),plot(tp.y),.xlabel('t'),.ylabel('output'),axis([t_min

t_max 0 1])

Solution: We first substitute (2-47) into (2-87) to obtain the ramp response. Thus

vr(t)

Il

(1) + RC[exp(;—é)]; u(r)

gl A plot of the output of the system in response to the triangle input is shown in Figure 2-12 for
rf) - RC[I - exp(:é-é)]u(t) (2-89) RC = 0.1. Note that it is the same as the corresponding response plotted in Figure 2-11.

1l

By superposition, the response to the triangle x (1) is y4(1) = yg(t) — 2yt — 1) + yglt — 2). This in-
put and output are compared in Figure 2-11. Note that for RC < < 1, the output closely approxi- EXAMPLE 2-15
mates the input, whereas if RC = 1 the output does not resemble the input.

We again consider the RC circuit of Figure 2-9 and compute its impulse response by first finding its

MATLAB Application step response and then differentiating it. The differential equation relating input and output is
" In this example, we verify the result of Example 2-14, shown in Figure 2-11, by writing a MATLAB dy(t)
program to carry out a Duhamel’s integral evaluation. The program listing is given below: RC ok +'y(6) = x(1) (2-90)
EDU>>c2exl4d
% DuHammel's computation of the output for Example 2- 14
%
RC=0.1; 4 T T T T
t_min=-0.5; % Minimum t-value for = 1r 4
% computation window i B
t_max=2.5; % Maximum t-value for 50
% computation window 5
del_t=0.001; % Step size for 3 =] ik
t=t_min:del t:t_max; % Vector of t-values = ol
L=length(5}; . 1 S 1 L 1 I 1
tp=[27t(1) :del_t:2*t(L)]; % t-variable defined for : 9 05 1 15 2 25
% plotting output L ; . ; ;
x_del_dot=s‘r.p_fn(5)-2"stp,_fn(t-1)-stp_fn[t-?) . % Derivative of the input T
a=(1 - exp(-t/R€)).*stp_£fnlt): % Step response of the 3 gk
% system a =
y=del_t*conv(x_del_dot.,a): % The convolution; 2
% multiply by del_t to % 05 i
% scale
0 L 1 L |
Y (0 Triangular 1 -0.5 0 0.5 1 15 2 2.5
A /i.nput £ t
- 1 T
1.0 q A Syen T T - :
i System E.
i response é 05~ =
05 forRC = 1.0
‘\\\ 0 ! L 1 1 |
G L e N 1 i =05 0 0.5 1 15 2 25
0 0.5 1.0 1.5 2.0 ! :
FIGURE 2-11. Response of an RC circuit to a triangular input signal. i FIGURE 2-12. The response of an RC lowpass filter to a triangular input.

- - - AT,
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which is (2-57) with 7, = RC. With a unit step input, this equation can be written as : The complex function of frequency
la(t i H(w) = A(w)e™ 2.97
RC{H{)+EI{I)‘_—"1, t=0 (2_91) H ( ) ( ) ( )
dt is called the frequency-response function of the system; A(w) and &(w) are referred to as the amplitude-
where a(f) is the step response. We have already considered the solution of this differential equation response and phase-response ﬁmqims of the system, respective]}c_
in Example 2-1 for an arbitrary input. As mentioned in that example, the solution consists of the sum The frequency-response function, (2-97), completely characterizes the steady-state response of a
of a homogeneous solution, which is fixed, linear system to a sinusoid or, equivalently, a rotating phasor, e, That is, the steady-state output
of a fixed, linear system is of the same form as its input when its input is e/ In mathematical terms,
a(f) = A exp(——f) (2-92) it is said to be an eigenfunction of the system. That this is the case can be shown by considering the
& RC superposition integral with the input x(f) = e/«. Then the output is
plus a particular solution for the forcing function u(f). This particular solution 18 silmply a1 - B i
which can be seen by direct substitution into the nonhomogeneous differential equation for a(t). Thus i) = v e NR(A) dA (2-98)
a(t) = a,(t) + a () = A exp(_—t) 1 (=0 (2-93) where A(A) is the impulse response. Since ¢/ can be factored out of the integral, the output can be writ-
: 4 RC . ten as

The initial charge on the capacitor is zero for £ < 0. Since the forcing function does not contain i £ POREE
impulses (it is a step and therefore cannot change the capacitor charge instantaneously), it follows ¥ y(t) = e I_ h(A)e ™ d\ 2 e/ H(w) v (2-99)

that the ch the capacitor at ¢ = 0+ is zero. Therefore, a(0*) = 0 or . ; .
s ® We identify the integral multiplying &/ as the frequency response H{w). That is,

=i
a0") = Acxp(gg)  F1=A4+1=0 @94) -

RC /=0 H(w) = j R(A)e~ dx (2-100)

and i -
of b | Later we shall see that H(w) corresponds to the Fourier transform of the impulse response A(z).
a(r) =1- (:xp(ﬁ), t=0 (2-953) 3
o { EXAMPLE2-16
Using the fact that a(r) = 0 for ¢ < 0, we may write this as .
_ 3 To illustrate these remarks, consider the RC filter of Example 2-1 as illustrated in Figure 2-2. Its im-
a(t) = [] o exp(.R_C)]u(I) (2-95b) pulse response was found in Examples 2-10 and 2-11 to be

Since 8(f) = du(r)/dt and using the principle stated after Example 2-13 that for a fixed, linear sys-
tem, any linear operation on the input produces the same linear operation on the output, we can ob-
tain the impulse response by differéntiating a(?) with respect to ¢. The result is

sy =20 [1' — exp(%)]a(:) + R1E exp(;—-é)u(r)

dt
1 =
RC EXP(RC)H(E) ¢

which follows by using the chain rule for differentiation and noting that 1 — exp(—#/RC) =0 for
L t=0.

1
h(t) = — —t/RC, _ :
(t) RCE u(t) (2-101)
From (2-100), the frequency response function is found to be

| ;
H(w) = f Re"”“:e‘““u(f) di

e Le—(jw+URC}l dt
0

= ’;_.l&e—[}'«ﬁ IIRQ(}M
jo + 1/RC 0

- " - b 1
2-7 Frequency Response Function of a Fixed, Linear System i 7 21003
If the input to a fixed, linear system is a sinusoid of frequency rad/s, the steady-state response (i.e. : We write this in polar form (2-97) as
the response after all transients have approached negligible values) is a sinusqid of the same frgquency,
but with amplitude multiplied by a factor A(w) and phase-shifted by &(w) radians. We prove this asser- H(w) = S S o~ tan (wRC) (2-103)
tion in this section and illustrate it with an example. 1+ (@RCY

S ——
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Thus, the amplitude and phase responses are, respectively, given by ' 2-8 Stablllfy of Linear Syste ms
; : Sh
Alw) = = (2-104a) One of the con31dc.ranons in any system design is the question of stability. Although there are various
V1 + (oRC) definitions of stabll‘ity in common usage, the one we use is referred to as bounded-input, bounded-
e output (BIBO) stability. By definition, a system is BIBO stable if and only if every bounded input re-
% sults ina bounde.d output. Clearly, stability is a desirable property of most systems.
#w) = —tan"{(wRC) (2-104b) For a ﬁ.x.ed, linear system we may obtain a condition on the impulse response which guarantees
The output, for an input of the form e/, s [?LBO stablhtvy. To derive this condition, consider (2-41), which relates the input and output of a fixed,
; linear system:
o -1
Ne @ flutr'(wRO) 2-105 i
W= s (2-105) YO = [ x(ntc— 0 dr
For a cosinusoidal input, we may find the output by writing the cosine in exponential form and us- | It follows that
ing superposition to obtain the output = %
L ~ [y(»] = U_ x(A)h(t — ) da‘ = f (V)| [a(t — A)| dA (2-110)
y(f) = —————+— cos[wt — tan"*(w@RC)] (2-106) . g : o
V1.+ (wRC)? : If the input is bounded, then '
Note that the same result could have been obtained by taking the real part of (2-105). This is not sur- k(M| =M <= ) (2-111)
prising, since the cosinuosidal input is obtained by taking the real part of the rotating phasor input, bre Miinadiniie - ; ) ) -
and the operations of taking the real part and convolution are interchangeable since both are linear e ,x(;\)| i \g
operations. . 2
Some numerical values will illustrate the behavior of A(w) and &w) versus w. For 2QmRC)™! = Iy (:)l =M J’_m lh(‘ = ’\)‘ dA (2-112a) 3 g
1 kHz and @ = 1, the values in Table 2-1 result. For example, for x(z) = cos(2,00071), the out- e oy
put is % E
s = ;_'.‘_' J
y(f) = 0.707 cos(2,0007t — 45°) (2-107) bl =M f h(m)| dn @uz) & &
Using the superposition property of the linear RC filter, we obtain the output for an input of the form which follows by the change of variables = t — A. Thus the output is bounded provided that }-ij g
x(t) = cos(2,000at) + cos(20,0007t) (2-108) = 5: 3
J Ih(0)| dt < o0 @2-113) = D
as oo }
That is, (2-113) is a sufficient condition for stability. . %

1) = 0.707 2,000t — 45°) + 0.0995 cos(20,000m — 84.29° 2-109 e
(1) cos( ) cos( ) ( ) To show that it is also a necessary’ condition, consider the input

Applying the superposition property an indefinite number of times, one could find a series expres- |
sion for the output due to any periodic input simply by representing the input in terms of its Fourier §
series, as we will show in the next chapter.

+1  if A(t—=2A)>0
| x(A)={ 0 if h(t—A) =0 (2-114)
1 -1 if A=) <0

TABLE 2-1 is i i
For this input it follows that

Amplitude and Phase Response Values
for an AC Filter

ly(| =

L (e — A)| dA| = J’ " h(m)| dn (2-115)

o Alw) Kw)
2004 0.995 _5791° _f01‘ any ﬁx'ed value of ¢ since the integrand is always nonnegative. Thus the output will be unbounded
1,000 0.894 —26.57° if (2-113) is not satisfied. That is, it is also a necessary condition for BIBO stability.
2,000 0.707 —45.00°
10,0007 0.196 —78.69" 'A condition from which a given stat logically follows is said
: g e om a given statement logically follows is said to be a sufficient condition; a condition which is a logi-
20,0007 0.0995 g cal consequence of a given statement is said to be a necessary condition. A condition may be necessary but not sulf?ﬁc;:l, (:lf‘lld

vice versa,
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EXAMPLE 2-17

The system of Example 2-11 is BIBO stable since

@

otk 5
~YRC(p) df = J -
J_m RC e u(t) : exp(—uv) dv

= —exp(—v)fg

=1<w (2-116)

' EXAMPLE 2-18

Is the system whose impulse response was derived in Example 2-12 BIBO stable?

Solution: Substituting the impulse response for this system into (2-113), we obtain

f (o)) dt = w{,J' Isin(awyt) u(t)| dt = wﬁj Isin wy| dr @-117)
—n & — 0

The integral dees not converge, so the condition for BIBO stability does not give a bounded re-
sult. This system is BIBO unstable.

We will return to the idea of stability of a system in Chapter 6, where additional methods for deter-
mining the stability of systems describable by constant coefficient, linear differential equations, are
discussed.

2-9 System Modeling and Simulationt

We briefly consider in this section how systems can be modeled and simulated in terms of several basic
building blocks. These basic building blocks are given in Table 2-2, and consist of ideal adders or sub-
tractors, constant multipliers, and integrators. Any rth-order constant-coefficient differential equation
can be simulated by means of these components. It may seem that we are simply replacing one unsolved
problem with another in so doing, or that yve really don’t need such simulations at all because linear, con-
stant-coefficient differential equations are amenable to solution. In answer to the first thought, when a
simulation block diagram is available for a system, the realization of such a simulation can take one of
two forms: (1) The realization can be accomplished in analog fashion by means of operational amplifier
circuits that approximate the ideal summers and integrators needed (such circuits are also shown in Table
2-2): (2) the simulation can be realized by means of a digital computer program where the integration is
done numerically, as in Example 1-3. In regard to simulations being unnecessary because the differen-
tial equation representing a system is analytically solvable, we simply point out that the system realiza-
tions and simulation procedures touched on in this section also apply to cases where the system is
nonlinear or time varying as well, and these problems are often not solvable by analytical means.

To see how one might simulate a system, either by means of operational amplifier circuits or by digi-
tal computer algorithms, consider the first-order differential equation

dy

7 +ay=b]i{+b,}x (2-118)

dt

tSystematic modeling procedures for electrical and mechanical systems are discussed in Appendix B.
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TABLE 2-2
Building Blocks for System Modeling

Operation Symbol Op Amp Realization
Multiplication by Ry
a constant A
R’
x(f) a »0) x(1) 0'_‘V——— =
-0 ¥(1)
rt)=ax(t) 2
—a= Ry/ Ry
Integration ” {5
X ) ] af' | —— ] .
i
: X(I)O——--N—q
v(0) = af'xfA) dA b0 y(1)
—a=|/RC
Summation R R
3
= x (1) A A
() 0] B T i
- x(1) O—N—J
B —0 j{1)
x3(0)
— 0= 10+ x(0) w
RyRy=1
Ry/R =1

b .

It is realized by the block diagram of Figure 2-13. To show that this is the case, let the output of the

integrator be g(#). Its input is then dg/dt. Equating dg/dt to the sum of the inputs to the lefi-hand sum-
mer, we obtain

dq
& ot byx (2-119)

Considering the output of the right-hand summer, we find that

y=gq +bx (2-120)
leferenfiat:ing both sides of (2-120) and substituting (2-119), we obtain (2-118).
' I_n a 51m1.lar manner to the first-order case, we can realize an nth-order system by a block diagram
similar to Figure 2-12. For the differential equation
dﬂ t n—1 i t n i
O STONE O

: x(f)
dt = G A ] (2-121)
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by

+ d q(1)
x(1) by > - ik

e ¥(1)

a

FIGURE 2-13. Integrator realization of a general first-order system.

we have the realization diagram shown in Figure 2-14. That this is the realization of (2-121) can b.e
demonstrated in a similar, although longer, procedure to that used for the first-order case. [Nott? that l.hl.S
is only one of many ways to realize this system. Also note that the number of derivatives on either side

of (2-121) can differ by having some a;s or b;’s zero.]

- r{1)

]’11
kel
—[“'1[
B8 S
=
rit o

FIGURE 2-14. Integrator realization of a general rth-order system.

G

EXAMPLE 2-19
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Consider the RLC circuit shown in Figure 2-15. Obtain an integrator realization of this circuit.

Solution: The differential equation describing the voltage response of the circuit is

vy 1 f du(t)
= Adr+ C——+= -
LR f v(A) o = (1) (2-122)
Differentiating once and rearranging, we obtain
v Ly 1 ldr 2o
a* " RCdt LC" Car N

This is of the form (2-121) withy = v,n = 2,4, = 1/LC,a, = 1/RC, b, = 0, b, = 1/C, and b, = 0.
The integrator realization is shown in Figure 2-16.

MaTtLAB APPLICATION

An integrator (or state variable) simulation of a system can be carried out using SIMULINK, which
is a block diagram oriented toolbox. There is a limited version available in The Student Version
of MATLAB. One invokes SIMULINK by typing “simulink” after the command window prompt. One
can then construct a block diagram realization of the desired system using the menus available. Such

a SIMULINK block diagram realization is shown in Fig. 2-17 for the RLC circuit of Example 2-19.

d) R é L ¢ =R U0

FIGURE 2-15.

Circuit for Example 2-19.
e
5
+
; = " Ch]
/ a2\~ I w0
1
®¢ [T
=]
c [
FIGURE 2-16. Integrator realization of a parallel RLC circuit.
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[

Step Input 1c
+
) - =
Integratori = Integrator2 v Scope
Sum
J\-‘}%
1/RC

<o

inc
FIGURE 2-17. A SIMULINK simulation block diagram for the RLC circuit of Example 2-19.

The simulation can be carried out directly in the model window or it can be carried out in the
MAaTLAB command window using the function 1sim as suggested by the script below:

EDU>>c2ex19pl

% Plot of simulation cutput for Example 2_19
%

[t.ql=lsim('c2ex1%',20);

plot{t, g(:.1)), xlabel('t'). ylabel('output')

The output variables are defined by dropping down the menu under “Simulation” in the simulation
window, and then the menu under “parameters.” This brings up the “SIMULINK Control Panel” in
which various simulation variables are specified such as start and end time of the simulation. The
last blank to be filled out is labeled “Return Variables” which can be left blank if desired and the re-
turn variables default to time () and the state variables or integrator outputs (x). In our example here
we gave the state variables the label g. This is a matrix g(m,n) with m denoting the time index and n
indicating the number of the state variable. Thus by specifying g(:, 1) we have specified the output
in this example, which is shown in Figure 2-18. The step size was set to 0.1.

A useful way to write the equations for a system are in terms of state variables, to be discussed fur- .'
ther in Chapter 7. For now, we simply point out that the state variables for a system are the outputs of ]

the integrators of ihe integrator realization of a system. The state variable equations are then written
down by taking the input to each integrator (the derivative of that state variable) and setting it equal to
the summer output appearing there.

The advantage of writing the system equations in terms of state variables is that the same form is ob-
tained no matter what the order of the system. For orders greater than one, the equations become ma-
trix equations, as will be pointed out in Chapter 7. For example, the state equations for the system of
Example 2-21 are
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0.7 T T T T T T T T T

output

0.1 1 L I L 1 L L i I
g 2 4 6 8 10 12 14 16 18 20

FIGURE 2-18. OQutput of the parallel RLC circuit of Figure 2-15 obtained by SIMULINK for parameter
values shown in Figure 2-17.

dg, (1) 1 1
= "Re® — @ + X0
dg,() 1
& - Lch® (2-124)

and the output equation is v(r) = g,(#). This can be put into the form of the matrix equation
Q(?) = AQ(r) + Bx(¢)

where A and B are matrices and Q(f) is a column matrix or vector with elements g,(t) and g,(2).

(2-125)

EXAMPLE 2-20

Reconsider the accelerometer of Example 1-1 and the integrator circuit for determining velocity of
Example 1-2. We make one addition to the accelerometer model to make it more realistic—the ad-
dition of viscous friction between the weight and its housing. Such friction is often modeled as be-
ing proportional to velocity so that (1-1) now is modified to

Ma=Kx+de

X (2-126)

where B is the constant of proportionality. A small amount of friction will hardly affect the ac-
celerometer action at all, whereas a large amount will make its response sluggish and the indicated
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velocity at the integrator circuit output will lag that of the actual velocity. To investigate this effect,
we model the rest of the system and simulate it with SIMULINK. The remaining equations neces-
sary for constructing the SIMULINK model are (1-8), which is repeated here

v(t) = - s J‘r v(X)dA or Bty w3

RC 1y dt " RC Ae)

and the equation relating v, to the mass excursion from equilibrium, x. To make the maximum of
v, = 0.1 V when the mass is at its maximum excursion of 1 cm = 0.01 m, this equation is simply

v,(f) = 10x(1) (2-128)

We define auxiliary variables (called state variables) as the outputs of the integrators in the
SIMULINK model. Thus ¢, = x and g, = v,, and the system governing equations may be written as

(2-127)

_dﬂh(f) _ K M
& B gq(n) + B a(r)
“and
dg)(t) _ 1 10
& = RO = "rc™® )

The desired output is g,(f) = v,(#) which is proportional to the velocity of the rocket (recall that the
integrator circuit was designed in Example 1-2 such that when the operational amplifier output volt-
age is —10 volts, the rocket’s velocity is the burnout value of 1500 m/s).

A SIMULINK block diagram modeling the accelerometer and integrator circuit is shown in Fig-
ure 2-19. Recall that the following parameter values were used in Examples 1-1 and 1-2:

M = 2 grams = 0.002kg; K=38 kg/s?; RC=036s

We will take three values for B, in particular 1, 10, and 100 kg/s which corresponds to low, moder-
ate, and high damping. Note that the ramp acceleration input has been modeled as a step integrated.

The SIMULINK simulation can take place either in the SIMULINK model window itself, in
which variables of interest can be monitored on scopes strategically placed, or it can be run in the
MaTLAB command window with the statement below:

EDUDY [t. gl=sim(’'c2ex20'.72): .

Various plots can then be made with the plot command. In this case, three simulations were run for
the three different values of B (1, 10, and 100) and the plot held in each case so that the integrator
output for each succeeding case could be plotted on top of the previous cases. The resulting graph is
shown in Figure 2-20. Note that the largest value of B = 100 gives considerable lag in the output.

vo
To Workspace

i

Slnpul

1/s

Integrator1 fORC  Gan Integratord

=
Scope2

Scopal

B
FIGURE 2-19. SIMULINK model for the accelerometer/integrator circuit of Examples 1-1 & 1-2.

2-9 / System Modeling and Simulation 85

O I I L ! T T

-5+

integrator output

-7

~10 1 1 L 1 1 I !
0 10 20 30 40 50 60 70
t

80

FIGURE 2-20 ‘Output voltages for the accelerometerfintegrator system of Examples 1-1 and 1-2 for
the three damping parameter values of 1, 10, and 100 kg/s.

EXAMPLE 2-21

As a final example using SIMULINK, we do another system that involves both mechanical and
electrical subsystems. Figure 2-21 represents a direct current (dc) motor with separately excited
field coils (a separate source supplies the dc current to provide the magnetic field in which the
armature rotates). The applied voltage to the armature, v,(f), is assumed to be a step applied at
¢ = 0. The angular velocity (rotational speed), radians/second, of the armature as a function of time
is desired.

The left-hand side of the block diagram of Figure 2-21, representing the armature circuit, in-
cludes the applied source, a resistor representing the resistance of the armature windings, an induc-
tor representing the inductance of the armature windings, and a controlled source v, = K d/dr = K{}
representing the back-electromotive force (emf) generated because the armature turning in the
magnetic field also acts as a generator. The latter is proportional to the angular velocity of the
armature.

The right-hand side of the block diagram of Figure 2-21 represents the rotating armature of the
motor. Tt consists of an ideal torque source T, = Ki (note that the same constant relates torque to
current as relates back emf to angular velocity) which is proportional to the armature current, an
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; [(C—-
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FIGURE 2-21. Schematic diagram of a separately field-excited dc motor with viscous friction loading. 0.8

T T T r T T T T T

angular momentum J which is due to the mass of the armature, and a rotational damper B which rep-
resents damping due to air and mechanical friction (part of which may be the load).

Since both the electrical and mechanical parts of the system are represented by circuit diagrams
(the circuit diagram for the mechanical side is perhaps easier for electrical engineers to understand Gl . I
than mechanical diagrams), we can apply Kirchhoff’s circuit laws to write down the governing dif- ; /J = 0.707
ferential equations which are

0.7 b

di(t : D05F- i
v(f) = Ri(t) + L % + KO & 3
1 z
do(t Boal a
T(f) = Ki(t) = J % + BO() (2-130) g 04
B
If we are interested in the angular velocity ((r), we could eliminated i(f) between these two equa- : %0 4l J=2 |

tions and solve the resulting second-order differential equation for £(f) using standard techniques. ¥
The purpose of this example is to illustrate the application of SIMULINK, however. Easier tech-
niques for solving system equations based on Laplace transforms will be presented in Chapters 5 and

i ; 021 4
6. In order to easily construct the SIMULINK block diagram, we solve (2-130) for difdt and dW/dt. |
These will then be the inputs to the two required integrators. 1 =4
di(f) R K 1 1 01 ’ _
— = —— () — — ) + v l¢
2 = i) = 0 + 70 1
dQ(t) B K . F 0 I I L I L | I L L
S Q) + 5 i(0) (2-131) 0 1 2 3 4 5 ) 7 8 9 10
Using these equations, the SIMULINK diagram shown in Figure 2-22 can be corxstructe.d. We b FIGURE 2-23. Angular velocity versus time for motor armature for different coefficients of friction.
have two options for running the simulation—in particular, we can simulate directly in the
SIMULINK window, or we can use 1sim in the MATLAB command window. The latter is conve-
: Summary

nient for generating plots that can be stored in files or printed. Note that the coupling between the
electrical and mechanical parts of the system is controlled by the parameter K. We are interested in
studying the effects of the dissipative elements on the system operation—in particular R and B. We
intuitively expect the final angular velocity of the motor to be less the higher B, and we expect it to
take longer in getting to its final angular velocity the higher B. These outputs for three values of B
are illustrated in Figure 2-23 where it is seen that this is indeed the case.

In this chapter, the response of a fixed, linear system to an arbitrary input has been considered. The ba-
sic tool for obtaining the response is the superposition integral, which provides the output of the sys-
tem as a superposition of elemental impulse responses weighted by the input signal values at various
delays. The linearity of the system allowed the superposition of the elemental responses, while the fixed
property means that the response to an impulse applied at t = 0 need only be considered with all other
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' possible delays obtained by delaying the impulse response due to the fixed nature of the system. The
following are the main points made in this chapter.

1.

e |

Asystem is said to be continuous time if the signals processed by the system are cont'?nuol.ls—time
signals. It is said to be a discrete-time system if it processes discrete-time signals. It is said to 'bc
quantized if the signals processed by it are quantized signals. If a system is built to process sig-
pals that are both discrete time and quantized, it is said to be a digital system. Continuous-time
systems are dealt with almost exclusively in this chapter. Discrete-time systems will .be thn.? sub-
ject of Chapters 8-10. Furthermore, the systems considered in this chapter are all su?gie—.lnput,
single-output; that is, they have a single input and a single output. Systems with multiple inputs
and outputs can be handled by the techniques to be explored in Chapter 7.

. A system is time invariant, or fixed, if its input-output relationship does not change with time.

Thus, for a time-invariant system, if the input x(f) produces the output y(t), then the delayed in-
put x(¢t — 7), where 7is a constant delay, produces the output y(f — 7).

. A system is causal, or nonanticipatory, if its response to an i.l:lpul does not depend on future val-

ues of that input.

. A system is instantaneous, or zero memory, if its output depends only on present values of the in-

put, and not on past or future values.

. If a single-input, single-output system is represented symbolically as y(f) = #[x(1)], where I

is an operator, the system is linear if superposition holds. That is, a system is linear if, for the ar-
bitrary linear combination of two inputs a,x,(f) + a,x,(1), the output can be expressed as

y(t) & Hlayxy (1) + axy(D)]
= a,#[x,(1)] + o, ¥[x,(1)]
= ayy(t) + apy,(t)

where y,(¢) is the response to x,(t) and y,(¢) is the response to x,() and o, and a, are arbitrary
constants.

. For a linear system that is not fixed, the superposition integral relating the input x(r) to the output

¥() is . .

y() = J ] h(t, M)x(A) dA

where A(t, A) is the response of the system at time £ to a unit impulse appl.ied at time A. If, in ad-
dition, the system is fixed, then A(t, A) = h(t — A), and the superposition integral becomes

(1) = f " Bt — Ax(A) dA

- r h(D)x(t — 7) dr

where the second form follows from the first by substituting 7=t — A. These integrals are known
as convolution integrals.

. In addition to its use for finding the output of a fixed, linear system, the convolution integral has

many other uses. We denote the convolution operation by y(£) = k(1) * x(£) = x(r) * h(z). The fol-
lowing properties of the convolution integral hold:

sk i

S

10.

11.

12.

13.

14.
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1. A(0) * x(£) = x(z) * h(h).

2. h(t) * [ex(1)] = aefh(t) * x(t)], where « is a constant.

3. A * [x,(D) + x,(0] = h(r) * x, (1) + (1) * x,(D).

4. k(1) * [x,(0) * (0] = [A() * %,(0)] * x,(0).

5. If h(t) is time-limited to (a, ), and x(¢) is time-limited to (c, d), then h(t) * x(f) is time-
limited toa + ¢, b + d).

6. If A, is the area under () and A, is the area under x(z), then the area under h(f) * x(£) is A A,.

The integrand of the convolution operation is found by three operations: (1) reversal in time, or
folding, to obtain x(— A); (2) shifting, to obtain x(¢+ — A); (3) multiplication of A(A) and x(t — A),
to obtain the integrand. A similar series of operations is required to obtain the second form of
the convolution integrand.

. The impulse response of a fixed, linear system is the response of the system to a unit impulse

applied at ¢t = 0 with zero initial conditions.

For systems described by constant-coefficient, linear differential equations, the time-domain im-
pulse response can be found by solving the differential equation in response to a unit impulse
with appropriate initial conditions. Since the unit impulse is zero for ¢ > 0, this reduces to solv-
ing the homogeheous equation and finding the initial conditions by integrating the differential
equation with unit impulse forcing function through ¢ = 0.

A second method of finding the impulse response of a lumped-element circuit by using
time-domain techniques is to look at the properties of the lumped circuit elements in re-
sponse to impulse forcing functions. To this end, capacitors are infinite charge sinks (short
circuits) and inductors are open circuits at the instant of application of the impulse forcing
function.

The output of a fixed, linear system can also be found in terms of a superposition of its step re-
sponse. The resulting integrals, called Duhamel’s integrals, are given by

o0

() = f i(t — Na(A) dA

—m

# f x(m)a(t = m) dn
where a(t) is the response of the system to a unit step and the overdot denotes differentiation
with respect to time.
For a fixed, linear system, any linear operation on the input produces the same linear operation
on the output. Thus, for example, the step response is the integral of the impulse response, since
aunit step is the integral of a unit impulse. The ramp response is the integral of the step response,
since a unit ramp is the integral of the unit step.
For a fixed, linear system, the steady-state response (i.e., the response after all transients have
approached negligible values) to a rotating phasor input signal is a rotating phasor, but usually
with different amplitude and different phase. If the rotating phasor input has unit amplitude and
zero phase, then the complex proportionality constant, denoted H(w), relating output phasor to
input phasor is called the frequency response function of the system. The magnitude of H(ew) is
called the amplitude response of the system, and the argument, or angle, of H(w) is called the
phase response of the system. For example, through superposition, the steady-state output of a
fixed, linear system in response to the cosinusoidal input A cos(wyr + @) is

y(t) = A|H(wp)|cos[wyt + 6 + /H(w,)]

e e e
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Likewise, the steady-state response of the system to any sum of sinusoids could be found by us-
ing superposition.

15. Bounded-input, bounded-output (BIBO) stability of a system means that every bounded input
produces a bounded output. For a fixed, linear, system a necessary and sufficient condition for
BIBO stability is

[ hola<e

where h(z) is the impulse response of the system.

16. Fixed, linear systems can be modeled by interconnections of operational amplifier circuits con-
figured as integrators, summers, inverters, and scale changers (amplifiers). A standard configu-
ration is given in Figure 2-14 for a system described by the differential equation

dy(n S dy() _ &, dx()
dr" t2e dr =2b dr

i=0 i=0

In Chapter 7, such configurations will be found systematically by state-variable techniques.
State-variable techniques are very powerful in that they provide a means to represent multiple-
input, multiple-output systems, time-varying systems, and nonlinear systems. A block diagram,
such as Figure 2-14, is called an analog computer simulation of the system.

17. Analog computer simulations are very seldom used nowadays. The reason is that digital com-
puters have become very powerful and reasonably priced. Even a desktop computer or work-
station is capable of simulating very complex systems. The last section of this chapter introduced
the topic of numerical simulation of systems using MaTLAB SIMULINK. Several linear sys-
tems are employed as examples. The SIMULINK feature of MATLAB makes numerical solution
straight forward.

Further Reading

In addition to the references listed in Chapter 1, the following books provide alternative reading to sys-

tems modeling in the time domain.

T. KAILATH, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.

E. W. KAMEN, Introduction to Signals and Systems. 2nd ed. New York: Macmillan, 1990.

N. K. SINHA, Linear Systems. New York: Wiley, 1991.

H. KWAKERNAAK and R. S1vaN, Modern Signals and Systems. Englewood Cliffs, NJ: Prentice-Hall, 1991.

The following is an old book and out of print. Yet, it is referenced because many of the definitions and examples

in this chapter are patterned after material found in it.

R. I. ScuwaRrz and B. FRIEDLAND, Linear Systems. New York: McGraw-Hill, 1965.

The following references provide extensive treatments on modeling physical systems.

W. A. BLACKWELL, Mathematical Modeling of Physical Networks, New York: Macmillan, 1968.

C. M. CLosE and D. K. FREDERICK, Modeling and Analysis of Dynamic Systems. Boston: Houghton-Mifflin, 1978.

Material on numerical solution of system equations can be found in the following book:

1. M. SmiTH, Mathematical Modeling and Digital Simulation for Engineers and Scientists, 2nd ed. New York:
Wiley, 1987,

For guidance on the use of SIMULINK, see the following reference:

The Student Edition of SIMULINK, Version 2: User's Guide. Upper Saddle River, NJ: Prentice Hall, 1998.
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Problems

Section 2-2
2-1. A system is defined by the set of algebraic equations
Y1) = 2x,(0) — x,(0)
Ya(£) = 5x,(1) + 3x5(0)
Represent this system in terms of a matrix equation of the form
y(1) = Hx(1)
That is, give y(¢), H, and x(t) explicitly.
2-2. What is the order of each system defined by the following equations?
@ 22 4 30 - ’r() + x(1)

() 3y(t) + f y(A) dA = x(2) -
(©) 4y(r) +10 =° ()+5(;) '
@ 2284 dy ( ) 4 Ay(f) = f x(A) dA

d y(f) dy(t)
dar?

@ 52430 L+ y0) = 5200

2-3. Which of the systems defined by the equations of Problem 2-2 are fixed? Justify your answers.
2-4. Which of the systems defined by the equations of Problem 2-2 are nonlinear? Justify your answers.
2-5. A system is defined by the input-output relationship

() = x(6'?)

Is this system causal or noncausal? Justify your answer by choosing a specific pair of inputsl that
will or will not satisfy (2-23).
2-6. A system is defined by the input-output relationship
(i) =10x(t +2) + 5
(a) Is this system linear? Prove your answer.
(b) Is it causal or noncausal? Why?
2-7. Asystem is defined by the input-output relationship

() = x(t%)
Is this system:
(a) Linear?
(b) Causal?
(c) Fixed?
Prove your answers.
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2-8. An echo system is defined by the input-output relationship y(t) = x(z) + ax(t — 7).
(a) Show that it is a linear system.
(b) Is it zero memory?
(c) Show that it is causal if 7, = 0.
(d) Sketch its output for @ = 0.5 and 1.5 if x(f) = () — u(t — 1) and 7y = 1.

2-9. An averager is defined by the input-output relationship

; t+T;
W=y J x(A) dA

=T}
where T, and T, are positive constants.

(a) Show that this system is linear.
(b) What conditions on T, and T, make this a causal system?

2-10. (a) Write a differential equation relating y(t) to x(z) for the circuit shown in Fi'gure P2-10.
(b) Show that this system is linear. f
(c) Show that this system is fixed.

(d) Convert the differential equation found in part (a) to an integral equation of the form (2-5).
Assume that the input x(¢) is applied at ¢ = 0, and that the current through the inductor is ini-

tially zero.

— +

+ Jo0

L
x(r) R y (1)

FIGURE P2-10

2.11. Fill in the table at the end of this problem to state whether the systems specified are linear or
nonlinear, causal or noncausal, fixed or time-varying, and dynamic or instantaneous. Also give

their order.
(a) % +3y+2 L YO d = x(1)

) % + 4%?21 + 5% + 20%(6) = x(t)
© 2¥ 32 1y =20

@ 0 %% + 3%+ 50 = 200

() y(t) = x(£%) + x(1)

H y(r)(;—t}; + 33% + y(f) = x(t + 5)

If true, check the appropriate box. Fill in the bottom row with system order.
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Property a b c d e f

System

Linear

Causal

Fixed

Dynamic

Order

2-14.

2-15.

.

2-12.

2-13.

Classify the following input-output relations for systems as to linearity, order, causality, and time
invariance. State the order of each.

d 1

@ ?J: * Ey(f) = x(f); RC = constant
d

() = + (1) = x(1)
d? d

(€ ?i% +y() ?): + (1) = x(1)

) y(©) =2 + 1

Given the system

i)

x{1) x

¥1) = x(cos(100s)

cos{1001)
FIGURE P2-13

(a) Show that it is linear.

(b) Is it time varying? Why?
(c) Is it causal? Why?

(d) Is it instantaneous? Why?

A fixed, linear system responds to the input x(s) = II[(t — 1)/2] with the output y(1) =

(¢t + Dexp[2 (¢ + D)Ju(t + 1). ’

(a) Is it causal? Why or why not?

(b) Write down the response to the input 2 IT[(t — 1)/2] + 3 II[(z — 3)/2]. Sketch input and out-
put signals.

Section 2-3

Assuming the superposition property for the linear combination of two signals, extend this ex-
pression to the linear combination of N signals.
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2-16. If x,(8), x,(1). and h(r) are arbitrary signals, and a is a constant, show the following:
(@) h(p) * [x,(8) + (0] = h(2) * x,(0) + h(2) * x,(2)
(b) ht) * [x,(0) * x,(0)] = [A(2) * x,(0)] * x(0)
(© (o) * [ax,(B] = ah() * x,()
(d) If h(z) is time-limited to (g, b) and x() is time-limited 1o (c, d), then A(f) * x(f) is time-limited
to(a+c, b+d.
(e) IfA, is the area under A(r) and A, is the area under x(1), then the area under h(r) * x(r) is A A

Section 2-4

2.17. Find and sketch the signal y(f), which is the convolution of the following pairs of signals.
(a) x(t) = 2 exp(—100u(r) and A(r) = T1(t/2)
(b) x(r) = II[(t — 1)/2] and h(#) = u(t — 10)
(€) x(t) = 2 exp(— 10n)u(t) and h(f) = u(t — 2) (r - l)

(d) x(r) = lexp(—2r) — exp(—105)]u(s) and k() = I1 5

() x(r)=r®) and h(t) = 2 exp(—20u(z)

2-18. Given the signals
x(6) = II(t — 0.3) .

and
h(r)_= i 8(t — 2n)

Write down an expression for their convolution. Sketch the result.

Section 2-5

2-19. Obtain the impulse response of the system shown by:
(a) Using the method of Example 2-10.
(b) Using the method of Example 2-11.

1R o

* L
x(n R

yir)

FIGURE P2-19

2-20. Find the impulse response for the circuit
1Q
3 MW\ p——0
) 10 0
10 _
= AMN— —o

FIGURE P2-20

2-21.

2-22.
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Given the circuit

L
T
+ ¥
x(n R U]
R, %
B o
FIGURE P2-21

(a) Show that the differential equation relating the output to the input is

dy() R, R R, ]:dx(r) R, }
2 Sy =——— | 5+ 7t
# TR+ LOTR R @ "0
(b) Obtain the impulse response of this circuit.

Obtain the impulse response of the system shown.

T O 3
x(r L yn

FIGURE P2-22

. Obtain the impulse response of the system shown.

FIGURE P2-23

(a) Show that the impulse response A(f) of the operational amplifier circuit shown is A(r) pro-
portional to u(r).

(b) Express the output of the circuit in terms of the superposition integral for an arbitrary input.
Ts it the expected result given the function of this circuit?

b———0 y(1)

FIGURE P2-24
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Section 2-6
2-25. (a) What is the step response of the circuit in Problem 2-247?

(b) Given the input x(f) = u(r) + u(t — 1) — 2u(t — 2). Find the output for this input. Sketch

both the input and the output. Label carefully.
2-26. Obtain the output of the system of Problem 2-19 in response to the input
x(8) = II(t — 0.5)
Sketch for R/L = 0.1 and 1.0. Use (2-41).
2-27. Obtain the output of the system of Problem 2-22 in response to the input
x(1) = I(z — 0.5)
Sketch for R/L = 0.1 and 1.0.
2-28, Using (2-85), obtain the output of the system of Problem 2-19 in response {o the input
x(t) = It — 0.5) 5
Sketch for R/L = 0.1 and 1.0.

2-29. Given that the RL filter shown has impulse response
h(t) = 8(t) — (R/L) e ®/Biy(r)

x(t) L »ir)

FIGURE P2-29

(a) Find the step response.
(b) Find the ramp response.

2-30. Obtain and sketch the response of the filter of Problem 2-29 to the input shown for:
(a) RIL=0.1
(b) RIL=1.0
(Hint: Use the answers obtained for Problem 2-29 together with superposition.)

x(t)

FIGURE P2-30
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2-31. (a) Using the superposition property, find the response of the RC circuit of Example 2-11 to the

input
x(f) =r(t) = 2r(t = 1) + r(t — 2)
Sketch the input and the output for RC = 0.1.

. dx
(b) Find and sketch the response to 5

2-32. Given the circuit shown

R
=Y =
+ W l +
x(f) Ry ]. c »n
= . | °

FIGURE P2-32

(a) Show that the input-output relationship is

dy R, -
Rlcdr+[l+Rz y=x

(b) Show that the impulse response is
A = RO exp( £ Jutt)

where 7= R R,C/(R, + R,).
(c) Show that the step response is

a() = ﬁ [1.— exp(~£)]u(z)

(d) If the input is x(r) = II[(r — 1)/2), obtain the output.

WECTREE - | R | P R L |
Answer: y(t) = R + R, {[1 exp( T)]u(e‘) [1 exp( p )J u(t — 2}}
(e} If the input is x(¢) = r(r), find the output. (Hint: Use Duhamel’s integral.)

Answer: y (1) = RlRTZRz{: = 1{1 - exp(—i_rﬂ} u(t)

(f) If the input is x(f) = r(£) — 2r(t — 1) + r(r — 2), find the output in terms of the answer of
part (e).

Section 2-7

2-33. (a) Obtain the frequency-response function for the system of Problem 2-29.

(b) Obtain the amplitude-response function for this system. Put it in terms of the parameter
fi = R/I2wL and plot, dimensioning carefully.
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(¢) Obtain the phase-response function for this system. Put it in terms of the parameter
f; = Ri2wL and plot, dimensioning carefully.

2-34. (a) Obtain the frequency-response function for the system of Problem 2-32.
(b) Obtain the amplitude- and phase-response functions for this system.
(¢) If R, =R, =10 and C = | F, obtain the steady-state response of this system to the input
x(t) = cos 2wt + sin 5.

Section 2-8

2.35. Show that the system of Problem 2-19 is BIBO stable.

2-36. Show that the system of Problem 2-22 is BIBO stable.

2-37. Is the system of Problem 2-24 BIBO stable? Prove your answer.
2-38. Is the system of Problem 2-20 BIBO stable? Prove your answer.

Section 2-9
2-39. Given the system described by the differential equation
= 2
d’y 2 = dy
—gF = x(t =0 and —=| =0
o by =x@), ¥0)=0 and L

(a) Show that the impulse response of the corresponding system is
h(t) = ay sin(wyt) u(t)

(b) Show that this second-order differential equation is equivalent to the system of first-order
differential equations ’

aq _

dt 4

dq,

Frin —wyq +x
Y=y

(c) Using only integrators, summers, and inverting amplifiers, draw a block diagram that real-
izes the equations given in part (b).

(d) Using the block diagram of part (c) and noting the impulse response derived in part (a), de-
sign an oscillator for the frequency range 100 Hz = wy/27 = 10,000 Hz.

2-40. Show that the state equations for the circuit of Figure 2-12 are

dg,() 1 » 1
S e @) + - x(0)
dg,() 1

R g,(%)

and that the output equation is y(£) = g,(1).
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Problem Extending Text Material

2-41. To illustrate the impulse response for a time-varying system, consider a boat that is spreading
chemicals into a lake. Thus its mass changes according to M(t) = M, — kt, where M, is the ini-
tial mass and k is a constant. The water exerts a drag force of av(f) on the boat. Therefore, the
equation of motion is

g;[Mv(t)] + av(t) = F(1)

or

(M, — ki) d‘jT(:) + (e = k(t) = F(o)

where F(f) is the applied force. If this force is a unit impulse applied at time ¢ = 7, show that the
impulse response is

(M[] 2 kf)(“_”ﬂc
(MQ = kT‘)‘:'{k 2
(b) IfM = 10kg, @ = 2, and k = 1, find the response of the boat to a step applied at time ¢ = 0.
(See Schwartz and Friedland, pp. 84-85).

h(t, 1) = >0

Computer Exercises

2-1. (a) Following the MATLAB program of Example 2-8, write a program to convolve the signals

t—1
x(.t) = H\‘T‘I
and  A(f) = e %u(r)

Plot the two signals x(#) and h(t) along with the result of the convolution, y(7). For this
. purpose, use the subplot capability of MaTLAB. Note that the resulf of the convolution will
have twice as many -values minus 1 as defined for either input signal, so you will have to
use the axis function on the plot for y(z) to make its plot have the same f-range as for x(f)
and A(f).
(b) Analytically compute the convolution and compare the exact result with the numerically
computed result. Vary the step size for rin the numerical computation and try to make a state-
ment as to what size step size leads to unsatisfactory numerical results.

2-2. Assuming x(t) and h(t) to be the same as Computer Exercise 2-1, where the input and output of
a fixed, linear system use Duhamel’s integral, (2-85), to find the output of the system after find-
ing the step response from A(f) (recall that you integrate the impulse response to get step re-
sponse). Compare your result with the result of Computer Exercise 2-1. Experiment with the
width of the impulse approximation used for dx/dt to make a judgment on when it is too wide to
give satisfactory results.

2-3. Using the MATLAB program developed in Camputer Exercise 1-5, find the result of cnnvo']ving
a train of seven unit impulses symmetrically spaced about r = 0 at intervals of 2 seconds with a

triangle function A(#). Plot the result and compare with the analytically computed result.

Nt
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2-4. Use your MATLAB program of Computer Exercise 2-1 to demonstrate the fixed property of a fixed,
linear system. You have the result for an input x(f) = II[(t — 1)/2]. Now delay x(1) some arbitrary
amount, 7, and obtain the convolution of this delayed x(f) with A(r). Show that it is the same result
as obtained by delaying the original output (that obtained in Computer Exercise 2-1) the same
amount T.

2-5. Use your MATLAB program of Computer Exercise 2-1 to demonstrate the superposition of property
of a fixed, linear system. You have the result for an input x() = II[(z — 1)/2]. Now rewrite x(z) as
the difference of steps and obtain the convolutions of the two steps with A(¢). Show that the differ-
ence of the two outputs due to the steps is the same result as obtained in Computer Exercise 2-1.

2-6. Write a SIMULINK program to verify the results of Problem 2-39. Note that you can obtain an
impulse source in SIMULINK by using a step function source followed by a differentiator. In part
(d) you will want to use lower frequencies than specified there for plotting purposes.

2-7. Write a SIMULINK program to verify the result stated in Problem 2-41.

t 1

T

CHAPTER

The Fourier Series

3-1 Introduction

After considering some simple signal models in Chapter 1, we turned to systems characterization and
analysis in the time domain in Chapter 2. The principal tool developed there was the superposition in-
tegral that resulted from resolving the input signal into a continuum of unit impulses and superimpos-
ing the elemental system outputs due to each impulsive input—thus the name “superposition integral.”
The application of the superposition integral involves first finding the impulse response of the system
and then carrying out the actual integration—tasks that often are not simple.

In this chapter and in Chapter 4 we consider procedures for resolving certain classes of signals into
superpositions of sines and cosines or, equivalently, complex exponential signals of the form exp(jwr).
For periodic power signals this resolution results in the Fourier series coefficients of the signal and the
resulting representation of such signals, known as the Fourier series of the signal, is considered in this
chapter. For energy signals of finite or infinite extent, the Fourier integral provides the desired resolution
with the signal representation for such signals given by the inverse Fourier transform integral. This reso-
lution technique is examined in Chapter 4. Signals of the exponential class, of which energy and power
signals are subclasses, may be resolved with complex exponential signals of the form exp[(c + jwr)] by
means of the Laplace transform integral. We deal with the Laplace transform in Chapter 5.

Advantages of Fourier series and Fourier transform representations for signals are twofold. First, in
the analysis and design of systems it is often useful to characterize signals in terms of frequency-
domain parameters such as bandwidth or spectral content. Second, the superposition property of linear sys-
tems, and the fact that the steady-state response of a fixed, linear system to a sinusoid of a given frequency
is itself a sinusoid of the same frequency, provide a means of solving for the response of such systems. In-
deed, the Fourier or Laplace transform, as appropriate, allows one to convert the constant-coefficient lin-
ear differential equation representation for a lumped system to an algebraic expression that considerably
simplifies the solution for the system output. We consider this method of solution in Chapters 4 through 7.

We begin this chapter with some simple examples to convince ourselves that a sine-cosine series is
a useful representation for a periodic signal.

3-2 Trigonometric Seriest

Recalling Example 1-6, parts (d) and (e), we note that the sum of two sinusoids is periodic provided
that their frequencies are commensurable. Stated another way, the sum of two sinusoids is periodic pro-
vided that their frequencies are integer multiples of a fundamental frequency.

tAn alternative approach to Fourier series is provided in Section 3-10 in terms of generalized vector-space concepts.

1M
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To examine the fruitfulness of representing periodic signals by sums of sinusoids whose frequencies
are harmonics, or integer multiples, of a fundamental frequency, we consider two such series and plot
their partial sums.

EXAMPLE 3-1

As a first example, consider the trigonometric series, assumed to hold for all 1, given by

x(f) = sin wyt + %sin 3wyt +%sin Swyt + -+ - (3-1)

where 2w, is the period. Its partial sums are
5, = sin wyt
5, = 8in ayt + % sin 3wyt
and so on. Several of them are plotted in Figure 3-1 with @y as the independent variable. Stretching our
imagination, we see that a square wave appears to be taking shape as more terms are included in the par-
tial sumn. As each harmonic is added, the ripple in the flat-top approximation of the square wave becomes
smaller and possesses a frequency equal to that of the highest harmonic included in the series.
Somewhat disconcerting, however, is the appearance of “cars” (or overshoot) in the plot of the
partial sums where the square wave is discontinuous. This phenomenon, referred to as the Gibbs phe-
nomenon, is examined in more detail in Section 4-10.
The convergence of the series at any particular point may be examined by substituting the ap-
propriate value of wyt. For example, setting wyt = /2 in (3-1), we obtain the alternating series
oo Mok
Jw G 4
which may be checked by consulting a table of sums of series.* We can normalize the series (3-1) to
have a value of unity at wyt = /2 by multiplying it by 4/, Later we will show that a unit-amplitude
square wave can be represented by the series

(3-2)

4 2 :
Xyq(f) = - (sin gt + 1j‘-'s.ln gt + -ls-sm Sagt + 1), —m <t <o (3-3)
EXAMPLE 3-2 :
As a second example, consider the partial sums of the trigonometric series
y(£) = sin wot—%siHZwut%-%sin Bagt -, —o < < ® (349

Plots showing its partial sums are given in Figure 3-2. Again, with a little imagination, we can see
the beginnings of a sawtooth waveform, Each term added decreases the ripple in magnitude. The fre-
quency of the ripple is equal to that of the highest-frequency term included in the series. The over-
shoot phenomenon, present at the discontinuities of the square wave considered previously, is also
present with the sawtooth waveform.

Having convinced ourselves of the possibility of building up arbitrary periodic waveforms from
sums of harmonically related sinusoidal terms, we turn to the crux of the matter: Given a specific peri-
odic waveform, how do we find its trigonometric series representation? The resulting series, which is
unique for each periodic signal, is called the trigonometric Fourier series of the signal.

*See, for example, Mathematical Tables from Handbook of Chemistry and Physies (Boca Raton, Fla.: CRC Press, 1962), p. 315.
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—-1.04

(a) The first partial sum is a sine wave

—L0+4

(b} The second partial sum begins to approximate a square wave

1.DJ-—

—1.0+

(c) The third partial sum provides a better approximation to a square wave

FIGURE 3-1. The series of Example 3-1 shows how a trigonometric series approximates a square
wave (only one period shown).

3-3 Obtaining Trigonometric Fourier Series
Representations for Periodic Signals

We begin by writing down the general form that the trigonometric Fourier series representation of a pe-
riodic signal may have:

x(1) = ay + a, cos wyt + a, cos 2wyt + - -

+ b, sin wyt + b, sin 2apd + -0, —o0 < f < 0 (3-5)
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wol

=1.0+4

(a) The first partial sum is a sine wave

-1.04+

{(b) The second partial sum begins to approximate a sawtooth waveform

1.0+

{c) The third and fifth partial sums better approximate a sawtooth waveform

FIGURE 3-2. The trigonometric series of Example 3-2 illustrates approximation of a sawtooth
waveform (only one period shown).

‘r
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This may be written compactly in terms of summations as

x(f) = ay + >, a, cos nwgt + X, b, sin nwgt (3-6)
ﬂ'=l n=1
where — < t < .t Since the right-hand side is a sum of harmonically related sinusoids, which them-
selves are periodic functions, the left-hand side is periodic. The problem that faces us is to find a,, a,,
s - - -2 by, by, . for a given x(f).
To obtain relationships for finding the a,’s and b,’s for an arbitrary (periodic) x(f) we begin with ;.
Integrating the series (3-5) term by term over one period of x(¢), we obtain

Jx(r)dr=auf a‘f+a1J- cos wpt dt + a, | cos2wytdt + -+ -
% T T T,

+ b, f sin wytdt + by | sin2eprdt + - - (3-7)
Tﬂ Tﬂ

where | 1, (") dt denotes integration over any period. All terms except the first involve the integration of

a sine or cosine over an integral number of periods and are therefore zero. (For sin nawyt or cos nawy, as

much area appears above the r-axis as below it in one period.) The first term yields a,T,,. Thus the co-

efficient g, is given by

a; = s x(¢) dt (3-8)
Ty Jg,
which is the average value of the waveform.
Using the series form (3-6) we derive a general expression valid for any of the a,’s. The derivation
proceeds as follows for any a, except ay. Multiplying both sides of (3-6) by cos mawyt (the use of m al-
Jows us to choose any a, coefficient), and integrating over a period of x(f), we obtain

(2 a, cos nmui) cos mayt dt

n=1

J‘ x(t) cos mayt di = %J cos muaoyl dt + J-
T, T

0 Tﬂ
% j (2 b, sin muut) cos mayt dt (3-9)
Ty ‘n=1 *

The first term integrates to zero. We multiply each term of the series in parentheses by cos mawgt and in-
tegrate term-by-term to obtain

f x(t) cos mayt dt = >, a, f oS nayt cos mayt dt + 3 b"f sin nwyt cos mapt dt - (3-10)
T, n=1 T, n=1 v

To continue, we note some rather interesting properties of integrals involving products of sines and
cosines. Three possible cases occur. The resulting integrals are

0 m#¥n
I = i i dt=1_ 3-11
1 Lﬂ sin muwyt sin nawyt dt {Toﬂs WS (3-11)
0 m#n
= =4 3-12
L L oS Myt cos nagt dt {Tm’l s e o (3-12)

U

. 'Since most signals in this chapter are defined over the entire t-axis, we dispense with giving the range of definition unless it
15 other than —= < ¢ << =,
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and
L= I sin mayt cos nayt dt = 0, allm, n (3-13)
Ty

where T, = 27w, is a period of the fundamental and » and m are integers.! We note that with n = 0 in
(3-12) and (3-13), we have the integral of cos mwgt and sin megt, respectively. We also note that the
product of two sinusoids with harmonically related frequencies is periodic, so that the integrals could
be taken over any period.

Applying (3-13), we see that each term of the second series on the right-hand side of (3-10) is zero.
Applying (3-12), we see that all terms of the first series on the right-hand side of (3-10) are also zero
except for the term for which n = m. For n = m, the integral gives Ty/2, which yields

T
[ x(r) cos mayt dt = am(?o) (3-14)
Ty
Multiplying both sides of (3-14) by 2/T, gives
v 2 "
an =7 f () cosmantdt, m#0 (3-15)
olr, #
[n a similar manner, by employing (3-6), (3-11), and (3-13), we may show that
2 ;
b, = T I x(1) sin moyt dt (3-16)
(A

Without concerning ourselves about the validity of the steps in obtaining (3-8), (3-15), and (3-16),
we define a Fourier series to be any trigonometric series of the form (3-6), where the coefficients are
found according to the formulas just derived. To find the coefficients, we require only that the integrals
involved exist.t

To show (3-11) through (3-13), trigonometric identities could be used. However, Euler's theorem gives a more easily re-
membered derivation. Since, by Euler's theorem, we have

et = cog nwyt * f sin eyt

we can add and subtract the expressions for e/ and ™"’ to obtain
! " Lo it - 3
sin nagt = E; (e’ — g™ and cOS nagt = E(e"‘”" + @)

(The stud_cm should memorize these expressions as well as Euler’s theorem.) Substituting for sin newyt in (3-11), and using the
exponential form for sine above, we obtain
L= J-Tnl (e:‘mv = e—."vmvo‘) 1 (gjnw = g-,m-vf) dt
Yl oy 2j
Tipe o p— -
= _EJ; [ef Jogd _ piln—mjugt g flm ot | e—j{n.m}w] dt

Now [ e/ dr = 0 for k an integer not equal to zero by Euler's theorem (the integral of a sine or cosine over an integer num-
ber of periods is zero). If k = 0, we have [{j» dt = T, Using this in the expression for I, we have

0,
L=
T,/2
where the nonzero result for n = m results from the second and third terms in the integrand for /. A similar series of steps can be
used to prove (3-12) and (3-13).
#Wle give Iunly an i_nformnl discussion of convergence here. Conditions concerning the possibility of expanding a function in
a Fourier series are given in a theorem proved by Dirichlet in 1829, These sufficient conditions are that x(t) be defined and
houm_ied on the range (f, f, + Ty) and have only a finite number of maxima and minima and a finite number of discontinuities
on this r:':n_ge_ Thesle _cond:_ll(:n& being sufficient conditions, are more restrictive than necessary. Fejér, in 1904, published two the-
orems giving conditions for the convergence of Fourier series that are less restrictive than the Dirichlet conditions.

n#+m
n=m
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In going from (3-9) to (3-10) it was necessary [0 interchange the order of summation and integra-
tion. We did not worry about the validity of this step. Indeed, the whole development so far has been
based on the assumption that (3-6) is truly an equality; that is, an arbitrary periodic function can be
represented in terms of a sum of sines and cosines. There is no reason to believe that this is always the
case. However, we noted in the previous paragraph that the coefficients a, and b, will exist if x(1) is in-
tegrable. We can therefore find the coefficients for an appropriate x(#) and then examine the conver-
gence properties of the series formed with these coefficients. It is too much to expect that the Fourier
series will converge to a periodic, but otherwise arbitrary, x(r) for every r. For example, in Example
3-1 it is apparent that each partial sum is zero at wgt = 7, where n is an integer. If x(r) has been de-
fined to be 7r/4 at these points (or any other desired value), the series cannot represent x(¢) at wy! = nr.
As another example, consider two periodic si gnals x(7) and y(f) which are identical except at a single
point, where they differ by a finite amount. This finite difference will not affect the value of the inte-
grals for the coefficients given by (3-15) and (3-16). Therefore, both x(f) and (1) have identical
Fourier series, and we conclude that the Fourier series cannot represent both functions at the point in
question. In general, functions that are equal “almost everywhere"—that is, everywhere except at a
aumber of isolated points—will have identical Fourier series representations. Fourier series, therefore,
do not converge in a pointwise sense.

The question remains as to what conditions are required to ensure that a Fourier series will
converge to x(r). Indeed, very little is required to guarantee convergence. It turns out that if x{f) has
period equal to T, and has continuous first and second derivatives for all ¢, except possibly at a
finite number of points where it may have finite jump discontinuities, the Fourier series for x(f)
converges uniformly to x(¢) for every ¢ except at the points of discontinuity.* Even at points of dis-
continuity, the behavior of a Fourier series is very reasonable. The limit of the Fourier series sum
at a point of discontinuity is simply the average of the left- and right-hand limits. This is illustrated
in Figure 3-3.

Although we have discussed only periodic functions so far, it should be noted that the basic coeffi-
cient formulas use only the values of x(r) in a T,-second interval. Thus, if x(¢) is given only in some in-
terval of length T, the corresponding Fourier series can be formed and converges uniformly to x(f)
within this interval at all points of continuity. Outside this interval, the Fourier series converges to a sig-
nal which is the periodic extension of x(t). This is illustrated in Figure 3-4.

We close this section with an example that illustrates the representation of a function over a finite
interval by a Fourier series and an example that involves computation of the Fourier series coefficients
for a square wave. i

xie) Limit of Fourier series

HGURE 3-3. The Fourier series of a waveform converges to the mean of the left- and right-hand
limits at a point of discontinuity.

0

By uniform convergence of an infinite series whose terms are functions of a variable, it is meant that the numerical value of
the remainder after the first n terms is as small as desired rhroughout the given interval for n greater than a sufficiently large cho-
sen number.
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Interval used to
compute coefficients

——t——

Periodic extension of x (1)
outside {#g, fg + To)
—— -
\\ /I
‘\V/
waveform: x(r)

EXAMPLE 3-3

FIGURE 3-4. Expansion of a nonperiodic signal in terms of a Fourier series.

A violin string, to be plucked by a musician, has the initial shape shown in Figure 3-5. (a) Given
that the trigonometric Fourier series coefficients of such a triangular wave of amplitude A are
given by g

a, = Al2,

a, = 4A/mn?, n # 0 and odd

(3-17)

a, =0, neven

b, =0, alln
write out the first four nonzero terms of the Fourier series describing the initial shape of the violin
string in the interval |x| = 9 inches. (b) Sketch the function to which the Fourier series converges
for —oo < x < o,

Solution:

(a) Note that the independent variable is x, not &. Assume that the y(x) shown is to be represented by
" one full period of the Fourier series for a triangular waveform. Since the b,’s are zero (even func-
tion), the Fourier series is of the form

y(x) = ay + 2, a, cos nwex (3-18)
n=1

The fundamental frequency in rad/inch of this series is w, = 27/T, = 27/18 = /9. The Fourier
series coefficients are

ay=05/2=1/4

a, = 4(0.5)/m? = 2/ 7

=0
o (3-19)
a, = 40.5)/9m = 2197

a, =0

a; = 4(0.5)125m = 21257
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», inches

0.5

x, inches

-9 0
FIGURE 3-5. Initial position of a violin string to be represented by a Fourier series.

_ Thus, in the interval [x| < 9 inches, the approximating series is

s b 2 SR, R I 320

y(x)—4 = cos 9 9172905 3 257’2005 9 (3-20)
where the circumflex indicates that this is an approximation to the true initial shape of the string.
Figure 3-6 shows the series approximation to the initial shape of the string for the first two terms
only, and all four terms of the approximating series. Only the right half of the string and ap-
proximating series are shown, since the left half is the mirror image of the right half. Also shown
is the error in the approximation, which is the difference between the actual string position and
the approximating series. Note that the error is largest for x = 9 inches (i.e., at the end of the
string). For a two-term approximation, the error is about 10% of the maximum deflection, while
for a four-term approximation, the error is about 3.5% of the maximum deflection.

(b) The actual Fourier series converges to a triangular waveform infinite in extent.

$x).¥(x), inches

$(x).y(x), inches

0.5 0.05
2,
)
W
ot -0.05
0 ol I 0 9
x, inches x, inches

(a) A two-term approximation to the string initial position (left) and the error (right) as a function
of distance '

0.5 0.05
j:
£ g
X
7}
0 -0.05! L
0 9 0 9
x, inches x, inches

{b) A four-term approximation to the string initial position (left) and the error (right) as a function
of distance

FIGURE 3-6. Fourier series representations and the error for the initial position of the violin string.

(Only the right half is shown due to symmetry.)
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EXAMPLE 3-4

Consider the square wave defined by

A, 0D<t< Iy
5 2
x(t) = 7. (3-21)
—A, E” 3 T

?hnd periodically extended outside this interval. The average value is zero, so a, = 0. From (3-15)
e a,’s are ‘

2 (T2 2 T
a, = }0 | A cos maygt dt + ?; ok (—A) cos mayt dt
2A [sin mayt |72 sin mayt |To
e e i
Recalling that awy, = 277/T}, we'see that
sin ma;,To =sinmmw =0

and
sin mawyT, = sin 2m7 = 0

Thus all the a,, coefficients are zero. The b,, coefficients result by applying (3-16). This gives

m

b 2 Tw/2 2 5
i Asin mayt dt + — — i
T, J:] wy T (—A) sin mayt dt

0 -Ty/2
" E[_Fysmwu! T2 cos mayt | }
T(] My 0 Ny Tol2 (3_23)
Again, recalling that @, = 27/T,, we find upon substitution of the limits that
2A
b,, = — (1 — cos mm)
mar
which results because cos 2mar = 1 for all m. Finally, noting that cos ma = —1 for m odd and
cos ma = | for m even, we obtain
44
e modd
b= g (3-24)
0, m even

The Fourier series of a square wave of amplitude A with odd symmetry is therefore
_4A 1 1
x(1) = - (sin wyt + 3 8in 3wyl + 5 sin Syt + - J) (3-25)

Wc note that only odd harmonic terms are present. This is a consequence of x(f) having a special type
of symmetry, referred to as half-wave odd symmetry. More will be said about special symmetry cases
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later. If A = 1, (3-25) becomes the series first shown in (3-3) and verifies the previous assertion that

(3-3) represents a unity amplitude square wave.

MaATLAB Application
Itis interesting to examine the convergence of a Fourier series using MATLAB. The program given
below accomplishes this for the square wave considered in this example.

% Program to give partial Fourier sums of an
o odd square wave of unit amplitude
Y%
n_max=input('Enter vecter of highest harmonic values desired (odd)'):
N=length(n_max) :
+=0:.002:1;
omega_0=2%pi;
for k=1:N
n=[1%
n=[1:2:n_max(k)]; !
b_n=4./(pi*n): % Form vector of Fourier sine-coefficients

x=b,n'sin[omega_0'n"t): % Rows of sine matrix are versus time;
% ecolumns are versus n,
% go matrix multiply sums over n and a
% wector for x(t) results
subplot(N,1,k).plot(t.x), xlabel('t'), ylabel('partial sum')....
axis([0 1 -1.5 1.5)]. text(.05,-5. ['max. har.=",
num2str(n_max(k))])
end

Note that matrix multiplication is used to form the partial sums of the Fourier series. This
saves considerable computation time over using a for loop because MATLAB is an interpretive
language which compiles each statement separately. The for loop simply runs through different
cases for the maximum number of harmonics summed, Note that any number of cases for the
maximum number of harmonics can be run, but the plots would get rather small for more than three
or four. ;

In this case, the program is not run with echo on because one would see it go through the for
loop three times and this would be rather boring and long. The entry in the command window

is simply

EDUsc3exk
Fnter vector of highest harmonic values desired (odd) [11 21 31]

where the second line comes up after the program begins running and the [11 21 31] is entered by
the user to specify the three cases to be run for the maximum harmonic. If four cases are desired, this
would be a 1 by 4 vector. The resulting plots are shown in Figure 3-7. Note that the number of humps
on the flat part of the waveform is determined by the number of harmonics included in the partial
sum, and also note the presence of ears at the discontinuity points of the square wave. The latter are
known as the Gibbs phenomenon, to be discussed in the Chapter 4, Section 4-10.

T



! J T T ' T We see that terms involving both exp(jnwyf) and exp(—jnw,l) are present in the series. This is in
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T T T
E Tr i [ keeping with our observation in Chapter 1 that the sum of two complex conjugate rotating phasors is
3 3 required to produce a real, sinusoidal signal. To generalize the derivation of the coefficients in the com-
'%‘3 ¥ h 11 Ji plex exponential Fourier series, we write the series in the form _
max. har. = . . . _
3‘1 i — g x(t)=--- X e + X e/ + X, + Xie/™ + Xl 4 ..
1 1 1 1 1 1 1 1 1 1

0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

= i X gt (3-28)
where the X, ’s are, in general, complex constants. To find an expression for computing the X,’s, we mul-
tiply both sides of (3-28) by e~/ and integrate over any period of x(z). This results in

E
F 3 b . 5
= j x(e it dt = J ( E X,,e”‘“'"‘) e~ imet dy (3-29)
"i":@ Ty Ty ‘n=—w
8 We next multiply each term in the sum by e~imew dt and integrate the result term by term without wor-
' rying about the validity of these steps at this point.” This results in
J x(e7 i de = < X, | et dt (3-30)
Ts n=—wn Ty
1 : : ' s : : ' ' ' If m # n, the integral
E
.i.% 0 j elin—ment gy
1) Ty
= har. =
& -1r i is zero because
J ' : = eln=mad = cos(n — m)wyt + jsin(n — m)wy

1 1 1 | L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3-7. Partial sums of the Fourier series of an odd square wave for the highest harmonic
being 11, 21, and 31, top to bottom.

is a periodic function with period T} and is symmetric about the t-axis. For n = m, efn=maf = 1 and
- the integral evaluates to 7,. Thus every term in the sum on the right-hand side of (3-30) is zero except
the one for n = m; (3-30) therefore reduces to

3-4 The Complex Exponential Fourier Series

Another form of the Fourier series that ihvolves complex exponential functions can be obtained by sub-
stituting the complex exponential forms of sin wyt and cos wyt into (3-6). Thus, letting

J- x(He I di = Ty X,
T

L]

* or, solving for X, we obtain

jnant _ =i .
sin nagt = i (3-26a) X, = 2 [ xem dr (3-31)
2j 0/,
and As with the trigonometric Fourier series, we define an exponential Fourier series to be a series of tl'fe
et —jrant 3 * form (3-28) with the coefficients calculated according to (3-31). The computation of the coefﬁf:ients is
COoSs nuyt = ol oo d (3-26b)  usually considerably simpler than the computation of the trigonometric Fourier series coefficients. In
2 b -

addition, the exponential Fourier series provides us with a direct means of plotting the two-sided am-

plitude and phase spectra of a signal. _ )
We note, by comparing (3-27) and (3-28), that the coefficients of the trigonometric Fourier series

and the complex coefficients (3-31) are related by

) L
%= {?(a,.l }b.")’ n>0 (3-32a)
sa_, + jb_.), n<0

we obtain from (3-6) the series

R SR P ¥
x(t) = ay + 2 a, > — + 2 H—————
n=1 n=1

2
- 1 i el Ll
=ay+ 3, > (a, = jb,)el™ + 3 = (a, + jb,)e " (3-27)

n=l 2 a=1 =

This is known as the complex exponential form of the Fourier series. *A discussion of convergence for this form of the series would be identical to the one given for the trigonometric form.
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and
X, = a, (3-32b)
This section will be concluded with two examples to illustrate the calculation of complex Fourier se-

ries coefficients.

EXAMPLE 3-5

Consider the periodic sequence of asymmetrical pulses (referred to as a pulse train)
= t—ty— mT,
=3 AH(—-—U-T—O), r<T, (3-33)
whose period is T,. The exponential Fourier series coefficients are calculated by evaluating the integral
1 ty+r/2 ]
X, =— J Ae e dt (3-34)
' To Jy-rp2 .

‘where @, = 27/T,. The evaluation is straightforward. Integration gives

= 2 P Lige
JjnayT, ty=r/2
24 . a2 ,—ineyT/2
LA (e,
nayTy %
2A ; nwyT
= ~Inonty oy 2
e e sin 5 n+#0 | (3-35a)
Letting n = 0 in (3-34), we find X}, to be
A
X, =27 (3-35b)
Ty

Substituting w, = 271f,, into (3—35a.), where f, is the fundamental frequency in hertz, we obtain
the form

AT sin wnfyT
X, = — ¢ /2™ __.—f g (3-35c)
Ty TnfyT
where the numerator and denominator have been multiplied by T.
It is convenient to define
; sin 7z
sincz = — (3-36)

which is referred to as the sine function. Values for sinc z and sinc? z are tabulated in Appendix F. Ex-
amining (3-36), we see that the sinc function is zero whenever

sinaz = 0
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This happens forz = *1, 2, 3, ... . Furthermore, the sinc function is even (substitute —z for z and
obtain the same function) and has a maximum of unity at z = 0. The latter may be shown by using
L'Hospital’s rule. Also, sinc z is oscillatory with the amplitude of the oscillations decreasing as [z — .
Thus sketches of sinc z and sinc? z appear as shown in Figure 3-8,

It is straightforward to express (3-35¢c) in terms of the sinc function. Table 3-1 summarizes the
Fourier coefficients for the pulse train as well as those for several other waveforms of interest.

The next example illustrates the derivation of the coefficients of the complex exponential Fourier se-
ries for a half-rectified sine wave.

EXAMPLE 3-6

Find the coefficients of the complex exponential Fourier series for a half-rectified sine wave, de-
fined by

= {A sinwy, 0=st=T,/2 (337)

OI Tﬂfzﬁrs"rﬂ

with x(1) = x(t + Tj).

FIGURE 3-8. Sinc zand sinc? z.
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TABLE 3-1 ! )
Coefficients for the Complex Exponential Fourier Series of Several Signals

1. Half-rectified sine A
wave 4 m’ '

t X=D,

n=0*2*4,...

noddand # 1
0 T2 T,

o =
41"*4' n==*1
2. Full-rectified sine 24
v en
wave* AT X, = (1l — n?) i
¥+ 1
] T2 Ty 0 nodd
3. Pl.:lse.-l:ram signal |<.— TOA—‘ X = %Ismc nfuT'e—jlwa,' fi= To—l
AT 0
I ‘
Ty
4. Square wave \ 24 o
1 l
.| I Prengss s
T L = +3 %7,
AT i EN
0, neven
5. Triangular wave 44
— 5, nodd
A X,, — | mn
7“4 il *( i 7' T, IK ’ ' 0, n even

*Note that T}, is not the period of the full-wave rectified sinewave. Rather, its period is T2,

Solution: From (3-31), the Fourier coefficients are given by the integral

1 T2 "
X == A sin wyt e dt
" Tyl
A D2, . oL
= —— [J (e — gIw)g inmt dy
2Ty Ly
Ty/2
= A [J T2 lan(1=mt gy _ J’ ol e~ fon(1+n)t dr‘l
4T, Ly 0 :
j(l1=n)mw _ Jl+nm)r _
=_4£.[8J1 tak — 1], a1l br' —1 (3-38)
™ —n n

where use has been made of the complex expenential form for sin wyt and w, = 27/T,. We note that

ef1=n7 = cos(1 = ) + j sin(1 = m)wr = —(— 1), where n is an integer. Thus, (3-38) simplifies t0 2
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nodd, n# *1
and
A 1

X, =—
wl—nr

7, neven (3-39)

The special cases forn = 1 and n = —1 must be handled separately. For n = 1, the calculation is

T,
nE J £ (e — e ionyeint gy
2T, by

A Tul2 L
e — 1= 7" dy
T, J; ( ™)
A (3-40)

4
For n = —1, a similar integration gives X, = —A/4j. Putting all these results together, we see that
the first entry in Table 3-1 is correct. A similar series of integrations would be carried out to prove
the second entry for the full-rectified sine wave.

MATLAB Application

To show how fast the partial sums of the Fourier series approaches a half-rectified sinewave, we
provide a MATLAB program below for computing the complex exponential Fourier series.

% Program to give partial complex exponential Fourier sums of a
% half rectified sine wave of unit amplitude
%
n_max=input('Enter vector of highest harmonic values desired (evan)'):
N=length(n_max) ;
b E T R (B
omega 0=2*pi;
for k=1:N .

n=[];:

n=[-n_max (k) :n_max(k)];

L_n=length(n):

X_n=zeros(l, L_n); % Form vector of Fourier sine-

% coefficients; all
X n((L_n+1)/2+1)=-0.25*f; % odd-order terms are zero except X(1)

% and X(-1)
X n((L_n+1)/2-1)=0.25"5; % so define coefficient array as a zero
% array and
for 1=1:2:L n % then fill in nonzero values
X n(i)=1/(pi*(1-n(i)"2));
end
x=X_n*exp(j*omega 0*n'*t): % Rows of exponential matrix are versus
% time;
% columns are versus n; matrix multiply
% sums over n
% Plot real part of x to get rid of small imaginary part due to
i computational error
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subplot(N,1.k),plot{t,real(x)), xlabel('t'), vlabel('partial
sum'), ...
axis([0 1 -0.5 1.5]), text(.05,-.25, ['max. har.=",

numZstr{n max(k))])

end

As with the MATLAB program for Example 3-4, a vector of values can be entered for the highest
harmonic present in the sum. The command window appears as follows:

EDU»c3ex6
Enter vector of highest harmonic values desired (even) [4 § 12]

The resulting plot is shown in Figure 3-9. Note that very few terms are required to make the result-
ing plot look very much like a half-rectified sine wave. This is because there are no discontinuities

present in this waveform.

partial sum
o
w
T

EXAMPLE 3-7
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Suppose we desire the complex exponential Fourier series for an odd square wave, whereas Table
3-1 has the Fourier series coefficients only for an even square wave. In other words, we want to know
the change in the Fourier coefficients due to a time shift in the waveform, in particular, a shift of T;/4
in this case. Consider the general case first. Let the Fourier coefficients for the unshifted waveform
be denoted as X, and those for the time-shifted waveform be denoted as ¥,. Thus

1 A
X, = —J x(f)e "t dt
Ty Jr,
1 . 2
and Y, = —f x(t — m)e "V dr, w, = =8 (3-41)
Ty 1, 1,

Make the change of variables in the second integral t' = ¢ — 7, to obtain
1 iy ; i
Y,= [—J’ x(t")e net dt}e"f“zf"m’rﬂ = X,e/2mw/Te (3-42)
TU T,
where we remember that the integration can be over any T;-second interval.
For the case of going from an even to an odd square wave,.1, = Ty/4 so that (3-42) becomes
I o W T

FR AT e

a

X ot (3-43)

J"X n, odd? n

il

er. odd = Xu.:ve::e_jm'm (.'I Odd) = {

where X, _,, are the Fourier coefficients for the square wave given in Table 3-1, item 4, and only n
odd need be considered because the even-order Fourier coefficients of a square wave are zero.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

partial sum
o
o
)

L max. har. = 8
_0.5 L L ¥ - 4% 1 | | 1 |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
1
T T T T T T T T o
E 1
w
& 0.5f
=
g o0Fr —_— —
max. har. =12
__05 L | 1 L | | i L |
0 0.1 0.2 0.3 0.4 0.5 0.6 05T 0.8 0.9

t

FIGURE 3-9. Partial sums of the complex exponential Fourier series of a half-rectified sine wave.
Maximum harmonic is 4, 8, and 12, top to bottom.

One of our objectives in this chapter is to be able to plot amplitude and phase spectra for periodic
signals. Before doing this, however, we discuss symmetry properties of the Fourier coefficients. This

will simplify the plotting of spectra.

3-5 Symmetry Properties of the Fourier Series Coefficients

The expression for the coefficients of the complex exponential Fourier series (3-31), through use of
Euler’s theorem, can be written as

1 :

X, = x(f) cos meyt dt — ik J’ x(t) sin meyt dt (3-44)
Ty Jr, Ty Iy,

If x(z) is real, the first term is the real part of X, and the second term is the imaginary part of X,.. Com-

paring this with (3-15) and (3-16), we see that

_ {g(a,,, = jb), m >0 B4

X, 1 b
sa_, +jb ), m<0

m

which is another way to obtain (3-32a).
Solving (3-45) for a,, and b,,, we obtain

a,=2ReX, and b,=-2ImX,, m =0 (3-46)
If we replace m by —m in (3-44) or (3-45), it is clear that
X,=X*, (3-47)
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for x(£) real. Writing X, in polar form as
X, = |X, e’ (3-48)
we conclude from (3-44) that

|x,|=|x..| ad @6,=-8 (3-49)

—m

That is, for real signals, the magnitude of the Fourier coefficients is an even function of the index, m,
and the argument is an odd function of m.

Considering the Fourier coefficients for a real, even signal, that is x(f) = x(—1), we see from (3-44)
that the imaginary part will be zero since x(t) sin mayt is an odd function that integrates to zero over an
interval symmetrically placed about r = 0. That is, the complex exponential Fourier series coefficients
X, of a real, even signal are real (see Example 3-5 with r, = 0). Furthermore, since the dependence on
m is through the function cos mey, they are also even functions of m. From (3-44) and (3-46) it follows
that the b, s are zero for the trigonometric series of real, even signals.

Similar reasoning shows that the X,,'s are imaginary and odd functions of m if x(¢) is odd, that is, if
x(f) = —x(—1). Also a,, = 0, all m, if x(#) is odd, so that the trigonometric Fourier series of an odd func-
tion consists only of sine terms (see Example 3-4). The proofs of these statements are left to the problems.

Another type of symmetry is half-wave (odd) symmetry defined as

T,
x(r s —zﬂ) = —x() (3-50)
where T}, is a period of x(r).! For signals with half-wave symmetry, it turns out that

X,=0, n=0%2%4,... (3-51)

The proof is left to the problems. Thus the Fourier series of a half-wave (odd) symmetrical signal con-
tains only odd harmonics (see Example 3-4 and Table 3-1, waveforms 4 and 5). We note the half-wave
even symmetry, defined by

* : x(t g %) = x(f) (3-52)

simply means that the fundamental period of the waveform is T,/2 rather than 75,
Table 3-2 summarizes the properties of the two types of Fourier series that we have considered.

3-6 Parseval’'s Theorem

In Chapter 1 the average normalized power of a periodic waveform x(f) was written as

Pu=T J o= T [xon ar (3-53)

1To illustrate half-wave symimetry, consider waveform 4 in Table 3-1. Pick an arbitrary point on the t-axis. The value of the
signal at this time is equal in magnitude, but opposite in sign, to the value of the signal one-half period earlier or later. The same
argument holds for waveform 5 in Table 3-1.

for x(1)
for x(r)

Average value of x(f)
for x(1) odd,
b, =0 forx(f)even
n even,
Average value of x(1)
n even,

X, real for x(f) even

0,
odd half-wave

symmetrical

0,
odd, half-wave

symmetrical

—x(t = Ty2).

X, imaginary for x(¢) odd

Symmetry Properties
X

a, =0

g
a,b,
X

n=>=
n<~0

.

f x(t) cos nwyt dt
f x(1) sin newyt dt
Tﬂ

(a_, +jb_,),

f x()e " dy
T
(aﬂ = jbﬂ),

J x(r) dt
To

Coefficients?

1
Tﬂ
2
TU
2.
TO
i3
T
1
2
1
2

X*, for x(1) real

T
1

n

a}
b, =
X
XJ‘I’

X
—x(—1); x(f) odd half-wave symmetrical means that x(r)

Series

x(1) = ag + E (a, cos nagt + b, sin nayt)

n=1
—a

n

x()= S Xehw

Summary of Fourier Series Properties®

1. Trigonometric sine-cosine

* x(f) even means that x(r) = x(—); x{f) odd means that x{r)
b h-o () dt means integration over any period T, of x(7).

2. Complex exponential

TABLE 3-2
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We can express P,, in terms of the Fourier coefficients of x(r) by replacing x *(f) in (3-53) with its Fourier
series representation (3-28).% The substitution yields

1 S —;‘nw)
Po=17 Lnx(:)( S Xxemiwt| dy

0 n=—co
=% X;';[Ti [ xtgei dr} (3-54)
n=—m 04T,

where the order of integration and summation have been interchanged. We recognize the term in brack-
ets as X, [see (3-31)]. Thus we may write

By=7 [ boPdi= 3 |x (3-550)

Ty Iy, Koo :

=X2+2) |XJ (3-55b)
n=1

where (3-55b) results by applying (3-47). In words, (3-55a) simply states that the average power of a
periodic signal x(r) is the sum of the powers in the phasor components of its Fourier series (recall Ex-
ample 1-13, in which the power of a phasor was computed). Equivalently, (3-55b) states that the aver-
age power in a periodic signal is the sum of the power in its dc component plus the powers in its harmonic
components (recall that the average power of a sinusoid is one-half the square of its amplitude).

EXAMPLE 3-8
The average power of the sine wave x(¢) = 4 sin 507t dr is
i 16
P, =125 f 16 5in? S0mt dt = = = 8 W (3-56)
0
computed from (3-53). Its exponential Fourier series coefficients are X_, = —X, = 2j and its power,

when computed from (3-55a),is P,, =4 + 4 = 8 W.

EXAMPLE 3-9

Consider the use of a square wave to test the fidelity of an amplifier. Suppose that the amplifier ide-
ally passes all Fourier components of the input with frequencies less than 51 kHz. By ideal, it is
meant that the individual Fourier components of the input with frequencies less than 51 kHz suffer
zero phase shift in passing through the amplifier and all are multiplied by the same factor, called the
voltage gain, G,, while all Fourier components above 51 kHz do not appear at the output.

Suppose that G, = 10 and the input, x{1), is a 10-kHz square wave with amplitudes * 1 V. (a)
What is the average power P, of the input signal? (b) What is the average power P, of the output sig-
nal, y(£)? (c) What would the average power of the output signal be if the amplifier passed all fre-
quency components at its input?

Solution: (a) The average power of the input is found by using (1-84) for the average power of a
periodic signal. Letting T, be the period of the square wave and A its amplitude, we
obtain

fRecall that the conjugate of a sum is obtained by conjugating each term in the sum. Also, the conjugate of a product of fac-
tors is the product of the conjugate of cach factor.
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L Y

1
Po=r J x¥(t) dt
T, /),
1 + Ty
S A dt 3.57
- f (3-57)

Equation (3-57) follows by virtue of the square-wave amplitude being either A or —A. Thus the
squared amplitude of x(¢) is A2, and the average power becomes

P, .=A? (square wave of amplitudes *A)
=1 W (3-58)
Parseval’s theorem could be used to obtain P, by summing the powers in the spectral components
provided that one has the patience to sum an infinite series!
(b) The exponential Fourier series of an even-symmetry square wave, x(¢), with amplitude A =
1.Vis
2 s . , :
0= (=L Tow g 1o=Su _ 1o—Bay | o—junt 4
x(1) % ( 7 5 3 €
. jat L By L ey L Te L =
+ e’ AT R A ) (3-59)
where w, = 2m/T, = 27f, with f; = 10 kHz. The amplifier multiplies all spectral components with

frequencies less than 51 kHz by the factor G, = 10 and blocks all other spectral components. Thus
the Fourier series of the output of the amplifier is

20 . : ;
s 1 —jSay _ L =73 = — L i3 1,55
y(f)_ﬂ-(se;“‘h‘ 3e,rw+ef='of+efw 331w+531%t)

= i Y, et (3-60)

The amplitudes of the Fourier components of the output are therefore

Y, =0, |n| > 5

Y, = 0, n even
Y =¥= 2:? (3-61)
Y, =Y;,= —3%.%_

Using Parseval’s theorem, the output power is

a3 k= (5) + G + (o)
= Y 2= e = szl
P, YU+2§1| A 2[(77 = R
_8x10° 424 Y
2 \" 925
=9331 W (3-62)
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(c) If the amplifier passes x(¢) perfectly, then

y(1) = Gx(1) (3-63)
and
B, =GP,
=10* W (3-64)

Note that P,/P; = 93.31%. This result tells us that only the first through fifth harmonics of the square
wave need to be included to obtain 93.3% of the average signal power possible at the amplifier out-
put. The student should compute the percent of average signal power possible at the amplifier out-
put if its cutoff frequency is such that the 7th, 9th, 11th, and so on, harmonics are passed by the
amplifier but all others rejected. (Answers: 94.96%; 95.96%; 96.63%.)

'3-7 Line Spectra '
The complex exponential Fourier series (3-28) of a signal consists of a summation of rotating phasors,
In Chapter | we showed how sums of rotating phasors can be characterized in the frequency domain by
two plots, one showing their amplitudes as a function of frequency and one showing their phases. This

observation allows a periodic signal to be characterized graphically in the frequency domain by mak-

ing two plots. The first, showing amplitudes of the separate phasor components versus frequency, is
known as the amplitude spectrum of the signal. The second, showing the relative phases of each com-
ponent versus frequency, is called the phase spectrum of the signal. Since these plots are obtained from
the complex exponential Fourier series, spectral components, or lines as they are called, are present at
both positive and negative frequencies. Such spectra are referred to as two-sided. From (3-49) it follows
that, for a real signal, the amplitude spectrum is even and the phase spectrum is odd, which simply is a
result of the necessity to add complex conjugate ‘phasors to get a real sinusoidal signal. Figure 3-10
shows the two-sided spectra for a half-rectified sine wave. (See Table 3-1 for the Fourier coefficients.)
In order that the phase be odd, X, is represented as

A [ il A i )
ol —m)|  w-1)° s

X, =-

i

forn=2,4,...,and as

__] A |_ A jr
S TR I T

forn = =2, —4,....For n = *1, the amplitude spectrum is A/4 with a phase shift of —m/2 forn = 1
and a phase shift of #/2 for n = —1, which again ensures that the phase is odd.

The single-sided line spectra are obtained by writing the complex exponential form of the Fourier
series (3-28) as a cosine series by representing the Fourier coefficients in polar form given by (3-48).
For a real signal, the magnitudes and phases of the Fourier coefficients have the symmetry properties
given by (3-49). Substituting the polar form of the Fourier coefficients into (3-28) and using the sym-
metry properties of the magnitudes and phases, we obtain

(3-66)

K0 = 3 X fertene

n=—m
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FIGURE 3-10. Two-sided line spectra for a half-rectified sine wave.
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From this it is seen that the single-sided amplitude spectrum has lines that are twice as high as the lines
in the double-sided amplitude spectrum for f > 0, with the line at f = 0 being the same in both spectra,
and that the single-sided phase spectrum is identical to the double-sided phase spectrum for f= 0.
We reached the same conclusions in Chapter 1 with regard to spectra of sums of sinusoids. Since the
Fourier series of a periodic function is the sum of sinusoids as shown by (3-67), these observations
should come as no surprise. The student should plot the single-sided amplitude and phase spectra for
the half-rectified sine wave.

As a second example, consider the periodic pulse train shown in Table 3-1 as waveform 3. We con-
sider the special case of f, = /2. From (3-35c¢), the Fourier coefficients are

A ,
X, = {—T sinc nf,r e /™A (3-68)
: 0
The Fourier coefficients can be put in the form ]Xﬂ| exp (j/X,), where
A
1,| = = lsine nfyr (3-692)
Ty
and .
: —amfyT if sinc nfyr > 0 ’
/X, = { —mfyr+ =  ifnfy > 0andsinc nfyr <0 (3-69b)
—mnfyr — w  if nfy, < 0and sinc nfyr < 0
The = 7 on the right-hand side of (3-69b) accounts for |sinc nﬁ}ﬂ = —sinc nfyr whenever sinc nfyr < 0.

Since the phase spectrum must have odd symmetry if x(¢) is real, o is subtracted if nf;, << 0 and added
if nfy > 0. The two-sided amplitude and phase spectra are shown in Figure 3-11 for several choices of
7and T,,. Note that whenever a phase line is 277 or greater in magnitude, 27 is subtracted. Two impor-
tant observations can be made from Figure 3-11. First, comparing Figures 3-11a and b we note that the
width of the envelope of the amplitude spectrum'increases as the pulse width decreases. That is, the
pulse width of the signal and its corresponding spectral width are inversely proportional. Second, com-
paring Figures 3-11a and ¢, we note that the separation between lines in the spectrum is 1/7}, and there-
fore the density of the spectral lines with frequency increases as the period of x(1) increases.

3-8 Steady-State Response of a Fixed, Linear System
to a Periodic Input; Distortionless Systems

It was shown in Chapter 2 that if the input to a fixed, linear system is a rotating phasor signal of fre-
quency w rad/s, then the steady-state output is also a sinusoid of the same frequency but, in general,
with different amplitude and phase from the input. The complex proportionality constant that multiplies
the rotating phasor input [see (2-99)] to produce the output is called the frequency response function of
the system, and is given by the integral

H(w) = j h(t) e dt (3-70)

where h(#) is the impulse response of the system. It will be shown in Chapter 4 that this integral is the
Fourier transform of the impulse response. For any periodic input expressed in the form of a complex

*
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Figure 3-11. Spectra for a periodic pulse-train signal.

e.xponential Fourier series, and using superposition, we may express the steady-state output of a fixed,
lingar system as

y(©) = X X, H(nwy)e (3-71)

If H(w) is represented in polar form as
H(w) = A(w)e’® (3-72)

where A(w) L.s called the amplitude response and 6(w) is called the phase response of the system, it was
also shown in Chapter 2 that for a sinusoidal input of the form cos w,t the steady-state output is
A(wy) cos[ayt + 0 (wy)] (see Example 2-16 for a specific case). For any periodic input, it follows from
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(3-67) and the superposition property of a fixed, linear system that its steady-state output can be ex-
pressed as

(b = X,H(O) + 22|X,,]A(nmﬂ) cosfrnant + /X, + B(nwy)] (3-73)

The same result could have been obtained by expressing the series in (3-71) as a sum of cosinusoids,
using the same steps as were used in deriving (3-67). In so doing, it would have been necessary to in-
voke the following symmetry properties for A(w) and &w) for h(f) real:

A(w) = A(—w)
Hw) = —H—w) (3-74)

That these relationships hold can be shown from the defining expression (3-70) by substituting
e~fef = cos wt — j sin wt, writing the integral as the sum of two integrals, and noting that the first inte-
gral is the real part of H(w) and that the second integral is its imaginary part. By replacing w by —w in
these integrals, it is clear that H(w) = H*(—w), which is similar to (3-47). The symmetry properties
given by (3-74) then follow by expressing H(w) in polar form. ]

EXAMPLE 3-10

The application of (3-71) can be illustrated by finding the output of the RC lowpass filter of Chap-
ter 2 (see Example 2-16) to an odd square wave of unit amplitude. Recall Example 3-7 for finding
the complex exponential Fourier coefficients of an odd square wave, and recall (2-102) where the
transfer function of the RC lowpass filter was'given as

1

1+ jwRC Q-13)

H(jw) =
This is substituted into (3-71) along with the Fourier coefficients of the odd square wave to obtain

itis given below. Note that matrix computation is used throughout (with the exception of the for loop
to run the different cases for the number of terms in the Fourier series) to keep the program as effi-
cient as possible.

% Plots for Example 3-10
E
RC=input('Enter RC time constant of filter (square wave period=1)"'):
n_max=input('Enter vector of highest harmonic values desired (odd)'):
. N=length(n_max}:
t=0:.005:1;
omega_0=2*pi;
for k=1:N % Loop for various numbers of highest
% harmonics
n=[-n_max(k):2:n_max(k)];
L_n=length(n);
nn=2:L_n/2+1;

sgn=(-1)."nn;: % This will make the 1,5, .. . terms + and
% the 3,7, ... terms -
% Fourier coefficients for odd square wave; for even square wave,

% leave exp() off
X.n=(2./{pi*abs(n))).*[fliplr(sgn)sgn].*exp(-j*0.5*pi*n);

the Fourier series expression for steadystate output of the filter. A MATLAB program for computing
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% Input to filter
x=X_n*exp(j*omega_0*n"*t); % Rows of exponential matrix are
% versus time;
% columns are versus n; matrix
% multiply sums over n
o Fourier coefficients of output
Y n=X_n.*(1./(1+j*n*omega_0*RC));
y=Y_n*exp(j*omega_0*n'*t); % The output
% Plot real part of y to get rid of small imaginary part due to
o computational error
subplot(N,1,k).plot(t,real(y),xlabel('t"'), ,ylabel('approx.
output'), . . .
axis([0 1 -1.5 1.5]). text(.1.+.25,['max.har.=',num2str(n_max(k})])
if k=1 '
title(['Filter output for RC = ' num2str(RC),' seconds'])
end
end

To run the program, the following is entered in the command window, where two prompts are
printed in this case—one for RC time constant of the filter and one for the maximum harmonic used
in the Fourier series. A plot of the output of the program is shown in Figure 3-11. The plot is most
inaccurate at the discontinuity in slope where the square wave input switches sign.

EDU»c3ex10
Enter RC time constant of filter (square wave period=1).2
Enter vector of highest harmonic values desired (odd) [7 15 27]

—}— The input and output spectra of the RC filter for the previous example will reveal information

on why the output time signals look as they do. The MATLAB program below provides plots for the
these spectra for the two RC values used to plot Figure 3-12. Note that since we haven’t plotted the
phase spectrum, the spectral plots will be the same for both the even and odd square wave cases. Fig-
ure 3-13 shows the input and output spectra. Since the output spectrum is the product of the input
spectrum and the transfer function (magnitude) at each frequency, the plot clearly shows how the fil-
ter affects the output spectra.

% Plots for Example 3-11
%
RC=input('Enter vector of RC time constant of filter (sg. wave
period=1)"');
n_max=input ('Enter highest harmonic value desired (odd)'):
N_RC=length(RC):
omega_0=2"pi;
f0=1:
for k=1:N_RC
n=[-n_max:2:n_max] ;
f=[-n_max*f0:.02:n_max*f0]:
E=1./(1+j*2*pi*f*RC(k));
L_n=length(n}:
nn=2:L_n/2+1;




130 Ch3 / The Fourier Series 3-8 / Steady-State Response of a Fixed, Linear System to a Periodic Input; Distortionless Systems 131

Filter output for RC = 0.2 seconds Input spectrum

| ; . 1 T T T T T T T T
2 1f = L
-
5] 2
x 0 0.5 A
o o
5 (1]
i S S S SR 5 o 0 9§ 19900
. : . 0.8 0.9 1 ohra @ @ Q 9, 1 1 Q@ @O O Q10
o oi b2 o3 ‘64 05 08 OF 20 15 10 5 0 5 10 15 20
- T n*f0
¥ ; ‘ : ' ; ‘ — Output spectrum for RC = 0.2 seconds
5 1 T T T T ™ T T T T
O. 0 "l'l
8 [
g-1 0.5 e

i
o
i
i
gl
i
|
|
il
|
|
|
)l
\
3\
!
© M
Y
—e
—
~
Vi
E).-"
/
31’
i
)i
I

e 4 20 15 10 5 0 5 y o Sl 20 8

2 ' n*fo »

= Output spectrum for RC = 0.05 seconds =

g 1 T T T /’I‘\ T T = T l-:l:-l
F

g1 & g o>

0] 0.1 0.2 0.3 04 05 0.6 0.7 0.8 _ e e =

t 0.5 /’/ “x‘__“‘ ("_3

(a) RC =0.2 i P el =

e T o) T e s g Ll

P . o W W B 1 B @ ? L 1l @ 9 1o g @ o ol L _-3:.

15 10 5 0 5 10 15 20 =

n*f0 2

approx. output

5 ! T T T T : ; B sgn=(-1)."nn; ’
% 1r Fourier coefficients for square wave;
2 5 K X_n=(2./(pi*abs(n))).*[fliplr(sgn) sgn]:
) " max. har. =15 = Fourier coefficients of output
B =E ! 1 | 1 L L 1 : : ¥ n=X_n.*(1./(1+j*n*omega_0*RG(k))}):
S 0 0.1 0.2 0.3 0.4 0.5 0.8 &7 g4 o " Plot magnitude U‘; X n aid Y_n
t if k==1

-g 4 T T T T T T ' ) | subplot{N_RC+1,1,1),stem(n*f0,abs(X_n)), xlabel('n*f0')},
5 I~ ylabel('magnitude'), . . .
: Q0 B a2 5 title('Input spectrum'),axis(-n_max*f0 n_max*f0 01])
cel 1K : e | = end

| L 1 1 L . 8 ] c+1,1.k+1),s8te » ) E 'n* L
8 ¢ 0.1 02 03 04 05 0.6 0.7 0.8 09 t yﬁgli?ﬁimtu;e%)%). S : m(n*f0.abs(¥_n)),xlabel('n*£0"')
(b) RC = 0.5 title(['Output spectrum for RC= ', num2str(RC(k)),' seconds']),

axis([-n_max*f0 n_max*f0 0 1]), hold omn
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The entries into the command window look as follows:
EDU»c3exll

Enter vector of RC time constant of filter (sq. wave period=1)[.2 .05]
Enter highest harmonic value desired (odd) 21

If a fixed, linear system is to have no effect on the input except, possibly, for an amplitude scaling
and delay which are the same for all input-frequency components, the system is called distortionless.
For a distortionless system with periodic input of the form (3-67), the steady-state output is of the form

0 = K, + 3, 2 cosoantt = 7 + )|
= Kx(t — ) (3-76)
where K is the scaling f.actor and 7, is the delay, From (3-73) it follows that
. Alnwy) = K and Knwy) = — Ty,
or
Alwy=K and Hw)=-—7e (3-77)

respectively. That is, the amplitude response of a qismrtionless system is the same, or constant, for all
frequency components of the input and the phase response is a linear function of frequency. In other
words, the frequency response function of a distortionless system is of the form

Hyw) = K exp(—j7w) (3-78)

In general, three major types of distortion can b introduced by a system. First, if a system is linear
but its amplitude response is not constant with frequency, the system introduces amplitude distortion.
Second, if a system is linear but its phase shift is not a linear function of frequency, it introduces phase,
or delay, distortion. Third, if the system is not linear, nonlinear distortion results. These three types of
distortion may occur in combinatioh with each other.

EXAMPLE 3-12

To illustrate the ideas of amplitude and phase distortion, consider a system with amplitude response
and phase response as shown in Figure 3-14f and the following three inputs:

1. x/(t) = 2 cos 107t + sin 127t
2. x,(f) = 2 cos 107t + sin 26777
3. x3(f) = 2 cos 267t + sin 34t

Although this system has idealized frequency response characteristics, it can be used to illustrate
various combinations of amplitude and phase distortion. Using (3-73), we find the outputs for the
given inputs to be:

tThe filter amplitude- and phase-response functions used here are not realizable, but are employed only to easily illustrate
amplitude and phase distortion.
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FIGURE 3-14. Amplitude response and phase response of the filter for Example 3-12.

1. y,() = 4 cos(10mt — 7/6) + 2 sin(127t — 7/5)
= 4 cos 107(t — 1/60) + 2 sin 127t = 1/60)
2. y,(t) = 4 cos(10mt — 7/6) + sin(267 — 137/30)
= 4 cos 107t — 1/60) + sin 26t — 1/60)
3. y,(t) = 2 cos(26mt — 137/30) + sin(34mt — 7/2)
= 2 cos 267t — 1/60) + sin 347(t — 1/68)

Comparison with (3-76) shows that only the input x,(7) is passed without distortion by the system.
The system imposes amplitude distortion on x,(¢) and phase (delay) distortion on x,(1).

EXERCISE
A second-order low-pass Butterworth filter is one having frequency-response function

o}

Hp)=—"—""—F" 3-79
ol — & + V2w i
where w, is a filter parameter.
(a) Show that its amplitude- and phase-response functions are
w\41-172
s =[1+(2)] can
and
—tan™! \/_27(‘&/%) , w< o
_ 1 - o/ ‘
Hlw) = 8 (3-81)
—ar + tan™! 7\/2 (/) w>
o/l — 1" ¢

respectively, where the value of the arctangent function is taken as its principal value,

‘(b) If w, = 6007 rad/s above and w, = 2007 rad/s in (3-25), obtain the attenuations and phase
shifts introduced by the filter in the first three terms of the Fourier series of a square-wave input to
the filter. (Answer: attenuations: 0.994, 0.707, 0.339; phase shifts: —27.9°, —90°, —127°.)
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(c) Write out the first three nonzero terms of the Fourier series of the output and compare with the
input by plotting.

Answer: ¥(t) = 4/7{0.994sin(200m — 27.9%) + 0.236 sin(6007rt — 90°) + 0.068 sin(10007z - 127°)].

3-9 Rate of Convergence of Fourier Spectra

It is handy to be able to predict how rapidly the amplitude spectral lines of a periodic signal approach
zero as frequency (or harmonic order) increases. We may determine this from the complex exponential
Fourier series expression (3-28) and the formula for finding the Fourier coefficients (3-31). Consider a
periodic signal x(f) that has a kth derivative which is piecewise continuous (i.e., is has finite jumps pre-
sent, but it otherwise continuous). Thus its (k + 1)st derivative contains impulses wherever the kth de-
rivative has jumps. Now, by differentiating the exponential Fourier series (3-28) k + 1 times, we obtain

d* (e 2 . .
W - 2 (jnopyiXers (3-82)
Therefore the Fourier coefficients of the (k + 1)st derivative of x(t) are the Fourier coefficients of x(f),

multiplied by (jnwy)ftt.

Now consider the computation of the Fourier coefficients of the (k + 1)st derivative of x(r). When
the expression for the (k + 1)st derivative of x(r) is substituted into (3-31), we may evaluate the impulse
terms immediately by using the sifting property of the unit impulse function. These terms will give con-
stants in the expression for the Fourier coefficients for'the (k + 1)st derivative of x(r). This means that,
given our observation in relation to (3-82), the Fourier coefficients for x(¢) will have terms proportional
to (jnwy)~*+D, since we divide the expression for the Fourier coefficients for the (k + 1)st derivative
of x(f), which have constant components, by (jrw,}*! to get X

We conclude, therefore, that a periodic signal x(f) that has a kth derivative which is piecewise con-
tinuous has Fourier coefficients that decrease with frequency as (nwg)~%*"1. As an example, a square
wave is piecewise continuous (zeroth derivative), so its first derivative contains impulses. Therefore, the
Fourier coefficients of a square wave decrease inversely with increasing frequency, or order of harmonic.

This is a very useful result for design of waveforms. If we want a signal that has its spectral content
concentrated about zero frequency, we think.of those waveforms that have many continuous deriva-
tives. An example of a fairly simple waveform of this nature is given in the next example.

EXAMPLE 3-13

Consider a periodic waveform consisting of raised cosine pulses, defined by the equationsand

1 1
= (1 + cos2mt), =
xp(r) =12 2

0, otherwise
and

o

= 3 %6~ 20) (3-83)
n=—m
The following MATLAB program (note that a function program is used to keep it compact) plots three
pulses of this waveform and three of its derivatives. These plots are shown in Figure 3-15. Its third
derivative contains impulses. Therefore, its amplitude spectrum approaches zero as (nawy) ™.
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FIGURE 3-15. Plots of a raised cosine periodic waveform and its first three derivatives.

EDU»3exl3 e
% Example 3-13 plots %
% !

t=-3:.001:3;

[x1,x1_dot.xl ddot,x1_dddet]=rsd_cos(t+2):

[x2.x2_dot.x2_ddot,x2_dddot]=rsd_cos{(t):

[x3,x3_dot,x3_ddot,x3 dddot]=rsd_cos(t-2);

x=x1+x2+x3;

% _dot=x1_dot+x2_dott+tx3_dot;

x_ddot=x1_ddot+x2_ ddot+x3_ddot:

x_dddot=x1_dddot+x2_dddot+x3_dddot:

subplot(é.l.l).plot(t.x}.xlabel{'t'}.ylabel('x‘]

subplot(ﬁ.l,E).plot(t.x_dot).xlabel['t'}.ylabel{’x_dct')

subplot(é,l.j),plot{t.x_ddot}.xlabel['t'].ylabel{‘x_ddloc')

subplot(4,1,4),plot(t,x dddot).axis([-3 3 -150 L50] )y « = »
xlabel('t'),ylabel('x_dddot')

% Function to compute raised cosine and derivatives |
9 i
function [x,x_dot,x_ddot,x _dddot]=rsd cos(t)
x_cos=.5*(1+cos(2*pi*t)):

x=x_cos, *ple_fn(t);
x_dot=-pi*sin{2*pi*t).*pls_fn(t):
x_ddot=-2*pi*2*cos(2*pi*t).*pls_fnlt):




{
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x_dddot=4*pi*3*sin(2*pi*t).*pls_£fn(t)+ . ..
2*pit2*(impls fn(t+5,.01)-impls_fn(t-5,.01));

% Function to compute square pulse

k)

Function y=pls_fn(t)

y=stp_fn(t+0.5) -stp_fn(t-0.5-eps)

3-10 Fourier Series and Signal Spaces

It is often useful to visualize signals as analogous to vectors in a generalized vector space. The Fourier

series and the Fourier transform that we have just studied are tools for resolving power and energy sig--

nals, respectively, into such generalized vector spaces. We briefly consider this approach to Fourier rep-
resentations, referred to as generalized Fourier series.

We begin our consideration of generalized Fourier series with a review of some concepts about or-
dinary vectors in three-dimensional space. We were probably first introduced to vectors as physical
quantities whose specification involves both magnitude and direction and that obey the parallelogram
law of addition. Later, we were perhaps shown that it was convenient to represent a vector, A, in a Car-
tesian coordinate system in terms of a mutually perpendicular triad of unit vectors i, ], and k along the
x-, y-, and z-axes, respectively, as

A=Af+Aj+Ak
The components A, A, and A, can be expressed as
A=Ad, A=4-F A=Ak
where the dot denotes the dot product of two vectors, which is the product of their magnitudes and the
cosine of the angle between them. Since i i, _|, and k are unit- length, mutually perpendicular vectors, the
xyz components of A are easily obtained by simply projecting A onto the x-, y-, and z-axes, respectively.

We now consider representation of a finite-energy signal, x(f), defined on a T-second interval (1,
ty + T) in terms of a set of preselected time functions, ¢,(1}, ..., ¢,(0). Itis convenient to choose these
functions with properties analogous to i, j, and k of three-dimensional vector space. The mutually per-

pendicular property, referred to as arrhogonahry is expressed as
W+ T

j .0 b3(0) di =

where the conjugate suggests that comp]axwalued ¢,(£)'s may be convenient in some cases. We further
assume that the ¢,(¢)’s have been chosen such that

n+T
[ ledopa=
)
In view of (3-86), the ¢ (#)'s are said to be normalized. This assumption is invoked to simplify future
equations.
We now attempt to approximate x(¢) as best we can by a series of the form

y(O) =, d,¢,(0)

n=1
where the d,’s are constants to be chosen such that y(r) represents x(t) as closely as possible according
to some criterion. It is convenient to measure the error in the integral-square sense, which is defined as

(3-84)

m¥#n (3-85)

(3-86)

(3-87)

T
integral-square error = €y = J lx(®) = y(e)P at

0

(3-88)
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Wewish to findd,, d,, . . .,
into (3-88), we obtain

d,, such that €y as expressed by (3-88) is a minimum. Substituting (3-87)

N N
€y = L [I(f) I 2 d,.dl,,(f)} {x*(!) - 2 d*¢x(1) (3-89)
where
4+ T

L(-) dr A J; () dr

This can be expanded to yield

= f ()] dt — 2 [d* [ MO0 di + d, j *(0),(1) dt] 2 ldf  (3-90)
T n=1 =1
which was obtained by making use of (3-85) and (3-86) after interchanging the orders of summation
and integration.

It is convenient to add and subtract the quantity

N 2'
> || x0erw a (3-91)
=1 T
to (3-90) which, after rearrangement of terms, yields
2
f (o) dt - E f (O di| + E . J ()2 (t) drl (3-92)
n=1 n=1 T

To show the equivalence of (3-92) and (3-90), it is easiest to work backward from (3-92).

Now the first two terms on the right-hand side of (3-92) are independent of the coefficients d,,. The
last summation of terms on the right-hand side is nonnegative and is added to the first two terms. There-
fore, to minimize €, through choice of the d,’s, the best we can do is make each term of the last sum
zero. That is, we choose the ath coefficient, d,, such that

3 Copy

T
! d, = f x(O)é*(d, n=12... N (3-93)

1
This choice for d|, d,, . . ., dy minimizes the integral-square error, €y. The resulting coefficients are
called the generalized Fourier coefficients.
The minimum value for € is

W+ T N
ewan = [ O d = 3 |, (3-94)
i n=1

It is natural to inquire as to the possibility of €y ., being zero. For special choices of the set of func-
tions ¢, (1), (1), . . . , dpl1), referred to as complete sets in the space of all integrable-square functions,
it will be true that

{rlin €vmin =0 (3-95)
for any signal that is square integrable, that is, for any signal for which
t+T
f e(0)|? dt < o= (3-96)
Iy

1

A
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In the sense that the integral-square error is zero, we may then write

x(0) = 2 d,$,(0) (3-97)
n=1
For a complete set of orthogonal functions, ¢,(1), $,(f), . . . , we obtain from (3-94) that
pu-i—T w
[ kopa=3ap (398)
&y n=1

This is a generalized version of Parseval’s theorem.

EXAMPLE 3-14

Given the set of functions shown in Figure 3-16. (a) Show that this is an orthogonal set and that
each member of the set is normalized. (b) If x(t) = cos 2at, 0 = ¢ = 1, find y(#) as expressed by
(3-87) such that the integral-square error is minimized. (¢) Same question as in part (b) but x(r) =
sin2mt, 0=t= 1.

Solution: :

(a) Itisclearthateach function is normalized according to (3-86). To show orthogonality, we calculate

1 0.5 1
[ e0ewde= @+ [ nd=0 (3-99)
(1] g . 0.5

Similarly, it can be shown that [} &, (£)¢;(t) dt = 0 and [§ ¢,()s(r) dt = 0.
(b) The generalized Fourier coefficients are found according to (3-93). The coefficients are

1
d, = J (1) cos 2wt dt
(i}
_ sin2mt|!
2w |y
=0 (3-100)

0.5 : 1
dz:J (1) cos 2wt dt + | (—1) cos 2mt dt
0 0s

10 0s 1: 7]
=— [sin 2t — sin 27| J
2w 0 0.5
-0 (3-101)
025 ~0.75 1
d, = j (1) cos 2wt dt + J (—1)cos2mt dt + (1) cos 2t dt
) D 0.25 0.75
1 025 075 i 2
= — [sin 2t — sin 2t + sin 2| ] = — (3-102)
2 10 0.25 0.75 ko

Therefore,

y(t) = ;2; bs(2) (3-103)
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(1)
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|

FIGURE 3-16. Orthogonal set of functions for Example 3-11.

The minimum integral-square error is

1 3 2
&= f cos® 2mt dt — (3) 20 (g) (3-104)
o T 2 T

(c¢) In a similar manner to the calculations carried out for part (b), it follows that for x(t) = sin 27t

d =0

i (3-105)
w

d,=0

The minimum integral-square error is the same as for part (b). The student is advised to sketch y(f)
for each case and compare it with x(1).
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Note that the exponential Fourier series could have been derived as a generalized Fourier series with

o () =e n=0,%x1,... (3-106)
where the interval under consideration is (z,, £, + T;) and r
2 E
oy = 2nfy ==+ (3-107)
T[J

Thus, partial sums of exponential (and trigonometric) Fourier series minimize the integral-square
error between the series and the signal under consideration.

Summary

In this chapter we have considered the representation of periodic signals by trigonometric sums and by
rotating phasor sums whose terms have frequencies which are harmonically related. The former repre-
sentation is called the trigonometric Fourier series, and the latter is referred to as an exponential Fourier
series. Fourier series representations facilitate the plotting of spectra for periodic signals, which consist
of discrete lines spaced at integer multiplesof the fundamental frequency. Although we naturally think
of the Fourier series as being a useful representation for periodic signals, an aperiodic signal may be
represented by a Fourier series over a finite interval. We also returned to the idea of a frequency re-
sponse function of a fixed, linear system in this chapter which is a complex function of frequency. A
distortionless system has an output which is a scaled, delayed replica of the input signal; for such sys-
tems, the magnitude of the transfer function is a constant, and its argument is a linear function of fre-
quency. The following are the major points covered in this chapter:

1. A trigonometric Fourier series has the form

x(t) = ay + 2, a,cos nayt + >, b, sin nayt

n=1 n=1
where
ag = ij x(1) dt
0 Ty T,
2
a, = | x(t)cosnay dr, n+0
Ty Jg,
and

b, = % f x(1) sin nay dt
071,
where w, = 2m/T,, with T, being the period of the periodic signal or the interval of expansion if
the series is used to approximate an aperiodic function over a finite interval.

2. Atpoints of continuity of x, a Fourier series converges pointwise under fairly lenient restrictions.
Al points of jump discontinuity of x,, say at # = t;, a Fourier series converges to the average of
the left- and right-hand limits of x(f) at #,. ]

3. The Gibbs phenomenon of a Fourier series, to be treated more precisely in Chapter 4, refers to the
tendency of the partial sums of a Fourier series to overshoot a jump discontinuity of a signal, no mat-
ter how many terms are included in the series. This is illustrated by Example 3-4 for a square wave.

4. A complex exponential Fourier series has the form

5.
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=Y X
where
2 b
X, = f x(t)e e dy
T,

I
The coefficients for the trigonometric and exponential forms of the Fourier series are related by
X,=ay

L= %(a,. —jb), n>0

and
X,=Xa_,+jb_) n<o
or
‘ a,=2ReX, n>0 5 .
and

b,=—2ImX, >0

. The following symmetry properties hold for the Fourier coefficients of a real signal:

X, =X*
x| = [x_,|
Kn= Xy

If a signal is even, then
a. The X,’s are real.
b. All b,’s are zero.
On the other hand, if a signal is odd, then
a. The X ’s are imaginary.
b. All g,s are zero.
If a signal is half-wave (odd) symmetrical, i.e., x(f) = —x(t — T,/2), then all even-indexed co-
efficients are zero. If a signal has zero average value, then X, = a, = 0.

. Parseval’s theorem relates to the average power contained in a periodic signal and states that

l -
Po= [ WoPar= 3 |XP=X5+23 X
0T, n=-—m n=1
That is, the power can be found by averaging the square of the time-domain signal over a pe-
riod, or by summing the powers in its rotating phasor components, or by summing the powers
in its sinusoidal components plus the power in the dc component.

. Line spectra for a signal are plotted from its Fourier series representation. The two-sided am-

plitude spectrum of a signal is obtained by plotting the magnitude of its complex exponential
Fourier series coefficients versus frequency. Its two-sided phase spectrum is obtained by plot-
ting the arguments of its complex exponential Fourier series coefficients versus frequency. The
single-sided amplitude spectrum is obtained by doubling each line in the double-sided ampli-
tude spectrum for f > 0 and leaving the line atf = 0 as it is. The single-sided phase spectrum is
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10.

11.

12.

13.

14.

15.

16.

obtained by keeping each line in the double-sided amplitude spectrum for f = 0 as it is. (Single-
sided line spectra are zero for f < 0, as their name implies.)

. The frequency response function of a system is given by the integral

H(w) = f " h(e ™ di

where h(r) is its impulse response.,
For any periodic input expressed in the form of a complex exponential Fourier series, the steady-
state output of a fixed, linear system may be expressed as

¥ = S X H(napyerss

n=—m

If H(w) is represented in polar form as
H(w) = A(w)eith)

where A(w) is called the amplitude response and ®w) is called the phase response of the sys-
tem, it follows that the steady-state output of a fixed, linear system can be expressed as

5 .

Y(0) = XH(0) + X 2|X,|A(nwy) cos[nayt + 6, + K(nwy)]

n=|

For A(r) real,
Alw) = A(—w)
and
Hw) = — 6~ w)
A fixed, linear system that has no effect on its input except, possibly, for an amplitude scaling

and delay which are the same for all input-frequency components is called distortionless. Such
a system is defined by the input-output relationship y(£) = Kx(t — 7). where X is the amplitude
scaling factor and 7, is the delay. Its amplitude and phase responses are given by

Alw) =K and Hw) = —nyw

Fixed, linear systems with nonconstant amplitude responses are said to introduce amplitude dis-
tortion into the input signal. Systems with phase responses that are not linear with frequency are
said to introduce phase distortion.

If the kth derivative of a waveform is piecewise continuous such that its (k + 1)stderivative con-
tains impulses, its Fourier spectrum decreases with frequency as the inverse (k + 1)st power.
An alternative way to develop the Fourier expansion of a signal is as a special case of its mini-
mum integral-squared-error expansion over an interval of interest using a complete orthonormal
set of functions over the interval. Such a development shows that when a Fourier series is trun-
cated at any finite number of terms, the best representation of the signal of any equivalent length
series is obtained in terms of minimum integral-squared error,

Further Reading

Fourier series and the Fourier transform are introduced in almost all beginning circuits texts, but their use as sys-
tems analysis tools are not fully exploited until the student becomes involved in more systems-oriented courses,

Sl e

i s = 5 e 1% R

1

3-4.

3-5.
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such as communications and signal processing. Nevertheless, rather than cite references in these specialized areas,
we give two that deal with these topics from a more mathematical viewpoint.

E. Krevszia, Advanced Engineering Mathematics, 6th ed. New York: Wiley, 1988 (Chapter 10).

A. ParouLis, Signal Analysis. New York: McGraw-Hill, 1977 (Chapter 3).

An older reference that provides a very readable treatment of Fourier analysis is long out of print. However, it is
well worth exposure to if the student can obtain a copy. It is

E. A. GUILLEMIN, The Mathematics of Circuit Analysis. New York: Wiley, 1949 (Chapter 10).

Problems
Section 3-2
3-1.

Plot the first through third partial sums of the series
4
x(f) = — (cos @yt — 3 cos 3wyt + 3 cos Swyt — -+ -)

Comment on its similarity to a square wave. Is it even or odd? Why is this series an alternating
series, whereas the series of Example 3-1 was not? (Hint: In calculating the data for making the
plot, note that symmetry can be used to save work.)

Section 3-3
3-2. Prove the relationships (3-12) and (3-13), and show all steps in deriving (3-16).

3-3. The uniqueness of the Fourier series means that if we can somehow find the Fourier series of a

waveform, we are assured that there is no other waveform with that Fourier series, except for
waveforms differing from the waveform under consideration only over an inconsequential set of
values of the independent variable (this is referred to in mathematics as a set of measure zero).
With this assistance, find the following trigonometric Fourier series of the signals without doing
any integration:

(a) x,() = cos(100m);

(b) x,(1) = exp(j200mm); i

(€) x;(t) = sin(271) cos¥(10m);

(d) x,(r) = cos3(20m1) [1 — sin?(1071)]

Obtain the trigonometric Fourier series of the square wave

A’ _“{I{E
4 4
x(t) = 2
0 Iy Ty Tq
= —_— = — — = —
A, ) t= 4 and 4 £_2

with x(#) = x(¢ + T,), all &. Why is it composed of only cosine terms?

(a) In Example 3-3, the violin string was viewed as one full period of a triagular waveform. Find
the Fourier series representation if it is viewed as one-half of a period.

(b) In Figure 3-6, it is seen that the two points of maximum error occur at the ends of the string.
With the representation found in part (a), what is the error at the ends of the string now?
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Sections 3-4 to 3-6

. 3-6. Obtain the results for the exponential Fourier series examples given in Table 3-1 with the excep-

)
)

]

\

: 3-10. Obtain the exponential Fourier series of the sawtooth waveform defined by

3-7. Suppose that differentiation of the periodic signal x(1) results in a signal that has a Fourier series.

3-8. (a) Use Parseval’s theorem expressed by (3-55a) and (3-55b) to find P,, for

3-9. Consider the periodic pulse-train signal of Example 3-5. Find the ratio of the power in frequency

3-11. The complex exponential Fourier series of a signal over an interval 0 <t < Ty is

tion of number 3, which was worked in Example 3-3.

(a) Integrate by parts the expression
dx .
X, = -l-j & pinas gy
dt

to show that
X, = (jnog)X,

That is, the Fourier series coefficients of the signal dx/dt are related to the Fourier series co-

efficients of x(f) through multiplication by jrw;.
(b) From Table 3-1, waveform 5, obtain the Fourier series coefficients of an odd-symmetry

square wave.

x(£) = 2 sin?(25007) cos(2 X 10%m)

(b} If x(t) is a signal that is transmitted through a telephone system which blocks dc and fre-
quencies above 12 kHz, compute the ratio of received to transmitted power.

components for which |nﬁ)] = 7! to total power if:

(@) Tyr=2
(b) Tyr=4
(©) Tyr=10

Ty T,
= A, —2=t<2
x(t) = At, > t 2

x(t) = x(t + Ty), allt

x®)= 3

n=-—ee

IGmif2)
1+ jmm

(a) Determine the numerical value of T},

(b) What is the average value of x() over the interval (0, T;))?
(¢) Determine the amplitude of the third-harmonic component.
(d) Determine the phase of the third-harmonic component.

(e) Write down an expression for the third harmonic term in the Fourier series in terms of a

cosine.

3-13.

3-14.

3-15.

3-16.

3-18.
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3-12. Represent the signal

() =e W

over the interval (— 1, 1) using:

(a) The exponential Fourier series

(b) The trigonometric Fourier series

(e) Sketch the function to which either Fourier series converges

Obtain complex exponential Fourier series expansions for the following signals without doing
any integration. Give the fundamental frequency for each case.

(a) x,(r) = cos? 20t sin 107t

(b) x,(t) = sin® 307t + 2 cos 25t

(€) x(¢) = sin? 407t cos? 207t + sin 107t cos St

(Hint: Use trigonometric identities and Euler’s theorem.)

Given that the complex exponential Fourier series coefficients of a signal x(1) are . . ., X_,, X;,
X . Find the Fourier series coefficients of ¥(t) in terms of those for x(¢) if the two smgnals are
relatad by:

(a) y(r) = x(t — 7), where 7is a constant;

(b) y(n) = exp(j2mfyt)x(r), where f, is a constant.

(a) Prove the relationships (3-32a) and (3-32b), which relate the coefficients of the exponential
Fourier series to the trigonometric Fourier series.

(b) Show that the trigonometric Fourier series of a real, even signal consists only of cosine terms,
and that of an odd signal consists only of sine terms.

Show the following symmetry properties for the complex exponential Fourier coefficients:

(a) X, is real and an even function of n if x(¢) is real and even.

(b) X, is imaginary and odd if x(¢) is real and odd.

(c) X, = 0forevennifx(r) = —x(t = Ty2) (i.e., has odd half-wave symmetry).

(Hint: (1) One way to do this is to write down the Fourier series for x(z). Substitute ¢ + T2 fort
to obtain a series for x(t + T/2). What must be true of the coefficients in order for this new series
to equal the original series for x(£)? (2) A second way to prove X, = 0, neven, is to write down the
mtegral for X, and break the integral into one from —7/2 to 0 and 0 to Ty/2. Change variables in
the one from —T7;/2 to 0 to make its limits 0 to Ty/2. Use the fact that x(t — T,/2) = —x(z ) in the
integrand. Consider n even and n odd separately.

. Consider the waveforms in Figure P3-17 and their complex exponential Fourier series. For which

ones are the following true: real coefficients; purely imaginary coefficients; even-indexed coef-
ficients zero; X, = 07
If true, check the appropriate box in the table.

Given the periodic waveform shown in Figure P3-18.

(a) What is the value of aj in the sine-cosine Fourier series? Why?

(b) What are the values of the b,, coefficients in the sine-cosine Fourier series? Why?

(c) Are the coefficients in the complex exponential Fourier series real, imaginary, or com-
plex? Why?

(d) Does this waveform have half-wave odd symmetry?
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FIGURE P3-17

Property

Waveform

a b c

d e

Purely real coefficients

Purely imaginary coefficients

Complex coefficients

Even-indexed coefficients zero

X, =0
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x(t)
A
_T Ty Ty
1 4 ]

- : : + ; : —t

0 To

L
FIGURE P3-18

3-19. The phenomenon of “beats” when two slightly out of tune band instruments play the same nomi-
nal note at the same time may be seen by considering the signal

x(1) = cos(wyf) + cosf[(w, + Aw)t]
Use trigonometric identies to rewrite this in the form
x(t) = A(f)cos[wyt + 8(2)]

That is, find explicit expressions for A(7) and 6(1) in terms of Aw. Plot the waveform for the case
of w27 = 1000 hertz and Aw/27r = 5 hertz. Discuss how this would sound to the ear.

Section 3-7

3-20. Plot the two-sided amplitude and phase spectra for the full-wave rectified sinewave (waveforti
2 of Table 3-1). Convert the two-sided plots to single-sided plots.

3-21. Plot and compare amplitude spectra for the triangular and square waves (waveforms 4 and 5 of
Table 3-1). Which requires the most bandwidth for a given fidelity of reproduction?

3-22. Plot and label accurately Figure 3-11 for specific values of T and 7}, as follows:
(@) 7=2ms; T, =8 ms
(b) 7= 1ms; T, = 8 ms
(€) 7=2ms; T, = 16ms .

Section 3-8
3-23. Show all the steps in the derivation of (3-73).

3-24. For the RL filter shown in Figure P3-24, obtain the steady-state output to a triangular waveform
with zero average value if R/L = ay, where w, is the fundamental frequency of the waveform in

rad/s.

L
T ——— °
+ +
x(1) R i)
o L

FIGURE P3.24

g p—
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3-25. If the input to a system is cos 107t + 2 cos 207, tell what kinds of distortion, if any, a system
introduces if its output is:
(a) cos(l0at — 7/4) + 5 cos(20mt — m/2)
(b) cos(10at — w/4) + 2 cos(20mt — 7/4)
(c) cos(10mt — 7/4) + 2 cos(20mt — mw/2)
(d) 2 cos(10mt — w/d) + 4 (207t — 7/8)

3-26. A function generator generates approximations of the following types of waveforms: (1) square
wave; (2) triangular wave; (3) sine wave.
The square wave is generated by a multivibrator circuit that has an asymmetry in switching
between positive and negative values so that the waveform is actually given by

e { A, =T, 4+ €2
M=1_a, Tja+e2<f=Ty2

The triangular waveform is generated by integrating the square wave with an operational ampli-
fier integrator as described in Example 1-2.
The sine wave is obtained by filtering the square wave with a second-order filter with trans-

fer function
1
1+ jOlw/w, — wy/w]

where w, = 27/T; and Q is a parameter called the filter quality factor.

(a) Sketch the actual and ideal square-wave output. Determine the integral-square error between
actual and ideal outputs for the square-wave mode. Divide the integral-square error by T; to
determine the mean-square error. Plot it as a function of &/T; for A = 1.

(b) Obtain and sketch the triangular-mode output for an integrator constant RC = 1. Other than
being inverted due to the operational amplifier circuit, how might one characterize its error
from the ideal case? i

(¢) For the sine-wave mode, define the percent harmonic distortion for the nth harmonic as

H(w) =

AHC), = Franar ¢ 109
Pring

(i) Find (HC),in terms of e and Q. If &T, = 0.05, what must Q be to make (HC), = 0.1%?
(if) Find (HC), in terms of e and Q. What must Q be to make (HC); = 0.05%? (&/T, = 0.05)
(ifi) Which is the most stringent condition, the one for (HC), or the one for (HC);?

Section 3-9

3-27. Give the rate of convergence of the amplitude spectrum for the signals shown in Problem 3-17(c)
and (d) to zero as frequency increases. Justify your answer.

3-28. Give the rate of convergence of the amplitude spectrum for a half-rectified sine wave to zero as
frequency increases. Justify your answer.

Section 3-10
3-29. Show that (3-92) and (3-90) are equivalent.

Computer Exercises 149
3-30. Given the set of functions
:". . filth=Ae~ ]
() = A

defined on the interval (0, ).

(a) Find A, such that f,(¢) is normalized to unity on (0, ). Call this function ¢,(1).

(b) Find B such that ¢,(r) and f;(r) — B ¢,(r) are orthogonal on (0, ). Normalize this new func-
tion and call it ¢,(z).

(e) Do this for the third function, e~3. That is, choose C and D such that f; — C¢p, — Dé, is or-
thogonal to both ¢,(f) and ¢,(r). Normalize it and call it ¢b,(r). Comment on the feasibility of
continuing this procedure.

3-31. What is the integral-square error in representing a square wave with zero average value by:
(a) Its fundamental
(b) Its fundamental plus third harmonic

Computer Exercises

3-1. Using the MATLAB application of Example 3-6 as a model, write a program to compute and plot
the partial sums of each waveform given in Table 3-1. You might consider using MATLAB func-
tion programs to keep your program well organized.

3-2. Consider the use of a half-wave rectifier followed by an RC lowpass filter to implement a direct

current (dc) power supply as shown in the following figure. Write a program to display the output

waveform from the RC lowpass filter with a half-wave rectified sine wave at its input. Assume an
operational amplifier isolation stage between rectifier and lowpass filter so that you can ignore
loading of the rectifier by the filter.

x(1)

FIGURE P3-01

3-3. Rework Computer Exercise 3-2 for a full-wave rectified sine wave at the input.

3-4. Write a simulink program to rework Computer Exercise 3-3 without the isolation amplifier be-
b tween the diode and the RC lowpass filter. Assume an ideal diode with zero forward resistance and
infinite back resistance.

3-5. Rework Examples 3-10 and 3-11 for a triangular waveform at the RC lowpass filter input. Com-
ment on the comparison of your results with those of Examples 3-10 and 3-11.




CHAPTER

The Fourier Transform
and Its Applications

4-1 Introduction

The Fourier integral may be viewed as a limiting form of the Fourier series of a signal as the period
goes to infinity. Thus; it is useful for pulse-type signals in providing spectral characterization and a sys-
termn analysis {ool. Since it converges for a relatively restricted class of signals, it finds limitgd use in the
latter application. However, it also provides a bridge to a more general transform for system analysis,
namely, the Laplace transform, which we take up in the next chapter. In this chapter, we provide a de-
rivation of the Fourier transform and prove several theorems useful for deriving Fourier transform pairs,
Several applications of the Fourier transform are also illustrated.

4-2 The Fourier Integral

Figure 3-11 showed that the spectral components of a pulse train became closer together as the period
of the pulse train increased, while the shape of the spectrum remained unchanged if the pulse width
stayed constant. We now use the insight gained in that exercise to develop a spectral representation for
nonperiodic signals. Specifically, in the complex Fourier series sum and the integral for the coefficients
of the Fourier sertes, we let the frequency spacing f; = T approach zero and the index n approach in-
finity such that the product nf, approaches a continuous frequency variable f. Repeating the exponen-
tial form of the Fourier series below for convenience,

() = D X,elt™w . @-1)
1 r T2 "
X, == J X(t)e 1™ dy 4-2)
0 /-T2
we note that the limiting process f, = T — 0 evidently implies that X, — 0 provided that the integral

J x(£)e 7™ dt

-

= " ()| dt @3)

—

exists. Thus, before carrying out the limiting process, it is useful to write (4-1) and (4-2) in the forms

)= > ‘;f— 2™ A (nf)) (4-4)
nfy=—m JO
o 1/2fy
X(nf,) & Zn.- f x(£)e 12mh gt (4-5)
h -1/2f,
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respectively, where the symbol A(nf,) means the increment in the variable nfy which is f,. The limiting
process then formally becomes

T,— =
f,—0 and n—o suchthatnf,—>f

Tiu = A(nf,) — df

X L X0

which results in the sum in (4-4) becoming an integral over the continuous variable f, and the integral
in (4-5) extending over the entire f-axis, — <t < o, The resulting expressions are

X0 = [ " X(fre df (4-6)
and 4
X)) = F x(t)e~2 dt 47)

where the tilde has been dropped from X(f) to simplify notation.

These expressions define a Fourier transform pair for the signal x(r), and are sometimes denoted by
the notation x(f) <> X(f), where the double-headed arrow means that X(f) is obtained from x(r) by ap-
plying (4-7) and x(7) is obtained from X{(f) by applying (4-6). The integral (4-7) is referred to as the
Fourier transform of x(f), and is frequently denoted symbolically as X(f) = [x(r)]. Conversion back
to the time domain by means of (4-6) is referred to as the inverse Fourier transform and is often de-
noted symbolically as x() = F-1[X(H].t

Several symmetry properties of the Fourier transform may be shown by writing X(f) in terms of
magnitude and phase as

X(f) = |X(f)le™? (4-8)
For example, assuming that x(¢) is real, it can be shown that? :

lX(Hl = |X(-p| and  8(f) = —8(—) (4-9)

That is, the magnitude is an even function of frequency and the argument, or phase, is an odd func-
tion of frequency. Plots of |X( ﬂ| and 8(f) = /X(f) with f chosen as the abscissa are referred to as
the amplitude and phase spectra of x(¢), respectively.* Thus the amplitude spectrum of a real, Fourier-
transformable signal is even, and its phase spectrum is odd.

tSufficient conditions for the convergence of the Fourier transform integral are that (1) the integral of fix(r)| from —o to %
exists, and (2) any discontinuities in x{r) be finite. These being sufficient conditions means that signals exist which violate at least
one of them and yet have Fourier transforms. An example is (sin a)/at. For a discussion of other criteria that ensure convergence
of the Fourier transform integral, see Bracewell (1978).

Later, we will include functions that do not possess Fourier transforms in the ordinary sense by generalization to Fourier trans-
forms in the limit. Examples are the signals x(r) = constant, all ¢, and x(t) = 8(t), the former violating condition (1) and the lat-
ter, condition (2),

#For complex signals |X(f)| need not be even, and /) need not be odd.

*More properly, the amplitude spectrum should be referred to as the magnitude spectrum, but the former term is customary.
Note that |XU")T is an amplitude, or magnitude, density. Its units are volts (or whatever the dimensions of t(t) are) per hertz. This
differs from the Fourier coefficients, which have the same dimensions as the original signal, x(f).
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Further properties which can be derived for X(f) if x(z) is real is that the real part of X(f) is an even
function of frequency and the imaginary part of X(f) is an odd function of frequency.

The foregoing properties are proved by expanding exp(—;2ft) in (4-7) as cos 27t — j sin 2arft by
employing Euler’s theorem and writing X(f) as the sum of two integrals which are the real and imagi-
nary parts of X(f). Since the frequency dependence of the real part of X(f) is through cos 27rf, it is
therefore an even function of f. Similarly, since the frequency dependence of the imaginary part of X(f)
is through sin 277ft, we conclude that it is odd.

Further properties that can be proved (see Problem 4-4) about X(f) are:

L. If x(r) is even [i.e., x(f) = x(—1)), then X(f) is a real, even function of f.
2. If x(¢) is odd [i.e., x(1) = —x(—n)], then X(f) is an imaginary, odd function of .

To illustrate the computation of Fourier transforms as well as their symmetry properties discussed
above, we consider the following example.

EXAMPLE 4-1

The Fourier transform of x,(f) = [1(#/2), which is sketched in Figure 4-1a, is real and even. On the
other hand, the Fourier transform of x,(#) = I1(r + %} —II(r— %). which is the odd function sketched
in Figure 4-1b, is imaginary and odd. To prove these statements, we derive their Fourier transforms
in this example.

Since I1(#/2) = 1, —1 = ¢ = 1, and is zero otherwise, the Fourier transform of x,(t) is given by

sth=f

e 2 dr
-1
e-it
j2mf
g sin 2of
27f
= 2sinc 2f

-

1

-1

(4-10)

which is clearly a real, even function of f,
From the sketch of x,(1) shown in Figure 4°1 we may write the integral for its Fourier transform as
0

X,(f) = f e i dp — f

0

R

J

I 0

 j2nf
= E;—:;_(Z — 2 cos 2af)

|:e~i2wzﬁ — iR

b

nf
= j27fsinc? f
This is clearly an imaginary, odd function of f.

The amplitude and phase spectra of x () and x,(¢) are shown in Figure 4-2. The student should be
convinced that these are correct, particularly the phase spectrum for x,(f).

@i
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FIGURE 4-1. Even and odd pulse-type signals for illustration of the symmetry properties of Fourier
transforms.

4-3 Energy Spectral Density

The energy of a signal can be expressed in the frequency domain by proceeding as follows. By defini-
tion of the normalized energy for a signal, given by (1-75), we write '

EA J'm ()2 dt

o

" Lx*(:)[ f " X(f)elrm df] dt

—o

(4-12)

where x(f) has been written in terms of its Fourier transform. Reversal of the orders of integration re-
sults in

E= J: X(f) { E, x*(t)e/ 2 dr] df
= E X(f) U:., (e 2 d;]* df

- [ xtpxpar (@13)
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fiHz
/2

(b) Spectra for xy(t)
FIGURE 4-2. Amplitude and phase spectra for the signals of Example 4-1.

or

E= J " k(P dr = r IX(f)? df (4-14)

This is referred to as Parseval’s theorem for Fourier transforms.
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The units of [X( )|, assuming that x(¢) is a voltage, are (V-3)? or, since E represents energy on a per
ohm basis, (W-s)/Hz = J/Hz. Thus |X( /)P has the units of energy density with frequency, and we define
the energy spectral density, first referred to in connection with (1-87), of a signal as

G(f) & |X(H (4-15)

Integration of G(f) over all frequencies from —o to = yields the total (normalized) energy contained
in a signal. Similarly, integration of G(f) over a finite range of frequencies gives the energy contained
in the signal within the range of frequencies represented by the limits of integration.

EXAMPLE 4-2

The energy in the signal x(f) = exp(—anu(t), @ = 0, has been shown to be 1/2a in Example 1-10.
The Fourier transform of this signal is (Problem 4-1)

J;
Xi o e 4-16
D= vz (4-16)
and its energy spectral density is

G(f) = (4-17)

1
o’ + 2afy
The energy contained in this signal in the frequency range —B <f< Bis
E,= f Ty e
# g at+ Qufy
1 fmle gy

B (4-18)

where the fact that the integral is even has been used together with the substitution v = 27fla. The
student should plot Ej as a function of B and show that lim,_,., £, = 1/2a, in agreement with the re-
sult calculated in Example 1-10.

MarTLaB Application

Student MATLAB has the capability to manipulate quantities symbolically. The symbolic manipula-
tion capability is illustrated by the following program:

% chex? MATLAE application

]

x=sym('exp(-2*t)*Heaviside(t)') % Symbolically define signal

X=fourier (x) % Symbolically take the Fourier transform

Xf=gubs(X,'2*pi*f, 'w') % Change independent variable te f in
hertz

Xf_conj=subs(Xf,'-i','i'") % Conjugate Fourier transtform

GF=Xf*Xf_conj % Multiply the Fourier transform and its
conjugate

ezplot(Gf) % Use the ezplot routine to plet energy

spectrum
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The result of running the program (each line above could be run directly from the command win-
dow) produces

EDU»cbdex?

x=
exp(-2*t)*Heaviside(t)
X=

1/ (2+i*w)

Xf=

1/ (2+2*i*pi*f)
Xf_conj=
1/(2-2*i*pi*f)

Gf=

Wi o ool R 5 A Sl Al G PR et LR

The result of ezplot is shown in Figure 4-3.

1/(2+2%*pif)/(2-2*1*pi*f)

T T T T I T

0.25

0.2

0.15

0.1

0.05

FIGURE 4-3. Energy spectral density for decaying exponential signal.

T
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4-4 Fourier Transforms in the Limit

We now wish to add to our repertoire of Fourier transform pairs. In doing so, we will soon be faced with
transforms of signals that are not absolutely integrable, as expressed by (4-3), or which have infinite
discontinuities. An example of a signal that is not absolutely integrable is a sinusoid extending over all
time from f = — to ¢t = %, This signal we know has a discrete spectrum and yet cannot be Fourier-
transformed through direct application of the defining integral (4-7). An example of a signal that has
infinite discontinuities is the impulse function, which in the ordinary sense does not possess a Fourier
transform. Rather than exclude such signals, which we know to be useful models, we broaden the def-

-inition of the Fourier transform to include Fourier transforms in the limit.

To define the Fourier transform of cos wyt, —o < t < o, for example, we may first obtain the Fourier
transform of the signal exp( ~a|t|)_c05 wyt, e > 0, which is absolutely integrable.t The Fourier trans-
form of cos wyt then is defined as the limit of the Fourier transform of exp(— al]) coswyt as a — 0 since
lim,_,q exp(—a|r|) = 1, —= < ¢ < @, The Fourier transform of cos wyt will be given later.

As a second example of obtaining a Fourier transform in the limit, consider the approximation for
the unit impulse function 8,(f) = [1(#/2€)/2¢ discussed in Chapter 1. The Fourier transform of 8,(f) ex-
ists for each finite value of € and is, in fact, given by sinc 2¢f. In the limit as e — 0, 8,(¢) approaches a
unit impulse and its Fourier transform approaches 1 and is then defined to be the Fourier transform of
the unit impulse function.

As a final, somewhat more subtle, example of a Fourier transform in the limit, consider x(1) = A,
a constant. It should be clear that the Fourier integral in this case does not exist. (Write it down and
try to evaluate the limits after integration!) On the other hand, the Fourier transform of AIT(#/T) does
exist and is similar to X,(f) derived in Example 4-1. It is, in fact, F[AII(#/T)] = AT sinc fT. If we
now let T — o in order to obtain the Fourier transform of a constant, it is not clear what the limit of
AT sinc fT is. You should sketch this Fourier transform to show that it is a damped oscillatory func-
tion with a main lobe centered at f = 0 which becomes very narrow and high for T large. Furthermore,
JZ.. AT sinc T df = A for any T. Thus we formally write that F[A] = AS(f).

Easier ways of deriving these transforms will be shown after some basic transforms and theorems
are considered.

4-5 Fourier Transform Theorems

Several theorems involving operations on signals and the corresponding operations on their Fourier
transforms are summarized in Table 4-1. These theorems are useful for obtaining additional Fourier
transform pairs as well as in systems analysis. We now discuss these theorems, outlining proofs in some
cases, and working examples to illustrate their application. To denote a Fourier transform pair we will
sometimes use the notation x(t) <3 X(f), which means that F[x(r)] = X(f) and F-'[X(f)] = x(1).

Linearity (Superposition) Theorem: Because the Fourier transform is an integral operation on a
signal x(t), with x(f) appearing in the defining integral linearly, superposition is an obvious but ex-
tremely important property of the Fourier transform.

EXAMPLE 4-3

| Find the Fourier transform of x(1) = i[xa(r) — x,(1)], where x,(f) and x,(¢) are shown in Figure 4-1.

TWithout the use of some Fourier transform theorems to be given later, the derivation of this Fourier transform is too lengthy.
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TABLE 4-1
Fourier Transform Theoremsa

Name of Theorem

1. Superposition (a, and a, ax (1) + a(t) a X () + aXo(H)
~ arbitrary constants)

2. Time delay x(t— tg) X(fre i

3a. Scale change xlat) lal-txl (9
b. Time reversal x(—1) X(—=H =X*(f)

4. Duality X() x=f)

5a. Frequency translation xele X(f—fy :
b. Modulation x(1) cos wyt IX(f — fp) + XU+ fo)

6. Differentiation dd—i(:)- (2 YX()

7. Integration | steyar (27f)~X(f) + X))

8. Convolution J x(t — t)x,(r") dt’ 2

X, (NXAS)

= [ xtrm - ey

9. Multiplication x,(0)xs(1)

[ - a

—aa

= j X(F%(f — £) df'

iy, = 2afy; x(¢} is assumed to be real in 3b.

X(f) = X)) - X%,(f) =

g

’5 [2sinc(2f) — j2nfsin(f)] .

1[,sin2af. . @Z_Wf]
=3 [2 2af 12 (af?
1 [2 sin27f .1 - cosZﬁ'f]
2af ) 2af

jf“ — cos 27if + j sin 27f]

1 )
=[] = g 1
;zn-f[ ;|
pit ginf — it

nf 2

%”‘f e i = sinc( fe™ ™

Solution: This signal is a unit-high square pulse starting at £ = 0 and ending at = 1. Employing
the superposition theorem and using the results of Example 4-1, we have

(4-19)

m 2, s
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where Euler’s theorem has been used to good advantage. Note that the final result is sinc(f) which,
as will be seen later, is the Fourier transform of a unit-high square pulse centered on t = 0 and the
factor e~, which is due to the delay of the pulse by t = % to start it at r = 0 as will be shown in

the next theorem.

Time-Delay Theorem: The time-delay theorem follows by replacing x(t) in (4-7) with x(t — t;) and
making the change in variables t = t' + to, whereupon the factor exp(—j2ft,) is taken outside the in-
tegral. The remaining integral is then the Fourier transform of x(t) (note that what we call the variable

of integration is immaterial).

EXAMPLE 4-4

t=2.

Solution: This signal can be obtained from x,(¢) of Example 4- 1 by delaying itby t, = 1 unit of time.

Obtain the Fourier transform of a unit-high square pulse 2 units wide starting at t = 0 and ending at

.

Thus
X(f) = 2sinc 2f e 2 (4-20)
Scale Change Theorem: To prove this theorem, we first suppose that a > 0, which gives
Flx(at)] = j x(at)e™?" dt
-} d '
=3 J’ x{r’)e_fz'ﬂ'ﬂ‘fﬂ' _I
—t a
1 fF
== X(E) (4-21)
where the substitution t' = at has been made. Now consider a < 0 with at = —|a|r and the substitution
= —|a|£ = at made in the integral for F[x(ar)]. This yields
Flx(ar)] = j x(—lalt)e P dt
-] : dtl'
- ¢y 2l 25
[ s
1 -
T
la] = \la]
(0
= — X — -
la * \a (4-22)

where the last step results because —\a| = a for a < 0.

As a special case, we let@ = —1, which results in the time-reversal theorem.

1

DO PARA

L

DADE FEDERA
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XAMPLE 4-5

( An application of the scale change theorem is provided by considering the recording on magnetic tape
| of asignal at, say, 15 inches per second (ips) and playing it back at 7% ips. Assuming a flat frequency
response for the recorder which is independent of playback speed and an original signal spectrum of

1
X ST T
A 1 + (£/1000)%
: we find the spectrum of the played back signal to be
| 2
| %=1y T+ (F5007
| wherea = 2 in the scale change theorem. To see thata = 2, consider an easily visualized signal such
as a pulse 1 s in duration recorded at 15 ips. When played back at 71 ips it will be 2 s in duration.
Thus x,(1) = x,(at) or x l,(2) = x,(2a), where t = 2 corresponds to the trailing edge of the pulse on
| playback, which must correspond to the trailing edge on record. This requires that 2a = 1 ora = %
The spectrum of the played-back signal must be narrower than that of the recorded signal (time is
| stretched out on playback, thus lowering the frequency content). The student should sketch X,(f) and
| X,,(f) and be convinced that they are indeed reasonable.

(4-23)

(4-24)

EXAMPLE 4-6

As another application of the scale change theorem, consider the signal x,(¢) of Example 4-1, for
which we obtained the transform pair

x, () = ( ) > 2 sinc 2f (4-25)

Instead of the Fourier transforms of a pulse of width 2, we wish to generalize this to a pulse of arbi-
trary width, say 7. Thus we let a = 2/7 to obtain the transform pair

Plots of this signal and the magnitude of its Fourier transform are shown in Figure 4-3a. Note
that the signal duration and spectral width (or bandwidth) are inversely proportional. Even though
the spectrum of x(¢) is infinite in extent in this case, we take some convenient measure as the
bandwidth; in this case the width of the main lobe of the sinc function is taken as the bandwidth,

l
|
|
|
: x,(at) = ( ) & 7sinc 1f (4-26)
|
|
‘ which is 2/7.
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given the transform pair

x(6) = ( )<—> rsinc 1 = X(f) (4-28)

We do this by replacing fin X(f) by ¢ to get a new function of time, which is
X(t) = 7sinc 7t

According to the duality theorem, this new time function has the Fourier transform

< t
<0 - 1)
Defining the new parameter W = 7/2 to make the notation clearer, and noting that II(—f/'1) = TI(fi7),
we obtain the desired transform pair.
Plots of this signal and its spectrum as given in Figure 4-4 again illustrate the inverse relation-
ship between signal duration and bandwidth. Since this signal is actually infinite in duration, we

take a convenient measure for its practical duration, such as the width of its main lobe, which in this
case is 1/W.

B H(:nf) (4-29)
t——f

T

Signal Amplitude Spectrum
xa(t) Xa(f)
=1 -1
) 2 ""‘"--._.-{i f‘l: ) IE"--...-/ f

(a) Square-pulse signal

xplt) X

Duality Theorem: The duality theorem follows by virtue of the similarity of the direct and inverse
Fourier transform relationships, the only difference in addition 1o the variable of integration being the

sign in the exponent. The use of this theorem is illustrated in the following example.

EXAMPLE 4-7
The duality theorem can be used to derive the Fourier transform pair
W)
— 4-27
2W sinc 2Wt «» H(ZW ( )

“12w 0 1/2W o w

(b) Sinc-function signal

x(t) Xe(f)
/r\ \
= 0 7 f -1 0 I f

(c) Triangular signal
FIGURE 4-4. Various signals and their spectra.
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Frequency Translation Theorem: This theorem is the dual of the time-delay theorem. It is proved
by writing down the expression for the Fourier transform of x(t)e’>™ which is

o

f X(t)e eI gy = f x(t)e 10 gy (4-30)

-m —o

We recognize the right-hand side as the Fourier transform of x(1), with f replaced by f — f, and the
theorem is proved. The modulation theorem follows from the frequency translation theorem by using
Euler’s theorem to write cos wyt = %e”" + %e""”ﬂ' and then applying superposition.

EXAMPLE 4-8

The Fourier transform of the signal

—I.

2) exp(=20at) (4-31)

x (1) = H(

X,(f) = 2sinc[2(f F 10)] (4-32)

where the transform pair obtained in Example 4-1 for x,(f) has been used. From the modulation
theorem, the Fourier transform of

x(t) = H(%) cos 20t (4-33)
is
X,(f) = sine[2(f — 10)] + sinc[2(f + 10)] (4-34)

The student should sketch X,(f). Note that the modulation process shifts the spectrum of a signal to
a new frequency. Figure 4-5 shows this signal and its spectrum.

MATLAB Application

The MATLAB program below provides a plot of the signal x,(r) and its Fourier transform. Note that
sinc( ) is a MaTLAB-defined function. The function program for the square pulse was given in Chap-
ter 1.

EDU® ch4exB
% Plot of gignal and spectra of Example 4-8
3"’0
=-2:.,005:2: % Define the t and f axes
f=-20:.005:20:
x=pls_fn(t/2).*cos(20%pi*t); % Use the predefined pulse function to
% build up x(t) (page 136)
X=gine (2*(f - 10} )+sinc{2*(£+10)}; % sine() is a built-in MATLAR

% function
subplot(2.,1.1),plot(t.x),xlabel('t'),ylabel('x2(t)")
subplot(2,1,2).plot(f.X),xlabel('£'),ylabel ("X2(£)")
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FIGURE 4-5. MarLaB plot of time-domain and frequency domain signals illustrating the modulation
theorem. Top: Time-domain signal. Bottom: Fourier transform

EXAMPLE 4-9
Obtain the following transform pairs:

1. AS() & A
2. A8(t — ty) <> Ae /¥

3. A Ad(f)

4. Ae'*™ ¢ AS(f - fo)

5. Acos2mfit <> A/2[8(f — fo) + &(f + fp)]

The impulse function is not properly Fourier transformable. However, its transform is never-
theless useful. The same holds true for a constant. We could find their transforms using limiting
operations, as discussed in Section 4-3. It is easier to prove the first transform pair by using the sift-
ing property of the unit impulse:

FAS()] = A f ’ (e T dt = A (4-35)

The second pair is obtained by applying the time-delay theorem to pair 1.




4 Ch. 4 / The Fourier Transform and Its Applications
The third pair can be shown by using duality in conjunction with the first transform pair. Thus
( X(t) = A & AS(—f) = x(—f) = AS(f) (4-36)

where we recall that the impulse function was defined as even in Chapter 1.
| Transform pair 4 follows by applying the frequency translation theorem to pair 3, and pair 3 is
([ obtained by applying the modulation theorem to pair 3.
-

FXAMPLE 4-10

| A convenient signal for use in obtaining transforms of periodic signals is the signal

¢ W= 3 &—-mT) (437)

| m=-oo

It is a periodic train of impulses referred to as the ideal sampling waveform.
{ The Fourier transform of y,(r) can be obtained by noting that it is periodic and, in a formal sense,
| can be represented by the Fourier series '

[ ) = 1
¢ W= I Vgl [ 438)

n=-—m

The Fourier coefficients are given by
{ 1 T2 =
; ¥, =— J' 8(t)e 2 dt = f, (4-39)
T ) rp

| where the sifting property of the unit impulse function has been used. Therefore, y(f) can be repre-
' sented by the Fourier series

! =142 &% (4-40)
Using the Fourier transform pair e/*™ « 8(f — f,), we may take the Fourier transform of this
| Fourier series term-by-term, to obtain

c! V(P =f S Flerm]

| n=-wm

l =f 2 &f - nf) (4-41)
. ' Summarizing, we have obtained the transform pair

| S - mI)of, 3 8- ) @42)

l m=—um n=—m

The transform pair (4-42) is useful in spectral representation of periodic signals by the Fourier
transform, to be considered in Sections 4-7 and 4-11.

Differentiation and Integration Theorems: To prove the differentiation theorem, consider

de| _ (7 ax(1) o 4.43
g[dr]_f L (4-43)

—m
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Using integration by parts with u = e 27 and dv = (dx/dt) dt, we obtain

é’.‘ = ~[2mft
‘?}[ dr] = x(he
But if x(t) is absolutely integrable, lim,_, . Jx(t)| = 0. Therefore, dx/dt <> j2mfX(f). Repeated applica-
tion of integration by parts can be used to prove the theorem for n differentiations.

The integration theorem is proved in a manner similar to that for the differentiation theorem if
X(O) = J=_ x(t) dr = 0. If X(0) # 0, the proof of the integration theorem must be carried out using a
transform-in-the-limit approach. The second term of the transform of pair 7, lX{{'}f} o(f), simply repre-
sents the spectrum of the constant [~ _ x(t) dt, which is the net area of x(1).

Note that differentiation enhances the high-frequency content of a signal, which is reflected by the
factor j27ifin the transform of a derivative, while integration smooths out time fluctuations or suppresses
the high-frequency content of a signal, as indicated by the (j271f)~! in the transform of an integral.

+ j2uf f x(f)e ™ dy (4-44)

EXAMPLE 4-11

A useful application of the differentiation theorem is that of obtaining Fourier transforms of piece-
wise linear signals such as the triangle signal. We generalize the triangle signal in this example to
that of a trapezoidal signal and find its Fourier transform through application of the differentiation
theorem. The trapezoidal signal is shown in Figure 4-6 along with its first two derivatives. The sec-
ond derivative consists entirely of unit impulses, and may be written analystically as

d?x(1)
dr?

= K[8(t + b) — 8(t + a) — &(t — a) + &(t — b)] (4-45)

where K = A/(b — a). Applying item 2 in Example 4-9, we find the Fourier transform of the second
derivative to be

2
9;[9%2})} = ket — gilmfa — gmilnfa o o=i2n] = 2K[cos 2mfb — cos 2mfal (4-46)

x(t)

dox(tyde

t weight=K

e
T b-a

K

&

dx()/dt ¢
-b b

FIGURE 4-6. A trapezoidal pulse and its first two derivatives.
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By the differentiation theorem, this transform equals (j27)2X(f). Thus

- cos 27fb — cos 2wfa

X ZK[ (2f) }
| si® afb sin? wfa}
3 K[b Y (wfa)?

= K[b* sinc’(fb) — a* sinc’( fa)] (4-47)

Another way to find the Fourier transform of a trapezoidal pulse is to write it as the difference of
two triangle signals as

x(r) = BA(t/b) — (B — A)A(tla) (4-48)

where B = Ab/(b — a). The unit-high triangle signal, A(#/7), centered on ¢ = 0 going from t = —7
to t = 7 will be shown later to have the Fourier transform 7 sinc? fr [in fact this may be seen from
(4-47) by setting a = 0 and b = 7]. Applying this to (4-48) together with superposition gives

X(f) = B7b sincX( fb) — (B — A)7a sinc?(fa) (4-49)

which may be demonstrated to be the same result as (4-47). The student should also work out the
special cases a = Oand a = b.

MaTLAB Application

We examine the effect of the pitch of the sides of the trapezoid on its spectrum. The following
MATLAB program implements a plot of the trapezoid and the corresponding spectrum for several
values of @ with b fixed.

EDU»c4ex1l
% Spectrum of a trapezoidal pulse-Example 4-11
%
L max=2;
f max=2;
f=-f max:.001:f_max;
t=-t_max:.001:t_max;
A=1;
P=1.5
for k=1:4
k_odd=2*k-1;
k_even=2*k;
a=.5*(k-1)+.0000001;
aa=g;
if aa <=.000001
z2a=0;
end
B=A*b/(b-a);
x=B*trgl_fn(t/b)-(B-A)*trgl_fn(t/a):
K=A/{b-a);
X=K*(b"2*(sinc(f*b))."2-a%2*(sinc(f*a))."2):
subplot(4,2.k_even).plot(f,X) ,axis([-f_max f_max
xlahel ('f'),ylabal('X(£f)")
gubplot (4,2 .k _odd),plot(t,x) . axis([-t max t_max 0 2]),...
text{-1.9, 1.6,['a='.num2str(aa}]}.xlabel('t') . ylabel('x{t)")

~ ;B BT g

end
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A plot of the pulse and its spectrum for four values of @ are shown in Figure 4-7. Note that as
the pulse approaches a triangle its spectrum is more concentrated about f = 0. For the limiting case
of a square pulse, the spectrum has large lobes along side the main lobe. We infer from this that

the smoother transitions of the trapezoid give better spectral containment within the main lobe of
the spectrum.

o
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X(f)

|
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FIGURE 4-7. Trapezoidal pulses and their spectra for four different shapes.
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As an application of the integration theorem, consider the Fourier transform of a unit step. Since
u(t) = ' 8(A)ydA and [*_ 8(t) dt = 1, we obtain

Flu()] = (j2uf)" + 38() (4-50)
where x(¢) in the integration theorem of Table 4-1 has been taken as &(¢). A signal that is related to
the unit step is the signum function, defined as

1 t>0
=2u(t) —1= i 4-51
sgn t = 2u(t) {_1‘ N (4-51)
Using the result obtained above for the Fourier transform of a step, we find the Fourier transform of
sgn ¢ to be

Flsgn 1] = (jf)™ (4-52)
By the duality theorem, it follows that
' g[}iﬂ = gl e -53) °
or
sc[%] — —jsenf (4-54)

which results because sgn f is odd. The last transform pair is useful in defining the Hilbert transform
of a signal, which will be discussed in Example 4-14.

The Convolution Theorem: The proof of the convolution theorem follows by representing x,(t — ')
in the second integral under Theorem 8 of Table 4-1 in terms of its inverse Fourier transform, which is

Xt —1) = f " X(pe D df (4-35)

Substitution into the convolution integral gives

x1*x2=j xl(r’]U Xz(f)ef'z“f“‘"’df} dr

= f Xy n[ f x,(t')e 2 dr’]e”"ﬁ df (4-56)

" The last step results from reversing the order of the iwo integrations. Recognizing the bracketed term
" inside the integral as X,(f), the Fourier transform of x,(1), we have obtained

Xy *xy = J Xy(HX,(fe*™ df (4-57)
which is the inverse Fourier transform of X,(/)X5(f).

This theorem is useful in systems analysis applications as well as for deriving transform pairs. The
latter application is illustrated by the following examples.
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EXAMPLE 4-13

Consider the transform of the signal that is the convolution of two rectangular pulses of equal width.

The student can verify that
t t t
H(;) # H(—T) = TA(;) (4-58)

where A(#/7) is the triangular signal. Therefore, according to the convolution theorem,

ofm(z)] - (sG]}

= ?sinc? fr (4-59)
EXAMPLE 4-14
The Hilbert transform, X(f), of a signal, x(z), is obtained by convoiving x(r) with 1/42. That is,
it i s fog=exfi)
M) =x()% =7 L 2 da (4-60)

From Example 4-12 and the convolution theorem it follows that
A 1 :
Fx(9)] = 9‘[;}9‘[1&)] = —jsgn(f)X(f) (4-61)

A Hilbert transform operation therefore multiplies all positive-frequency spectral components of a
signal by —j, and all negative-frequency spectral components by j. The amplitude spectrum of the
signal is left unchanged by the Hilbert transform operation and the phase is shifted by #/2 rad.

The Multiplication Theorem: The proof of the multiplication theorem proceeds in a manner anal-

ogous to the proof of the convolution theorem. 1t is left to the student as a problem. Its application will
be illustrated by an example.

EXAMPLE 4-15

given by

of the waveforms shown in Figure 4-8a and b is the oscillatory pulse shown in Figure 4-8c. Shown
on the right-hand side in each part of the figure are the Fourier transforms of the corresponding wave-
forms on the left. From the multiplication theorem, we know that the convolution of the spectra
shown in Figure 4-8a and b is the spectrum of the cosinusoidal pulse of Figure 4-8c. In terms of equa-
tions, we have the transform pair

We will use the multiplication theorem to obtain the Fourier transform of the cosinusoidal pulse -

¢ £
x(t) = Al’[(;) cos 2fyt (4-62) ¢

The makeup of this waveform is illustrated in Figure 4-8c on the left-hand side; that is, the product :
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Signal Fourier transform

I FHER

'l t f 3 = 4
—12 0 2 %

|

(a) Rectangular pulse and transform

A PR . A

(b) Cosine signal and transform
|
~m2 A\ 2

Vst al A J:Ah ‘

(&) Product of signals in (a) and (b) and the transform of the product
is the c lution of the forms in (a) and (b)

FIGURE 4-8. Application of the multiplication theorem in obtaining the Fourier transform of a finite-
duration cosinusoidal signal.

AH(:—_) «» Atsinc fr (4-63)

which was obtained previously. The Fourier transform of cos 2mfyt follows by using Euler’s theo-
rem to write :

F|cos 27fyt] = g[égﬂ"ﬁl’ g %e—flnfn:]
L8(f — ) + 38(F + 1)

where the superposition theorem has been ‘used together with the transform pair e/*™ & 8(f — fo)-
The multiplication theorem for this example then states that

X(f) = g[An(g) cos 2wa:]
= (At sinc fr) * [L6(f = fo) + 38(f + fy)]

(4-64)

Il

- %T [sinc(f — fy)r + sine(f + fy)7] (4-65)
where use has been made of
sincfrs M H) = r sinc Ar8(A — f+ f;) dA
= sinslF £ £ (4-66)

Note that the modulation theorem could have equally well been used to obtain this result.

TABLE 4-2
Fourier Transform Pairs
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Pair Comments on
Number x(1) XN Derivation
0.
8 H(;) 7sinc 7 Direct evaluation
2. 2W sinc 2Wt n(ﬁ) Duality with pair 1, Example 4-7
t
3. A(_—r) Tsine? 7f Convolution using pair |
1
4, exp(—atu(l), a = 0 T T2t Direct evaluation
1
5. texp(—athu(t), a > 0 WZ_W Diffe‘renLiation of pair 4 with
respect to &
| 2a
6 —ajt), e >0 T ireci i
exp(—alt]), @ 2+ (2nf) . Direct evaluation
7 g Te~ TP y Direct evaluation
8. 8(1) 1 Example 4-9
9. 1 o f) Duality with pair 7
10. a(r — ty) exp( —j27fty) Shift and pair 7
il exp(j2afyt) 8(f—fo) Duality with pair 9
12 cos 2mfyt %5( F=hi+ %S(f +f) Exponential representation of
. 1 1 cos and sin and pair 10
3. sin 2y 5 8~ 1)~ 5 8+ ) 3
14. u(t) (2mf)~" + 38(f) Integration and pair 7
15. sgnt (jaf)-! Pair 8 and pair 13 with
superposition
1
16. 5 —Jj sgn(f) Duality with pair 14
A ) e - . ; : ’
17. x(t) = ;J :—_J\(b\ —j sgn(/IX() Convolution and pair 15
18 > 8(t — mT) > 8f—mf), Example 4-10
Jimay!

The Fourier transform pairs derived in the preceding section are collected in Table 4-2 together with other
pairs that are often useful. A column is provided that gives suggestions on the derivation of each pair.

4-6 System Analysis with the Fourier Transform

In Chapter 2 the superposition integral was developed as a systems analysis tool. Application of the con-
volution theorem of Fourier transforms, pair 8 of Table 4-1, to the superposition integral gives the result

Y(f) = H(NHX(S)

(4-67)

where X(f) = Fx(0)], ¥(f) = Flx()], and H(f) = F[h(1)]. The latter is referred to as the transfer func-
tion of the system and is identical to the frequency-response function H(w) defined by (3-70) but with
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h(r)

(1) m=sr_z .
Fixed, - »0 = J__xQk(r—A)dx
X [ Y(ry=X(NIH(S)

rIGURE 4-9. Representation of a fixed, linear system in terms of its impulse response or,
1lternatively, its transfer function.

"= w/21r as the independent variable. Either k(r) or H(f) are equally good characterizations of the sys-
tem, since its output can be found in terms of either one as illustrated in Figure 4-9, In the frequency
4omain, the output of the system is the inverse Fourier transform of (4-67), which is

ym=fmﬂﬁMﬂﬁ*# (4-68)

Since H(f) is, in general, a complex quantity, we write it as
H(f) = |H(H)]eHD (4-69)
where [H(f)| is the amplitude-response function and /H(f) the phase-response function of the net-

work. If H(f) is the Fourier transform of a real time function A(f), which it is in all cases being consid-
red in this book, it follows thatt

[H(f) = [H(=f) 4-70)
and
(H(f) = — [H(=f) (471

Since H(f) is such an important system function, we illustrate its computation by the following example.

AXAMPLE 4-16

To obtain the transfer function of the RC filter shown in Figure 4-10, any of the methods illustrated
f in Figure 4-10 may be used. The first method (Fig. 4-10a) involves Fourier transformation of the
| governing differential equation (inwgrndiffercntial equation, in general), which for this system is

l rRcY = Y by =x(f), —w<t<o (4-72)

Assuming that the Fourier transform of each term exists, we may apply the superposition and dif-
ferentiation theorems to obtain

|
i (2mfRC + DY) = X() (4-73)
| or
|
|

Hf =D e e
X(f) 1+ jf/f) 1 ¥ (LY

g ' (i) (4-74)

11t is useful to model some fixed, linear systems as having complex impulse responses, In such cases (4-70) and (4-71) do not
hold.
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AW +

x(t) C == »{r)

(a) Fourier-transforming the differential equation relating input

and output: RC d;l") +2(0) =x(0)

R
+ +
8() c T h(£)= g exP (~1/RC) u(1)
(b) Obtaining the impulse response of the system and finding its )
Fourier transform .
R
+to— AAMA———————0 +
3 U = 3= MeC =
jwC R RS
jwC
= o mn=X
X|w=ans

(c) Using ac sinuscidal steady-state analysis
FIGURE 4-10. lllustration of methods that can be used to obtain the transfer function of a system.

The frequency f; = 1/27RC is called the 3-dB or half-power frequency.t Equwalcntly, Wwe can use
Laplace transform theory as discussed in Chapter 5 and replace s by j27f.

A second method is to obtain the impulse response and Fourier transform it to obtain H(f). This
method is illustrated in Figure 4-10b.

A third alternative is to use ac sinusoidal steady-state analysis as shown in Figure 4-10c and find
the ratio of output to input phasors, ¥ /X.

The amplitude and phase responses of this system are obtained from (4-74). They are

\H(f)| = [1 + (éﬂ_m and

respectively. They are illustrated in Figure 4-11.
To end this example, we find the response of the system to the input

/H(f) = —tan™! ]{ (4-75)
3

x(f) = Ae~%u(r), a>0 (4-76)

"The half-power frequency of a two- -port system is defined as the frequency of an input sine wave which results in a steady-
state sinusoidal output of amplitude 1/v2 of the maximum possible amplitude of the output sinusoid. The power of the output
sinusoid is then one-half of the mammum possible output power. The ratio of actual to maximum powers in decibels (dB) is there-
fore (P,,/P,,,} dB = 10log,, 1 = —3 dB.
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IH(OI

|
|
|
!
I3

f
(a) Amplitude response
H(f)
————————————————————————— w2
f
L e o R e e s e

*  FIGURE 4-11. Amplitude and phase responses for a low-pass AC filter. -

by using Fourier transform techniques. The Fourier transform of this input, from Table 4-2 is

A
Xf)=—7r= (4-77)
() a + j2af
The Fourier transform of the output due to this input is
A/RC

(4-78)

YN =+ 2mf)(1/RC + j2f)

For aRC # 1, this can be written as’

A | 1 o 4-79
Y() = aRc = [1fRC+;2ﬂf a+j21rf] ¢4

The inverse Fourier transform of ¥(f) can be found with the aid of Table 4-2 and the superposition
theorem. It is given by

y(r) = aRél [EXP([;C) = exp(—at)]u(t) (4-80)

We can find the response for aRC = | by using pair 5 of Table 4-2 or by taking the limit of the fore-
going result as @RC — 1. In either case, the result is

y(1) = (RC) EXP(RC)L;( ), a= é (4-81)

The student should plot y(¢) for various combinations of « and RC and consider what their relation-
ship must be for the output Lo resemble the input except for a scale change.

*Ways of obtaining partial-fraction expansions such as this one will be reviewed in Chapter 5.
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As an example of how system characteristics influence the response of the system to a given input,
we consider the RC-circuit response to a rectangular-pulse input.

EXAMPLE 4-17

Again, we consider the system of Figure 4-10 but with the input
x(1) = AH( ;/2) Alu(t) — u(t — T)] (4-82)

Because the inverse Fourier transform relationship (4-68) is difficult to evaluate in this case, the out-
put is found using time-domain techniques. From Example 2-16 the step response is

a(t) = (1 — e=“RCu(t) (4-83)

Noting that the x(t) consists of the difference of two steps and using superposition, we find the out-
put to be

0, ' t<0
y(t) = { A(L — 7RG, 0=t=T (4-84)
A[e‘(' TW/RC _ e—rmc]‘ t>T

This result is plotted in Figure 4-12 for several values of 7/RC together with ]X{ j)| and |Y( ﬁ!. The
parameter T/RC = 2#f,/T~! is proportional to the ratio of the 3-dB frequency of the filter to the
spectral width (7-1) of the pulse. When the filter bandwidth is large compared with the spectral
width of the input pulse, the input is essentially passed undistorted by the system. On the other
hand, for 27f;/T-! < < 1, the system distorts the input signal spectrum and the output does not re-
semble the input.

Since the energy spectral density of a signal is proportional to the magnitude of its Fourier transtmﬁ
squared, it follows that -«

o
G/ = H(OPGLf) - (@88

where G,(f) and G(f) are the energy spectral densities of the system input and output, respec.':
tively. Note that the energy spectral density is an even function of frequency. The total energy in thﬁ

output can be obtained by integrating (4-85) over all frequency. Since G,(f) is an even function of frd-- 3
~ quency, the integral can be carried out from f = 0 to f = w and then doubhng this result to get total enas -

ergy. The energy within any bandwidth of frequencies can be obtained by integrating over lhaflc
bandwidth. Once again, if the integration is over only positive frequencies, the result of the 1nlegrat10rﬁg‘
must be doubled. £z

4-7 Steady-State System Response to Sinusoidal
Inputs by Means of the Fourier Transform

In Section 2-7 the frequency response function of a fixed, linear system was defined in terms of the
attenuation and phase shift suffered by a sinusoid in passing through the system. We may use (4-67) to

Al

;
L{.

BIBLIUT



176 Ch. 4 / The Fourier Transform and Its Applications

¥
1 {21
a Input
E Output
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(a) T/RC=10
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FIGURE 4-12. Input and output signals and spectra for a low-pass RC filter (only right side of spectra
shown due to evenness).
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relate the Fourier transforms of the input and output of a fixed, linear system in response to a periodic
waveform. In particular, a periodic input signal x(f) can be represented by its Fourier series as

x(f) = i X efimmt (4-86a)

n=-o

Using the transform pair ¢/2™% ¢ 8(f — nf;), this can be Fourier-transformed term-by-term to yield

X(f)= 3 X.5f - nfy (4-86b)

H=—co

When (4-86b) is multiplied by the system transfer function H(f), and use is made of the relationship
H(f)8(f — nfy) = H(nf)d(f — nfy), we may express the Fourier transform of the output as

Y(f) = 3 XH(nfy)s(f — nfy) (4-87)

n=—c

. Writing X, and H(nf;) in terms of magnitude and phase as |X"[ exp j/ X, and i,H(nf[,)| exp j/ H(nf,), re-

spectively, (4-87) may be inverse-Fourier-transformed term-by-term to give the output

o = X 1%, [Hfy) exp[f{%ﬂfot /X, + zH{nfu_)_}] (4-88)

A=—o

To empbhasize the significance of (4-88), note that the nth spectral component of the input, X,, ap-

. pears at the output with amplitude attenuated (or amplified) by the amplitude-response function [H{nﬁ,)i,

and a phase which is the input phase-shifted by the system phase response /H(nf;), both of which are
evaluated at the frequency of the particular spectral component under consideration. Note that (4-88)
is equivalent to (3-71) or (3-73).

EXAMPLE 4-18

Consider a system with amplitude- and phase-response functions given by

R (K [f)sB
; IH(D] = KH(ZB) B {0, otherwise 2 (i
and
[H(f) = —2myf (4-89b)

respectively. A filter with this transfer function is referred to as an ideal low-pass filter.
Its output in response to x(f) = A cos(27fyt + 8,) is obtained from (4-88) by noting that

X, = jAe/ = X*, (4-90)
with all other X,’s = 0. Thus the output is

(0= {0. fi>B
. KA cos2mfy(t — t,) + 6), f,<B
Thus an ideal low-pass filter completely rejects all spectral components with frequencies greater than

some cutoff frequency B, and passes all input spectral components below this cutoff frequency ex-
cept that their amplitudes are multiplied by a constant K and they are phase-shifted by an

(4-91)

amount —27t,f, or delayed in time by .
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Because ideal filters are used quite often in systems analysis, we consider the characteristics of three
types of ideal filters in more detail in the following section.

4-8 |deal Filters

It is often convenient to work with idealized filters having amplitude-response functions which are con-
stant within the passband? and zero elsewhere. In general, three types of ideal filters, referred to as low-
pass, high-pass, and bandpass filters, can be defined. A phase-shift function that is a linear function of
frequency throughout the passband is assumed in each case. Figure 4-13 illustrates the frequency-re-
sponse functions for each type of ideal filter.

The impulse response of any filter can be found by obtaining the inverse Fourier transform of its
transfer function. For example, for the ideal low-pass filter, the impulse response can be found from?

hep(t) = J‘ Hyp(f)e’*™ df
a
o J Ke~2agi2nt g .
-8

B
= J Keitmlt-w) df
~B

= 2BK sinc[2B(t — 1,)] (4-92)

Since sinc[2B(t — t,)] is nonzero for all £, except when 2B(z — £,) takes on an integer value, it fol-
lows that Ay () is nonzero for ¢ << 0. In other words, an ideal low-pass filter is noncausal, as are all types
of ideal filters.

In fact, it can be shown that the ideal bandpass filter has impulse response

hgp(t) = 2KB sinc[B(t —.1,)] cos[2afy(r — 1,)] (4-93)
and that the ideal high-pass filter has impulse response
hyp() = K8(t — t,) — 2BK sinc[2B(t — 1)] (4-94)

Both of these impulse responses are nonzero for t < 0 if f; is finite. Figure 4-14 illustrates ideal filter
impulse responses. The noncausal nature of ideal filters is a consequence of their ideal attenuation char-
acteristics in going from the passband to the stop band.

Several methods of approximating ideal filter frequency-response characteristics by means of causal
filters are discussed in Appendix E. In general, the more closely a causal filter approximates a corre-
sponding ideal filter, the more delay a signal suffers in passing through it.

4-9 Bandwidth and Rise Time

The rise time of a pulse is the amount of time that it takes in going from a prespecified minimum value,
say 10% of the final value of the pulse, to a prespecified maximum value, say 90% of the final value of
the pulse. For example, whereas the square pulse input to a low-pass RC filter has zero rise time, the

"The passband of a filter is defined as the frequency range where its amplitude response is greater than some arbitrarily cho-
sen minimum value, Quite often, this minimum value is chosen as 1/ 2 of the maximum amplitude response.

B denotes filter bandwidth, and W signal bandwidth.

18001
-K
| 0 B
Hiplh)
slope = —2miy
| Hgpl
— -K —
| p—F—q
| ] | | |
% 0 %
Hyp ()
| Hyp (D)
-K
—B 0 B
Hye ()
FIGURE 4-13.
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Ideal filter amplitude- and phase-response functions.
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hyplt)
2BK
|
U
0 . to +1/28 g+ /R
(1}

(n)

ﬁ“p )

t1/28

(c)
FIGURE 4-14. Impulse responses for ideal filters: (a) Low-pass; (b) bandpass; (c) high-pass.

filter output has a finite rise time as shown by the plots in Figure 4-12. The square-pulse response of
this filter is given analytically by (4-84), where the width of the square-pulse input is T and its ampli-
tude is A. The final value of the output pulse is also A. The prespecified minimum value of 0.14 (10%
of the final value of the output pulse) occurs at time ¢,, where

A(l — e W/RG = 0.14 (4-95a)
or
In o _1n(09)
RC
The prespecified maximum value of 0.94 (90% of the final value) occurs at time #,,, given by
A(l — e™/RC) = 0,94 (4-95b)
or
LI

RC

4-10 / Window Functions and the Gibbs Phenomenon 181
The rise time is
Tg =ty — 1, = RC[—1n(0.1) + In{0.9)] (4-95¢)
In terms of the 3-dB bandwidth of the RC filter, which is f; = (2#RC)"!, this becomes
_ —In(0.1) + In(0.9) 035
_ 20, 5

That is, for the lowpass filter the rise time is inversely proportional to the bandwidth. This inverse re-
lationship is illustrated by Example 4-17 and, in particular, Figure 4-12. Although shown only for the
particular case of a low-pass RC filter, this inverse relationship between rise time and bandwidth is
true in general. In closing this section, note that the 10%-90% definition of rise time used here is only
one of the many possible. No matter what the definition of rise time, the inverse relationship between
rise time and bandwidth still holds.

i (4-96)

*4-10 Window Functions and the Gibbs Phenomenon

In our consideration of trigonometric series at the beginning of Chapter 3, it was noted that the sum of
such a series tended to overshoot the signal being approximated at a discontinuity. We can easily ex-
amine the reason for this behavior, referred to as the Gibbs phenomenon, with the aid of the Fourier
transform. Consider a signal x(r) with Fourier transform X(f). We consider the effect of reconstructing
x(t) from only the low-pass part of its frequency spectrum. That is, we approximate the signal by

i =5 xon(35)| @97)
where
H(i{?) . {3 Lﬂ'fm'i‘; (4-98)

According to the convolution theorem of Fourier transform theory,

o i)

x(t) * (2W sinc 2Wr) (4-99)

where the last step follows by virtue of the transform pair developed in Example 4-7. Recalling that
convolution is a folding-product, sliding-integration process, it is now apparent why the overshoot phe-
nomenon occurs at a discontinuity. Figure 4-15 illustrates (4-99) for W = 2 assuming that x(¢) is a unit-
square pulse. In accordance with (4-99), as W increases, more and more of the frequency content of the
rectangular pulse is used to obtain the approximation X(¢). Nevertheless, we see that a finite value of W
means that the signal x(r) is viewed through the window function 2W sinc 2Wt in the time domain.! As
a result, anticipatory wiggles are present in X(f) before the onset of the main pulse, and echoing wig-
gles remain after the discontinuity of the leading edge of x(f) passes.
To put this discussion on a mathematical basis, we represent the square-pulse signal as

x(0) = u() — u(t — 1) (4-100)

1l

x(1)

"Actually, it is often customary to refer to the multiplying function IT(72W) as the window function.




182 Ch. 4 / The Fourier Transform and Its Applications 4-10 / Window Functions and the Gibbs Phenomenon 183

| L 2 (1)
i _i; - ? T
Window r— 1.0
|
Rectangular
pulse
|
AN , AN ” I _ X i ” _
v N v : U \h VvV il 1 2 ‘
¥ {a) A unit step viewed through the window 2 W sinc (2Wr) (
FIGURE 4-15. Convolution of the window function 2WW sinc 2Wt with a rectangular pulse.
LY _‘{ g
which results in W=2 g
5 ; (
* x(6) = [u(t) — u(r — 1)] * 2W sinc 2Wt . (4-101) Lo ’ g
; Considering, for the moment, only the first term of (4-101), we write itas  * g 5
<
u(t) = u(r) * 2W sinc 2Wt = 2W sinc 2Wt = u() & 53:
@ E‘ "-j-
1 -
=2w [ sinc2WAu(t — ) dr i
A we L
L w
: r“‘-“;" =
= 2WJ sinc 2WA dA (4-102) : S ;
I 0 1 2 C‘CI ;1-5
. ' s § i (b) A unit-width pulse viewed B
This integral cannot be evaluated in closed form but can be expressed in terms of the sine-integral func- through the window 4 sine (44) 2

tion, Si(x), defined as FIGURE 4-16. Construction of windowed rectangular pulse.

except for the overshoot at the discontinuities at ¢ = 0 and ¢ = 1, which eventually approaches a valu
of 9% of the pulse height as W becomes large. a

The question of what can be done to combat this behavior is answered by considering the possibi]-g -1
ity of reducing the sidelobes of the 2W sinc 2Wr window function, which was the inverse Fourier trans-_, =g
form of II(#2W). The function o5

Si(x) = J T du (4-103)
0

ARA

»

which is available in tabular form." It is usefu] to note that Si(x) is an even function and that Si(>) = 2.
In terms of Si(x), u(f) can be expressed as

% + 1 Si(27Wt), t=>0
- mw o
W =15 1 g 05+05cs L, |f=w i
5~ o Sieawn,  1<0 A(f) = w (4106} ;
w . \;:

0, otherwise o,

_ Aplotof u(1) versus Wt is shown in Figure 4-16a. -
From (4-101) it follows that we may obtain x(t) from x(¢) as

x(6) = () —u(t — 1) (4-105)

an operation that is easily carried out graphically; X() is shown in Figures 4-16b and ¢ for W = 2‘ and
W = 5. The approximation of X(t) to x(r) becomes better as W increases relative to the pulse width,

. s - . . - i)
provides a smooth transition from zero at f = =W to its maximum value of unity at f = 0.1 Its inverse™,
Fourier transform is "2

a(r) = Wisine 2Wr + j sinc@Wt — 1) + 1 sinc @Wr + 1)] (4-107)

This function and its transform are shown in Figure 4-17, where it is seen that its sidelobes are much
lower than the function 2W sinc 2Wr. '

M, Abramowitz and A, Stegun, Handbook of Mathematical Functions with Formulas, Tables, and Graphs (New York: Dover,

1972), p. 243, "This function is called a Hanning window.
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A k_odd=2*k-1:
‘ W=2+(k-1) ;
= tp=[2*t(1):.01:27t(L)]:
1.0 w_r=2*W*sinc (2*W*t}; % Inverse transform of rectangular
q % window
g w_h=W*(sinc(2*W*t)+.5"sinc(2*W*t-1)+.5%sinc(2*W*t+1)); % Hanning window
x=pls_fn(t-.5);
dae x_tilde _r=.0l1*conviw_r,x); % Convolve rectangular window with
% pulse
x_tilde_h=.0l*conv(w_h.x); % Convolve Hanning window with pulse
subplot(4,2,k_odd),plot(tp, x_tilde_r),xlabel('t'),
ylabel ('wind.x{t)"), . . .
# % fiw text(-.9,1, 'rectan.') ,text(-.9,.5,.['W = ' ,num2str(W)]),
-1.0 0 1.0 axis([-t_max+l t_max -.2 1.5])
(a) Hanning window in the frequency domai subplot(4,2,k _even) ,plot(tp, x_tilde_h) ,xlabel('t'),
ylabel{'wind. x(t)'). . ..
text(-.9,1,'Hann.') , text(-.9,.5,['W = ', numZstr(W)]).
o aln)/W 2 axis([-t_max+l t_max -.2 1,5])
end
1.0
X 1} rectan. £ 1[ Hann.
Bosiire gogwz " N\ |
Lk = 0 e = 0 i
-1 0 1 2 -1 0 1 2
t t
r ~— o i
—2.0 —-1.0 (1] 1.0 2.0

(b) Inverse Fourier transform of the Hanning w'ul.do;v
FIGURE 4-17. Window with smoother transitions than the rectangular window.

wind. x(t)
o
=R
@
S
wind. x(t)

Note that the inverse relationship between rise time and bandwidth discussed in the previous.section

is illustrated by Figure 4-16a. The waveform can be viewed as the response of an ideal low-pass filter = —
to a unit step input. From this figure it is seen that the 10%—90% rise time is approximately T = 0.5/W. 37 % 1} Hann. J
In this case W appears as the filter bandwidth rather than B because of the notation used in (4-97), from = T05 W=4 /1
which we considered building up a square-pulse signal from a finite range of its frequency spectrum. E s 0F—— .
-1 0 1 2
EXAMPLE 4-19 t
To study the effect of window half width, W, the following MATLAB program cycles through four win-
dows widths for both rectangular and Hanning windows. It produces the plots shown in Figure 4-18. g § e -
o ann.
% chexl9 E EO.S W=5
% = 2 0
t_max=2; -1 0 1 2
t=-t_max+tl:.01:t_max; t
L=length(t):
Far el % Loop to do 4 values of window width FIGU_HE 4-18. Effect of windowing the spectrum of a rectangular pulse with rectangular (left) and
k_even=2*k: Hanning (right) frequency windows for four windows half widths, W,
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*4-11 Fourier Transforms of Periodic Signals

x1 (1)

The Fourier transform of a periodic signal, in a strict mathematical sense, does not exist since periodic
signals are not Fourier transformable. However, using the transform pairs derived in Example 4-9 fora
constant and a phaser signal we could, in a formal sense, write down the Fourier transform of a peri-
odic signal by Fourier-transforming its complex Fourier series term-by-term. Thus, for a periodic sig-
nal x(1) with Fourier series 27___ X,e/“t, where T, = 2m/w, = 1/f; is the period, we have the
transform pair

i X e/m ¢ i X, 8(f — nfy) (4-108)

n=—m n=-—m

Either representation in (4-108) contains the same information about x(¢), and either result can be used
to plot the two-sided spectra of a signal. If the Fourier transform representation is used [right-hand side
of (4-108)], the amplitude spectrum consists of impulses rather than lines.

A somewhat more useful form for the Fourier transform of a periodic signal than (4-108) is obtained
by applying the convolution theorem and pair 17 of Table 4;2 for the ideal sampling wave. To obtain it,
consider the result of convolving the ideal samplmg waveform with a pulse-type 31g11al p(1) to obtain a
new signal x(2). If p(z) is an energy signal of limited time extent such that p(t) = =TR =T/2,then
x{1) is a periodic power signal. This is apparent when one carries out the convoluuon with the aid of the
sifting property of the unit impulse:

x()= I  x(r—4n)

® = ] zi 3 4
x(1) = [ O m]ﬂ,)] *p(f) = >, p(t—mT,) (4-109) i E
G fps | |
Applying the convolution theorem and the Fourier transform pair (4-42), the Fourier transform of . 1'1 '|
x(1) is ®)

i 8t — mT,)]P{f) FIGURE 4-19. Pulse signal and its periodic extension.

m=—o

X(ﬂ=@[

PN S 8- nf)

n=—m

= i [ P(nf)3(f — nfy) (4-110)

n=—m

Recalling that sinc # = (sin 7u)/7u, we see that the spectrum of x,(f) goes to zero as 1/f. Checking
Figure 4-16a, we see that one derivative is required to produce impulses from the square-pulse por-
tion of x,(r), which implies the decrease as f~! (see Section 3-11). '

We proceed to find the Fourier series of the periodic waveform x(¢) by using (4-111). Since x,(f)

is repeated every 4 s to produce x(f), f, = 0.25 in (4-111), and the Fourier transform of x(f), using

where P(f) = F[p(1)]. Summarizing, we have obtained the Fourier transform pair
(4-113) in (4-111), is

S bt - mTy e S LRS- nf) (@-111)

X(f) =025 3 [sinc? 0.25n — sinc 0.251 ¢ 7975™] §( f — 0.25n) (4-114)

H -

The usefulness of (4-111) will be illustrated with an example.

Recalling that e/*™ ¢ 8(f — f;), we may inverse-Fourier-transform (4-114) to obtain the exponen-

EXAMPLE 4-20 tial Fourier series of x(z). The result is

As an example of the use of (4-111), we obtain the spectrum of the signal shown in Figure 4-19 and
of its periodic extension. We may write x,(f) as

x, (0= A() — II(t = 1.5) (4-112)

x(f) = 025 3, (sinc? 0.25n — sinc 0.25n ¢ /075™)¢/05m (4-115)

n=-—wm

Again, it is seen that the predominant term as n — % is sinc 0.25n exp( —j0.752m), which approaches

Using previously derived Fourier transform pairs for the triangle and the pulse, we obtain
zero as n~'. The student should plot the amplitude and phase spectra of this signal,

X,(f) = sinc? f — sinc fe P (4-113)
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4-12 Applications of the Hilbert Transform

{he Hilbert transform, ¥(f) of a signal x(t), was introduced in Example 4-14, and its Fourier transform
1 terms of x(f) was given as pair 16 of Table 4-2. We discuss two uses of the Hilbert transform in this

section.

Analytic Signals

An analytic signal z(¢) is a complex-valued signal whose spectrum is single-sided (i.e., is nonzero only
for £ > 0 or f < 0). Because of this property of its spectrum, it follows that the real and imaginary parts
of an analytic signal cannot be specified independently. It turns out that one is the Hilbert transform of
*he other. To show this, suppose that x(¢) and y(f) are the real and imaginary parts of z(f), respectively.
Let Z(f), X(f), and Y(f) be the Fourier transforms of z(#), x(f), and y(z), respectively. It follows that

Z(f) = X(f) + j¥(H (4-116)
being zero for f < 0, say, requires that .
Y(f) =jX(H, . <0
[note that X(f) and Y(f) may be complex]. If we double the positive-frequency portion of Z(f), it then
follows that

(4-117)

Y(f) = —jX(f, [f>0 (4-118)
so that
Y(f) = —j sgn(f) X(), all f (4-119)
and
Z(f) = {E’:Y("F)’ j:z g (4-120)
)‘.From (4-119) and pair 16 of Table 4-2, we see that
' ¥ =) [2(H=0, f<0] . @-121)

where x(f) is the Hilbert transform of x(t). Had we required that Z(f) be zero for f > 0 and nonzero for
F< 0, it follows that the signs in front of the j in (4-117) and (4-1 18) would have been reversed, so that

yiey = -3ty [2(f)=0, f>0] (4-122)

Analytic signals are of use in modulation theory applications, and in particular to describe single-side-
band modulated signals mathematically.

Causality

A causal system is defined as one whose output does not anticipate the input. If a causal system is also
linear and fixed, so that it can be characterized by an impulse response, k(1), the causality of the system
requires that

=0, <0 (4-123)

The Fourier transform of h(f) is the transfer function H(f) of the system and, from the dispussinn under
analytic signals, it should be apparent that the real and imaginary parts of H(f) cannot be independently
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specified, but are in fact Hilbert transforms of each other. To show this, consider h(f) written in terms
of its even and odd parts as

k() = h,(1) + h (D) (4-124)
where
h (1) = 3[A@®) + h(=0)] (4-125)
and
hy() = 3Ih(0) — h(=1)] (4-126)
In order that A(z) be zero for ¢ < 0, it follows that
h(1), t>0
ho(®) = {:}(13(:), t<0
= sgn(r) h,(t) (4-127)
Substitution of (4-127) into (4-124) results in .
) h(f) = h (1) + sgn(®) h (0 (4-128)

which, when Fourier-transformed with the aid of pair 14 of Table 4-2 and the multiplication theorem,
allows the transfer function to be written as

- =
Hp =B+ H.(f)

= H(f) - jHf) (4-129)
where H_(f) is the Hilbert transform of H,(f) = F[h,(0)].
4-13 The Discrete Fourier Transform g '

The Fourier transform of a continuous-time signal, x(t), as developed in Chapter 4, is

X(H = j x(t)e 1 dt
In this section we consider the approximation of (4-7) by a discrete sum, and illustrate fast MATLAB -
programs, called fast Fourier transform (FFT) algorithms to compute this discrete sum efficiently on z_t:
computer. In Chapter 10, several FFT algorithms will be developed mathematically. To this end, we as<)
sume that x(¢) is nonzero only over the finite time interval [0, T] and is bandlimited to W hertz. We sa\»\;_'c'.
earlier by means of several examples that it is not possible for a signal to be both strictly time Iimileci_{:j
and bandlimited. However, from a practical standpoint, we can define a bandwidth beyond which any:!
strictly time limited signal has negligible energy, and vice versa. It is in this context that we take x(¢) to
be time limited to T seconds and bandlimited to W hertz. Since x(f) is effectively both time limited and *
bandlimited, we may represent it, to a good approximation, in terms of samples of x(r).* This yields

N-1

x(t) = 2 x(nAHS(t — nAr)

n=0

(4-130)

*See Chapter 7 for a derivation of the Sampling Theorem.
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where Ar = T/N, with N being the total number of samples taken in [0, T]. In keeping with the band-
limited nature of x(1), it follows that At < 1/2W in order to avoid significant aliasing. Substituting
(4-130) into (4-7) and simplifying by interchanging orders of summation and integration, we find that

N-1
X(f) = 2 x(nAge >4 (@-131)
n=0

This summation is the Fourier transform of the discrete-time signal represented by the sample values
{x(nAf)) and is often expressed as a function of the variable @ = 27if At = 27, where r is the nor-
malized frequency, fif..

Since we are interested in digital computation of (4-131), we restrict f to the discrete set of values
{0, /T, 2/T, ..., (N — L)/T}. Thus setting f = k/T = k/(N Ar) in (4-131), where k takes on the discrete
set of values {0,1,2,..., N — 1}, we obtain

N-1
X.= Faeiol g0l ..N-1 (4-132)
n=0
The explicit dependence of x(n At) on At has been dropped, and both X(f) and x(f) are now replaced by
the sequences {X,} and {x,}, respectively. This is defined to be the discrete Fourier transform of the
sequence {x, = x(0), x; = #(A), . .., xy_, = x[(N — 1) At]}. Because it was derived using a sampling
approach, it should be clear that the sequence {X,} is periodic with period N. By replacing k byk+ N
in (4-132), we see that this is indeed the case.

The original time-domain sequence {X,,} is obtained from the sequence of frequency-domain sam-

ples {X,} by the inverse relationship

N-1 ;
X, = % ool T e SR 1 B R, S (4-133)
k=0

Thus (4-133) defines the inverse DFT operation. We must show that (4-133) with (4-132) substituted
produces an identity. Making this substitution, using [ for the summation index in (4-132), and sum-
ming over k first, we obtain

4 N-1 1 N=1 ok inmh
) N Yy, elnk/Nn (4-134)
i=0 im0

where the . means that the equality is being teSted.
The inside sum over k can be wriiten as
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>=N n=I (4-138)
N
Summarizing, we have shown that
N-1 N =1
Y= 2, eEWNeh o { T } & Ns, (4-139)
N k=0 0, n#1

where 8, = 1,n = 1,and 8, = 0, n # 1, is called the Kronecker delta function. Thus (4-134) becomes

1 N-1
x, L= Nxg, =x, (4-140)
NS

which shows that (4-132) and (4-133) are indeed inverse operations and therefore constitute a valid
transform pair.

Before finding a fast computational technique for evaluating (4-132) and (4-133), we note that they
are really equivalent operations. From (4-133) it follows that the complex conjugates of the time sam-
ples, x*, are given by

"

1 N-1
P B XTEIOS, RSl N 1 (4-141)
Nk=[l
so that
N-1 |
Nx* = 3 X}eiemtrk  p=01,...,N—1 (4-142)
k=0

Comparison of (4-142) and (4-132) show that algorithms used to calculate the forward transform can
also be used for the calculation of the inverse transform if the frequency samples X, are conjugated prior
to performing the computation. Since the result yields Nx* rather than x,, it must be conjugated and di-
vided by N. Often, however, the time samples are real and the conjugation of the result can be omitted.
Thus once we have developed a computationally efficient algorithm for calculating the sum given by
(4-132), we can use the same algorithm for computing the inverse DFT.

EXAMPLE 4-21 :

To illustrate the FFT program in MATLAB consider the Fourier transformation of square pulses of

PR, [Nk 4-135) various widths. The following MATLAB program does this for three different pulse widths. After FFT L f
2 = kEU e ] @ of a pulse, the inverse FFT is taken and this is also plotted to show that the FFT and inverse FFT are 3 i
) . ¥ indeed inverse operations. The output of the program is given in Figure 4-20. Note that the shorter ;= (
Now the sum of a geometric series 15 pulses have the higher frequency content and more overlap takes place in the middle of the spectral 3 fﬂ
N—1 1 = N plot (high frequencies). Also note that the FFTs are not symmetric about 0, but the normally nega- +.1
Ry (4-136) tive frequency portion is on the right of the pl e
NE 2 =% quency portion is on the right of the plot. 240 )
Letting x = explj2a(n — )/N], we find that % Example 4-21 - illustration of the FFT and inverse FFT [
_ ; i % by taking the FFT of a sguare pulse of various widths
gy LoemplBanaTlogg o (4-137) % "
T 1 - exp[j2a(n — D/N] T=4 v i
which follows because exp[j2a(n — )] = 1. If n = [, the result reduces to the indeterminate form 0/0, del_t=.2;

t=0:del_t:T; (- )
L_t=length(t);

so we must sum (4-135) directly for this special case. With k = {, the exponential in (4-1 35) is unity and
we obtain
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A del_£=1/T;

[ f max=(L_t-1)*del f;
{ f=0:del_f:f_max;
| for k=1:3

Summary

Summary 193

In this chapter we have considered the representation of signals in terms of the Fourier transform. One

£ ) atdehssn. &) class of signals to which the Fourier transform representation applies directly is energy signals. Power
| Kk 1=3* {k: 1 ) Fids signals can also be represented in terms of Fourier transforms, but their spectra contain impulses rep-
(g 2=3'k-1; resenting finite power (infinite energy) at discrete frequencies. Fourier transforms of energy signals
I 3=3vk; contain no impulsive components. The following are the major points made in this chapter.
=pls_fn({t - width i 3 ; : :
| ’;;fizx‘; [ ¢ width/2) /width); 1. A signal x(¢) and its Fourier transform X(f) are related by

Y X_inv=iffe(X);
( subplot(E.H,k"L}.stem(t.x).axis([ﬂ b A o2 T
| xlabel('t').ylabel('x(t)")
subplot(E.B,k_Z},stem[f.abs[x)).axis(LG f_max 0 10]1),...
1 xlabel('£'),ylabel ("X(£)"')
| subplot[3.3.k_3).stem(t.abs(x_inv)].axis{[O g A1 e
( xlabel('t'].ylabel('x_inv(t)') !
| end .

0 = [ X(ner df

X(f) = f (e dt

The former is the inverse telationship, and the latter is the direct relationship.
2. 1t is useful to represent the Fourier transform of a signal in terms of magnitude and argument

or phase as
x(f) = |X(le*”

where [X( )| plotted versus frequency is known as the amplitude spectrum, and 6(f) plotted ver-
sus frequency is called the phase spectrum.

3. If a signal is real, it follows that its amplitude spectrum is an even function of frequency and its
phase spectrum is an odd function of frequency. Furthermore, Fourier transforms of real, even
signals are real, even functions of frequency, while Fourier transforms of real, odd signals are
imaginary, odd functions of frequency.

4. The energy spectral density of a signal is its magnitude-squared Fourier transform.

5. Several useful theorems pertaining to Fourier transforms of signals are summarized in Table 4-1.

6. Several useful Fourier transform pairs are given in Table 4-2. An important conclusion can be
drawn from these transform pairs, namely that the duration and bandwidth of pulse-type signals
are inversely proportional.

7. The Fourier transform, Y(f), of the oitput of a fixed, linear system is related to its transfer func-
tion, H(f), and the Fourier transform of the system input, X(f), by

Y(f) = HNX(S)

By taking the magnitude squared of both sides of this equation, it follows that the energy spec-
tral density of input and output are related by

G, = HPPGLD

10

X(f)
o

(t)

X{(f)
(4]
X_inv
=
(8]

1 -

where

(®)

=Xk amd G =VNP

The energy contained in the output within a band of frequencies can be obtained by integrating
G,(f) over the frequency band of interest.

8. The transfer function of a fixed, linear system can be obtained by applying any one of the fol-
lowing techniques:

5

(1)
o
X(f)

X_inv
o
(411

®
0 OTO?W%I 0
0 2 4 0 5 0 2 4
t f t

FIGURE 4-20. FFTs (middle column) of square pulses (left column) and inverse FFT of the FFT (right
column).

(a) Fourier-transforming the differential equation relating output to input;
(b) Fourier-transforming the impulse response of the system; and
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(¢) Representing the lumped elements of the system in terms of their ac sinusoidal steady-state
impedances and using ac circuit analysis.

These three methods are illustrated pictorially in Figure 4-10.

9. Ideal filters are filters passing all frequency components of the input within the passband with
the same gain and the same lime delay, and rejecting completely all frequency components of
the input outside the passband. Usually, three types of ideal filters are defined; low-pass, high-
pass, and bandpass. Ideal filters are noncausal since their impulse responses exist before the
impulsive input is applied.

10. The rise time of a pulse can be defined in various ways. One common method is to define rise
time as the time it takes for a pulse to go from 10% to 90% of its final value. It is true in general
that a pulse's bandwidth and rise time are inversely proportional.

11. The Gibb's phenomenon refers to the property that the Fourier approximation to a pulse that un-
dergoes an abrupt change which requires infinite frequency content tends to overshoot the abrupt
change by about 9%. This overshoot phenomenon was shown to be directly attributable to the
bandlimiting of its spectrum, which can be viewed in the time domain as a convolution with a
sinc-fugction envelope. ‘

12. An analytic signal is one whose spectrum is single sided (i.e., is nonzero only for =< 0 or for
"f= 0). Such a signal has real and imaginary parts which are Hilbert transforms of each other.
The Hilbert transform of a signal is obtained by phase-shifting its positive-frequency spectral
components by — /2 rad and its negative-frequency components by 7/2 rad.

13. Tt can be shown that a causal system has a transfer function whose real and imaginary parts are
Hilbert transforms of each other. )

14. The fast Fourier transform is introduced as a means for computing signal spectra efficiently.

Further Reading

In addition to the references given in Chapter 3, the first reference will provide a refreshing approach to Fourier
transforms and their applications. The second reference gives extensive information on the FFT.

R. N. BRACEWELL, The Fourier Transform and Its Applications, 2nd ed. New York: McGraw-Hill, 1978.

W. W. SmrrH and J. M. SmrtH, Handbook of Real-Time Fast Fourier Transforms, Piscataway, NI: [EEE Press, 1995.

Problems

Section 4-1

4-1. Obtain the Fourier transforms of the following signals (a > 0):
(a) x (N = Ae =u(1);
(b) x,(1) = Ae*u(—1);
(c) x(n = Ae—ell:
(d) x, (1) = Ae~u(r) — Ae*u(—1).

4-2. Plot and compare the amplitude and phase spectra of x,(f) and x,(¢) in Problem 4-1.

4-3. Plot and compare the amplitude and phase spectra of x (1) and x(f) in Problem 4-1.

4-4. (a) Show that if x(¢) is real and even [i.e., x(f) = x{—n)], then the Fourier transform of x(t) may
be reduced to
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X(f) = 2[ x(t) cos 2mft dt
0

Therefore, conclude that X(f) is real and even in this case.
(b) Show that for x(¢) real and odd [i.e, x(1) = —x(—1)], then

X(f) = -2 Jw x(t) sin 2mft dt

Therefore, conclude that X(f) is imaginary and odd if x(z) is real and odd.

4-5. (a) Suppose we want the Fourier transform of a complex signal x(¢) = x,(¢) + jx,(£), where x(1)
is the real part and x,(f) is the imaginary part. Show that X(f) can be written as

X = [ xal cos2afrae+ [ (0 sin 2

—-m

+ "U () cos 2t di ~ J' xglf) sin 2aft dt

—g

(b) Provide an argument for the fact that if x(f) = x(—1) (i.e., even), then the Fourier transform
reduces to

X(f) = jm xp(t) cos 2mft dt + jr x,(1) cos 2mft dt

= J'm x(t) cos 2mft dt

—m

(¢) Show that if x(¢) = —x(—7) (i.e., odd), then the Fourier transform reduces to

X(f)

Il

f ) S 2t e — j r xg(t) sin 2mft dt

= —j J x() sin 2aft dt

4-6. Using the Fourier transform integral, find Fourier transforms of the following signals:
(a) x () = rexp(—ar) u(t), a > 0;
(b) x,(5) = 2 u(®) u(l — 1)
() x,(r) = exp(—at) u(®) u(l — 1), a = 0.

4-7. Compute and plot the spectrum of the pulse with raised half-cosine leading and trailing edges as

shown.
x(1)

r 4
A ! A f s
-t 21 +cos (@~ +6)]
L |
/2 0 w2 :

FIGURE P4-7




