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Preface 

The philosophy of the previous edition of Signals and Systems is retained in the fourth edition by con¬ 

tinuing to stress the systems approach so that students are provided the tools and techniques for under¬ 

standing and analyzing both continuous-time and discrete-time linear systems. While the systems 

approach is applicable to a very broad class of problems, liberal examples based on traditional circuit 

theory are included in the book to illustrate the various systems analysis techniques that are introduced. 

The most obvious difference between this edition of Signals and Systems and previous editions is 

the inclusion of Matlab for solving many of the in-chapter worked examples and the addition of prob¬ 

lems and exercises at the end of chapters that require the use of computational aids. The selection of 

Matlab as a computer tool was an easy choice for us. Over the past several years Matlab has become 

widely used within the engineering curricula and has been integrated into a number of courses. Matlab 

provides very powerful computational and graphical capabilities. Matlab code is very concise and as a 

result it is possible to express complex ideas using very few lines of code. The many toolboxes available 

provide the support necessary for investigating problems in a variety of areas. As a result, once a student 

has learned to use Matlab effectively as a computational and visualization tool, the student can continue 

to use it throughout his or her career. The availability of a Student Edition that is low-cost, windows-based, 

and well-documented was considered a very important attribute of Matlab for this application. All of 

the exercises included in this book can be worked using the Student Edition, Version 5. 

In developing the Matlab examples, problems, and computer exercises that appear in this edition 

we kept two considerations in mind. First we strongly believe that computer support can aid learning 

by allowing students to attack problems in different ways and to consider a wider variety of problems. 

Students still need to understand basic analysis and synthesis techniques and therefore need to work a 

large number of problems using traditional (pencil and paper) methods. We therefore chose to use 

Matlab as a supplement with the in-chapter example problems rather than as a replacement for the 

traditional analysis techniques. Taking this approach also allows instructors to use the book without 

committing to the use of Matlab. In this case, students having interest in the Matlab applications 

can pursue the Matlab applications as individual study. Students are encouraged to use Matlab for 

problem solving where appropriate. For the most part, the end-of-chapter problems do not designate 

the use of Matlab or any other tool for problem solving. We have, however, placed a section entitled 

“Computer Exercises” at the end of each chapter. Most of these exercises extend the text material and 

give the student an opportunity to bring some originality into the problem solving effort. 

The second consideration was a very strong desire to keep it simple. Matlab, as stated previously, 

is a very compact language. As a result it is possible to combine many operations into a single line of 

code. Such operations often lead to code that is very difficult to comprehend without considerable ef¬ 

fort. We have therefore avoided complicated statements and data structures. In addition we have avoided 

the use of graphical user interfaces. The code contained in this book, therefore, is not very elegant but 
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vve hope that it is easy for the student to understand. The main effort of the student at this point should 

be to understand the concepts of signal and system theory. Spending considerable time writing code or 

trying to understand code is not the best use of student time. 

The authors have developed a software supplement to Signals and Systems: Continuous and Dis¬ 

crete, 4e. This supplement contains copies of all m-files used in this book. This software is available 

free of charge via file transfer protocol (FTP) from The Mathwork’s world wide web site. The files may 

be found at 

ftp://ftp.mathworks.com/pub/books/tranter/ 

Another feature of the fourth edition of Signals and Systems is that all of the end-of-chapter sum¬ 

maries are written as a point-by-point review of the important topics covered in the chapter. Such a list¬ 

ing can be a valuable study guide for the student. In addition, a number of new problems are contained 

in the fourth edition. 

The organization of the fourth edition is identical to that of the third edition. The first seven chap¬ 

ters deal with continuous-time linear systems in both the time domain and the frequency domain. Ref¬ 

erences to discrete-time signals and systems are made where appropriate so that the students can 

appreciate the relationship between discrete-time and continuous-time signals and systems. The princi¬ 

pal tool developed for time-domain analysis is the convolution integral. Frequency-domain techniques 

include the Fourier and the Laplace transforms. An introduction to state-variable techniques is also in¬ 

cluded, along with treatments of both continuous-time and discrete-time state equations. The remain¬ 

der of the book deals with discrete-time systems, including z-transform analysis techniques, digital filter 

analysis and synthesis, and the discrete Fourier transform and fast Fourier transform (FFT) algorithms. 

A new section on computer-aided filter design has been added to Chapter 9. 

This organization allows the book to be covered in two three-semester-hour courses, with the first 

course being devoted to continuous-time signals and systems and the second course to discrete-time sig¬ 

nals and systems. Alternatively, the material can be used as a basis for three quarter-length courses. With 

this format, the first course could cover time- and frequency-domain analysis of continuous-time sys¬ 

tems. The second course could cover state variables, sampling, and an introduction to the z-transform 

and discrete-time systems. The third course could deal with the analysis and synthesis of digital filters 

and provide an introduction to the discrete analysis and synthesis of digital filters and provide an intro¬ 

duction to the discrete Fourier transform and its applications. Other groupings of topics are possible. 

The assumed background of the student is mathematics through differential equations and the usual 

introductory circuit theory course or courses. Knowledge of the basic concepts of matrix algebra would 

be helpful but is not essential. An appendix is included to bring together the pertinent matrix relations 

that are used in Chapters 6 and 7. We feel that in most electrical engineering curricula the material pre¬ 

sented in this book is best taught at the junior level. 

Plan of the Text 

We begin the book by introducing the basic concepts of signal and system models and system classifi¬ 

cations. The idea of spectral representations of periodic signals is first introduced in Chapter 1 because 

we feel that it is important for the student to think in terms of both the time and the frequency domains 

from the outset. 

The convolution integral and its use in fixed, linear system analysis by means of the principle of 

superposition are treated in Chapter 2. This chapter deals with system modeling and analysis in the 

time domain. The evaluation of the convolution integral is treated in detailed examples to provide re- 
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inforcement of the basic concepts. Calculation of the impulse response and its relation to the step and 

ramp responses of a system are discussed. The concepts of system modeling and system simulation are 

also treated in Chapter 2. This chapter concludes with a section devoted to the numerical solution of 

system equations using SIMULINK. 

The Fourier series is introduced in Chapter 3. We have emphasized the elementary approach of ap¬ 

proximating a periodic function by means of a trigonometric series and obtaining the expansion coeffi¬ 

cients by using the orthogonality of sines and cosines. We do this because this is the first time many 

students are introduced to the Fourier series. The alternative generalized orthogonal function approach 

is included as a section at the end of this chapter for those who prefer it. The concept of the transfer func¬ 

tion in terms of sinusoidal steady-state response of a system is discussed in relation to signal distortion. 

The Fourier transform is the subject of Chapter 4, with its applications to spectral analysis and sys¬ 

tem analysis in the frequency domain. The concept of an ideal filter, as motivated by the idea of dis¬ 

tortionless transmission, is also introduced at this point. The Gibbs phenomenon, window functions, 

and convergence properties of the Fourier coefficients are also included. In addition, the DFT has been 

introduced in Chapter 4 to be covered at the option of the instructor. 

The Laplace transform and its properties are introduced in Chapter 5. Again, we have tried to keep the 

treatment as simple as possible because this is assumed to be a first exposure to the material for a major¬ 

ity of students, although a summary of complex variable theory is provided in Appendix C so that addi¬ 

tional rigor may be used at the instructor’s option. The derivation of Laplace transforms from elementary 

pairs is illustrated by example, as is the technique of inverse Laplace transformation using partial-fraction 

expansion. Optional sections on the evaluation of inverse Laplace transforms by means of the complex 

inversion integral and an introduction to the two-sided Laplace transform are also provided. 

The application of the Laplace transform to network analysis is treated in detail in Chapter 6. The 

technique of writing Laplace-transformed network equations by inspection is covered and used to re¬ 

view the ideas of impedance and admittance matrices, which the student will have learned in earlier cir¬ 

cuits courses for resistive networks. The concepts of zero-state response and zero-input response are 

discussed along with their relationship to transient and steady-state responses. The transfer function is 

treated in detail, and the Routh test for determining stability is presented. The chapter closes with a treat¬ 

ment of Bode plots and block diagram algebra for fixed, linear systems. 

In Chapter 7 the concepts of a state variable and the formation of the state-variable approach to sys¬ 

tem analysis are developed. The state equations are solved using both time-domain and Laplace trans¬ 

form techniques, and the important properties of the solution are examined. As an example, we show 

how the state-variable method can be applied to the analysis of circuits. Discrete-time state equations 

and the concepts of controllability and observability are briefly introduced. 

The final three chapters provide coverage of the topics of discrete-time signal and system analysis. 

Chapter 8 begins with a study of sampling and the representation of discrete-time systems. The sam¬ 

pling operation is covered in considerable detail. This is accomplished in the context of formulating a 

model for an analog-to-digital (A/D) converter so that the operation of quantizing can be given some 

physical basis. A brief analysis of the effect of quantizing sample values in the A/D conversion process 

is included as an introduction to quantizing errors. As a bonus, the student is given a basis upon which 

to select an appropriate wordlength of an A/D converter. Both ideal and approximate methods for re¬ 

constructing a signal from a sequence of samples are treated in detail. The z-transform, difference equa¬ 

tions, and discrete-time transfer functions are developed with sufficient rigor to allow for competent 

problem solving but without the complications of contour integration. The material on the classification 

of discrete-time systems has been written in a way that parallels the similar material for continuous¬ 

time systems. 

Chapter 9 allows students to use their knowledge of discrete-time analysis techniques to solve an 

important class of interesting problems. The idea of system synthesis, as opposed to system analysis, is 
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introduced. Discrete-time integration is covered in considerable detail for several reasons. First, the idea 

of integration will be a familiar one. Thus students can appreciate the different information gained by 

a frequency-domain analysis as opposed to a time-domain analysis. In addition, the integrator is a basic 

building block for many analog systems. Finally, the relationship between trapezoidal integration and 

the bilinear z-transform is of sufficient importance to warrant a discussion of trapezoidal integration. 

The synthesis techniques for digital filters covered in this chapter are the standard ones. These are syn¬ 

thesis by time-domain invariance, bilinear z-transform syntheses, and synthesis through Fourier series 

expansion. Through the application of these techniques, the student is able to gain confidence in the 

previously developed theory. Since several synthesis techniques depend on knowledge of analog filter 

prototypes, Appendix E, which discusses several different filter prototypes, is included. Computer- 

aided digital filter design is also included in this chapter for the first time in this edition. 

The discrete Fourier transform (DFT) and its realization through the use of fast Fourier transform 

(FFT) algorithms is the subject of Chapter 10. Both decimation-in-time and decimation-in-frequency 

algorithms are discussed. Several examples are provided to give the student practice in performing the 

FFT operations. We believe that this approach best leads to a good understanding of the FFT algorithms 

and their function. Basic properties of the DFT are summarized and a comparison of the number of op¬ 

erations required for the FFT as compared to the DFT is made. Several applications of the DFT are sum¬ 

marized and the use of windows in supressing leakage is discussed. This chapter closes with a discussion 

and illustration of FFT algorithms with arbitrary radixes and the chirp-z transform. 

The book also contains a number of optional sections, denoted by an asterisk, that go deeper into 

specific topics than is often customary for a junior-level course. These topics can be eliminated with¬ 

out loss of continuity. 

A complete solutions manual, which contains solutions to all problems and computer exercises, is 

available from the publisher as an aid to the instructor. The solutions manual for the fourth edition is in 

a typeset format and makes extensive use of Matlab for a large number of problems and for solution of 

computer exercises. Answers to selected problems are provided in Appendix H as an aid to the student. 
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CHAPTER 1 
Signal and System Modeling Concepts 

1-1 Introduction 

This book deals with systems and the interaction of signals in systems. A system, in its most general 

form, is defined as a combination and interconnection of several components to perform a desired task.* 

Such a task might be the measurement of the acceleration of a rocket or the transmission of a message 

from New York to Los Angeles. The measurement of the acceleration might make use of visual obser¬ 

vation of its position versus time. An equally unsophisticated solution to the message delivery problem 

might use a horse and rider. Obviously, more complex solutions are possible (and probably better). Note, 

however, that our definition is sufficiently general to include them all. 

We will be concerned primarily with linear systems. Such a restriction is reasonable because many 

systems of engineering interest are closely approximated by linear systems and very powerful tech¬ 

niques exist for analyzing them. We consider several methods for analyzing linear systems in this book. 

Although each of the methods to be considered is general, not all of them are equally convenient for 

any particular case. Therefore, we will attempt to point out the usefulness of each. 

A signal may be considered to be a function of time that represents a physical variable of interest as¬ 

sociated with a system. In electrical systems, signals usually represent currents and voltages, whereas 

in mechanical systems, they might represent forces and velocities (or positions).* In the example men¬ 

tioned above, one of the signals of interest represents the acceleration, but this could be integrated to 

yield a signal proportional to velocity. Since electrical voltages and currents are relatively easy to 

process, the original signal representing acceleration, which is a mechanical signal, would probably be 

converted to an electrical one before further signal processing takes place. Examples illustrating these 

remarks will be given in the next section. 

Just as there are several methods of systems analysis, there are several “different ways of represent¬ 

ing and analyzing signals. They are not all equally convenient in any particular situation. As we study 

methods of signal representation and system analysis we will attempt to point out useful applications 

of the techniques. 

So far, the discussion has been rather general. To be more specific and to fix more clearly the ideas 

we have introduced, we will expand on the acceleration measurement and the message delivery prob¬ 

lems already mentioned. 

The Institute of Electrical and Electronics Engineers dictionary defines a system as “an integrated whole even though com¬ 
posed of diverse, interacting structures or subjunctions.” 

-More generally, a signal can be a function of more than one independent variable, such as the pressure on the surface of an 
airfoil, which is a function of three spatial variables and time. 

1 



2 Ch. 1 / Signal and System Modeling Concepts 

1 -2 Examples of Systems 

EXAMPLE 1-1_ 

An accelerometer, consisting of a spring-balanced weight on a frictionless slide, is shown schemat¬ 

ically in Figure 1-1. It is to be used to measure the longitudinal acceleration of a rocket whose ac¬ 

celeration profile is shown in Figure l-2a. (a) If the weight used to indicate acceleration is 2 g, 

determine the spring constant K such that the departure of the weight from its equilibrium position 

at the maximum acceleration of 40 m/s2, achieved at t = 72 s from launch, is 1 cm. (b) If a minimum 

increment of 0.5 mm of movement by the weight can be detected, to what minimum increment of 

acceleration does this correspond? (c) Derive the profile for the longitudinal velocity of the rocket 

and sketch it. 

FIGURE 1-1. System for measuring the acceleration of a rocket. 

(b) Velocity profile 

FIGURE 1-2. Acceleration and velocity profiles for rocket. 
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Solution: 

(a) The force, Ma, on the weight due to acceleration is balanced by the force, Kx, due to the spring 

tension. Thus 

Ma = Kx (1-1) 

where x is the departure from the equilibrium position, taken to be x = 0, M is the mass of the 

weight, K is the spring constant, and a represents acceleration of the rocket. Solving for K, we 

obtain 

K = 
Mamw _ (0.002 kg)(40m/s2) 

0.01m 
= 8 kg/s2 

(b) With Ax ; = 0.5 mm = 0.0005 m, we have 

. _ K Axmm (8)(0.0005) 

0.002 
= 2 m/s2 

(1-2) 

(1-3) 

(c) For t > 0, let the acceleration as a function of time be represented as1" 

o 

t> t0 
(1-4) 

where t0 = 72 s and a = 5/9 m/s3 for this example. The velocity is obtained by integration of 

ait), which yields 

t^tn 

t > tn 
(1-5) 

Using the given value for a, the velocity at t = tQ (burnout) is 

5 (72)2 
vr(72) = 

9 2 
= 1,440 m/s = 4,724 ft/s = 3,221 mi/hr d-6) 

The velocity as a function of time is shown in Figure 1 -2b. 

EXAMPLE 1-2 _ 

To determine velocity by means of the accelerometer of the previous example, an operational am¬ 

plifier integrating circuit is used as shown in Figure 1-3. The wiper of the potentiometer at the in¬ 

put is tied to the accelerometer weight and can provide a maximum input voltage of 0.1 V depending 

on whether the acceleration is positive or negative. The operational amplifier is ideal (infinite in¬ 

put resistance and infinite gain). However, its maximum output is limited to 10 V. Choose RC such 

that the operational amplifier output will not be overdriven for the maximum velocity expected (as¬ 

sume Rp< < R). 

Solution: Kirchhoff’s current law at the node joining i?, C, and the amplifier input can be ex¬ 

pressed as 

V-' ~R~ + C^(vt-va). 0 0-7) 

tBut for a few exceptions, the signals in this chapter are assumed to be zero for t < 0. 
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FIGURE 1 -3. Integrator circuit used to determine velocity from the accelerometer analyzed in Example 1 -1. 

However, vl ~ 0 at the negative input of the operational amplifier since its infinite gain constrains 

voltages at its inverting and noninverting inputs to be approximately equal, and the positive input is 

grounded. Thus Kirchhoff’s current law equation, when rearranged, simplifies to 

^0(o = - 
RC 

dX (1-8) 

where the capacitor is assumed initially uncharged. From the previous example, we take the voltage 

at the potentiometer wiper to be 

14(f) = /3f, 0 < t < t0 (1-9) 

where vs(t0) = 0.1 V, giving /3 = 0.1/72 « 1.4X 10~3 V/s. Thus, at f0, the operational amplifier out¬ 

put voltage is 

t>oOo) 
1 0 

RC 2 
(1-10) 

Setting this equal to —10 V, which is the constraint imposed by the operational amplifier at its out¬ 

put, and solving for RC, we obtain 

= 0*o = (0.1/72)(72)2 

20 “ 20 
0.36 s (Ml) 

For R = 50 kft, the required value of C is 7.2 /ulF. 

EXAMPLE 1-3 _ 

Another way to carry out the integration operation of the previous example (or any signal process¬ 

ing function, for that matter) is by sampling the voltage analog to the acceleration signal each T sec¬ 

onds, quantizing the samples so that they can be represented numerically, and performing the 

integration numerically. It will be shown in Chapter 8 that all the information present in a signal can 

be represented by sample values taken sufficiently often if the signal is bandlimited (a term to be pre¬ 

cisely defined later). Two simple integration methods that might be used are the rectangular and 

trapezoidal rules. These are illustrated in Figure 1-4. The former approximates the area under a curve 

as the sum of a series of “boxcars” or rectangular areas, and can be carried out as the algorithm 

v[(n + 1 )T] = v(nT) + Ta[(n + 1 )T] (M2) 
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a(t) 

FIGURE 1-4. Illustration of discrete-time integration rules. 

where v(nT) is the approximation to the velocity at sampling time nT, T is the sampling interval, and 

a(nT) is the acceleration at sampling time nT. If trapezoidal integration is used, the area under a curve 

is approximated as a sum of contiguous trapezoids of width T seconds. The algorithm for finding the 

velocity from the acceleration in this case is given by 

v[(n + 1)7] = v(nT) + {a(nT) + a[(n + 1)7]}(772) (1-13) 

TABLE 1-1 
Numerical Results for Example 1-2 

n nT, s v(nT), rect. v(nT), trap. 

0 0 0 0 

1 4 8.9 4.4 

2 8 26.7 17.8 

3 12 53.3 40.0 
4 16 88.9 71.1 

5 20 133.3 111.1 
6 24 186.7 160.0 

7 28 248.9 217.8 

8 32 320.0 284.4 

9 36 400.0 360.0 

10 40 488.9 444.4 

11 44 586.7 537.8 
12 48 693.3 640.0 

13 52 808.9 751.1 
14 56 933.3 871.1 
15 60 1066.7 1000.0 

16 64 1208.9 1137.8 
17 68 1360.0 1284.4 

18 72 1520.0 1440.0 
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Note that these algorithms are recursive in that the next approximate value for the velocity is com¬ 

puted from the old approximate value plus the sample value for the acceleration. The recursive struc¬ 

ture can be removed by writing the equations for n = 0, 1, 2, . . . and doing a substitution of the one 

for ft = 0 into the one for n — 1, then this result into the one for n = 2, and so on. In the case of the 

trapezoidal rule, two sample values for the acceleration are used—the present one and the immedi¬ 

ate past one. Note, also, that the T in the argument of the various sampled signals is unnecessary— 

the index ft is the independent variable. More will be said about integration algorithms in Chapter 9. 

To finish this example, we give a table of values for both algorithms. Note that for the acceleration 

profile shown in Figure 1-2, the trapezoidal rule gives exact results. Had the acceleration profile not 

been linear, this would not have been the case. 

The starting point of any systems analysis or design problem is a model which, no matter how 

refined, is always an idealization of a real-world (physical) system. Hence the result of any sys¬ 

tems analysis is an idealization of the true state of affairs. Nevertheless, if the model is sufficiently 

accurate, the results obtained will portray the operation of the actual system sufficiently accurately 

to be of use. 

The previous examples illustrate the concept of a system and the design of systems to accomplish desired 

tasks. Each example involved the concept of a signal In Example 1-1, the signal was the displacement of the 

acceleration measuring weight. This was coupled to the operational amplifier system of Example 1-2 to pro¬ 

duce voltage signals, one proportional to acceleration and the other proportional to velocity. 

Another concept demonstrated by the first two examples is that of a subsystem. When taken sepa¬ 

rately, we can speak of each as a system, whereas both taken together also compose a system. To avoid 

confusion in such cases, we refer to the separate parts (accelerometer and signal-processing integrator 

in this case) as subsystems. The third example illustrated the idea of digital signal processing, a con¬ 

cept explored later in the book. 

After considering one more example, which is somewhat different from the first three, the remain¬ 

der of this chapter will be concerned with an introduction to useful signal models. In Chapter 2, meth¬ 

ods for describing and analyzing systems in the time domain will be examined. Throughout the rest of 

the book we consider other methods of signal and system analysis. 

EXAMPLE 1-4 Communications Link _ 

Figure 1-5 is a pictorial representation of a two-way communications link as might exist, for ex¬ 

ample, between New York and Los Angeles. It might consist entirely of earth-based links such as 

wire lines and microwave links. Alternatively, a relay satellite could be employed. Regardless of the 

particular mechanization used, the systems analyst must decide on the most important aspects of the 

physical system for the application and attempt to represent them by a model. 

Let us suppose that the link employs a synchronous-orbit satellite repeater, stationed 35,784 km 

above the earth’s equator. At this altitude the satellite is stationary with respect to the earth’s sur¬ 

face since the period of the satellite’s orbit is equal to one day. Let us also suppose that the analyst 

is concerned primarily about echoes in the system due to reflections of the electromagnetic-wave 

carriers at the satellite and at the receiving ground station. Assume that the transmitter and receiver 

are equidistant at a slant distance d = 40,000 km from the satellite, and that the delay (up or 

down) is 

_ d _ (40,000 km)(1000 m/km) 

c 3 X 108 m/s 

= 0.13 s 
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where c = 3 X 108 m/s is the velocity of electromagnetic propagation in free space. The slant dis¬ 

tance d accounts for the satellite being located above the earth’s equator midway between the 

ground stations, each of which is assumed to be at a latitude of 40° north. The signal received at 

the satellite is 

ssat(0 = _ t), (l-14a) 

where x(t) is the transmitted signal and [0, 7] is the interval of time over which the transmission takes 

place. The parameter a is the attenuation, which accounts for various system characteristics as well 

as the spreading of the electromagnetic wave as it propagates from the transmitter antenna. A por¬ 

tion of ssat(t) is reflected and returned to the New York ground station terminal to be received by the 

receiver at that end; we represent it as 

SrefiW = - 2t), 2t < t < T + 2t (1- 14b) 

where /3 is another attenuation factor. The remainder of sS3Lt(t) is relayed to the Los Angeles ground 

station after processing by the satellite repeater. A portion of this signal may be reflected, but we will 

assume its effect to be negligible compared to that of a/3x(t — 2r) when received at the New York 

station. Thus a speaker at New York will hear 

s(t) — x(t) + a(3x(t — 2t), 0 < t < T + 2t (1-15) 

That is, the speaker will hear his undelayed speech as well as an attenuated version of his speech de¬ 

layed by approximately 

AT = 2t = 0.26 s 

Psychologically, the effect of this can be very disconcerting to a speaker if the delayed signal is suf¬ 

ficiently strong; it is virtually impossible for the person to avoid stuttering. Thus a systems analyst 

would proceed by relating a and f3 to more fundamental systems parameters and designing for an 

acceptably small value of a/3. 
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1-3 Signal Models 

Examples of Deterministic Signals 

In this book we are concerned with a broad class of signals referred to as deterministic. Deterministic 

signals can be modeled as completely specified functions of time. For example, the signal 

x(t) 
At1 

B + ?’ 
— 00 < t < 00 (1-16) 

where A and B are constants, shown in Figure l-6a, is a deterministic signal. An example of a deter¬ 

ministic signal that is not a continuous function of time is the unit pulse, denoted as 11(0 and defined as 

n(0 
A 

1 
2 

otherwise 
d-17) 

It is shown in Figure l-6b. 

A second class of signals, which will not be discussed in this book, are random signals. They are sig¬ 

nals taking on random values at any given time instant and must be modeled probabilistically. A ran¬ 

dom signal is illustrated in Figure l-6c. 

Continuous-Time Versus Discrete-Time Signals 

The signals illustrated in Figure 1-6 are examples of continuous-time signals. It is important to note that 

“continuous time” does not imply that a signal is a mathematically continuous function, but rather that 

it is a function of a continuous-time variable. 

In some systems the signals are represented only at discrete values of the independent variable (i.e., 

time). Between these discrete-time instants the value of the signal may be zero, undefined, or of no in¬ 

terest. An example of such a discrete-time or sample-data signal is shown in Figure l-7a. Often, the in¬ 

tervals between signal values are the same, but they need not be. 

A distinction between discrete-time and quantized signals is necessary. A quantized signal is one 

whose values may assume only a countable^ number of values, or levels, but the changes from level to 

level may occur at any time. Figure l-7b shows an example of a quantized signal. A real-world situa¬ 

tion that can be modeled as a quantized signal is the opening and closing of a switch. 

Discrete-time signals will be considered in Chapter 8. The following example provides an illustra¬ 

tion of two such signals. 

EXAMPLE 1-5 

Two common discrete-time signals are the unit pulse and unit step signals. The first is defined by the 

equation* 

s[n] = A ”r°. (i-i8) 
[0, otherwise 

and the second by the equation 

r l I1’ n~° 

“M = to, n < 0 d-19) 

where n takes on only integer values. 

<A countable set is a set of objects whose members can be put into one-to-one correspondence with the positive integers. For 

example, the sets of all integers and of all rational numbers are countable, but the set of all real numbers is not. 

*The brackets are used to indicate a discrete-time signal. 
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nco 

r 
i 
i 
i 

1 
2 0 

I 
i 
I 

1 
2 

(b) Unit pulse signal 

t 

FIGURE 1-6. Graphical representation of two deterministic continuous-time signals and a random 
signal. 

Other discrete-time signals may be built from these elementary signals. For example, a pulse con¬ 
sisting of five l’s in a row starting at n = 0 and ending at n = 4 and 0’s elsewhere may be repre¬ 
sented in terms of the discrete-time unit step as 

p[n\ = u[n] — u[n — 5] = 
0 < n < 4 

otherwise 

The student should verify this by sketching u[n], u[n — 5], and their difference. 
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xs(t) 

(a) Sample-data signal 

Xd(t) 

0 11 12 13 14 r5 16 tj 18 

(b) Quantized signal 

FIGURE 1-7. Sample-data, or discrete-time, and quantized signals. 

Periodic and Aperiodic Signals 

A signal x(t) is periodic if and only if 

x(t + T0) = x(t), -oo <t<oo (1-20) 

where the constant T0 is the period. The smallest value of T0 such that (1-20) is satisfied is referred to 

as the fundamental period, and is hereafter simply referred to as the period. Any deterministic signal 

not satisfying (1-20) is called aperiodic. 

A familiar example of a periodic signal is a sinusoidal signal that may be expressed as 

x{t) = A sin(277f0^ + 6), —00 < t < 00 (1-21) 

where A,/0, and 6 are constants referred to as the amplitude, frequency in hertz,t and relative phase, re¬ 

spectively. For simplicity, co0 = 2nf0 is sometimes used, where co0 is the frequency in rad/s. The period 

of this signal is T0 = 2tt/o)0 = l//0, which can be verified by direct substitution and use of trigonomet¬ 

ric identities as follows. We wish to verify that 

xlt + ~)=x(t), all t (1-22) 
V *V 

But 

/ 2tt\ A . \ I 2tr\ 1 
x M-= A sin M-+ 6 

\ 0)0 J L V O>0 J J 

= A sin(oj0t + 277 +0) 

= A[sin((u0/L + 6) cos 2u + cos((o0t + 0) sin 2tt\ (1-23) 

^ne hertz is one cycle per second. 
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(a) Sinusoidal signal 

(b) Triangular signal 

xst(t) 

(c) Sawtooth signal 

FIGURE 1-8. Various types of periodic signals. 

Since cos 2tt = 1 and sin 2ir = 0, the required relationship for periodicity is verified. Note that 

ro = 2ttIo)q is the smallest value of T0 such thatx(r) = x(t + T0). Several types of periodic signals are 

illustrated in Figure 1-8 together with the sinusoidal signal. 

The sum of two or more sinusoids may or may not be periodic, depending on the relationships be¬ 

tween their respective periods or frequencies. If the ratio of their periods can be expressed as a rational 

number, or their frequencies are commensurable,* their sum will be a periodic signal. 

*Two frequencies,/! and/2, are commensurable if they have a common measure. That is, there is a number /0 contained in 
each an integral number of times. Thus, if/0 is the largest such number, 

f\ = nifo and h = %/o 

where nx and n2 are integers; f0 is called the fundamental frequency. The periods, T{ and T2, corresponding to/, and /2, are there¬ 
fore related by TX!T2 = n2lnv 
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EXAMPLE 1-6 _ 

Which of the following signals are periodic? Justify your answers. 

(a) xx(t) = sin 1077t 

(b) x2(t) = sin 20771 

(c) x3(t) — sin 3It 

(d) x4(t) = xx(t) + x2(t) 

(e) x5(t) = xx{t) + x3(t) 

Solution: Only (e) is not periodic. To show that waveforms xx(t), x2(t), and x3(t) are periodic, we 

note that 

sin(co0t + 0) = sin cu0 t + = sm a)0t (1-24) 

if 6 is an integer multiple of 2rr. Taking the smallest such value of 6, we see that the (fundamental) 

period of sin(co0t + 6) is 

T0 = 
2rr 

(1-25) 

Thus the periods of xx(t\ x2(t), and x3(t) are 1/5, 1/10, and 27t/31 s, respectively. 

The sum of two sinusoids is periodic if the ratio of their respective periods can be expressed as a 

rational number. Thus xA(t) is periodic. Indeed, we see that the second term goes through two cycles 

for each cycle of the first term. The period of xA{t) is therefore 1/5 s. 

After a little thought, it is apparent that there is no T0 for which x5(t) = x5(t + T0), because the 

ratio of the periods of the two separate terms is not a rational number (i.e., their frequencies are 

incommensurable). 

Phasor Signals and Spectra 

Although physical systems always interact with real signals, it is often mathematically convenient to 

represent real signals in terms of complex quantities. An example of this is the use of phasors. The stu¬ 

dent should recall from circuits courses that the phasor quantity 

X=Aejd = A/6 (1-26) 

is a shorthand notation for the real, sinusoidal signah 

x(t) - Re(Xeja)ot) = A cos(co0t +0), -oo < t < oo (1-27) 

We refer to the complex signal 

x(t) = Aej(<<°°t+e\ — 00 < t < oo 

= Xej^ (1-28) 

tWe could also project the sinusoidal signal onto the imaginary axis. Projection onto the real axis is used throughout this book, 

however. 



1-3 / Signal Models 13 

as the rotating phasor signal." It is characterized by the three parameters A, the amplitude; 6, the phase; 

and (o0 > 0, the radian frequency. Using Euler’s theorem, which is exp(ju) = cos u + j sin u, we may 

readily show that x(t) is periodic with period T0 = 27r/co0$ 

In addition to taking its real part, as in (1 -27), to relate it to the real, sinusoidal signal A cos (o)0t + 0), 

we may relate x(t) to its sinusoidal counterpart by writing 

x(t) = \i(t) + (1-29) 

A A 
= —gK°>ot+e) -|-£-/O(/+0) —oo < t < oo 

2 2 

which is a representation in terms of conjugate, oppositely rotating phasors. These two procedures, rep¬ 

resented mathematically by (1-27) and (1-29), are illustrated schematically in Figure 1-9. These ex¬ 

pressions for x(t) = A cos(co0t + 6) are referred to as time-domain representations. 

Note that (1-29) can be thought of as the sum of positive-frequency and negative-frequency rotating 

phasors. This mathematical abstraction results from the fact that it is necessary to add complex conju¬ 

gate quantities to obtain a real quantity. It is emphasized that negative frequencies do not physically ex¬ 

ist, but are merely convenient mathematical abstractions that result in nicely symmetric equations and 

figures such as (1-29) and Figure l-9b. 

fA rotating phasor signal is not necessarily associated with any physical quantity that rotates. It is simply a mathematical con¬ 
venience to represent sinusoids by the Re(-) operation. 

^Complex algebra basics: Many times students will do more work than necessary in complex algebra manipulations. This 
footnote hopefully will give some pointers to minimize such manipulations. A complex number may be represented in the alter¬ 
native forms of cartesian and polar: 

X = a + jb = ReJ6 = R cos 0 + jR sin 0 

where a is its real part, b its imaginary part, R its magnitude or modulus, and 0 its argument or angle. The latter equation follows 
by virtue of Euler’s relationship, or exp(jd) = cos(0) + j sin(0). Matching real and imaginary parts, we see that Re(X) = a = 
R cos(0) and Im(X) = b = R sin(0), where Re(-) and Im(-) denote the real and imaginary parts, respectively. The inverse rela¬ 
tionships are R = {a2 + b2)1/2 and 0 = tan~l(b/a). Most programmable calculators have built-in routines for going back and forth 
between the cartesian and polar forms. Consider a second complex number, defined by 

Y = c + jd = SeR> — S cos (f> + jS sin </> 

Addition and subtraction are facilitated with cartesian representation; i.e., 

X ± Y = (a + jb) ± {c + jd) = (a ± c) + j(b ± d) 

Multiplication and division may be carried in either cartesian or polar form, but usually the polar form is most convenient. For 
example, multiplication in cartesian form becomes 

XY = (a + jb){c + jd) = (ac + j2bd) + j{bc + ad) = (ac — bd) + j(bc + ad) 

where j2 = — 1 has been used. In polar form, multiplication is more simply performed as 

XY = (Rej°)(Sej<t>) = RSeM+V = RS cos(0 +</>)+ jRS sin(0 + (f)) 

Division in cartesian form is facilitated by the process of rationalization as 

X _ a + jb _ (a + jb)(c — jd) _ (ac + bd) + j(bc — ad) _ ac + bd . be — ad 

Y c + jd (c + jd)(c - jd) c2 + d2 c2 + d2 + ^ c2 + d2 

This fairly lengthy process is shortened considerably by representation of the numbers in polar form: 

X Reje R i(e., R / x R . , 
Y = S7^ = ~s e = 5 cos(0 - 4>)+ / 5 sm(0 - 4>) 

As a numerical example, consider X = 8 + j6 and Y = 3 + j4. Their sum is (8 + y'6) + (3 + j4) = 11 + y'10 and their difference 

is (8 + jb) - (3 +74) = 5 + j2. Their product computed in cartesian form is (8 + j6)(3 + j4) = (24 — 24) +;'(18 + 32) = 

j50. In polar form it is {10 exp[tan_1(3/4]}{5 exp[tan_1(4/3)]} = 50 exp(/7r/2) =j50. Their quotient in polar form is 

{10 exp[tan-K3/4)]}/{5 exp[tan"1(4/3)]) = 2 exp {/[tan-1 (3/4) - tan-!(4/3)]} = 2 exp[-y0.284] = 1.92 - y0.56, which fol¬ 

lows by Euler’s relation. If the rationalization procedure is used, the same result in cartesian form is obtained. 
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Im 

(a) Projection of a phasor onto the real axis 

Im 

(b) Addition of complex conjugate phasors 

FIGURE 1-9. Two ways of relating a phasor signal to a sinusoidal signal. 

An alternative representation for x(t) is provided in the frequency domain. Since x(t) = 

A exp\j(co0t + 0)] is completely specified by A and 6 for a given value of/0, this alternative frequency- 

domain representation can take the form of two plots, one showing the amplitude A as a function of fre¬ 

quency/, and the other showing 0 as a function of/ Because x(t) depends only on the single frequency/0, 

the resulting plots each consist of a single point or “line” at/ = /0, as illustrated in Figure l-10a. Had we 

considered a signal that is the sum of two phasors, each plot would have had two points or lines present. 

The plot of amplitude versus frequency is referred to as the single-sided amplitude spectrum. The modifier 

“single-sided” is used because these spectral plots have points or lines only for positive frequencies. 

If a spectral plot corresponding to (1-29) is made, spectral lines will be present at / = /0 and at 

/= -/0, since x(t) is obtained as the sum of oppositely rotating phasors. Spectral plots for the single 

sinusoidal signal under consideration here are shown in Figure 1 - 10b. Such plots are referred to as 

double-sided amplitude and phase spectra. Had a sum of sinusoidal components been present, the spec¬ 

tral plots would have consisted of multiple lines. Note that because of the convention of taking the real 

part [see (1-27)], any signal expressed as a sine function must first be converted to a cosine function be¬ 

fore obtaining the spectrum. For this purpose, the identity sin(u>0/L + 6) = cos(co0t + 6 — ir/2) is useful. 

It is important to emphasize two points about double-sided spectra. First, the lines at negative fre¬ 

quencies are present precisely because it is necessary to add complex conjugate phasors to obtain the real 

sinusoidal signal A cos(oo0t + 6). Second, we note that the amplitude spectrum has even symmetry about 
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Amplitude Phase 

fo 0 fo 

(a) Single-sided 

Amplitude Phase 

(b) Double-sided 

FIGURE 1-10. Amplitude and phase spectra for the signal A cos(co0t + 6). 

the origin, and the phase spectrum has odd symmetry. This symmetry is again a consequence of jc(t) be¬ 

ing a real signal, which implies conjugate rotating phasors must be added to obtain a real quantity. 

Figures l-10a and b serve as equivalent spectral representations for the signal A cos(o)0t + 9) if we are 

careful to identify the spectra plotted as single-sided or double-sided, as the case may be. We will find later 

that the Fourier series and Fourier transform lead to spectral representations for more complex signals. 
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Phase shift 
Amplitude (radians) 

(a) Single-sided 
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(b) Double-sided 

FIGURE 1-11. Amplitude and phase spectra for Example 1-6. 

which results in the amplitude and phase spectral plots shown in Figure 1-1 la. To plot the double¬ 

sided amplitude and phase spectra, we write x(t) as the sum of complex conjugate rotating phasors. 

Recalling that 2 cos u = exp(ju) + exp(—ju), we obtain 

x(t) — 2 exp j(^207rt — + 2 exp — /^2077f —— j (1-32) 

from which the double-sided amplitude and phase spectral plots of Figure 1-1 lb result. 

EXAMPLE 1-8 _ 

I As an example involving a sum of two sinusoids, consider the spectrum of the signal 

x(t) = 2 cos(107rt + 7t/4) + 4 sin(3077? - tt/6) (l-33a) 
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Changing the second term to a cosine function gives 

x(t) — 2 cos(107rt + it/A) + 4 cos(307rt — tt/6 ~ n/2) 

= 2 cos(1077? + 7t/4) + 4 cos(307rt — 27t/3) (l-33b) 

This can be written in terms of the real part of the sum of rotating phasors in preparation for plotting 

the single-sided spectra as 

x(t) = Re[2 ^(io^+vr/4) + 4^(30^-277/3)] (l-33c) 

In order to plot the double-sided spectra, we write the signal as a sum of counterrotating phasors as 

x(t) = g7'(1077t+7r/4) e-j{ 107T/+ 77/4) -f 2^7(30777-277/3) -|- 2e~./'(30777-277/3) (l-33d) 

Single-sided and double-sided spectral plots are shown in Figure 1-12. 

Singularity Functions 

An important subclass of aperiodic signals is the singularity functions, which we now discuss. We be¬ 

gin by introducing the unit step and unit ramp functions and using them to represent more complicated 

signals, such as in the acceleration in Example 1-1. 

Consider the unit step function, u_l(t), defined as 

u{t) = u^fyt) = It t < 0 

t > 0 
d-34) 

The value of u(t) at t = 0 will not be specified at this time except to say that it is finite. Other singular¬ 

ity functions are defined in terms of u__x(t) by the relations 

l = . -2, -1,0,1,2,. (l-35a) 

Amplitude 

2! 

Amplitude 

0 5 15 
- /, Hz 

t 2t 
J_I_ 4_\ 
-15 -5 0 5 15 

/, Hz 

(a) Single-sided amplitude 
spectrum 

(c) Double-sided amplitude 
spectrum 

(b) Single-sided phase (d) Double-sided phase 
spectrum spectrum 

FIGURE 1-12. Spectra for Example J\-% 
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or 

*i+l (0 = 

_ duft) 

dt 
(l-35b) 

Figure 1-13a shows the unit step. We may graphically integrate it to obtain u_2(t), shown in Figure 

1-13b. This singularity function is referred to as the unit ramp function, r(t), and can be expressed al¬ 

gebraically as* 

r{t) = u 
t, 

0, 

0 

t < 0 
d-36) 

Carrying this discussion one step further, we see that a unit parabolic function is given by 

t> 0 

t < 0 
(1-37) 

This singularity function is sketched in Figure 1-13c. It is clear that the unit ramp and unit parabolic 

functions would be convenient for representing the acceleration and velocity of Example 1 -1. 

We may shift any signal on the time axis simply by replacing t by t — t0. If t0 > 0, the signal is shifted 

to the right; if t0 < 0, it is shifted to the left. For example, replacing t by t — \ in the definition of the 

unit step, (1-34), we obtain 

u(t - \) 
ro, t - \ < o 
U. t-\>0 

(l-38a) 

or 

!>| (i-38b) 

Similarly, replacing t by t + i results in a unit step that “turns on” at t = -J. Using this technique, we 

can represent other signals in terms of singularity functions. For example, the unit pulse function, de¬ 

fined by (1-17), can be represented as 

U(t) - u(t + l) ~ u(t - 

For the definition of 11(0 given by (1-17), it would be consistent to define u(0) = 1. 

We note, also, that replacing t by - t turns a function around.* Doing this in (1-36), we obtain 

K-0 
f-t, t< o 

to, t > 0 
(1-40) 

which is a ramp that starts at t = 0 and increases linearly as t decreases. 

Also, we can obtain a change of scale on the abscissa simply by multiplying t by a constant, say, [3. 

If (3 > 1, the signal is compressed. If f3 < 1, the signal is expanded. 

To summarize, consider an arbitrary signal represented as x((3t + a). We rewrite it as 

x((3t + a) = x[(3(t + a/i8)] (1-41) 

iThe subscripts are needed on (l-35a) and (l-35b) to identify different members of the class of singularity functions. Since 

the step and ramp are very commonly used members, they are often denoted by the special symbols u{t) and r(f), respectively. 

+The negation of the independent variable is often referred to folding, since the resulting reversal of the signal in time can 

be viewed as folding a paper on which the signal has been plotted along its ordinate and viewing it from behind the paper. 
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If t0 A a/p is positive, x(/) is shifted left by a/p\ if t0 is negative, it is shifted right by a/p. If p < 0, x(Z) 

is reversed or reflected through the origin. If \p\ > 1, x(/) is compressed; if \p\ < 1, x(t) is expanded. 

An example will illustrate these remarks. 

EXAMPLE 1-9 _ 

Consider the following signals. Sketch each, discussing how the individual plots are obtained. 

(a) xft) = 11(21 + 6) 

(b) x2(/) = cos(207Tt — 5 7r) 

(c) x3(t) = r(—0.5t + 2) 

Solution: For (a), we write 

*i(0 = n[2 (/ + 3)] (1-42) 

by factoring out the 2 multiplying t. The 3 added to t means that the rectangular pulse function is 

shifted left by 3 units, and the 2 results in the original 1-unit-wide pulse function being compressed 

by a factor of 2 to a i-unit-wide pulse function. The result is shown in Figure 1-14a. 

For (b), the 2077 multiplying t is factored out to give 

x2(/) = cos[207r(/ — 0.25)] 0-43) 

which shows that x2(/) is a cosine waveform shifted right by 0.25 time unit (assumed to be seconds) 

with a period of T0 = 2tt/cd0 = 2rr/207r = 0.1 s. This is a shift of 2.5 periods. The result is sketched 

in Figure l-14b. 

For x3(/), we write 

x3(/) = r[—0.5(/ — 4)] (1-44) 

which says r(t) is reflected about t = 0, expanded by a factor of 2 (1/0.5 = 2), and delayed or shifted 

right 4 units. A sketch is shown in Figure l-14c. 

It is sometimes useful to check results by writing out the definition of a singularity function. For 

part (c), this takes the form 

r( —0.5/ + 2) 
f -0.5/ + 2, 

to, 

f — 0.5(7 — 4), 

lo, 

-0.51 + 2 > 0 

otherwise 

/ < 4 

otherwise 

(l-45a) 

(l-45b) 

From this, it is clear that x3(t) = 0 for / > 4. Checking a few values, we see that x3(3) = 0.5, 

x3(2) — 1, and x3(0) = 2 so that the result is a reflected or reversed ramp starting at / = 4 and in¬ 

creasing 1 unit for each 2-unit decrease in /. 

EXAMPLE 1-10 ___ 

Express the signals shown in Figure 1-15 in terms of singularity functions. 

Solution: One possible representation for xa(t) is 

xa(t) = u(t) - r(t - 1) + 2r(t - 2) - r(t - 3) + u(t - 4) - 2u(t - 5) (1-46) 
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n(2/ + 6) 

l- 

i— 

_1_1_ _1_1 _1_1_ 
-5 -3 0 

(a) 

(b) 

r(-0.5f+ 2) 

The step function u{t) is unity for t > 0. At t = 1, the ramp function —r(t— 1) goes downward with 

slope —1. The sum of ramps —r(t — 1) + 2r(t - 2) goes upward with slope +1 starting at t = 2. 

The ramp — r{t - 3) then flattens out this upward ramp starting at t = 3, and the step u(t — 4) in¬ 

creases the plateau of unity height to a value of 2. The final step, 2 u(t - 5), “shuts off’ the preced¬ 

ing sum of singularity functions so that x(t) = 0 for t > 5. 

For xb(t) we use a product representation. A possible representation is 

xb(t) = 2u(t)u(2 — t) + u(t — 3)u(5 — t) (1-47) 

The product of unit step functions 2u{t)u{2 - t) forms the first pulse, and the product u(t — 3)w(5 — t) 

forms the second pulse. Note that 2 — t) and u{5 — t) are step functions that are unity from t — — 

to t = 2 and t — 5, respectively, and zero thereafter. 

The student should attempt to find other possible representations for xa(i) and xb(t). 
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xa(t) 

xb(t) 

1 -- 

0 2 3 4 5 

FIGURE 1-15. Signal to be expressed in terms of singularity functions. 

EXERCISE _ 

Represent the acceleration and velocity of the rocket of Example 1-1 in terms of singularity functions. 

Answers: a(t) = 40u_2(t/12)u_l(12 — t) m/s2. v(t) = ~)u_?>(t)u_l(12 — t) + 1440u_l(t — 72) m/s. 

(Other answers are possible.) 

We turn next to the unit impulse function or delta function f 8(t), which has the properties 

8(t) = 0, t±0 (l-48a) 

and 

f 8(t) dt = 1 (l-48b) 
J —oo 

Equation (l-48b) states that the area of a unit impulse function is unity, and (l-46a) indicates that this 

unity area is obtained in an infinitesimal interval on the f-axis. 

The motivation for defining a function with these properties stems from the need to represent phe¬ 

nomena that happen in time intervals short compared with the resolution capability of any measuring 

apparatus used, but which produce an almost instantaneous change in a measured quantity. Examples 

are the nearly instantaneous increase in voltage across a capacitor placed across the terminals of a bat¬ 

tery, or the nearly instantaneous change in velocity of a billiard ball struck by a rapidly moving cue ball. 

In the first example, the voltage across the capacitor is the result of an extremely large current flowing 

for a very short time interval, whereas the billiard ball’s velocity changes almost instantaneously due to 

the transfer of momentum from the cue ball at the moment of impact. The current flowing into the ca¬ 

pacitor and the force transmitted by the cue ball are examples of quantities that are usefully modeled 

iThe two names stem from the use of this function in engineering and physics; the term “delta function” is associated with Dirac, 

a physicist, who introduced the notation 8{t) into quantum mechanics. We will refer to 8(t) simply as a unit impulse function. 
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by impulse functions. In neither case are we able to measure, nor are we particularly interested in, what 

happens at exactly the moment the action takes place. Rather we are able to observe only the conditions 

beforehand and afterward. 

Other examples of physical quantities that are modeled by mathematical entities having infinitely 

small dimensions and infinite “weight” are point masses and point charges. 

Since it is impossible for any conventional function to have the properties (1-48), we attempt to pic¬ 

ture the unit impulse function by considering the limit of a conventional function as some parameter 

approaches zero.f For example, consider the signal 

2e ’ 

0, kl > e 

(1-49) 

which is shown in Figure 1-16. We see that, no matter how small e is, 8e(t) always has unit area. Fur¬ 

thermore, this area is obtained as the integration is carried out from t = — e to t = e. As e —> 0 this area 

is obtained in an infinitesimally small width, thus implying that the height of 8ft) —> °° such that unity 

area lies between the function and the t-axis. This limit is shown as a heavy arrow in the figure. 

Many other signals exist that provide heuristic visualizations for 8(t) in the limit as some parameter 

approaches zero. Examples are 

m i 
6 

sin(73t/e) 2 

7Tt/ 6 

which is sketched in Figure 1-17a, and 

= li1 " l'l/€)/e’ 
M<« 
otherwise 

d-50) 

d-51) 

fThe present discussion is aimed at providing an intuitive understanding of the unit impulse function. We will give a more 
formal mathematical development shortly. 

FIGURE 1-16. Square-pulse approximations for the unit impulse function. 



24 Ch. 1 / Signal and System Modeling Concepts 

FIGURE 1-17. Two approximations for the unit impulse. 

shown in Figure 1 - 17b. Although the three families of functions illustrated in Figures 1-16 and 1-17 are 

symmetric about t = 0, an equally good example of an approximation for a unit impulse function in 

terms of the properties (1-48) is e~l expwhich is asymmetric about t — 0. These examples 

illustrate that it is not the actual behavior of 8(t) at t = 0 that is important but rather the integral of 8(f). 

Note that by integrating the square-pulse approximation of Figure 1-16 between — and t we obtain 

/I s-(a) dA={?; ',1V (i-52) 
In the limit as e —> 0, the right side becomes a unit step function. It will be shown later that u0(t) of (1- 

35b) and 8(t) have the same properties as expressed by (1-48). 

EXERCISE _ 

Verify that all the families of approximating functions 8e(t) discussed above satisfy (1-48) in the 

limit as e —» 0. 
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The considerations above illustrate that the unit impulse function is not really a function in the nor¬ 

mal sense. Indeed, it was not until the 1950s that Laurent Schwartz’s pioneering work with the theory 

of distributions provided a firm mathematical basis for the unit impulse function. A more formal math¬ 

ematical definition of the unit impulse function proceeds by defining it in terms of th& functional 

x(t)8(t) dt = x(0) d-53) 

where x{t) is continuous at t = 0. That is, 8{t) is a functional as defined by (1-53), which assigns the 

value jc(0) to any function x(t) continuous at the origin. !1 

Several useful properties of 8(t) can be proved by insisting that (1-53) obey the formal properties of 

integrals. For example, by considering 8(at), where a is a constant, we may show that 

8(at) = -pj 8(t) (1-54) 

by changing variables of integration and considering the cases a > 0 and a < 0 separately. If we let 

a — — 1 in (1-54), we have 

8(~t) = 8(t) (1-55) 

which agrees with the definition of an even function. Even though 8(t) is not a function in the conven¬ 

tional sense, we may make use of (1 -55) in manipulations involving unit impulse functions as long as we 

remember that it was a consequence of the defining relation (1-53) and the formal properties of integrals. 

A second useful property of the delta function is the sifting property, which is 

J x(t)8(t ~ t0) dt = x(tQ) (l-56a) 

where x(t) is assumed to be continuous at t = t0. This property can be proved from (1-53) by letting 

A = t — t0 in the integral (l-56a) to obtain 

x(A + f0)8(A) d\ = x(tQ) (1-5 6b) 

If we define y(A) — v(A + r0), this integral is the same as (1-53); y(A) is continuous at A = 0 as required 

because x(t) is continuous at t = t0. 

An alternative form of (1-53) which will prove useful in Chapters 2 and 3 is 

x(A)8(t — A) dX = x(t) d-57) 

which is obtained by simple renaming of variables in (l-56a) and by using the “even” property of the 

delta function expressed by (1-55). The form of the integral in (1-57), known as a convolution, is dealt 

with in more detail in Chapter 2. 

Integrals with finite limits can be considered as special cases of (l-56a) by defining x(t) to be zero 

outside a certain interval, say t{ < t < t2. Thus (l-56a) becomes 

t\ < to < t2 

otherwise 
d-58) 

-For a further discussion, see A. Papoulis, Signal Analysis (New York: McGraw-Hill, 1977), or R. N. Brace well, The Fourier 

Transform and Its Applications, 2nd ed. (New York: McGraw-Hill, 1978). 
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A fourth property of 8(t) is that 

x(t)S(t - t0) = x(r0)S(t - f0) (1-59) 

if x{t) is continuous at t = t0, which follows intuitively from 8(t — t0) = 0 everywhere except at 

t=t0. 

We may find integrals similar to (l-56a) involving derivatives of x(t). For example, assuming x(t) 

to have a first derivative that is continuous at t = tQ and using the chain rule for differentiation, we 

obtain 

^ - t0)] = x(t)8(t - t0) + x(t)8(t - t0) (1-60) 

where the overdot denotes differentiation with respect to time.f Assuming x(t) to be continuous at t = t0 

and using (1-59), we have 

Jt - f0)] = x(t0)8(t - f0) + x(t)S(t - t0) (1-61) 

Integrating from t = tx to t = t2, where tl < t0< t2, we obtain 

J'h d rh # rh 

— [x(t)8(t - t0)] dt = x(t0)8(t - t0) dt + x(t)8(t - t0) dt, 
tx dt Jti Jti 

or 

ti < t0 < t2 

. rt2 
= x(t0) + x(t)8(t - t0) dt, < 

where we have used 

l Vt ~ dt = " fo) = 0, < 10 < *2 

and 

rr2 . . rf2 

x(t)8(t — r0) dr = x(r0) 8(t — r0) A = x(t0), h < tQ < t2 

d-62) 

d-63) 

d-64) 

which follow because 8(t — t0) = 0 everywhere except at t = t0 and x(t) is continuous at t — t0, so that 

x(t0) is defined. Rearranging (1-62), we obtain 

rh 

x(t)8(t — t0) A = — x(t0), tx < t0 < t2 (1-65) 
dtx 

In general, if the nth derivative of x(t) exists and is continuous at t = t0, it can be shown that 

rh 

x(i)8{n)(t - t0) dt = (-1 )nx(n\t0), h<tQ< t2 (1-66) 

4 

•The derivative of the unit impulse function is sometimes referred to as the unit doublet, or simply doublet. It can be visual¬ 
ized by graphically differentiating the triangular approximation for the unit impulse shown in Figure 1-17b. Again, we empha¬ 
size that 8{t) is to be interpreted in the context of an integral similar to (1-53). It is not simply two opposite-sign impulses located 
at the origin. 
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where 

x(n\to) = ^\t_t and ^ - fo) = S [5(? ■ fo)] 

A unit impulse function and its derivatives may be treated as generalized functions in the sense that if 

f{t) = a08(t) + ai8(t) + • • • + an8in)(t) (l-67a) 

and 

g(0 = b08(t) + \8(t) + ■■■ + bn8<n>(t) (l-67b) 

then 

fit) + g(t) = (ao + b0)8(t) + (ax + bx)h(t) + • • • (1-68) 

Equation (1-68) applies also if av bl9 a2, b2, a3, b3,... are functions that are continuous at t = O.1" 

EXERCISE 

We now return to the assertion made earlier that 

u(t) = = f uQ(X) dX = f S(A) dX (1-69) 
d —00 J —00 

or, equivalently, that 

m = dJf- d-70) 
dt 

tThis, again, is formally proved by using (1-53). Another question that may vex the student is, “What about 0 • 5(0?” To show 
that this is zero, use (1-53) to write 

| 0 • S(t)x(t) dt = 0 • J 8(t)x(t) = 0 ■ x(0) = 0 

where x(t) is continuous at t = 0. 
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which is (l-35b) with i = — 1. Letting x(t) be continuous at t = 0, we consider 

dx(t) du(t) 00 r00 
x(t) --- -- dt = x(t)u(t) - u(t) 

3 —00 ■'—00 

r dx(t) 

■xM-ln--dTd' 

= *(°°) - *(0lo 

= x(oo) — x(oo) + x(0) 

= x(O) 

dt 
dt 

d-71) 

which was obtained through integration by parts. That is, du(t)/dt has the same property as 8(t) as ex¬ 

pressed by (1-53). 

1-4 Energy and Power Signals 

Quite often the particular representation used for a signal depends on the type of signal involved. It is 

therefore convenient to introduce a method for signal classification at this point. It is useful to classify 

signals as those having finite energy and those having finite average power. Some signals have neither 

finite average power nor finite energy. 

To introduce these signal classes, suppose that e(t) is the voltage across a resistance R producing a 

current i(t). The instantaneous power per ohm is 

P(t) = ~~ = i\t) (1-72) 

Integrating over the interval \t\ < T, we define the total energy and the average power on a per ohm ba¬ 

sis as the limits 

and 

E = lim [ i\t) dt 
T~>°0 J_r 

joules (1-73) 

P = I'Wrl/*'’*" watts d-74) 

respectively. 

For an arbitrary signal x(t), which may, in general, be complex, the total energy normalized to unit 

resistance is defined as 

E = lim \x(t)\2 dt joules (1-75) 
T-^CC J ji 

and the average power normalized to unit resistance is defined as 

1 CT 
P 4 lim _ - \x(t)\2 dt watts 

jH—> 00 2,1 J __ y 
(1-76) 
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Based on the definitions (1-75) and (1-76), the following classes of signals are defined: 

1. x(t) is an energy signal if and only if 0 < £ < °°, so that P = 0. 

2. x(t) is a power signal if and only if 0 < P < °°, thus implying that E = 

3. Signals that satisfy neither property are therefore neither energy nor power signals.1 

EXAMPLE 1-11 

Consider the signal 

xt(t) = Ae~atu(t), a > 0, 

where A and a are constants. Using (1-75), we can verify that x{(t) has energy 

A2 
E = 

Letting a —> 0, we obtain the signal 

2 a 

x2(t) = Au(t) 

which has infinite energy but finite power, as can be verified by applying (1-76): 

(1-77) 

(1-78) 

(1-79) 

(1-80) 

Thus x2(t) is a power signal. 

EXAMPLE 1-12 _ 

Consider the periodic, sinusoidal signal 

x(t) = A cos(a>0t + 9) (1-81) 

The normalized average power of this signal is 

1 CT 
P = lim A2 cos2(a>0t + 6) dt (l-82a) 

T-a °° l J ~ y 

Using appropriate trigonometric identities, we may rewrite this integral as 

P = lim A; f [- + \ cos 2(w0t + 0)] dt = ~ (l-82b) 
T->co 21 J_T Z Z Z 

which follows because 

A2 rT 
lim — cos 2(<o0t + 6) dt = 0 (1-83) 
t->oo 4T J_T 

fIt is easy to contrive examples of signals with infinite energy and zero average power that are nonzero over a finite range of 
t, but we classify such signals as neither energy nor power. An example is x{t) — t ^ 1, and zero otherwise. 
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Average Power of a Periodic Signal 

We note that there is no need to carry out the limiting operation to find P for a periodic signal, since an 

average carried out over a single period gives the same result as (1 -76); that is, for a periodic signal, x (t), 

P rto+^o 

P = Y J Mol2* (1-84) 
0 t0 

where T0 is the period. The proof of (1-84) is left to the problems. 

EXAMPLE 1-13 

From (1-84), the power of a rotating phasor signal of the form (1-28) is 

r "l"27r/ (Oq 

P = J( ° 

2 77 Jt fo 

\Ae^+ef dt = /i2 (1-85) 

Using Euler’s theorem, we may write 

AeKm°,+e) = A cos(ft>of + ff) +jA sin(o>0f + 0) (1-86) 

The power of the real and imaginary components is A2/2. Thus we may associate half the power in 

a rotating phasor with the real component and half with the imaginary component. 

1-5 Energy and Power Spectral Densities 

It is useful for some applications to define functions of frequency that when integrated over all fre¬ 

quencies give total energy or total power, depending on whether the signal under consideration is, re¬ 

spectively, an energy signal or a power signal. For an energy signal, a function of frequency when 

integrated that gives total energy is referred to as an energy spectral density. Denoting the energy spec¬ 

tral density of a signal x(t) by G(/), we have, by definition, that 

E = T G(f) df (1-87) 
J — 00 

where E is the signal’s total energy. We will give a means for obtaining G(/) for an arbitrary energy sig¬ 

nal in Chapter 4. 

Denoting the power spectral density of a power signal x{t) by S(f), we have, by definition, that 

p=\ S(f) df (1-88) 

where P is the average power of the signal. From our consideration of amplitude spectra for periodic 

signals, we can deduce what their power spectral densities are like. Since, for a single sinusoid of am¬ 

plitude A and frequency /0, the two-sided amplitude spectrum has a line at —/0 of amplitude A/2 and a 

line at/0 of amplitude A/2, we associate half of the power of the sinusoid, or A2/4, with the frequency 

—f0 and the other half, or A2/4, with the frequency/0. Since the power spectral density is integrated to 

give total average power, its representation at/ = —/0 must be (A2/4) 8(f + /0) and that at/ = f0 must 

be (A2/4) 8(f — /0). A plot is shown in Figure l-18a. Generalizing, for any signal possessing a two- 

sided line (amplitude) spectrum, we obtain the corresponding power spectral density by taking each 

line of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function located 
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S(f) 

~fo 0 fo 

(a) Power spectral density for a single sinusoid 

S(f) 
2 ,5 2 5 

4 4 

4 _i_4_ 

o
 i -5 ( ) : 5 10 15 

(b) Power spectral density for the sinusoidal sum of Example 1-14 

FIGURE 1-18. Power spectral densities for sinusoidal signals (numbers by impulses show weights). 

at that particular frequency to get its power spectral density at that frequency. Note that the power spec¬ 

tral density of any signal is an even function of frequency, and it possesses no phase information about 

the signal. 

EXAMPLE 1-14 ___ 

Consider the signal 

x(t) = 10 cos(107rt + 7t/7) 4- 4sin(307rf + tt/8) (1-89) 

(a) Plot its power spectral density. 

(b) Compute the power lying within a frequency band from 10 Hz to 20 Hz. 

Solution: 

(a) The power spectral density is shown in Figure 1-18b. Analytically, 

S(f) = 25<5(/ + 5) + 258(f- 5) + 48(f- 15) + 48(f+ 15) (1-90) 

(b) The power in the frequency band from 10 to 20 Hz is obtained by integrating S(f) from/ = — 20 

Hz to -10 Hz and from/ = 10 Hz to 20 Hz since two-sided spectra show equal portions of the 

signal’s spectrum on either side off = 0. The result is 8 W. The total power of the signal is 

P = f S(f) df = 50 + 8 = 58 W d-91) 
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1-6 Matlab in Signal Analysis 

It is handy to be able to verify the material presented in this chapter on signal analysis and in fu¬ 

ture chapters on system analysis with computer programs. This book will utilize Matlab for this 

purpose for several reasons, not the least of which is that it includes very good plotting capabilities. 

Matlab is an array-based programming language in that every variable is treated as a matrix. Ap¬ 

pendix A gives several helpful hints for using Matlab. The reader is also referred to The Student 

Edition of Matlab, Version 5 and Matlab User's Guide, Version 5 listed in the references at the end 

of this chapter. 

The purpose of this section is to introduce several Matlab functions that are used throughout the 

book for signal and system analysis. These include functions used in Matlab and user-defined func¬ 

tions to be given here. 

One has the option of executing Matlab statements one at a time from the command window, cre¬ 

ating a program and saving it in an M-file for future executation, or creating a function and executing 

that from the command window. Several useful functions are given below for generating the singular¬ 

ity and other elementary functions defined in this chapter: 

% Function for generating a unit step 

% 

function u = stp_fn(t) 

u = 0.5 *(sign(t+eps) + 1); % The constant eps is used to ensure 

% against the sign argument being 0, 

% where it’s value is 0 giving u = 0.5 

Note that a sign, or signum, function is used to generate this step because it can handle vectors. 

The same result could have been achieved by using a for loop, but since Matlab is an interpretive 

language, this is considerably less efficient than using vector operations. The function stp_fn may 

be used for generating several other signals defined in this chapter. For example, function pro¬ 

grams for generating a unit impulse approximation, a ramp function, and a square pulse signal are 

given below: 

% A function generating a rectangular approximation for 

% the unit impulse function; width is delta 

% 

function imp = impls_fn(t, delta) 

imp = (stp_fn(t+delta/2)-stp_fn(t-delta/2))/delta; 

% Function for generating a unit ramp 
0/ 
/o 

function r = rmp_fn(t) 

r=Q.5*t.*(sign(t)+l); 

% This function generates a unit-high pulse centered at zero 

% and extending from -1/2 to 1/2 
0/ 
/o 

function y = pls_fn(t) 

y = stp_fn (t+0.5 ) - stp_fn (t - 0.5 - eps) ; 
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EXAMPLE 1-15 ____ 

To demonstrate the use of these functions we generate and plot the following: 

1. A step starting at t = 2 and going to the right; 

2. A unit impulse occuring at t— —3.5; 

3. A ramp of slope 2 going backward from t — 4. 

Note that to give the appearance of continuous-time signals in many cases we must choose the inde¬ 

pendent variable values sufficiently close together so that the plots appear to be smooth curves. The 

normal plot routine for Matlab connects adjacent points with straight lines. In the cases considered 

here, the signals chosen will appear as they should when plotted because they consist of straight line 

segments. The Matlab program listing below is in the form of an M-file. What is given below is ex¬ 

actly what one sees in the command window of The Student Version of Matlab if the “echo on” switch 

command is executed first (a switch command stays in effect until the off switch command is executed, 

in this case “echo off’ where the quotation marks are not typed but are used here to set the command 

off from the rest of the text). The results of the program are given in the plots shown in Figure 1-19. 

EDU»clexl5 

% M-file for Example 1-15 

% 

t=-10:.005:10; 

x=stp_fn(t - 2); % Generate step starting at t=2 

y=impls„fn(t+3.5, 0.05); % Generate unit impulse at t=-3.5 

z=2*rmp_fn(4 - t); % Generate backwards ramp starting at t = 4 

subplot(3,1,1),plot(t,x),axis([-10 10 0 1.5]), xlabel(’t’), 

ylabel('u(t - 2) ' ) 

1.5 -1-1-1-1-1-1-1-1-1 

1 - ----—---- 

0.5 - 

0_i_i_i_i_i__i_i_i_ 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

t 

FIGURE 1-19. Various elementary signals computed and plotted with the aid of Matlab. 

10 
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subplot(3,1,2),plot(t,y),axis([-10 10 0 25]),xlabel('t'), 

ylabel (' delta (t + 3)') 

subplot(3,1,3),plot(t,z),xlabel('t'),ylabel('2r(4 - t)') 

Further examples of elementary signal generation and the building up of more complex signals 

from these are suggested in the computer exercises at the end of the chapter. 

EXAMPLE 1-16 __ 

As a final example, we plot a sample-data signal using a special plotting feature of Matlab. The 

chosen signal is a sinewave of frequency 0.5 hertz sampled at 0.2 second intervals. What appears in 

the Matlab command window when the program is executed is given below (assuming “echo on” 

has been executed first). The output plot, which uses a stem plot function, is shown in Figure 1-20. 

EDU» clexl6 

% M-file for Example 1-16; plots a sample-data sinewave 

% 

del_t =0.2; 

TO = 2; 

n = 0:10; 

x = sin(2*pi*n*del_t/T0); 

stem (n*del__t, x) , xlabel ( ' n*del_t' ) , ylabel(' x (n*del_t) ’) 

FIGURE 1-20. A sample-data sinewave plotted with the aid of Matlab. 
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Summary 

In this chapter, the concepts of a signal and a system were introduced. Two simple examples of systems 

were given. The remainder of the chapter then concentrated on models for signals. The following are 

the main points made in this chapter. 

1. A system is a combination and interconnection of several components to perform a desired task. 

Systems may be interconnected with each other to form other systems. In such cases the com¬ 

ponent systems are referred to as subsystems. 

2. A signal is a function of time that represents a physical variable of interest. Signals may repre¬ 

sent voltages, currents, forces, velocities, displacements, etc. 

3. Signal processing is necessary to convert signals to more convenient forms and to produce de¬ 

sired quantities from measured quantities. An example was provided with the accelerometer, 

where the displacement of the mass, which was proportional to acceleration, was converted to 

an electrical voltage proportional to the acceleration, and this voltage was integrated to produce 

a signal proportional to velocity. A second integration would have produced a signal proportional 

to distance. 

4. Signals can be deterministic or random. A deterministic signal is modeled as a completely speci¬ 

fied function of time, whereas a random signal takes on a random value at any given time in¬ 

stant. This book is concerned only with deterministic signals. 

5. Signals can be further categorized as continuous time or discrete time. The former type of sig¬ 

nal is a function of a continuous-time variable, and the latter is a function of an independent vari¬ 

able assuming values from a discrete set. A quantized signal is one whose values are taken from 

a discrete set and should not be confused with a discrete-time signal. All signals discussed in this 

paragraph may be deterministic or random. 

6. Signals may also be categorized as periodic or aperiodic. A periodic signal is one for which 

x(t + r0) = x(t), -oo < t < oo 

where T0 is termed the period. The smallest value of T0 for which the above equation holds is 

called the fundamental period. (It should be clear that if T0 is the fundamental period, then any 

integer multiple of T0 is also a period.) 

7. A useful periodic signal is the rotating phasor signal, defined as 

x(t) = Aej(<0iQt+e\ — oo < t < oo 

where A is the amplitude, w0 is the frequency in radians per second, and 0 is the phase angle in 

radians. The quantity A exp(jO) is called a phasor. Rotating phasor signals are convenient in that 

a cosinusoidal signal can be represented either as the real part of a rotating phasor signal or as 

one-half the rotating phasor plus one-half its complex conjugate. A signal which is the sum of 

sinusoids can be represented as the sum of rotating phasor signals, with either the real part or 

half the rotating phasor sum plus half its complex conjugate taken. 

8. Representation of sums of sinusoids in terms of rotating phasor sums allows one to plot signal 

spectra easily. Single-sided spectra are obtained by representing the sum of sinusoids as the real 

part of the corresponding rotating phasor sum; the phasor amplitudes are plotted versus fre¬ 

quency to obtain the amplitude spectrum, while the phasor phase angles are plotted versus 

frequency to obtain the phase spectrum. Since only positive-frequency components are present, 

the spectra exist only for frequencies greater than zero, which is the reason for the adjective 

“single-sided.” Double-sided spectra are obtained by representing the sum of sinusoids as one- 

half the corresponding rotating phasor sum plus one-half its complex conjugate; the phasor 
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amplitudes are plotted versus frequency to obtain the amplitude spectrum, while the phasor 

phase angles are plotted versus frequency to obtain the phase spectrum. Since both positive- and 

negative- (due to the conjugation) frequency components are present, the spectra exist for both 

positive and negative frequencies, which is the reason for the adjective “double-sided.” 

9. Important examples of singularity functions are the unit impulse, the unit step, and the unit ramp. 

The unit impulse is defined by the property that 

f 8(t)x(t) dt = x(0) 
—00 

where x(t) is any signal continuous at t = 0. From this property, it can be deduced that a unit im¬ 

pulse as a “function” can be viewed as occurring at the origin and being infinitesimally narrow 

and infinitely high such that its area is unity. The unit step is defined to be unity for t > 0 and 

zero for t < 0, with the value at zero immaterial as long as it is finite. The unit ramp is a func¬ 

tion that is zero for t < 0 and that increases linearly with unit slope for t > 0. The unit step is the 

derivative of the unit ramp, and the unit impulse is the derivative of the unit step. Likewise, a 

“unit doublet” could be defined as the derivative of the unit impulse, and a “unit parabola” could 

be defined as the integral of the unit ramp. The differentiation process or integration process can 

be carried out indefinitely to obtain a doubly infinite class of singularity functions. For purposes 

of the analyses carried out in this book, the unit impulse, step, and ramp functions will suffice. 

More complex functions can be built up of sums or products of singularity functions. 

10. The sifting property of the unit impulse function mentioned above can be generalized to 

f x(t)&n\t - t0) dt = (- l)nx(n\t0), f, < tn< t2 

where the superscript (n) denotes the nth derivative, and the nth derivative of x(t) is assumed to 

exist and be continuous at t = t0. 

11. Another classification of signals is that of energy, power, or neither. To define this classification, 

we first define the energy of a signal to be 

and the power of a signal to be 

pH^h\_T^ldt 
The following classes of signals can then be defined: 

1. x(t) is an energy signal if and only if 0 < E < °o, so that P = 0. 

2. x(t) is a power signal if and only if 0 < P < °°, thus implying that E = °°. 

3. Signals satisfying neither property are neither power nor energy signals. 

12. The energy spectral density of a signal G(f), is a function which, when integrated over frequency 

from —oo</<oo(/in hertz), gives the total energy in the signal. 

13. The power spectral density of a signal, S(f), is a function which, when integrated over frequency 

from —oo </< oo? gives the total power in the signal. For any signal possessing a two-sided line 

(amplitude) spectrum, we obtain the corresponding power spectral density by taking each line 

of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function lo¬ 

cated at that particular frequency. 
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Further Reading 

Many circuits books have a simplified treatment of some of the material in this chapter. Recent ones are: 
L. S. Bobrow, Elementary Linear Circuit Analysis. New York: Holt, Rinehart, and Winston, 1987 
W. H. Hayt, Jr. and J. E. Kemmerly, Engineering Circuit Analysis. New York: McGraw-Hill, 1993 
D. R. Cunningham and J. A. Stuller, Circuit Analysis. 2nd ed. New York: John Wiley, 1995 
L. R Huelsman, Basic Circuit Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1991 
The spectrum analysis ideas introduced in this chapter are also treated in various communications texts. One ex¬ 
ample is: 
R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 4th ed. New 

York: Wiley, 1995 
There are many other books treating continuous- and discrete-time signal and system theory with the order of top¬ 
ics not necessarily the same as used here. Recently published examples are: 
A. V. Oppenheim and A.S. Willsky, Signals and Systems, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997 
E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using Matlab. Upper Saddle River, NJ: 

Prentice Hall, 1997 
C. L. Phillips and J. M. Parr, Signals, Systems, and Transforms. Upper Saddle River, NJ: Prentice Hall, 1995 
Several older books treating signal and system theory should be mentioned to recognize the pioneering efforts in 
this field. A by-no-means-complete list is: 
R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 3rd ed. New York: Wiley 1987 
W. M. Siebert, Circuits, Signals, and Systems. New York: McGraw-Hill, 1986 
C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis. New York: Holt, 

Rinehart, and Winston, 1974 
R. J. Schwarz and B. Friedland, Linear Systems. New York: McGraw-Hill, 1965 
S. J. Mason and H. J. Zimmerman, Electronic Circuits, Signals, and Systems. New York: John Wiley, 1960 
The following books provide further reading on the treatment of singularity functions from the standpoint of gen¬ 
eralized function theory: 
A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977 
R. N. Bracewell, The Fourier Integral and Its Applications, 2nd ed. New York: McGraw-Hill, 1978. 
For programming help with Matlab, see the following references: 

The Matlab User’s Guide, Version 5, Natick, MA: Mathworks, 1996 
The Student Edition of Matlab, Version 5. Upper Saddle River, NJ: Prentice Hall, 1997 

Problems 

Section 1-2 

1-1. (a) Derive an expression for the distance traveled by the rocket of Example 1-1 valid up to the 

time of burnout. 

(b) Suppose a voltage analog to distance is to be provided by another operational amplifier inte¬ 

grator circuit cascaded with the one of Example 1-2. If the same RC value is used, design a 

voltage divider to be placed at the output of the first operational amplifier integrator so that 

the second one is not overdriven at burnout (t = 12 s). 

1-2. (a) For the rectangular integration rule given in recursive form in Example 1-3, show that the 

nonrecursive form up through time NT is 

N 
v(NT) = 5(0) + T^a(nT) 

n=1 

Check this using some of the values given in Table 1-1 (page 5). 
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(b) For the trapezoidal integration rule given in recursive form in Example 1-3, show that the 

nonrecursive form up through time NT is 

v(NT) = 0(0) + a{ 0) + a(NT) + 2 
n= 1 

Check this, using values from Example 1-3. 

1-3. Rework Example 1-1 if the acceleration profile for the rocket is 

a(t) — 20 m/s2, 0 < t < 50 s 

and zero otherwise. Assume the same parameter values as given in Example 1-1. Find and 

plot the velocity profile. 

1-4. Rework Example 1-1 with the acceleration profile shown. Sketch the resulting velocities. 

a(t), m/s2 

20—1- 

0 10 20 30 40 

FIGURE PI-4 

(a) Assume an initial velocity of zero. 

(b) Assume an initial velocity of 1500 m/s. 

1-5. In the satellite communications example, Example 1-4, let the transmitted signal be x(t) = cosa)0t. 
(a) Show that the received signal can be put into the form 

, x „ /z-~-~-7—77 l , aB sin 2conr 
y(t) = Vl + 2a(3 cos 2co0t + (a/3)2 cos co0t — tan  -- 

\ 1 + a(3 cos 2co0T 

(b) Plot the envelope of the cosine in the above equation versus oj0t for a[3 = 0.1. Note that 

the received signal will “fade” as r varies due to satellite motion. 

Section 1-3 

1-6. (a) A sample-data signal derived by taking samples of a continuous-time signal, m(t), is often 

represented in terms of an infinite sequence of rectangular pulse signals by multiplication. 

That is, 

*,„«) - m«> i n(^) 

If m(i) — exp(—t/10)u(t), t = 0.5 s, and t0 = 2 s, sketch xsd(t) for -1 < t < 10 s. 

(b) Flat-top sample representation of a signal is sometimes preferred over the above scheme. In 

this case, the sample-data representation of a continuous-time signal is given by 

*ft(0 = 2 m(nln) —] 

Sketch this sample-data representation for the same signal and parameters as given in 

part (a). Discuss the major difference between the two representations. 
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1-7. Ideal sampling is represented in two ways depending on whether the signal is considered to be 

continuous-time or discrete-time. 

(a) The continuous-time signal cos(27ft) is to be represented in terms of samples by multiplying 

by a train of impulses spaced by 0.1 seconds. Let the impulse train be written as 

2 S(t - 0.1 n) 
n=— 00 

and show that the ideal impulse-sampled waveform is given by 

oo 

^ cos(0.27ra)<5(r - O.ln) 
n = — oo 

by using appropriate properties of the unit impulse. 

(b) Show that the discrete-time representation is the same, except that the continuous-time unit 

impulse is replaced by a discrete-time unit pulse function, d[n], appropriately shifted. Sketch 

for the signal cos(27ft) sampled each 0.1 seconds 

1-8. Sketch the following signals: 

(a) 11(0.10 

(b) 11(100 
(c) n(t - i/2) 
(d) U[(t - 2)/5] 

(e) U[(t - l)/2] + U(t - 1) 

1-9. What are the fundamental periods of the signals given below? (Assume units of seconds for the 

^-variable.) 

(a) sin 507ft 

(b) cos 607ft 

(c) cos 707ft 

(d) sin 507ft + cos 607ft 

(e) sin 507ft + cos 707ft 

1-10. Given the two complex numbers A = 3 + j3 and 5=10 exp(/77/3). 

(a) Put A into polar form and B into cartesian form. What is the magnitude of A? The argument 

of A? The real part of B? The imaginary part of B? 
(b) Compute their sum. Show as a vector in the complex plane along with A and B. 
(c) Compute their difference. Show as a vector in the complex plane. 

(d) Compute their product in two ways: by multiplying both numbers in cartesian form and by 

multiplying in polar form. Show that both answers are equivalent. 

(e) Compute the quotient A/B in two ways: by dividing with both numbers expressed in carte¬ 

sian form and by dividing with both numbers expressed in polar form. Show that both an¬ 

swers are equivalent. 

1-11. Find the periods and fundamental frequencies of the following signals: 

(a) xa(t) = 2 cos(107ft + 7r/6) . # 

(b) xb(t) = 5 cos(177ft — 7t/4) So lv« /i> 

(c) xc(t) = 3 sin( 197ft — rr/3) 
(d) xd(t) = xa(t) + xb(t) 
(e) xe(t) = xa(t) + xc(t) 

(f) xft) = xh(t) + xc{t) 
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1-12. (a) Write the signals of Problem 1-11 as the real part of the sum of rotating phasors. 

(b) Write the signals of Problem 1-11 as the sum of counterrotating phasors. 

(c) Plot the single-sided amplitude and phase spectra for these signals. 

(d) Plot the double-sided amplitude and phase spectra for these signals. 

) j 1-13. (a) Write the signals given in Problem 1-9 as the real parts of rotating phasors. 

(b) Write each of the signals given in Problem 1-9 as one-half the sum of a rotating phasor and 

its complex conjugate. 

(c) Sketch the single-sided amplitude and phase spectra of the signals given in Problem 1-9. 

(d) Sketch the double-sided amplitude and phase spectra of the signals given in Problem 1-9. 

1-14. (a) Express the signal given below in terms of step functions. Sketch it first. 

xa(t) = U[(t ~ 3)/6] + U[(t - 4)/2] 

(b) Express the derivative of the signal given above in terms of unit impulses. 

1-15. Suppose that instead of writing a sinusoid as the real part of a rotating phasor, we agree to use 

the convention 

sin(co0t + 6) = Im exp\j(a>0t + 6)]} 

or 

sinO0t + 0) = exp[j(co0t + 0)]/2j - exp[~j(a)0t + 6)]/2j 

(a) What change, if any, will there be to the two-sided amplitude spectrum of a signal from the 

case where the real-part convention is used? 

(b) What change, if any, will there be to the two-sided phase spectrum of a signal from the case 

where the real-part convention is used? 

1-16. Sketch the following signals: 

(a) u[(t - 2)/4] (d) II(-3f + 1) 

(b) r[(t + l)/3] (e) Il[(r — 3)/2] 

(c) r(-2t + 3) 

1-17. Derive expressions for singularity functions ufj) for i = —4 and i = —5. Generalize to arbitrary 

negative values of i. 

1-18. Plot accurately the following signals defined in terms of singularity functions: 

^ 9 ) ■> (a) xa(t) = r(t)u(2 - t) 

■ (b) xb(t) = r(t) ~ r(t - 1) - r(t - 2) + r(t - 3) 

(c) xc(t) = 2“=0 xa(t ~ 2n) (Plot for 0 < t < 8, and use three dots to indicate its semi-infinite 

extent.) 

(d) xd(t) = X^o xiM ~ 3«) (Plot for 0 < t < 9 and use three dots to indicate its semi-infinite 

extent.) 

1-19. (a) Sketch the signal y(t) = 2“=0 u(t — 2n)u{\ +2n — t). 

(b) Is it periodic? If so, what is its period? If not, why not? 

(c) Repeat parts (a) and (b) for the signal y(t) = 2^==_00 u(t - 2n)u(l + 2n — t). 
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1-20. Express the signals shown in terms of singularity functions (they are all zero for t < 0): 

Xa (0 *c (0 

0 2.5 5 7.5 0 3 6 

(c) (d) 

FIGURE PI-20 

1-21. Represent the signals shown in terms of singularity functions. 

(a) 

(b) 

FIGURE PI-21 

1-22. Write the signals shown in Figure PI-22 in terms of singularity functions. 

1-23. (a) Show that 

e~tle 

8Xt) = — u(t) 

has the properties of a delta function in the limit as e —> 0. 
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*i(r) x2(t) 

(Hint: Look up the integral of exp(-atf2) in a table of definite integrals.) 

1-24. (a) By plotting the derivative of the function given in Problem 1 -23(b) for cr = 0.2 and cr = 0.05, 

deduce what a unit doublet must “look like.” 

(b) By plotting the second derivative of the function given in Problem l-23(b) for the same val¬ 

ues of (j as given in part (a), deduce what a unit triplet must “look like.” 

1-25. In taking derivatives of product functions, one of which is a singularity function, one must exer¬ 

cise care. Consider the second derivative of 

h(t) = e~atu(t) 

Blindly carrying out the derivative twice yields 

— a2e~atu(t) — 2 ae~at8(t) + e~at8(t) 

Use the fact that 

ae~at8(t) = ae~a08(t) = a8(t) 

to obtain the correct result. 
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1-26. Evaluate the following integrals. 
r 10 

(a) I cos 2rrt 8(t - 2) dt 
J5 

(b) f cos 2irt 8(t - 2) dt 
Jo 

(c) f cos 2irt 8(t - 0.5) dt 
Jo 

(d) j (t- 2)28(t - 2) dt 

f°° 
(e) J t2S(t - 2) dt 

1-27. Evaluate the following integrals (dots over a symbol denote time derivative). 

(a) 

(b) 

f e3,S(t - 2) dt 
J —qo 

f10 
cos(2Trt)8(t — 0.5) dt 

Jo 

(c) 
o° 

[e 3t + cos(2irt)\8(t) dt 
J — 00 

1-28. Find the unspecified constants, denoted as C\, C2,..., in the following expressions. 

(a) 105(f) + C,S(0 + (2 + C2)5(r) = (3 + C3)5(0 + 55(0 + 65(0 

(b) (3 + Cj)5<4>(0 + C25(0 + C35(0 = Q5(3)(0 + C55(0 

1-29. (a) Sketch the following signals: 

(1) x,(0 = r(t + 2) - 2r(0 + r(t - 2) 

(2) x2{t) = n(0n(10 — t) 

(3) x3(0 = 2n(0 + 5(r - 2) 

(4) x4(0 = 2u(t)8(t - 2) 

(b) For the signal shown, write an equation in terms of singularity functions. 

*(/) 

FIGURE PI-29 
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1-30. For the signal shown, write an equation in terms of singularity functions. 

*bi i-3i. Evaluate the integrals given below. 
fc° 

(a) t38(t - 3) dt 
J — 00 

(b) f (3* + cos 2irt)h(t — 5)d 
J — 00 

r00 
(c) (1 + t2)S(t - 1.5) dt 

J —oo 

1-32. Write the signals in Figure Pl-32 in terms of singularity functions. 

Section 1-4 

1-33. Sketch the following signals and calculate their energies. 

(a) e~mu(i) 

(b) u(t) - u(t - 15) 

(c) COS 1077t u(t)u(2 — t) 

(d) r(t) - 2r(t - 1) + r(t - 2) 

1-34. Obtain the energies of the signals in Problem 1-22. 

1-35. Which of the signals given in Problem 1-18 are energy signals? Justify your answers. 

1-36. Obtain the average powers of the signals given in Problem 1-9. 

1-37. Obtain the average powers of the signals given in Problem 1-11. 

1-38. Which of the following signals are power signals and which are energy signals? Which are nei¬ 

ther? Justify your answers. 

(a) u(t) + 5 u{t — 1) — 2u(t — 2) 

(b) u(t) + 5u(t — 1) — 6u(t — 2) 

(c) e ~5t u(t) 

I (d) (e~5t + l)u(t) 

(e) (1 - e~5t)u{t) 

(f) Ht) 
(g) Ht) - r(t- 1) 

(h) rmu(t - 3) 
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xaV) 

2v4- — 

A- 

0 T IT 

(a) 

3 T 
t 

Xb(t) 

FIGURE PI-32 

1 jt 1-39. Given the signal 

x(t) = 2 cos(6/77t — 7t/3) + 4 sin( 10771) 

(a) Is it periodic? If so, find its period. 

(b) Sketch its single-sided amplitude and phase spectra. 

(c) Write it as the sum of rotating phasors plus their complex conjugates. 

(d) Sketch its two-sided amplitude and phase spectra. 

(e) Show that it is a power signal. 

1-40. Which of the following signals are energy signals? Find the energies of those that are. Sketch 

each signal. 

(a) u{t) — u(t — 1) 

(b) r{t) — r(t - 1) - r(t - 2) + r(t - 3) 

(c) t exp(-2t)u(t) 

(d) r(t) - r(t - 2) 

(e) u{t) — |u(t — 10) 



46 Ch. 1 / Signal and System Modeling Concepts 

1-41. Given the following signals: 

(1) cos 577? + sin 677? 
(2) sin 21 + cos irt 

(3) e~mu(t) 

(4) e2tu(t) 

(a) Which are periodic? Give their periods. 

(b) Which are power signals? Compute their average powers. 

(c) Which are energy signals? Compute their energies. 

1-42. Prove Equation (1-84) by starting with (1-76). 

1-43. Given the signal 

x(t) = sin2(777? — 7t/6) + cos(377? — 7t/3) 

(a) Sketch its single-sided amplitude and phase spectra. 

(b) Sketch its double-sided amplitude and phase spectra after writing it as the sum of complex 

conjugate rotating phasors. 

Section 1-5 

1-44. Plot the power spectral density of the signal given in Problem 1-43. 

1-45. Given the signal 

x(f) =16 cos(207t? + 7t/4) + 6 cos(3077? + 7t/6) + 4 cos(4077? + 7i/3) 

(a) Find and plot its power spectral density. 

(b) Compute the power contained in the frequency interval 12 Hz to 22 Hz. 

Computer Exercises 

1-1. Use the functions given in Section 1-6 for the step and ramp signals to plot the signal shown in 

Problem 1-30 using Matlab. 

1-2. Use the functions given in Section 1-6 for the step and ramp signals to plot the signals shown in 

Problem 1-32 using Matlab. 

1-3. Use the elementary function programs given in Section 1-6 to compute and plot the following: 

(a) A step of height 3 starting at t = 3 and going backwards to t = — oo; 

(b) A signal that starts at t = 1, increases linearly to a value of 2 at t = 2, and is constant thereafter; 

(c) A stairstep signal that is 0 for t < 0, jumps to a value of 1 at t = 0, a value of 2 at t = 1, a value 

of 3 at t = 2, a value of 4 at t = 3, and stays at 4 thereafter; 

(d) A ramp starting at t = 2 and going downward with a slope of -3. 

1-4. (a) Generate a cosine burst of frequency 2 Hz, lasting for 5 seconds; (b) generate a sine burst of 

frequency 2 Hz and lasting for five seconds; (c) combine the results of (a) and (b) to produce a si¬ 

nusoidal burst of frequency 2 Hz, 5 seconds long, and with starting phase at t = 0 of 7t/4 radians. 

[Hint: recall the trigonometric identity sin(x + y) = 0.5(sin x cos y — cos x sin y). Set y = 7t/4.] 
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1-5. (a) Write a Matlab function to generate a sequence of impulses spaced by an arbitrary amount 

t_rep, lasting for t_width and centered on t = 0. Call it cmb_f n (t, t_r ep, t_width .delta) 

(b) Generate an impulse comb with spacing between impulses of 1.25 seconds and containing 

5 impulses starting at t = 0. 

1-6. (a) Write a Matlab function to generate a unit parabola singularity function. 

(b) Write a Matlab function to generate a unit cubic singularity function. 

(c) Use them to generate a plots of the signals shown in Problem 1-21. 



CHAPTER 

System Modeling and Analysis 
in the Time Domain 

2-1 Introduction 

Having discussed some continuous-time signal models, we now wish to consider ways of modeling sys¬ 

tems and to analyze the effects of systems on signals. The systems analysis problem is: given a system 

and an input, what is the output? System design or synthesis is important also, but generally is more 

difficult than analysis. In addition, analysis procedures also suggest synthesis techniques. 

We will discuss several mathematical characterizations for systems in this chapter, but our main fo¬ 

cus throughout the book will be on linear, time-invariant systems. The reasons for this are threefold: 

First, powerful analysis techniques exist for such systems. Second, many real-world systems can be 

closely approximated as linear, time-invariant systems.1 Third, analysis techniques for linear, time- 

invariant systems suggest approaches for the analysis of nonlinear systems. 

There are three basic approaches for finding the response of a fixed, linear system to a given input: 

(1) Obtain a solution to the modeling equations through standard methods of solving differential equa¬ 

tions. (2) Carry out a solution in the time domain, using the superposition integral. (3) Use frequency- 

domain analysis by means of the Fourier or Laplace transforms. The first method should be familiar to 

the student from circuits courses. The objective of this chapter is to examine the second method. The 

third method is dealt with in later chapters. 

In passing, we note that the condition of time invariance is not necessary in many of the analysis pro¬ 

cedures presented in this chapter, but computational problems are simplified under the assumption of 

time invariance. 
We begin our consideration of systems in the time domain with appropriate classification procedures 

and modeling techniques. The primary tool for analysis of linear, time-invariant systems will be the con¬ 

volution integral, discussed in Section 2.4. 

2-2 System Modeling Concepts 

Some Terminology 

We now wish to look at ways of representing the effects of systems on signals; that is, we need to be 

able to construct appropriate system models that adequately represent the interaction of signals and sys¬ 

tems and the relationship of causes and effects for that system. Usually, we refer to certain causes of in- 

'The terms “linear” and “time invariant” will be given precise mathematical definitions shortly. Although it is possible to an¬ 

alyze systems that are time varying, it is more difficult than for time-invariant systems. Because of this, and because many sys¬ 

tems are time invariant, we restrict our attention to this category. 

48 
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terest as inputs and certain effects of interest as outputs. For example, in the accelerometer example of 

Chapter 1, the input of interest could be the position of the weight and the output could be a voltage 

proportional to velocity. 

An obvious choice for input and output quantities may not always be readily apparent, easily isolated, 

or physically distinct. For instance, in the communications link example, the input, x(t), and output of 

interest, s(t), appear at the same physical location: the transmitter. The relationship governing their in¬ 

teraction was very simple: that is, 

s(t) - x(t) + afix(t - 2t), 0 < t < T + 2r (1-15) 

Usually, we will not have such simple input-output relationships. 

It is convenient to visualize a system schematically by means of a box, as shown in Figure 2-1. 

(Sometimes symbols other than x and y may be used.) On the left-hand side of the box we represent the 

inputs (excitations, causes, stimuli) as a series of arrows labeled xx(t), x2(t), . . . , xm(t). The outputs (re¬ 

sponses, effects), yx(t), y2(t), . . . , yp(t\ are represented as arrows emanating from the right-hand side of 

the box. In general, the inputs and outputs vary with time, which is represented by the independent vari¬ 

able t\ sometimes it will not be shown explicitly in order to simplify notation. The number of inputs and 

outputs need not be equal. Quite often, however, we will be concerned with situations where there is a 

single input and a single output. Such systems are referred to as two-port or single-input, single-output 

systems since they have one input port and one output port. 

Representations for Systems 

Usually, we are interested in obtaining explicit relationships between the input and output variables of 

a system, and we discuss systematic procedures for doing so shortly. For now, however, we will express 

the dependence of the system output on the input symbolically as 

y(t) = W[x(t)] (2-la) 

Eliminating the explicit use of t, we can write this more compactly as 

y = Wx (2-lb) 

which is read 

y(t) is the response of to x(t) 

where initial conditions are included if pertinent. The symbol 3£, which is known as an operator, serves 

the dual role of identifying the system and specifying the operation to be performed on x(t) to produce 

y(t). (For a multiple-input, multiple-output system, x(t) and y(t) are vectors.) 

Several examples of system input-output relationships are given below to illustrate more clearly 
some of the basic concepts. 

*l(0 o - » 

*2(0 ° » 

; SYSTEM 

: X [•] 

Xm(t)o P 

*oyi(0 

►o y2(t) 

-o yP(t) 

FIGURE 2-1. Block diagram representation of a system. 
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1. Instantaneous (Nondynamic) Relationships. Many systems are adequately modeled for many 

situations by relationships such as 

y(t) = Ax(t) + B (2-2a) 

or 

y(t) = Ax{t) + Bx3(t) (2-2b) 

where A and B are constants. The former equation could represent an amplifier of gain A with a dc bias 

of B volts at its output, and the latter equation would be a possible model for an amplifier that intro¬ 

duces nonlinear distortion, Bx3(t), into the amplified output, Ax(t). The concept of nonlinearity for a 

system will be explicitly defined later. 

2. Linear, Constant-Coefficient, Ordinary Differential Equations. The student is assumed to be fa¬ 

miliar with obtaining the relationships between currents and voltages in an electrical circuit composed 

of passive elements (resistors, capacitors, and inductors) in terms of ordinary integrodifferential equa¬ 

tions through the application of Kirchhoff’s voltage and current laws. If all integrals are removed 

through repeated differentiation, the general form for such equations may be written as 

d”y(t) d”~ly{t) 

a" dtn "-1 dtn~l 
+ • • • + a0y(t) = bm 

dmx(t) 

dtm 
+ b„ 

dm~'x(t) 

dtm_1 
+ * ’ ' + b{}X(t) (2-3) 

where an, an _ v . . ., aQ, bm, bm _ 1? . . ., b0 are constants that depend on the structure of the system and 

where nonzero initial conditions may be specified. For systems whose input-output relationships can be 

represented in this manner, the order of the system is defined as the order of the highest derivative of the 

dependent variable, or system output, present (integrals on the input might still be present in some cases).1" 

Three variations of (2-3) sometimes result from the modeling and analysis of systems. First, time- 

varying components may be present in the system (e.g., a capacitor whose capacitance varies with time). 

In such cases one or more of the coefficients of (2-3) will be functions of time. These are examples of 

time-varying systems, although the class of time-varying systems is broader than that described by or¬ 

dinary differential equations with nonconstant coefficients. 

A second situation that results in a governing differential equation of different form than (2-3) is 

where one or more nonlinear components are present in the system. Consider a voltage source vs(t) in 

series with an inductor and a resistor whose resistance depends on the current through it: for example, 

R ~ R0 + ai(t), where R() and a are constants. Then application of Kirchhoff’s voltage law results in 

[*0 + + L = vs(t) (2-4) 

and the relationship between the input, vs(t\ and the output, i(t), is no longer linear. This is an example 

of a nonlinear system. Precise definitions for time-varying and nonlinear systems are given later. 

The third departure from (2-3) which may result is that of a system described by a partial differen¬ 

tial equation. Such systems are said to be distributed, in contrast to lumped systems, for which the 

cause-effect properties of the system can be ascribed to elements modeled as infinitesimally small in 

the spatial dimension. This is permissible if their dimensions are small compared with the wavelength 

of the variable quantities within the system (voltages, currents, etc.), where the wavelength is given by 

c 
A = — meters 

'The order of a multiple-input, multiple-output system can be determined through state-variable techniques, which are dis¬ 

cussed in Chapter 7. 
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where c = 3 X 108 m/s is the speed of electromagnetic radiation and/is the frequency of the oscillat¬ 

ing waveform in hertz. A light bulb, for example, has dimensions that are small compared with 

A = 3 X 108/60 = 5 X 106 m, which is the wavelength of the 60-Hz power-line voltage. 

3. Integral Relationships. We discuss an integral representation of a system input-output relation 

of the form 

yft) = J hfX)xft - A) dX (2-5a) 

= f xfX)h(t - A) dX 
J —00 

(2-5b) 

which is known as a superposition integral The function h(A) is called the impulse response of the sys¬ 

tem and is its response to a unit impulse applied at A = 0.+ All systems that can be represented by or¬ 

dinary, constant-coefficient, linear differential equations can also be represented by an equation of the 

form (2-5). However, not all systems that can be represented by a relationship of the form (2-5) can be 

represented by ordinary, constant-coefficient linear differential equationsT 

For a time-varying system, the generalization of (2-5) is 

yft) = f h(t, A)a(A) dX (2-6) 
J — 00 

where hft, A) is the response of the system at time t to a unit impulse applied at time A. 

EXAMPLE 2-1 __ 

Consider the RC circuit depicted in Figure 2-2 with input x(t) and output yft) as shown. We wish to 

obtain (a) the differential equation relating yft) to xft), and (b) convert this differential equation to 

the integral form (2-5). Assume that xft) is applied at t = tQ and y(f0) = yQ. 

Solution: 

(a) The differential equation relating yft) and xft) is found by writing Kirchhoff’s voltage law (KVL) 

around the loop indicated by iff). This results in the equation 

xft) = Rift) + yft) (2-7) 

where yft), the voltage across the capacitor, is related to ift), the current through it, by 

HO = C^> . (2-8, 

Eliminating i(t) in the KVL equation, we obtain 

RC 
dy(t) 

dt 
+ y(t) = x(t) (2-9) 

fTo show this, let x(t) — 8(t), so that x(t — A) = 8(t — A). Then y(t) = h(t) by the sifting property of the unit impulse func¬ 
tion, and h{t) is seen to be the system’s response to 8{t). 

*An example is an ideal low-pass filter whose impulse response is 

Ht) = b -'ygxM 
v y 2 7rBt 

where B is the bandwidth. This type of filter will be discussed in Chapter 4. Ideal filters are convenient mathematical models, but 
cannot be realized as physical circuits. 
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R 

FIGURE 2-2. RC circuit to illustrate the derivation of input-output relationships for systems. 

(b) To write the input-output relationship as an explicit equation for y(t) in terms of x(t), we first ob¬ 

tain the solution to the homogeneous differential equation 

RC 
dyiM 

dt 
+ yh(t) - 0 (2-10) 

Assuming a solution of the form 

»,(0 = Ae* 

and substituting into the homogeneous equation, we find that p = — 1 /RC, so that 

yh(t) = A exp 

(2-11) 

(2-12) 

The total solution consists of y/7(t) plus a particular solution for a specific x(t). Assume that the input 

x(t) is applied beginning at t = t0 but is otherwise arbitrary. Also assume that the value of y(t) at t = tQ 

is y0. To find the total solution we use the technique of variation of parameters, which consists of 

assuming a solution of the form of yh(t) but with the undetermined coefficient A replaced by a func¬ 

tion of time to be found. Thus we assume that 

yU) = A (t) exp (2-13) 

Differentiating by means of the chain rule, we obtain 

MO 
dt 

dA(t) 

dt 

m 
RC 

(2-14) 

Substituting the assumed solution and its derivative into the nonhomogeneous differential equa¬ 

tion, we have 

RC exp 
dA(t) 

dt 
= x(t) (2-15) 

where the term -A(t) exp(~t/RC) has been canceled by y(t) in the differential equation. Solving for 

dA(t)/dt and integrating, we get an explicit result for the unknown “varying parameter.” It is given by 

A(t) = | x(A) exp^.) dX + A(t0) (2-16) 

where A is a dummy variable of integration and A(t0) is the initial value of A(t) at the time t0 that the 

input x{t) is applied. Since y(t) — A(t) exp(—t/RC), it follows that A(t0) = y0 exp(t0/RC). Using this 

result together with the expression for Ait), we obtain 
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yU) = I x(A) 
-tn 

exp(A/RC) 

RC 
d\ + y0 exp k ) 

RC) 
exp I 

/-t 

RC 

= y0 exP 
IzA 
RC 

+ J x(A) 
Jtn 

exp[~ (t - X)/RC] 

RC 
dX 

If we assume that the input x(t) is applied at t = -oo and that y0 4 y(—°°) = 0, then 

y(,)=f v(A) W«q di 
J — CO 

If we define 

so that 

RC 

exp {-t/RC) 
h(t) - R( ..-«(<) 

/\C 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

then the solution for y(t), as determined by the variation-of-parameters approach, is exactly of the 

form given by (2-5b). 

Properties of Systems 

We now give precise definitions of several system properties, some of which were mentioned in the pre¬ 

vious discussion. 

Continuous-Time and Discrete-Time Systems. If the signals processed by a system are continuous¬ 

time signals, the system itself is referred to as a continuous-time system. If, on the other hand, the sys¬ 

tem processes signals that exist only at discrete times, it is called a discrete-time system. The signals in 

a system may or may not be quantized to a finite number of levels. If they are, the system is referred to 

as quantized. A quantized system may be continuous time or discrete time, although usually a quantized 

system is also a discrete-time system and is then referred to as a digital system. Discrete-time systems 

are discussed in Chapter 8. 

Examples of continuous-time systems are electric networks composed of resistors, capacitors, and 

inductors that are driven by continuous-time sources. An example of a quantized, discrete-time system 

is the optical-wand sensing system of a department store cash register. 

Fixed and Time-Varying Systems. A system is time invariant, or fixed, if its input-output rela¬ 

tionship does not change with time. Otherwise, it is said to be time varying. In terms of the symbolic 

notation of (2-la), a system is fixed if and only if 

W[x(t - r)] = y(t - r) (2-21) 

for any x(t) and any t. The system must be at restf prior to the application of x(t). In words, (2-21) states 

that if y(t) is the response of the system to an input x(t), then its response to a time-shifted version of 

fA system is at rest, or relaxed, prior to some initial instant, say t = t0, if all energy storage elements have zero initial energy 

stored. For an rath-order system described by an rath-order ordinary linear differential equation, this means that the dependent vari¬ 

able and all its derivatives up through the (ra — l)st are zero for t < tQ. 



54 Ch. 2 / System Modeling and Analysis in the Time Domain 

this input, x(t — r), is the response of the system to x(t) time-shifted by the same amount, or y(t — r). 

For example, the system with input-output relationship 

y(t) = x(t) + Ax(t - T) (2-22) 

is fixed if A and T are constants, and time varying if either or both are functions of time. Thus the satel¬ 

lite communication system is fixed if a/3 and r are constants. Similarly, a system described by a differ¬ 

ential equation of the form (2-3) is fixed if the coefficients are constant, and time varying if one or more 

coefficients are functions of time. 

Causal and Noncausal Systems. A system is causal or nonanticipatory if its response to an input 

does not depend on future values of that input.* A precise definition is that a continuous-time system is 

causal if and only if the condition 

xff) = x2(t) for t < t0 (2-23a) 

implies the condition 

3K[jCi(0] = 3C[jc2(0] for t < t0 (2-23b) 

for any t0, xft), and x2(t). Stated another way, if the difference between two system inputs is zero for 

t ^ t0, the difference between the respective outputs must be zero for t < t0 if the system is causal. Thus 

the definition applies to systems for which the response to zero input is not zero, such as a system con¬ 

taining independent sources, as well as systems with nonzero inputs. 

EXAMPLE 2-2 __ 

Consider a system described by (2-2a). Let xft) = u(t) and x2(t) = r(t). For t<t0< 0, both inputs are 

equal. The outputs for t ^ t0 for both inputs are yft) = y2(t) = B. In general, it is seen from 

(2-2a) that if xft) = x2(t), t < r0, theny^O = y2(t) = B for t < t0 because Axft) = Ax2(t). It is easy to see 

that this holds for any pair of inputs for which it is true that xft) — x2{t), t ^ t0. Thus this system is causal 

An easy way to see that the system is causal is to note that y(t) cannot do anything in anticipation of x(t). 

Dynamic and Instantaneous Systems. A system for which the output is a function of the input at 

the present time only is said to be instantaneous (or memoryless, or zero memory). A dynamic system, 

or one which is not instantaneous, is one whose output depends on past or future values of the input in 

addition to the present time. If the system is also causal, the output of a dynamic system depends only 

on present and past values of the input. Mathematically, the input-output relationship for an instanta¬ 

neous system must be of the form 

y(t) = f[x(t), t] (2-24) 

where/(•) is a function, possibly time dependent, which depends on x(t) only at the present time, t. 

The systems described by (2-2a) and (2-2b) are instantaneous. Systems described by differential equa¬ 

tions are dynamic (nonzero memory). For example, an inductor is a system with memory. This is easy to 

see if the input is taken as the voltage across its terminals and the output as the current through it so that 

(2-25) 

It is clear that i(t) depends on past values of v(t) through the integral. 

i-Another way of informally defining a causal system is that such a system does not anticipate its input. 
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Linear and Nonlinear Systems. From your circuits courses, you should already be familiar with 

the concept of linearity. It allows the analysis of circuits with multiple sources by means of super¬ 

position, or addition of currents or voltages calculated when each source is applied separately. A pre¬ 

cise mathematical definition of a linear system is that superposition holds, where superposition for a 

system with any two inputs xx(t) and x2(t) is defined as 

^[apc^t) + OL2x2(t)] = a$t\_xx(t)] + 0L2%[x2{t)\ 

= + a2y2(t) (2-26) 

In (2-26), yx(t) is the response of the system when input xx(t) is applied alone, and y2(t) is the response 

of the system when input x2{t) is applied alone; ax and a2 are arbitrary constants. 

EXAMPLE 2-3 ___ 

Show that the system described by the differential equation 

<*)-*) 

is linear. 

Solution: The response to xx(t), yx(t), satisfies 

dy 

and the response to x2(t), y2(t), satisfies 

dt 

dyi 
dt 

1 + tyi = 

+ ty2 = x2 

where the time dependence of xv x2, yx, and y2 is omitted for simplicity. Addition of these equations 

multiplied, respectively, by ax and a2 results in 

dyx dy2 

ai ~dt + 012 ~dt + + “2^2 ~ UlXl + a2X2 

or 

dt + aiy2> + ^aiyi + = “lXl + 

That is, the response to the input axxx + a2x2 is axyx + a^2. Thus superposition holds and the sys¬ 

tem is linear. 

EXAMPLE 2-4 

The system described by the differential equation 

dy(0 
+ lOy(^) + 5 — x(t) 

dt 
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is nonlinear. This is demonstrated by attempting to apply the superposition principle. Letting yft) 

be the response to the input xft) and y2{t) be the response to the input x2(t), we write 

^ + 10^ + 5=*! 

and 

^f+l0y2 + 5=x2 

where the time dependence is again dropped for simplicity. Multiplying the first equation by an ar¬ 

bitrary constant cq, the second equation by the arbitrary constant a2, adding, and regrouping terms, 

we obtain. 

(«iTi + a2y2) + 10(aiTi + aiyi) + 5(ai + = aixi + ^2x2 (2-27) 

We cannot put this equation into the same form as the original differential equation for an arbitrary 

choice of ax and a2. Thus the system is nonlinear. 

2-3 The Superposition Integral for Fixed, Linear Systems 

In this section we show that (2-5) can be used to obtain the output of a fixed, linear system in response 

to an input, x(t)y where the response of the system to a unit impulse applied at t = 0 is h{t) [h(t) is re¬ 

ferred to as the impulse response of the system]. In this context, (2-5) is called the superposition inte¬ 

gral We must emphasize that this integral is more general than for just the computation of the response 

of a linear, time-invariant system. Some of the other applications of the superposition integral are dis¬ 

cussed in Chapter 4. 

A short, mathematical derivation of (2-5) is as follows. Represent the input signal to the linear, time- 

invariant system in terms of the sifting property of the unit impulse as 

x(t) = f x(r)8(t ~ t) dr (2-28) 
J—00 

In terms of the system operator, the output is 

yU) = W[x(t)\ 

£ x(r)8(t — t) dr (2-29) 

Assuming that the order of integration and operation by the system can be interchanged, (2-29) becomes 

r 00 

y(t) = v(t)3^[6(^ — t)] dr 
—no 

(2-30) 

By definition, W[8(t — t)] is the response of the system to a unit impulse applied at t = r. For a. fixed 

system, we can write this as h(t — t), where h(t) is the system’s response to a unit impulse applied at 

t = 0. Substitution of h{t — t) for 3f[5(r — t)] in (2-30) results in (2-5). 

In addition to being strictly mathematical, an additional difficulty with this derivation is the blind 

faith required in the interchange of the improper integral and the ^-operator. Thus we consider another 

derivation that is more graphic in nature. 
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Assume for the time being that the input to the fixed, linear system is a continuous function of time 

in the time interval T{< t < T2 and zero elsewhere. Figure 2-3a illustrates an arbitrary input, x{t), in the 

time interval 7, < / < T2 which has been approximated by a stairstep function x(t). That is, x(t) can be 

expressed in terms of the unit pulse function IT(t) as the summation 

= f Tj < f < T2 (2-31) 

where T{ = (N{ - 1/2) AA and T2 = (N2 + 1/2) AA. The reason for multiplying and dividing by AA to obtain 

the second equation will be apparent shortly. Clearly, the approximation of x(t) to x(t) improves as AA gets 

smaller. In fact, in the limit as AA —> 0, (2-31) becomes the sifting integral for the unit impulse function since 

]im , _ A) (2.32l 
aa—>o AA 

where n A A has been replaced by the continuous variable A. 

(b) Output of a fixed, linear system due to the stairstep approximate input. 

FIGURE 2-3. Input and output signals for a fixed, linear system used to derive the superposition integral. 
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Now consider the response of a fixed linear system to the summation of pulses (2-31). Let the re¬ 

sponse of the system to II(f/AA) AA be h{t). That is, in terms of the operator notation 

h(t) = W 
ujt/Axy 

AA 
(2-33) 

where $£[•] signifies the operation that produces the system output in response to a particular input. 

We want the output of a fixed, linear system in response to the input (2-31). In terms of the operator 

$£[•], it is 

y(t) = Vi[x{t)] = 2 x(n A A) ~ IT (-—~ 
±i, V ;AA \ AA 

AA (2-34) 

Because $£[•] represents a linear system, superposition holds and (2-34) can be written as 

y(t) = ^ x(n AA)3C 
n=N, AA 

n t - n AA 

AA 
AA (2-35) 

where we assume that all initial conditions are zero. More will be said about nonzero initial condi¬ 

tions shortly. Although the superposition property is stated by (2-26) for inputs of the form 

x{t) = apcft) + a2x2(t), we may generalize it easily to the linear combination of any finite number of 

terms (Problem 2-15). 

Because the system is assumed to be fixed, it follows that 

AA 
n t - n AA 

AA 
= h(t — n AA) (2-36) 

where ht was defined as the response of the system to IT(r/AA)/AA in (2-33). That is, the system’s re- 

sponse to a pulse centered at t — ftAA is simply h(t) shifted by t — ft A A. Using (2-36) in (2-35), we can 

express the system output, y(t), in response to the stairstep approximation to x(t), x(t), as 

y(t) = 2 x(n AA)/t(f - n AA) AA (2-37) 
n=N] 

which shows that y is the superposition of N = N2 — Nx elementary repsponses, h(t — n A A), of the 

system to U[(t — n A A)/A A] /A A, each of which is weighted by the value of the input signal at the time 

t = n A A. A typical superposition of elementary responses is shown in Figure 2-3b corresponding to 

the stairstep input of Figure 2-3a. Note that h{t) is a characteristic of the system in the sense that it tells 

us how the system responds to the test pulse IT(r/A/A)/AA of width A A and height 1/AA. To remove the 

dependence of h (t) on AA, we define the impulse response of the system as 

hit) = lim hit) = lim 
v 7 AA—>0 v 7 AA—>0 

~n(r/AA) 

AA 
(2-38) 

where we recall that zero initial conditions were assumed. By interchanging the order of the limit and 

the operator 9^[-], which is a linear operator by assumption, and recalling that limAA_^0 II(f/AA)/AA has 

the properties of a unit impulse function, it is seen that the impulse response of a system is its response 

to a unit impulse applied at time t = 0 with all initial conditions of the system zero. That is, 

h(t) A ^t[8(t)] (zero initial conditions) (2-39) 

Returning to (2-37) and taking the limit as AA —> 0 and n AA —> A, a continuous variable, we recog¬ 

nize (2-37) as an approximation to the integral 
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T 

y(t) = f x(A)h(t - A) dA, I\ < / < T? (2-40) 
T\ 

Assuming that the input may have been present since the infinite past and may last indefinitely into the 

future, we have, in the limit as Tx —> — oo and T2 —> oo, 

y{t) = f x(A)h(t - A) dA (2-41) 
J — 00 

for the response of a system characterized by an impulse response h{t) and having an input x(t). 

With the lower limit of t = — on (2-41), we can include the response due to initial conditions by 

identifying it as the response due to x{t) from t = — ^ to an appropriately chosen starting instant, t0, usu¬ 

ally chosen as t0 = 0. In Chapter 5 we consider another way to handle initial conditions. Making the 

substitution a = t — A, we obtain the equivalent result 

y{t) = J x(t — cr)h(cr) da (2-42) 

Because these equations were obtained by superposition of a number of elementary responses due to 

each individual impulse, they are special cases of what are referred to as superposition integrals A A 

simplification results if the system under consideration is causal. We defined such a system as being 

one that did not anticipate its input. For a causal system, h(t — r) = 0 for t < r, and the upper limit of 

(2-41) can be set equal to t. Furthermore, if x(t) — 0 for t < 0, the lower limit becomes zero, and the re¬ 

sulting integral is given by 

y(t) = f x(A)h(t - A) dA, t > 0 (2-43) 
Jo 

for a causal system with input zero for t < 0 and zero initial conditions. 

EXAMPLE 2-5 _ 

A concrete example of the previous discussion will help to make the derivation clearer and lend 

credence to the stairstep approximation to x{t) being convolved with h(t) actually providing a good 

approximation to y(t). The signals x(t) and h(t) in this example are given by 

x(t) = (t+ 10 )e-°A^10)u(t + 10) 

and 

h(t) = e~tu{t) 

A Matlab program (not given here, since the purpose of this example is to illustrate the preceding 

discussion) provides the plots shown in Figure 2-4. The top figure gives x(t) and the stairstep ap¬ 

proximation to it, x(t), where the step length is 0.5. The signal h(t) is shown in the second figure, and 

the result of convolving x(t) and h(t) is shown in the third figure. Finally, the actual convolution of 

x(t) and h(t), computed analytically, is shown in the fourth figure. The approximate and actual re¬ 

sults are amazingly close for the step length of 0.5. As this step length is decreased, the correspon¬ 

dence will be closer and closer, and it is not hard to believe that (2-37) actually converges to (2-40). 

Tn this special case (i.e., a linear, time-in variant system) they are of the same form as the convolution integral to be con¬ 
sidered in more detail in Section 2-4. A general form for the superposition integral for a linear time-varying system was given 
by (2-6). 
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0JL-L-1-1-1-1_i_Ii~--I--i___ . _I 

-10 -8 -6 -4 -2 0 2 4 6 8 10 
t 

FIGURE 2-4. Plots for Example 2-5 showing a specific example for the stairstep approximation to the 
derivation of the superposition integral. 

EXAMPLE 2-6 _ 

Consider the system with impulse response 

Kt) = e~‘/Rcu(t) (2-44) 

Let the input be a unit step: 

x(t) = u(t) (2-45) 
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2-4 Examples Illustrating Evaluation of the Convolution Integral 

The convolution of two signals, x(t) and hit), is a new function of time, y(t), which is given by (2-5). A 

useful symbolic notation often employed to denote (2-5a) and (2-5b), respectively, is 

yit) = h{t) * xii) (2-48) 

yit) = xit) * hit) (2-49) 

It is possible to prove several properties of the convolution integral. These are listed below, but their 

proofs are left to the problems. 

1. h(t) * x(t) = xit) * h(t). 

2. h(t) * [axit)] = a[hit) * xit)], where a is a constant. 

3. hit) * [xx(t) + x2it)] = hit) * xxit) + hit) * x2it). 

4. hit) * [xj(0 * x2it)] - [hit) * xxit)] * x2it). 

5. If hit) is time-limited to ia,b) and xit) is time-limited to ic,d), then hit) * x(t) is time-limited to 

ia + c, b + d). 

6. If A! is the area under hit) and A2 is the area under xit), then the area under hit) * x(t) is AXA2. 

In these relations, hit), xxit), and x2it) are signals. The parentheses and brackets show the order of car¬ 

rying out the operations. 

The integrand of (2-5a) is found by three operations: (1) reversal in time, or folding, to obtain xi~ A); 

(2) shifting, to obtain xit — A); and (3) multiplication of /z(A) and xit — A), to obtain the integrand. A 

similar series of operations is required for (2-5b). 

Four examples will be given to illustrate these three operations and the subsequent evaluation of the 

integral to form yit). 

EXAMPLE 2-7 __ 

I Consider the convolution of the two rectangular-pulse signals 

ft - 5 
x(t) = 2n(— (2-50) 
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and 

h{t) = n(-4 2) (2-51) 

These signals are sketched in Figures 2-5a and b. 

We base our evaluation of the convolution of x(t) and h(t) on (2-5a). Thus x(t) is reversed and the 

variable changed to A, which results in x(—A), also shown in Figure 2-5. Finally, jc(—A) is shifted so 

that what was the origin now appears at A = t. It is sometimes helpful to think of x(t — A) as 

x[—(A — 01; that is, t in x(t) is replaced by A — t, with A thought of as the independent variable, 

X(t) 

0 12 3 4 5 6 

(b) 

*(~X) 

-6 -5 -4 -3 -2 -1 0 

(c) 

x{t - X) 

-6 -5 -4 -3 -2 -1 0 

(d) 

FIGURE 2-5. Signals to be convolved in Example 2-7. 
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whereupon the function x(A — t) is reversed or folded (its mirror image about the ordinate is taken). 

The result of these operations is x(t — A), which is shown in Figure 2-5d for t = 2. 

The product of x(t - A) and h(A) is formed, point by point, and this product integrated to form 

y(t). Clearly, the product will be zero if t < 4 in this example. If t > 4, the rectangles forming h(A) 

and x(t - A) overlap until t > 10, whereupon the product is again zero. 

After a little thought, we see that three different cases of overlap result. These are illustrated in 

Figure 2-6. In each case, the area of integration is shaded; because the height of h(t) is unity, the area 

is simply the width of the overlap times the height of x(t — A). Thus the area for Case I is 2(t — 4); 

I-2- 

1 1 
yfy Case I: 4</<6 

i l - 

1 1 
-^- 1 i IZ4—|-1-1-j-1- 

t-6 o T l 2 3 4 5 

y(t) 

FIGURE 2-6. Steps in the convolution of Example 2-7 and the final result. 
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that is, it is linearly increasing with t. For Case II, it is 2[(t - 4) - (t - 6)] = 4. Finally, for Case III, 

it is 2[4 ~ (t — 6)] = 2(10 — t); that is, the area linearly decreases with t. The result for y(t) is 

sketched in Figure 2-6d. 

EXAMPLE 2-8 _ 

As a second example of the convolution operation, we consider the signals shown in Figure 2-7a. 

We use the convolution integral (2-5b) in obtaining the result. This example differs from Example 

x(t) h(t) 

(a) (b) 

(f) 

FIGURE 2-7 Waveforms pertinent to the convolution of Example 2-8. 
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2-7 in that part of the area under the product x(A)h(t — A) is negative. Our first step is to express 

h{t — A) mathematically. Since 

h(t) = 

t_ 

2' 

0, 

0 < t < 2 

otherwise 

(2-52) 

we obtain 

h(t — A) = < 

t - A 

0, 

0 < / " A < 2 or t — 2 

otherwise 

(2-53) 

The signals x(A) and h(t — A) are sketched in Figure 2-7b. Some thought on the part of the student 

should result in the four cases of nonzero overlap illustrated in Figures 2-7c through f. The resulting 

convolutions for these cases are expressed mathematically by the following equations: 

ft t < — 1 or t > 3 

-1 < t < 0 

0 < r < 1 

l<r<2 

(2-54) 

0, 

f (t- A) dK 
J-i 

[ (t - A) dA - [ (t - A) dA, 
y(0 = (J-i •'o 

f (f - A) d\ - f (t - A) dA, 
-V2 •'0 

(t-\)d\, 2<t<3 

Integration of these expressions results in the following for y(t): 

f 0, t < -1 or t > 3 

+ l)2, -1 < t < 0 

y({) = ■ + 2t + 

\{-t2 - 2f + 1) + 2, 1<?<2 

- 2f + 1) - 2, 2<t<3. 

The resulting signal, which is the convolution of x(t) with h(t), is shown in Figure 2-7g. 

Matlab Application 

Matlab can be used to do convolutions with the conv (x, h) function. The Matlab program given 

below implements the convolution of the signals of Example 2-8 (echo on): 

EDU» c2ex8 

% MATLAB plot of Example 2-8 

% 

del_t=.005; 

t=-2:del_t:4; 

< 1 (2-55) 
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L=length(t) ; 

tp={2*t(l):del_t:2*t(L)]; 

x=2*(pls_fn(t+.5)-pls_fn(t-.5)); % Defined in Chapter 1 

h=.5 *rmp_fn(t) .*stp_fn(2-1) ; % Defined in Chapter 1 

y=del__t*conv(x,h); % Multiply by step size to approximate 

% rectangular rule integration, 

subplot(3,1,1), plot(t,x), xlabelC't'), ylabel ('x(t)'), 

axis( [t (1) t(L) -3 3]) 

subplot(3,1,2) , plot(t.h), xlabel('t'), ylabel('h (t) ') , 

axis[(t(1) t(L) 0 2]) 

subplot(3,1,3), plot(tp,y), xlabel('t'), ylabel('y(t)'), 

axis([t(l) t(L) -2 2]) 

The plot output of the program, given in Figure 2-8, is seen to be identical to Figure 2-1 g. 

EXAMPLE 2-9 _ 

In this example, we consider the convolution of a ramp and the decaying exponential signal of the 

form x(t) = exp(—at)u(t). The convolution integral in this case is 

FIGURE 2-8. Matlab verification of the result of Example 2-8. 
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y{t) = I r{f)e rhi(t — r) dr 
J — 00 

= f Te^a^r)dT, 

J() 

= e~at [ reaTdr, 
Jo 

= - - T (l - e“°0, t > 0 (2-56) 
a or 

Note that the first term increases linearly like the ramp, but with a slope of 1/a;. The second term ap¬ 

proaches — 1/a2 as t —» oo. The student should sketch the result of the convolution along with the 

components of the integrand for different values of t to provide justification for the result. 

t> 0 

f > 0 

2-5 Impulse Response of a Fixed, Linear System 

We have shown in Section 2-3 that the response of a fixed, linear system with impulse response h{t) to 

an input x(t) is the convolution of h(t) and x(t). In this section we therefore consider the impulse re¬ 

sponse of a linear system. Although the impulse response of a time-varying system can be defined also, 

we limit our consideration to fixed linear systems. 

We have defined the impulse response, denoted h(t), of a fixed, linear system, assumed initially un¬ 

exited, to be the response of the system to a unit impulse applied at time t = 0. Since the system is as¬ 

sumed to be fixed, the response to an impulse applied at some time other than zero, say t = r, is simply 

h(t — t). We now illustrate by example two techniques for obtaining the impulse response of a system. 

EXAMPLE 2-10 _ 

Find the impulse response of a system modeled by the differential equation 

T° y& + = x(t^ 00 <{<00 
(2-57) 

where x(t) is the input and y(t) the output. 

Solution: Setting x(t) = 8(t) results in the response y(t) = h{t). For t > 0, 8{t) 

eming differential equation for the impulse response is 

= 0, so that the gov- 

&
 
^

 

+
 

II p
 

V
 

o
 

(2-58) 

Assuming a solution of the form 

H (2-59) 

and substituting into the equation for h(t), we obtain 

(■T0p + 1 )Aept = 0 (2-60) 

which is satisfied if 

-1 
(2-61) 
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Thus 

h(t) = Ae~t/T\ t > 0 (2-62) 

To fix A, we require an initial condition for h(t). The system is unexcited for t < 0. Therefore, from 

the definition of the impulse response, 

h(t) = 0, t < 0 (2-63) 

From (2-57) it follows that the impulse response for t > 0 obeys the differential equation 

T0 + W) ~ 5(f), t ■ (2-64) 

For the left-hand side to be identically equal to the right-hand side, one of the terms on the left-hand 

side must contain an impulse at t = 0. It cannot be h(t), for then r0[dh(t)ldt] would contain a dou¬ 

blet,1" and there is no doublet on the right-hand side [recall (1-68)]. Thus h(t) is discontinuous at t = 0, 

but no impulse is present in h(t). Therefore, its integral through t = 0 must be zero, 

dt = 0 (2-65) 

and the integral of (2-64) from t = 0_ to t = 0+ gives 

'0+ dh(t) '0 
- UL T I 

=0 

r ^ dh^l dt+r ^ d( = f ^ 
jt=0- at jt=0- jt=0- 

dt 

r0[h(0+) - h(0')] +0 = 1 

Since h(0~) = 0, it follows that 

H0+) = y 
To 

Setting this result equal to (2-62) with t — 0+ shows that 

To 

Thus 

' 0, t < 0 

h{t) = < 

— e~’lr\ t > 0 
lTo 

is the impulse response of the system. 

(2-66) 

(2-67) 

(2-68) 

(2-69) 

EXAMPLE 2-11 _ 

Considering next the RC circuit shown in Figure 2-9, we see that the governing differential equation 

is (2-57) with t0 = RC. We will find the impulse response by considering the physical properties of 

the resistor and capacitor. 

f A doublet was defined as d8(t)!dt in Chapter 1. 
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R 

FIGURE 2-9. RC circuit to illustrate the calculation of impulse response. 

At t = 0~, the capacitor is uncharged and acts as a short circuit (infinite charge sink) to any cur¬ 

rent flowing through R. With x(t) = 8(t), the current through R at t = 0 is given by 

i(t) =Sj~, 0“ < t < 0+ (2-70) 

The charge stored in C due to this initial current flow is 

mom = l- ^Rdt=i (2_71) 

Thus the capacitor voltage is fc(0+) = 1 IRC. For t > 0, x(t) = 0; that is, the input is a short circuit 

and C discharges. The voltage across C exponentially decays according to 

vc(t) = Ae~t/Rc, t > 0 (2-72) 

Setting vc(0+) = A = 1 IRC and noting that h{t) = vc(t), we obtain the same result for h(t) as in Ex¬ 

ample 2-10 with Tq = RC. 

EXAMPLE 2-12 _ 

Find the impulse response of the LC circuit shown in Figure 2-10. 

Solution: For the unit impulse input, the differential equation governing the response of the circuit is 

Lc + MO = S(f) (2-73) 

For t > 0 the right-hand side is zero, and the solution to the homogeneous differential equation is 

h(t) = (A cos coQt + B sin co0t)u(t) (2-74) 

where co0 = MLC and the fact that h(t) = 0 for t < 0 has been incorporated into the expression 

for h(t) by multiplying by a unit step function. To obtain the unknown constants A and B, we 

L 

FIGURE 2-10. Circuit for Example 2-12. 
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differentiate h(t) twice with respect to t and substitute the result back into (2-73). The first differen¬ 

tiation gives 

dh(t) 

dt 
(—A (o0 sin (o0t + Bco0 cos co0t)u(t) + (A cos co0t + B sin co0t)8(t) 

= — o)0(A sin coQt - B cos co0t)u(t) + A8(t) (2-75) 

where we used the facts that 0 • 8(t) = 0 (see Problem 1-25 and the footnote on page 27). A second 

differentiation gives 

d2h(t) 

dt 
2 = — o)l(A cos co0t + B sin co0t)u(t) - co0(A sin co0t - B cos co0t)8(t) + A 

d8(t) 

dt 

- o)l(A cos a)0t + B sin co0t)u(t) + a)0B8(t) + A 
d8(t) 

dt 
(2-76) 

Substitution of this result into (2-73) along with the assumed h(t), (2-74), gives 

d8(t) 
LC - coq{A cos co0t + B sin co0t)u(t) - co0B8(t) + A 

dt 

But col = (LQ-K Canceling like terms, we have 

LC 

+ (A cos co0t + B sin co0t)u(t) = 8(t) 

d8(t) 
co0B8(t) + A 

dt 
= 8(t) 

(2-77) 

(2-78) 

By equating coefficients of like derivatives of 8(f), we obtain A = 0 and B = co0. Thus the result for 

the impulse response of this circuit is 

h(t) = o>0 sin (cu0r) w(r) (2-79) 

2-6 Superposition Integrals in Terms of Step Response 

We saw in Example 2-6 that the step response of the RC circuit shown in Figure 2-11 is simply the in¬ 

tegral of the impulse response of the circuit. We now ask: Can the response of a system to an arbitrary 

input be expressed in terms of its step response? The answer is yes. 

To find the appropriate relationship, consider the superposition integral in terms of impulse response. 

Repeating (2-5a) here for convenience, we have 

y(t) = J x(t — A)h(X) dX 

We employ the formula for integration by parts: 

fb fb 
u dv = uv \ba — v du 

J a Ja 

with u = x(t — A) and dv = h(X) dX. Thus 

v(\) = fA h(0 dl a a(A) 
J —QO 

(2-5) 

(2-80) 

(2-81) 
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du(A) = -xft - A) dX (2-82) 

where the overdot denotes differentiation with respect to the argument. Substituting these expressions 

into (2-80), we obtain 

yft) = a{X)xft - A) + I x(£ - A)^(A) dX (2-83) 
J — 00 

The system is initially unexcited, so that a{—&>) = 0 and xft — A)Ia = 00 = 0. Thus the first term is zero 

when the limits are substituted, and the final result is 

yft) = f xft - X)a(X) dX (2-84) 
J —00 

The change of variables 77 = t — A results in the alternative form 

y(t) = f x(rj)a(t - rj) dr] (2-85) 
J —oo 

Thus in terms of the step response ait), the response of a system to an input x(t) is the convolution of 

the derivative of the input with the step response. Equations (2-84) and (2-85) are known as DuhameVs 

integrals. Note the similarity to (2-5a) and (2-5b), respectively. 

EXAMPLE 2-13 _ 

Consider a system with a ramp input for which 

x(t) = tuft) (2-86a) 

xft) = uft) (2-86b) 

Applying (2-85), we obtain the response to a ramp as 

yR(t) — f uft — X)a{X) dX 
J — 00 

= f a{\) d\ ■ (2-87) 
J —co 

Thus the response of a system to a unit ramp, which is the integral of the unit step, is the integral of 

the step response. 

Generalizing, we conclude that for a fixed, linear system, any linear operation on the input produces 

the same linear operation on the output. 

EXAMPLE 2-14 _ 

I Find the response of the RC circuit of Figure 2-9 to the triangular signal 

xa(0 ~ KO — 2r(r - 1) + rft — 2) (2-88) 
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Solution: We first substitute (2-47) into (2-87) to obtain the ramp response. Thus 

yR(t) = J 1 - exp(-£) u(A) d\ 

= r(0 + RC e*p(-£) ^ w(f) 

= r(0 -fiC 1- exp(^) M0) (2-89) 

By superposition, the response to the triangle xA(t) is yA(t) = yR{t) — 2yR(t - 1) + yR(t - 2). This in¬ 

put and output are compared in Figure 2-11. Note that for RC < < 1, the output closely approxi¬ 

mates the input, whereas if RC = 1 the output does not resemble the input. 

Matl ab Application 

In this example, we verify the result of Example 2-14, shown in Figure 2-11, by writing a Matlab 

program to carry out a Duhamel’s integral evaluation. The program listing is given below: 

EDU>>c2exl4 

% DuHammel's computation of the output for Example 2-14 

% 

RC=0.1; 

t__min=-0.5; % Minimum t-value for 

% computation window 

t_max=2.5; % Maximum t-value for 

% computation window 

del_t=0.001; % Step size for 5 

t=t_min:del_t:t_max; % Vector of t-values 

L=length(5); 

tp=[2 *t(1) :del_t:2 *t(L)] ; % t-variable defined for 

% plotting output 

x__del_dot=stp_fn(5)- 2*stp_fn(t-1)-stp_fn(t-2) ; % Derivative of the input 

a=(1 - exp(-t/RC)).*stp_fn(t); % Step response of the 

% system 

y=del__t *conv (x_del_dot, a) ; _ % The convolution; 

% multiply by del_t to 

% scale 

FIGURE 2-11. Response of an RC circuit to a triangular input signal. 
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subplot(3,1,1) ,plot (t,x_del_dot) ,xlabel(’tf) ,ylabel('der.of input') , 

axis([t_min t_max -1.5 1.5]) 

subplot(3,l,2),plot(t,a'),xlabel('t'),ylabel('step resp.'),axis([t_min 

t_max 0 1.5]) 

subplot(3,l,3) ,plot(tp,y) ,xlabel('t') ,ylabel('output') ,axis( [t__min 

t_max 0 1]) 

A plot of the output of the system in response to the triangle input is shown in Figure 2-12 for 

RC = 0.1. Note that it is the same as the corresponding response plotted in Figure 2-11. 

EXAMPLE 2-15 

We again consider the RC circuit of Figure 2-9 and compute its impulse response by first finding its 

step response and then differentiating it. The differential equation relating input and output is 

RC 
dy(t) 

dt 
+ y(t) = x(t) (2-90) 

1 
=3 
CL 
C 

^ 0 
vJ 
0 

■O 

-1 

-0.5 0 0.5 1 1.5 2 2.5 

t 

t 

FIGURE 2-12. The response of an RC lowpass filter to a triangular input. 

t i-r 

J_L 
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which is (2-57) with t0 = RC. With a unit step input, this equation can be written as 

RC^- + a(t) = 1, f>0 (2-91) 
at 

where a(t) is the step response. We have already considered the solution of this differential equation 

in Example 2-1 for an arbitrary input. As mentioned in that example, the solution consists of the sum 

of a homogeneous solution, which is 

ah(t) = A exp(^) (2-92) 

plus a particular solution for the forcing function u(t). This particular solution is simply ap(t) = 1, 

which can be seen by direct substitution into the nonhomogeneous differential equation for a(t). Thus 

MO = ah(t) + ap(t) = A exp + 1, t > 0 (2-93) 

The initial charge on the capacitor is zero for t < 0. Since the forcing function does not contain 

impulses (it is a step and therefore cannot change the capacitor charge instantaneously), it follows 

that the charge on the capacitor at t = 0+ is zero. Therefore, a(0+) = 0 or 

and 

a(0+) = A expl^L0 +1 = ^ + 1:=0 

a(t) = 1 - exp(—~\ t> 0 

Using the fact that a{t) = 0 for t < 0, we may write this as 

-A a(t) 1 - exp 
RC 

u{t) 

(2-94) 

(2-95a) 

(2-95b) 

Since 8(f) = du(t)/dt and using the principle stated after Example 2-13 that for a fixed, linear sys¬ 

tem, any linear operation on the input produces the same linear operation on the output, we can ob¬ 

tain the impulse response by differentiating a(t) with respect to t. The result is 

MO = 
da(t) 

dt 

( ~t 

RC nV\ RC 
IMO (2-96) 

which follows by using the chain rule for differentiation and noting that 1 — exp(—t/RC) = 0 for 

t = 0. 

2-7 Frequency Response Function of a Fixed, Linear System 

If the input to a fixed, linear system is a sinusoid of frequency to rad/s, the steady-state response (i.e., 

the response after all transients have approached negligible values) is a sinusoid of the same frequency, 

but with amplitude multiplied by a factor A(co) and phase-shifted by 0(a)) radians. We prove this asser¬ 

tion in this section and illustrate it with an example. 
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The complex function of frequency 

H(<o) = A((o)eiei(o) (2-97) 

is called Ihz frequency-response function of the system; A(co) and 6(co) are referred to as the amplitude- 

response and phase-response functions of the system, respectively. 

The frequency-response function, (2-97), completely characterizes the steady-state response of a 

fixed, linear system to a sinusoid or, equivalently, a rotating phasor, eJMt. That is, the steady-state output 

of a fixed, linear system is of the same form as its input when its input is eiMt. In mathematical terms, 

ejb)t is said to be an eigenfunction of the system. That this is the case can be shown by considering the 

supeiposition integral with the input x(t) = e^. Then the output is 

-00 

y(t) = eMl~A)h(X) dX (2-98) 
J —oo 

where h(A) is the impulse response. Since ei0* can be factored out of the integral, the output can be writ¬ 

ten as 

y(t) = eiat J h(X)e~JoA d\ = eia“H(oj) (2-99) 

We identify the integral multiplying as the frequency response H(co). That is, 

H(oj) = f h(X)e~^dX (2-100) 
^ —oo 

Later we shall see that H{co) corresponds to the Fourier transform of the impulse response h(t). 
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Thus, the amplitude and phase responses are, respectively, given by 

A(co) = ----- —   - (2-104a) 
VI + (ojRC)2 

and 

0(co) = -tan-\coRC) (2-104b) 

The output, for an input of the form is 

y(t) = ---eiW-i™\*RC)} (2-105) 

Vl + (WJRC)2 

For a cosinusoidal input, we may find the output by writing the cosine in exponential form and us¬ 

ing superposition to obtain the output 

y(t) = a -- cos [cut - tan ~\coRC)\ (2-106) 
VI + (coRC)2 

Note that the same result could have been obtained by taking the real part of (2-105). This is not sur¬ 

prising, since the cosinuosidal input is obtained by taking the real part of the rotating phasor input, 

and the operations of taking the real part and convolution are interchangeable since both are linear 

operations. 

Some numerical values will illustrate the behavior of A(co) and 6(co) versus a). For (2ttRQ~1 = 

1 kHz and a = 1, the values in Table 2-1 result. For example, for x(t) = cos(2,00077t), the out¬ 

put is 

y(t) = 0.707 cos(2,000tt? - 45°) (2-107) 

Using the superposition property of the linear RC filter, we obtain the output for an input of the form 

x(t) = cos(2,000tt0 + cos(20,000tt0 (2-108) 

as 

y(t) = 0.707 cos(2,0007rf - 45°) + 0.0995 cos(20,00077t - 84.29°) (2-109) 

Applying the superposition property an indefinite number of times, one could find a series expres¬ 

sion for the output due to any periodic input simply by representing the input in terms of its Fourier 

series, as we will show in the next chapter. 

TABLE 2-1 
Amplitude and Phase Response Values 
for an RC Filter 

OJ A(w) 0(o>) 

20077 0.995 -5.71° 

1,00077 0.894 -26.57° 

2,00077 0.707 -45.00° 

10,00077 0.196 -78.69° 

20,00077 0.0995 -84.29° 
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2-8 Stability of Linear Systems 

One of the considerations in any system design is the question of stability. Although there are various 

definitions of stability in common usage, the one we use is referred to as bounded-input, bounded- 

output (BIBO) stability. By definition, a system is BIBO stable if and only if every bounded input re¬ 

sults in a bounded output. Clearly, stability is a desirable property of most systems. 

For a fixed, linear system we may obtain a condition on the impulse response which guarantees 

BIBO stability. To derive this condition, consider (2-41), which relates the input and output of a fixed, 

linear system: 

y(t) = f x(X)h(t - A) dX 
j —00 

It follows that 

KOI = 
f00 f00 » 
I x(X)h(t — A) dX < I |x(A)| |h(t — A) dX 

J —00 J —00 

(2-110) 

If the input is bounded, then 

|x(A)| < M < oo 

where M is a finite constant. Replacing [x(A)| by M in (2-110), we have the inequality 

(2-111) 

IA
 

8 
>8 

IS
F

 

1 >-
 

(2-112a) 

or 

KOI =£ M f \h(rj)\ dv 
d —00 

(2-112b) 

which follows by the change of variables rj = t — X. Thus the output is bounded provided that 

r 00 
\h(t)\dt< co (2-113) 

J —00 

That is, (2-113) is a sufficient condition for stability. 

To show that it is also a necessary1 condition, consider the input 

+ 1 if h(t — A) > 0 

x(X) = < 0 if h(t - A) = 0 - (2-114) 

- 1 if h(t — A) < 0 

For this input it follows that 

I f00 f00 
KOI = Ih(t - A)| dX = \h(n)\ dv (2-115) 

F— 00 J— 00 

for any fixed value of t since the integrand is always nonnegative. Thus the output will be unbounded 

if (2-113) is not satisfied. That is, it is also a necessary condition for BIBO stability. 

A condition from which a given statement logically follows is said to be a sufficient condition; a condition which is a logi¬ 
cal consequence of a given statement is said to be a necessary condition. A condition may be necessary but not sufficient, and 
vice versa. 
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EXAMPLE 2-17 __ 

The system of Example 2-11 is BIBO stable since 

r°o X r00 
—— e~t,RCu{t) dr = exp(-L>) 

J— oo fvO Jq 

= -exp(-u)lo 

= l<oo (2-116) 

EXAMPLE 2-18 

Is the system whose impulse response was derived in Example 2-12 BIBO stable? 

Solution: Substituting the impulse response for this system into (2-113), we obtain 

-00 - 00 - 00 

\h(t)\ dt = |sin(a>0f) u(r)| df = co0 |sin <o0r| A (2-117) 
J —00 *'—00 Jo 

The integral does not converge, so the condition for BIBO stability does not give a bounded re¬ 

sult. This system is BIBO unstable. 

We will return to the idea of stability of a system in Chapter 6, where additional methods for deter¬ 

mining the stability of systems describable by constant coefficient, linear differential equations, are 

discussed. 

2-9 System Modeling and Simulation* 

We briefly consider in this section how systems can be modeled and simulated in terms of several basic 

building blocks. These basic building blocks are given in Table 2-2, and consist of ideal adders or sub¬ 

tractors, constant multipliers, and integrators. Any nth-order constant-coefficient differential equation 

can be simulated by means of these components. It may seem that we are simply replacing one unsolved 

problem with another in so doing, or that we really don’t need such simulations at all because linear, con¬ 

stant-coefficient differential equations are amenable to solution. In answer to the first thought, when a 

simulation block diagram is available for a system, the realization of such a simulation can take one of 

two forms: (1) The realization can be accomplished in analog fashion by means of operational amplifier 

circuits that approximate the ideal summers and integrators needed (such circuits are also shown in Table 

2-2); (2) the simulation can be realized by means of a digital computer program where the integration is 

done numerically, as in Example 1-3. In regard to simulations being unnecessary because the differen¬ 

tial equation representing a system is analytically solvable, we simply point out that the system realiza¬ 

tions and simulation procedures touched on in this section also apply to cases where the system is 

nonlinear or time varying as well, and these problems are often not solvable by analytical means. 

To see how one might simulate a system, either by means of operational amplifier circuits or by digi¬ 

tal computer algorithms, consider the first-order differential equation 

+ ay = bi~j~ + fro* (2-118) 

Systematic modeling procedures for electrical and mechanical systems are discussed in Appendix B. 
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Operation Symbol Op Amp Realization 

Integration 

y(t) = a jlx(K)dk 

-a = 1 IRC 

It is realized by the block diagram of Figure 2-13. To show that this is the case, let the output of the 

integrator be q(t). Its input is then dqldt. Equating dqldt to the sum of the inputs to the left-hand sum¬ 

mer, we obtain 

dq 
— = -ay + b^x (2-119) 

Considering the output of the right-hand summer, we find that 

y = q + bxx (2-120) 

Differentiating both sides of (2-120) and substituting (2-119), we obtain (2-118). 

In a similar manner to the first-order case, we can realize an rcth-order system by a block diagram 

similar to Figure 2-12. For the differential equation 

dny(t) d'yjt) _ ” <tx(t) 

dtn S5 ' df & ■' dt 
(2-121) 
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x(t) ~y(t) 

FIGURE 2-13, Integrator realization of a general first-order system. 

we have the realization diagram shown in Figure 2-14. That this is the realization of (2-121) can be 

demonstrated in a similar, although longer, procedure to that used for the first-order case. [Note that this 

is only one of many ways to realize this system. Also note that the number of derivatives on either side 

of (2-121) can differ by having some a- s or b- s zero.] 

FIGURE 2-14. Integrator realization of a general nth-order system. 
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EXAMPLE 2-19 _____ 

I Consider the RLC circuit shown in Figure 2-15. Obtain an integrator realization of this circuit. 

Solution: The differential equation describing the voltage response of the circuit is 

yr + i/ KA)rfA + c^ = *(o 

Differentiating once and rearranging, we obtain 

d2v 1 dv 1 1 dx 
— _l_-_l_ jj —- 

dt2 RC dt LC C dt 

(2-122) 

(2-123) 

This is of the form (2-121) with y = u, n = 2, a0 — \/LC, ax — \IRC, b0 — 0, b{ = 1/C, and b2 — 0. 

The integrator realization is shown in Figure 2-16. 

Matlab APPLICATION__- 

An integrator (or state variable) simulation of a system can be carried out using SIMULINK, which 

is a block diagram oriented toolbox. There is a limited version available in The Student Version 

o/Matlab. One invokes SIMULINK by typing “simulink” after the command window prompt. One 

can then construct a block diagram realization of the desired system using the menus available. Such 

a SIMULINK block diagram realization is shown in Fig. 2-17 for the RLC circuit of Example 2-19. 

FIGURE 2-16. Integrator realization of a parallel RLC circuit. 
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1/LC 

FIGURE 2-17. A SIMULINK simulation block diagram for the RLC circuit of Example 2-19. 

The simulation can be carried out directly in the model window or it can be carried out in the 

Matlab command window using the function lsim as suggested by the script below: 

EDU>>c2exl9pl 

% Plot of simulation output for Example 2_19 

% 

[t,q]=lsim(’c2exl9' ,20) ; 

plot (t, q(: ,1)) , xlabel('t'), ylabel('output') 

The output variables are defined by dropping down the menu under “Simulation” in the simulation 

window, and then the menu under “parameters.” This brings up the “SIMULINK Control Panel” in 

which various simulation variables are specified such as start and end time of the simulation. The 

last blank to be filled out is labeled “Return Variables” which can be left blank if desired and the re¬ 

turn variables default to time (0 and the state variables or integrator outputs (a). In our example here 

we gave the state variables the label q. This is a matrix q{m,ri) with m denoting the time index and n 

indicating the number of the state variable. Thus by specifying q{1) we have specified the output 

in this example, which is shown in Figure 2-18. The step size was set to 0.1. 

A useful way to write the equations for a system are in terms of state variables, to be discussed fur¬ 

ther in Chapter 7. For now, we simply point out that the state variables for a system are the outputs of 

the integrators of the integrator realization of a system. The state variable equations are then written 

down by taking the input to each integrator (the derivative of that state variable) and setting it equal to 

the summer output appearing there. 

The advantage of writing the system equations in terms of state variables is that the same form is ob¬ 

tained no matter what the order of the system. For orders greater than one, the equations become ma¬ 

trix equations, as will be pointed out in Chapter 7. For example, the state equations for the system of 

Example 2-21 are 
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FIGURE 2-18. Output of the parallel RLC circuit of Figure 2-15 obtained by SIMULINK for parameter 
values shown in Figure 2-17. 

dqi(t) 
dt 

dq2(t) 

1 1 
i(0 - <h(0 + cx(0 

1 
<?i(0 (2-124) 

dr LC 

and the output equation is i?(f) = ^(f). This can be put into the form of the matrix equation 

Q(0 - AQ(t) + Bx(r) (2-125) 

where A and B are matrices and Q(t) is a column matrix or vector with elements qx(t) and q2(t). 

EXAMPLE 2-20 ____ 

Reconsider the accelerometer of Example 1-1 and the integrator circuit for determining velocity of 

Example 1-2. We make one addition to the accelerometer model to make it more realistic—the ad¬ 

dition of viscous friction between the weight and its housing. Such friction is often modeled as be¬ 

ing proportional to velocity so that (1-1) now is modified to 

dx 
Ma = Kx + B— (2-126) 

dt 

where B is the constant of proportionality. A small amount of friction will hardly affect the ac¬ 

celerometer action at all, whereas a large amount will make its response sluggish and the indicated 
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velocity at the integrator circuit output will lag that of the actual velocity. To investigate this effect, 

we model the rest of the system and simulate it with SIMULINK. The remaining equations neces¬ 

sary for constructing the SIMULINK model are (1-8), which is repeated here 

1 V dvJt) 1 

” 1r‘-RCX{,) {1A11) 

and the equation relating vs to the mass excursion from equilibrium, x. To make the maximum of 

vs = 0.1 V when the mass is at its maximum excursion of 1 cm = 0.01 m, this equation is simply 

vs(t) = 10x(t) (2-128) 

We define auxiliary variables (called state variables) as the outputs of the integrators in the 

SIMULINK model. Thus qx = jc and q2 = vG, and the system governing equations mny be written as 

dq i(Q 

dt 

K 

B 

M 
?i(0 + — a{t) 

and 

dq2(f) 

dt 
1 /v 10 

RCV-W " ~RCX(,) 
(2-129) 

The desired output is q2(t) = vQ{t) which is proportional to the velocity of the rocket (recall that the 

integrator circuit was designed in Example 1-2 such that when the operational amplifier output volt¬ 

age is —10 volts, the rocket’s velocity is the burnout value of 1500 m/s). 

A SIMULINK block diagram modeling the accelerometer and integrator circuit is shown in Fig¬ 

ure 2-19. Recall that the following parameter values were used in Examples 1-1 and 1-2: 

M — 2 grams = 0.002 kg; K = 8 kg/s2; RC = 0.36 s 

We will take three values for B, in particular 1, 10, and 100 kg/s which corresponds to low, moder¬ 

ate, and high damping. Note that the ramp acceleration input has been modeled as a step integrated. 

The SIMULINK simulation can take place either in the SIMULINK model window itself, in 

which variables of interest can be monitored on scopes strategically placed, or it can be run in the 

Matlab command window with the statement below: 

EDU>>[t, q]=sim('c2ex20',72); 

Various plots can then be made with the plot command. In this case, three simulations were run for 

the three different values of B (1, 10, and 100) and the plot held in each case so that the integrator 

output for each succeeding case could be plotted on top of the previous cases. The resulting graph is 

shown in Figure 2-20. Note that the largest value of B = 100 gives considerable lag in the output. 

m- 1/s 

Step Input Integrator! 
+V9 

M/B 

1/s 

Sum Integrator 1G/RC Gain Integrator To Workspace 

Scope2 

FIGURE 2-19. SIMULINK model for the accelerometer/integrator circuit of Examples 1-1 & 1-2. 
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FIGURE 2-20 Output voltages for the accelerometer/integrator system of Examples 1 -1 and 1 -2 for 
the three damping parameter values of 1, 10, and 100 kg/s. 

EXAMPLE 2-21___ 

As a final example using SIMULINK, we do another system that involves both mechanical and 

electrical subsystems. Figure 2-21 represents a direct current (dc) motor with separately excited 

field coils (a separate source supplies the dc current to provide the magnetic field in which the 

armature rotates). The applied voltage to the armature, vs(t), is assumed to be a step applied at 

t = 0. The angular velocity (rotational speed), radians/second, of the armature as a function of time 

is desired. 

The left-hand side of the block diagram of Figure 2-21, representing the armature circuit, in¬ 

cludes the applied source, a resistor representing the resistance of the armature windings, an induc¬ 

tor representing the inductance of the annature windings, and a controlled source vb = K dO/dt = KCi 

representing the back-electromotive force (emf) generated because the armature turning in the 

magnetic field also acts as a generator. The latter is proportional to the angular velocity of the 

armature. 

The right-hand side of the block diagram of Figure 2-21 represents the rotating armature of the 

motor. It consists of an ideal torque source Ts = Ki (note that the same constant relates torque to 

current as relates back emf to angular velocity) which is proportional to the armature current, an 
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R L 

FIGURE 2-21. Schematic 'diagram of a separately field-excited dc motor with viscous friction loading. 

angular momentum J which is due to the mass of the armature, and a rotational damper B which rep¬ 

resents damping due to air and mechanical friction (part of which may be the load). 

Since both the electrical and mechanical parts of the system are represented by circuit diagrams 

(the circuit diagram for the mechanical side is perhaps easier for electrical engineers to understand 

than mechanical diagrams), we can apply Kirchhoff’s circuit laws to write down the governing dif¬ 

ferential equations which are 

v/0 = Ri(t) + L dl^ + Kil(t) 

Ts(t) = Ki(t) = (2-130) 

If we are interested in the angular velocity 12(f), we could eliminated i(t) between these two equa¬ 

tions and solve the resulting second-order differential equation for (2(f) using standard techniques. 

The purpose of this example is to illustrate the application of SIMULINK, however. Easier tech¬ 

niques for solving system equations based on Laplace transforms will be presented in Chapters 5 and 

6. In order to easily construct the SIMULINK block diagram, we solve (2-130) for dildt and dCl/dt. 
These will then be the inputs to the two required integrators. 

di(t) 

dt 

dVL{t) 

dt 

~i(0-f n(o + 2v,(o 

-> + fK0 (2-131) 

Using these equations, the SIMULINK diagram shown in Figure 2-22 can be constructed. We 

have two options for running the simulation—in particular, we can simulate directly in the 

SIMULINK window, or we can use lsim in the Matlab command window. The latter is conve¬ 

nient for generating plots that can be stored in files or printed. Note that the coupling between the 

electrical and mechanical parts of the system is controlled by the parameter K. We are interested in 

studying the effects of the dissipative elements on the system operation—in particular R and B. We 

intuitively expect the final angular velocity of the motor to be less the higher B, and we expect it to 

take longer in getting to its final angular velocity the higher B. These outputs for three values of B 
are illustrated in Figure 2-23 where it is seen that this is indeed the case. 
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K/L 

FIGURE 2-22. SIMULINK diagram for the separately excited dc motor system of Figure 2-21 (L = 1). 

FIGURE 2-23. Angular velocity versus time for motor armature for different coefficients of friction. 

Summary 

In this chapter, the response of a fixed, linear system to an arbitrary input has been considered. The ba¬ 

sic tool for obtaining the response is the superposition integral, which provides the output of the sys¬ 

tem as a superposition of elemental impulse responses weighted by the input signal values at various 

delays. The linearity of the system allowed the superposition of the elemental responses, while the fixed 

property means that the response to an impulse applied at t = 0 need only be considered with all other 
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possible delays obtained by delaying the impulse response due to the fixed nature of the system. The 

following are the main points made in this chapter. 

1. A system is said to be continuous time if the signals processed by the system are continuous-time 

signals. It is said to be a discrete-time system if it processes discrete-time signals. It is said to be 

quantized if the signals processed by it are quantized signals. If a system is built to process sig¬ 

nals that are both discrete time and quantized, it is said to be a digital system. Continuous-time 

systems are dealt with almost exclusively in this chapter. Discrete-time systems will be the sub¬ 

ject of Chapters 8-10. Furthermore, the systems considered in this chapter are all single-input, 

single-output; that is, they have a single input and a single output. Systems with multiple inputs 

and outputs can be handled by the techniques to be explored in Chapter 7. 

2. A system is time invariant, or fixed, if its input-output relationship does not change with time. 

Thus, for a time-invariant system, if the input x(t) produces the output y(t), then the delayed in¬ 

put x(t — t), where ris a constant delay, produces the output y{t - t). 

3. A system is causal, or nonanticipatory, if its response to an input does not depend on future val¬ 

ues of that input. 

4. A system is instantaneous, or zero memory, if its output depends only on present values of the in¬ 

put, and not on past or future values. 

5. If a single-input, single-output system is represented symbolically as y(t) = $£[v(r)], where 9€[*] 

is an operator, the system is linear if superposition holds. That is, a system is linear if, for the ar¬ 

bitrary linear combination of two inputs 0Lxxx(t) + a2x2(t), the output can be expressed as 

y{t) k ^[o^OO + a2x2(t)\ 

= aj ^[*,(0] + u2W[x2(t)} 

= aiJi(0 thyiif) 

where is the response to xx(t) and y2(t) is the response to x2(t) and ax and a2 are arbitrary 

constants. 

6. For a linear system that is not fixed, the superposition integral relating the input x(t) to the output 

y(t) is 

y(t) = J h(t, k)x(k) dk 

where h(t. A) is the response of the system at time t to a unit impulse applied at time A. If, in ad¬ 

dition, the system is fixed, then h(t, A) = h(t — A), and the superposition integral becomes 

y(t) = f h(t — A)x(A) dk 
J —00 

= f h{r)x{t - t) dr 
J — CO 

where the second form follows from the first by substituting r = t — A. These integrals are known 

as convolution integrals. 

7. In addition to its use for finding the output of a fixed, linear system, the convolution integral has 

many other uses. We denote the convolution operation by y(t) — h(t) * x(t) — x(t) * h(t). The fol¬ 

lowing properties of the convolution integral hold: 
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1. h{t) * x(t) = x(t) * h(h). 

2. h(t) * [ax(/)] = a[/i(r) * x(OL where a is a constant. 

3. h(t) * [x^t) + x2it)] = fc(f) *x1(0 + /z(r) *x2(f). 

4. /z(0 * [xjCO * x2(r)] = [/z(0 * x^r)] * x2(0- 

5. If hit) is time-limited to (a, fc), and x(f) is time-limited to (c, <T), then /i(f) * x(7) is time- 

limited to a + c, b + d). 

6. If Aj is the area under hit) and A2 is the area under x(0, then the area under /?(/) * x(t) is A1A2. 

8. The integrand of the convolution operation is found by three operations: (1) reversal in time, or 

folding, to obtainx(-A); (2) shifting, to obtainx(f - A); (3) multiplication of /?(A) andx(f - A), 

to obtain the integrand. A similar series of operations is required to obtain the second form of 

the convolution integrand. 

9. The impulse response of a fixed, linear system is the response of the system to a unit impulse 

applied at t = 0 with zero initial conditions. 

10. For systems described by constant-coefficient, linear differential equations, the time-domain im¬ 

pulse response can be found by solving the differential equation in response to a unit impulse 

with appropriate initial conditions. Since the unit impulse is zero for t > 0, this reduces to solv¬ 

ing the homogeneous equation and finding the initial conditions by integrating the differential 

equation with unit impulse forcing function through t = 0. 

11. A second method of finding the impulse response of a lumped-element circuit by using 

time-domain techniques is to look at the properties of the lumped circuit elements in re¬ 

sponse to impulse forcing functions. To this end, capacitors are infinite charge sinks (short 

circuits) and inductors are open circuits at the instant of application of the impulse forcing 

function. 

12. The output of a fixed, linear system can also be found in terms of a superposition of its step re¬ 

sponse. The resulting integrals, called DuhameTs integrals, are given by 

y(t) = f x(r — A)tf(A) d\ 
J —oo 

= J x(r/)a(t - r,) dr, 

where ait) is the response of the system to a unit step and the overdot denotes differentiation 

with respect to time. 

13. For a fixed, linear system, any linear operation on the input produces the same linear operation 

on the output. Thus, for example, the step response is the integral of the impulse response, since 

a unit step is the integral of a unit impulse. The ramp response is the integral of the step response, 

since a unit ramp is the integral of the unit step. 

14. For a fixed, linear system, the steady-state response (i.e., the response after all transients have 

approached negligible values) to a rotating phasor input signal is a rotating phasor, but usually 

with different amplitude and different phase. If the rotating phasor input has unit amplitude and 

zero phase, then the complex proportionality constant, denoted H{co), relating output phasor to 

input phasor is called the frequency response function of the system. The magnitude of H(o)) is 

called the amplitude response of the system, and the argument, or angle, of H(a)) is called the 

phase response of the system. For example, through superposition, the steady-state output of a 

fixed, linear system in response to the cosinusoidal input A cos(co0t + 6) is 

y(t) = J4|//(w0)|cos[w0f + 0 + ///(ftp] 
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Likewise, the steady-state response of the system to any sum of sinusoids could be found by us¬ 

ing superposition. 

15. Bounded-input, bounded-output (BIBO) stability of a system means that every bounded input 

produces a bounded output. For a fixed, linear, system a necessary and sufficient condition for 

BIBO stability is 

IMOI 
J — 00 

dt < 00 

where h{t) is the impulse response of the system. 

16. Fixed, linear systems can be modeled by interconnections of operational amplifier circuits con¬ 

figured as integrators, summers, inverters, and scale changers (amplifiers). A standard configu¬ 

ration is given in Figure 2-14 for a system described by the differential equation 

dny(t) V'1 dly(t) _ ^ , dlx{t) 

dtn ^ * dt1 ^ 1 dt1 

In Chapter 7, such configurations will be found systematically by state-variable techniques. 

State-variable techniques are very powerful in that they provide a means to represent multiple- 

input, multiple-output systems, time-varying systems, and nonlinear systems. A block diagram, 

such as Figure 2-14, is called an analog computer simulation of the system. 

17. Analog computer simulations are very seldom used nowadays. The reason is that digital com¬ 

puters have become very powerful and reasonably priced. Even a desktop computer or work¬ 

station is capable of simulating very complex systems. The last section of this chapter introduced 

the topic of numerical simulation of systems using Matlab SIMULINK. Several linear sys¬ 

tems are employed as examples. The SIMULINK feature of Matlab makes numerical solution 

straight forward. 

Further Reading 

In addition to the references listed in Chapter 1, the following books provide alternative reading to sys¬ 

tems modeling in the time domain. 
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980. 

E. W. Kamen, Introduction to Signals and Systems. 2nd ed. New York: Macmillan, 1990. 

N. K. Sinha, Linear Systems. New York: Wiley, 1991. 

H. Kwakernaak and R. Sivan, Modern Signals and Systems. Englewood Cliffs, NJ: Prentice-Hall, 1991. 

The following is an old book and out of print. Yet, it is referenced because many of the definitions and examples 

in this chapter are patterned after material found in it. 

R. J. Schwarz and B. Friedland, Linear Systems. New York: McGraw-Hill, 1965. 

The following references provide extensive treatments on modeling physical systems. «* 

W. A. Blackwell, Mathematical Modeling of Physical Networks. New York: Macmillan, 1968. 

C. M. Close and D, K. Frederick, Modeling and Analysis of Dynamic Systems. Boston: Houghton-Mifflin, 1978. 

Material on numerical solution of system equations can be found in the following book: 

J. M. Smith, Mathematical Modeling and Digital Simulation for Engineers and Scientists, 2nd ed. New York: 

Wiley, 1987. 

For guidance on the use of SIMULINK, see the following reference: 

The Student Edition of SIMULINK, Version 2: User’s Guide. Upper Saddle River, NJ: Prentice Hall, 1998. 
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Problems 

Section 2-2 

2-1. A system is defined by the set of algebraic equations 

y1(t) = 2*x(0 - x2(r) 

y2(0 = 5x2(f) + 3^(0 

Represent this system in terms of a matrix equation of the form 

y(t) = Hx(t) 

That is, givey(0, H, and x(0 explicitly. 

2-2. What is the order of each system defined by the following equations? 

(a) 
_ dy(t) _ . x a 
2 * 3,(,) = - 

<2x(t) 

dt2 +X(t) 

(b) 3y(t) + f y(A) d\ 
•J —00 

= x(t) 

(c) 

a
 
^

 

II 
o

 
r
H

 

+
 

¥
 + 5 x(t) 

(d) II +
 

^3 x(A) dX 

(e) + y(t) = 5 x(t) 

2-3. Which of the systems defined by the equations of Problem 2-2 are fixed? Justify your answers. 

2-4. Which of the systems defined by the equations of Problem 2-2 are nonlinear? Justify your answers. 

K 2-5. A system is defined by the input-output relationship 

y{t) = x(t1'2) 

Is this system causal or noncausal? Justify your answer by choosing a specific pair of inputs that 

will or will not satisfy (2-23). 

2-6. A system is defined by the input-output relationship 

y(t) = 10x(t + 2) + 5 

(a) Is this system linear? Prove your answer. Nl 

(b) Is it causal or noncausal? Why? 

^ *)( 2-7. A system is defined by the input-output relationship 

y(t) = x(t2) 

Is this system: 

(a) Linear? 

(b) Causal? 

(c) Fixed? 

Prove your answers. 
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2-8. An echo system is defined by the input-output relationship y(t) = x{t) + ax(t — t0). 

(a) Show that it is a linear system. 

(b) Is it zero memory? 

(c) Show that it is causal if r0 '> 0. 
(d) Sketch its output for a — 0.5 and 1.5 if x(t) = u{t) — u{t - 1) and r0 = 1. 

2-9. An averager is defined by the input-output relationship 

1 f,+l2 
>’(0 = x(\) d\ 

1 1 ^ i2 A-Tj 

where and T2 are positive constants. 

(a) Show that this system is linear. 

(b) What conditions on Tx and T2 make this a causal system? 

I 2-10. (a) Write a differential equation relating y(t) to x(t) for the circuit shown in Figure P2-10. 

(b) Show that this system is linear. 

(c) Show that this system is fixed. 

(d) Convert the differential equation found in part (a) to an integral equation of the form (2-5). 

Assume that the input x(t) is applied at t = 0, and that the current through the inductor is ini¬ 

tially zero. 

FIGURE P2-10 

^ ^ j 

2-11. Fill in the table at the end of this problem to state whether the systems specified are linear or 

nonlinear, causal or noncausal, fixed or time-varying, and dynamic or instantaneous. Also give 

their order. 

(a) “““ + 3y + 2 J y(A) d\ — x(t) 

w +3,§+y(° ’x(,> 

«D>«) ^ + 3rf + y{t)=x(,) 

(e) y(t) = x{t2) + x(t) 

(*) y(0 c[tl + 3f ^ + v(0 = x0 + 5) 

If true, check the appropriate box. Fill in the bottom row with system order. 
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Property 

System 

a b c d e f 

Linear 

Causal 

Fixed 

Dynamic 

Order 

2-12. Classify the following input-output relations for systems as to linearity, order, causality, and time 

( invariance. State the order of each. 

(a) + ^—y(t) = x(t); RC = constant 
at RC 

(b) dJ( + t2y(t) = x(t) 

(c) ^ + + ?<0 = i<0 
(d) y(t) = x2(t) + 1 

2-13. Given the system 

X(t) y(t) — x(t)co$(\007rt) 

cos(lOOTrr) 

FIGURE P2-13 

(a) Show that it is linear. 

(b) Is it time varying? Why? 

(c) Is it causal? Why? 

(d) Is it instantaneous? Why? 

2-14. A fixed, linear system responds to the input x(t) — U[(t - 1 )/2] with the output y(t) = 

(t + l)exp[2 (t + l)]u(t + 1). 

(a) Is it causal? Why or why not? 

(b) Write down the response to the input 2 TL[(t — l)/2] + 3 H[(t — 3)/2]. Sketch input and out¬ 

put signals. 

Section 2-3 

2-15. Assuming the superposition property for the linear combination of two signals, extend this ex¬ 

pression to the linear combination of N signals. 
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2-16. If xxit), *2(0* and /*(0 are arbitrary signals, and a is a constant, show the following: 

(a) h(t) * [x{(t) + x2(t)] = h(t) * xx(t) + h(t) * x2(t) 

(b) h{t) * [xxit) * x2(t)} = [h{t) * xxit)] * x2(t) 

(c) h{t) * [axxit)] = ahit) * xx(f) 

(d) If hit) is time-limited to ia, b) andx(7) is time-limited to (c, d), then hit) * x(t) is time-limited 

to ia + c, b + d). 

(e) If A x is the area under hit) and A2 is the area under xit), then the area under hit) * xit) is AXA2. 

Section 2-4 

| 2-17. Find and sketch the signal y(t), which is the convolution of the following pairs of signals. 

^(a) xit) = 2 exp(-100^(0 and hit) = Ilit/2) 

^(b) xit) = Ft [it - l)/2] and hit) = uit — 10) 

(c) xit) = 2 exp(-10t)u(t) and hit) = uit - 2) 

(d) xit) = [exp(-20 - exp(—100]m(0 and/i(7) = II 
(e) xit) = rif) and hit) = 2 exp(—2t)uit) 

2-18. Given the signals 

xit) = 11(7 - 0.5) 

and 

OO 

hit) — 2 &it — 2n) 
n=— oo 

Write down an expression for their convolution. Sketch the result. 

Section 2-5 

2-19. Obtain the impulse response of the system shown by: 

(a) Using the method of Example 2-10. 

(b) Using the method of Example 2-11. 

o—— 

+ L 

x(t) R 

o —■ 

FIGURE P2-19 

2-20. Find the impulse response for the circuit 

1 Q 

FIGURE P2-20 
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FIGURE P2-21 

(a) Show that the differential equation relating the output to the input is 

dy{t) Ri R\ . =_Ri dx(t) 

dt R{ + R2 L n R{ + R2 L dt 

(b) Obtain the impulse response of this circuit. 

A 2-22. Obtain the impulse response of the system shown. 

2-23. Obtain the impulse response of the system shown. 

FIGURE P2-23 

2-24. (a) Show that the impulse response h(t) of the operational amplifier circuit shown is h(t) pro¬ 

portional to u(t). 

(b) Express the output of the circuit in terms of the superposition integral for an arbitrary input. 

Is it the expected result given the function of this circuit? 

FIGURE P2-24 



%
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Section 2-6 

2-25. (a) What is the step response of the circuit in Problem 2-24? 

(b) Given the input x{t) = u(t) + u(t — 1) — 2u(t — 2). Find the output for this input. Sketch 

both the input and the output. Label carefully. 

2-26. Obtain the output of the system of Problem 2-19 in response to the input 

x(t) = 110 - 0.5) 

Sketch for R/L = 0.1 and 1.0. Use (2-41). 

% 2-27. Obtain the output of the system of Problem 2-22 in response to the input 

x(t) = no “ 0.5) 

Sketch for R/L = 0.1 and 1.0. 

2-28. Using (2-85), obtain the output of the system of Problem 2-19 in response to the input 

x(t) = no - 0.5) 

Sketch for R/L = 0.1 and 1.0. 

* 2-29. Given that the RL filter shown has impulse response 

h(t) = 5(0 - (R/L) e~WL)tu(t) 

FIGURE P2-29 

(a) Find the step response. 

(b) Find the ramp response. 

2-30. Obtain and sketch the response of the filter of Problem 2-29 to the input shown for: 

(a) R/L = 0.1 

(b) R/L = 1.0 

{Hint: Use the answers obtained for Problem 2-29 together with superposition.) 

x(t) 

o l 2 

FIGURE P2-30 
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2-31. (a) Using the superposition property, find the response of the RC circuit of Example 2-11 to the 

input 

x(t) = r(t) - 2r(t - 1) + r(t - 2) 

Sketch the input and the output for RC = 0.1. 

dx 
(b) Find and sketch the response to —. 

dt 

2-32. Given the circuit shown 

FIGURE P2-32 

where r = RlR2C/(Rl + R2). 

(c) Show that the step response is 

o(,)=“ expH)]“w 
(d) If the input is x(t) = III (7 - l)/2), obtain the output. 

Answer: y(t) = R ^R | 1 - exp(-^j u(t) - 1 - exp(-t-Uj u(t - 2)J 

(e) If the input is x(t) = r(t), find the output. (Hint: Use Duhamel’s integral.) 

Answer: yr(t) = ~ T 1 " exp(“i) } M(0 

(f) If the input is x(t) = r(t) - 2r(t — 1) + r(t — 2), find the output in terms of the answer of 

part (e). 

Section 2-7 

2-33. (a) Obtain the frequency-response function for the system of Problem 2-29. 

(b) Obtain the amplitude-response function for this system. Put it in terms of the parameter 

f3 = R/2ttL and plot, dimensioning carefully. 
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(c) Obtain the phase-response function for this system. Put it in terms of the parameter 

f3 = RUttL and plot, dimensioning carefully. 

2-34. (a) Obtain the frequency-response function for the system of Problem 2-32. 

(b) Obtain the amplitude- and phase-response functions for this system. 

(c) If Rx = R2 = 111 and C = 1 F, obtain the steady-state response of this system to the input 

x(t) = cos 2irt + sin 5771 

Section 2-8 

2-35. Show that the system of Problem 2-19 is BIBO stable. 

2-36. Show that the system of Problem 2-22 is BIBO stable. 

2-37. Is the system of Problem 2-24 BIBO stable? Prove your answer. 

2-38. Is the system of Problem 2-20 BIBO stable? Prove your answer. 

Section 2-9 

2-39. Given the system described by the differential equation 

d2y 

dt2 + "o y = x(t). y(0 ) = 0 and 
dy 

dt 
= 0 

t=0~ 

(a) Show that the impulse response of the corresponding system is 

h(t) = cuq1 sin(co0t) u(t) 

(b) Show that this second-order differential equation is equivalent to the system of first-order 

differential equations 

dq1 

~di = q* 

% = - fifol + X 

y = <?i 

(c) Using only integrators, summers, and inverting amplifiers, draw a block diagram that real¬ 

izes the equations given in part (b). 

(d) Using the block diagram of part (c) and noting the impulse response derived in part (a), de¬ 

sign an oscillator for the frequency range 100 Hz < coJItt < 10,000 Hz. 

2“40. Show that the state equations for the circuit of Figure 2-12 are 

dq i(Q 
dt 

1 1 

'~RCqi® ~ Ql^ + C 

dq2(t) 
dt LC 

(h (0 

and that the output equation is y(t) = qx(t). 
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Problem Extending Text Material 

2-41. To illustrate the impulse response for a time-varying system, consider a boat that is spreading 

chemicals into a lake. Thus its mass changes according to M(t) = M0 - kt, where M0 is the ini¬ 

tial mass and k is a constant. The water exerts a drag force of av(t) on the boat. Therefore, the 

equation of motion is 

~ [Mv(t)] + av(t) = F(t) 

(M0- kt)^ + (a- k)v(t) = F(t) 

where Fit) is the applied force. If this force is a unit impulse applied at time t = r, show that the 

impulse response is 

h{t, r) 
(M0 - kt){a~k),k 

(Af0 - kr)a/k 
t > T> 0 

(b) If M = 10 kg, a = 2, and k = 1, find the response of the boat to a step applied at time t = 0. 

(See Schwartz and Friedland, pp. 84-85). 

Computer Exercises 

2-1. (a) Following the Matlab program of Example 2-8, write a program to convolve the signals 

, s „[t - 1 
-v(0 = HI ^ 

and h{t) = e~°'5,u(t) 

Plot the two signals x{t) and h(t) along with the result of the convolution, y(t). For this 

purpose, use the subplot capability of Matlab. Note that the result of the convolution will 

have twice as many ^-values minus 1 as defined for either input signal, so you will have to 

use the axis function on the plot for y{t) to make its plot have the same t-range as for x(t) 

and h(t). 

(b) Analytically compute the convolution and compare the exact result with the numerically 

computed result. Vary the step size for t in the numerical computation and try to make a state¬ 

ment as to what size step size leads to unsatisfactory numerical results. 

2-2. Assuming x(t) and h(t) to be the same as Computer Exercise 2-1, where the input and output of 

a fixed, linear system use Duhamel’s integral, (2-85), to find the output of the system after find¬ 

ing the step response from h(t) (recall that you integrate the impulse response to get step re¬ 

sponse). Compare your result with the result of Computer Exercise 2-1. Experiment with the 

width of the impulse approximation used for dxldt to make a judgment on when it is too wide to 

give satisfactory results. 

2-3. Using the Matlab program developed in Computer Exercise 1-5, find the result of convolving 

a train of seven unit impulses symmetrically spaced about t — 0 at intervals of 2 seconds with a 

triangle function A(t). Plot the result and compare with the analytically computed result. 
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2-4. Use your Matlab program of Computer Exercise 2-1 to demonstrate the fixed property of a fixed, 

linear system. You have the result for an input x(t) = II[(f - l)/2]. Now delay x(t) some arbitrary 

amount, t, and obtain the convolution of this delayed x(t) with h(t). Show that it is the same result 

as obtained by delaying the original output (that obtained in Computer Exercise 2-1) the same 

amount r. 

2-5. Use your Matlab program of Computer Exercise 2-1 to demonstrate the superposition of property 

of a fixed, linear system. You have the result for an input x(t) = H[(t - 1 )/2]. Now rewrite x(t) as 

the difference of steps and obtain the convolutions of the two steps with h(t). Show that the differ¬ 

ence of the two outputs due to the steps is the same result as obtained in Computer Exercise 2-1. 

2-6. Write a SIMULINK program to verify the results of Problem 2-39. Note that you can obtain an 

impulse source in SIMULINK by using a step function source followed by a differentiator. In part 

(d) you will want to use lower frequencies than specified there for plotting purposes. 

2-7. Write a SIMULINK program to verify the result stated in Problem 2-41. 



CHAPTER 

The Fourier Series 

3-1 Introduction 

After considering some simple signal models in Chapter 1, we turned to systems characterization and 

analysis in the time domain in Chapter 2. The principal tool developed there was the superposition in¬ 

tegral that resulted from resolving the input signal into a continuum of unit impulses and superimpos¬ 

ing the elemental system outputs due to each impulsive input—thus the name “superposition integral.” 

The application of the superposition integral involves first finding the impulse response of the system 

and then carrying out the actual integration—tasks that often are not simple. 

In this chapter and in Chapter 4 we consider procedures for resolving certain classes of signals into 

superpositions of sines and cosines or, equivalently, complex exponential signals of the form exp(jcot). 

For periodic power signals this resolution results in the Fourier series coefficients of the signal and the 

resulting representation of such signals, known as the Fourier series of the signal, is considered in this 

chapter. For energy signals of finite or infinite extent, the Fourier integral provides the desired resolution 

with the signal representation for such signals given by the inverse Fourier transform integral. This reso¬ 

lution technique is examined in Chapter 4. Signals of the exponential class, of which energy and power 

signals are subclasses, may be resolved with complex exponential signals of the form exp[(cr + jcot)] by 

means of the Laplace transform integral. We deal with the Laplace transform in Chapter 5. 

Advantages of Fourier series and Fourier transform representations for signals are twofold. First, in 

the analysis and design of systems it is often useful to characterize signals in terms of frequency- 

domain parameters such as bandwidth or spectral content. Second, the superposition property of linear sys¬ 

tems, and the fact that the steady-state response of a fixed, linear system to a sinusoid of a given frequency 

is itself a sinusoid of the same frequency, provide a means of solving for the response of such systems. In¬ 

deed, the Fourier or Laplace transform, as appropriate, allows one to convert the constant-coefficient lin¬ 

ear differential equation representation for a lumped system to an algebraic expression that considerably 

simplifies the solution for the system output. We consider this method of solution in Chapters 4 through 7. 

We begin this chapter with some simple examples to convince ourselves that a sine-cosine series is 

a useful representation for a periodic signal. 

3-2 Trigonometric Series* 

Recalling Example 1-6, parts (d) and (e), we note that the sum of two sinusoids is periodic provided 

that their frequencies are commensurable. Stated another way, the sum of two sinusoids is periodic pro¬ 

vided that their frequencies are integer multiples of a fundamental frequency. 

*An alternative approach to Fourier series is provided in Section 3-10 in terms of generalized vector-space concepts. 

101 
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To examine the fruitfulness of representing periodic signals by sums of sinusoids whose frequencies 

are harmonics, or integer multiples, of a fundamental frequency, we consider two such series and plot 

their partial sums. 

EXAMPLE 3-1 

As a first example, consider the trigonometric series, assumed to hold for all t, given by 

x(t) = sin ojQt + ^ sin 3co0t + j sin 5co0t + • • • (3-1) 

where 27r/ca0 is the period. Its partial sums are 

Sj = sin (o0t 

s2 = sin (o0t + | sin 3 a)0t 

and so on. Several of them are plotted in Figure 3-1 with co0t as the independent variable. Stretching our 

imagination, we see that a square wave appears to be taking shape as more terms are included in the par¬ 

tial sum. As each harmonic is added, the ripple in the flat-top approximation of the square wave becomes 

smaller and possesses a frequency equal to that of the highest harmonic included in the series. 

Somewhat disconcerting, however, is the appearance of “ears” (or overshoot) in the plot of the 

partial sums where the square wave is discontinuous. This phenomenon, referred to as the Gibbs phe¬ 

nomenon, is examined in more detail in Section 4-10. 

The convergence of the series at any particular point may be examined by substituting the ap¬ 

propriate value of (o0t. For example, setting co0t = ir/2 in (3-1), we obtain the alternating series 

1 - 

77 

4 
(3-2) 

which may be checked by consulting a table of sums of series.* We can normalize the series (3-1) to 

have a value of unity at co0t = 7t/2 by multiplying it by 4/77. Later we will show that a unit-amplitude 

square wave can be represented by the series 

xsq(t) = (sin a)Qt + - sin 3co0t + ^ sin 5a)0t + •••), -oo < t < oo (3-3) 

EXAMPLE 3-2 _ 

As a second example, consider the partial sums of the trigonometric series 

y(t) = sin a)0t - ^ sin 2co0t + ^ sin 3co0t • • •, —oo < t < °o (3-4) 

Plots showing its partial sums are given in Figure 3-2. Again, with a little imagination, we can see 

the beginnings of a sawtooth waveform. Each term added decreases the ripple in magnitude. The fre¬ 

quency of the ripple is equal to that of the highest-frequency term included in the series. The over¬ 

shoot phenomenon, present at the discontinuities of the square wave considered previously, is also 

present with the sawtooth waveform. 

Having convinced ourselves of the possibility of building up arbitrary periodic waveforms from 

sums of harmonically related sinusoidal terms, we turn to the crux of the matter: Given a specific peri¬ 

odic waveform, how do we find its trigonometric series representation? The resulting series, which is 

unique for each periodic signal, is called the trigonometric Fourier series of the signal. 

*See, for example, Mathematical Tables from Handbook of Chemistry and Physics (Boca Raton, Fla.: CRC Press, 1962), p. 325. 
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(c) The third partial sum provides a better approximation to a square wave 

FIGURE 3-1. The series of Example 3-1 shows how a trigonometric series approximates a square 
wave (only one period shown). 

3-3 Obtaining Trigonometric Fourier Series 
Representations for Periodic Signals 

We begin by writing down the general form that the trigonometric Fourier series representation of a pe¬ 

riodic signal may have: 

x{t) = a0 + ax cos o)0t + a2 cos 2(o0t + • • • 

+ bx sin a)Qt + b2 sin 2a)0t + • • •, — 00 < t < oo (3-5) 
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This may be written compactly in terms of summations as 

00 00 

x{t) = a0 + ^ an cos ncoot + 2 bn sin no)ot (3-6) 
77 = 1 77 = 1 

where — oo < t < oo.t Since the right-hand side is a sum of harmonically related sinusoids, which them¬ 

selves are periodic functions, the left-hand side is periodic. The problem that faces us is to find a0, av 

a2,. . ., bv b2,.. . for a given x(t). 

To obtain relationships for finding the an’s and bn's for an arbitrary (periodic) x(t) we begin with aQ. 

Integrating the series (3-5) term by term over one period of x(t), we obtain 

x(t) dt = a0 dt + ax \ cos coQt dt + a2\ cos 2oo0t dt + • • • 
Jt Jt Jt J t 

io -*0 10 *0 

+ bx sin co0t dt + b2 sin 2co0t dt + • • • (3-7) 
Jt0 ->t0 

where J7 (•) dt denotes integration over any period. All terms except the first involve the integration of 

a sine or cosine over an integral number of periods and are therefore zero. (For sin na)Qt or cos na)0t, as 

much area appears above the T-axis as below it in one period.) The first term yields a0T0. Thus the co¬ 

efficient a0 is given by 

a0 = (3-8) 

which is the average value of the waveform. 

Using the series form (3-6) we derive a general expression valid for any of the an’s. The derivation 

proceeds as follows for any an except aQ. Multiplying both sides of (3-6) by cos mco0t (the use of m al¬ 

lows us to choose any an coefficient), and integrating over a period of x(t), we obtain 

J x(t) cos mco0t dt 
T0 

The first term integrates to zero, 

tegrate term-by-term to obtain 

cos ma>Qt dt + 

+ 

/ 2v 
->T0 '77 = 1 

2 ^77 S^n no)(£ cos dt 
Tr\ '77 = 1 / 

cos ncoJ cos mojJ dt 

(3-9) 

We multiply each term of the series in parentheses by cos mco0t and in- 

x(t) cos mo)0t dt = 2 an cos ncoot cos dt + 2 bn\ sin nco^t cos moj0t dt (3-10) 
77 = 1 77 = 1 JT0 

To continue, we note some rather interesting properties of integrals involving products of sines and 

cosines. Three possible cases occur. The resulting integrals are 

h 

h 

/, 

L 

sin ma)0t sin nco0t dt = 

cos ma)Qt cos na)0t dt = 

f0’ \TJ2, 

r°, 

\TJ2, 

m A n 

m — n ^ 0 

m A n 

m — n A 0 

(3-11) 

(3-12) 

^ince most signals in this chapter are defined over the entire f-axis, we dispense with giving the range of definition unless it 
is other than — oo < t < oo. 
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and 

" 
I3 = sin mco0t cos noj^t dt = 0, 

Jr.. 

all m, n (3-13) 

where F0 = 2ir/ca0 is a period of the fundamental and n and m are integers.f We note that with n — 0 in 

(3-12) and (3-13), we have the integral of cos mco0t and sin ma)0t, respectively. We also note that the 

product of two sinusoids with harmonically related frequencies is periodic, so that the integrals could 

be taken over any period. 

Applying (3-13), we see that each term of the second series on the right-hand side of (3-10) is zero. 

Applying (3-12), we see that all terms of the first series on the right-hand side of (3-10) are also zero 

except for the term for which n = m. For n = m, the integral gives T0/2, which yields 

cos ma)0t dt = am (3-14) 

Multiplying both sides of (3-14) by 2JT0 gives 

= y\ AO 
10JT„ 

cos mo)0t dt, m =£ 0 

In a similar manner, by employing (3-6), (3-11), and (3-13), we may show that 

(3-15) 

bm = — I x(t) sin mo)0t dt (3-16) 
To Jt0 

Without concerning ourselves about the validity of the steps in obtaining (3-8), (3-15), and (3-16), 

we define a Fourier series to be any trigonometric series of the form (3-6), where the coefficients are 

found according to the formulas just derived. To find the coefficients, we require only that the integrals 

involved exist.* 

"To show (3-11) through (3-13), trigonometric identities could be used. However, Euler’s theorem gives a more easily re¬ 

membered derivation. Since, by Euler’s theorem, we have 

e±jnco0t _ CQS na)^. + j sjn na)^ 

we can add and subtract the expressions for ein<a^ and e~]no>^ to obtain 

sin moff = j - e~^) and cos na)0t = — (e]nw°f + e jnWQt) 

(The student should memorize these expressions as well as Euler’s theorem.) Substituting for sin nco0t in (3-11), and using the 

exponential form for sine above, we obtain 

rT0 CTo 1 1 
J — _ (ejmw0t __ e-]inw0^ — (ejnw0t _ e~incoQt^ ^ 

Jo 2/ 2j 
1 rT0 
— |'(ej(m+n)w0t _ ei(n-m)u>4 _ ej(m-n)co0t _j_ g-/(n+m)&VJ c[f 

4 Jn 4 

Now Jo0 eJkc0i)t dt = 0 for k an integer not equal to zero by Euler’s theorem (the integral of a sine or cosine over an integer num¬ 

ber of periods is zero). If k = 0, we have f dt = T0. Using this in the expression for Iv we have 

(0, n m 

[ TJ2 n = m 
h = 

where the nonzero result for n = m results from the second and third terms in the integrand for /, . A similar series of steps can be 

used to prove (3-12) and (3-13). 

^We give only an informal discussion of convergence here. Conditions concerning the possibility of expanding a function in 

a Fourier series are given in a theorem proved by Dirichlet in 1829. These sufficient conditions are that x(t) be defined and 

bounded on the range (r0, t0 + T0) and have only a finite number of maxima and minima and a finite number of discontinuities 

on this range. These conditions, being sufficient conditions, are more restrictive than necessary. Fejer, in 1904, published two the¬ 

orems giving conditions for the convergence of Fourier series that are less restrictive than the Dirichlet conditions. 
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In going from (3-9) to (3-10) it was necessary to interchange the order of summation and integra¬ 

tion. We did not worry about the validity of this step. Indeed, the whole development so far has been 

based on the assumption that (3-6) is truly an equality; that is, an arbitrary periodic function can be 

represented in terms of a sum of sines and cosines. There is no reason to believe that this is always the 

case. However, we noted in the previous paragraph that the coefficients an and bn will exist if x(t) is in¬ 

tegrate. We can therefore find the coefficients for an appropriate x(t) and then examine the conver¬ 

gence properties of the series formed with these coefficients. It is too much to expect that the Fourier 

series will converge to a periodic, but otherwise arbitrary, x(t) for every t. For example, in Example 

3-1 it is apparent that each partial sum is zero at coQt = nir, where n is an integer. If x(t) has been de¬ 

fined to be tt/4 at these points (or any other desired value), the series cannot represent x(t) at ojQt = nrr. 

As another example, consider two periodic signals x{t) and y(t) which are identical except at a single 

point, where they differ by a finite amount. This finite difference will not affect the value of the inte¬ 

grals for the coefficients given by (3-15) and (3-16). Therefore, both x(t) and y(t) have identical 

Fourier series, and we conclude that the Fourier series cannot represent both functions at the point in 

question. In general, functions that are equal “almost everywhere”—that is, everywhere except at a 

number of isolated points—will have identical Fourier series representations. Fourier series, therefore, 

do not converge in a pointwise sense. 

The question remains as to what conditions are required to ensure that a Fourier series will 

converge to x(t). Indeed, very little is required to guarantee convergence. It turns out that if x(t) has 

period equal to T0, and has continuous first and second derivatives for all t, except possibly at a 

finite number of points where it may have finite jump discontinuities, the Fourier series for x(t) 

converges uniformly to x(t) for every t except at the points of discontinuity.* Even at points of dis¬ 

continuity, the behavior of a Fourier series is very reasonable. The limit of the Fourier series sum 

at a point of discontinuity is simply the average of the left- and right-hand limits. This is illustrated 

in Figure 3-3. 

Although we have discussed only periodic functions so far, it should be noted that the basic coeffi¬ 

cient formulas use only the values of x(r) in a T^-second interval. Thus, if x(t) is given only in some in¬ 

terval of length T0, the corresponding Fourier series can be formed and converges uniformly to x(t) 

within this interval at all points of continuity. Outside this interval, the Fourier series converges to a sig¬ 

nal which is the periodic extension ofx{t). This is illustrated in Figure 3-4. 

We close this section with an example that illustrates the representation of a function over a finite 

interval by a Fourier series and an example that involves computation of the Fourier series coefficients 

for a square wave. 

FIGURE 3-3. The Fourier series of a waveform converges to the mean of the left- and right-hand 
limits at a point of discontinuity. 

*Bv uniform convergence of an infinite series whose terms are functions of a variable, it is meant that the numerical Value of 

the remainder after the first n terms is as small as desired throughout the given interval for n greater than a sufficiently large cho¬ 

sen number. 
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Interval used to 

FIGURE 3-4. Expansion of a nonperiodic signal in terms of a Fourier series. 

EXAMPLE 3-3 _ 

A violin string, to be plucked by a musician, has the initial shape shown in Figure 3-5. (a) Given 

that the trigonometric Fourier series coefficients of such a triangular wave of amplitude A are 

given by 

a0 = A/2, 

an = 4A/7r2n2, n 0 and odd 

an = 0, n even 

bn = 0, all n 

(3-17) 

write out the first four nonzero terms of the Fourier series describing the initial shape of the violin 

string in the interval \x\ < 9 inches, (b) Sketch the function to which the Fourier series converges 

for — oo < x < oo. 

Solution: 

(a) Note that the independent variable is *, not t. Assume that the y(v) shown is to be represented by 

one full period of the Fourier series for a triangular waveform. Since the bn’s are zero (even func¬ 

tion), the Fourier series is of the form 

oo 

y(x) = fl0 + 2 a„ cos nco^ (3-18) 
n=1 

The fundamental frequency in rad/inch of this series is o>0 = 2tt/T0 = 277/18 = tt/9. The Fourier 

series coefficients are 

a0 = 0.5/2 = 1/4 

at = 4(0.5)/772 = 2/tr2 

a2 = 0 

a3 = 4(0.5)/9t72 = 2/9 7r2 

a4 = 0 

a5 = 4(0.5)/25t72 = 2/25 tt2 

(3-19) 
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v, inches 

x, inches 

FIGURE 3-5. Initial position of a violin string to be represented by a Fourier series. 

Thus, in the interval \x\ < 9 inches, the approximating series i 

=\+* 
2 TTX 

_ COS + 9t7-2 

TTX 

T 

IS 

2 577% 

25^COSTT + ' 
(3-20) 

where the circumflex indicates that this is an approximation to the true initial shape of the string. 

Figure 3-6 shows the series approximation to the initial shape of the string for the first two terms 

only, and all four terms of the approximating series. Only the right half of the string and ap¬ 

proximating series are shown, since the left half is the mirror image of the right half. Also shown 

is the error in the approximation, which is the difference between the actual string position and 

the approximating series. Note that the error is largest for % = 9 inches (i.e., at the end of the 

string). For a two-term approximation, the error is about 10% of the maximum deflection, while 

for a four-term approximation, the error is about 3.5% of the maximum deflection. 

(b) The actual Fourier series converges to a triangular waveform infinite in extent. 

of distance 

x, inches x, inches 

(b) A four-term approximation to the string initial position (left) and the error (right) as a function 
of distance 

FIGURE 3-6. Fourier series representations and the error for the initial position of the violin string. 
(Only the right half is shown due to symmetry.) 
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EXAMPLE 3-4 _ 

Consider the square wave defined by 

x(t) 
o«<! 
T°<t <T 
2 0 

(3-21) 

and periodically extended outside this interval. The average value is zero, so aQ = 0. From (3-15), 

the am9s are 

2 r Tq/2 2 rT° 

am ~ A cos ma)0t dt + \ (~A) cos ma)0t dt 
*o Jo J-o Jt0/2 

2A sin nuo{)t V 2 sin m<o0t To ' 

T0 ma)o 0 mcoQ T0/2_ 
(3-22) 

Recalling that co0 = 2u/T0, we see that 

sin 
2 

sin mTT = 0 

and 

sin mco0T0 = sin 2mu — 0 

Thus all the am coefficients are zero. The bm coefficients result by applying (3-16). This gives 

2 fTJ2 2 
A sin moo{)t dt + 

■t n J0 

» r T0 

r (-A)si 
0 Jt0/2 

sin mco0t dt 

2 A cos m(oQt 

mo)* 

ro/2 cos mcoJ 
+ -9- 

T» ' 

o mco0 T0/ 2. 

(3-23) 

Again, recalling that (o0 = 27t/T0, we find upon substitution of the limits that 

2A 

rmr 
(1 — cos m it) 

which results because cos 2mit = 1 for all m. Finally, noting that cos mnr = — 1 for m odd and 

cos mTT = 1 for m even, we obtain 

' 4A 

b. - { 
m odd 

mu 

0, m even 

The Fourier series of a square wave of amplitude A with odd symmetry is therefore 

4A 
x(t) - — (sin a)Qt + \ sin 3co0t + \ sin 5co0t + • • •) 

77 J 3 

(3-24) 

(3-25) 

We note that only odd harmonic terms are present. This is a consequence of x(t) having a special type 

of symmetry, referred to as half-wave odd symmetry. More will be said about special symmetry cases 
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later. If A = 1, (3-25) becomes the series first shown in (3-3) and verifies the previous assertion that 

(3-3) represents a unity amplitude square wave. 

Matlab Application 

It is interesting to examine the convergence of a Fourier series using Matlab. The program given 

below accomplishes this for the square wave considered in this example. 

% Program to give partial Fourier sums of an 

% odd square wave of unit amplitude 

% 

n_max=input('Enter vector of highest harmonic values desired (odd)'); 

N=length (n_rnax) ; 

t=0:.002:1; 

omega_0=2 * pi; 

for k=l:N 

n= [] ; 

n= [ 1 : 2 : n__max (k) ] ; 

b_n=4./(pi*n) ; % Form vector of Fourier sine - coefficients 

x=b__n*sin(omega_0*n'*t); % Rows of sine matrix are versus time; 

% columns are versus n, 

% so matrix multiply sums over n and a 

% vector for x(t) results 

subplot(N,1,k),plot(t,x), xlabel('t'), ylabel('partial sum'),... 

axis( [0 1 -1.5 1.5)], text(.05,-5, ['max. har. =' , 

num2str (n__max (k) ) ] ) 

end 

Note that matrix multiplication is used to form the partial sums of the Fourier series. This 

saves considerable computation time over using a for loop because Matlab is an interpretive 

language which compiles each statement separately. The for loop simply runs through different 

cases for the maximum number of harmonics summed. Note that any number of cases for the 

maximum number of harmonics can be run, but the plots would get rather small for more than three 

or four. 

In this case, the program is not run with echo on because one would see it go through the for 

loop three times and this would be rather boring and long. The entry in the command window 

is simply 

EDU»c3ex4 

Enter vector of highest harmonic values desired (odd) [11 21 31] 

where the second line comes up after the program begins running and the [11 21 31] is entered by 

the user to specify the three cases to be run for the maximum harmonic. If four cases are desired, this 

would be a 1 by 4 vector. The resulting plots are shown in Figure 3-7. Note that the number of humps 

on the flat part of the waveform is determined by the number of harmonics included in the partial 

sum, and also note the presence of ears at the discontinuity points of the square wave. The latter are 

known as the Gibbs phenomenon, to be discussed in the Chapter 4, Section 4-10. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 3-7. Partial sums of the Fourier series of an odd square wave for the highest harmonic 
being 11,21, and 31, top to bottom. 

(3-27) 
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We see that terms involving both exp(jnco0t) and exp(—jna)0t) are present in the series. This is in 

keeping with our observation in Chapter 1 that the sum of two complex conjugate rotating phasors is 

required to produce a real, sinusoidal signal. To generalize the derivation of the coefficients in the com¬ 

plex exponential Fourier series, we write the series in the form 

x(t) = ■■■ X_2e~>2“°' + X_xe^ + V) + Xle’u,'sl + X2e>2w»' + • • • 

00 

= 2 Xneina'f (3-28) 
n—— oo 

where the Xfs are, in general, complex constants. To find an expression for computing the X„’s, we mul¬ 

tiply both sides of (3-28) by e~Jm(0^ and integrate over any period of x(t). This results in 

f x{t)e~im^ dt = f (2 XneincoA e~jm(OQt dt (3-29) 
JT0 Jt0 \n = -oo / 

We next multiply each term in the sum by dt and integrate the result term by term without wor¬ 

rying about the validity of these steps at this point.1" This results in 

f x(t)e~jm‘u°‘ dt = 2 xn f ei(n~m)^dt (3-30) 
JT0 n=-oo Jt0 

If m A n, the integral 

l ej(n—m)(t)Qt d( 

T0 

is zero because 

ej(n-m)(o0t _ cos(n _ m)w^ + j sin(n - m)ajQt 

is a periodic function with period T0 and is symmetric about the Faxis. For n = m, = 1, and 

the integral evaluates to T0. Thus every term in the sum on the right-hand side of (3-30) is zero except 

the one for n = m; (3-30) therefore reduces to 

Jr. 

x(t)e~ima<f dt = T0Xm 

or, solving for Xm, we obtain 

Xm = = ^f x(t)e -jmdt (3-31) 

As with the trigonometric Fourier series, we define an exponential Fourier series to be a series of the 

form (3-28) with the coefficients calculated according to (3-31). The computation of the coefficients is 

usually considerably simpler than the computation of the trigonometric Fourier series coefficients. In 

addition, the exponential Fourier series provides us with a direct means of plotting the two-sided am¬ 

plitude and phase spectra of a signal. 

We note, by comparing (3-27) and (3-28), that the coefficients of the trigonometric Fourier series 

and the complex coefficients (3-31) are related by 

jbn), n> 0 
X„ = 

2(a-n + ib-nX n < 0 
(3-32a) 

'A discussion of convergence for this form of the series would be identical to the one given for the trigonometric form. 
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and 

X0 — a0 (3-32b) 

This section will be concluded with two examples to illustrate the calculation of complex Fourier se¬ 

ries coefficients. 

EXAMPLE 3-5 

Consider the periodic sequence of asymmetrical pulses (referred to as a pulse train) 

* It - t0- mTr\ 
jc(f)=2^n -T-> t<to 0-33) 

whose period is T0. The exponential Fourier series coefficients are calculated by evaluating the integral 

X 

\ ^o+t/2 

= T0 l 
dt (3-34) 

-r/2 

where a>0 = 2tt/T0. The evaluation is straightforward. Integration gives 

X„ = 
-A 

" jno)0T0 

2A 
r e 

HCOqTq 

y-jncoQt 

Jn(0 0*0 

to+r/2 

t0-r/2 

ejncoQT/2 _ e~jn(oQT/2\ 

21 

2 A 

n(o0T0 
e Jna)()t° sin - 

nojnT 

2 ’ 

r 
n =£ 0 

n 0 

Letting n = 0 in (3-34), we find X0 to be 

Xn - 
At 

(3-35a) 

(3-35b) 

Substituting co0 = 2nf0 into (3-35a), where/0 is the fundamental frequency in hertz, we obtain 

the form 

At ,2mf, sin 7m/0r 
X = _e~j27mfQtQ 

7mf0T 

where the numerator and denominator have been multiplied by t. 

(3-35c) 

It is convenient to define 

sine z = 
sin 7tz 

TTZ 
(3-36) 

which is referred to as the sine function. Values for sine z and sine2 z are tabulated in Appendix F. Ex¬ 

amining (3-36), we see that the sine function is zero whenever 

sin ttz — 0 
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This happens for z = ± 1, ±2, ±3, . . . . Furthermore, the sine function is even (substitute — z for z and 

obtain the same function) and has a maximum of unity at z = 0. The latter may be shown by using 

L’Hospital’s rule. Also, sine z is oscillatory with the amplitude of the oscillations decreasing as \z\ —> oo. 

Thus sketches of sine z and sine2 z appear as shown in Figure 3-8. 

It is straightforward to express (3-35c) in terms of the sine function. Table 3-1 summarizes the 

Fourier coefficients for the pulse train as well as those for several other waveforms of interest. 

The next example illustrates the derivation of the coefficients of the complex exponential Fourier se¬ 

ries for a half-rectified sine wave. 

EXAMPLE 3-6 ____ 

Find the coefficients of the complex exponential Fourier series for a half-rectified sine wave, de¬ 
fined by 

with x(t) = x(t + T0). 

f A sin o)Qt, 0 < r < T0/2 

[o, r0/2<t<r0 (3-37) 

sincz 

FIGURE 3-8. Sine z and sine2 z. 
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TABLE 3-1 
Coefficients for the Complex Exponential Fourier Series of Several Signals 

1. Half-rectified sine 

wave 

2. Full-rectified sine 

wave* 

0 Tq/2 T0 

A 

7r(l — n2) ’ 
« = 0, ±2, ±4,. 

o, /7 odd and Y ±1 

-~jnA, n = ±1 

2 A 

tt( 1 — n2) ’ 
/7 even 

0 77 odd 

3. Pulse-train signal 

4. Square wave 

Xn = T7 sine nf0r e 
1 0 

fn=T -1 
0 

2A 
77 = ± 1, ±5, 

|/7| 7T ’ 

— 2A 
77 = ±3, ±7, 

|t7 | 77 

o, 77 even 

XM = 

4A 

7r2n2 ' 

0, 

n odd 

n even 

*Note that T0 is not the period of the full-wave rectified sinewave. Rather, its period is TJ2. 

Solution: From (3-31), the Fourier coefficients are given by the integral 

1 r To/2 

x„ = 
lo Jo 

2jT0 

A 

2jT0 

_A_ 

4tt 

A sin co0t e jn(°ot dt 

rV 2 
(ei(°ot - e-j(0ot)e~jnWot dt 

Jo 
r Tq/2 f Tq/2 r1 

•>0 

-Ml+n)t dt 

yj(l-n)7T 

1 — n 

l eK^+n)ir _ i 

— + 
1 + n 

n 1 or ■1 (3-38) 

where use has been made of the complex exponential form for sin co0t and co0 = 2tt/T0. We note that 

e;(i±/077 = cos(l ± n)ir + j sin(l ± n)ir = —(— 1)", where n is an integer. Thus, (3-38) simplifies to 



K = o. 

and 
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n odd, n ¥= ± 1 

A 

7rl n2 1 
n even (3-39) 

The special cases for n = 1 and n = — 1 must be handled separately. For n = 1, the calculation is 

A r To/2 A ro/^ 
Xi = —F (e^ - e-"*)e-'‘ 

ZJ1 o Jo 
'W dt 

A c ^'°^ 
= (1 - e ,2‘“'l0 

4/7 n Jo 2/^o •'o 

^4 

4/ 
(3-40) 

For n = — 1, a similar integration gives Xl = —A/4/. Putting all these results together, we see that 

the first entry in Table 3-1 is correct. A similar series of integrations would be carried out to prove 

the second entry for the full-rectified sine wave. 

Matlar Application 

To show how fast the partial sums of the Fourier series approaches a half-rectified sine wave, we 

provide a Matlab program below for computing the complex exponential Fourier series. 

% Program to give partial complex exponential Fourier sums of a 

% half rectified sine wave of unit amplitude 

% 

n_max=input(’Enter vector of highest harmonic values desired (even)'); 

N=length(n_max); 

t—0: .005:1 ; 

omega_„0=2 * pi; 

for k=l:N 

n= [ ] ; 

n=[-n_max(k):n_max(k)]; 

L_n=length(n); 

X_n=zeros(1, L_n); 

X_n((L_n+1)/2+1)=-0.25*j ; 

X_n ( (L__n+l)/2-l)=0.25*j ; 

for i=l:2:L_n 

% Form vector of Fourier sine- 

% coefficients; all “ 

% odd-order terms are zero except X(l) 

% and X(-1) 

% so define coefficient array as a zero 

% array and 

% then fill in nonzero values 

X_n(i)=1/(pi*(l-n(i)A2)); 

end 

x=X_n*exp(j*omega_0*n'*t); % Rows of exponential matrix are versus 

% time; 

% columns are versus n; matrix multiply 

% sums over n 

Plot real part of x to get rid of small imaginary part due to 

computational error 

0/ 
/o 

0/ 
/o 
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subplot(N,1,k),plot(t,real(x)), xlabel('t'), ylabel('partial 

sum'),... 

axis([0 1 -0.5 1.5]), text(.05,-.25, ['max. har.=', 

num2str(n_max(k)) ] ) 

end 

As with the Matlab program for Example 3-4, a vector of values can be entered for the highest 

harmonic present in the sum. The command window appears as follows: 

EDU»c3ex6 

Enter vector of highest harmonic values desired (even) [4 8 12] 

The resulting plot is shown in Figure 3-9. Note that very few terms are required to make the result¬ 

ing plot look very much like a half-rectified sine wave. This is because there are no discontinuities 

present in this waveform. 

FIGURE 3-9. Partial sums of the complex exponential Fourier series of a half-rectified sine wave. 
Maximum harmonic is 4, 8, and 12, top to bottom. 
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Suppose we desire the complex exponential Fourier series for an odd square wave, whereas Table 

3-1 has the Fourier series coefficients only for an even square wave. In other words, we want to know 

the change in the Fourier coefficients due to a time shift in the waveform, in particular, a shift of F0/4 

in this case. Consider the general case first. Let the Fourier coefficients for the unshifted waveform 

be denoted as Xn and those for the time-shifted waveform be denoted as Yn. Thus 

and 

Xn = Y\ x(t)e-^dt 
1o h0 

Yn=~( x(t -T0)e~^dt, = ~ 
1 0 JT„ 1 0 

Make the change of variables in the second integral t' = t — r0 to obtain 

(3-41) 

Y„ I x(t')e~}na,ot' dt 
To 

e~jn2irTQ/T0 __ e-j27mTQ/TQ (3-42) 

where we remember that the integration can be over any ro-second interval. 

For the case of going from an even to an odd square wave, r0 = T0/4 so that (3-42) becomes 

^,odd = ^,even^'W2(nodd) = 
./V, odd' 

7 V;, odd’ 

n = ±1, ±5, • • • 

n = ±3, ± 7, • • • 
(3-43) 

where Xfh odd are the Fourier coefficients for the square wave given in Table 3-1, item 4, and only n 

odd need be considered because the even-order Fourier coefficients of a square wave are zero. 

One of our objectives in this chapter is to be able to plot amplitude and phase spectra for periodic 

signals. Before doing this, however, we discuss symmetry properties of the Fourier coefficients. This 

will simplify the plotting of spectra. 

3-5 Symmetry Properties of the Fourier Series Coefficients 

The expression for the coefficients of the complex exponential Fourier series (3-31), through use of 

Euler’s theorem, can be written as 

Xm = 
1 f x(t) 

J 77. 

cos mco{)t dt 
J 

x{t) sin ma ma>0t dt (3-44) --- 
10JT0 i0 

If x(t) is real, the first term is the real part of Xm and the second term is the imaginary part of Xm. Com¬ 

paring this with (3-15) and (3-16), we see that 

x f\iPm~ibJ, m> 0 

1 \ifl-m + 7!b-m), rn< 0 

which is another way to obtain (3-32a). 

Solving (3-45) for am and bm, we obtain 

am = 2 Re Xm and bm = -2 ImXm, m> 0 

If we replace m by — m in (3-44) or (3-45), it is clear that 

(3-45) 

(3-46) 

Xm = X\ (3-47) 
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for x(t) real. Writing Xm in polar form as 

= \Xn\e^ (3-48) 

we conclude from (3-44) that 

KJ = \X-m\ and 6m = ~6_m (3-49) 

That is, for real signals, the magnitude of the Fourier coefficients is an even function of the index, m, 

and the argument is an odd function of m. 

Considering the Fourier coefficients for a real, even signal, that is x(t) = x(—t), we see from (3-44) 

that the imaginary part will be zero since x(t) sin ma)0t is an odd function that integrates to zero over an 

interval symmetrically placed about t = 0. That is, the complex exponential Fourier series coefficients 

Xm of a real, even signal are real (see Example 3-5 with t0 = 0). Furthermore, since the dependence on 

m is through the function cos ma)0t, they are also even functions of m. From (3-44) and (3-46) it follows 

that the bm’s are zero for the trigonometric series of real, even signals. 

Similar reasoning shows that the Xm’s are imaginary and odd functions of m if x(t) is odd, that is, if 

x(t) = —x(—f). Also am = 0, all m, if x(t) is odd, so that the trigonometric Fourier series of an odd func¬ 

tion consists only of sine terms (see Example 3-4). The proofs of these statements are left to the problems. 

Another type of symmetry is half-wave (odd) symmetry defined as 

x{* ± if) = (3~5°) 

where T0 is a period of x(t)-t For signals with half-wave symmetry, it turns out that 

= 0, n = 0, ±2, ±4,. . . (3-51) 

The proof is left to the problems. Thus the Fourier series of a half-wave (odd) symmetrical signal con¬ 

tains only odd harmonics (see Example 3-4 and Table 3-1, waveforms 4 and 5). We note the half-wave 

even symmetry, defined by 

(3-52) 

simply means that the fundamental period of the waveform is T0/2 rather than T0. 

Table 3-2 summarizes the properties of the two types of Fourier series that we have considered. 

3-6 Parseval’s Theorem 

In Chapter 1 the average normalized power of a periodic waveform x(t) was written as 

Pav = f j lx(0|2 dt = jr jx(t)x*(t) dt (3-53) 

+To illustrate half-wave symmetry, consider waveform 4 in Table 3-1. Pick an arbitrary point on the t-axis. The value of the 
signal at this time is equal in magnitude, but opposite in sign, to the value of the signal one-half period earlier or later. The same 
argument holds for waveform 5 in Table 3-1. 
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We can express Pav in terms of the Fourier coefficients of x(0 by replacing x *(t) in (3-53) with its Fourier 

series representation (3-28).* The substitution yields 

^av = ^ f x(o( X dt 
10 JT0 \n=-oo / 

oo r i 

= 2 X*n -y\ x(t)e-^dt (3-54) 
n=-oo Iiojt0 

where the order of integration and summation have been interchanged. We recognize the term in brack¬ 

ets as Xn [see (3-31)]. Thus we may write 

P„ = ~\ \x(t)\2dt= X |X„|2 (3-55a) 
i0 JT0 n=-oo 

00 

= X20 + 2 X \Xn\2 (3-55b) 
n = 1 

where (3-55b) results by applying (3-47). In words, (3-55a) simply states that the average power of a 

periodic signal x(t) is the sum of the powers in the phasor components of its Fourier series (recall Ex¬ 

ample 1-13, in which the power of a phasor was computed). Equivalently, (3-55b) states that the aver¬ 

age power in a periodic signal is the sum of the power in its dc component plus the powers in its harmonic 

components (recall that the average power of a sinusoid is one-half the square of its amplitude). 

EXAMPLE 3-8 __ 

The average power of the sine wave x(t) = 4 sin 507rt dt is 

r°.°4 16 

Pav = 25 16 sin2 507rt dt = — = 8W 
J0 2 

computed from (3-53). Its exponential Fourier series coefficients areX_j 

when computed from (3-55a), is Pav = 4 + 4 = 8 W. 

EXAMPLE 3-9 _ 

Consider the use of a square wave to test the fidelity of an amplifier. Suppose that the amplifier ide¬ 

ally passes all Fourier components of the input with frequencies less than 51 kElz. By ideal, it is 

meant that the individual Fourier components of the input with frequencies less than 51 kHz suffer 

zero phase shift in passing through the amplifier and all are multiplied by the same factor, called the 

voltage gain, Gv, while all Fourier components above 51 kHz do not appear at the output. 

Suppose that Gv = 10 and the input, x(t), is a 10-kHz square wave with amplitudes ± 1 V. (a) 

What is the average power Px of the input signal? (b) What is the average power Py of the output sig¬ 

nal, y(t)l (c) What would the average power of the output signal be if the amplifier passed all fre¬ 

quency components at its input? 

Solution: (a) The average power of the input is found by using (1-84) for the average power of a 

periodic signal. Letting T0 be the period of the square wave and A its amplitude, we 

obtain 

^Recall that the conjugate of a sum is obtained by conjugating each term in the sum. Also, the conjugate of a product of fac¬ 

tors is the product of the conjugate of each factor. 

(3-56) 

= —X1 = 2j and its power, 
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p, = 
1 ft0+T0 

- I x2{t) dt 
o \ 

1 ft{0+^° 

= Tol ' 

1 r'o+T> 

— I A2 dt (3-57) 

Equation (3-57) follows by virtue of the square-wave amplitude being either A or —A. Thus the 

squared amplitude of x(t) is A2, and the average power becomes 

Px = A2 (square wave of amplitudes ±A) 

- 1 W (3-58) 

Parseval’s theorem could be used to obtain Px by summing the powers in the spectral components 

provided that one has the patience to sum an infinite series! 

(b) The exponential Fourier series of an even-symmetry square wave, x(t), with amplitude A = 

IV is 

2 
x(t) =—(••• — ^e~j7(°ot + I g“./W _ le~j3(o0t _|_ e-j(o0t + 

7T ' 5 3 

+ eia# - j 1 ey5"»' - 1 e'7""' + • • •) (3-59) 

where a>0 = 2tt/T0 = 2nf0 with/0 =10 kHz. The amplifier multiplies all spectral components with 

frequencies less than 51 kHz by the factor Gv = 10 and blocks all other spectral components. Thus 

the Fourier series of the output of the amplifier is 

y(t) 20 (I e~j5o>ot _ i g-;'3w0r e~j(o0t _|_ ej(o0t _ 1 ej3w0t _J_ 1 ej5u)()t^ 

= 2 Yj 
jri(o0t (3-60) 

The amplitudes of the Fourier components of the output are therefore 

Yn = 0, \n\ > 5 

Yn — 0, n even 

20 
Y-i = Yx = 

77 (3-61) 

y-3=y3=-3 

20 

77 

7-5 = 75 = 

Using ParsevaFs theorem, the output power is 

00 

Py = Y20 + 2 2 |Y„|2 = 2 

8 x 102 / 1 1 

1 + 9 + 25 

20 

20\2 

77 

20 \2 

377/ 

20 \2 

577/ 

= 93.31 W (3-62) 
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(c) If the amplifier passes x(t) perfectly, then 

y(t) = GAt) (3-63) 

and 

P = G2P 
y v x 

= 102 W (3-64) 

Note that Py/Py = 93.31 %. This result tells us that only the first through fifth harmonics of the square 

wave need to be included to obtain 93.3% of the average signal power possible at the amplifier out¬ 

put. The student should compute the percent of average signal power possible at the amplifier out¬ 

put if its cutoff frequency is such that the 7th, 9th, 11th, and so on, harmonics are passed by the 

amplifier but all others rejected. (Answers: 94.96%; 95.96%; 96.63%.) 

3-7 Line Spectra 

The complex exponential Fourier series (3-28) of a signal consists of a summation of rotating phasors. 

In Chapter 1 we showed how sums of rotating phasors can be characterized in the frequency domain by 

two plots, one showing their amplitudes as a function of frequency and one showing their phases. This 

observation allows a periodic signal to be characterized graphically in the frequency domain by mak¬ 

ing two plots. The first, showing amplitudes of the separate phasor components versus frequency, is 

known as the amplitude spectrum of the signal. The second, showing the relative phases of each com¬ 

ponent versus frequency, is called the phase spectrum of the signal. Since these plots are obtained from 

the complex exponential Fourier series, spectral components, or lines as they are called, are present at 

both positive and negative frequencies. Such spectra are referred to as two-sided. From (3-49) it follows 

that, for a real signal, the amplitude spectrum is even and the phase spectrum is odd, which simply is a 

result of the necessity to add complex conjugate phasors to get a real sinusoidal signal. Figure 3-10 

shows the two-sided spectra for a half-rectified sine wave. (See Table 3-1 for the Fourier coefficients.) 

In order that the phase be odd, Xn is represented as 

for n = 2, 4, ..., and as 

X„ = - 
A 

7t( 1 — n2) 

A 

Tr(n2 — 1) 

X„ = 
A 

7r(l — n2) ir(n2 — 1) 

(3-65) 

(3-66) 

for n = —2, —4,. . . . For n — ± 1, the amplitude spectrum is A/4 with a phase shift of — ir/2 for n— 1 

and a phase shift of ttII for n = — 1, which again ensures that the phase is odd. 

The single-sided line spectra are obtained by writing the complex exponential form of the Fourier 

series (3-28) as a cosine series by representing the Fourier coefficients in polar form given by (3-48). 

For a real signal, the magnitudes and phases of the Fourier coefficients have the symmetry properties 

given by (3-49). Substituting the polar form of the Fourier coefficients into (3-28) and using the sym¬ 

metry properties of the magnitudes and phases, we obtain 

oo 

x(t) = 2 Kk'v™0' 
n — — oc- 
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— 1 oo 

= 2 KkW+fl") + ^0 + 2 
77 = —00 72 = 1 

00 

= X0 + 2 + |X_Je;(“'1“°r+6L")] 
« = 1 

00 

= + 2 2|X„ 
n=l 

00 

= + 2 2KI cos(nco0t + 6„) 
n—1 

IX. I 

.J - 

? ? 
I 

1 
I 0.2- 

1 
1 
1 

1 

1 
1 
1 

1 
1 
1 

? 1 o.i- 
1 1 
1 1 t s 

1 
1 
1 

! ? 
i i 
i i 

1 1 
1 1 
1 1 
1 1 

3—--- 

i i 
i i 

! ! ? 
-—1-1-0--O—— 

~2/o 0 2/o 4/o 

(a) Amplitude spectrum 

FIGURE 3-10. Two-sided line spectra for a half-rectified sine wave. 

e/(n<V+fl„) _|_ e~ j(nt,j„+S,j 

’ ~7T~ 

(3-67) 
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From this it is seen that the single-sided amplitude spectrum has lines that are twice as high as the lines 

in the double-sided amplitude spectrum for/> 0, with the line at/= 0 being the same in both spectra, 

and that the single-sided phase spectrum is identical to the double-sided phase spectrum for / > 0. 

We reached the same conclusions in Chapter 1 with regard to spectra of sums of sinusoids. Since the 

Fourier series of a periodic function is the sum of sinusoids as shown by (3-67), these observations 

should come as no suiprise. The student should plot the single-sided amplitude and phase spectra for 

the half-rectified sine wave. 

As a second example, consider the periodic pulse train shown in Table 3-1 as waveform 3. We con¬ 

sider the special case of t0 = t/2. From (3-35c), the Fourier coefficients are 

X = 

The Fourier coefficients can be put in the form 

Ivl = 

sine nf0re 

IVl exp 07V,), where 

-- Mnc n/0r| 
10 

(3-68) 

(3-69a) 

and 

-7m/0r 

— 7Tnf()T + 77 

-Tmf0T - 7T 

if sine nfQr > 0 

if «;/o > 0 and sine nfQr < 0 

if nfo < 0 and sine nf0r < 0 

(3-69b) 

The ±77on the right-hand side of (3-69b) accounts for |sinc nfQt\ = —sine nf0T whenever sine nf0r < 0. 

Since the phase spectrum must have odd symmetry if x(t) is real, 77 is subtracted if nfQ < 0 and added 

if nf0 > 0. The two-sided amplitude and phase spectra are shown in Figure 3-11 for several choices of 

7 and T0. Note that whenever a phase line is 2tt or greater in magnitude, 277 is subtracted. Two impor¬ 

tant observations can be made from Figure 3-11. First, comparing Figures 3-1 la and b we note that the 

width of the envelope of the amplitude spectrum increases as the pulse width decreases. That is, the 

pulse width of the signal and its corresponding spectral width are inversely proportional Second, com¬ 

paring Figures 3-1 la and c, we note that the separation between lines in the spectrum is 1/T0, and there¬ 

fore the density of the spectral lines with frequency increases as the period ofx(t) increases. 

3-8 Steady-State Response of a Fixed, Linear System 
to a Periodic Input; Distortionless Systems 

It was shown in Chapter 2 that if the input to a fixed, linear system is a rotating phasor signal of fre¬ 

quency o) rad/s, then the steady-state output is also a sinusoid of the same frequency but, in general, 

with different amplitude and phase from the input. The complex proportionality constant that multiplies 

the rotating phasor input [see (2-99)] to produce the output is called the frequency response function of 

the system, and is given by the integral 

H((o) = f h(t) e~ja)t dt (3-70) 
—00 

where h(t) is the impulse response of the system. It will be shown in Chapter 4 that this integral is the 

Fourier transform of the impulse response. For any periodic input expressed in the form of a complex 
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_3 _ 2 _1 0J_ 111 
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(a) 7o = 1; r = 0.25; 7b/r = 4 

(b) 70 = l;r = 0.125; r0/r = 8 

(c) 7o = 2;r = 0.25;7b/r = 8 

Figure 3-11. Spectra for a periodic pulse-train signal. 

exponential Fourier series, and using superposition, we may express the steady-state output of a fixed, 

linear system as 

oo 

y(t) = 2 XnH(nco0)e^ (3-71) 
n = —oo 

If //(ro) is represented in polar form as 

//(w) = A(co)eje{(o) (3-72) 

where A(co) is called the amplitude response and 0(a>) is called the phase response of the system, it was 

also shown in Chapter 2 that for a sinusoidal input of the form cos ojQt the steady-state output is 

A((o0) cos[a)0t + 6 (co0)] (see Example 2-16 for a specific case). For any periodic input, it follows from 
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(3-67) and the superposition property of a fixed, linear system that its steady-state output can be ex¬ 

pressed as 

00 

y(t) = X0H(0) + X 2\Xn\A(nco0) cos[n<o0f + jJCR + 0(nwo)] (3-73) 
n=1 

The same result could have been obtained by expressing the series in (3-71) as a sum of cosinusoids, 

using the same steps as were used in deriving (3-67). In so doing, it would have been necessary to in¬ 

voke the following symmetry properties for A(cS) and 0(a)) for h(t) real: 

A(co) = A( — o) 

0(a)) = -O(-co) (3-74) 

That these relationships hold can be shown from the defining expression (3-70) by substituting 

e~ja)t = cos cot — j sin ot, writing the integral as the sum of two integrals, and noting that the first inte¬ 

gral is the real part of H(oj) and that the second integral is its imaginary part. By replacing co by — o in 

these integrals, it is clear that H(co) = H*(—o), which is similar to (3-47). The symmetry properties 

given by (3-74) then follow by expressing H(oj) in polar form. 

EXAMPLE 3-10 

The application of (3-71) can be illustrated by finding the output of the RC lowpass filter of Chap¬ 

ter 2 (see Example 2-16) to an odd square wave of unit amplitude. Recall Example 3-7 for finding 

the complex exponential Fourier coefficients of an odd square wave, and recall (2-102) where the 

transfer function of the RC lowpass filter was given as 

H(jw) = 
_1 

1 + ja)RC 
(3-75) 

This is substituted into (3-71) along with the Fourier coefficients of the odd square wave to obtain 

the Fourier series expression for steadystate output of the filter. A Matlab program for computing 

it is given below. Note that matrix computation is used throughout (with the exception of the for loop 

to run the different cases for the number of terms in the Fourier series) to keep the program as effi¬ 

cient as possible. 

% Plots for Example 3-10 

% 

RC—input(* Enter RC time constant of filter (square wave period=l)'); 

n_max=input('Enter vector of highest harmonic values desired (odd)’); 

N=length(n_max); 

t=0:.005:1; 

omega_0=2 *pi; 

for k=l:N % Loop for various numbers of highest 

% harmonics 

n= [ - n__max (k) : 2 : n_max (k) ] ; 

L_n=length(n) ; 

nn=2:L_n/2+1; 

sgn=(- 1) .Ann; % This will make the 1,5, . . . terms + and 

% the 3,7, . . . terms - 

% Fourier coefficients for odd square wave; for even square wave, 

% leave exp() off 

X__n= (2./ (pi*abs(n))) . * [fliplr(sgn)sgn] . * exp (-j*0.5*pi*n) ; 



3-8 / Steady-State Response of a Fixed, Linear System to a Periodic Input; Distortionless Systems 129 

% Input to filter 

x=X_n*exp(j*omega_0*n'*t); % Rows of exponential matrix are 

% versus time; 

% columns are versus n; matrix 

% multiply sums over n 

% Fourier coefficients of output 

Y_n=X_n.*(1.1(1+j*n* omega_0 *RC)) ; 

y=Y__n*exp (j * omega_0*n ’ * t) ; % The output 

% Plot real part of y to get rid of small imaginary part due to 

% computational error 

subplot(N,1,k),plot(t,real(y),xlabel('t'),ylabel('approx, 

output'),... 

axis([0 1 -1.5 1.5]), text ( . 1 , - . 25 , [' max . har . = ’ , num2str (n__max (k) ) ] ) 

if k == 1 

title(['Filter output for RC = ',num2str(RC),' seconds']) 

end 

end 

To run the program, the following is entered in the command window, where two prompts are 

printed in this case—one for RC time constant of the filter and one for the maximum harmonic used 

in the Fourier series. A plot of the output of the program is shown in Figure 3-11. The plot is most 

inaccurate at the discontinuity in slope where the square wave input switches sign. 

EDU»c3 exl0 

Enter RC time constant of filter (square wave period=l).2 

Enter vector of highest harmonic values desired (odd) [7 15 27] 

EXAMPLE 3-11 __ 

The input and output spectra of the RC filter for the previous example will reveal information 

on why the output time signals look as they do. The Matlab program below provides plots for the 

these spectra for the two RC values used to plot Figure 3-12. Note that since we haven’t plotted the 

phase spectrum, the spectral plots will be the same for both the even and odd square wave cases. Fig¬ 

ure 3-13 shows the input and output spectra. Since the output spectrum is the product of the input 

spectrum and the transfer function (magnitude) at each frequency, the plot clearly shows how the fil¬ 

ter affects the output spectra. 

% Plots for Example 3-11 

% 

RC=input('Enter vector of RC time constant of filter (sq. wave 

period=l)'); 

n_max=input('Enter highest harmonic value desired (odd)’); 

N__RC=length (RC) ; 

omega_0=2 * pi; 

f 0=1 ; 

for k=l:N_RC 

n= [ - n__max 2 : n_max] ; 

f=[-n_max f 0: .02:n_max * f0] ; 

H=1./(1+j * 2 * pi* f *RC (k) ) ; 

L_n=length(n); 

nn=2 : L__n/ 2 + 1 ; 
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Filter output for RC = 0.2 seconds 

) RC = 0.2 

Filter output for RC = 0.5 seconds 

(b) RC = 0.5 

Figure 3-12. Partial sum approximations to the Fourier series for the steady state output of an RC 
lowpass filter to a square wave. 
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Input spectrum 

FIGURE 3-13. Input and output amplitude spectra for an RC filter for RC = 0.2 and 0.05. The 
transfer function magnitude is shown superimposed on the spectra. 

sgn=(-1) .Ann; 

% Fourier coefficients for square wave; 

X__n= (2 . / (pi*abs(n))) . * [fliplr(sgn) sgn] ; 

% Fourier coefficients of output 

Y__n=X_n . * (1 . / (1+j * n * ome ga_0 * RC (k) ) ) ; 

% Plot magnitude of X_n and Y_n 

if k=l 

subplot (N__RC+1 ,1,1) ,stem(n*fO,abs (X_n) ) , xlabel ( ' n*f 0 ' ) , 

ylabel(’magnitude'), . . . 

title('Input spectrum'),axis(-n_max*f0 n_max*f0 01]) 

end 

subplot(N_RC+1,1,k+1),stem(n*fO,abs(Y_n)),xlabel('n*f0'), 

ylabel('magnitude'), . . . 

title(['Output spectrum for RC= ', num2str(RC(k)),' seconds')), 

axis ( [ - n__max* f 0 n_max*f0 0 1]), hold on 

subplot(N_RC+1,1,k+l), plot(f,abs(H),'-') 

end 
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The entries into the command window look as follows: 

EDU»c3exll 

Enter vector of RG time constant of filter (sq. wave period^l) [.2 .05] 

Enter highest harmonic value desired (odd) 21 

If a fixed, linear system is to have no effect on the input except, possibly, for an amplitude scaling 

and delay which are the same for all input-frequency components, the system is called distortionless. 

For a distortionless system with periodic input of the form (3-67), the steady-state output is of the form 

y(i) = k\xq + 2 2\X„\ cos[nco0(t - r0) + 6n) 
l n=1 

- Kx(t - Tq) (3-76) 

where K is the scaling factor and t0 is the delay. From (3-73) it follows that 

A(na)0) = K and 6(no)0) = —r0nco0 

or 

A(co) = K and 0(co) = ~r0co (3-77) 

respectively. That is, the amplitude response of a distortionless system is the same, or constant, for all 

frequency components of the input and the phase response is a linear function of frequency. In other 

words, the frequency response function of a distortionless system is of the form 

Hd((d) = K exp (-jr0(o) (3-78) 

In general, three major types of distortion can be introduced by a system. First, if a system is linear 

but its amplitude response is not constant with frequency, the system introduces amplitude distortion. 

Second, if a system is linear but its phase shift is not a linear function of frequency, it introduces phase, 

or delay, distortion. Third, if the system is not linear, nonlinear distortion results. These three types of 

distortion may occur in combination with each other. 

EXAMPLE 3-12 _ 

To illustrate the ideas of amplitude and phase distortion, consider a system with amplitude response 

and phase response as shown in Figure 3-14t and the following three inputs: 

1. Xj(0 = 2 cos IO77? + sin 1277t 

2. x2(t) = 2 cos 1077t + sin 26irt 

3. x3(t) = 2 cos 26irt + sin 3477t 

Although this system has idealized frequency response characteristics, it can be used to illustrate 

various combinations of amplitude and phase distortion. Using (3-73), we find the outputs for the 

given inputs to be: 

fThe filter amplitude- and phase-response functions used here are not realizable, but are employed only to easily illustrate 

amplitude and phase distortion. 
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l#(w)| 

l-12 
i-i I-11 
i I ii 

-1-i--1-h- 

—407T —207r 0 207r 407T 
u), rad/s 

/S(o>) 

cj, rad/s 

FIGURE 3-14. Amplitude response and phase response of the filter for Example 3-12. 

1. yx(t) = 4 cos( 1077? — tt/6) + 2 sin(1277? — 77-/5) 

= 4 cos 107r(t — 1/60) + 2 sin 127i(r — 1/60) 

2. y2(0 = 4 cos(1077? — tt/6) + sin(2677? — 1377/30) 

= 4 cos 107r(t — 1/60) + sin 267r{t — 1/60) 

3. y3(t) = 2 cos(26tt? - 1377/30) + sin(3477? - tt/2) 

= 2 cos 26rr{t - 1/60) + sin 347r(Y — 1/68) 

Comparison with (3-76) shows that only the input xx(t) is passed without distortion by the system. 

The system imposes amplitude distortion on x2(t) and phase (delay) distortion on x3(t). 

EXERCISE 

A second-order low-pass Butterworth filter is one having frequency-response function 

m*) = 
M, 

0% — (X)2 + 7V2 0)c(i) 

where coc is a filter parameter. 

(a) Show that its amplitude- and phase-response functions are 

-1/2 

A((o) = 11 +. 

and 

0(co) = 

— tan 

— 77 + tan 

-i V2 ((x)/(Oc) 

1 — (O2/(1)2C ’ 

1 V2 (ft)/<Oc) 

O?/ (I)2 — 1 

(D < (1),. 

O) > OL 

(3-79) 

(3-80) 

(3-81) 

respectively, where the value of the arctangent function is taken as its principal value. 

(b) If o)c = 60077 rad/s above and co0 = 20077 rad/s in (3-25), obtain the attenuations and phase 

shifts introduced by the filter in the first three terms of the Fourier series of a square-wave input to 

the filter. {Answer: attenuations: 0.994, 0.707, 0.339; phase shifts: —27.9°, —90°, -127°.) 
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(c) Write out the first three nonzero terms of the Fourier series of the output and compare with the 

input by plotting. 

Answer: y(t) = 4/tt[0.994sin(20077t - 27.9°) + 0.236sin(6007rt - 90°) + 0.068 sin(100077f - 127°)]. 

3-9 Rate of Convergence of Fourier Spectra 

It is handy to be able to predict how rapidly the amplitude spectral lines of a periodic signal approach 

zero as frequency (or harmonic order) increases. We may determine this from the complex exponential 

Fourier series expression (3-28) and the formula for finding the Fourier coefficients (3-31). Consider a 

periodic signal x(t) that has a Mi derivative which is piecewise continuous (i.e., is has finite jumps pre¬ 

sent, but it otherwise continuous). Thus its (k + l)st derivative contains impulses wherever the Mi de¬ 

rivative has jumps. Now, by differentiating the exponential Fourier series (3-28) k + 1 times, we obtain 

dk+1r(A 
-Jrr= 2 (jncoor'Xne^ (3-82) 

Therefore the Fourier coefficients of the (k + 1 )st derivative of x(t) are the Fourier coefficients of x(t) 

multiplied hy (jn(o0)k+l. 

Now consider the computation of the Fourier coefficients of the (k + l)st derivative of x(t). When 

the expression for the (k + l)st derivative of x(t) is substituted into (3-31), we may evaluate the impulse 

terms immediately by using the sifting property of the unit impulse function. These terms will give con¬ 

stants in the expression for the Fourier coefficients for the (k + 1 )st derivative of x(t). This means that, 

given our observation in relation to (3-82), the Fourier coefficients for x(t) will have terms proportional 

to (jnof)~(k+l\ since we divide the expression for the Fourier coefficients for the (k + l)st derivative 

of x(t), which have constant components, by (jna)0)k+1 to getXn. 

We conclude, therefore, that a periodic signal x(t) that has a kth derivative which is piecewise con¬ 

tinuous has Fourier coefficients that decrease with frequency as (naj0)~(k+l\ As an example, a square 

wave is piecewise continuous (zeroth derivative), so its first derivative contains impulses. Therefore, the 

Fourier coefficients of a square wave decrease inversely with increasing frequency, or order of harmonic. 

This is a very useful result for design of waveforms. If we want a signal that has its spectral content 

concentrated about zero frequency, we think of those waveforms that have many continuous deriva¬ 

tives. An example of a fairly simple waveform of this nature is given in the next example. 

EXAMPLE 3-13 _ 

| Consider a periodic waveform consisting of raised cosine pulses, defined by the equationsand 

^ 1 1 
- (1 + cos 2irt), \t\ < - 

0, otherwise 

2 XM - 2«) 0-83) 
n — ~ oo 

The following Matlab program (note that a function program is used to keep it compact) plots three 

pulses of this waveform and three of its derivatives. These plots are shown in Figure 3-15. Its third 

derivative contains impulses. Therefore, its amplitude spectrum approaches zero as (fta;0)~3. 

Xp(t) = 

and 

x(t) = 



d
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-3-2-1 0 1 2 3 
t 

FIGURE 3-15. Plots of a raised cosine periodic waveform and its first three derivatives. 

EDU»3 exl3 

% Example 3-13 plots 

% 

t=-3:.001:3; 

[xl , xl_dot, xl__ddot, xl_dddot] =rsd_cos (t+2) ; 

[x2 , x2___dot, x2_ddot, x2_dddot] =rsd_cos (t) ; 

[x3 , x3__dot, x3_ddot, x3_dddot] =rsd_cos (t - 2) ; 

x=xl+x2+x3; 

x_dot=xl_dot+x2_dot+x3_dot; 

x__ddot=xl__ddot+x2_ddot+x3_ddot; 

x_dddot=xl_dddot+x2_dddot+x3_dddot; 

subplot(4,l,l),plot(t,x),xlabel('t'),ylabel('x') 

subplot(4,l,2) ,plot (t, x_dot) .xlabel ( ' t' ) , y lab el ( ' x__dot' ) 

subplot(4,l,3) ,plot (t, x_ddot) , xlabel ( 11' ) , y label ( ' x__ddlot' ) 

subplot(4,1,4),plot(t,x_dddot),axis([-3 3 -150 150]), . . . 

xlabel('t'),ylabel('x_dddot' ) 

% Function to compute raised cosine and derivatives 
0/ 
/o 

function [x,x_dot,x_ddot,x_dddot]=rsd_cos(t) 

x__cos= .5*(l+cos(2*pi*t)) ; 

x=x___cos . ‘•'‘pis_fn (t) ; 

x_dot=-pi*sin(2*pi*t).*pls_fn(t); 

x_ddot=-2*piA2*cos(2*pi*t).*pls_fn(t); 
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x_dddot=4*piA3* sin(2*pi*t) .*pls_fn(t)+ . . . 

2*piA2 * (impls_fn (t+5 ,.01)- impls__fn (t - 5 , . 01) ) ; 

% Function to compute square pulse 
0/ 
/o 

Function y=pls_fn(t) 

y=stp_fn(t+0.5)-stp_fn(t-0.5-eps) 

3-10 Fourier Series and Signal Spaces 

It is often useful to visualize signals as analogous to vectors in a generalized vector space. The Fourier 

series and the Fourier transform that we have just studied are tools for resolving power and energy sig¬ 

nals, respectively, into such generalized vector spaces. We briefly consider this approach to Fourier rep¬ 

resentations, referred to as generalized Fourier series. 

We begin our consideration of generalized Fourier series with a review of some concepts about or¬ 

dinary vectors in three-dimensional space. We were probably first introduced to vectors as physical 

quantities whose specification involves both magnitude and direction and that obey the parallelogram 

law of addition. Later, we were perhaps shown that it was convenient to represent a vector, A, in a Car¬ 

tesian coordinate system in terms of a mutually perpendicular triad of unit vectors i, j, and k along the 

jc-, y-, and z-axes, respectively, as 

A = AJ + Ayj + A,k (3-84) 

The components Ax, Ay, and Az can be expressed as 

Ax = A-i, Ay = A- j, Az = A k 

where the dot denotes the dot product of two vectors, which is the product of their magnitudes and the 

cosine of the angle between them. Since i, j, and k are unit-length, mutually perpendicular vectors, the 

xyz components of A are easily obtained by simply projecting A onto the x-, y-, and z-axes, respectively. 

We now consider representation of a finite-energy signal, x(t), defined on a T-second interval (f0, 

tQ + T) in terms of a set of preselected time functions, . . ., 4>n(t). It is convenient to choose these 

functions with properties analogous to i, j, and k of three-dimensional vector space. The mutually per¬ 

pendicular property, referred to as orthogonality, is expressed as 

rto+T 

I dt = 0, m i=- n (3-85) 
4 

where the conjugate suggests that complex-valued 4>n(tYs may be convenient in some cases. We further 

assume that the <j>n{tys have been chosen such that 

(3-86) 

In view of (3-86), the <j>n(tys are said to be normalized. This assumption is invoked to simplify future 

equations. 

We now attempt to approximate x(t) as best we can by a series of the form 

y(t) = E d,Mt) (3-87) 
71 = 1 

where the dn’s are constants to be chosen such that y(t) represents x(t) as closely as possible according 

to some criterion. It is convenient to measure the error in the integral-square sense, which is defined as 

integral-square error = eN = \x(t) — y(t)\2 dt (3-88) 
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We wish to find dl9 d2, ... ,dN such that eN as expressed by (3-88) is a minimum. Substituting (3-87) 

into (3-88), we obtain 

f x(t) - 2 d„4>n{t) x*(t) - 2) d*4>*(t) dt 
h L n = \ J L n=1 

where 

This can be expanded to yield 

«=i l jt 

x(t)|2 dt - 2 x(t)4>*(t) dt + dn x*(t)4>n(t) dt + 2 kl2 (3-90) 

which was obtained by making use of (3-85) and (3-86) after interchanging the orders of summation 

and integration. 

It is convenient to add and subtract the quantity 

2 ! f *(0<£* (0 dt (3-91) 

to (3-90) which, after rearrangement of terms, yields 

eN = \ k(0|2 dt - 2 f x(t)<f>*(t) dt + 2 dn - f x(t)4>*(t) dt (3-92) 
JT n=1JT n=1 

To show the equivalence of (3-92) and (3-90), it is easiest to work backward from (3-92). 

Now the first two terms on the right-hand side of (3-92) are independent of the coefficients dn. The 

last summation of terms on the right-hand side is nonnegative and is added to the first two terms. There¬ 

fore, to minimize eN through choice of the dn’s, the best we can do is make each term of the last sum 

zero. That is, we choose the nth coefficient, dn, such that 

d„ = x(t)4>*(t)dt, n = 1,2,..., N (3-93) 

This choice for d{, d2, , dN minimizes the integral-square error, eN. The resulting coefficients are 

called the generalized Fourier coefficients. 

The minimum value for eAr is 

kol2 dt - 2 kl: 

It is natural to inquire as to the possibility of eN_ min being zero. For special choices of the set of func¬ 

tions 4>ft), (f>2(t), . .., 4>N(t), referred to as complete sets in the space of all integrable-square functions, 

it will be true that 

\imeKmin = 0 (3-95) 

for any signal that is square integrable, that is, for any signal for which 

x(t)\2 dt < oo (3-96) 
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In the sense that the integral-square error is zero, we may then write 

oo 

x(t) = 2 drA(t) (3-97) 
n-1 

For a complete set of orthogonal functions, 4>{(t), </>2(t),. . ., we obtain from (3-94) that 

rT\x(t)\2dt=±\dn\2 (3-98) 
Jt0 n = 1 

This is a generalized version of Parseval’s theorem. 

EXAMPLE 3-14 ___ 

Given the set of functions shown in Figure 3-16. (a) Show that this is an orthogonal set and that 

each member of the set is normalized, (b) If x(t) — cos 2irt, 0 < t < 1, find y(t) as expressed by 

(3-87) such that the integral-square error is minimized, (c) Same question as in part (b) but x(t) = 

sin 277f, 0 < t < 1. 

Solution: 

(a) It is clear that each function is normalized according to (3-86). To show orthogonality, we calculate 

f1 <M0</>2(0 dt = f°5 (!)(!) dt + f1 (!)(-!) dt = 0 (3-99) 
A) 4 *^0.5 

Similarly, it can be shown that fg (f){(t)(f)3(t) dt = 0 and </>2(0</>3(0 = 0. 

(b) The generalized Fourier coefficients are found according to (3-93). The coefficients are 

d\ — [ (1) cos 27rt dt 
Jo 

sin 2irt\ 

2tt 

= 0 (3-100) 

d'-) 

d, = 

0.5 A 

(1) COS 27Tt dt + 
0 

J. 

27T 

0 

0.25 

(1) COS 27Tt dt + 

/'(->) 
J0.5 

COS 27Tt dt 

- 0.5 l - 
sin 27rt — sin 2irt 

_ 0 0.5_ 

f0.75 

I (-1) 
J0.25 

COS 27Tt dt + a (1) 
df) 7S 

COS 277t 

1 

277 

- 0.25 0.75 1 “ 
sin 2irt -- sin 2rrt + sin 2rrt 

_ 0 0.25 0.75_ 

J0.75 

2 

(3-101) 

(3-102) 

Therefore, 

y( 0 = ~ </>3(0 (3-103) 
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01 (O 

03(0 

FIGURE 3-16. Orthogonal set of functions for Example 3-11. 
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Note that the exponential Fourier series could have been derived as a generalized Fourier series with 

<f>n(t) = ejn(°f n = 0, ±1,... (3-106) 

where the interval under consideration is (t0, t0 + T0) and 

«o = 2tt/0 = ~ (3-107) 
1 0 

Thus, partial sums of exponential (and trigonometric) Fourier series minimize the integral-square 

error between the series and the signal under consideration. 

Summary 

In this chapter we have considered the representation of periodic signals by trigonometric sums and by 

rotating phasor sums whose terms have frequencies which are harmonically related. The former repre¬ 

sentation is called the trigonometric Fourier series, and the latter is referred to as an exponential Fourier 

series. Fourier series representations facilitate the plotting of spectra for periodic signals, which consist 

of discrete lines spaced at integer multiples of the fundamental frequency. Although we naturally think 

of the Fourier series as being a useful representation for periodic signals, an aperiodic signal may be 

represented by a Fourier series over a finite interval. We also returned to the idea of a frequency re¬ 

sponse function of a fixed, linear system in this chapter which is a complex function of frequency. A 

distortionless system has an output which is a scaled, delayed replica of the input signal; for such sys¬ 

tems, the magnitude of the transfer function is a constant, and its argument is a linear function of fre¬ 

quency. The following are the major points covered in this chapter: 

1. A trigonometric Fourier series has the form 

OO 00 

x(t) = a0 + 2 an cos na)0t + 2 bn sin no)0t 
n=1 n =1 

where 

X_~ f x(t) dt 
1o h, 
2 r 
— x(t) cos nco0t dt, n A 0 
T0 *T0 

bn — ~z \ x(t) sin nco0 dt 
To Jt0 

where co0 = 2itIT0, with T0 being the period of the periodic signal or the interval of expansion if 

the series is used to approximate an aperiodic function over a finite interval. 

2. At points of continuity of x, a Fourier series converges pointwise under fairly lenient restrictions. 

At points of jump discontinuity of x„ say at t = t0, a Fourier series converges to the average of 

the left- and right-hand limits of x(r) at t0. 

3. The Gibbs phenomenon of a Fourier series, to be treated more precisely in Chapter 4, refers to the 

tendency of the partial sums of a Fourier series to overshoot a jump discontinuity of a signal, no mat¬ 

ter how many terms are included in the series. This is illustrated by Example 3-4 for a square wave. 

4. A complex exponential Fourier series has the form 

a... — 

and 
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oo 

x(t) = 2 xjn^ 
n=— oo 

where 

X« = 4-[ x(t)e~^dt 
10 JT0 

5. The coefficients for the trigonometric and exponential forms of the Fourier series are related by 

X0 — a0 

Xn=\(an~ Jb„), «>0 

and 

Xn = 2 (a-n+jb-n)’ «<0 

or 

an = 2 Re Xn, n > 0 

and 

bn = -2 lmXn, n > 0 
6. The following symmetry properties hold for the Fourier coefficients of a real signal: 

— v * 
n ~ A~n 

fcl = l^-J 

/Xn = 

If a signal is even, then 

a. The Xn’s are real. 

b. All bn’s are zero. 

On the other hand, if a signal is odd, then 

a. The Xn’s are imaginary. 

b. All an9s are zero. 

If a signal is half-wave (odd) symmetrical, i.e., x(t) = —x(t - TJ2), then all even-indexed co¬ 

efficients are zero. If a signal has zero average value, then X0 = a0 = 0. 

7. ParsevaVs theorem relates to the average power contained in a periodic signal and states that 

Pm = Y f KOI2 dt = 2 |x„|2 = X2 + 2 2 W2 
1 0 JT0 n— oo n = l 

That is, the power can be found by averaging the square of the time-domain signal over a pe¬ 

riod, or by summing the powers in its rotating phasor components, or by summing the powers 

in its sinusoidal components plus the power in the dc component. 

8. Line spectra for a signal are plotted from its Fourier series representation. The two-sided am¬ 

plitude spectrum of a signal is obtained by plotting the magnitude of its complex exponential 

Fourier series coefficients versus frequency. Its two-sided phase spectrum is obtained by plot¬ 

ting the arguments of its complex exponential Fourier series coefficients versus frequency. The 

single-sided amplitude spectrum is obtained by doubling each line in the double-sided ampli¬ 

tude spectrum for/ > 0 and leaving the line at / = 0 as it is. The single-sided phase spectrum is 
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obtained by keeping each line in the double-sided amplitude spectrum for/ > 0 as it is. (Single¬ 

sided line spectra are zero for/< 0, as their name implies.) 

9. The frequency response function of a system is given by the integral 

H(co) = f h(f)e-jMtdt 
J — 00 

where h(t) is its impulse response. 

10. For any periodic input expressed in the form of a complex exponential Fourier series, the steady- 

state output of a fixed, linear system may be expressed as 

y(t) = 2 XltH(nu>0)einWo‘ 
n = — oo 

11. If H(a)) is represented in polar form as 

H(a)) = A(co)e-i*"> 

where A(a)) is called the amplitude response and 0(a)) is called the phase response of the sys¬ 

tem, it follows that the steady-state output of a fixed, linear system can be expressed as 

oc 

y(t) = X0H(0) + X 2\Xn\A(nco0) cos[nco0t + 8„ + 0(mon)] 
n = 1 

12. For h(t) real, 

A(aj) = A( — a)) 

and 

6(a)) = —0( — a)) 

13. A fixed, linear system that has no effect on its input except, possibly, for an amplitude scaling 

and delay which are the same for all input-frequency components is called distortionless. Such 

a system is defined by the input-output relationship y(t) = Kx(t — r0), where K is the amplitude 

scaling factor and r0 is the delay. Its amplitude and phase responses are given by 

A(o)) = K and 0(a)) = — t0o) 

14. Fixed, linear systems with nonconstant amplitude responses are said to introduce amplitude dis¬ 

tortion into the input signal. Systems with phase responses that are not linear with frequency are 

said to introduce phase distortion. 

15. If the kth derivative of a waveform is piecewise continuous such that its (k + 1 )st derivative con¬ 

tains impulses, its Fourier spectrum decreases with frequency as the inverse (k + l)st power. 

16. An alternative way to develop the Fourier expansion of a signal is as a special case of its mini¬ 

mum integral-squared-error expansion over an interval of interest using a complete orthonormal 

set of functions over the interval. Such a development shows that when a Fourier series is trun¬ 

cated at any finite number of terms, the best representation of the signal of any equivalent length 

series is obtained in terms of minimum integral-squared error. 

Further Reading 

Fourier series and the Fourier transform are introduced in almost all beginning circuits texts, but their use as sys¬ 

tems analysis tools are not fully exploited until the student becomes involved in more systems-oriented courses, 
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such as communications and signal processing. Nevertheless, rather than cite references in these specialized areas, 

we give two that deal with these topics from a more mathematical viewpoint. 

E. Kreyszig, Advanced Engineering Mathematics, 6th ed. New York: Wiley, 1988 (Chapter 10). 

A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977 (Chapter 3). 

An older reference that provides a very readable treatment of Fourier analysis is long out of print. However, it is 

well worth exposure to if the student can obtain a copy. It is 

E. A. Guillemin, The Mathematics of Circuit Analysis. New York: Wiley, 1949 (Chapter 10). 

Problems 

Section 3-2 

3-1. Plot the first through third partial sums of the series 

4 
x(t) - — (cos (O0t — ~ cos 3co0t + - cos 5(o0t - • • •) 

Comment on its similarity to a square wave. Is it even or odd? Why is this series an alternating 

series, whereas the series of Example 3-1 was not? (Hint: In calculating the data for making the 

plot, note that symmetry can be used to save work.) 

Section 3-3 

3-2. Prove the relationships (3-12) and (3-13), and show all steps in deriving (3-16). 

3-3. The uniqueness of the Fourier series means that if we can somehow find the Fourier series of a 

waveform, we are assured that there is no other waveform with that Fourier series, except for 

waveforms differing from the waveform under consideration only over an inconsequential set of 

values of the independent variable (this is referred to in mathematics as a set of measure zero). 

With this assistance, find the following trigonometric Fourier series of the signals without doing 

any integration: 

(a) xft) = cos2(1007rr); 

(b) x2(t) = exp(j20077t); 

(c) x3(t) = sin(277T) cos2(1077f); 

(d) x4(t) = cos3(207Tt) [1 - sin2( 10777)] 

3-4. Obtain the trigonometric Fourier series of the square wave 

x{t) = j 

f -T0 <f,3 A, 
4 4 

-A, 
-T0 

< f " T° 
\ 2 4 

and 
4 2 

with x(t) = x(t + T0), all t. Why is it composed of only cosine terms? 

3-5. (a) In Example 3-3, the violin string was viewed as one full period of a triagular waveform. Find 

the Fourier series representation if it is viewed as one-half of a period. 

(b) In Figure 3-6, it is seen that the two points of maximum error occur at the ends of the string. 

With the representation found in part (a), what is the error at the ends of the string now? 
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Sections 3-4 to 3-6 

3-6. Obtain the results for the exponential Fourier series examples given in Table 3-1 with the excep¬ 

tion of number 3, which was worked in Example 3-5. 

3-7. Suppose that differentiation of the periodic signal x(t) results in a signal that has a Fourier series, 

(a) Integrate by parts the expression 

to show that 

XL = 
[0 ->Tn 

dx 

dt 
e-jmo0t dt 

X'n = (jnco0)Xn 

That is, the Fourier series coefficients of the signal dx/dt are related to the Fourier series co¬ 

efficients of x(t) through multiplication by jnajQ. f 

(b) From Table 3-1, waveform 5, obtain the Fourier series coefficients of an odd-symmetry 

square wave. 

30 if" 
3-8. (a) Use ParsevaTs theorem expressed by (3-55a) and (3-55b) to find Pav for 

x(t) = 2 sin2(250077t) cos(2 X 1047rt) 

(b) If x(t) is a signal that is transmitted through a telephone system which blocks dc and fre¬ 

quencies above 12 kHz, compute the ratio of received to transmitted power. 

3-9. Consider the periodic pulse-train signal of Example 3-5. Find the ratio of the power in frequency 

components for which \nf0\ < t~] to total power if: 

(a) T0/r = 2 

(b) T0/t= 4 

(c) T0/t = 10 

3-10. Obtain the exponential Fourier series of the sawtooth waveform defined by 

x(t)=At,-^*t<& 

x(t) = x(t + r0), all t 

3-11. The complex exponential Fourier series of a signal over an interval 0 ^ t < T0 is 

x(t) = 
,~~l: 1 + jim 

ej(3imt/2) 

(a) Determine the numerical value of T0. 

(b) What is the average value of x(t) over the interval (0, T0)l 

(c) Determine the amplitude of the third-harmonic component. 

(d) Determine the phase of the third-harmonic component. 

(e) Write down an expression for the third harmonic term in the Fourier series in terms of a 

cosine. 
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« 3-12. Represent the signal 

x(t) = e~M 

over the interval (— 1, 1) using: 

(a) The exponential Fourier series 

(b) The trigonometric Fourier series 

(c) Sketch the function to which either Fourier series converges 

3-13. Obtain complex exponential Fourier series expansions for the following signals without doing 

© U any integration. Give the fundamental frequency for each case. 

(a) xa(t) = cos2 2077/ sin IO7n 

(b) xb(t) = sin3 307r/ + 2 cos 2577/ 

(c) xc(t) = sin2 4077/ cos2 2077/ + sin 1077/ cos 577/ 

(Hint: Use trigonometric identities and Euler’s theorem.) 

3-14. Given that the complex exponential Fourier series coefficients of a signal x(t) are . . . , X0, 

Xv ... . Find the Fourier series coefficients of y(t) in terms of those for x(t) if the two signals are 
related by: 

(a) y(t) = x(t — t), where ris a constant; 

(b) y(t) = exp(j2nf0t)x(t), where f0 is a constant. 

3-15. (a) Prove the relationships (3-32a) and (3-32b), which relate the coefficients of the exponential 

Fourier series to the trigonometric Fourier series. 

(b) Show that the trigonometric Fourier series of a real, even signal consists only of cosine terms, 

and that of an odd signal consists only of sine terms. 

3-16. Show the following symmetry properties for the complex exponential Fourier coefficients: 

(a) Xn is real and an even function of n if x(t) is real and even. 

(b) Xn is imaginary and odd if x(t) is real and odd. 

(c) Xn = 0 for even n if x(/) = —x(t ± T0/2) (i.e., has odd half-wave symmetry). 

(Hint: (1) One way to do this is to write down the Fourier series for x(t). Substitute / 4- TJ2 for / 

to obtain a series for x(t + T0/2). What must be true of the coefficients in order for this new series 

to equal the original series for x(t)l (2) A second way to prove Xn = 0, n even, is to write down the 

integral for Xn and break the integral into one from - T0/2 to 0 and 0 to TJ2. Change variables in 

the one from - TJ2 to 0 to make its limits 0 to T0/2. Use the fact that x(t - T0/2) = -x(t) in the 

integrand. Consider n even and n odd separately. 

3-17. Consider the waveforms in Figure P3-17 and their complex exponential Fourier series. For which 

ones are the following true: real coefficients; purely imaginary coefficients; even-indexed coef¬ 

ficients zero; X0 = 0? 

If true, check the appropriate box in the table. 

3-18. Given the periodic waveform shown in Figure P3-18. 

(a) What is the value of a0 in the sine-cosine Fourier series? Why? 

(b) What are the values of the bm coefficients in the sine-cosine Fourier series? Why? 

(c) Are the coefficients in the complex exponential Fourier series real, imaginary, or com¬ 
plex? Why? 

(d) Does this waveform have half-wave odd symmetry? 
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FIGURE P3-18 

3-19. The phenomenon of “beats” when two slightly out of tune band instruments play the same nomi¬ 

nal note at the same time may be seen by considering the signal 

x(t) = cos(a>00 + cos[(w0 + A a))t] 

Use trigonometric identies to rewrite this in the form 

x(t) = A(t)cos[cu0t + 6(t)] 

That is, find explicit expressions for A(t) and 9(t) in terms of Aco. Plot the waveform for the case 

of co0/2tt = 1000 hertz and Aa>/27r = 5 hertz. Discuss how this would sound to the ear. 

Section 3-7 

3-20. Plot the two-sided amplitude and phase spectra for the full-wave rectified sinewave (waveform 

2 of Table 3-1). Convert the two-sided plots to single-sided plots. 

3-21. Plot and compare amplitude spectra for the triangular and square waves (waveforms 4 and 5 of 

Table 3-1). Which requires the most bandwidth for a given fidelity of reproduction? 

3-22. Plot and label accurately Figure 3-11 for specific values of r and T() as follows: 

(a) r = 2 ms; T0 = 8 ms 

(b) r = 1 ms; T0 = 8 ms 

(c) t — 2 ms; T0 = 16 ms 

Section 3-8 

3-23. Show all the steps in the derivation of (3-73). 

3-24. For the RL filter shown in Figure P3-24, obtain the steady-state output to a triangular waveform 

with zero average value if R/L = a>0, where co0 is the fundamental frequency of the waveform in 
rad/s. 

L 
_qnnr\_ 

+ 
i 
l : 

*(/) R< 
K < > v(t) 

l_™ 

FIGURE P3.24 
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3-25. If the input to a system is cos 107it + 2 cos 2077T, tell what kinds of distortion, if any, a system 

introduces if its output is: 

(a) cos(1077t — 77/4) + 5 cos(2077? — 7i/2) 

(b) cos(lO77T — 77/4) 4- 2 cos(2077t — 7t/4) 

(c) COS(1077? — 77/4) + 2 008(2077? — 77/2) 

(d) 2 cos( 1077? - 77/4) + 4 (2077? - 77/8) 

3-26. A function generator generates approximations of the following types of waveforms: (1) square 

wave; (2) triangular wave; (3) sine wave. 

The square wave is generated by a multivibrator circuit that has an asymmetry in switching 

between positive and negative values so that the waveform is actually given by 

\t\ < TJ4 + e/1 

V4 + e/1 < |/| < TJ2 

The triangular waveform is generated by integrating the square wave with an operational ampli¬ 

fier integrator as described in Example 1-2. 

The sine wave is obtained by filtering the square wave with a second-order filter with trans¬ 

fer function 

//M 
_1_ 

1 + /£?[<*>/"0 - wo/wl 

where co0 = 2ttIT'0 and Q is a parameter called the filter quality factor. 

(a) Sketch the actual and ideal square-wave output. Determine the integral-square error between 

actual and ideal outputs for the square-wave mode. Divide the integral-square error by T0 to 

determine the mean-square error. Plot it as a function of e/T0 for A = 1. 

(b) Obtain and sketch the triangular-mode output for an integrator constant RC = 1. Other than 

being inverted due to the operational amplifier circuit, how might one characterize its error 

from the ideal case? 

(c) For the sine-wave mode, define the percent harmonic distortion for the nth harmonic as 

(HC)n = -4—-' x 100 
Gund 

(i) Find (HC)n in terms of e and Q. If e/T0 = 0.05, what must Q be to make (HC)2 = 0.1 %? 

(ii) Find (HC)3 in terms of e and Q. What must Q be to make (HC)3 = 0.05%? (e/T0 = 0.05) 

(iii) Which is the most stringent condition, the one for (HC)2 or the one for (//C)3? 

Section 3-9 

3-27. Give the rate of convergence of the amplitude spectrum for the signals shown in Problem 3-17(c) 

and (d) to zero as frequency increases. Justify your answer. 

3-28. Give the rate of convergence of the amplitude spectrum for a half-rectified sine wave to zero as 

frequency increases. Justify your answer. 

Section 3-10 

3-29. Show that (3-92) and (3-90) are equivalent. 
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3-30. Given the set of functions 

/i(0 =Ale~< 

flit) = A2e-2' 

defined on the interval (0, °°). 

(a) Find Ax such that fx(t) is normalized to unity on (0, oo). Call this function cpx(f). 
(b) Find B such that <px(t) mdf2(t) - B <p{(t) are orthogonal on (0, oo). Normalize this new func¬ 

tion and call it <p2(t). 

(c) Do this for the third function, e~3t. That is, choose C and D such that f3 - Cp2 — D<fil is or¬ 

thogonal to both <px(t) and fi2(t). Normalize it and call it <p3(t). Comment on the feasibility of 

continuing this procedure. 

3-31. What is the integral-square error in representing a square wave with zero average value by: 

(a) Its fundamental 

(b) Its fundamental plus third harmonic 

Computer Exercises 

3-1. Using the Matlab application of Example 3-6 as a model, write a program to compute and plot 

the partial sums of each waveform given in Table 3-1. You might consider using Matlab func¬ 

tion programs to keep your program well organized. 

3-2. Consider the use of a half-wave rectifier followed by an RC lowpass filter to implement a direct 

current (dc) power supply as shown in the following figure. Write a program to display the output 

waveform from the RC lowpass filter with a half-wave rectified sine wave at its input. Assume an 

operational amplifier isolation stage between rectifier and lowpass filter so that you can ignore 

loading of the rectifier by the filter. 

3-3. Rework Computer Exercise 3-2 for a full-wave rectified sine wave at the input. 

3-4. Write a simulink program to rework Computer Exercise 3-3 without the isolation amplifier be¬ 

tween the diode and the RC lowpass filter. Assume an ideal diode with zero forward resistance and 

infinite back resistance. 

3-5. Rework Examples 3-10 and 3-11 for a triangular waveform at the RC lowpass filter input. Com¬ 

ment on the comparison of your results with those of Examples 3-10 and 3-11. 



CHAPTER ■ 

The Fourier Transform 
and Its Applications 

4-1 Introduction 

The Fourier integral may be viewed as a limiting form of the Fourier series of a signal as the period 

goes to infinity. Thus, it is useful for pulse-type signals in providing spectral characterization and a sys¬ 

tem analysis tool. Since it converges for a relatively restricted class of signals, it finds limited use in the 

latter application. However, it also provides a bridge to a more general transform for system analysis, 

namely, the Laplace transform, which we take up in the next chapter. In this chapter, we provide a de¬ 

rivation of the Fourier transform and prove several theorems useful for deriving Fourier transform pairs. 

Several applications of the Fourier transform are also illustrated. 

4-2 The Fourier Integral 

Figure 3-11 showed that the spectral components of a pulse train became closer together as the period 

of the pulse train increased, while the shape of the spectrum remained unchanged if the pulse width 

stayed constant. We now use the insight gained in that exercise to develop a spectral representation for 

nonperiodic signals. Specifically, in the complex Fourier series sum and the integral for the coefficients 

of the Fourier series, we let the frequency spacing/0 = Tq1 approach zero and the index n approach in¬ 

finity such that the product nfQ approaches a continuous frequency variable/. Repeating the exponen¬ 

tial form of the Fourier series below for convenience, 
oo 

x(t) = X X„ei2mf* (4-1) 
n=— co 

1 To/2 

= — x(i)e~^dt (4-2) 
^0 J-TJ2 

we note that the limiting process f0 = Tq1 —» 0 evidently implies that Xn —» 0 provided that the integral 

f x(t)e~j27mfot dt < f \x(t)\ dt (4-3) 
— —oo oo 

exists. Thus, before carrying out the limiting process, it is useful to write (4-1) and (4-2) in the forms 
o° Y 

X(t)= X 7^e«A(n/0) (4-4) 
tt/o=-°° JO 

X r1/2/0 

X(nf0) 4 = x(t)e~i2vnf<f dt (4-5) 
Jo J-l/2f0 

150 



4-2 / The Fourier Integral 151 

respectively, where the symbol A(nf0) means the increment in the variable nf0 which is/0. The limiting 

process then formally becomes 

T0-^“ 

fo —> 0 and n 00 such that nf0 ->/ 

— = A(«/0) —> d/ 
/o 

JO 

which results in the sum in (4-4) becoming an integral over the continuous variable/, and the integral 

in (4-5) extending over the entire t-axis, —oo < ^ < oo. The resulting expressions are 

r00 
x(t) = I X(f)ej2^df (4-6) 

*' — oo 

and 

r 00 

X(f) = x(t)e-i2rrfl dt (4-7) 
J —oo 

where the tilde has been dropped from X(f) to simplify notation. 

These expressions define a Fourier transform pair for the signal x(t), and are sometimes denoted by 

the notation x(t) X(f), where the double-headed arrow means that X(f) is obtained from x(t) by ap¬ 

plying (4-7) and x(t) is obtained from X(f) by applying (4-6). The integral (4-7) is referred to as the 

Fourier transform of x(t), and is frequently denoted symbolically as X(f) = $F[x(t)]. Conversion back 

to the time domain by means of (4-6) is referred to as the inverse Fourier transform and is often de¬ 

noted symbolically as x(t) = ^“1[X(/)].t 

Several symmetry properties of the Fourier transform may be shown by writing X(f) in terms of 

magnitude and phase as 

X(f) = \X(f)\e*n (4-8) 

For example, assuming that x(t) is real, it can be shown that* 

\X(f)\ = \X(-f)\ and 0(f) = -d(-f) (4-9) 

That is, the magnitude is an even function of frequency and the argument, or phase, is an odd func¬ 

tion of frequency. Plots of \X(f)\ and 6(f) = /X(f) with/chosen as the abscissa are referred to as 

the amplitude and phase spectra of x(t), respectively.* Thus the amplitude spectrum of a real, Fourier- 

transformable signal is even, and its phase spectrum is odd. 

■^Sufficient conditions for the convergence of the Fourier transform integral are that (1) the integral of |x(f)| from — co to oo 

exists, and (2) any discontinuities in x(/) be finite. These being sufficient conditions means that signals exist which violate at least 

one of them and yet have Fourier transforms. An example is (sin at)/at. For a discussion of other criteria that ensure convergence 

of the Fourier transform integral, see Bracewell (1978). 

Later, we will include functions that do not possess Fourier transforms in the ordinary sense by generalization to Fourier trans¬ 

forms in the limit. Examples are the signals x(t) = constant, all t, and x{t) = 8(t), the former violating condition (1) and the lat¬ 

ter, condition (2). 

Tor complex signals \X(f)\ need not be even, and 6(f) need not be odd. 

*More properly, the amplitude spectrum should be referred to as the magnitude spectrum, but the former term is customary. 

Note that \X(f)\ is an amplitude, or magnitude, density. Its units are volts (or whatever the dimensions of x(t) are) per hertz. This 

differs from the Fourier coefficients, which have the same dimensions as the original signal, x(t). 
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Further properties which can be derived for X(f) if x(t) is real is that the real part of X(f) is an even 

function of frequency and the imaginary part of X(f) is an odd function of frequency. 

The foregoing properties are proved by expanding exp(-jlnft) in (4-7) as cos 2ttft - j sin 277ft by 

employing Euler’s theorem and writing X(f) as the sum of two integrals which are the real and imagi¬ 

nary parts of X(f). Since the frequency dependence of the real part of X(f) is through cos 277ft, it is 

therefore an even function off Similarly, since the frequency dependence of the imaginary part of X(f) 

is through sin 2Tift, we conclude that it is odd. 

Further properties that can be proved (see Problem 4-4) about X(f) are: 

1. If x(t) is even [i.e., x(t) = x(—t)], then X(f) is a real, even function off 

2. If x(t) is odd [i.e., x(t) = —x(—t)], then X(J) is an imaginary, odd function off 

To illustrate the computation of Fourier transforms as well as their symmetry properties discussed 

above, we consider the following example. 

EXAMPLE 4-1 ___ 

The Fourier transform of xa(t) = 11(7/2), which is sketched in Figure 4-la, is real and even. On the 

other hand, the Fourier transform of xh(t) = 11(7 + j) - II (7 - j), which is the odd function sketched 

in Figure 4-lb, is imaginary and odd. To prove these statements, we derive their Fourier transforms 

in this example. 

Since 11(7/2) = 1, — 1 < 7 < 1, and is zero otherwise, the Fourier transform of xa(t) is given by 

XJI) = I e-Mdt 

e~j2irft 1 

nrf -1 

= 2 sin 2 it/ 

2nf 

= 2 sine 2/ (4-10) 

which is clearly a real, even function of f 

From the sketch of xh(t) shown in Figure 4-1 we may write the integral for its Fourier transform as 

r° A 

Xh(f) = I e->2nft di - I e~i2vftdt 
Jq 

1 0 1 
—-g-j^irft _ e~j2vft 

;2tt/L -1 0 

= fr (2-2 cos 2trf) 
ZlTf 

.. sin2iTf 
= ;2—4 

rf 

= /2u/sinc2/ (4-11) 

This is clearly an imaginary, odd function off 

The amplitude and phase spectra of xa(t) and xb{t) are shown in Figure 4-2. The student should be 
convinced that these are correct, particularly the phase spectrum for xb(t). 



XbU) 

(b) Odd signal 

FIGURE 4-1. Even and odd pulse-type signals for illustration of the symmetry properties of Fourier 
transforms. 

4-3 Energy Spectral Density 

The energy of a signal can be expressed in the frequency domain by proceeding as follows. By defini¬ 

tion of the normalized energy for a signal, given by (1-75), we write 

r°° 
E = I \x(t)\2 dt 

J oo 

= f x*(t) f X(f)e'2lTft df dt (4-12) 
*'—00 L*'—00 

where xit) has been written in terms of its Fourier transform. Reversal of the orders of integration re¬ 

sults in 

E=f X(f) f x*(t)e’2vfldt df 
J —00 LV —oo 

= f X(f)\f x(t)e~™ dt\* df 
J — oo LV —oo 

= r x(f)x*(f) df 
J — 00 

(4-13) 



(b) Spectra for Xf,(t) 

FIGURE 4-2. Amplitude and phase spectra for the signals of Example 4-1 

or 

e=c \x(t)\2dt= r ixiffdf 
d —CO d _ 00 

This is referred to as Parseval’s theorem for Fourier transforms. 
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The units of \X(f)\2, assuming that x(t) is a voltage, are (V-s)2 or, since E represents energy on a per 

ohm basis, (W-s)/Hz = J/Hz. Thus \X(f)\2 has the units of energy density with frequency, and we define 

the energy spectral density, first referred to in connection with (1-87), of a signal as 

G(f) 4 \X(f)\2 (4-15) 

Integration of G(/) over all frequencies from — oo to o° yields the total (normalized) energy contained 

in a signal. Similarly, integration of G(/) over a finite range of frequencies gives the energy contained 

in the signal within the range of frequencies represented by the limits of integration. 

EXAMPLE 4-2 

The energy in the signal x(t) = exp(—at)u(t), a > 0, has been shown to be 1/2a in Example 1-10. 

The Fourier transform of this signal is (Problem 4-1) 

X{f) = 
1 _ 

a + j^rrf 
(4-16) 

and its energy spectral density is 

G(f) = 
_1.. 

a2 + (27r/)2 
(4-17) 

The energy contained in this signal in the frequency range — B </< B is 

CB df 

B " }_B a2 + (2trf)2 

1 cl7rB/a dv 

7ra J0 1 + V2 

1 , 2ttB 
= — tan 1- 

7ra a 
(4-18) 

where the fact that the integral is even has been used together with the substitution v = 2rrfla. The 

student should plot EB as a function of B and show that lim^^ EB — l/2a, in agreement with the re¬ 

sult calculated in Example 1-10. 

Matlab Application 

Student Matlab has the capability to manipulate quantities symbolically. The symbolic manipula¬ 

tion capability is illustrated by the following program: 

% c4ex2 MATLAB application 

% 

x=sym('exp(- 2 * t)*Heaviside(t) ' ) 

X=fourier(x) 

Xf=subs(X, 12 *pi*f, 'w') 

Xf__con j=subs (Xf , ' - i ’ , ' i ' ) 

GF=Xf*Xf_conj 

ezplot(Gf) 

% Symbolically define signal 

% Symbolically take the Fourier transform 

% Change independent variable to f in 

hertz 

% Conjugate Fourier transform 

% Multiply the Fourier transform and its 

conjugate 

% Use the ezplot routine to plot energy 

spectrum 
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The result of running the program (each line above could be run directly from the command win 

dow) produces 

EDU»c4ex2 

x= 

exp(- 2 *t)*Heaviside(t) 

X= 

1/(2+i*w) 

Xf= 

1/(2+2*i*pi*f) 

Xf__con j = 

1/(2-2*i*pi*f) 

Gf= 

1/(2+2*i*pi*f)/(2-2*i*pi*f) 

The result of ezplot is shown in Figure 4-3. 

1 /(2+2*i*pi*f)/(2-2*i*pi*f) 

1.5 1 0.5 0 0.5 1 1.5 
f 

FIGURE 4-3. Energy spectral density for decaying exponential signal. 
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4-4 Fourier Transforms in the Limit 

We now wish to add to our repertoire of Fourier transform pairs. In doing so, we will soon be faced with 

transforms of signals that are not absolutely integrable, as expressed by (4-3), or which have infinite 

discontinuities. An example of a signal that is not absolutely integrable is a sinusoid extending over all 

time from t = — oo to t = oo. This signal we know has a discrete spectrum and yet cannot be Fourier- 

transformed through direct application of the defining integral (4-7). An example of a signal that has 

infinite discontinuities is the impulse function, which in the ordinary sense does not possess a Fourier 

transform. Rather than exclude such signals, which we know to be useful models, we broaden the def¬ 

inition of the Fourier transform to include Fourier transforms in the limit. 

To define the Fourier transform of cos (o0t, —co<t<°°, for example, we may first obtain the Fourier 

transform of the signal exp( — a\t\) cos a)0t, a > 0, which is absolutely integrable.1 The Fourier trans¬ 

form of cos co0t then is defined as the limit of the Fourier transform of exp(—a\t\) cosco0t as a —» 0 since 

lim^Q exp(—a\t\) = 1, -oo < t < oo. The Fourier transform of cos coQt will be given later. 

As a second example of obtaining a Fourier transform in the limit, consider the approximation for 

the unit impulse function 8€(t) = U(t/2e)/2e discussed in Chapter 1. The Fourier transform of 8ff) ex¬ 

ists for each finite value of e and is, in fact, given by sine 2ef In the limit as e--> 0, 8ff) approaches a 

unit impulse and its Fourier transform approaches 1 and is then defined to be the Fourier transform of 

the unit impulse function. 

As a final, somewhat more subtle, example of a Fourier transform in the limit, consider x(t) = A, 

a constant. It should be clear that the Fourier integral in this case does not exist. (Write it down and 

try to evaluate the limits after integration!) On the other hand, the Fourier transform of AYl(t/T) does 

exist and is similar to Xa(f) derived in Example 4-1. It is, in fact, 9[AY\(t/T)] — AT sine fT. If we 

now let T —^ oo in order to obtain the Fourier transform of a constant, it is not clear what the limit of 

AT sine JT is. You should sketch this Fourier transform to show that it is a damped oscillatory func¬ 

tion with a main lobe centered at f= 0 which becomes very narrow and high for T large. Furthermore, 

AT sine jT df= A for any T Thus we formally write that 3F[A] = A 8(f). 

Easier ways of deriving these transforms will be shown after some basic transforms and theorems 

are considered. 

4-5 Fourier Transform Theorems 

Several theorems involving operations on signals and the corresponding operations on their Fourier 

transforms are summarized in Table 4-1. These theorems are useful for obtaining additional Fourier 

transform pairs as well as in systems analysis. We now discuss these theorems, outlining proofs in some 

cases, and working examples to illustrate their application. To denote a Fourier transform pair we will 

sometimes use the notation x(t) <-> X(f), which means that ?F[x(t)] = X(f) and 8F-1[X(f)] = x(t). 

Linearity (Superposition) Theorem: Because the Fourier transform is an integral operation on a 

signal x(t), with x(t) appearing in the defining integral linearly, superposition is an obvious but ex¬ 

tremely important property of the Fourier transform. 

EXAMPLE 4-3 ___ 

| Find the Fourier transform of x(t) = \[xa(t) - xb(t)\, where xjf) and xb(t) are shown in Figure 4-1. 

+Without the use of some Fourier transform theorems to be given later, the derivation of this Fourier transform is too lengthy. 
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TABLE 4-1 
Fourier Transform Theorems3 

Name of Theorem 

1. Superposition (a} and a9 axxx(t) + a9x9(/) a\X\(f) + a2X2(f) 

arbitrary constants) 

2. Time delay x(/ - r0) . X(/)rW. 

3a. Scale change x(at) W”'4) 
b. Time reversal x(-t) X(-f) = X*(f) 

4. Duality X(t) x(~f) 

5 a. Frequency translation x(t)e](°ot X(f~fo) 
b. Modulation x(t) COS O)0t \X{f-fQ) + iZ(/ + /0) 

6. Differentiation 
dnx(t) 

df 
(j2rf)nX(f) 

7. Integration J x(t') dt' U2uf)~'X(f) + l2X(0)S(f) 

8. Convolution J xx(t — t')x2(t') dt' 

Xt(f)X2if) 

= 1 x](t')x2(t — t') dt' 
J —00 

9. Multiplication x,(t)x2(t) J X,(f - f)X2(f) df 

= { x,(f)x2(f-f)df 

ao>0 = 277/0; x(t) is assumed to be real in 3b. 

Solution: This signal is a unit-high square pulse starting at t = 0 and ending at t — 1. Employing 

the superposition theorem and using the results of Example 4-1, we have 

Af) = Xa{f) - Xh(f) = l [2sinc(2/) - ;27r/sinc2(/)] 

„ sin 277/ „sm2 vf 
2 , / - ./2-/ / 

2 TTJ (Tlf) - 
sin 2 77/ . 1 — cos 2nf 

277/ 
]■ 

277/ 

1 

;2t7/ 

-T_| 
/27T/' 

[1 - cos 2irf + j sin 2irf] 

-j 2 vr/j 

2/ 

sin rf _ s[nc(fye~iTrf 
(4-19) 
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where Euler’s theorem has been used to good advantage. Note that the final result is sine(/) which, 

as will be seen later, is the Fourier transform of a unit-high square pulse centered on r = 0 and the 

factor which is due to the delay of the pulse by t — ^ to start it at t = 0 as will be shown in 

the next theorem. 

Time-Delay Theorem: The time-delay theorem follows by replacing x( t ) in (4-7) with x(t — tQ) and 

making the change in variables t — t' + t{), whereupon the factor exp( —j2 irft0) is taken outside the in¬ 

tegral. The remaining integral is then the Fourier transform ofx(t) (note that what we call the variable 

of integration is immaterial). 

EXAMPLE 4-4 _______ 

Obtain the Fourier transform of a unit-high square pulse 2 units wide starting at t = 0 and ending at 

t = 2. 

Solution: This signal can be obtained from xa(t) of Example 4-1 by delaying it by t0 = 1 unit of time. 

Thus 

X(f) = 2 sine 2fe ;2^ (4-20) 

Scale Change Theorem: To prove this theorem, we first suppose that a > 0, which gives 

9~*[x(at)\ = f x{cit)e 2lTft dt 
J —DO 

f x(t')e 
—jlirff /ci ^ 

= - xf 
a \a 

(4-21) 

where the substitution f = at has been made. Now consider a < 0 with at — ~\a\t and the substitution 

t' = —\a\t = at made in the integral for 9[x(at)]. This yields 

^[x(at)\ = J x(— \a\t)e j2rrft dt 

= f x(t')e>2l,ft'M 
J — DO 

dt' 

= T-T^ 

= Tx(f (4-22) 

where the last step results because — \a\ = a for a < 0. 

As a special case, we let a = — 1, which results in the time-reversal theorem. 
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EXAMPLE 4-5 _ 

An application of the scale change theorem is provided by considering the recording on magnetic tape 

of a signal at, say, 15 inches per second (ips) and playing it back at l\ ips. Assuming a flat frequency 

response for the recorder which is independent of playback speed and an original signal spectrum of 

Xr(^ ~ 1 + (//1000)2 (4'23) 

we find the spectrum of the played back signal to be 

XPh('^ ~ 1 + (f/50Of (4"24) 

where a = ^ in the scale change theorem. To see that a consider an easily visualized signal such 

as a pulse 1 s in duration recorded at 15 ips. When played back at ips it will be 2 s in duration. 

Thus xph(t) = xfat) or xpb(2) = x£2a), where t = 2 corresponds to the trailing edge of the pulse on 

playback, which must correspond to the trailing edge on record. This requires that 2a = 1 or a = 

The spectrum of the played-back signal must be narrower than that of the recorded signal (time is 

stretched out on playback, thus lowering the frequency content). The student should sketch Xr(f) and 

Xph(f) and be convinced that they are indeed reasonable. 

EXAMPLE 4-6 

As another application of the scale change theorem, consider the signal xff) of Example 4-1, for 

which we obtained the transform pair 

xa(0 = n( -1 2 sine 2/ (4-25) 

Instead of the Fourier transforms of a pulse of width 2, we wish to generalize this to a pulse of arbi¬ 

trary width, say r. Thus we let a = 2/t to obtain the transform pair 

xa(at) = n t sine rf (4-26) 

Plots of this signal and the magnitude of its Fourier transform are shown in Figure 4-3a. Note 

that the signal duration and spectral width (or bandwidth) are inversely proportional. Even though 

the spectrum of x(t) is infinite in extent in this case, we take some convenient measure as the 

bandwidth; in this case the width of the main lobe of the sine function is taken as the bandwidth, 

which is 2/t. 

Duality Theorem: The duality theorem follows by virtue of the similarity of the direct and inverse 

Fourier transform relationships, the only difference in addition to the variable of integration being the 

sign in the exponent. The use of this theorem is illustrated in the following example. 

EXAMPLE 4-7 _ 

I The duality theorem can be used to derive the Fourier transform pair 

2Wsinc2Wt<r> u(--- 
\2W, 

(4-27) 
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given the transform pair 

x{t) = ^4 rsinc if = X(f) (4-28) 

We do this by replacing/in X(f) by t to get a new function of time, which is 

X(t) = r sine rt 

According to the duality theorem, this new time function has the Fourier transform 

xw=n(C-,_n(^) <4*2,) 
Defining the new parameter W = t/2 to make the notation clearer, and noting that = n(//r), 

we obtain the desired transform pair. 

Plots of this signal and its spectrum as given in Figure 4-4 again illustrate the inverse relation¬ 

ship between signal duration and bandwidth. Since this signal is actually infinite in duration, we 

take a convenient measure for its practical duration, such as the width of its main lobe, which in this 

case is MW. 

Signal Amplitude Spectrum 

Xa(t) Xa(f) 

(c) Triangular signal 

FIGURE 4-4. Various signals and their spectra. 
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Frequency Translation Theorem: This theorem is the dual of the time-delay theorem. It is proved 

by writing down the expression for the Fourier transform ofx(t)ej2jrf{)t, which is 

f x(t)e,2irf<fe~,27rft dt = f *(;)e“y'2</~/o)' dt (4-30) 
“ GO J— oo 

We recognize the right-hand side as the Fourier transform of x(t), with f replaced byf — f0 and the 

theorem is proved. The modulation theorem follows from the frequency translation theorem by using 

Euler’s theorem to write cos coQt = \e,tJ|/ + io‘a' and then applying superposition. 

EXAMPLE 4-8 __ 

The Fourier transform of the signal 

*i(0 = n(£) exp(±7'207rf) (4-31) 

is 

X\ (/) = 2 sinc[2(/+ 10)] (4-32) 

where the transform pair obtained in Example 4-1 for xa(t) has been used. From the modulation 

theorem, the Fourier transform of 

x2(t) = n^J cos 20irt (4-33) 

is 

X2{f) = sinc[2(/ - 10)] + sinc[2(/ + 10)] (4-34) 

The student should sketch X2(f). Note that the modulation process shifts the spectrum of a signal to 

a new frequency. Figure 4-5 shows this signal and its spectrum. 

Matlab Application 

The Matlab program below provides a plot of the signal xft) and its Fourier transform. Note that 

sinc( ) is a MATLAB-defined function. The function program for the square pulse was given in Chap¬ 
ter 1. 

EDU» c4ex8 

% Plot of signal and spectra of Example 4-8 

% 

t=-2:.005:2; % Define the t and f axes 

f=-20:.005:20; 

x=pls_fn(t/2) .*cos (20*pi*t) ; % Use the predefined pulse function to 

% build up x(t) (page 136) 

X=sinc(2 *(f - 10))+sinc(2*(f+10)) ; % sinc() is a built-in MATLAB 

% function 

subplot(2,l,l),plot(t,x),xlabel('t'),ylabel(1xl(t)') 

subplot(2,l,2).plot(f,X),xlabel(’f1),ylabel('XI(f)') 
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FIGURE 4-5. Matlab plot of time-domain and frequency domain signals illustrating the modulation 
theorem. Top: Time-domain signal. Bottom: Fourier transform 

EXAMPLE 4-9 _ 

Obtain the following transform pairs: 

1. A8(t) A 

2. A8(t - t0) <-> Ae~j2irft« 

3. A A 8(f) 

4. Aei2vf<f A8(f — /0) 

5. A cos 2^ ** A/2[8(f - f0) + 8(f + /„)] 

The impulse function is not properly Fourier transformable. However, its transform is never¬ 

theless useful. The same holds true for a constant. We could find their transforms using limiting 

operations, as discussed in Section 4-3. It is easier to prove the first transform pair by using the sift¬ 

ing property of the unit impulse: 

®[A8(t)] = A f 8(t)e~i2vftdt = A 
J —oo 

The second pair is obtained by applying the time-delay theorem to pair 1. 

(4-35) 
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The third pair can be shown by using duality in conjunction with the first transform pair. Thus 

X(t) = A o A8(-f) = x(-f) = A8(f) (4-36) 

where we recall that the impulse function was defined as even in Chapter 1. 

Transform pair 4 follows by applying the frequency translation theorem to pair 3, and pair 5 is 

obtained by applying the modulation theorem to pair 3. 

EXAMPLE 4-10 ______ 

A convenient signal for use in obtaining transforms of periodic signals is the signal 

oo 

ys(t) = 2 (4-37) 
m=— oo 

It is a periodic train of impulses referred to as the ideal sampling waveform. 

The Fourier transform of ys(t) can be obtained by noting that it is periodic and, in a formal sense, 

can be represented by the Fourier series 

y/t) = 2 Yne^<‘, fs = jr (4-38) 
n=—oo 

The Fourier coefficients are given by 

1 cTJ2 
Yn = ^f\ 8(t)e-,2mU dt = fs (4-39) 

Ls J-TJ2 

where the sifting property of the unit impulse function has been used. Therefore, ys(t) can be repre¬ 

sented by the Fourier series 

oo 

y,(t) =fs 2 e/2m// (4-40) 
n = — oo 

Using the Fourier transform pair ej2vfot <-> 8(f - /0), we may take the Fourier transform of this 

Fourier series term-by-term, to obtain 

oo 

YAf) =fs'2 nei2mfJ] 
ft=-co 

00 

= /, 2 «(/-»/,) (4-41) 
n—— oo 

Summarizing, we have obtained the transform pair 

2 - ™Ts)^fs 2 S(f- nfs) (4-42) 
m — — oo n~ —oo 

The transform pair (4-42) is useful in spectral representation of periodic signals by the Fourier 

transform, to be considered in Sections 4-7 and 4-11. 

Differentiation and Integration Theorems: To prove the differentiation theorem, consider 

& 
dx 

dt 

dx(t) 
e~j27Tft dt 

dt 
(4-43) 
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Using integration by parts with u = e Brfi and dv = (dx/dt) dt, we obtain 

dx 1 . r°° . 
W — = x(t)e~j2vft + j2irf x{i)e~jl7rft dt (4-44) 

ldt\ ^ J^ 

But ifx(t) is absolutely integrable, limr^±00|x(7)| — 0. Therefore, dx/dt <-» j2'nfX{f). Repeated applica¬ 

tion of integration by parts can be used to prove the theorem for n differentiations. 

The integration theorem is proved in a manner similar to that for the differentiation theorem if 

X(0) = x(t) dt = 0. IfX(0) =£ 0, the proof of the integration theorem must be carried out using a 

transform-in-the-limit approach. The second term of the transform of pair 7, ^X(0)8(f), simply repre¬ 

sents the spectrum of the constant x(t) dt, which is the net area ofx(t). 

Note that differentiation enhances the high-frequency content of a signal, which is reflected by the 

factor j2nf in the transform of a derivative, while integration smooths out time fluctuations or suppresses 

the high-frequency content of a signal, as indicated by the 0*277f)~x in the transform of an integral. 

EXAMPLE 4-11 __ 

A useful application of the differentiation theorem is that of obtaining Fourier transforms of piece- 

wise linear signals such as the triangle signal. We generalize the triangle signal in this example to 

that of a trapezoidal signal and find its Fourier transform through application of the differentiation 

theorem. The trapezoidal signal is shown in Figure 4-6 along with its first two derivatives. The sec¬ 

ond derivative consists entirely of unit impulses, and may be written analystically as 

Uff = K[S(t + b) - 8(t + a) - 8(t - a) + 8(t - 6)1 (4-45) 
dt 

where K = A/(b — a). Applying item 2 in Example 4-9, we find the Fourier transform of the second 

derivative to be 

d2x (t) 
—XL = k[ei2vfb - ei2vfa - e~i2vfa + e~j2rrfb] = 2^[cos 2nfb - cos 2vfa] (4-46) 

FIGURE 4-6. A trapezoidal pulse and its first two derivatives. 
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By the differentiation theorem, this transform equals {j2uf)2X{f). Thus 

cos 2rrfb — cos 2irfa 
X(f) = 2 K 

K\ 
sin2 irfb sin2 Trfa 

(vft>y {TTfaf J 

= K[b2 sine2(fb) - a2 sine2(fa)] (4-47) 

Another way to find the Fourier transform of a trapezoidal pulse is to write it as the difference of 

two triangle signals as 

x(t) = BA(t/b) -{B- A)A(t/a) (4-48) 

where B = Ab/(b — a). The unit-high triangle signal, A(t/r), centered on t = 0 going from t = —r 

to t = r will be shown later to have the Fourier transform r sinc2/r [in fact this may be seen from 

(4-47) by setting a = 0 and b = r\. Applying this to (4-48) together with superposition gives 

X(f) = Brb sinc\fb) - (B - A)ra sine\fd) (4-49) 

which may be demonstrated to be the same result as (4-47). The student should also work out the 

special cases a = 0 and a = b. 

Matlab Application 

We examine the effect of the pitch of the sides of the trapezoid on its spectrum. The following 

Matlab program implements a plot of the trapezoid and the corresponding spectrum for several 

values of a with b fixed. 

EDU»c4exl1 

% Spectrum of a trapezoidal pulse-Example 4-11 

% 

t_max=2; 

f__max=2 ; 

f--f„max:.001:f„max; 

t= - t__max : .001: t_max ; 

A=T ; 

b=l.5; 

for k=l:4 

k„odd=2* k- 1; 

k__even=2 *k; 

a=.5 *(k-l) + .0000001; 

aa=a; 

if aa <=.000001 

aa=0 ; 

end 

B=A*b/(b-a) ; 

x=B*trgl__fn (t/b) - (B-A) *trgl_fn (t/a) ; 

K=A/(b-a) ; 

X=K*(bA2*(sinc(f*b)) .A2-aA2*(sine(f*a)) . A2) ; 

subplot(4,2,k_even),plot(f,X),axis([-f_max f_max -.8 3.5]),... 

xlabel('f'),ylabel('X(f)') 

subplot(4,2,k_odd),plot(t,x),axis([-t_max t_max 0 2]),... 

text(-1.9, 1.6, ['a=' ,num2 str(aa)] ) ,xlabel('t') ,ylabel('x(t) ') 

end 
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A plot of the pulse and its spectrum for four values of a are shown in Figure 4-7. Note that as 

the pulse approaches a triangle its spectrum is more concentrated about/ = 0. For the limiting case 

of a square pulse, the spectrum has large lobes along side the main lobe. We infer from this that 

the smoother transitions of the trapezoid give better spectral containment within the main lobe of 

the spectrum. 
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EXAMPLE 4-12 __ 

As an application of the integration theorem, consider the Fourier transform of a unit step. Since 

u(t) = /*_«, 5(A) dA and 8(t) dt = 1, we obtain 

W)1 = 0277/')1 + ‘S(/) (4-50) 

where x(£) in the integration theorem of Table 4-1 has been taken as 8(t). A signal that is related to 

the unit step is the signum function, defined as 

sgnf = 2u(t) — 1 = |_J’ (4-51) 

Using the result obtained above for the Fourier transform of a step, we find the Fourier transform of 

sgn t to be 

9?[sgn t] = (jvfT1 (4-52) 

By the duality theorem, it follows that 

9 ~~ = sgn(—/) = -sgn/ (4-53) 
L JITt 

or 

9 = -j*snf (4-54) 

which results because sgn/ is odd. The last transform pair is useful in defining the Hilbert transform 

of a signal, which will be discussed in Example 4-14. 

The Convolution Theorem: The proof of the convolution theorem follows by representing x2( t — t') 

in the second integral under Theorem 8 of Table 4-1 in terms of its inverse Fourier transform, which is 

x2(t -?)=( X2(f)e’27rf(t-,') df (4-55) 
J —oo 

Substitution into the convolution integral gives 

x1*x2= f xx{f) f X2(f)el27rf<‘-,') df dt' 
J—oo L-'-OO 

r°° f r°° 1 
= X2(f) xft'W’2^ dt' el2ufl df (4-56) 

^ — 00 L*'—oo 

The last step results from reversing the order of the two integrations. Recognizing the bracketed term 

inside the integral as Xff), the Fourier transform ofxf t), we have obtained 

x1*x2=f Xx(f)X2(f)e^'df (4-57) 
—oo 

which is the inverse Fourier transform of Xl(f)X2(f). 

This theorem is useful in systems analysis applications as well as for deriving transform pairs. The 

latter application is illustrated by the following examples. 
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EXAMPLE 4-13 _ 

Consider the transform of the signal that is the convolution of two rectangular pulses of equal width. 

The student can verify that 

where A(tli) is the triangular signal. Therefore, according to the convolution theorem, 

= r2 sine2 fr 

(4-58) 

(4-59) 

EXAMPLE 4-14 

The Hilbert transform, x(t), of a signal, x{t), is obtained by convolving x(t) with \iirt. That is, 

x(\) i i r x 
x(t) = x(t) * —- = — — 

v ' v ' TTt 77 t 
— — 00 1 

dX 

From Example 4-12 and the convolution theorem it follows that 

2F[x(4)] = 9? 
77f 

^WO] = -;'sgn(/)X(/) 

(4-60) 

(4-61) 

A Hilbert transform operation therefore multiplies all positive-frequency spectral components of a 

signal by -j, and all negative-frequency spectral components by j. The amplitude spectrum of the 

signal is left unchanged by the Hilbert transform operation and the phase is shifted by tt/2 rad. 

The Multiplication Theorem: The proof of the multiplication theorem proceeds in a manner anal¬ 

ogous to the proof of the convolution theorem. It is left to the student as a problem. Its application will 

be illustrated by an example. 

EXAMPLE 4-15 _ 

We will use the multiplication theorem to obtain the Fourier transform of the cosinusoidal pulse 

given by 

x(t) = Ali^j cos 2trf0t (4-62) 

The makeup of this waveform is illustrated in Figure 4-8c on the left-hand side; that is, the product 

of the waveforms shown in Figure 4-8a and b is the oscillatory pulse shown in Figure 4-8c. Shown 

on the right-hand side in each part of the figure are the Fourier transforms of the corresponding wave¬ 

forms on the left. From the multiplication theorem, we know that the convolution of the spectra 

shown in Figure 4-8a and b is the spectrum of the cosinusoidal pulse of Figure 4-8c. In terms of equa¬ 

tions, we have the transform pair 
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TABLE 4-2 
Fourier Transform Pairs 

Pair Comments on 
Number x(t) Xif) Derivation 

1. t sine 7f Direct evaluation 

2. 2W sine 2Wt n(^~) 
\2W) 

Duality with pair 1, Example 4-7 

3. 4) t sine2 tf Convolution using pair 1 

4. exp( — at)u(t), a > 0 
1 

a + j2vf 
Direct evaluation 

5. t exp( — at)u(t), a > 0 
1 

(a + j2vf)2 
Differentiation of pair 4 with 

respect to a 

6. exp( — a\t\), a > 0 
2a 

a2 + (27t/)2 
Direct evaluation 

7. e-TT(t/T)2 Direct evaluation 

8. m l Example 4-9 

9. i 8(f) Duality with pair 7 

10. S(t - t0) exp(-y'277/i'0) Shift and pair 7 

11. exp(;'2i7/0f) 5(/-/0) 

j5(/-/o) + lS(/ + /o) | 

Duality with pair 9 

12. COS 277fQt Exponential representation of 

13. sin 277f0t 
cos and sin and pair 10 

14. u(t) 0'277/)-i + \8(f) Integration and pair 7 

15. sgn t (jrf)~' Pair 8 and pair 13 with 

1 

TTt 

superposition 

16. ~j sgn(f) Duality with pair 14 

17. 
, If00 x(A) 

x(r) = d\ 
77 J ^ t — A 

-j sgn(/)X(/) Convolution and pair 15 

18. 2 so - mTs) fs 2 8(f-mfs), Example 4-10 

fs = t 

The Fourier transform pairs derived in the preceding section are collected in Table 4-2 together with other 

pairs that are often useful. A column is provided that gives suggestions on the derivation of each pair. 

4-6 System Analysis with the Fourier Transform 

In Chapter 2 the superposition integral was developed as a systems analysis tool. Application of the con¬ 

volution theorem of Fourier transforms, pair 8 of Table 4-1, to the superposition integral gives the result 

Y(f) = H(f)X(f) (4-67) 

where X(f) = 3*[x(t) ], Y(f) = cF[y(t)], and H(f) = &?[h(t)]. The latter is referred to as the transfer func¬ 

tion of the system and is identical to the frequency-response function H(co) defined by (3-70) but with 
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*(0 

X(f) 

y(0 = 

nn=x(fmf) 

FIGURE 4-9. Representation of a fixed, linear system in terms of its impulse response or, 
alternatively, its transfer function. 

/ = (d/2tt as the independent variable. Either h(t) or H(f) are equally good characterizations of the sys¬ 

tem, since its output can be found in terms of either one as illustrated in Figure 4-9. In the frequency 

domain, the output of the system is the inverse Fourier transform of (4-67), which is 

r00 
y(t) = I X(f)H(f)e>2^df (4-68) 

J — oo 

Since H(j) is, in general, a complex quantity, we write it as 

H(f) = |//(/)|e'ZW) (4-69) 

where |//(/)| is the amplitude-response function and IH( f ) the phase-response function of the net- 

work. If H(f) is the Fourier transform of a real time function h(t), which it is in all cases being consid¬ 

ered in this book, it follows that1- 

= \H(-f)\ (4-70) 

and 

/#(/) = -/#(-/) (4-71) 

Since H(f) is such an important system function, we illustrate its computation by the following example. 

EXAMPLE 4-16 

To obtain the transfer function of the RC filter shown in Figure 4-10, any of the methods illustrated 

in Figure 4-10 may be used. The first method (Fig. 4-10a) involves Fourier transformation of the 

governing differential equation (integrodifferential equation, in general), which for this system is 

dv 
RC~— + y(t) = x(t), -oo < t < oo (4-72) 

dt 

Assuming that the Fourier transform of each term exists, we may apply the superposition and dif¬ 

ferentiation theorems to obtain 

0‘2ttfRC + l)Y(f) = X(f) (4-73) 

or 

//(/) 
n/) _ 1 _ 1 
x{f) i + KM) vr+7777 

~i tan 1 (///3) (4-74) 

tit is useful to model some fixed, linear systems as having complex impulse responses. In such cases (4-70) and (4-71) do not 

hold. 
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R 

(b) Obtaining the impulse response of the system and finding its 
Fourier transform 

R 

(c) Using ac sinusoidal steady-state analysis 

FIGURE 4-10. Illustration of methods that can be used to obtain the transfer function of a system. 

The frequency f3 = MIttRC is called the 3-dB or half-power frequency, t Equivalently, we can use 

Laplace transform theory as discussed in Chapter 5 and replace s by j2nf. 

A second method is to obtain the impulse response and Fourier transform it to obtain H(f). This 

method is illustrated in Figure 4-10b. 

A third alternative is to use ac sinusoidal steady-state analysis as shown in Figure 4-10c and find 

the ratio of output to input phasors, Y/X. 

The amplitude and phase responses of this system are obtained from (4-74). They are 

\H(f)\ = 1 + (jJ 1/2 and /H(f)=- tan'11 (4-75) 

respectively. They are illustrated in Figure 4-11. 

To end this example, we find the response of the system to the input 

x(t) = Ae~atu(t), a > 0 (4-76) 

fThe half-power frequency of a two-port system is defined as the frequency of an input sine wave which results in a steady- 

state sinusoidal output of amplitude 1/V2 of the maximum possible amplitude of the output sinusoid. The power of the output 

sinusoid is then one-half of the maximum possible output power. The ratio of actual to maximum powers in decibels (dB) is there- 

fore (.PJPmax) dB = 10 logl01 = -3 dB. 
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mn\ 

(a) Amplitude response 

FIGURE 4-11. Amplitude and phase responses fora low-pass RCfilter. 

by using Fourier transform techniques. The Fourier transform of this input, from Table 4-2 is 

X(f) = - 4 
a + ]2irf 

The Fourier transform of the output due to this input is 

A/RC 

(4-77) 

Y(f) 
(a + j2Trf)(\/RC + jlvf) 

For aRC =£ 1, this can be written as1 

YU) 
A 

aRC - 1 

1 _ 1 

1/RC + j2irf a - ;2-/ 

(4-78) 

(4-79) 

The inverse Fourier transform of Y( f) can be found with the aid of Table 4-2 and the superposition 

theorem. It is given by 

y(t) 
A 

aRC - 1 
exp 

-t 

RC 
— exp (—at) “(0 (4-80) 

We can find the response for aRC = 1 by using pair 5 of Table 4-2 or by taking the limit of the fore¬ 

going result as aRC —> 1. In either case, the result is 

l ~t 

y(t)=a[rc expUFr°’ RC 
(4-81) 

The student should plot y(i) for various combinations of a and RC and consider what their relation¬ 

ship must be for the output to resemble the input except for a scale change. 

'Ways of obtaining partial-fraction expansions such as this one will be reviewed in Chapter 5. 
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As an example of how system characteristics influence the response of the system to a given input, 

we consider the i^C-circuit response to a rectangular-pulse input. 

EXAMPLE 4-17 __ 

Again, we consider the system of Figure 4-10 but with the input 

x(t) = AII^-—= ^[“(0 “ u(t - O] (4-82) 

Because the inverse Fourier transform relationship (4-68) is difficult to evaluate in this case, the out¬ 

put is found using time-domain techniques. From Example 2-16 the step response is 

as(t) = (1 — e~T/RC)u{t) (4-83) 

Noting that the x(t) consists of the difference of two steps and using superposition, we find the out¬ 

put to be 

f 0, t < 0 

y(t) = | A{\ - e~,/RC), 0 < t < T (4-84) 

A[e-C-V/Rc _ e-t/Rc^ t > T 
\ 

This result is plotted in Figure 4-12 for several values of T/RC together with \X(f)\ and \Y{f)\. The 

parameter T/RC = 2nf3/T~l is proportional to the ratio of the 3-dB frequency of the filter to the 

spectral width (T~l) of the pulse. When the filter bandwidth is large compared with the spectral 

width of the input pulse, the input is essentially passed undistorted by the system. On the other 

hand, for 27rf3/T~x < < 1, the system distorts the input signal spectrum and the output does not re¬ 

semble the input. 

Since the energy spectral density of a signal is proportional to the magnitude of its Fourier transform 

squared, it follows that 

Gy(f) = \H(f)\2Gx(f) (4-85) 

where Gx(f) and G (/) are the energy spectral densities of the system input and output, respec¬ 

tively. Note that the energy spectral density is an even function of frequency. The total energy in the 

output can be obtained by integrating (4-85) over all frequency. Since G (j) is an even function of fre¬ 

quency, the integral can be carried out from/ = 0 to/ = and then doubling this result to get total en¬ 

ergy. The energy within any bandwidth of frequencies can be obtained by integrating over that 

bandwidth. Once again, if the integration is over only positive frequencies, the result of the integration 

must be doubled. 

4-7 Steady-State System Response to Sinusoidal 
Inputs by Means of the Fourier Transform 

In Section 2-7 the frequency response function of a fixed, linear system was defined in terms of the 

attenuation and phase shift suffered by a sinusoid in passing through the system. We may use (4-67) to 
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relate the Fourier transforms of the input and output of a fixed, linear system in response to a periodic 

waveform. In particular, a periodic input signal x(t) can be represented by its Fourier series as 

K 
x(t) = 2 Xnei2™V (4-86a) 

n= — oo 

Using the transform pair ej2lT,lfot <-> 8(f — nf0), this can be Fourier-transformed term-by-term to yield 

XU) = 2 Xn8(f-nf0) (4-86b) 
It— oo 

When (4-86b) is multiplied by the system transfer function //(/), and use is made of the relationship 

H(f )8(f— nf0) = H(nf0)8(f — n/0), we may express the Fourier transform of the output as 

n/) = 2 XuH(nfo)8{f — nf0) (4-87) 
n = —co 

Writing Xn and //(n/0) in terms of magnitude and phase as \Xn\ exp j/Xn and \H(nf0)\ exp j[hl{nff), re¬ 

spectively, (4-87) may be inverse-Fourier-transformed term-by-term to give the output 

y(t) = 2 \xn\ \H(nf0)\ exp y 2imfy + 1^+ /H(nfn)} (4-88) 

To emphasize the significance of (4-88), note that the nth spectral component of the input, Xn, ap¬ 

pears at the output with amplitude attenuated (or amplified) by the amplitude-response function \H(nf0)\, 

and a phase which is the input phase-shifted by the system phase response /H(nf0), both of which are 

evaluated at the frequency of the particular spectral component under consideration. Note that (4-88) 

is equivalent to (3-71) or (3-73). 

EXAMPLE 4-18 

Consider a system with amplitude- and phase-response functions given by 

\mn\ - K, |/| ^ B 
0, otherwise 

(4-89a) 

and 

///(/) - -2-ntJ (4-89b) 

respectively. A filter with this transfer function is referred to as an ideal low-pass filter 

Its output in response to x(t) = A cos(27tf0t + d0) is obtained from (4-88) by noting that 

= \Ae’e° = X*, (4-90) 

with all other Xfs — 0. Thus the output is 

0, f0 > B 

KA cos[277/0(f - t0) + e0), fo—B 
(4-91) 

Thus an ideal low-pass filter completely rejects all spectral components with frequencies greater than 

some cutoff frequency B, and passes all input spectral components below this cutoff frequency ex¬ 

cept that their amplitudes are multiplied by a constant K and they are phase-shifted by an 

amount —liTt^ or delayed in time by t0. 
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Because ideal filters are used quite often in systems analysis, we consider the characteristics of three 

types of ideal filters in more detail in the following section. 

4-8 Ideal Filters 

It is often convenient to work with idealized filters having amplitude-response functions which are con¬ 

stant within the passband1 and zero elsewhere. In general, three types of ideal filters, referred to as low- 

pass, high-pass, and bandpass filters, can be defined. A phase-shift function that is a linear function of 

frequency throughout the passband is assumed in each case. Figure 4-13 illustrates the frequency-re¬ 

sponse functions for each type of ideal filter. 

The impulse response of any filter can be found by obtaining the inverse Fourier transform of its 

transfer function. For example, for the ideal low-pass filter, the impulse response can be found from* 

r« 

Vp(0 = HLT(f)ei2^df 

rB 
= Ke~j27rf,«eil7rft df 

J-R 

Kej2vf(t-t{)) 

2BK sinc[2B(t - r0)] (4-92) 

Since sinc[2B(t - tQ)] is nonzero for all t, except when 2B{t — t0) takes on an integer value, it fol¬ 

lows that hLP(t) is nonzero for t < 0. In other words, an ideal low-pass filter is noncausal, as are all types 

of ideal filters. 

In fact, it can be shown that the ideal bandpass filter has impulse response 

hBp(0 = 2KB sine[B(t — f0)] cos[27tfQ(t — t0)] (4-93) 

and that the ideal high-pass filter has impulse response 

/?hp(0 = K8(t - t0) - 2BK sinc[2B(t ~ r0)] (4-94) 

Both of these impulse responses are nonzero for t < 0 if t0 is finite. Figure 4-14 illustrates ideal filter 

impulse responses. The noncausal nature of ideal filters is a consequence of their ideal attenuation char¬ 

acteristics in going from the passband to the stop band. 

Several methods of approximating ideal filter frequency-response characteristics by means of causal 

filters are discussed in Appendix E. In general, the more closely a causal filter approximates a corre¬ 

sponding ideal filter, the more delay a signal suffers in passing through it. 

4-9 Bandwidth and Rise Time 

The rise time of a pulse is the amount of time that it takes in going from a prespecified minimum value, 

say 10% of the final value of the pulse, to a prespecified maximum value, say 90% of the final value of 

the pulse. For example, whereas the square pulse input to a low-pass RC filter has zero rise time, the 

'The passband of a filter is defined as the frequency range where its amplitude response is greater than some arbitrarily cho¬ 

sen minimum value. Quite often, this minimum value is chosen as 1/V2 of the maximum amplitude response. 

+B denotes filter bandwidth, and W signal bandwidth. 
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^lp(0 

*HP (0 

FIGURE 4-14. Impulse responses for ideal filters: (a) Low-pass; (b) bandpass; (c) high-pass. 

filter output has a finite rise time as shown by the plots in Figure 4-12. The square-pulse response of 

this filter is given analytically by (4-84), where the width of the square-pulse input is T and its ampli¬ 

tude is A. The final value of the output pulse is also A. The prespecified minimum value of 0.1A (10% 

of the final value of the output pulse) occurs at time tm, where 

A( 1 - e~,JRC) = 0.L4 (4-95a) 

or 

The prespecified maximum value of 0.9A (90% of the final value) occurs at time tM, given by 

A{ 1 - e ^,RC) = 0.9v4 (4-95b) 

or 

H°.l) 
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The rise time is 

TR = tM-tm = *C[-ln(0.1) + ln(0.9)] (4-95c) 

In terms of the 3-dB bandwidth of the RC filter, which is/3 = (2ttRC)~1, this becomes 

= — ln(O.l) + ln(0.9) _ 035 

W3 /3 
(4-96) 

That is, for the lowpass filter the rise time is inversely proportional to the bandwidth. This inverse re¬ 

lationship is illustrated by Example 4-17 and, in particular, Figure 4-12. Although shown only for the 

particular case of a low-pass RC filter, this inverse relationship between rise time and bandwidth is 

true in general. In closing this section, note that the \0%-90% definition of rise time used here is only 

one of the many possible. No matter what the definition of rise time, the inverse relationship between 

rise time and bandwidth still holds. 

*4-10 Window Functions and the Gibbs Phenomenon 

In our consideration of trigonometric series at the beginning of Chapter 3, it was noted that the sum of 

such a series tended to overshoot the signal being approximated at a discontinuity. We can easily ex¬ 

amine the reason for this behavior, referred to as the Gibbs phenomenon, with the aid of the Fourier 

transform. Consider a signal x{t) with Fourier transform X(f). We consider the effect of reconstructing 

x(t) from only the low-pass part of its frequency spectrum. That is, we approximate the signal by 

where 

x(t) 

1, I/I s W 
0, otherwise 

According to the convolution theorem of Fourier transform theory, 

x(t) = x(t) * 2F 1 

(4-97) 

(4-98) 

= x(t) * (2W sine 2Wt) (4-99) 

where the last step follows by virtue of the transform pair developed in Example 4-7. Recalling that 

convolution is a folding-product, sliding-integration process, it is now apparent why the overshoot phe¬ 

nomenon occurs at a discontinuity. Figure 4-15 illustrates (4-99) for W = 2 assuming that jc(t) is a unit- 

square pulse. In accordance with (4-99), as W increases, more and more of the frequency content of the 

rectangular pulse is used to obtain the approximation x(t). Nevertheless, we see that a finite value of W 

means that the signal x(t) is viewed through the window function 2 W sine 2 Wt in the time domain.f As 

a result, anticipatory wiggles are present in x(t) before the onset of the main pulse, and echoing wig¬ 

gles remain after the discontinuity of the leading edge of x(t) passes. 

To put this discussion on a mathematical basis, we represent the square-pulse signal as 

x{t) = u{t) — u{t — 1) (4-100) 

fActually, it is often customary to refer to the multiplying function U(f/2W) as the window function. 
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FIGURE 4-15. Convolution of the window function 21/1/sine 2 Wt with a rectangular pulse. 

which results in 

x(t) = [u(t) - u(t - 1)] * 2W sine 2Wt (4-101) 

Considering, for the moment, only the first term of (4-101), we write it as 

u(t) = u(t) * 2W sine 2Wt = 2W sine 2Wt * u(t) 

2W f sine 2WA u(t - A) d\ 
J —CO 

'Lsi 
= 2W sine 2WA d\ (4-102) 

This integral cannot be evaluated in closed form but can be expressed in terms of the sine-integral func¬ 

tion, Si(v), defined as 

Si« = f 
sin u 

du (4-103) 

which is available in tabular form.+ It is useful to note that Si(x) is an even function and that Si(o°) = 7t/2. 

In terms of Si(v), u(t) can be expressed as 

u(t) = { 

T + -Si(277Wif), t > 0 
2 IT 

, l - 1 Si(27rM), t < 0 
f 2 77 

(4-104) 

A plot of u(t) versus Wt is shown in Figure 4-16a. 

From (4-101) it follows that we may obtain x(t) from x(t) as 

x(t) = u(t) ~ u(t - 1) (4-105) 

an operation that is easily carried out graphically; x{t) is shown in Figures 4-16b and c for W = 2 and 

W = 5. The approximation of x(t) to x(t) becomes better as W increases relative to the pulse width, 

+M. Abramowitz and A. Stegun, Handbook of Mathematical Functions with Formulas, Tables, and Graphs (New York: Dover, 

1972), p. 243. 
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u(t) 

(b) A unit-width pulse viewed 
through the window 4 sine (4r) 

FIGURE 4-16. Construction of windowed rectangular pulse. 

except for the overshoot at the discontinuities at t = 0 and t = 1, which eventually approaches a value 

of 9% of the pulse height as W becomes large. 

The question of what can be done to combat this behavior is answered by considering the possibil¬ 

ity of reducing the sidelobes of the 2W sine 2Wt window function, which was the inverse Fourier trans¬ 

form of n(//2W). The function 

A{f) = 
0.5 + 0.5 cos — , |/| < TV 

0, otherwise 

(4-106) 

provides a smooth transition from zero at/= ±TTto its maximum value of unity at f — 04 Its inverse 

Fourier transform is 

a(t) = W[sinc 2Wt + ~ sinc(2Wt — 1) + ~ sine (2Wt + 1)] (4-107) 

This function and its transform are shown in Figure 4-17, where it is seen that its sidelobes are much 

lower than the function 2 W sine 2Wt. 

fThis function is called a Hanning window. 
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a(t)/W 

FBGURE 4-17. Window with smoother transitions than the rectangular window. 

Note that the inverse relationship between rise time and bandwidth discussed in the previous section 

is illustrated by Figure 4-16a. The waveform can be viewed as the response of an ideal low-pass filter 

to a unit step input. From this figure it is seen that the 10%-90% rise time is approximately TR = 0.5/W. 

In this case W appears as the filter bandwidth rather than B because of the notation used in (4-97), from 

which we considered building up a square-pulse signal from a finite range of its frequency spectrum. 

EXAMPLE 4-19 __ 

To study the effect of window half width, W, the following Matlab program cycles through four win¬ 

dows widths for both rectangular and Hanning windows. It produces the plots shown in Figure 4-18. 

% c4ex19 

% 

t_max=2; 

t="t__max+l:.01:t__max; 

L—length(t); 

for k—1:4 

k_even=2 *k; 

% Loop to do 4 values of window width 
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k__odd—2 *k -1 ; 

W=2+(k-1) ; 

tp—[2 *t(1) : .01:2 *t(L)] ; 

w__r=2 * W* sinc (2 * W* t) ; % Inverse transform of rectangular 

% window 

w__h=W* ( sine (2 *W*t) + . 5 * sine ( 2 * W* t -1) + . 5%sinc ( 2 * W* t+1) ) ; % Hanning window 

x=pls_fn(t-.5); 

x_tilde__r=.01*conv(w_r,x); % Convolve rectangular window with 

% pulse 

x_tilde_h=.01 *conv(w__h,x) ; % Convolve Hanning window with pulse 

subplot(4,2,k_odd) ,plot (tp, x_tilde_r) ,xlabel('t') , 

ylabel(’wind.x(t)'), . . . 

text(-.9,1,'rectan.'),text(-.9,.5,['W= ',num2str(W)]), 

axis([-t„max+l t_max -.2 1.5]) 

subplot(4,2, k__even) , plot (tp , x_tilde_h) , xlabel (' t' ) , 

ylabel('wind. x(t)')» • • • 

text(-.9,1,'Hann.'),text(-.9,.5,['W = f,num2str(W)]), 

axis ( [-t__max+l t„max - .2 1.5]) 

end 

x 1 

"g 0.5 

'5 0 

-10 12 
t 

x 1 

■g 0.5 

> 0 

-10 12 
t 

1 

0.5 

0 

-10 12 
t 

rectan 

W = 5 

x 1 

■g 0.5 

'5 0 
-10 12 

t 

FIGURE 4-18. Effect of windowing the spectrum of a rectangular pulse with rectangular (left) and 
Hanning (right) frequency windows for four windows half widths, W. 
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*4-11 Fourier Transforms of Periodic Signals 

The Fourier transform of a periodic signal, in a strict mathematical sense, does not exist since periodic 

signals are not Fourier transformable. However, using the transform pairs derived in Example 4-9 for a 

constant and a phasor signal we could, in a formal sense, write down the Fourier transform of a peri¬ 

odic signal by Fourier-transforming its complex Fourier series term-by-term. Thus, for a periodic sig¬ 

nal x(t) with Fourier series ^=-00 XnejnWl)t, where T0 = 2tt/<jo0 — l//0 is the period, we have the 

transform pair 

2 Xne^^ 2 XAf-nfo) (4-108) 
n=— co n = — oo 

Either representation in (4-108) contains the same information about x(t), and either result can be used 

to plot the two-sided spectra of a signal. If the Fourier transform representation is used [right-hand side 

of (4-108)], the amplitude spectrum consists of impulses rather than lines. 

A somewhat more useful form for the Fourier transform of a periodic signal than (4-108) is obtained 

by applying the convolution theorem and pair 17 of Table 4-2 for the ideal sampling wave. To obtain it, 

consider the result of convolving the ideal sampling waveform with a pulse-type signal p(t) to obtain a 

new signal x(t). If p(t) is an energy signal of limited time extent such thatp(t) = 0, \t\ > 772 < TJ2, then 

x(t) is a periodic power signal. This is apparent when one carries out the convolution with the aid of the 

sifting property of the unit impulse: 

x(t) = 2 S(t-mTs) 
-m =—oo 

00 

*P(0 = I - mTs) 
m~— oo 

(4-109) 

Applying the convolution theorem and the Fourier transform pair (4-42), the Fourier transform of 

x(t) is 

X(f) = 9 2 8(t - ™TS) P(f) 

= f,P(f) 2 Kf-nft 
n = —oo 

= 2 fsP(nfs)8(f- nfs) 

where P(f) = cF[p(t)]. Summarizing, we have obtained the Fourier transform pair 

2 P(< ~ mTs) 2 fsP(nfs)8(f- nfs) 
m = —oo n — ~ oc 

The usefulness of (4-111) will be illustrated with an example. 

(4-110) 

(4-111) 

EXAMPLE 4-20____ 

As an example of the use of (4-111), we obtain the spectrum of the signal shown in Figure 4-19 and 

of its periodic extension. We may write x^t) as 

xx{t) = A(0 - U(t - 1.5) (4-112) 

Using previously derived Fourier transform pairs for the triangle and the pulse, we obtain 

X1(f) = sine2/ — sine fe~J371f (4-113) 
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*i(0 

x(t) = 1 X[ (t — An) 

FIGURE 4-19. Pulse signal and its periodic extension. 

Recalling that sine u = (sin ttu)Iitu, we see that the spectrum of xx{t) goes to zero as 1 If. Checking 

Figure 4-16a, we see that one derivative is required to produce impulses from the square-pulse por¬ 

tion of xx(t), which implies the decrease as/"1 (see Section 3-11). 

We proceed to find the Fourier series of the periodic waveform x(t) by using (4-111). Since xx(t) 

is repeated every 4 s to produce x(t), fs = 0.25 in (4-111), and the Fourier transform of x(t), using 

(4-113) in (4-111), is 

X(f) = 0.25 2 [sine2 °-25« - sine 0.25n <T'’a75mi] S(f - 0.25/t) (4-114) 
n = — oc 

Recalling that ej2ljfot o 8(f - /0), we may inverse-Fourier-transform (4-114) to obtain the exponen¬ 

tial Fourier series of x(t). The result is 

oo 

x(t) = 0.25 ^ (sine2 0.25/2 — sine 0.25n e~j0J5m)ej0-57mt (4-115) 
n— —oo 

Again, it is seen that the predominant term as n —> oo is sine 0.25n exp(-y0.757777), which approaches 

zero as n~l. The student should plot the amplitude and phase spectra of this signal. 
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*4-12 Applications of the Hilbert Transform 

The Hilbert transform, x(t) of a signal x(t), was introduced in Example 4-14, and its Fourier transform 

in terms of x{t) was given as pair 16 of Table 4-2. We discuss two uses of the Hilbert transform in this 

section. 

Analytic Signals 

An analytic signal z(t) is a complex-valued signal whose spectrum is single-sided (i.e., is nonzero only 

for/> 0 or/< 0). Because of this property of its spectrum, it follows that the real and imaginary parts 

of an analytic signal cannot be specified independently. It turns out that one is the Hilbert transform of 

the other. To show this, suppose that x(t) and y(t) are the real and imaginary parts of z(t), respectively. 

Let Z(/), X(f), and Y(f) be the Fourier transforms of z(t), x(t), and y(t), respectively. It follows that 

Z(f) = X(f)+jY(f) (4-116) 

being zero for/< 0, say, requires that 

Y(f)=jX(f), /< 0 (4-117) 

[note that X(f) and Y(f) may be complex]. If we double the positive-frequency portion of Z(/), it then 

follows that 

Y(f) — —jX(f), f> 0 (4-118) 

so that 

Y(f) = -j sgn(f) X(f), all/ (4-119) 

and 

-nr t<: 
(4-120) 

From (4-119) and pair 16 of Table 4-2, we see that 

y(0 = x(t) [z(/) = o, / < o] (4-121) 

where x{t) is the Hilbert transform of x{t). Had we required that Z(f) be zero for/> 0 and nonzero for 

/ < 0, it follows that the signs in front of the j in (4-117) and (4-118) would have been reversed, so that 

y(t) = -x(t) [Z(f) = 0, /> 0] (4-122) 

Analytic signals are of use in modulation theory applications, and in particular to describe single-side- 

band modulated signals mathematically. 

Causality 

A causal system is defined as one whose output does not anticipate the input. If a causal system is also 

linear and fixed, so that it can be characterized by an impulse response, h(t), the causality of the system 

requires that 

h(t) = 0, t< 0 (4-123) 

The Fourier transform of h(t) is the transfer function H(f) of the system and, from the discussion under 

analytic signals, it should be apparent that the real and imaginary parts of H(f) cannot be independently 
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specified, but are in fact Hilbert transforms of each other. To show this, consider h(t) written in terms 

of its even and odd parts as 

h(t) = he(t) + h0(t) (4-124) 

where 

K(t) = \[h{t) + h(-t)] (4-125) 

and 

K(t) = \[h(t) - K-t)] (4-126) 

In order that h(t) be zero for t < 0, it follows that 

0 

II 

A
 

V
 

o
 
o

 

= sgn(f) he(t) (4-127) 

Substitution of (4-127) into (4-124) results in 

h(t) = he(t) + sgn(f) he(t) (4-128) 

which, when Fourier-transformed with the aid of pair 14 of Table 4-2 and the multiplication theorem, 

allows the transfer function to be written as 

mj) = He(f) + ■— * Ht(f) 

= He(f) - mif) (4-129) 

where He(f) is the Hilbert transform of He(f) = $F[he(t)]. 

*4-13 The Discrete Fourier Transform 

The Fourier transform of a continuous-time signal, x(t), as developed in Chapter 4, is 

X(f) = f x(t)e->2nf‘ dt (4-7) 

In this section we consider the approximation of (4-7) by a discrete sum, and illustrate fast Matlab 

programs, called fast Fourier transform (FFT) algorithms to compute this‘discrete sum efficiently on a 

computer. In Chapter 10, several FFT algorithms will be developed mathematically. To this end, we as¬ 

sume that x(t) is nonzero only over the finite time interval [0, 7] and is bandlimited to IT hertz. We saw 

earlier by means of several examples that it is not possible for a signal to be both strictly time limited 

and bandlimited. However, from a practical standpoint, we can define a bandwidth beyond which any 

strictly time limited signal has negligible energy, and vice versa. It is in this context that we take x(t) to 

be time limited to T seconds and bandlimited to IT hertz. Since x(t) is effectively both time limited and 

bandlimited, we may represent it, to a good approximation, in terms of samples of x(t)* This yields 

N-1 

x(t) ~ ^ x(nAt)8(t - nAt) 
n = 0 

*See Chapter 7 for a derivation of the Sampling Theorem. 

(4-130) 



190 Ch. 4 / The Fourier Transform and Its Applications 

where At = T/N, with N being the total number of samples taken in [0, 7]. In keeping with the band- 

limited nature of x(t), it follows that At < 1/2W in order to avoid significant aliasing. Substituting 

(4-130) into (4-7) and simplifying by interchanging orders of summation and integration, we find that 

N— 1 

X(f)= 2 x(nAt)e~i2^ A‘ (4-131) 
n = 0 

This summation is the Fourier transform of the discrete-time signal represented by the sample values 

{x(nAt)} and is often expressed as a function of the variable go = 2irf At — 2irr, where r is the nor¬ 

malized frequency, f/fs. 

Since we are interested in digital computation of (4-131), we restrict/to the discrete set of values 

{0, 1 IT, 2/T, . . ., (N — 1 )/T}. Thus setting/ = k/T = kJ{N At) in (4-131), where k takes on the discrete 

set of values {0, 1, 2,. . ., N — 1}, we obtain 

N-1 

k = 0,1, • ..,N- 1 (4-132) 
n = 0 

The explicit dependence of x(n At) on At has been dropped, and both X(f) and x(t) are now replaced by 

the sequences {X*} and {xn}9 respectively. This is defined to be the discrete Fourier transform of the 

sequence {x0 = x(0), x1 = x(Ar),. . . , xN_l = v[(/7 — 1) A/]}. Because it was derived using a sampling 

approach, it should be clear that the sequence {XA,} is periodic with period N. By replacing k by k + N 

in (4-132), we see that this is indeed the case. 

The original time-domain sequence {Xn} is obtained from the sequence of frequency-domain sam¬ 

ples {X^} by the inverse relationship 

xn = — 2 Xkei2mk/N, n = 0,1,..., N — 1 (4-133) 
M k = 0 

Thus (4-133) defines the inverse DFT operation. We must show that (4-133) with (4-132) substituted 

produces an identity. Making this substitution, using / for the summation index in (4-132), and sum¬ 

ming over k first, we obtain 

x„ = 2 —*/ 2 e/(M/A0('w) (4-134) 
/=0 N k^0 

where the = means that the equality is being tested. 

The inside sum over k can be written as 

2 
N-1 

A ^ [eF<n-l)/NY 

k = 0 

Now the sum of a geometric series is 

S A 
N = 

N-l 

2 xk 
\-xN 

1 - X 

Letting x = exp[/27r(n — l)/N], we find that 

1 — exp[;27r(/r — /)] 

1 ~ exp[/27r(/r - l)/N] 
n F l 

(4-135) 

(4-136) 

(4-137) 

which follows because exp[/27r(n — /)] == 1. If n — /, the result reduces to the indeterminate form 0/0, 

so we must sum (4-135) directly for this special case. With k = /, the exponential in (4-135) is unity and 

we obtain 
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2 = N, n = l (4-138) 
N 

Summarizing, we have shown that 

2=2 el{27Tk/N)(n-l'» = {^’ n = 4 A NSnl (4-139) 
N k = 0 [0, n ± l) 

where 8nl = 1, n = 1, and 8kl = 0, n A 1, is called the Kronecker delta function. Thus (4-134) becomes 

^ = = (4-140) 
7V 1 = 0 

which shows that (4-132) and (4-133) are indeed inverse operations and therefore constitute a valid 

transform pair. 

Before finding a fast computational technique for evaluating (4-132) and (4-133), we note that they 

are really equivalent operations. From (4-133) it follows that the complex conjugates of the time sam¬ 

ples, x*, are given by 

i JV-l 

x* = Tr X X*e~li2”/N)nk, n = 0,1,..., iV- 1 (4-141) 
N k = 0 

so that 

N-l 

Nx* = X X*e^2v/N)nk, n = 0,1,..., N - 1 (4-142) 
k = 0 

Comparison of (4-142) and (4-132) show that algorithms used to calculate the forward transform can 

also be used for the calculation of the inverse transform if the frequency samples Xk are conjugated prior 

to performing the computation. Since the result yields Nx* rather than xn, it must be conjugated and di¬ 

vided by N. Often, however, the time samples are real and the conjugation of the result can be omitted. 

Thus once we have developed a computationally efficient algorithm for calculating the sum given by 

(4-132), we can use the same algorithm for computing the inverse DFT. 

EXAMPLE 4-21 ____ 

To illustrate the FFT program in Matlab consider the Fourier transformation of square pulses of 

various widths. The following Matlab program does this for three different pulse widths. After FFT 

of a pulse, the inverse FFT is taken and this is also plotted to show that the FFT and inverse FFT are 

indeed inverse operations The output of the program is given in Figure 4-20. Note that the shorter 

pulses have the higher frequency content and more overlap takes place in the middle of the spectral 

plot (high frequencies). Also note that the FFTs are not symmetric about 0, but the normally nega¬ 

tive frequency portion is on the right of the plot. 

% Example 4-21 - illustration of the FFT and inverse FFT 

% by taking the FFT of a square pulse of various widths 

% 

T=4; 

del__t=. 2 ; 

t—0 : del__t: T ; 

L_qt=length (t) ; 
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del_f~l/T; 

f __max= (L___t -1) * d e l_f ; 

f=0:del„f:f_max; 

for k=l:3 

width=* 0.6; 

k_l=3 *(k-1)+1; 

k__2=3 *k-1 ; 

k_3=3*k; 

x=pls_fn((t - width/2)/width); 

X=fft(x); 

X__inv=ifft (X) ; 

subplot(3,3,k_l),stem(t,x) ,axis( [0 T 0 1]),... 

xlabel ('t' ),ylabel('x(t)') 

subplot(3,3,k_2),stem(f,abs(X)),axis([0 f_max 0 10]),... 

xlabel('f'),ylabel('X(f)') 

subplot(3,3,k_3),stem(t,abs(X_inv)),axis([0 T 0 1]),... 

xlabel ( ’t') ,ylabel('X_inv(t) ’) xlabel(’t1 

.1 0.5 

FIGURE 4-20. FFTs (middle column) of square pulses (left column) and inverse FFT of the FFT (right 
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Summary 

In this chapter we have considered the representation of signals in terms of the Fourier transform. One 

class of signals to which the Fourier transform representation applies directly is energy signals. Power 

signals can also be represented in terms of Fourier transforms, but their spectra contain impulses rep¬ 

resenting finite power (infinite energy) at discrete frequencies. Fourier transforms of energy signals 

contain no impulsive components. The following are the major points made in this chapter. 

1. A signal x(t) and its Fourier transform X(f) are related by 

x(t) = f X{f)e™df 
J —oo 

X(f) = I x(t)e~’2'4 dt 
j ~oo 

The former is the inverse relationship, and the latter is the direct relationship. 

2. It is useful to represent the Fourier transform of a signal in terms of magnitude and argument 

or phase as 

x(f) = | X(f)\e>«n 

where |X(/)| plotted versus frequency is known as the amplitude spectrum, and 0(f) plotted ver¬ 

sus frequency is called the phase spectrum. 

3. If a signal is real, it follows that its amplitude spectrum is an even function of frequency and its 

phase spectrum is an odd function of frequency. Furthermore, Fourier transforms of real, even 

signals are real, even functions of frequency, while Fourier transforms of real, odd signals are 

imaginary, odd functions of frequency. 

4. The energy spectral density of a signal is its magnitude-squared Fourier transform. 

5. Several useful theorems pertaining to Fourier transforms of signals are summarized in Table 4-1. 

6. Several useful Fourier transform pairs are given in Table 4-2. An important conclusion can be 

drawn from these transform pairs, namely that the duration and bandwidth of pulse-type signals 

are inversely proportional. 

7. The Fourier transform, Y(f), of the output of a fixed, linear system is related to its transfer func¬ 

tion, //(/), and the Fourier transform of the system input, X(f), by 

Y(f) = H(f)X(f) 

By taking the magnitude squared of both sides of this equation, it follows that the energy spec¬ 

tral density of input and output are related by 

Gff) = \H(f)\2Gx(f) 

where 

Gx(f) = |X(/)|2 and Gff) = |F(/)|2 

The energy contained in the output within a band of frequencies can be obtained by integrating 

Gv(/) over the frequency band of interest. 

8. The transfer function of a fixed, linear system can be obtained by applying any one of the fol¬ 

lowing techniques: 

(a) Fourier-transforming the differential equation relating output to input; 

(b) Fourier-transforming the impulse response of the system; and 
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(c) Representing the lumped elements of the system in terms of their ac sinusoidal steady-state 

impedances and using ac circuit analysis. 

These three methods are illustrated pictorially in Figure 4-10. 

9. Ideal filters are filters passing all frequency components of the input within the passband with 

the same gain and the same time delay, and rejecting completely all frequency components of 

the input outside the passband. Usually, three types of ideal filters are defined; low-pass, high- 

pass, and bandpass. Ideal filters are noncausal since their impulse responses exist before the 

impulsive input is applied. 

10. The rise time of a pulse can be defined in various ways. One common method is to define rise 

time as the time it takes for a pulse to go from 10% to 90% of its final value. It is true in general 

that a pulse s bandwidth and rise time are inversely proportional. 

11. The Gibb’s phenomenon refers to the property that the Fourier approximation to a pulse that un¬ 

dergoes an abrupt change which requires infinite frequency content tends to overshoot the abrupt 

change by about 9%. This overshoot phenomenon was shown to be directly attributable to the 

bandlimiting of its spectrum, which can be viewed in the time domain as a convolution with a 

sinc-function envelope. 

12. An analytic signal is one whose spectrum is single sided (i.e., is nonzero only for/< 0 or for 

/> 0). Such a signal has real and imaginary parts which are Hilbert transforms of each other. 

The Hilbert transform of a signal is obtained by phase-shifting its positive-frequency spectral 

components by — 77/2 rad and its negative-frequency components by 7t/2 rad. 

13. It can be shown that a causal system has a transfer function whose real and imaginary parts are 

Hilbert transforms of each other. 

14. The fast Fourier transform is introduced as a means for computing signal spectra efficiently. 

Further Reading 

In addition to the references given in Chapter 3, the first reference will provide a refreshing approach to Fourier 

transforms and their applications. The second reference gives extensive information on the FFT. 

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. New York: McGraw-Hill, 1978. 

W. W. Smith and J. M. Smith, Handbook of Real-Time Fast Fourier Transforms, Piscataway,NJ: IEEE Press, 1995. 

Problems 

Section 4-1 

4-1. Obtain the Fourier transforms of the following signals (a > 0): 

(a) xa(t) = Ae~atu(t); 

(b) xb(f) = Aeatu(—tf 

(c) xft) = Ae~0l\t\\ 

(d) xd(t) = Ae~atu{t) — Aeatu(-t). 

4-2. Plot and compare the amplitude and phase spectra of jc ft) and xb(t) in Problem 4-1. 

4-3. Plot and compare the amplitude and phase spectra of xc(t) and jc ft) in Problem 4-1. 

4-4. (a) Show that if x(t) is real and even [i.e., x{t) = x(-f)l, then the Fourier transform of x{t) may 
be reduced to 
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X(f) = 2 x(t) cos 27Tft dt 
Jo 

Therefore, conclude that X( f) is real and even in this case. 

(b) Show that for x(t) real and odd [i.e, x(t) = -x(-t)], then 

X(f) = -2j[ x(t) sin lirftdt 
Jo 

Therefore, conclude that X(f) is imaginary and odd if x(t) is real and odd. 

4-5. (a) Suppose we want the Fourier transform of a complex signal x(t) = xR(t) 4- jxj(t), where xR(t) 

is the real part and Xj(t) is the imaginary part. Show that X(f) can be written as 

r°° r00 

X(f) = xR(t) cos 2nft dt + x,(t) sin 2irft dt 
J -QO J—OD 

+ j f X,(t) cos lirft dt - f xR(t) sin lirft dt 
-“'■—CO j —00 

(b) Provide an argument for the fact that if x(t) = x(-t) (i.e., even), then the Fourier transform 

reduces to 

X( f ) = f xR(t) cos 2irft dt + / f x7(r) cos 27r// dt 
J — 00 ^ — 00 

x(0 cos 27t// dt 

(c) Show that if x(0 = -x(~t) (i.e., odd), then the Fourier transform reduces to 

X(/) = f Xj(t) sin 27r/r dt — j l xR(t) sin 27r/r dt 
^ —00 ^ “*"00 

= —j f x(t) sin 27r/r r// 
^ —00 

4-6. Using the Fourier transform integral, find Fourier transforms of the following signals: 

(a) xa(t) = rexp(-ar) u(t), a > 0; 

(b) x/?(f) = t2 u(t) u( 1 - 0; 

(c) xc(0 = exp (—at) u{t) u( 1 - /), a > 0. 

4-7. Compute and plot the spectrum of the pulse with raised half-cosine leading and trailing edges as 

shown. 

FIGURE P4-7 
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4-8. Obtain the Fourier transforms of the following signals: 

(a) xx(t) = ^[8(t + 1) + 8(t + + 8(t — 4- 8(t — 1)] 

(b) x2(t) = sinc(0 u(t) 

(c) x3(t) = sine(0 sgn(0 

(d) x4(t) = e~\f\u{t) 

(e) x5(t) = e~\f\ sgn(t) 

4-9. If the Fourier transform of a real signal x(t) is expressed in terms of its magnitude and phase as 

X-(f) = \X(f)\ exp[j0(f)] 

show that 

M = \x{-f) | 
(Xf) = -O(-f) 

(i.e., the magnitude is even and the phase is odd). 

4-10. Given the following Fourier transforms, find the corresponding time-domain signals: 

(a) Xx{f) = Aexp(—a|/); 

(b) X2(f) = Aexp(—a\f - jir sgn(/)) where sgn(/) = 1 for/> 0 and sgn(/) = -1 ,/< 0; 

Section 4-2 

4-11. Obtain and plot the energy spectral densities of the signals given in Problem 4-1. 

4-12. (a) Find the energy contained in the signalx(0 = Azxp(-at)u(t),a > 0, for frequencies [/j < aht. 

(b) Same question as par! (a) for frequencies |/| < al2rr. What percent of the total energy is this? 

4-14. Using appropriate theorems, consider the Fourier transform of 

x{t) — e~a\f\ cos 27if0t 

in the limit as a —> 0 to get the Fourier transform of cos 27ifQt. Be sure to justify the approach of 

certain normal functions to delta functions in the limit. 

4-15. Consider the use of the transform pair 

sine fr 

to obtain the Fourier transform of 8(t). In what sense does r lU(t/r} approximate a unit impulse? 

What is limT^0 sinc/r? 
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Section 4-4 

4-16. (a) Use the superposition and time delay theorems together with the pair U(f/r) <-> r sine fr to 

obtain Fourier transforms for the signals shown. 

*.(0 xb(t) 

FIGURE P4-16 

(b) Using symmetry, show that each transform is real, imaginary, or neither, as the case may be. 

4-17. A signal with an approximately rectangular spectrum extending from 100 to 10,000 Hz is 

recorded on a tape recorder at 15 inches per second (ips). It is played back at 7~ ips. Sketch the 

spectra for the recorded and played-back signals. 

4-18. Use the duality theorem to find the signal whose transform is shown. 

Hint: Work Problem 4-16 for xc{t) first. 

4-19. If the signals of Problem 4-16 are each multiplied by the signal cos 20irt, obtain and sketch the 

magnitudes of the Fourier transforms of the resulting signals. 

4-20. Use the differentiation theorem and the transform pair 8(t - t0) exp(-j2nftQ) to find the 

Fourier transforms of the signals shown. Which transform(s) should be real and even and which 

should be imaginary and odd? 
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**(0 

-2-1 0 1 2 
-1, s 

FIGURE P4-20 

4-21. Given the signal 

x0 (t) = (1 — t)u(t)u(l — t) 

Obtain its Fourier transform, and using it plus Fourier Transform theorems, find the Fourier trans¬ 

forms of the signal shown below: 

FIGURE P4-21 

4-22. Obtain the inverse Fourier transform of 

X(f) = 10 
sine 2f 

3 + j2itf 

Hint: Use the convolution theorem. 

4-23. (a) Prove the multiplication theorem. 

(b) Use the multiplication theorem and the Fourier transform pair derived in Example 4-7 to 

inverse-Fourier-transform 

X(/) = 15a(|) 

4-24. Consider the rectangular, raised-cosine, and half-cosine pulses given, respectively, by 
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xR(t) — All (t/r) 

xRC(t) = B[l + cos(27Tt/r)]U(t/r) 

xHC(t) = C cos(7Tt/r) n(t/r) 

(a) Relate the constants A, B, and C to the respective energies of the pulses. 

(b) Fixing the amplitudes of each so that all three have equal energies, compute and plot their 

spectra. 

4-25. Use the convolution theorem of Fourier transforms to find the convolutions of the following sig¬ 

nals (i.e., do not evaluate the convolution integral of Chapter 2): 

(a) xx(t) = t exp (—at) u(t) and hx(t) = exp(—fit) u(t), a, 0; 

(b) x2(t) = exp( — at) u(t) and h2(t) = tzxp(—fit) u(t), a, ft > 0; 

(c) x3(t) = exp ( — at) u{t) and h3(t) = exp (fit) u(—t), a, (3 > 0. 

Section 4-6 

4-26. (a) Obtain the transfer function of the RC high-pass filter shown. 

FIGURE P4-25 

(b) Under what conditions will it perform as an ideal differentiator defined by the input-output 

relationship 

/x , dx 
y(0 -a~ 

Hint: A differentiator has transfer function Hd(f) = jlirf. 

4-27. The input 

x{t) = 4 sinc(20cos2(47rt) 

is applied to a linear, time invariant system. Determine and plot the transfer function of the sys¬ 

tem, H(j), such that its response will be 

(a) y(t) = 4 sinc(21); 

(b) y(t) = 3 sinc(2t) cos(S irt) 

4-28. Consider an ideal integrator for which input and output are related by 

y(t) = A j x(t') dt' 

Use the integration theorem to obtain its transfer function. Under what conditions will the RC 

low-pass filter considered in Example 4-16 perform as an integrator? 
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4-29. Consider a fixed, linear system with amplitude and phase responses as shown. 

Obtain the output for the following inputs and tell what type of distortion, if any, results: 

(a) x(t) = cos 2077? + cos 6077? 

(b) x(t) = cos 2077? + cos 14077? 

(c) x(t) = COS 2077? + COS 22077? 

(d) x(t) = COS 13077? + COS 22077? 

4-30. To improve the performance of a pulse-waveform radar in noise, several pulses are sent in se¬ 

quence and the return from the target is filtered by a narrowband comb filter as illustrated in Fig¬ 

ure P4-30. This problem is designed to illustrate the improvement that can be expected as a 

function of the number of pulses transmitted (and returned from the target). 

t t & Periodic —► 

—lJ—LJ—LU—LJ_LlJ_/ 

-2fc -fc 0 fc 2fc 

FIGURE P4-30 

(a) If a single pulse is transmitted, and filtering from null-to-null of the main lobe of the signal 

spectrum is performed, what fraction of the signal energy is passed by the filter? 

(b) If a sequence of two pulses separated by T seconds is transmitted, show that the spectrum of 

this waveform is given by 

X(f) = At sinc(/r) [1 + 

= 2Arsmc(fr) cos(irfT) e~MT+T^ 

Plot |X(/)|2 = Gx(f) and discuss how one might design a filter to pass only the peaks in the 

spectrum, thereby passing most of the signal energy and eliminating some of the background 

noise which is assumed to have uniform energy at all frequencies. 

(c) Consider a train of N pulses of width r and each separated by T seconds. Show that the re¬ 

sulting spectrum is given by 
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x(f) = ATsmc(fT) 2 [e j27TlJ\‘e Kp-jirft 

= At 

n = 0 

sin irfNT . 

sin irfT 
sinc(/r) e j7rf^N 1)r+T^ 

Plot the resulting energy spectral density for N = 4, and discuss how the filtering idea pre¬ 

sented in part (b) appears to give better performance as N increases. 

4-31. A Butterworth low-pass filter has the circuit diagram shown. Obtain and plot \H(f)\ and /H(f). 

ioo n 

x(t) mF:±: 

20 mH 
2 TT 

-/T5TV- 

4ir 

+ 

y(t) 

FIGURE P4-31 

4-32. The Fourier transforms of two signals, x(t) and y(r), are defined as 

X(I) = 008(77f) 11(f) 

and 

Y(f) = X(f-f0) + X(f + f0) 

(a) Find a closed-form expression for x(t). 

(b) Find a closed-form expression for y{t). 

(c) Design the system shown in the block diagram in terms of choosing the parameters A,/1? and 

f2 so that the output is y(t). 

-►>>(/) 

COS (277/21) 

1 m /) 1 

A 

-A o /, 

FIGURE P4-32 

Section 4-7 

4-33. The current source of the RLC circuit shown is a square wave of amplitude A and period I 

(a) Obtain the transfer function of the RLC filter. Plot its amplitude response. Put the latter in 

terms of the parameters fb = R/(2itL and fQ = IHttVlC. 

(b) If 1 IT =/0, obtain and plot, using Fourier transforms, the spectrum of the output. Give the 

weight of each line in the output spectrum. 
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(c) Obtain an expression giving the ratio of the powers in the fundamental component and nth 

harmonic of the output. 

(d) If this arrangement is to be used as a sinusoidal source, design the filter (i.e., choose a value 

for 4) such that the third harmonic is at least 30 dB down from the power in the fundamen¬ 

tal. (Note: xdB = 20 log10 x for x a voltage.) 

———<3 

+ 

C y{t) 

——o 

RLC circuit used to generate a sine wave 

FIGURE P4-33 

4-34. Show that (4-88) is equivalent to (3-73). 

Section 4-8 

4-35. Obtain the impulse response of the ideal high-pass filter with transfer function given by 

«HP(/) = 'A i - n / 
2 B 

-jlTTfto 

4-36. An ideal notch filter has the amplitude-response function shown. Assuming a linear phase response 

given by 0(f) = —2iTt{)f \ obtain and plot the impulse response without doing any integration. 

i 

B 

— 3 < 
fo 0 / f° \ 

/o ~ m fo + m 

FIGURE P4-36 

Section 4-9 

4-37. Find the 10% to 90% rise time of the filter of Problem 4-31 in response to a unit step. 

Section 4-10 

4-38. Plot a figure similar to Figure 4-15b and c for W ~ 10 and x(t) = u(t) - u(t — \). Use Matlab 

to do the plotting. Does overshoot ever go away in your estimation? 
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Section 4-11 

4-39. Given the transform pair A(t/r) <-> r sine2/r, obtain the Fourier transforms of the periodic trian¬ 

gular waveforms shown. Sketch the amplitude spectrum for each. Comment on the rapidity with 

O r which \Xn\ —> 0 with n -> oo 

(a) xa(t) 

4-40. Obtain the Fourier transform of the periodic raised-cosine pulse train 

MO = X 1 + COS 
/2t7(7 - hTq) n t — nTn 

where T0 > r. Sketch the waveform and the amplitude spectrum for the case t = T0. 

Section 4-12 

4-41. Obtain Hilbert transforms of the following signals: 

(a) cos(27t/oO (Hint: Use the fact that a Hilbert transform is a — tt/2 radian phase shifter); 

(b) sin(277/0t); 

(c) FI(t/r)(Hint: Use the convolution integral for this one). 

Section 4-13 

4-42. Use the fast Fourier transform of Matlab to show that (4-106) and (4-107) are indeed transform 

pairs. Experiment with the number of points used. 
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Computer Exercises 

4-1. Obtain the symbolic Fourier transforms of the following: 

(a) xx{t) = exp(—z2) 

(b) x2(t) = rexpC-z2) 

(c) x3(t) = (e~3t + e~2t)u(t) 

Check your results with Table 4-2 and by performing inverse symbolic Fourier transforms to 

show that the original signal results in each case. 

4-2. (a) Compute and plot the amplitude and phase spectra of the signals given in Computer Exer¬ 

cise 4-1. 

(b) Compute and plot the energy spectra of the signals given in Computer Exercise 4-1. 

4-3. Write a Matlab program to verify the plots given in Figure 4-12. 

4-4. From Table 4-2, we note that the Hilbert transform a signal is a convolution of it with 1/(7rt). 

Write a Matlab program using the conv function to obtain the Hilbert transforms of the fol¬ 

lowing signals: 

(a) A square pulse; 

(b) A triangle; 

(c) The signal of Computer Exercise 4-1(a); 

(d) The signal of Computer Exercise 4-1(b). 

To avoid the 1/(7Tt) going to infinity (i.e., the largest number the computer can represent), add a 

small constant to t, such as eps. 

4-5. Generalize the Matlab program given in Example 4-19 to the following pulse shapes: (a) saw¬ 

tooth; (b) trapezoidal; (c) raised cosine. Discuss the Gibb’s phenomenon in the light of your re¬ 

sults for bandlimiting these pulse shapes. 

4-6. Experiment with using the FFT in Matlab to find the spectra of the signals in Computer Exer¬ 

cise 4-1. What effect does length of the representation interval have? Spacing of samples of the 

time signal? 
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The Laplace Transform 

5-1 Introduction 

Systems analysis in the time domain involves the solution of differential equations or the evaluation 

of the superposition integral. Both techniques can result in tedious mathematical operations for rela¬ 

tively simple systems analysis problems. The Fourier transform provided an alternative approach 

wherein a differential equation relating the input and output of a system was transformed to an alge¬ 

braic equation, the Fourier transform of the output was solved for, and the transform of the output was 

then inverse-Fourier-transformed to provide the system output as a function of time. Unfortunately, 

there are many signals of interest that arise in systems analysis problems for which Fourier transforms 

do not exist. 

The Fourier transform technique for systems analysis provides a hint for a more general transform 

analysis procedure, however. We seek a transform that applies to a wider class of signals than the Fourier 

transform does. This can be accomplished by multiplying a signal x(t) by an exponential convergence 

factor and Fourier-transforming the product. For signals that are zero for t < 0, an appropriate factor is 

e~m, where a is positive, resulting in the Fourier transform (with co = 2 77/* as the frequency in rad/s) 

X(cr + jco) = f x(t)e~ate~j(0t dt (5-1) 
Jo 

With s = (T + jco, (5-1) can be written as 

£[x(t)] = X(s) = f x(t)e~st dt (5-2) 
Jo 

where $£[ • ] denotes the operation of obtaining the Laplace transform of'x(t) defined by (5-2). Since 

the lower limit of the integral is zero, (5-2) is referred to as the single-sided Laplace transformation. 

Use of the Laplace transform for systems analysis results in several advantages. Among these are: 

1. The solution of differential equations progresses systematically and involves only algebraic 

manipulations. 

2. The total solution—particular integral and homogeneous solution (i.e., forced and transient re¬ 

sponses^—is obtained. 

3. Initial conditions are automatically included in the solution of the equations. 

The particular integral, which emulates the forcing function or excitation of the system, is referred to as th & forced response. 

Tt rrt ° the l°tal resPonse which is influenced by characteristics of the system itself is referred to as the transient response. 
nontrivial solution of the system differential equation with the excitation identically zero. 

205 
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Not every signal possesses a Laplace transform. An example is exp [exp (t)], t > 0, which grows 

faster than exp( - at) decays. Thus the Laplace transform integral (5-2) does not converge for this signal. 

We will discuss convergence properties of Laplace transforms more fully in the following section. 

The operation that changes X(s) back to x(t) is referred to as the inverse Laplace transformation, and 

is symbolized by !£~l[ • ]. To obtain x(t) in terms of X(s) = X(a + jco), we observe from the inverse 

Fourier transform of (5-1) that 

1 c°° 
x(t)e 01 = 1 [W(o" + jco)] = — X(a + jco)eJ(0t dco (5-3a) 

2^ J_a 

Multiplying both sides by em and assuming a constant, we obtain the inversion integral, 

1 r (r+jco 

x(t) = —\ X(s)estds (5-3b) 
)^joo 

where the change of variable s = a + jco and ds = j dco has been used. With co = ±o° in (5-3a) the lim¬ 

its for (5-3b) are clearly a ± /». 

Although not easy to show rigorously, (5-3b) may be generalized to a complex inversion integral 

where s ~ a + jco is a complex variable with a real part that may vary along with its imaginary part co. 

It is discussed in mere detail in Section 5-5, where the technique of contour integration is briefly ex¬ 

amined for the purpose of evaluating inverse Laplace transforms. 

For the most part, contour integration can be avoided when finding inverse Laplace transforms in 

systems analysis problems simply by making use of a table of Laplace transform pairs. We now begin 

the construction of such a table and illustrate the evaluation of (5-2) for several simple signals. 

5-2 Examples of Evaluating Laplace Transforms 

As an example of evaluating (5-2), letx(r) — 1. Then 

X(s)=[ e~~st dt 
Jo 

e~st 00 _ e~ate~j(i)t 00 

~ ~-s 0 ” -s 0 

e~(Tt 00 

=- (cos cot — j sin cot) (5-4) 
51 0 

Clearly, unless a = Re(s) > 0, the limit as t oc does not exist since cos cot and sin cot oscillate with 

increasing t and e~m grows without bound if a < 0. Requiring that Re(^) > 0, we obtain 

2[l] = j, Re(i-) > 0 (5-5) 

Because the lower limit of (5-2) is zero, values of x(t) for t < 0 have no effect on X(s). We see that 

x(t) = 1 and x(t) — u(t) have the same single-sided Laplace transform. If we consider signals that are 

nonzero only for t > 0, this presents no problem. ' This is reasonable for our purposes because all sig¬ 

nals must start sometime. We may choose this starting time conveniently as t— 0. 

•The double-sided Laplace transform can be used for signals that are nonzero for t < 0. An introduction to this transform is 

given in Section 5-6. 
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Some discussion is in order about the convergence of the Laplace transform integral. In obtaining 

the Laplace transform of x(t) — 1, it was necessary to restrict ReO?) > 0 in order for the integral to ex¬ 

ist. Recall that an integral with one or both of its limits unbounded is referred to as an improper inte¬ 

gral. An improper integral of the form 

r°° r L 

x{t) dt = lim x(t) dt (5-6) 
Jo L-*00 Jo 

is said to be convergent if the limit on the right-hand side exists. The integral converges absolutely if 

and only if 

I |x(f)| dt < oo (5-7) 
Jo 

The Laplace transform integral of a signal x(t) can be shown to converge absolutely for all 

fL 
cr = Rq(s) > c if \x(t)\ dt < K < oc (5-8) 

Jo 

for any positive real number L and some real constant K, and if 

\x(t)\ < Aect, t > L (5-9) 

where A and c are appropriately chosen real constants. Such a signal is said to be of exponential order. 

The smallest possible value of c is called the abscissa of absolute convergence. A proof of this theorem 

is given in Appendix C. 

Applying this theorem to x(t) = u(t), we see that A = 1 and c — 0 are appropriate choices, and the 

Laplace transform of u(t) therefore converges absolutely for Re(L) > c = 0. 

By applying the theorem to x(t) = t~~m with L > 1, A = 1, and c — 0, we know that this signal also 

has a Laplace transform which, in fact, can be shown to be (7t/s)1'2 for Re(s) > 0. Note the importance 

of the role of L in this example to ensure convergence. 

Consider next the Laplace transform of the signal 

x(t) = e~atu(t) (5-10) 

where a may be complex. By definition, the Laplace transform is 

5£[e~a,u(t)] = [ e~(s+a)ldt 
Jo 

e-(a+a)te~j(ot 

s + a (5-11) 

or 

X(s) = v —, Re^ + a) > 0 or Re(s) > -Re(a) (5-12) 

The abscissa of absolute convergence, or simply abscissa of convergence, in this case is 

c = — Re(a) (5-13) 
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As a final example, we obtain the Laplace transform of 8(t). By definition of the Laplace trans¬ 

form, it is 

-00 

!£[8(t)] = 8{t)e~st dt 
Jn 

(5-14) 

whereupon we are faced with a dilemma. Since the unit impulse function occurs at t = 0, do we inte¬ 

grate through half of it, none of it, or all of it? We will assume in this book that the lower limit on the 

Laplace transform is t = 0~. Thus (5-14) evaluates to ££[5(f)] = 1. The value of s makes no difference; 

that is, the region of convergence is the entire s-plane. 

A final word about convergence. The abscissas of convergence for the signals u(t) and e~atu(t) are 

shown in Figure 5-1 together with the regions of absolute convergence of their respective Laplace trans¬ 

form integrals. For any value of s lying in the region of convergence, the respective Laplace transform 

is finite. It follows that any singularities of the Laplace transform of a signal must lie to the left of the 

abscissa of absolute convergence. The Laplace transforms of the unit step and decaying exponential sig¬ 

nals, viewed as functions of the complex variable s, each have a single singularity that is referred to as 

i co 

/GJ 

FIGURE 5-1. Regions of absolute convergence for the Laplace transforms of (a) u(t) and (b) e~atu(t). 
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a first-order pole." They are shown as X ’s in Figure 5-1 and do indeed lie outside the regions of absolute 

convergence of the Laplace transform integral. One potential point of confusion is the distinction be¬ 

tween the region of absolute convergence of the Laplace transform integral of a signal x{t) and the re¬ 

gion in the complex v-plane where X(L) = SB[x(t)] is a well-behaved function of s* The only place that 

X(s) is undefined is at its singular points, which may be of the several different types defined in Ap¬ 

pendix C. At every other point in the complex plane X(s) is a well-behaved function of the complex vari¬ 

able .v, both within and outside the region of absolute convergence of the Laplace transform integral. 

The integral of (5-3) is carried out along any line to the right of the singularities of A(v). If this line 

can be chosen as the yea-axis, it then follows from (5-1) and (5-3) that the ordinary Fourier transform 

ofx(t) exists and can be obtained from X(s) by substituting s — yea. 

The three Laplace transform pairs just derived are summarized in Table 5-1 together with their 

abscissas of absolute convergence. We will dispense with specifying the abscissas of absolute conver¬ 

gence of single-sided Laplace transforms since it can be shown that there is no ambiguity in the inverse 

single-sided Laplace transform, even with the region of convergence unspecified. This is not true of the 

double-sided Laplace transform for which it is necessary to specify the region of convergence together 

with the Laplace transform in order to determine uniquely the inverse Laplace transform. Since we are 

not considering the two-sided Laplace transform, specifications of the abscissas of absolute conver¬ 

gence are not necessary. 

We now will extend Table 5-1, but to avoid the labor of carrying out integrations, we will give sev¬ 

eral Laplace transform theorems and use them to extend Table 5-1 later. Because the Fourier and Laplace 

transforms are both linear integral transforms, many of the theorems to be stated will be self-evident 

from our consideration of the Fourier transform. 

5-3 Some Laplace Transform Theorems 

Theorem 1: Linearity: Since (5-2) is an integral in which x(t) appears linearly, it follows, for two 

constants a{ and a2 which may be complex, that 

X[axxx(f) T■ a2x2(t)] = axX{(s) + a2X2(s) (5-15) 

where Xx(s) = ^[xftf] and X2(t) = !£[x2(t)\. The linearity theorem will be made use of in the Laplace 

transformation of differential equations. We illustrate its use for extending Table 5-1 by an example. 

TABLE 5-1 
Table of Laplace Transforms 

Signal Laplace Transform Abscissa of Convergence 

m 1 

1 
s 

— 00 

1 0 

e~at 
1 

5 + a 
— a 

f Appendix C gives a short summary of several definitions and theorems pertaining to functions of a complex variable. For 
our purposes here, a pole can be defined as a value for v for which XL) —> oo. 

*In terms of the terminology of functions of a complex variable, XL) is an analytic function of 5. See Appendix C. 
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EXAMPLE 5-1 _ 

The Laplace transform of cos (o0t may be obtained by expressing it in exponential form, applying the 

linearity theorem, and using the transform pair (5-12) with a = ±jco0, which gives 

i£[cos co0t] = 

= l-Z[ela>"‘] + p£[e~,oV] 

1 1 

2 s — ] (Oq 

s 

S2 + (Oq 

+ 
1 1 

2 s + jco0 

(5-16) 

In a similar manner, the Laplace transform of sin co0t can be derived as follows: 

i£[sin co0t] = ££ 
1 1 P]u0t_p 

L2j 2/ 
-ju0t 

2<E[e^] - ~ <£[e~ia«] 
27 z7 

l l l l 

2/ s - jcoq 2 j s + j(o0 

S'2 + CUn 
(5-17) 

Mat lab Application 

Matlab may be used to find Laplace transforms and inverse Laplace transforms. For the signals in 

this example, the Matlab command window entries are as follows: 

EDU» xl = sym(’cos(omega_0*t)') 

xl = 

cos (omega__0*t) 

EDU» Xl = laplace(xl) 

Xl = 

s/(sA2+omega_0A2) 

EDU» x2 = sym ( ' sin (omega__0 * t) ' ) 

x2 = 

sin(omega_0 *t) 

EDU» X2 = laplace(x2) 

X2 = 

omega_0/ (sA2+omega__0A2) 

EDU» pretty(X2) 

omega_0 

2 2 

s + omega_0 

EDU» x2__p = ilaplace(X2) 

x2_p = 

sin(omega_0*t) 
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In the second last command line entry, the pretty function is used to make the Matlab output 

look more like the actual equation. In the very last entry, the ilaplace function is used to show that 

the original time-domain signal is obtained by inverse Laplace transforming the s-domain result. 

Note that in all command line entries, a semi-colon could have been used to suppress the echo of the 

entered quantity. For example, to save space, we could have entered 

EDU» xl = sym('cos(omega_0*t)'); 

and this would have suppressed the echo 

xl = 

cos (omega__0*t) 

An alternative procedure to the command window entries would have been to write a program and 

store it in an M-file, then run it from the command window. 

Theorem 2: Transforms of Derivatives: From (5-2) the Laplace transform of dx(t)/dt is 

dx{t) 

~~dt~ 

dx(t) ~_Si 

dt 
^ e~stdt 

-0 

which may he integrated by parts by letting u = e~st, and dv — dx(t) in the equation 

rb | b rb 
v du 

I a J a 

u dv — uv — 
2 a a Li 

Then du = —se~~st dt and v = x(t), so that (5-18) becomes 

(5-18) 

(5-19) 

dx(t) 

dt 
fx(t) |o + s x(t)e 

Jo 
f dt 

sX(s) ~ *((T) (5-20) 

provided that limt_yxi x{t)e st = 0, where we recall that we have agreed to use 0~ for the lower limit. 

To find i£[d2x(f)ldt2], we write 

d2x(t) _ d 

dt2 dt 

dx(t) 

dt 
(5-2 la) 

which results in 

d2x(t) 
= si£ 

dx(t) dx 

dt2 dt ~ ~dt t=0~ 

= s^AX?) - x(0 )] - x(1)(0 ) 

= s2X(s) — at(0“) — x(1)(0”) 

Using induction, we may show that 

dnx(t) 
£ 

dtn 
= snX(s) - sn~lx{0") jt("-1)(0“) 

(5-21b) 

(5-2 lc) 

where x[,l){0 ) denotes the nth derivative ofx{t) evaluated at t = 0”. The use of(5-20) will be illustrated 

with an example. 
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EXAMPLE 5-2 _ 

Consider the circuit shown in Figure 5-2, where the switch is switched from (T) to (2) at t = 0. Find 

the current through the inductor as a function of time. 

Solution: The inductor current obeys the differential equation 

di(t) 

dt 
+ 2 i(i) — 

t <0 

t > 0 
(5-22) 

Taking the Laplace transform of both sides starting at t = 0 , we obtain 

sl(s) - i(O-) + 21(s) = 0 (5-23) 

To proceed further, we require z(0~). Assuming that the circuit was in steady state for t < 0, we see 

from the circuit diagram that 

i( 0“) = | = 2 (5-24) 

Thus 

I(s)(s + 2)-2 = 0 (5-25a) 

or 

I(s) = 
2 

s + 2 

Using (5-12), the current through the inductor is 

t > 0 

t < 0 

(5-25b) 

(5-26) 

Theorem d: Laplace Transform of an Integral: The Laplace transform of 

is 

y(t) x(X) 
J —CO 

d\ 

X{s) y( O') 

s s 

(5-27) 

(5-28) 

FIGURE 5-2. Circuit for the illustration of Laplace transform solution techniques. 
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where y(0 ) is shorthand notation for 

y(0 ) = J x(A) dX 
t=Q~ 

This theorem is proved by using the formula for integration by parts. With 

-1 

u = x(A) dX, du = x(t) dt 

and 

dv = e st dt, 
— e 

v = 

the Laplace transform of (5-27) becomes 

fi 0° 1 fOO 

x(X) dX H— x(t)e 
J-oo rr S Jn- 

x(A) dX 

which gives (5-28) when the limits are substituted provided that 

f f x(A) dX = 0 
j -—oo 

' dt 

lim e st 
r-> oo 

(5-29a) 

(5-29b) 

(5-30) 

(5-31) 

EXAMPLE 5-3 

The use of the integration theorem will be illustrated by finding an expression for the Laplace trans¬ 

form of the current in the circuit of Figure 5-3. Kirchhoff’s voltage law results in the loop equation 

L“f + Ri(0 + - ^ J /(A) dX = x(t) (5-32) 

where the voltage-current relationships for each element have been substituted. Application of the 

linearity, differentiation, and integration theorems yields 

LsI(s) + RI(s) + - J + ^(0-) = X(s) 
sC s 

where /(0 ) = 0 because the switch is open prior to t = 0 and 

/<-1}((T)_ l g£O') 

C C 
f j(A) dA = 

—oo C 
= Vc(0 ) 

(5-33) 

(5-34) 

FIGURE 5-3. Circuit for illustration of the integration theorem. 
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is the voltage across the capacitor at t = 0~. Solving for I(s), we obtain 

m = 
sX(s) - nc(0 ) 

L[s2 + (R/L)s + 1/LC] 
(5-35) 

The inversion of I(s) in response to particular inputs will be postponed until the next section. 

Theorem 4: Complex Frequency Shift (s-Shift) Theorem: The Laplace transform of 

y{t) = x(t)e~at (5-36) 

is 

Y{s) = X(s + a) (5-37) 

where X(s) = £[x(f)\. 

The theorem is proved by substituting (5-36) into the definition of the Laplace transform and noting 

that the integral is the Laplace transform of x(t) with the variable s + a. The proof is left to the prob¬ 

lems at the end of the chapter. 

The 5-shift theorem is useful for extending the table of Laplace transforms. For example, application 

of the 5-shift theorem to (5-16) shows that 

iE[e at cos co0t\ = 
s + a 

(s + a)2 + cuq 

while application to (5-17) results in the Laplace transform pair 

w0 
!£[e at sin ajQt] 

(s + a)2 + o>o 

(5-38) 

(5-39) 

EXAMPLE 5-4 

Consider the function of s, 

m = 
s + 8 

s2 + 6s + 13 

To find the corresponding function of time, we write it as 

5 + 8 
X(s) 

(,s + 3)2 + 4 

5 + 3 
+ 

(s + 3)2 + 22 ' (s + 3)2 + 22 

Applying the transform pairs (5-38) and (5-39), we obtain 

x(t) = e_3,(cos 2r + - sin 21), t > 0 

(5-40) 

(5-41) 

(5-42) 

Matlab Application 

We check the result of this example using Matlab symbolic manipulation. This time we use a pro¬ 

gram stored in the M-file c5 ex4 . m and run it with echo on. The result is: 
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EDU» echo on 

EDU» c5ex4 

% MATLAB solution of the inverse Laplace transform 

% for Example 5-4 

% 

X = sym('(s+8)/(sA2+6*s+13)'); 

x = ilaplace(X); 

pretty(X) 

s + 8 

2 

s + 6 s + 13 

pretty(x) 

5/2 exp(-3 t) sin(2 t) + exp(-3t) cos(2 t) 

Note that the same result is obtained as obtained analytically on this fairly simple example. In other 

cases that are more complex, Matlab may give the answer in a different form. The pretty function 

has been employed here to make the equations look more like the analytical result. 

Theorem 5: Delay Theorem: If the Laplace transform of x(f)u(t) is X(s), then 

X[x(t-t0)u(t-t0)] = e~st°X(s), t0> 0 (5-43) 

The proof follows easily by using the definition of the Laplace transform (5-2) with x(t — t0)u(t — tQ) 

substituted. Since u(t—t0) = 0 for t < t0, we obtain 

!£[x(t - t0)u(t - t0)] = f x(t — t0)e~st dt (5-44) 

K 
Letting t' = t — t0 in the integrand, this becomes 

f00 
I£[x(t - tQ)u(t - tQ)] = x(t')e~s^,+to) dt' = X(s)e~st° (5-45) 

Jo 

which proves the theorem. 

We note that the step function u(t — t0) is necessary in (5-43) to give the proper lower limit on the 

Laplace transform. Equation (5-43) does not hold iftQ < 0 since the single-sided Laplace transform will 

not include the portion ofx{t — tf)u(t—tf)} that exists for t < 0. 

EXAMPLE 5-5 _:_ 

The Laplace transform of a square wave beginning at t = 0 is 

%[xsq(t)] = £ u(t) - 2u(t - yj + 2u(t - T0)- 

= 1 (1 - 2e~sT°/2 + 2e~sT° - • • •) (5-46) 

Using the series 

l + X ’ll 
(5-47) 
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we obtain 

^[*sq(0] = “ ~ ^ 

1 1 - e~sT»/2 

~ 7 1 + e“sr»/2 
(5-48) 

where jcsq(0 is a square wave with amplitudes ± 1 and period T0. 

Matlab Application 

In this application, we illustrate the Matlab function Heaviside, which is the symbolic equiva¬ 

lent to our stp_fn, and the factor operator in addition to those symbolic operations illustrated 

previously. A Matlab M-file program that computes the first three terms of (5-46) and the sym¬ 

bolic Laplace transform of this three term series is given below (command window appearance with 

echo on): 

» echo on 

» c5ex5 

% Illustration of the symbolic toolbox of MATLAB 

% to implement the delay theorem 

% 

syms t s 

xO = sym('Heaviside(t-0) ') ; 

xl = sym('Heaviside(t-1)'); 

x2 = sym('Heaviside(t-2)') ; 

x3 = sym('Heaviside(t-3)') ; 

xt = x0+xl+x2+x3; 

X = laplace(xt); 

factor(X) 

ans = 

(exp(- 3 * s)+exp(- 2 * s)+l+exp(-s))/s 

pretty(X) 

exp(-3 s) exp(-2 s) exp(-s) 

- +-+ 1/s +- 

s s s 

Note that the factor operation pulls out the 1/s, but does not reorder the terms with the 1 at the end 

which we would do mentally. Note also that the pretty operation keeps the same order as the pro¬ 

gram output and the factor function. The author could not discover a way to use a for loop to form 

the symbolic series. Perhaps the student can discover a way to accomplish this. 

Theorem 6: Laplace Transform of the Convolution of Two Signals: Given two signals, xft) and 

x2(t), which are zero for t < 0, their convolution is 

y(J) = (0 * x2(t) f x1(X)x2(t — A) dX = f 
Jo Jo 

x1(X)x2(t - A) dX (5-49a) 

with Laplace transform 

Y(s) = Xt(s)X2(s) (5-49b) 
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The last equation of (5-49a) follows by virtue of x2{t) = 0, / < 0, or x2(t~X) = 0, A > /. The proof 

is as follows: By definition of the single-sided Laplace transform, we have 

ns-) = 2[y(0] = f f *i(A)x2(t - A) d\ 
Jo Lvo 

f dt (5-50) 

If we let r] = t— A, (5-50) becomes J,oo r r 00 

*i(A) x2(ii)e^dV 
0 L-^0 

= X,(s)X2(s) (5-51) 

We recognize the inner integral as the Laplace transform of x2(t) and the outer integral as the Laplace 

transform of xft). Thus, the Laplace transform of the convolution of two signals is the product of their 

respective Laplace transforms, and the region of absolute convergence consists of at least the intersec¬ 

tion of the regions for X^s) and X2(s). 

Theorem 7: Laplace Transform of a Product: The Laplace transform of a product of two signals 

can be expressed as an integral in the complex plane. We will not use it in this chapter, but it is given 

in the table of Laplace transform theorems at the end of this section for reference. 

Theorem 8: Initial Value Theorem: The Laplace transform of the derivative of a signal has been 

shown to be 

£6 
dx 

dt v Jo 

dx 

dt 
e st dt = vX(s) - x(0 ) (5-52) 

Ifx(t) is continuous at t = 0, dx/dt does not contain an impulse at t = 0. Therefore, as s —> 00 with a 

greater than the abscissa of convergence, the integral vanishes, giving 

lim sX(s) = x(0 ) = x(0+) 
S —>00 

If x{t) is discontinuous at t = 0, then dx/dt contains an impulse [x(0+) 

(5-53) 

jdf)-)]^), and 

Thus 

or 

f00 dx 
lim — e~st dt = x(0+) - x(0 ) 

Jq- dt 

x(0+) - x(0“) = lim sX(s) - x(0”) 
S— 

(5-54) 

(5-55a) 

lim sZ(s) = x(0+) • (5-55b) 
S—>oo 

provided thatx(0+) exists. If the lower limit on the Laplace transform had been taken as 0+, the impulse 

would not have been included and we would have again obtained (5-55b). Thus limv^0 sX(s), provided 

that it exists, always gives the initial value ofx(t) as t —> 0+ regardless of the lower limit used on the 

Laplace transform integral. 

EXAMPLE 5-6 

The initial value of exp( — at) cos co0t u(t) is given by 

s + a 
lim v 
■s->°° (,s + af + o)q 

where the transform pair given by (5-38) has been used. 

= 1 (5-56) 
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The initial value of exp( — at) sin co0t u(t) is given by 

lim s 
S-^cc 0 + of + 

= 0 (5-57) 

where the transform pair (5-39) has been used. 

The initial value of the time function whose Laplace transform is s/(s + 10) cannot be found since 

lim^^ s2/(s + 10) does not exist. The reason is that 

_ 10 

s + 10~ s + 10 
(5-58) 

has the inverse Laplace transform 8(t) — 10e~l0tu(t), which has an impulse at t = 0. 

Theorem 9: Final Value Theorem: If x{t) and dx(t)/dt are Laplace transformable, then 

lim x(t) = lim sX(s) (5-59) 
t—>00 S —>0 

provided that limt_yxpc{t) exists, which is the case ifsX(s) has no poles on the jo-axis or in the right-half 

plane. The proof of this theorem is left to the problems. 

EXAMPLE 5-7 

The final value of a unit step is given by 

lim s — = 1 
s-> o s 

The final value of exp( — at)u(t), a > 0, is obtained from 

lim ^ 
5->0 s + a 

= 0 

(5-60) 

(5-61) 

The final value of exp(at)u(t), a > 0, is infinite. Observing that the pole of its Laplace transform 

is in the right half plane, we see that the final value theorem should not be applied. 

As a final example, the final value of cos(co0t)u(t) doesn’t exist (this signal oscillates between 1 

and -1 as t —> °°). If we attempt to apply the final value theorem, we get 

lim x —9 = 0 (5-62) 
r->°° s + C0q 

which is wrong. However, the final value theorem does not apply to signals having Laplace trans¬ 

forms with poles on the jo-axis. 

Theorem 10: The Scaling Theorem: The Laplace transform ofxiat), where a is a positive constant, 

is a lX(s/a). This is the generalization of the scale change theorem of Fourier transforms to the complex 

s-domain. Note that since we are dealing with the single-sided Laplace transform, a must be positive. If 

a = — l, for example, a time function to be Laplace transformed would be reversed and exist for t nega¬ 

tive. The resulting negative-time portion would then not be included in the Laplace transform integral. 

EXAMPLE 5-8 __ 

In this example we use the symbolic toolbox of Matlab to illustrate the scaling theorem. The pro¬ 

gram is run from an M-file with echo on to display the following in the command window. The com¬ 

ment statements make it self-explanatory. 
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echo on 

% Example 5-8 illustrates the scaling theorem 

syms t 

x = sym('exp(-alpha*t)*cos(omega_0*t) 

*Heaviside(t)'); 

X =laplace(x); 

pretty(X) 

s + alpha 

% Define a signal 

% Find its Laplace transform 

% Display it for reference 

(s + alpha) + omega_0 

X2 = subs(X, ’ s/2' , 's'); 

X3 = X2/2; 

pretty(X3) 

1/2 s + alpha 

% Scale: substitute 

% s/2 for s 

% Scale: multiply by 1/2 

% Display for reference 

(1/2 s + alpha) + omega_0 

x3 = ilaplace(X3); % Inverse LT scaled LT 

pretty(x3) % Display: result is x(t) 

% with t replaced by 2t 

exp(- 2 alpha t) cos(2 omega_0 t) 

The theorems and transform pairs that have been developed so far are collected for easy reference 

in Tables 5-2 and 5-3, respectively. 

TABLE 5-2 
Laplace Transform Theorems 

1. Linearity 

2. Differentiation 

3. Integration 

4. ^-shift 

5. Delay 

6. Convolution 

7. Product 

Operation in Time Domain 

axxx{t) + a2x2(f) 
dnx(t) 

~dt"~ 

J x(A) dX 

x(t) exp(—at) 
x(t - t0)u(t - t0) 

Operation in Frequency Domain 

xx(t)x2(t) 

8. Initial value (provided lim x(t) 
limits exist) 

9. Final value (provided lim x(t) 
limits exist) 

axXx(s) + a2X2(s) 

snX(s) - sn~~lx(0~) - 

X(s) 

X(s + a) 

X(s) exp(-st0) 
00 

x(t) * x2(t)= xx(X)x2(t - A) dX Xx(s)X2(s) 
Jo 

l rc+>c 

Jc-joo 

lim 5^(5) 

Adj(5 X)X2(X) dX 

lim sX(s) 
j-> 0 v 7 

10. Time scaling x(at), a > 0 
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TABLE 5-3 
Extended Table of Single-Sided Laplace Transforms 

Signal 
Laplace 

Transform 

1. #«)(*) 

2. 1 or u(t) 

tn Qxp(—at)u(t) 

3- /7! 

sn 

1 

5 

1_ 

(s + a)n+1 

4. cos u(t) 

5. sin cu0t u{t) 

6. exp ( — at) cos o>0t u(t) 

7. exp( — ctf) sin o)0t u(t) 

8. Square wave: 

w(t) — 2m^ — 2°] + 2w(t ~ T0)- 

9. (sin cu0/ - ojQt cos co0t)u(t) 

10. (cu0r sin o)0t)u(t) 

11. co0t exp( - atf) sin £L>0f w(t) 

12. exp( —aT)(sin — cu0tcos co0t)u(t) 

s2 + 0)1 

s + a 

(s + a)2 + a>o 

(5 + a)2 + o)q 

1 1 - e-^ 

^ 1 + e~sT°/2 

(s2 + <o2)2 

2c0qiS 

(^2 + co2f 

2o)l(s + a) 

[(5 + a)2 + o)20]2 

__ 
1(S + «)2 + col? 

Comments on 
Derivation 

Direct evaluation with aid of (1-66) 

Direct evaluation 

Differentiation applied to pair 3, 

Table 5-1 

Example 5-1 

Example 5-1 

5-shift and pair 4 

5-shift and pair 5 

Example 5-5 

Example 5-12, pair 5, and convolution 

Pair 4 and convolution 

5-shift and pair 10 

5-shift and pair 9 

5-4 Inversion of Rational Functions 

The examples of Section 5-3 illustrate that functions involving the ratio of two polynomials in 5, called 

rational functions of 5, are commonly occurring Laplace transforms. Indeed, this will be the form of the 

Laplace transform obtained when considering any fixed, linear, lumped system with a forcing function 

that is a power of t, exponential in t, sinusoidal, or a combination of these. 

The techniques that we shall develop for inversion of rational functions of 5 are valid only for 

proper rational functions, that is, functions for which the numerator polynomial is of degree less than 

the degree of the denominator polynomial. For cases where this is not true, it is very simple to obtain a 

proper rational function through use of long division. For example, consider the nonproper rational 

function of 5: 

Z(s) = 
5 + 2 

5+1 
(5-63) 
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This can be written as 

Z(s) = 1 + 
1 

5 + 1 
(5-64) 

by use of long division. We may easily apply the Laplace transform pairs of Table 5-3 to obtain its inverse 

Laplace transform. The important point is that the second term of (5-64) is a proper rational function. 

To illustrate techniques for the inverse Laplace transformation of proper rational functions, we con¬ 

sider (5-35) for several special cases. To simplify the notation, we consider the voltage across the re¬ 

sistor in Figure 5-3 as the system output y(t), and denote its Laplace transform as Y(s). Also, let 

and 

2 R 
R 

L 
(5-65) 

tl = 
LC 

(5-66) 

Thus (5-35) becomes 

Y(s) = 
2RRfo) - uc(Q-)] 

s2 + 2£a>ns + col 
(5-67) 

We refer to £ and ojn as the damping ratio and natural frequency, respectively. The roots of the denom¬ 

inator of (5-67) are given by 

= [~C ± (5-68) 

Thus, if £ > 1, the roots are real and distinct; if £ < 1, the roots are complex conjugates; and if £ = 1, 

they are real and equal. 

EXAMPLE 5-9 SIMPLE FACTORS 

Let the input to the circuit shown in Figure 5-3 be a unit step function having Laplace transform 

X(s) = 1 Is. Also, assume that vc(0~) = 0, o?n = 16, and 2£con = 10. Thus (5-67) becomes 

Y(s) = 
10 

s2 + 105 + 16 

10 

(5 + 2)(^ + 8) 
(5-69) 

Checking Table 5-3, we see that the required form for (5-69) does not appear. However, (5-69) may 

be expanded in partial fractions as 

10 = A B 

(s + 2)(s + 8) 5 + 2 5 + 8 

(5-70) 

We have three routes we can follow in determining the unknown coefficients, A and B. 

1. Common Denominator. Placing each factor on the right-hand side of (5-70) over a common de¬ 

nominator results in 

10 = (5 + 8)A + (5 + 2 )B (5-7 la) 
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or 

10 = (A + B)s + (8A + 2 B) (5-7 lb) 

Setting coefficients of like powers of s equal on either side of this equation, we obtain the simulta¬ 

neous equations 

A + B = 0 (5-72a) 

8A + 2B = 10 (5-72b) 

The first of these equations gives A = —B, which, when substituted into the second, yields 

-8£ + 2£=10 (5-73) 

or B = and A = Thus 

Y(s) = 
1 1 

3 \s + 2 S' + 8/ 

Using the linearity theorem and transform pair 3, we find y(t) to be 

y(t) = - (e~2t e~St) u(t) 

(5-74) 

(5-75) 

2. Substituting Specific Values of s. Since (5-70) is an identity for any s, we may obtain two si¬ 

multaneous equations for A and B by substituting two convenient values of s (neither of which are 

equal to either root of the denominator). For example, substituting s = 0 and s = 2 in (5-70), we ob¬ 

tain the two equations 

and 

or 

10 

(2)(8) 

10 

A B -1_ - 
2 8 

B - A 
(4)(10) ” 4 + 10 

4A + B = 5 

5 A + 2B = 5 

(5-76a) 

(5-76b) 

(5-77a) 

(5-77b) 

which give the same values of A and B as before. 

3. Heaviside's Expansion Theorem. The coefficients in (5-70) may be found by yet another tech¬ 

nique, known as Heaviside’s expansion theorem.1 This procedure can be justified, in the case of 

(5-70), by noting that multiplication of both sides by s + 2 results in the equation 

10 

s + 8 
= A + B 

s + 2 

s + 8 
(5-78) 

Since (5-78) holds for all values of s, we can obtain an equation for A by letting s = —2, which elim¬ 

inates the second term on the right-hand side. The result is 

A = f = l (5-79) 

"'Named after Oliver Heaviside (1850-1925), an English engineer, who originated operational calculus. 
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as before. Similarly, B can be found by multiplying both sides of (5-70) by s + 8 and setting s = - 8. 

This results in 

10 

s + 2 
= A 

s + 8 

s + 2 
+ B 

s — —8 

or B = 10/(—6) = —5/3, as before. This works if roots are not repeated. 

(5-80) 

We have just seen how to expand a rational function of .9, which contains only simple factors in the 

denominator, in partial fractions. That is, the procedures used in Example 5-9 can be used as long as the 

factors in the denominator are different or are not raised to a power. Furthermore, the degree of the nu¬ 

merator must be less than the degree of the denominator; that is, it must be a proper rational function 

of s. If not, long division is used to obtain a proper rational function. 

We now wish to consider examples involving more complicated factors than simple ones in the 

denominator. 

EXAMPLE 5-10 IMAGINARY ROOTS 

As our next example, suppose that the input to the circuit shown in Figure 5-3 is x(t) = 

(-0.5 cos t + 2.5 sin t)u{t), with Laplace transform 

0.5,9 2.5 _ -0.59 + 2.5 

X^s' ~ s2 + 1 + s2 + 1 ~~ s2 + 1 
(5-81) 

and that vc(0~) = —2v. All other parameters are assumed to be the same as in Example 5-9. Then 

the Laplace transform of the output is 

n.v) = 
10[(—0.5s2 + 2.5 s)/(s2 + 1) + 2] 

s2 + 10s + 16 

15s2 + 25s + 20 

(s2 + l)(s + 2)(s + 8) 
(5-82) 

Again, we have several approaches at our disposal for obtaining the partial-fraction expansion of 

(5-82). For example, the factor s2 + 1 in the denominator can be factored as (s + j)(s—j) and Heavi¬ 

side’s expansion theorem used as in part (3) of Example 5-9. Using such a procedure, we would rep¬ 

resent (5-82) as 

Y(s) = 
A 

+ 
A, 

+ + 
s+7 s —/ s + 2 s + 8 

Using Heaviside’s expansion formula, A3 and A4 are found to be 

A3 = (s + 2)Y(s)L_2 

15s2 + 25s + 20 

(s2 + l)(s + 8) 

and 

A4 (s + 8)Y(s)U_8 

1592 + 259 + 20 

(s2 + 1)(9 + 2) \S = -8 

(5-83) 

(5-84) 

= -2 (5-85) 
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respectively. Ax and A2 could be found similarly. However, by examining the first two terms in 

(5-83) further, we can simplify things to some extent. Putting the first two terms over a common 

denominator, we obtain 

A 
s +j 

+ (A + + i(A 2 ~ A) 
s2 +1 

(5-86) 

The numerator of (5-86) must be a real function of 5. The only way that this can be true is for Ax = 

A2*, so that A! + A? = 2 Re(A,) A B, and j(Al - A2) = -2 Im(Aj) A b2. Thus (5-83) can be writ- 

ten as 

Y(s) = 
Bxs + B2 

s2 + 1 

1 
_l_ -- 

s + 2 

2 

s + 8 
(5-87) 

The unknown constants Bx and B2 in the first term on the right-hand side can be found in two ways. 

1. Placing the right-hand side of (5-87) over a common denominator and setting the result equal 

to (5-82) results in the identity 

(Bxs + B2)(s + 2)(s + 8) + (s2 + 1 )(s + 8) - 2(s2 + 1 )(s + 2) = 15s2 + 25s + 20 (5-88) 

Multiplying factors, collecting like powers in s, and setting coefficients of like powers of s equal, we 

obtain 

^ + 1-2 = 0 or B1 = 1 > 

10Bx + B2 + 8 - 4 = 15 or 10Bt + B2 =11 

16Bx + 10fi2 + 1 - 2 = 25 or 16^ + 10B2 = 26 

16Z?2 + 8 — 4 = 20 or B2 = 1 J 

(5-89) 

We note that although there are only two unknowns and four equations, the four equations are con¬ 

sistent; the second and third provide checks on the first and the fourth. Substituting these results in 

(5-87), F(s) becomes 

Y(s) = 
s + 1 

s2 + 1 
+ 

1 

s + 2 

2 

s + 8 
(5-90) 

Using Table 5-3, the output time function is 

y(t) = [cos t + sin t + exp(—2t) — 2 exp(-8r)]w(0 (5-91) 

The same result would have been obtained by finding Ax and A2 in (5-83) using Heaviside’s expan¬ 

sion theorem. The student should show this. 

2. Another approach that can be used to find the first term in (5-87) is to equate (5-87) and (5-82). 

Solving for (Bxs + B2)/(s2 + 1) results in 

Bxs + B2 = 15s2 + 25s + 20_1_ 2 

s2 + 1 (s2 + 1)(5' + 2) (s + 8) s + 2 s + 8 

__ 15s2 + 25s + 20 — (s2 + l)(s + 8) + 2(s2 + l)(s + 2) 

(s2 + l)(s + 2)(s + 8) 

_ s3 + 11s2 + 26s + 16 

(s2 + l)(s + 2 )(s + 8) 
(5-92) 
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This looks worse than our initial expression, but if (5-87) holds, and we know that it does, then 

(s + 2){s + 8) = s2 + 10s + 16 must be a factor of the numerator. Carrying out the long division on 

(5-92), we find this to be the case, and 

B^s + Z?2 s + 1 

s2 + 1 ~ s2 + 1 
(5-93) 

as before. 

Matlab Application 

Matlab may be used to find partial fraction expansions by means of the residue function. The nu¬ 

merator and demonimator polynomials are first specified by entering their coefficients as row vec¬ 

tors with the first element being the coefficient of the highest power. Both numerator and 

denominator vectors must have the same number of elements. If, for example, the numerator poly¬ 

nomial is of degree less than that of the denominator, Os will have to be entered in the appropriate 

positions to make both the same dimension. The command window entries for obtaining the partial 

fraction expansion of T(a) in this example are: 

EDU» num = [0 0 15 25 20]; 

EDU» den = [1 10 17 10 16]; 

EDU»[R, P, k]=res±due(num, den) 

R = 

-2.0000 

1.0000 + O.OOOOi 

0.5000 - 0.50001 

0.5000 + 0.5000i 

P = 

-8.0000 

-2.0000 

0.0000 + l.OOOOi 

0.0000 - l.OOOOi 

k = 

[] 

Note the two leading 0s in num to make it the same size as den. Also note that the factors of the 

denominator polynomial had to be first multiplied out before its vector representation could be en¬ 

tered in the command window. This may be done by means of the cony function which is really a 

polynomial multiply. First the three denominator factors are defined by means of their coefficients 

in a row vector, with the coefficient of the highest power of s first. Since the highest power is two 

in a denominator factor, all must be defined as second-order polynomials. Then the conv function 

is applied twice, in this case by concatenation. The Matlab command window statements are 

given below: 

EDU» D1 = [10 1]; 

EDU» D2 = [0 12]; 

EDU» D3 = [0 18]; 

EDU» den = conv(Dl, conv(D2,D3)) 

den ** 

0 0 1 10 17 10 16 
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Reading from right to left, with the right-most number being the coefficient of 5°, we read the de¬ 

nominator polynominal as 

54 + 10s-3 + 17s2 + 10s + 16 

The outputs of the residue function are three arrays. The first, R in this case, gives the residues or 

the partial fraction expansion coefficients. The second, P, gives the denominator polynomial roots. 

The third, or k, gives the remainder, which in this case is empty because there is no remainder. Thus, 

the result of the residue operation is equivalent to the equation 

y(s) = + 
l 

5 + 8 5 + 2 s + j 
+ °-5 ~ / + 0-5 + J 

s + i 

This may be shown to be equivalent to (5-90) by combining the last two terms over a common de¬ 

nominator to give the first term of (5-90). 

EXAMPLE 5-11 REPEATED LINEAR FACTORS 

In this example we consider the case of repeated linear factors. Let the forcing function for the cir¬ 

cuit shown in Figure 5-3 be x(t) = exp(—2t)u(t), for which the Laplace transform is 

m = 
i 

s + 2 

Assume that vc(0~) = 0 and that the other parameters are the same as in Example 5-8. Thus 

y(s) =-—- 
(> (s + 2)\s + 8) 

The partial-fraction expression of this rational function must be of the form 

Y(s) = 
A + 

5 + 8 5 + 2 (5 + 2)2 

where Ax and A3 can be found using the Heaviside technique. We obtain 

A, = (s + 8)y(s)U_8 : 

and 

^3 = 0 + 2)2y<y>U_2 

(5-94) 

(5-95) 

(5-96) 

.20 
9 

.10 
3 

(5-97a) 

(5-97b) 

The same approach will not work for A2 because multiplication by (5 + 2) removes only one of the 

(5 + 2) factors in the denominator of (5-95). Substitution of 5 = -2 then gives an undefined result 

for A2. We could use the procedure employed in the preceding example and subtract Ax/(s + 8) and 

A3!(s + 2)2 from Y(s). However, it is easier to note that 

ds 
[(5 + 2)2Y(s)] 

d A | (.s’ + 2f 

ds 5 + 8 
+ t(s + 2M2 

s = —2 ds 
= A, 

\s = ~2 

or 

105 

ds \s + 8 s=—2 

10(5 + 8) - 10s 

(s + 8)2 s — 2 

20 
9 

(5-98) 

(5-99) 
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Thus 

Y(s) 
20 

9 

1 
+ 

1 

s + 8 ' s + 2 (5 + 2)2 

Using Table 5-3, we find the inverse Laplace transform to be 

y(t) = y[-exp(-8f) + exp(—20 - p e\p(-2t)]u(t) 

(5-100) 

(5-101) 

EXAMPLE 5-12 REPEATED LINEAR FACTORS 

We consider next the generalization of the method for finding the partial-fraction expansion for re¬ 

peated linear factors developed in Example 5-10. Suppose that the forcing function for the circuit 

of Figure 5-3 is now x(t) = t exp(—2t)u(t), with all other circuit parameters the same as in Exam¬ 

ple 5-10. Thus 

X(s) 
1 

and 

n^) 

(s + 2)2 

10s 

(s + 2 )3(s + 8) 

The partial-fraction expansion of Y(s) is of the form 

At Aj A3 B 

Y(S) = s + 2 + (, + 2)2 + (.V r 2): + .V + 8 

Using Heaviside’s expansion formula, we obtain 

B = (s + 8 )Y(s) 

A3 = (s + 2)3F(4=_2 

Using the differentiation technique of Example 5-10, we find that 

_ to 
"8 27 

_10 
’ 3 

A2 = - [(s + 2)3Y(s)] 

d ( IQs 

ds \s + 8 

s=-2 

80 

(s + 8)2 

20 

9 

s— —2 

To find Aj, we note that multiplication of both sides of (5-104) by (s T 2)3 gives 

(v + 2)3Y(,s) — (s + 2)2A1 + (s + 2 )A2 + A3 + 
(s + 2 )3B 

~ s + 8 

(5-102) 

(5-103) 

(5-104) 

(5-105) 

(5-106) 

(5-107) 

(5-108) 
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Differentiation twice with respect to s gives 

d2 r, . d2 T(^ + 2)3 

ds2 
[(? + 2)3Y(S)] = 

Setting s = —2, we obtain 

2Ax 

ds2 s + 8 

d2 " 10s " 

ds2 s + 8 

d ' 80 

ds (s + 8) 

160 1 

(s + 8)3 . 

B + 2A^ + 0 + 0 

s — -2 

s~—2 

20 

'll 

Thus Aj and 

n«) = 
10 1 10 

27 + 8 5 + 1) ' 9 0 + 2)2 3 (s + If 

1 \ 20 1 + 

Using Table 5-3, we find y(t) to be 

y(t) = [ffe-* - er-X) - ff(t - f)e-2']n(t) 

(5-109) 

(5-110) 

(5-111) 

(5-112) 

Mat lab Application 

The command window entries to find the partial fraction expansion of Y(s) in Example 5-12 are: 

EDU» num = [0 0 0 10 0] ; 

EDU» den = [1 14 60 104 64]; 

EDU» [R, P, k] = res±due(num, den) 

R= 

0.3704 

-0.3704 

2.2222 

-3.3333 

P= 

-8.0000 

-2.0000 

-2.0000 

-2.0000 

k= 

[] 

The first two elements in the R matrix are 10/27 = 0.3704 and -10/27 = -0.3704, corresponding 

to the partial fraction expansion coefficients for the denominator factors 0 + 8) and (s + 2), re¬ 

spectively. The third element is 20/9 = 2.2222 corresponding to the partial fraction expansion coef¬ 

ficient for the denominator factor (s + 2)2, and the last element of the R matrix is —10/3 = —3.3333 

corresponding to the partial fraction expansion coefficient for the denominator factor (s + 2)3. These 

values match those obtained in the analytical solution. 
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Based on the preceding two examples, we may deduce a general result for expanding rational func¬ 

tions involving repeated linear factors. If the rational function is of the form 

Y(s) = 
P(s) 

(s + a)"Q(s) 

then its partial-fraction expansion is of the form 

Y(s) = 
At 

+ 
(s + a) (s + a)2 

+ + 
(s + of Q(s) 

(5-113) 

(5-114) 

where P(s), Q(s), and R(s) are polynomials in s and the factors of P(s) and Q(s) are distinct from s + a. 

The mt\\ coefficient, Am, is given by 

A m 

l 

(n - m)\ ds(n~m) 
[(s + a)"y(j)]i=_„ (5-115) 

To continue with the use of partial-fraction expansions in obtaining inverse Laplace transforms, we 

consider two examples which are really special cases of previous examples, but which are conveniently 

carried out in special ways. 

EXAMPLE 5-13 COMPLEX-CONJUGATE FACTORS 

In this example we consider the partial fraction expansion of a function having complex-conjugate 

roots. Consider the rational function of s 

Y(s) = 
2 s2 + 6s + 6 

(s + 2)(s2 + 2s + 2) 

2s2 + 6s + 6 

(s + 2) [(s + l)2 + 1] 

The quadratic factor in the denominator can be factored as 

(J+ D2+ 1 =(*+ 1 +J)(J+ 1 -j) 

(5-116) 

(5-117) 

and Heaviside’s expansion theorem could be used as in Example 5-9 since all factors are distinct. 

However, it is easier to keep both of the complex-conjugate factors expressed by (5-117) together 

and expand (5-116) as 

Y(s) = 
A 

s + 2 

Bs + C 

s2 + 2s + 2 
(5-118) 

This allows the inverse Laplace transform to be found easily with the help of pairs 3, 6, and 7 in 

Table 5-3. 

As before, we may calculate A by using Heaviside’s theorem: 

A = (s + 2)Y(s)|j=_2 

2s2 + 6s + 6 

s2 + 2s + 2 
(5-119) 

The coefficients B and C may be obtained by substituting specific values of s in (5-118), or by placing 

both terms on the right-hand side over a common denominator and equating coefficients of like 
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powers of 5 in the numerator. Or, one could subtract l/(s + 2) from Y(s) to produce the second 

term on the right-hand side of (5-118). We will use the first technique. First, letting s = 0 in (5-118), 

we obtain 

n°) = j + ~ (5-120a) 

or 

C = 27(0) - 1 

To find B, we multiply both sides of (5-118) by 5 and let s —> °°. This gives 

lim sY(s) — A + B 
S—>00 

or 

B = lim sY(s) ~ A 
S—>co 

=2-1=1 

Thus (5-118) becomes 

Y(S) = 
1 

+ 
s + 2 

s + 2 s2 + 2s + 2 

1 5 + 1 1 

~ s + 2 + (s + l)2 + 1 + (5 + l)2 + 1 

Application of transform pairs 3, 6, and 7 in Table 5-3 then yields 

y(t) = [e~2t + ^_r(cos t + sin t)]u(t) 

(5-120b) 

(5-121a) 

(5- 121b) 

(5-122) 

(5-123) 

EXAMPLE 5-14 REPEATED QUADRATIC FACTORS 

Consider the rational function 

n*) = 
s4 + 553 + 12s2 + 75 + 15 

(s~F 2)(52 + l)2 
(5-124) 

The second factor in the denominator could be expanded as (s + j)2(s — j)2 and (5-115) used to treat 

the repeated roots. However, it is more convenient to keep the complex conjugate factors in the de¬ 

nominator together and expand (5-124) as 

Ai B,s + Cj B2s + C2 

w 5 + 2 52 + 1 (52 + l)2 

Using Heaviside’s technique, we find A! to be 

Ax = (5 + 2)Y(s)\s=_2 = 1 

(5-125) 

(5-126) 

We can obtain the remaining coefficients by putting the right-hand side of (5-125) over a common 

denominator and equating the resulting numerator to the numerator of (5-124). This results in the 

identity 
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Ax(s2 + l)2 + (Bxs + Cx)(s + 2)(s2 + 1) + (B2s + C2)(s + 2) 

= s4 + 5s3 + 12s2 4- 7s + 15 (5-127) 

Multiplying the factors on the left-hand side together and collecting like powers of s, we obtain 

(Ax + £j)s4 + (Cx + 2Bx)s3 + (2Ax + Bx + 2CX + B2)s2 + (2BX + Cx + 2 B2 + C2)s 

+ (Aj + 2CX + 2C2) = s4 + 5s3 + 12s2 + 7s + 15 (5-128) 

The coefficients of like powers of s on either side of (5-128) must be equal since (5-128) is an iden¬ 

tity. This results in the equations (since Ax is known only four equations are needed) 

A, + 5, = 1 

Cx + 2BX = 5 

2Aj + Bx + 2 Cx + B2 — 12 

Aj + 2Cj + 2C2 — 15 

Since A, = 1, the first of these equations results in 

This immediately gives 

B, = 1 - A, = 0 

Cj = 5 

from (5-129b). Thus (5-129c) and (5-129d) become 

2+lO + B0 = U or B, = 0 

(5-129a) 

(5-129b) 

(5-129c) 

(5-129d) 

(5-130) 

(5-131) 

(5-132a) 

1 + 10 + 2C2 = 15 or C2 = 2 

respectively. The partial-fraction expansion for T(s), as given by (5-125), is 

(5-132b) 

Y^ 5 + 2 + s2 + 1 + (s2 + If 
(5-133) 

This can be inverse-Laplace-transformed by using the theorems and transform pairs given ear¬ 

lier. The first two terms are immediately inverse-transformed by using pairs 3 and 5, respectively, of 

Table 5-3. The last term can be handled by using the convolution theorem on pair 5 of Table 5-3. Thus 

i£{[sin o)0t u(t)] * [sin (o0t u(t)]} = -~2-2\2 

Vs + wo) 

The left-hand side, using trigonometric identities, is 

sin <u0A sin co0(t — A) dX = \ cos(2cu0A~co0t) dX — \ \ cos co0t dX 
J o Jo 

(5-134) 

-— sin co0t — ~t cos (o0t 
2 (On 

(5-135) 

Therefore we have the transform pair 

sin co0t~ co0t cos o)0t o —~2 (5-136) 
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which is pair 9 of Table 5-3. The inverse Laplace transform of (5-133) can be written as 

y(t) = (e~2t + 5 sin t + sin t — t cos t)u(t) 

= («e~2t + 6 sin t — t cos t)u{t) (5-137) 

Mat lab Application 

We test the capability of Matlab to find the correct inverse Laplace transform in this more com¬ 

plex example. The command window entries for doing so are as follows: 

EDU» Y=sym(1 (sA4+5*sA3 + l2 *sA2+7 *s+15)/((s+2)*(sA2+l)A2) ’) 

Y = 

(sA4+5*sA3+12*sA2+7*s+15)/((s+2)*(sA2+l)A2) 

EDU»pretty(Y) 

4 3 2 

s+5s+12s+7 s+15 

2 2 

(s + 2) (s+1) 

EDU» y = ilaplace(Y) 

y = 
exp(-2*t)+6*sin(t)-t*cos(t) 

EDU» pretty(y) 

exp(-2 t) + 6 sin(t) - t cos(t) 

This corresponds to (5-137), which provides both a test for Matlab and a verification of our ana¬ 

lytical result. 

*5-5 The Inversion Integral and Its Use in Obtaining Inverse 
Laplace Transforms 

In the introductory discussion on the Laplace transform given at the beginning of the chapter, we de¬ 

rived the inversion integral (5-3) in a logical way by making use of the inverse Fourier transform. In 

that derivation a was assumed constant. It is much more useful to allow s to be a complex variable where 

both a and co may vary. The inversion integral in this case takes the form 

( 0, 
1 

2 77] 
da = { 2+0+)’ 

\[x(t+) + x(r)], 

f<0 

t = 0 

t > 0 

(5-138) 

where c > 0, c > crc, with crc an abscissa of convergence of X(s). 

To evaluate (5-138) we may make use of the residue theorem of the theory of complex variables.1' 

The residue theorem pertains to functions of a complex variable F(s) that contain a finite number of iso¬ 

lated singular points in the complex s-plane. Near such a singular point, say s = s0, the function can be 

represented as a series of the form (referred to as a Laurent series) 

' See Appendix C for a short summary of some pertinent definitions and theorems of complex variable theory. 
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F(s)= 2 Bn(s-sor (5-139) 
n — — oo 

The Bfs are expansion coefficients which can be found by various means. The coefficient B_x is re¬ 

ferred to as the residue of F(s) at the singular point s = s0. 

With this introduction, we may now state the residue theorem. 

Residue Theorem: Let C be a closed path in the complex s-plane within and on which a function 

F(s) is analytict except for the isolated singular points sv s2, , sn with residues Kv K2, . . . , Kn, re¬ 

spectively. Then 

<j> F(s) ds = 2TTj(Kl + K2 + ■■■ + Kn) (5-140) 

where <j>c ( • ) ds is understood to mean the line integral in a counterclockwise sense along C and is re¬ 

ferred to as a contour integral. 

How do we make use of the residue theorem to evaluate the inverse Laplace transform of a function 

of a complex variable, say X{s)l Equation (5-138) states that we are to evaluate the integral of X(s)est 

along a line parallel to the jo-axis from -joo to /». We can apply the residue theorem by choosing 

a semicircular path in the complex plane as shown in Figure 5-4. Letting F(s) in the residue theorem 

(5-140) be X(s)est, we obtain 

’ . £ X(sy‘ ds = Kl + K2 + ■ ■ ■ + Kn (5-141) 
2'7TJ Jq+c2 

jo 

FIGURE 5-4. Closed contour in the complex plane that is appropriate for evaluating the inverse 
Laplace transform integral. 

tAnalyticity refers to the differentiability of a function of a complex variable, but is much stronger than requiring only that 

the function be differentiable at a point (see Appendix C). 
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where Kv K2,... , Kn are the residues of X(s)est, and C, + C2 means the closed path consisting of the 

subpaths C, and C2. Further, noting that the integral over the closed path Cx + C2 can be written as the 

sum of the integrals over the separate paths Cx and C2, and that the integral over C, is an integral be¬ 

tween the limits c — jR to c + 7/?, we obtain 

1 rC+jR \ C U 
X(s)est ds + —: X(s)est ds = 2 V, (5-142) 

2^ -V/R 2t7; JC2 m=l 

It can be shown that for t > 0 the second integral on the left-hand side contributes nothing to the result 

provided that X(s) —> 0 uniformly as R (By uniformly it is meant that the limit is approached at 

the same rate for all angles of s within the range defined by C2.) For example, if X(s) is the ratio of two 

polynomials, it is sufficient for the degree of the denominator to exceed that of the numerator by one or 

more. Given this restriction on X(s), it follows that the left-hand side of (5-142) yields the inverse 

Laplace transform, as defined by (5-138), in the limit as R ~^oc. That is, for t > 0, 

x(t) = X residues of X(s)est at the finite singularities of X(s) (5-143) 

EXAMPLE 5-14 

As an example, consider the function of s given by (5-40) which was inverse-transformed in Ex¬ 

ample 5-4. The function X(s) has two singularities which are first-order poles, given by 

S1,2 = -3 ±J2 

Using the Heaviside expansion technique, we write 

m 4 
5 + A, A, 

where 

and 

(s + 3)2 + 4 s' + 3 + ;2 s + 3 — j 2 

- (s + 3 + ;2)Z(s)|j=_3_j7 

5-/2 1 .5 

-;4 2 J 4 

A2=(s + 3-]2)X(s)\s=^+j2 

- i _ -5 

~ 2 ] 4 

To evaluate the integral, we require the residues of 

X(s)esr = 
8 A,esl A2e“ 

(s + 3)2 + 4 s + 3 + j2 s + 3 - j2 

at the poles of X(s). That is, we want the coefficient K__t of the expansion 

A 00 
Af = ^ K {s + 3 + j2f 

S + 3 + ]2 

and the coefficient K'_, of the expansion 

A,r 
s + 3 - j2 

= 1 K'„(s + 3 - j2)n 

(5-144) 

(5-145) 

(5-146a) 

(5-146b) 

(5-147) 

(5-148a) 

(5-148b) 
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Now since est = 2?7=0 sntn/n\, it is apparent that es/ has no singularities in the finite s-plane because no 

negative-power s-terms are present in its Laurent series expansion. It follows, therefore, that in this 

case we can find the coefficients K_l and K'_i simply by applying the Heaviside technique. That is, 

and 

K_l = (s + 3+j2)X(s)est\s=^j2 

= 5 iJl J-3-j2)t 

-;'4 

*-i = (s + 3 - 72)X(^)^L=_3+;.2 

(5-149a) 

(5-149b) 

[Compare with (5-146).] From (5-143) we obtain, for t > 0, 

1 
x(t)= x + >7 e-(3+^2)( + - - j 

1 “(3—/2)f 

+ e"'2' 5 e/2r - e~'2r 
- e“31 ^ + 

2 2 2/ 

= e~3*(cos 2t + | sin (2£), 1 > 0 

which is the same result as obtained in Example 5-4. 

(5-150) 

Generally, the inversion integral would not be used for a problem such as this. It is easier to use par¬ 

tial-fraction expansion and a table of Laplace transform pairs. 

*5-6 The Double-Sided Laplace Transform 

In the discussion leading to (5-1) it was assumed that the signal x(t) was zero for t < 0. This resulted in 

the single-sided Laplace transform that was perfectly adequate for our purposes. Removing this re¬ 

striction on x(t) and following the same reasoning that resulted in (5-1), we obtain the double-sided 

Laplace transform of a signal x{t), which is 

X(s) = f x{t)e~st dt (5-151) 
J —OO 

The inversion integral remains the same as before with an added restriction on choosing the path of in¬ 

tegration, which will be discussed shortly. The integral (5-151) converges absolutely if 

f |x(r)e_5f| dt < oo (5-152) 
J —OO 

But 

= |x(f)|e_ot 

and the double-sided Laplace transform integral therefore converges absolutely if 

(5-153) 
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c°° 
|x(/)|e-at dt < °° 

J —oo 

(5-154) 

A sufficient condition on x(t) for (5-154) to hold is that there exists 

some real b and c, \x(t)\ is bounded by 

a real positive number A so that, for 

o
 
o

 
A
 

V
 

nO
 

VI 

y
 (5-155) 

Then (5-151) is absolutely convergent for 

C <(T<b (5-156) 

When using contour integration to evaluate the inverse double-sided Laplace transform, the path of in¬ 

tegration is chosen within this convergence strip and closed by a semicircular arc to the left for t > 0 

and to the right for t < 0. To show (5-156), we break the integral (5-151) up into two parts as 

r° r00 

X(s)=\ x(t)e~stdt+\ x(t)e~st dt (5-157) 
J-00 Jo 

and use (5-155) to bound \X(s)\ by 

1^)1 Ae{h~s)tdt + 

~e(b-s)f 0 e(c-s)t 00 

b - s + c - s 
0 - 

(5-158) 

The first integral will converge for Re(y) < b (the lower limit yields zero when substituted), and the 

second integral will converge for Re(s) > c (the upper limit yields zero when substituted). It follows 

that the singularities of X(s) due to the positive-time half of x(t) lie to the left of the line s = c, while the 

singularities of X(s) due to the negative-time half of x(t) lie to the right of the line s = b. 

In contrast to the single-sided Laplace transform, the region of convergence must be specified to¬ 

gether with a two-sided Laplace transform in order to identify the corresponding inverse transform 

uniquely. To illustrate this, consider the two-sided Laplace transforms of the signals 

xx(t) = eatu(t) 

and 

(5-159) 

x2(t) = —eatu(~t) (5-160) 

Both have the two-sided Laplace transform 1/(5-a). However, their regions of convergence are differ¬ 

ent. In particular, 

Xhv) = - for a > a 
1W s — a 

(5-161) 

and 

X7(s) =- for a < a 
2V 7 s — a 

(5-162) 

where Xx(s) and X2(s) are the Laplace transforms of xx(t) and x2(t), respectively. 

We may obtain the two-sided Laplace transform of a signal through use of the single-sided Laplace 

transforms by separating the signal into its positive- and negative-time components. In particular, as¬ 

sume that x(t) is defined for -oo < t < oo. We may represent it as 
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x(t) = xx(t) + x2{t) (5-163) 

where 

xx(t) = x(t)u(t) (5-164a) 

and 

X
 

II (5-164b) 

The two-sided Laplace transform of Jt(r) is 

££d[x(t)\ = f x(t)e~st dt 
j —00 

f° f00 
= x2(t)e st dt + xx(t)e st dt 

J-oo Jo 
(5-165) 

where S£d[ • ] denotes the double-sided Laplace transform. Changing variables 

t' = —t, we obtain 

in the first integral to 

= X2(-s) + X,(s) (5-166) 

where 

W = sejxM (5-167a) 

and 

X2(s) = .%ix2(-t)] (5-167b) 

The notation !£s [ • ] denotes the single-sided Laplace transform. The signal x2(—t) is, of course, the re¬ 

flection (mirror image) of the negative-time portion of x(t) about the t = 0 axis. Equation (5-166) tells 

us to take the single-sided Laplace transform of this signal, replace s by — s in the result, and add this new 

function of s to the single-sided Laplace transform of xx(t), which is the positive-time portion of x(t). 

EXAMPLE 5-15 

Find the two-sided Laplace transform of 

x(t) = e~3tu(t) + e2tu( —t) (5-168) 

Solution: The signals xx(t) and x2(—t) are 

xx(t) — e~3tu(t) (5-169a) 

and 

^2 
CN

 
1 II (5-169b) 

Their single-sided Laplace transforms are 

->-3 (5-170) 
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and 

X2{s) = 

Replacing shy — s inX2(s), we obtain 

Therefore, from (5-166), we obtain 

1 1 m = —^ + 

s + 2 
a > — 2 

Re( — s) = —cr > —2 or cr <2 

-5 

s + 3 — s + 2 5^ + s — 6 
, —3 < cr < 2 

(5-171) 

(5-172) 

(5-173) 

EXAMPLE 5-16 _ 

Find the inverse double-sided Laplace transform of 

= (s + 3)(s + 1) ’ 
— 3 < cr < —1 (5-174) 

Solution: The partial-fraction expansion of X(s) is 

m = 
3 

s + 3 

1 

s + 1 ’ 
— 3 < (T < — 1 (5-175) 

Since the pole at s = -3 lies to the left of the convergence region, the term 3/(s + 3) corresponds to 

the Laplace transform of the positive-time portion of !£~l[X(s)]. Similarly, since the pole at s = — 1 

lies to the right of the convergence region, the term -l/(s + 1) corresponds to the Laplace trans¬ 

form of the negative-time portion of !£~l[X(s)]. Using (5-166), (5-167a), and (5-167b), we obtain 

*i(0 = u 
3 

s + 3 
3e 3t u(t) (5-176a) 

and 

X2(-t) = 1 
1 

-s + 1 

= efu(t) 

Putting these results together, we obtain 

x(t) = xft) + x2(t) = 3 e~3tu(t) + e-rw(—t) 

(5-176b) 

(5-177) 

Summary 

In this chapter, the basic tool for the analysis of lumped, fixed, linear systems has been introduced, 

namely, the Laplace transform. Use of the Laplace transform for system analysis is advantageous in 

that it converts the governing differential equation for such systems to an algebraic equation, and ini¬ 

tial conditions can be included automatically as a part of the solution. It allows transform techniques to 
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be applied to a wider class of signals than is possible with the Fourier transform—that is, signals of ex¬ 

ponential class (such signals grow no more rapidly with time than exponentially). The following are the 

major points included in this chapter. 

1. The single-sided Laplace transform is defined by the integral 

2[x(t)] = X(s) = f x(t)e~st dt 
'o 

where X(s) is called the Laplace transform of x(t). In this book, the lower limit in the integral is 

taken as t = CL. Thus, the Laplace transform of an impulse is unity, and initial conditions, when 

solving differential equations, are taken as initial conditions at t = CL. 

2. To get x(t) back from a given X(s), tables of Laplace transforms are used along with partial-frac¬ 

tion expansion techniques. The inversion integral is seldom used. However, for completeness, it 

is given by 

1 rCT+jco 

x(t) = X(s)est ds 
2^7 Ja-joo 

This integral is usually carried out as a contour integral in the complex plane by using Cauchy’s 

integral theorem (a brief summary of complex variable theory is given in Appendix C). 

3. Important Laplace transform theorems are summarized in Table 5-2. They are useful in generat¬ 

ing new Laplace transforms from simpler ones and for obtaining inverse Laplace transforms. 

4. A short table of Laplace transform pairs is given in Table 5-3. Much more complete tables are 

available, and the reader is referred to the references at the end of this chapter for them. 

5. The method of partial-fraction expansion allows one to obtain the inverse Laplace transform of 

rational functions of s. The rational function must be first converted to a proper rational function 

by long division to obtain a function in which the numerator polynomial is at least one degree 

less than the denominator polynomial. For simple roots of the denominator polynomial, D(s), the 

expansion is 

N(s) A1 A2 An 

D(s) s - si s - s2 s-sn 

where 

,4 , 

* |d<s)(s ■n.,. 
It is almost always convenient to combine complex conjugate pole-pair terms into a single term 

and inverse-Laplace-transform the combined term. 

For repeated roots, the partial-fraction expansion is of the form 

_Pjs) = A A 
(5 + a)nQ(s) (s + a) (s + a)2 

A , R(s) 

(s + a)n Q(s) 

1 dL-m) 
A = - ATT-V [(s + a)"Y(v)] 

m (n - m)\ ds(n~m} LV 7 \ ns- a 

6. The double-sided Laplace transform can be used for signals that are nonzero for t < 0. It is 

the same integral as the single-sided Laplace transform except that the lower limit on the integral 
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is —oo. The function of v denoting a double-sided Laplace transform does not correspond to a 

unique inverse transform. Rather, both the function of 5 and the region of convergence of the 

Laplace transform must be specified to define a unique inverse transform. 

Further Reading 

Almost all circuits books provide an introductory treatment of the Laplace transform. The following engineering 

mathematics text includes a chapter on the single-sided Laplace transform and its application to solving ordinary, 

linear, constant-coefficient differential equations as well as its application to solving partial differential equations: 

E. Kreyszig, Advanced Engineering Mathematics, 6th ed. New York: Wiley, 1988 (Chapter 5 and Section 11.13). 

A classic text on the Laplace transform, long since out of print, is given below partly for the sake of nostalgia. How¬ 

ever, if the student can find a copy, it contains a very complete set of tables of Laplace transforms: 

M. F. Gardner and J. L. Barnes, Transients in Linear Systems. New York: Wiley, 1942 (Appendix A). 

Assuming that the above reference is not available, the following book contains a fairly complete listing of Laplace 

transform pairs: 

M. Abramowitz and I. Stegun, eds.. Handbook of Mathematical Functions. New York: Dover, 1972. 

The following book provides a treatise on the two-sided Laplace transform: 

B. van der Pol and H. Bremmer, Operational Calculus: Based on the Two-Sided Laplace Integral, 2nd ed. 

London: Cambridge University Press, 1955. 

PROBLEMS 

Sections 5-1 and 5-2 

5-1. Obtain the Laplace transforms of the following signals: 

(a) (1 -e~*)u(t) 

(b) (e-^-e-^uft) 

(c) u(t)—u(t—10) 

(d) 8(0-8(1-10) 

5-2. Sketch each signal given and find its Laplace transform. Give the region of convergence in each 

case. 

(a) xft) = 8(0-8(1-1) + 8(1-2) 

(b) x2(t) — u(t) + e~3tu(t) 

(c) x3(t) = e~4tu(t)-e~4h-Vu(t—l) 

5-3. Find the signals whose single-sided Laplace transforms are the following: 

(a) Xx(s) = l/s + l/(s + 10) 
(b) X2(s) = 1 + 1 Is + 1 f(s + 2) 

(c) X3(s) = 1/Cs + 5) —1/(5 + 10) 

5-4. Which of the following signals have Laplace transforms only, and which have both Fourier and 

Laplace transforms? Why? 

(a) e~mu(t) 

(b) el0tu(t) 
(C) e-io\t\ 

(d) r(t), where r{t) is the unit ramp 

(e) te~10tu(t) 
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Section 5-3 

5-5. Obtain the Laplace transforms of the following signals: 

(a) cos 2007rt 

(b) sin 2007n 

(c) \//2cos(200tt/l - it/4). [Hint: Relate this signal to those given in parts (a) and (b).] 

(d) If (c) is written as V2cos [200tt (t - 1/800)] can time delay be applied? Why or why not? 

5-6. Obtain the Laplace transform of the triangular signal x(t) = A(t— 1) by using the differentiation 

theorem, the time-delay theorem, and expressing dx/dt in terms of unit steps. 

5-7. Solve the following differential equations by means of the Laplace transform: 

d2x(t) dx(t) 
— — _l_ ^ —.- 

dt1 dt 
(a) + 5x(7) = e 11 u(t) 

(b) 

with x(0) = 0 and 
dx(t) 

dt t=o 

= 0 

"7 ^ + 3x(t) + 2y(t) = u(t) and — x(t) = 0 
dt dt 

with jc(0) = y(0) = 0. 

Solve for x(t) and y(t). [Hint: Note that it is not necessary to obtain equations in terms of 

x(t) and y(t) alone. You may solve for the Laplace transforms, X(s) and Y(s), directly and 

inverse-transform them.] 

5-8. Solve for the current in the circuit shown if the switch changes as indicated by the arrow at t = 0. 

Assume that the switch has been in position 1 since t = — oo. 

5-9. Obtain the voltage across the resistor as a function of time for t > 0. Assume that i(0) = 

vc(0) = 0. 

2 H 0.25 F 

FIGURE P5-9 
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5-10. Find the inverse Laplace transforms of the functions of s given below; 

s + 3 

+ 4s + 5 
10 

(a) 
s + 10 

(b) 
s2 + 8s + 20 

(c) (d) 
s2 + 6s + 18 s2 + 10s + 34 

(Hint: Use the s-shift theorem by completing the square in the denominator.) 

5-11. Generalize the results of Example 5-5 to the case where we are given a time-limited pulse signal, 

p(t), which is 0 for t < 0 and t>T0. Let its Laplace transform be P(s). For the signal 

oo 

x(t) = pit - nT0) 
n = 0 

Obtain a closed form”expression for the Laplace transform of x(t) in terms of P(s). 

(b) Obtain the Laplace transform for the case where p(t) = A(t/r - 1) for r ^ T0. 

(c) Obtain the Laplace transform of a half-rectified sine wave. 

(d) Obtain the Laplace transform of a full-rectified sine wave. 

5-12. (a) Find the Laplace transform of the signal shown in the following figure, using appropriate 

theorems: 

yU) ='2x(t- 4n) 
n = 0 

where x(t) is the signal given in part (a). Express in closed form. 



PROBLEMS 243 

5-13. Find the initial and final values, if they exist, of the signals with Laplace transforms given below. 

(a) 

(c) 

s + 10 

x2 + 3s + 2 
s2 + 5s + 7 

s2 + 3s + 2 

(b) 
5_ 

sJ + s2 + 9s + 9 

(d) 
s + 3 

s2 + 2s 

(Hint: s + 1 is a factor) 

5-14. A signal has Laplace transform 

s + 2 

s2 T 4s + 5 

Find Laplace transforms, F(s), of the following signals. In each case, tell what Laplace transform 

theorems you used to find the signal. 

(a) yx(t) = x(2t—\)u(2t—\) 

(b) y2(t) = tx(t) (Hint: See Problem 5-25b) 

(c) y3(t) = e~~3tx(t) 

(d) y4(t) = x(t) * x(t) 

(e) y5(t) = dx/dt 

(f) y6(t) = 2x(t/4) + 3x(5t) 

(g) y7(t) = x(t) cos(7f) 

5-15. Use the convolution theorem of Laplace transforms to find 

y(t) = xx(t) * x2(t) 

where xx(t) and x2(t) are given below: 

(a) xx(t) = e~2tu(t) andx2(0 = u(t-5) 

(b) xx(t) = cos(5t) u(t) and x2(t) = sin(3t) w(t) 

(c) Xj(0 = e~~2tu(t) andx2(0 = cos(5t) u(t) 

(d) xx(t) = sin(3/) u(t) and x2(t) = u(t—5) 

Section 5-4 

5-16. Obtain the inverse Laplace transforms of the functions of s given in Problem 5-13. Do the initial 

and final values found in Problem 5-13 agree with the results obtained in this problem? 

5-17. (a) Referring to Example 2-21, use Laplace transforms to solve (2-130) for f1(f) assuming all 

initial conditions are 0. To put the final result in a neat form, define the auxilary parameters 

A 
K 

LJ ’ 
21<»„ 

LB + JR 2 BR + K2 

LJ ’ ~ LJ 

(b) Plot versus t for the parameter values given in Figures 2-22 and 2-23 to verify the simulation 

curves shown in Figure 2-23. 

5-18. Obtain the inverse Laplace transform of 

, x w x Is3 + 20s2 + 33s + 82 
(a) X(s) 

(b) X(s) = 

(s2 + 4)(s + 2)(s + 3) 

2s3 + 9s2 + 22s + 23 

[(s + l)2 + 4] (s + l)(s + 3) 
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5-19. Obtain the inverse Laplace transform of 

X(s) 
7s2 + 15s + 10 

(s + l)2(s + 3) 

5-20. Obtain the inverse Laplace transform of 

X(s) 
s2(s + 9) 

(s + 3 )\s +T) 

5-21. Obtain the inverse Laplace transform of 

/ + 8s2 + s + 17 

,a) X(s) = 7?"+ 4)V + 1) 

5-22. Derive pairs 1 and 3 of Table 5-3. 

(b) X(s) = 
[(s + if + 4 ]\s + 1) 

5-23. (a) Derive pair 10 of Table 5-3. Use the derivation of (5-136) as a guide, 

(b) Derive pairs 11 and 12 of Table 5-3. 

5-24. One way to define the effective delay t0 and duration r of a signal x{t), where x{t) = 0, t < 0, is 

_ Jo tx(t) dt 

to Jo x(t) dt 

and 

2 = Jo 0 - OAO dt 

7 Jo*(0* 
(a) If X(s) is the Laplace transform of x(t), show that 

to X(0) 

and 

X'(0) rX'(O)]2 

*(0) U(0)_ 

where 

dX(s) 

ds 

and 

X”(s) = 
ri2X(v) 

ds2 

(b) Suppose that x(t) = xft) * x2(t) and X(s) = X1(s)X2(s). Let t0, t0l, t02, and r, t]? t2 be the de¬ 

lay and duration times of x(t), xx(t), and x2(t), respectively. Show that tQ = t0l + t02 and 
_2 — _2 _i 2 T - Ti + T2. 

(c) Apply the above theory to the case where 

= Ae~atu(t) and xft) = Be'&uit) 

where A, B, a, and /3 are positive constants. 
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5-25. Derive the following theorems concerning the Laplace transform: 

(a) !£[x(t/a)\ = aX(as), a > 0 

(b) £[tx(t)] = —dX(s)/ds 

(c) Generalize part (b) to SB[tnx(t)]. 

(d) Use part (c) to derive pair 3, Table 5-3. 

5-26. Determine the inverse Laplace transforms of the following functions of s. Use the Matlab sym¬ 

bolic toolbox to check your answers in those cases where you can. 

(a) X^s) = 

(b) X2(s) = 

s1 + 2s + 9 

+ 9) 

2s* - 3s3 + 36s2 - 26s + 162 

s(s2 + 9)2 

(c) X3(s) = 

(d) X4(s) = 

(e) X5(s) = 

18 

^2(^2 + 9) 

1 __ 
(s + 3)(1 + e~2s) 

2 

s + se~3s 

5-27. In the circuits shown, the capacitor is initially charged to V volts and the switch is closed at t— 0. 

Obtain the current, i(t), for t ^ 0 using the Laplace transform. 

(a) (b) 

5-28. In the circuits shown, the switch is moved in accordance with the arrow at t = 0, having been in 

the top position for a long time. Solve for the current, i(t), for t > 0 using the Laplace transform, 

(a) 

Ri 

FIGURE P5-28a 
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(b) 

R 

5-29. Find the inverse Laplace transform of 

X(s) = 1/0 + l)2 

the following two ways: 

(a) Use the convolution theorem of Laplace transforms. 

(b) Find the inverse Laplace transform of l Is2 using the integration theorem, and then apply the 

s-shift theorem. 

5-30. Find inverse Laplace transforms of the following functions of s. Tell what Laplace transform the¬ 

orems you used in each case. 

(a) X,(s) = +^5+ M 

(b) X2(s) = 

(c) X3<» = 

1 - e"25 

5 + 4 

1 

(5 + l)3 

5-31. Compute the initial and final values of the signals whose Laplace transforms are given in Prob¬ 

lem 5-30. Compare these results with the limits as t —> 0 and t —> oo computed from the actual in¬ 

verse Laplace transforms. 

5-32. Find the inverse Laplace transforms of the functions of s given below: 

(a) X^s) = 

(b) X2(s) = 

s(s + 1)02 + 1) 

J_ 
s(s + l)3 

5-33. Find the double-sided Laplace transforms of the following signals. Sketch each signal. 

(a) xx(t) = 2e~5tu(t) + 2e3tu(—t) 

(b) x2(t) = u(—t) + 

(c) x3(t) = cos(—50 u(—t) + e^^t) 

5-34. Find the signals whose double-sided Laplace transforms are given: 

(a) Xx(s) = 
o + 5)0 + 1) 9 

(b) X,(s) - (j2 + jj(j + 1} . 

— 5 < cr < —1 

-1 < cr< 0 



COMPUTER EXERCISES 247 

5-35. Consider the RLC circuit of Example 5-3 with L = \ H, R/L = 2 s, and (LC)_1 = 2 s~2. Let the 

initial voltage on the capacitor be zero. Assume a square-wave input of amplitudes ±1 and pe¬ 

riod T0. Show that the current can be written in series form as 

°° ( yi T \ 
i(t) = e“'sin(f) u{t) + 2 ^ (~l)"e~('~"7°/2) sin If-~r-) u 

n=1 \ 2 / 

COMPUTER EXERCISES 

5-1. Given the following polynomials in s, find the inverse Laplace transforms, yx(t), v2(/), y3(t), and 

y4(f). In symbolic Matlab, Dirac (n, t) denotes the nth derivative of the unit impulse function. 

XjOO = s3 + 652 +115 + 6 

X2{s) = [s2 + 4]2 

X3(s) = s1 + 45 + 4 

Ti(2 
x2(5) 

Us) 

Us)X2(s) 

Us) 

Us)Us) 

(a) yj(5) 

(b) Y2(s) 

(c) Y3(s) 

(d) y4(.v) 

5-2. Use the function of Matlab to find the signals which are the convolutions of the following sig¬ 

nals, where yt(t), y2(t), y3(t), and y4(t) correspond to the Laplace transformation asked for in Com¬ 

puter Exercise 5-1: 

(a) yx(/) andy2(f); 

(b) y3(t) andy4(r); 

(c) y2(t) andy4(r); 

(d) >’,(0 andy4(r). 

5-3. Use the symbolic toolbox in Matlab to find Laplace transforms of the following signals. Check 

your results by performing inverse Laplace transforms to show that the original signals result. 

(a) Xj(t) = cos(coQt)e~atu(t) 

(b) x2{t) = t2cos((o0t)e~a,u(t) 

(c) x3(t) = xt (t) + x2(t) 

5-4. Use the Matlab residue function to find partial fraction exansions for the rational functions of 

Computer Exercise 5-1. Use the symbolic capability of Matlab to form the denominator in (c) 

and (d) without having to carry out the multiplication by hand. 

5-5. Write a Matlab program to plot the waveform of Problem 5-35 for several values of T0. 

Comment on the effect of the square wave period in comparison with the circuit time constant 

(2 seconds). 
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5-6. A method of deriving difference equations that approximate continuous-time systems is known 

as Tustin’s substitution method. We let z = esTrepresent an advance by T, where Tis the step size 

in the difference equation. The solution for s is approximated by 

1,,. 2 
S = ~ln(z) = ™ 

where the approximation is obtained by truncating the Laurent series expansion of ln(z) (see Ap¬ 

pendix C for a definition of the Laurent series). In Chapter 8, we will see the Tustin substitution 

again, where it will be used in the analysis of digital filters. The Tustin substitution is also called 

the bilinear z-transform. Integration, or s~l, is then approximated by 

7 1 + z"1 

2 1- z-1 

This approximation is then substituted into the Laplace transform of a response (system output) 

to obtain the form 

Yjz) = A, + An-jZ^_ + • • • + 

X(z) Bm + Bm_xz~x + • • • + B0z~m 

Multiplying through by the denominator of the last expression gives 

lBm + + ■■■ + B0z~m]Y(z) = [An + + • • • + Atf-^Xiz) 

Interpreting z~k as a delay by kT, we write the difference equation as 

[Bmy(kT) + Bm_iy[(k - 1)7] + • • • + B0y[(k - m)T} 

= [AAkT) + An_xx[(k - 1)7] + • • • + Ajc[{k ~ n)T] 

When rearranged, the system output at step kT is given in terms of the present and past input 

samples and the past output samples as 

i r oo m 

y(kT) = — 2 Ai4(k - i)T] - 2 Bm-jy[(k - i)T] 
u = 0 7 = 1 j 

In Chapter 8 we will see that this difference equation is a general algorithm for determining the 

output of a linear, time-invariant, discrete-time system given the input samples and past output 

samples. 

Use this method to obtain the output of a system whose Laplace transformed output is 

Y(s) _ 1 

X(s) s + 1/t0 

if the input is a unit step [i.e., x(kT) = 1, k > 0, and is zero for k < 0]. Compare with the analyti¬ 

cally computed output for various step sizes, T. Assume y(kT) = 0 for k < 0. 

(Reference: See Smith, listed in the references in Chapter 2, Appendix C.) 



CHAPTER 

Applications of the Laplace Transform 

6-1 Introduction 

In Chapter 5 we developed the Laplace transform and several of its properties and showed how to ob¬ 

tain inverse Laplace transforms using partial-fraction expansion. In this chapter we make use of these 

tools to analyze electrical networks. We introduce the idea of the Laplace-transformed network, a con¬ 

venient framework for solution of problems involving both initial conditions and sources. 

The latter portion of the chapter contains several topics of interest in the analysis of more general 

systems. The concept of a transfer function is discussed in some detail, and the Routh test for deter¬ 

mining stability is presented. Bode plots are introduced as a means of conveniently displaying the fre¬ 

quency response of a system. Finally, the block diagram is presented as a convenient means of 

representing a system as a combination of mathematical and schematic models particularly useful for 

more complicated systems, and operational amplifier models are discussed. 

6-2 Network Analysis Using the Laplace Transform 

Laplace Transform Equivalent Circuit Elements 

In analyzing the circuit of Figure 5-3 (repeated in Figure 6-1) we first wrote down the differential equa¬ 

tion expressing Kirchhoff’s voltage law and performed the Laplace transform of this equation for vari¬ 

ous forcing functions, x(t), to find the Laplace transform of the voltage across the resistance R. This 

approach provided the rational functions for the inverse Laplace transform used in Examples 5-9 

through 5-12. There is another approach that could have been taken. We nOw use the circuit of Figure 

6-1 to explain this approach. 

Each circuit element in Figure 6-1 is first replaced by its Laplace-transformed equivalent, including 

initial conditions. To see how this is done, consider the capacitor. Its voltage-current relationship is 

v(t) =2j' ;(A) dk (6-1) 

where v(t) is the voltage across it with reference direction in the same sense as the reference direc¬ 

tion for the current iff) through it (across and through variables)—see Appendix B. We may rewrite 

(6-1) as 

1 
v(t) = — \ i(A) dk + r>(0 ) (6-2) 

C J0~ 

249 
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where 

u((r^= b f/(A) dA=(6~3) 

is the initial voltage across the capacitor. The Laplace transform of (6-2) is 

y(s) = ^/(s) + (64) 

which suggests the Laplace-transformed KVL equivalent circuit shown in Figure 6-2a. The capacitor is 

represented by an impedance of value 1 AC, and the initial condition is represented by a voltage gener¬ 

ator of value vc(0~)/s. 

Alternatively, (6-1) can be differentiated to produce the relationship 

i(t) = (6-5) 

which can be Laplace-transformed with the aid of the differentiation theorem of Table 5-2. This results in 

I(s) = sCV(s) - CvfO ) (6-6) 

Time domain 
circuit 

an 

v(t) 

Laplace transform 
KVL equivalent circuit 

+ Us) 

Z(s)= 1 IsC 

-HI— 

u(0 )/s 

+ ns) 
V_ 

Laplace transform 
KCL equivalent circuit 

r<j) = sc 

HI— 

V(S) 

(a) Laplace transform equivalents for a capacitor 

V(s) 

/7PPP*—\- + V—O 

Lit0”) 

+ ns) 

ns) 

Hi 
r(j) = i isL 

lno~) 

V(s) V(S) 

(b) Laplace transform equivalents for an inductor 

FIGURE 6-2. Laplace-transformed equivalent-circuit elements, which include initial conditions. 
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which can be interpreted as the Laplace-transformed KCL equivalent circuit shown in Figure 6-2a. 

Equation (6-6) shows that I(s) can be viewed as being composed of the difference of two currents—that 

through the capacitor, which is the product of the admittance sC and V(s), minus that due to the initial 

condition, which is Cu(0“). 

Consider next an inductor for which the voltage-current relationship may be written as 

„(0 = L§ (6-7) 

with the Laplace-transformed equivalent 

V(s) = sLI(s) ~ Li(0") (6-8) 

which can be rearranged to yield 

I(s) = 4- V(s) + 1 i(0 ) (6-9) 
sL s 

These equations suggest the equivalent circuits shown in Figure 6-2b. 

Since the voltage-current characteristic of a resistor is 

v(t) = Ri(t) (6-10) 

its Laplace-transformed equivalent is 

V(s) = RI(s) (6-11) 

Thus the Laplace-transformed equivalent circuit for a resistor is simply a resistor with current I(s) 

through it and voltage V(s) across it. 

We now consider an example that illustrates the application of the models just developed to circuit 

analysis. 

EXAMPLE 6-1 

We again use the by now familiar circuit of Figure 6-1 as an example. Suppose that 

x(t) = (—0.5 cos t + 2.5 sin t)u(f) 

as in Example 5-10. This forcing function has the Laplace transform 

m = - 

0.5,? 2.5 

s2 + 1 s2 + 1 

_ -0.5? + 2.5 

s2 + 1 

Other parameter values, which were used in Example 5-10, are 

6,(0) = 0A 

vcm= -2V 

and 

2£wn = j= 10 s-1 

(6-12) 

(6-13) 

(6-14) 
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For simplicity, we now assume that R = 1 ft. This means that the loop current and the voltage across 

the resistor, which was the output variable considered previously, are numerically the same. Since 

R/L = 10, we have L = 1/10 H with R = \ Cl. Thus C = 1/16L = f F. 
o 

Using these circuit parameter values and the assumed X(s) as well as the initial conditions 

uc(0_) = — 2 V and iL(0 ) = 0 A, we may now draw the Laplace-transformed equivalent circuit 

as shown in Figure 6-3. Writing Kirchhoff’s voltage law around the loop in terms of Laplace- 

transformed voltages and current yields 

(6-15) 

(6-16) 

(6-17) 

which is equivalent to (5-82), the result for Example 5-10. 

-0.55 + 2.5 

52 + 1 
+ |; + 1 1/(5) 

10 5s1 

Solving for I(s), we find that the Laplace transform of the current is 

- (-0-5s + 2.5)/{s2 + 1) + 2/s 

s/10 + 8/5^ + 1 

Clearing fractions in the numerator and denominator, we obtain 

15s2 + 25s + 20 
I(s) = 

(s2 + 1)02 + 10s + 16) 

Matlab Application 

A symbolic toolbox Matlab program to solve for 7(s), inverse Laplace transform 7(s), and display 

the current in the time domain is as follows: 

»echo on 

»c6exl 

% MATLAB symbolic toolbox solution for Example 6 -1 

% 

V = sym( '(-0.5*s+2.5)/(sA2+l)+2/s'); 

Z = sym('s/10+8/(5*s)+l'); 

I = V/Z 

I = 

((-.5*s+2.5)/(sA2+l)+2/s)/(1/10 * s+8/5/s+1) 

i = ilaplace (I) 

- 2.* exp(- 8.*t)+exp(-2.*t)+cos(t)+sin(t) 

Although we do not get the same rational form for /(s) as in Example 6-1, the result is nevertheless 

the same. A few trials with the symbolic toolboxes collect and simple functions does not seem to 

help. The partial fraction expansion may be displayed by concatenating the dif f and int opera¬ 

tions. Note that the inverse Laplace transform may be identified on a term-by-term basis with the 

partial fraction expansion. 
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FIGURE 6-3. Laplace-transformed equivalent circuit for Example 6-1. 

Mutual Inductance 

Circuits involving mutual inductance may be handled by using an equivalent circuit for the coupled 

coils called a T-equivalent. Consider the transformer model shown diagrammatically in Figure 6-4. With 

the reference directions for the terminal voltages and currents as shown in Figure 6-4, it is defined by 

the voltage-current relationships 

(// 1 (1 /'") 

v, = Lj + M-~ 
1 dt dt 

(6-18a) 

dit du 
(6-18b) v2 = M + L2-y 

2 dt dt 

The parameters Lx and L2 are referred to as the self-inductances and the parameter M is called the mu¬ 

tual inductance. Whereas self-inductances are always positive quantities, mutual inductance may be 

positive or negative, depending on the polarity marks, usually indicated by dots, used on the transformer 

circuit diagram. The value of M will be positive if each current reference is directed toward or away 

'fo¬ 
il 

L i 

o 

(a) Positive mutual inductance 

h 

(b) Negative mutual inductance 

FIGURE 6-4. Schematic representation of a transformer. 
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Li-M L2-M 

FIGURE 6-5. T-equivalent circuit for a transformer. 

from the polarity marks on the schematic diagram, whereas M is negative if one current reference is di¬ 

rected away and one current reference is directed toward the corresponding dot-marked terminal. This 

is determined by how the transformer is wound. Thus Figure 6-4a shows a case where M is positive, 

and Figure 6-4b illustrates a case for M negative. 

An equivalent representation of the transformer defined by (6-18a) and (6-18b) may be obtained by 

rewriting them as 

du d 
v\ = (Li ~ M) — + M — (z'j + i2) (6-19a) 

and 

V2 = MJt + ^ + (L2 “ M) ^ (6'19b) 

These equations suggest the T-equivalent circuit shown in Figure 6-5. This equivalent circuit may be 

used to replace a transformer in a circuit by equivalent inductances and the analysis of the circuit then 

proceeds as in the case of an ordinary circuit containing only R, L, and C elements. The next example 

illustrates the use of the T-equivalent model shown in Figure 6-5. 

EXAMPLE 6-2 __ 

The coils of a large horseshoe type of electromagnet used in a magnetohydrodynamic generator are 

represented by the circuit model shown in Figure 6-6. (a) Find the current provided by the power 

supply after the switch is closed; (b) a lug drops off one of the coils, accidentally causing a break in 

the circuit as indicated by the dots. Find the voltage induced in Lx by the current discontinuity in L2. 

Solution 

(a) We replace the circuit of Figure 6-6 with the Laplace-transformed equivalent circuit of Fig¬ 

ure 6-6, which employs the equivalent T-representation of the transformer. Since q(0~) = 

i2(0-) = 0, there are no initial condition generators. Writing loop equations, we obtain 

100 
-7- = (5 + 10s)/i(s) - (5 + 5s)I2(s) (6-20a) 

0 = - (5 + 5 s)/j(s) + (10 + 10s)I2(s) (6-20b) 

Multiplying the first equation by 2 and adding, we obtain 

200 N N 
~f~ = (5 + 15s)/! (s) (6-2 la) 

or 
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Il(s) = 
40 

3s1 (s + 

B A 

s s + 
(6-21b) 

where A = 40 and B = -40. Thus ix(f) = 40(1 - e~t/3)u(t). 

(b) For the second part of the problem, we let the time at which the lug drops off be t - 0. The 

initial conditions for ix(t) and i2(t) are the steady-state values that occur when the switch 

has been closed for a long time before the lug separates. They are z\(0”) = 40 A and 

i2(0~) = 20 A. The t — 0" inductor currents for the equivalent circuit of Figure 6-6 are then 

easily found to be 20 A for each of the inductors Ll— M and L2 — M, and 40 A for M. With 

initial-condition generators included for these inductor currents, the equivalent circuit after 

the lug drops off is as shown in Figure 6-7. The loop equation for Ix(s) is now 

^ + 300 = (5 + 105)7,(5) (6-22) 

t = 0 

(a) Time domain equivalent circuit of a large electromagnet 

(b) Laplace-transformed equivalent circuit 

FIGURE 6-6. Circuits for Example 6-2. 
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FIGURE 6-7. Equivalent circuit for Example 6-2(b). 

Solving for Ix(s), we obtain 

m = 
s(s + i) 

The Laplace transform of the voltage induced in Lx is 

30(s + ;“) 
VL,(s) = - ^ (105) - 300 

s(s + \) 

300(5 + i) 

0s + 2) 
50 

300 

S' + 

Thus the induced voltage is 

VLX0 = -50e ,/2u(t) 

(6-23) 

(6-24) 

(6-25) 

Matlab Application 

We use the symbolic capability of Matlab to find the voltage across inductor L2 due to the break 

and subsequent abrupt change of current in inductor Lv Since i2(t) is 0 for time after the break 

(t> 0), we have 

vL2(0 - M 
dix{t) 

dt 

or, Laplace transforming, 

W = sMIx{s) - M/j(0_) = 55 ~ 5(40) 

The following Matlab program then finds the voltage across inductor 2: 
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» echo on 

» c6ex2 

% MATLAB symbolic toolbox solution for voltage vL2 in 

% Example 5-2 after open circuit occurs 

% 

VL2 = sym(’5*s*30*(s+l/3)/(s*(s+l/2))-200'); 

VL2__P = diff (int (VL2) ) 

VL2_P = 

-50-150/(6*s+3) 

vL2 = ilaplace(VL2) 

vL2 = 

-50*Dirac(t)-25 *exp(-1/2*t) 

Note the unit impulse function of weight 50 in the inductor voltage. Also note the use of the diff 

and int operations to carry out the partial fraction expansion. 

Network Theorems in Terms of the Laplace Transform 

The student will recall a number of theorems, such as Thevenin’s and Norton’s theorems, from intro¬ 

ductory circuit theory, that are useful for simplified analysis of electrical circuits. This section will re¬ 

view those theorems and put them in terms of the Laplace transform variable, 5. Recall, also, that a 

circuit can be described in terms of the number of ports of interest. If one node pair is of interest, say, 

as an input node pair, we refer to the network as a one-port network. If two node pairs are of interest, 

say, one pair as an input and the other as an output, we refer to the circuit as a two-port network. 

Equivalence and Network Reduction. Two one-port networks are equivalent if their voltage-cument 

characteristics at their respective input ports are the same. Consequences of this definition are the famil¬ 

iar series and parallel equivalents of passive networks. In particular, if a one-port circuit is composed of n 

passive subcircuits in series, the zth having impedance Z-(s), the impedance looking into the one-port is 

Z(s) = Zfs) + Z2(s) + • • • + Zn(s) (6-26) 

On the other hand, if a one-port network is composed of n passive subcircuits in parallel, the zth having 

admittance Y{(s), the admittance looking into the one-port is 

Y(s) = Yfs) + Y2(s) + • • • + Yn(s) ' (6-27) 

Thevenin’s Theorem: Insofar as a load is concerned, any one-port network consisting ofR, L, and 

C passive elements and sources (either independent or controlled) can be replaced by a series combi¬ 

nation consisting of an ideal voltage source, VT(s), and a series impedance, ZT(s), where VT is the open- 

circuit voltage, Voc, of the one-port and ZT(s) can be found by one of the following methods: 

(1) ZT(s) = Voc/Isc, where 7SC is the short-circuit current of the one-port. 

(2) If no controlled sources are present in the network, ZT(s) = Zeq(s), where Zeq(s) is the equivalent 

impedance looking back into the one-port with all (independent) sources set to zero (voltage 

sources replaced by short circuits and current sources replaced by open circuits). 

(3) ZT(s) = VtJI or ZT(s) = V/7test, where ytest and 7test are conveniently chosen (say, unity-valued) 

test voltage or current sources, respectively, with I the resultant current due to Vtest and V the 

voltage across the terminals ofItesV and all independent sources are set to zero in the network. 
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To illustrate the above methods of finding the Thevenin equivalent circuit, consider the following 
example. 

EXAMPLE 6-3 __ 

I Find the Thevenin equivalent circuit of the network shown in Figure 6-8a using the above three methods. 

(a) Circuit for which Thevenin equivalent is desired (zero initial conditions) 

(b) Open-circuited Laplace 
transform equivalent 

i ft 

Ztq(s) 

i n 

(c) Short-circuited Laplace 
transform equivalent 

1 ft 

(d) Circuit used to find 

Zeq fa) ^ method 2 

(e) Circuit using test 
source method 

(f) Thevenin equivalent circuit 

FIGURE 6-8. Circuits pertinent to finding the Thevenin equivalent circuit for Example 6-3. 
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Solution: Using method 1, we replace the circuit with the Laplace transform equivalent to the left 

of the nodes a-b. Two cases must be considered, one with the nodes a-b open-circuited and one with 

them short-circuited. These are shown in Figures 6-8b and c, respectively. From Figure 6-8b and 

voltage division, the open-circuit voltage is 

V^s) = 

1/s 

1 + 1/s 

1 

s(s + 1) 
(6-28) 

Using Figure 6-8c and Ohm’s law, the short-circuit current is 

4A) 
1/s _ 1 

1 5 
(6-29) 

The Thevenin equivalent impedance is 

7 (\ = L>c0) = 1A0 + i) = i 
IJs) 1 /s 5 + 1 

(6-30) 

The Thevenin equivalent circuit is shown in Figure 6-8f. 

Using method 2, we replace the voltage source by a short circuit as shown in Figure 6~8d. The 

equivalent impedance seen looking into the node pair a-b is 

Z“+* = 711 = 7TI <6-3l) 

Voc(s) has already been found, and the Thevenin equivalent circuit is the same as obtained using 

method 1. (The notation || means the parallel combination of two impedances.) 

To apply method 3, we apply a 1-A test current source to the node pair a-b as shown in Figure 

6-8e. Since independent sources are to be set to zero, the voltage source is replaced by a short cir¬ 

cuit. The voltage between nodes a-b is given by 

V(s) = 
1 A 

Y^s) 

1 

£ + 1 
V (6-32) 

and Zeq(v) = V7/test is the same as found previously. The open-circuit voltage is the same as found be¬ 

fore and the Thevenin equivalent circuit is as shown in Figure 6-8f. 

Norton’s Theorem: As far as a load is concerned, any one-port of R, L, and C passive components 

and energy sources (independen t or controlled) can be replaced by a parallel combination of an ideal 

current source, IN(s), and an admittance, YN(s), where IN(s) is the short-circuit current of the one-port 

and Yn(s) can be found by one of the following methods: 

(1) Y^s) = IJs)!VJs). 

(2) If no dependent sources are present, YN(s) — Yeq(s), where Yeq(s) is the equivalent admittance 

looking into the node pair of interest with all (independent) sources set to zero. 

(3) Yn(s) = fJV or Yn(s) — 7/Utest, where 7test and Vtest are defined as before. All independent 

sources are set to zero. 

Source Transformations. Recall that it is sometimes useful to convert from Thevenin to Norton 

equivalent circuits to simplify complex circuits. This method of source transformation is summarized 

in Figure 6-9. 
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Tvb) I 

a 

P JVM 1 
b 

lK(s) 

Voc(s) = yT(s) 

Ac (s) 

yT(s) = 

V- 

4b) = Avb) 

. VT(s) 

ZT(S) 

Us) 
Voc(s) = 

W 
Yt(s) 

h>cb) 
ZT{s) ZrW-7^r=ivw 

FIGURE 6-9. Source transformations from Thevenin to Norton equivalent circuits. 

The necessity of having the test source method of finding a Thevenin or Norton equivalent circuit is 

illustrated by the following example. 

EXAMPLE 6-4 _ 

Consider the circuit shown in Figure 6-10a. Find its Norton equivalent circuit. 

Solution: The circuit is shown in Figure 6-10b with its terminals short-circuited. Writing a node 

equation at V, we obtain 

1+21= L 

But 

7 = 
l A - v 

l 

or 

and 

31= L 

L = sV 

Substituting these results into (6-33) and solving for V results in 

3 
V(s) 

s(s + 3) 

Using (6-34) to find /, we obtain 

Since Isc(s) = —27, we have 

I — 
s + 3 

40) = - 
s + 3 

(6-33) 

(6-34) 

(6-35) 

(6-36) 

(6-37) 

To obtain the equivalent admittance looking into the node pair a-b, we use the test source method 

with a voltage source Vtest(s) applied between a-b with the independent voltage source replaced by 

a short circuit and the dependent current source left alone. Note that the voltages and currents within 

the circuit are now different from before, so primes have been used to denote this. By Kirchhoff’s 

current law, written at the node marked V', we obtain 

31’ - L (6-38a) 
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(a) Circuit for which Norton equivalent is to be found 

'« v AWT- 

(b) Laplace-transformed equivalent with short-circuited terminals 

VW = 1 V 

(c) Circuit with test voltage source applied to output terminals and 
independent sources set to zero 

FIGURE 6-10. Circuits pertinent to finding Norton equivalent circuit using the test source method. 

or 

3(-V71) = sV (6-38b) 

or 

(s + 3)V' = 0 (6-3 8c) 

This implies that V' = 0 so that V — 0. Hence, 

70 = 27' = 0 (6-39) 

The Norton equivalent admittance is 

Us) 
(6-40) 

The Norton equivalent circuit therefore consists of an ideal current source, alone, of value given 

by (6-37). 
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^4 6-3 Loop and Node Analyses of Circuits by Means 
of the Laplace Transform 

Recall that the governing equations for a planar, fixed, linear network consisting of inductances, 

capacitances, resistances, ideal voltage sources, and ideal current sources can be written in two 

forms. These two forms are obtained by writing Kirchhoff’s voltage law around properly chosen loops 

(loop analysis), and by using Kirchhoff’s current law at a properly chosen set of nodes (nodal analy¬ 

sis). These two techniques will now be reviewed, and the Laplace transform used to simplify their 

application. 

Loop Analysis 

For a network consisting of Nb branches and Nv nodes it follows that Nh - (Nv - 1) independent equa¬ 

tions could be written by employing KVL around Nb - (Nv - 1) properly chosen loops. For planar net¬ 

works, one such proper choice for these loops is the meshes or “windows” of the network. In this case, 

the equations have the form (dependent sources excluded for the moment): 

Zn{D)ifi) + Zn(D)i2(t) + • • • + Zln(D)in(t) = eft) 

Z2lWft) + Z22{D)i2(t) + • ■ ■ + Z2nmnit) = eft) 
; (6-41) 

ZnfD)ift) + Zn2(P)i2{t) + • • • + Znnmn(t) = eft) 

where n = Nh - (Nv - 1). For a clockwise reference direction choice of the mesh currents, the Z-.’s 

have the form 

Z,(D) = LnD + Ru + SUD 1 (6-42) 

where Lu = total series inductance around ith mesh 

Ru = total series resistance around ith mesh 

Su = sum of all reciprocal capacitances around ith mesh (S = C~x) 

Also, 

ZjfiP) = -(L^D + R.. + SijD~1) (6-43) 

where L/; = sum of all inductances common to meshes i andy 

R- = sum of all resistances common to meshes i and j 

Sq — sum of all reciprocal capacitances common to meshes i and j 

D = dldt 

D~x = P-A')d\ 
ij(t) = yth mesh current 

eft) — algebraic sum of the voltage sources around mesh j 

Taking the Laplace transform of (6-41), we obtain 

Z(s)l(s) = E(j) + \fs) (6-44) 

where I(^) is a column matrix of Laplace-transformed loop currents, E(s) is the Laplace- 

transformed source voltage matrix, Yfs) is a Laplace-transformed initial condition generator ma¬ 

trix, and the matrix 

Z(s) = [Ztj(s)] (6-45) 
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has elements given by 

Zu(s) = sLtt + Ru + -f 

ZJs)=-(sLs + R„ + ^) «>-«) 

Z(s) is called the loop impedance matrix. If no dependent sources are present, it is symmetric. The loop 

(6-47) 

current matrix, I(s), in (6-44) is defined as 

2[«i(0] hi?) 

m = 
moi hit) 

2[i„(0] hit) 

and the source voltage matrix E(s) is defined as 

E(s) = St 

«i (0 

e2(0 

en(t) 

(6-48) 

The second term on the right-hand side of (6-44) is the initial-condition matrix. By using the equiva¬ 

lent circuits in the second column of Figure 6-2, the initial conditions can be easily included with the 

source voltage matrix. Just how this is accomplished will be illustrated by an example. 

It is emphasized that the above equations only hold if there are no dependent sources present in the 

network. With dependent sources present one must go through writing the KVL equations for each mesh 

from the beginning, the end result being that some elements of Z(s) will have additional terms present 

due to the dependent sources. Thus Z(s) is not symmetric if dependent sources are present. 

To illustrate the use of (6-44) through (6-48), we now consider an example. 

EXAMPLE 6-5 

Consider the circuit of Figure 6-11 with an initial current through the inductor of ic(0~) = i0 and an 

initial voltage across the capacitor of vc(0~) = v0. (a) First, assume that vc(t) is an independent 

source. We may write down the governing equations on a loop basis in the time domain immediately 

and Laplace-transform them, or we may work with the Laplace-transformed equivalent circuit. We 

choose the latter course and can immediately write down the matrix equations as 

Ri + R2 + sL -« 0 tis) ~Liq + Vs(sf 

-R2 
1 

sC 
I2is) 

= 

-v0 
s 

0 
1 

sC 
r3 + r4 + L- /3(s) 

_7+W_ 

(6-49) 

Note that the loop impedance matrix is symmetric. The diagonal elements are the sums of the im¬ 

pedances around each loop. The off-diagonal elements have magnitudes equal to the impedance 

common to the loops involved and are preceded by a minus sign; for example, R2 is common to loops 

1 and 2 so it appears in the matrix as the element ^12 with a minus sign because ix(t) and i2(t) were 



(b) Transformed circuit; impedances shown 

FIGURE 6-11. Circuits for the illustration of loop analysis. 

chosen to have opposite reference directions through R2. (b) Now assume that vc(t) is a dependent 

source; in particular, let 

vc(t) = Ki.it) (6-50) 

where K is a constant of proportionality. By writing down the loop equations and rearranging, the 

student should show that the element Zl3(s) of the loop impedance matrix in (6-49) becomes —K; 

that is, now 

r r. + r2 h- sl 

-K 

Hence the presence of the dependent source means that Z(s) is no longer symmetric. 

Matlab Application 

The following Matlab program computes the loop currents for Example 6-5 for an initial conduc¬ 

tor current of 2 A, and initial capacitor voltage of 0 V, all resistances equal to 1 ohm, the capacitance 

value equal to 0.5 F, and an inductance value of 1 H. 

-Ro 

R> + * 

0 

Ac 

'7c *3 + *4 + ^ 
(6-51) 
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» echo on 

» c6ex5 

% Solution of Example 6-5 for currents using MATLAB 

% symbolic toolbox 
0/ 
/o 

syms t s 

Z = sym('[2+s, -1, 0; -1, 1+2/s,-2/s; 0, -2/s, 2+2/s]'); % Define 

% impedance 

% matrix 

vs = sym('cos(2 *t) ’) 

vs = 

cos(2 *t) 

Vs = laplace(vs) 

Vs = 

s/(s A 2+4) 

vc = sym(,2*cos(2*t)1) 

vc = 

2*cos(2*t) 

Vc = laplace(vc) 

Vc = 

2 * s/(sA2+4) 

E = sym(' [s/(sA2+4); 0; 2 *s/(sA2+4)] ') ; 

Vi = sym(' [2; 0; 0] ' ) ; 

E_plus__Vi = E+Vi 

E_plus_Vi = 

[s/(sA2+4)+2] 

[ 0] 
[2*2/(sA2+4)] 

Z_inv = inv(Z); % Obtain inverse of impedance 

% matrix 

I = Z_inv*E_plus_Vi % Obtain LT current matrix and 

% print 

I = 

[ (s+3)/(s A2+4 * s+5)*(s/(sA2+4)+2)+2/(sA2+4*s+5)*s/(sA2+4)] 

[(s+1)/(sA2+4*s+5)*(s/(sA2+4)+2)+2 *(s+2)/(sA2+4*s+5)*s/(sA2+4)] 

[1/(sA2+4*s+5)*(s/(sA2+4)+2)+(sA2+3*s+4)/(sA2+4*s+5)*s/(sA2+4)] 

% Define LT independent source 

% matrix 

% Define LT initial condition 

% matrix 

% Form LT of source plus IC 

% matrix 
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Strange as it may seem ilaplace cannot handle a matrix. Furthermore, using tricks to reduce 

the matrix to one row won’t work either. The problem seems to be in size. The I matrix has size 

3 X 45 and each row has size 1 X 45. Yet, if the size of the string expression making up each row 

is determined, it is of different size (1 X 36 for row 1). Thus, the only method the author found for 

determining the time responses for the currents was to copy each expression from the command win¬ 

dow and put it in the argument of ilaplace in single quotation marks as shown in the following 

for ix(t)\ 

EDU»i1 = ilaplace(sym(' (13 *s+7*sA2+2 4+2 *sA3)/(5+4 *s+sA2)/(sA2+4) ')) 

il = 

7 7/65 * exp(- 2 *t)*sin(t)+109/65* exp(- 2 *t)*cos(t)+38/65*sin(2*t)+2l/65* 

cos(2 *t) 

EDU»pretty(il) 

77 • 109 

-exp(- 2 t) sin(t) +-exp(-2 t) cos(t) + 

65 65 

Node Analysis 

For a network consisting of Nb branches and Nv nodes, it follows that Nv — 1 independent equations can 

be written by writing KCL at Nv — 1 properly chosen nodes (see Appendix B). If the node for which 

we do not write a KCL equation is the same one that we choose as a reference node (i.e., “ground”), the 

equations have the following symmetric form: 

Yu(D)vx(t) + Yl2(D)v2(t) + • ■ ■ 4- Yln(D)vn(t) = ix(t) 

Y2]iP)vx{t) + Y22(D)v2(t) + ■ ■ ■ + Y2n(D)vn(t) = i2(t) (6-52) 

YmWvfi) + Yn2{D)v2(t) + • • * + Ynn(D)vn(t) = in(t) 

where YU{D) - CUD + G, + I^)"1 

Cu = sum of all capacitances between node i and all other nodes 

Gu = sum of all conductances between node i and all other nodes (6-53) 

F/V = sum of all reciprocal inductances between node i and all other 

nodes (jT = L~l) 

D = Jr d~' = LS)m 
Also, 

Y,fD) = -(C,p + Gy + r,/-)') (6-54) 

where G- = sum of all conductances between nodes i and j 

Cjj = sum of all capacitances between nodes i and j 

Tjj = sum of all reciprocal inductances between nodes i and j 

Vjif) = voltage drop between node j and the reference node 

i{t) = total source current flowing into node j 

38 21 

-sin(2 t) + -cos(2 

65 65 
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Taking the Laplace transform of (6-52), we obtain 

Y(.y)V(.s) = 1(5-) + J(s) (6-55) 

where Y(s) is called the node admittance matrix and has elements given by 

Yu(s) ~ sCn + Gu + ~y (6-56) 

W = -(sL + ^ + t) (6-57) 

If no dependent sources are present, Y(.s) is a symmetric matrix. The other matrices in (6-55) are de¬ 

fined as 

~Vi (0“ 

V(s) 4 2 (n = Nv - 1) 

-vjt)- 
~h(ty 

m 4 i£ (n = Nv- 1) 

-6,(0- 
and JO?) is the initial-condition matrix which results when the derivatives and integrals of (6-52) are 

Laplace-transformed. It can be included directly with the source current matrix, I(y), by using the 

Laplace-transformed equivalent circuits of Figure 6-2 for capacitive and inductive elements with 

nonzero initial conditions. 

(6-58) 

(6-59) 

EXAMPLE 6-6 __ 

We consider the same circuit as Figure 6-11, except that the two voltage sources and the series re¬ 

sistors are replaced by their Norton equivalents.1- The resulting circuit is shown in Figure 6-12. Work¬ 

ing with the Laplace-transformed equivalent circuit of Figure 6-12b, where initial conditions have 

been replaced by equivalent-current generators, we may immediately write down the Laplace-trans¬ 

formed matrix equations on a nodal basis. They are 

Rx sL 
0 V(V 

+ sC + (6-60) 

0 4 -I + i ys(s) Si L Rj r, rJ L 3 J L rs J 
We note that the admittance matrix, Y(s), is symmetric and can be written down directly from the 

Laplace-transformed circuit diagram by inspection. Also, by using the initial-condition generators 

This step need not be carried out, but in that case the equilibrium equations cannot be written down by inspection in matrix 
form. 
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vc(t)/R 3 

1 
sL Vc(s)IR3) 

(b) Laplace-transformed circuit including initial-condition generators: admittances shown 

FIGURE 6-12. Circuit for Example 6-6. 

of Figure 6-2, the initial conditions are included automatically with the source current matrix. Note 

also that a convenient way to handle voltage sources in nodal analysis is to convert them to Norton 

equivalents. 

The student should write down the KCL equations for this circuit assuming that vc(t) is a dependent 

source; for example, Vfs) = oiR^fs). The admittance matrix is no longer symmetric in this case. 

6-4 Transfer Functions 

Definition of a Transfer Function 

The concept of a transfer function is of great importance in system studies. It provides a method of com¬ 

pletely specifying the behavior of a system subjected to arbitrary inputs. We define the transfer func¬ 

tion of a fixed, linear system as the ratio of the Laplace transform of the system output to the Laplace 

transform of the system input when all initial conditions are zero. If we denote y(t) as the output and 

x(t) as the input, we may express the transfer function, H(s), as 

H(s) = 
n.v) 

X(s) all initial conditions zero 

(6-61) 

This relation must hold true for any input. Suppose that x(t) = 8(t). Then it is obvious that H(s) is the 

Laplace transform of the unit impulse response of the system since X(s) = 1. There are some things that 

we should note about it: 
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1. The transfer function is independent of the particular input and is a property of the circuit only. 

2. The transfer function is obtained for the case of zero initial conditions. 

3. The transfer function for a lumped, linear, fixed circuit is a rational function of s. 

4. We obtain the frequency response of a system from H(s) by setting s = jco = j2nf to obtain 

H(j2nf). The magnitude of H(j27if) is then the amplitude response function and its argument is 

the phase response function. 

Properties of Transfer Function for Linear, Lumped Stable Systems 

If the system is lumped, in addition to being linear and fixed, the transfer function may be written as 

H(s) = 
bmsm + b m-1° ' + by 

a„sn + a, n-l* + a( 
o a m 

D(s) 
(6-62) 

where the an's and bm’s are the coefficients of the differential equation that describes the system: 

dny(t) , crly(t) _ dmx(t) dm~lx(t) 
- —+ + aoy(0 - ~ + b 
df 

+ a n-1 dtn df m-1 dr .m — 1 + • * • + b^pcft) (6-63) 

The afs and bfs are real and nonnegative because they result from real system components such as re¬ 

sistors, capacitors, and inductors (springs, masses, and dampers if we are dealing with mechanical sys¬ 

tems). Thus the numerator and denominator polynomials, N(s) and D(s), have real coefficients. This 

implies that their roots are either real or occur in complex conjugate pairs. The roots of D(s) are referred 

to as the poles of the transfer function H(s) and the roots of Af(s) are referred to as the zeros of H(s). 

Since H(s) is the Laplace transform of the impulse response, it follows that the roots of N(s) and D(s) 

must satisfy certain conditions if h(t) represents a response from a stable system. 

First, requiring the system to be bounded-input, bounded-output (BIBO) stable, we note that the de¬ 

gree ofN(s) must be less than or equal to the degree ofD(s), for if this were not the case, long division 

of D(s) into N(s) results in the following form for H(s): 

H(s) = C/ + Ck_xsk~l + ... + ClS + C0 + ^ (6-64) 

Multiplication of H(s) by the Laplace transform of a bounded input signal (e.g., a unit step) and inverse 

Laplace transforming will then result in a response that is not bounded. For example, if the term Cxs 

alone is present, which would result if N(s) were of degree one more than D(s), the output in response 

to a unit step would contain the term <£g_1[(C11s)(l/s)] = Cx8(t). Also, all roots of D(s)—the poles of 

H(s)—must have real parts which are negative; that is, the poles must lie in'the left half of the s-planed 

The reason for this is apparent if one considers the inverse Laplace transform of a partial-fraction ex¬ 

pansion of Y(s) = X(s)H(s). Assume that H(s) contains the simple complex conjugate pair of poles 

s1 = — a + jco0 and s2 — —a — jco0, giving the denominator quadratic factor (s + a)2 + ^.Incomplete 

partial-fraction expansion of Y(s) then gives 

Y(s) = 
As + B 

(s + a)2 + coq 
+ y,(s) 

The first term of Y(s), according to Table 5-3, corresponds to terms in y(t) of the form 

(6-65) 

exp(—at) cos co0t u(t) 

The poles of H(s) give rise to response terms which are due to natural frequencies. 
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and 

exp(~at) sin co0t u(t) 

Since sl 2 = — a ± jco0 corresponds to the complex conjugate pole locations, we see that a must be pos¬ 

itive (poles in the left-half plane) if exp { — at) is to decrease with increasing t. Otherwise, the output will 

be unbounded regardless of whether the input is bounded or not. Similar considerations of pole factors 

of the form [(s + a)2 + col]n in H(s) result in time-domain terms of the form 

Atn~~l exp( — at) cos co0t u(t) 

or 

Atn~l exp(—at) sin co0t u(t) 

Clearly, if a > 0, a bounded response results. That is, poles in the left-half s-plane need not be simple. 

If a = 0, a bounded output will not result, even if n = 1, when the system is forced with a sinusoid 

of frequency coQ (a bounded input). This can be seen since F(s) will then have a denominator factor 

of (s2 + col)2, ^is will give a term in the partial-fraction expansion of the form A/(s2 + col)2, which 

Table 5-3 indicates will give an unbounded term in y(t). Therefore, BIBO stability requires strictly 

left-half-plane poles. 

With these considerations on permissible pole locations for a stable system, we are naturally curi¬ 

ous about restrictions, if any, on zero locations. With no condition other than BIBO stability placed on 

a transfer function, there are no restrictions on zero locations. If we impose an additional condition 

on the transfer function, defined as minimum phase, zeros must be located in the left-half plane also. A 

minimum-phase transfer function has the property that the absolute value of its phase is the smallest 

possible of all transfer functions with the same poles. 

Components of System Response 

If the system differential equation, given by (6-63), is Laplace-transformed term-by-term through the 

use of the differentiation theorem of Laplace transforms, the result is 

an\snY(s) - s't-'yi0) - sn~2y(0)-sy<"-2)(0) - /»-D(0)] 

+ an_1[jn_1F(j) - s>‘ 2}-(0) - .^(O)-y«-2)(0)] 

+ an_2[s"-2Y(s) - s"-iy(0) - sn~4y(0)-/"^(O)] + • • • 

+ ai[sY(s) - y(0)] + a0Y(s) 

= [bmsm + bm_xsm~l + • • • + £>0]Vs) (6-66) 

where Y(s) = X(s) = !:£[x(t)\, and v(,,,(0) = dnyldtn|(=0. It has been assumed that the derivatives 

on x(t) at t = 0 are zero. Equation (6-66) can be written 

D(s)Y(s) - C(s) = N(s)X(s) (6-67) 

or 

Y(s) = ~\ + H(s)X(s) (6-68) 
D(s) 

where 

N(s) = 
i=o 

bjSJ (6-69a) 
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D(s) = 2 ap 
7 = 0 

(6-69b) 

(6-69c) 

and 

C(s) = 2 ais‘~ly(0) + 2 ais‘~2y(0) + • • • + [ans + an_ 
i=1 /=2 

.,]y"-2)(0) + any{n~l\ 0) (6-69d) 

The inverse Laplace transform of (6-68) gives the total response of the system including that due to the 

initial conditions as well as to the forcing function. It is referred to as the initial-state response (ISR), 

and is composed of the two terms 

yjf) = i£-'[C(s)/D(.v)] (6-70) 

and 

>’zsr(0 = Z-'[H(s)X(s)\ (6-71) 

The first results from the initial conditions present in the system alone, and is called the zero-input re¬ 

sponse (ZIR). The second is due to the forcing function or system input, assuming zero initial condi¬ 

tions, and is referred to as the zero-state response (ZSR). 

As mentioned in Chapter 5, the response of a system can be divided into the transient and forced re¬ 

sponses The former is due to the natural response of the circuit and approaches zero as t —> oo. The 

latter is independent of the natural response and depends only on the form of the input. We have just 

seen that the system response can also be decomposed into the ZIR and ZSR. Clarification of these two 

viewpoints is provided by the following example. 

EXAMPLE 6-7 _ 

Consider the RC circuit of Figure 6-13a. Instead of the output being taken across the capacitor, as 

previously, we take it across the resistor. Find the output for the input 

vs(t) = 5 cos 21 u(t) (6-72) 

and an initial capacitor voltage of v0 with RC = 1 s. Express it as (a) the sum of the forced and tran¬ 

sient responses, and (b) as the sum of the ZIR and ZSR. 

Solution: The Laplace-transformed equivalent circuit is shown in Figure 6-13b. The Laplace trans¬ 

form of the loop current is 

m = 
Vs(s) - vJs 
R + 1/sC 

and the Laplace transform of the output (the voltage across the resistor) is 

s .... 5 

(6-73) 

Y(s) 
s + 1 /RC 

VJs) 
s s + 1 /RC 

= H(s) V,(s) (6-74) 
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C 

1 IsC VqJs 

(b) Laplace-transformed equivalent circuit 

FIGURE 6-13. A circuit used to illustrate the concepts of transient plus forced responses and ZIR 
plus ZSR. 

where 

H(s) = 
s + 1 /RC 

Clearly, the first term is due to the input, and the second term is due to the initial condition. For the 

given input and the given value for RC, the Laplace transform of the output is 

no- 5s2 (s + l)(s2 + 4) 

1 

5 + 1 
+ 4 

5 + 1 

1 2 

s2 + 4 2 s2 + 4 s + 1 
(6-75) 

Inverse-Laplace-transforming this expression, we find the output to be 

y(t) + 4 cos 21 — \ sin 21 
2 

\u(t) - v0e {u(t) (6-76a) 

If the initial condition is zero, the last term disappears. Hence, the last term is the ZIR. The terms in¬ 

side the braces disappear if the input is zero. Therefore the terms inside the braces constitute the ZSR. 

The output may be rewritten as 

y(0 = (1 - v0)e-( + 4 cos 21 — ~ sin It 
2 

u(t) (6-76b) 

We can now identify the transient and steady-state responses as corresponding to the exponential and 

sinusoidal terms, respectively, for the former goes away as t —> °°. Note in (6-75) that the pole of the 

transfer function appears both in the term due to the input and in the term due to the initial condi- 
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tion. This produces the response e~tu(t) in both the ZSR and ZIR. In other words, both the input and 

the initial condition excite the natural frequencies of the system. When the output is viewed as the 

sum of the transient and forced responses, terms dependent on the natural frequencies appear only 

in the transient portion. 

Matlab Application 

The output of a system may be simulated using the function lsim from the signal processing tool 

box of Matlab (a subset of this toolbox is included in The Student Edition of Matlab) as shown in 

the following program listing. Plots of the output (voltage across resistor) obtained by simulation 

and that computed from the analytical formula (6-65b) are given in Figure 6-14. Similarly, the im¬ 

pulse and step responses may be obtained by using the functions impulse and step. 

EDU» echo on 

EDU» c6ex7 

% lsim plot for Example 6-7 

% 

vO = -2; 

t = 0:.05:40; 

num = [1 0] ; 

den = [11]; 

v = 5 * cos(2*t)-vO; 

y_sim = lsim(num,den,v,t) 

% Define IC value 

% Define time variable 

% Define H(s) numerator and denominator 

% polynomials 

% Define input in time domain; include IG 

% Use lsim() to get output (without y = 

% lsim(), plot is done) 

t 

FIGURE 6-14. Simulated and analytically computed output of a high pass RC filter. 
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y_anal = (1 -vO)* exp(-1)+4*(cos(2 *t)-.5 * sin(2 *t)) ; % Analytical output for 

% comparison 

% Plot simulated and analytically computed output 

subplot(2,l,l),plot(t,y_sim),xlabel('t'),ylabel(’sim. y(t)1) 

subplot(2,l,2),plot(t,y_anal),xlabel(’t'),ylabel('anal. y(t)’) 

Asymptotic and Marginal Stability 

A system is said to be asymptotically stable if yzir(t) —» 0 as t —> for all initial conditions, y(0), y(0), 

y(2)(0), . . . , y(«-!)(0). That is, the system response due to any initial stored energy in the system dies out 

to zero as time goes to infinity. 

The system is marginally stable if 

|yzir(0| ^ M, all t > 0 and all initial conditions (6-77) 

where M is a finite positive constant. The system is unstable if the magnitude of the ZIR grows with¬ 

out bound for some values of the initial conditions. 

It can be shown that if a system is asymptotically stable (also referred to as internal stability), it must 

be BIBO stable (also referred to as external stability). The converse is not necessarily true (see Kailath, 

pp. 175 ff). 

6-5 Stability and the Routh Array 

The concept of stability is extremely important in system studies. This is true for the simple reason that 

stability is, in almost all cases, the minimum condition that a system must meet in order to behave ac¬ 

ceptably. On the other hand, it does not follow that a system will exhibit acceptable behavior just be¬ 

cause it is stable. 

There are two concepts of stability in common use. The first notion of stability involves the behav¬ 

ior of the system when it is subjected to general inputs. The concept is quite simple. If the system out¬ 

put is bounded for all time for every bounded input, the system is said to be bounded-input, 

bounded-output (BIBO) stable, as discussed in Section 6-4. 

The second concept of stability involves the behavior of the system after it is subjected to small dis¬ 

turbances of short duration. Let us assume that the system is in some equilibrium condition and that 

some disturbance causes it to be moved from its operating point to some other operating point. This sec¬ 

ond operating point is assumed to be not much different from the original one. Now suppose that the 

disturbance is removed, and we observe the system behavior after this time. If the system output always 

remains bounded and eventually tends toward the original operating point, the system is said to be sta¬ 

ble. If the system output grows without bound, the system is said to be unstable. If the output remains 

bounded but does not tend toward the original operating point, the system is said to be marginally sta¬ 

ble. For example, a marginally stable system may exhibit a sustained oscillation or a constant output. 

These concepts are illustrated in Figure 6-15, where the horizontal position of the ball represents the 

output. As is readily seen, this concept of stability is quite different from that of BIBO stability. How¬ 

ever, for lumped, linear, time-invariant systems it can be shown that the two concepts of stability are 

equivalent; that is, one implies the other, assuming that the system is controllable and observable (see 

Section 7-8). 

It is well known that a necessary and sufficient condition for the stability of a linear, time-invariant 

system is that the system poles all lie in the left-half s-plane. The system poles are simply the roots of 

the characteristic polynomial, which is the denominator of the overall system transfer function. The va- 
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(a) Stable (b) Unstable 

7777777777777777} 

(c) Marginally stable 

FIGURE 6-15. Illustration of stability concepts. 

lidity of the stability condition is readily established. The system response will contain terms of the form 

ePi\ where the are the system poles. If any of the poles have positive real parts, the response will 

clearly increase without bound. If the real part is zero, the response will, at best, oscillate with constant 

amplitude or maintain a nonzero dc value. Thus the response for a small initial disturbance does not de¬ 

cay to zero. On the other hand, if all poles have negative real parts (i.e., are in the left-half s-plane) all 

terms in the response ultimately decay to zero. 

We have established that the determination of system stability (for linear, time-invariant systems) is 

equivalent to determining whether or not all poles lie in the left-half s-plane (l.h.p.). How can we do 

this? One approach would be to factor the characteristic polynomial. This would tell us the exact root 

locations. However, this involves factoring an nth-degree polynomial in s, which is no easy task unless 

we resort to computer-aided methods. Furthermore, the exact root locations really give more informa¬ 

tion than is required—we only need to know if all the roots are in the l.h.p. Thus we turn to methods 

other than factoring the characteristic polynomial 

A necessary, but not sufficient, condition for a polynomial to have strictly l.h.p. roots is that all its 

coefficients be strictly positive (i.e., greater than zero). The reason for this is fairly easy to see. Let us 

write the polynomial in factored form and then multiply it out so as to examine the form of the coeffi¬ 

cients. We have 

p(s) = (s + Pj)(s + p2)(s +p3)---(s+ pn) 

= ■*" + (Pi + Pi + • • • + PnV 1 + 
/sum of products of p's\ 

(taken two at a time ) 

(sum of products of p's 

(taken n — 1 at a time * +PlP2'"Pn (6-78) 

From the way in which the coefficients are constructed it is clear that if a negative or zero coefficient 

is present, it must arise due to one or more of the p{ having negative or zero real part. Since the p{ are 

the negatives of the roots, this means that at least one root lies in the r.h.p. or on the imaginary axis. 

Thus the system is not stable. Unfortunately, having all the coefficients positive does not guarantee sta¬ 

bility. However, this condition is sometimes useful in that it allows us to immediately recognize as un- 

stable a system whose characteristic polynomial contains negative coefficients. 

A stability test that is both necessary and sufficient is clearly desirable. Such a test is provided by the 

Routh criterion. It is sometimes called the Routh-Hurwitz criterion because Hurwitz developed an 

equivalent test formulated in terms of determinants. The Routh criterion makes use of an array of co¬ 

efficients generated from the coefficients of the characteristic polynomial. When the array is complete, 

the number of sign changes in the first column is equal to the number of r.h.p. roots. For a stable sys¬ 

tem there must be no such roots (i.e., no first-column sign changes). 

The Routh array is constructed in a straightforward manner from the coefficients of the characteris¬ 

tic polynomial, D(s). Consider a polynomial 

ansn + an_\Sn~l + an__2sn~2 + * * * + cl+ a0 (6-79) 
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<7l 

FIGURE 6-16. Formation of Routh array. 

The Routh array is formed as shown in Figure 6-17. The first two rows are obtained directly from the 

polynomial coefficients. The coefficients of the third row are then generated from those of the first two 

rows as follows: 

■ln~\un~2 

b2 
Un-T f'n—4 Q'rfl'n- 5 

" an-1 
(6-80) 

and so on, until there are no more a terms from which to compute coefficients. The multiplication is in¬ 

dicated by arrows in Figure 6-16. Once the sn~2 row is obtained, it is used with the coefficients of the sn~1 

row to compute the coefficients of the next (sn~3) row. This is done in exactly the same manner; that is, 

b\an—3 b2an-\ 

bi 

bjfln-5 ~ 
(6-81) 

and so on, until this row stops. Succeeding rows are computed in the same way until the array termi¬ 

nates with only one element in the s° row. It is important to label the power of s corresponding to each 

row so that we know when the array terminates. Finally, when the array is complete, the elements of the 

first column are examined for sign changes. The number of sign changes is equal to the number of r.h.p. 

roots of the polynomial from whose coefficients the array was generated. The process sounds a good 

deal more complicated than it actually is. The following examples will illustrate the procedure. 

EXAMPLE 6-8 _ 

Consider the following polynomial: 

p(s) = s3 + 1 As1 + 41s — 56 (6-82) 

Find the number of r.h.p. roots. 
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We can readily see that there is at least one root in the r.h.p. because of the negative coefficient, 

but let us apply the Routh test and see how many r.h.p. roots there are. The Routh array is found to be 

1 41 

14 -56 

41(14) + 56 = 

14 

-56 

We see that there is one sign change in the first column, so there is one r.h.p. root. The result can be 

checked for this simple case by factoring the polynomial as 

p(s) = (s~ 1 )(s + 7)0 + 8) (6-83) 

Clearly, the r.h.p. root is at s = 1. 

EXAMPLE 6-9 __ 

Find the number of r.h.p. roots of 

p(s) = s4 + 5s3 + s2 + 10 s + 1 (6-84) 

The Routh array is 

s4 

s3 

s2 

s 

s0 

1 1 1 

5 10 

-1 1 

15 

1 

Here we have two sign changes (+5 to — 1 and — 1 to +15), so there are two r.h.p. roots. 

There are two cases in which development of the Routh array requires slight modification of the pro¬ 

cedure discussed. Both pertain to zero entries in the array. The first case is one in which the first ele¬ 

ment of a row is zero, but there is at least one nonzero element in the row. The zero element causes 

difficulty because we must divide by it in order to compute the elements of the next row. To avoid the 

difficulty, we replace the zero element by a small positive number e and continue. When the array is 

completed we let e tend toward zero and examine the sign changes in the first column. This technique 

is illustrated in Example 6-10. 

EXAMPLE 6-10 _ 

Determine the stability of a system whose characteristic polynomial is 

p(s) = s4 + s3 + s2 + s + 3 (6-85) 

The Routh array is begun as usual, but we find a zero first element in the s2 row with another ele¬ 

ment in that row nonzero. So we replace the zero by e and continue as shown. 
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s4 113 

s3 1 1 

s2 0e 3 

e — 3 
.v - 

6 

3 

We then let e tend toward zero. All terms in the first column remain positive except the term in the 

.v row, which becomes very large and negative and leads to two sign changes. Hence the system is 

unstable since it has two, r.h.p. poles. 

The second case requiring special treatment is one in which an entire row of the array is zero. This 

situation arises whenever some or all of the roots are arranged symmetrically about the origin. The zero 

row is always one corresponding to an odd power of s. The preceding row contains coefficients that 

may be used to form a polynomial that is even in s. This polynomial is known as the auxiliary polyno¬ 

mial, and it contains the roots that cause the zero row. In addition, the degree of the auxiliary polyno¬ 

mial is equal to the number of roots that occur in symmetric pairs. To continue with the array, we 

differentiate the auxiliary polynomial and use the resulting coefficients in place of the row of zeros. The 

remaining portion of the array is computed as usual. The procedure is best illustrated by an example. 

EXAMPLE 6-11 _ 

Find the number of r.h.p. roots of 

p(s) = s1 + 3 s6 + 3s5 + s4 + s3 + 3 s2 + 3s + 1 (6-86) 

3 1 3 

1 3 1 

0 1 <— auxiliary polynomial .v4 + 1 

0 <- ~(s4 + 1) = 4s3 

We see that two r.h.p. roots are predicted. The roots that cause the zero row are contained in the aux¬ 

iliary polynomial and are found to be ± V2/2 ± j V2/2. We may writep(s) as 

p(s) = (s + l)3 (.S’4 + 1) 

so that there are in fact two r.h.p. roots—the two contained in (s4 + 1). 

The Routh array is formed as shown. 

s1 1 

s6 3 

,5 8 
3 

54 1 

s3 04 

0C 
4 

s - 
6 

S° 1 

(6-87) 
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A common application of the Routh criterion is that of determining the range of some system para¬ 

meter for which the system is stable, that is, for which the characteristic polynomial has no r.h.p. roots. 

Such a situation arises frequently in the study of control systems, where the variable parameter is most 

frequently an amplifier gain. The procedure is illustrated in Example 6-12. 

6-6 Frequency Response and Bode Plots 

Frequently, it is desirable to display graphically the frequency response of a system as discussed in 

Chapters 3 and 4. Such graphical displays are useful in control system analysis and design and in filter 

design. The frequency response is a sinusoidal steady-state concept and is obtained from the system 

transfer function by letting s = jco. Usually, we are interested in plotting both the magnitude and the an¬ 

gle of the transfer function versus the angular frequency cu. It is conventional to plot the magnitude in 

decibels (dB) and use a log scale for oj. (The magnitude of a function H in decibels, denoted |//|dB, is 

given by \H\dB = 20 logj// |.) There are two reasons for using this choice of scales. First, since rather 

large ranges of frequency and magnitude may be involved, the log scales may help to compress the data 

so that they can be displayed on a conventionally sized page. Second, the nature of the transfer func¬ 

tion is such that the choice of a decibel scale leads to computational simplicity. 

Recall that for a linear, lumped, time-invariant system, the transfer function is a rational function of 

s; that is, 

ms) 
Q(s) 

(6-91) 

where P and Q are polynomials in s. Therefore, H(s) can be written as a product of factors of the fol¬ 

lowing forms: 



280 Ch. 6 / Applications of the Laplace Transform 

1. Constant factor, K. 

2. Poles or zeros at the origin, s±N. 

3. Real poles or zeros, (Ts + l)±N. 

4. Complex-conjugate poles or zeros, (T2s2 + 2£Ts + \)±N, where £ is the damping ratio and 

0<f<l. 

Since 

14nj = 201oglo|fl| (6-92) 

plotting the magnitude of H in decibels allows us to plot the factors individually and then sum the re¬ 

sults to obtain the complete magnitude plot. A frequency-response plot obtained in this way is known 

as a Bode plot, after H. W. 'Bode, who invented and used such plots to analyze feedback amplifiers in 

connection with his work at Bell Laboratories. 

The phase plot is also obtained by summing the plots of the phase of the individual factors. This fol¬ 

lows directly from the fact that the angle of the product of two complex numbers is the sum of the an¬ 

gles of the two numbers. Since we can obtain both the magnitude and phase plots for the complete 

transfer function by summing the plots for the individual factors, we now turn to developing the Bode 

plot for each of the factors of interest. 

1. Constant Factor, K. For the constant factor K, we have 

|4B = 201ogJ^ (6-93) 

which is just a constant. Therefore, the magnitude plot is just a horizontal line. The angle is zero or 

±180°, depending on whether K is positive or negative, respectively. Therefore, the phase curve is a 

horizontal line. 

2. Poles or Zeros at the Origin, s±N. In this case 

H(ja>) = (jco)±N 

so 

|tf|dB = 20 log10 0)±N = ± 20AHog10 (0 (6-94) 

Since a log scale is used for oj, (6-94) describes a family of straight lines that intersect the w-axis (0 dB) 

at co = 1 and which have slope ± 20N dB/decade. (A decade is a factor of 10 in co, for which log10 co 

changes by 1 unit.) This family of lines is shown in Figure 6-17. 

The angle of H is given by 

/H=±N90° (6-95) 

so poles or zeros at the origin simply introduce a constant phase. 

3. Real Poles or Zeros, (Ts + l)±N. Here we have amplitude and phase curves which are not 

straight lines; however, they are asymptotic to straight lines. Hence our strategy will be to develop 

these asymptotes and make corrections as necessary to obtain the actual curves. For the magnitude 

we obtain 

|//|dB = 201oglo(V(W702 + l)±A' 

= ± 2(W log10 V(wT)2 + 1 

= ±l(Wlog10(w2T2 + 1) (6-96) 
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Itfldi 

u> 

FIGURE 6-17. Magnitude plot for poles and zeros at origin. 

When co is very small (i.e., co < < 1/7), (6-96) becomes 

| H\dB - ± ION log,0 1=0 dB (6-97a) 

Therefore, the low-frequency asymptote is 0 dB. When co » 1 IT we obtain 

\H\m = ± 20N log10 coT = ± 2(w(log10 <w - log10(6-97b) 

which is the equation of the high-frequency asymptote. It describes a straight line of slope ±2(W 

dB/decade which intersects 0 dB when co — 1 IT. The actual curve lies almost on the asymptotes except 

within about one-half decade either side of co = 1/7, which is called the corner frequency. In this re¬ 

gion, the magnitude varies smoothly. At the comer frequency 

|tf|dB = ± l(Wlog102 — ± 3N dB (6-98) 

This gives us enough information to sketch the magnitude curve quite closely. A sketch is shown for a 

real pole factor of order N in Figure 6-18. A zero factor would have a magnitude plot which is the mir¬ 

ror image through the cu-axis of Figure 6-19. 
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ItfldB 

FIGURE 6-18. Asymptotic and actual magnitude curves for a real pole factor of order N. 

The phase curve is obtained from 

/H = ± N tan 1 coT (6-99) 

At low frequencies the angle of H is about 0°, whereas at high frequencies it approaches ± A90°. At the 

comer frequency the angle is ±A45°. The phase curve for a pole of order N is shown in Figure 6-19 

together with an approximation consisting of straight lines. Note that the sloped-line asymptote starts 

one decade before the comer frequency and ends a decade after it. The slope is — A45°/decade. For a 

zero factor, the curve would be the mirror image through the a>-axis of Figure 6-19. 

FIGURE 6-19. Asymptotic and actual phase curves for a real pole factor of order N. 
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4. Complex-Conjugate Poles or Zeros (T2s2 + 2ijTs + l)±N. For simplicity we consider only the 

case of a single pair of complex conjugate poles, 

H(s) = 
1_ 

T2s2 + 2£Ts + 1 
(6-100) 

If the poles are repeated N times, all ordinates on the curves we generate are simply multiplied by N. 

Their basic shape remains unchanged. Of course, if we have zeros instead of poles, curves are mirror 

images through the a>-axis of the curves corresponding to poles. 

From (6-100) we may write the magnitude of H in decibels as 

IMffl = -201og10[(l - Vco2)2 + 4^7W]i/2 

= —10 log10[(l ” 7W)2 + 4^7W] (6-101) 

Again we consider the asymptotic cases. For very small co (co « 1 IT) we obtain 

|tf|dB - -10 log10l = 0 dB (6-102) 

Therefore, the curve is asymptotic to the o>-axis at low frequencies. For co » 1 IT we may write 

(6-101) as 

|fl|dB “ -ioiog10(<</r4 + 4£2r2«2) 

— -10 log10 coATA = -40 log10 coT 

= —4oflog10 cu - log10—j (6-103) 

Note that we have neglected the co2 term compared to the co4 term because co is large. Equation (6-103) 
describes a straight line of slope —40 dB/decade. The line intersects the cu-axis at the corner frequency 

(0=1/1 The actual magnitude curve is asymptotic to this line at high frequencies. In the general vicin¬ 

ity of the corner frequency the actual curve does not lie on the asymptotes but varies smoothly. However, 

the manner in which it varies depends on the damping ratio. For £ < V2/2 = 0.707, the curve exhi- 

bits a hump. The magnitude of this resonant peak (in decibels) is given by 20 log10(l/2^Vl - £2). 

The frequency at which this maximum occurs, which is called the resonant frequency, is cop = 

(l/T)Vl — 2£2. These values give enough information to sketch the magnitude curve. Figure 6-20 

shows the asymptotic curve and actual magnitude curves for several values of the damping ratio. 

The phase curve for the complex pole factor may be obtained from 

(H= —tan”1 
2£Tco 

1 - co2T2 
(6-104) 

However, if we wish to use the principal value of the inverse tangent, (6-104) is valid only for 

0 < co < l IT. For co > l IT the curve lies below -90° and approaches -180° for large co since two poles 

are present. An expression valid for co > 1 IT is 

/H = ~ 180° + tan-1 (6-105) 
co2T2 - 1 

Equations (6-104) and (6-105) may be used to generate phase curves. Note that these curves depend on 

the damping ratio. We may still use a straight-line approximation beginning at co = 0AIT and ending 



284 Ch. 6 / Applications of the Laplace Transform 

.1 .2 .3 .4 .6 .8 1 2 3 4 6 8 10 

Normalized frequency cjT 

FIGURE 6-20. Asymptotic and actual magnitude curves for a complex pole factor for various 

at a) = 10/r with slope — 90°/decade, but the error between the approximation and the actual curve 

increases as £ is made small.1 Figure 6-21 shows the asymptotic curves and actual phase curves for sev¬ 

eral values of f. 

Now that we know how to obtain Bode plots for the individual factors which may appear in a 

transfer function, we are in a position to construct a Bode plot for almost any rational transfer func¬ 

tion. The usual strategy is to plot the asymptotes for the magnitude and phase curves of the individual 

factors and then add to obtain the asymptotic curves for the complete transfer function. Finally, the 

corrected curves are sketched. We close this section with a detailed example illustrating the com¬ 

plete procedure. 

EXAMPLE 6-13 

Construct a Bode plot for the transfer function 

ms) = 

100(.y + 2) 

+ 5s + 25) 
(6-106) 

fThe asymptotic approximation given here is common in the study of control systems. Other straightline approximations 
would be more accurate and are sometimes encountered. 
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FIGURE 6-21. Asymptotic and actual phase curves for a complex pole factor for various 

First we must convert this to the standard form in which the factors appear as sT + 1 and s2T2 + 

2£Ts + 1. Factoring 2 from the numerator and 25 from the denominator yields 

m > _ 8(°-5* + X) 
W s[(0.2)V + 2(0.5)(0.2)s + 1] - 

(6-107) 

We can recognize the following factors: 

1. Constant factor, K— 8 or 18.06 dB. 

2. Simple zero factor (0.5s +1), comer frequency co = 2. 

3. Simple pole factor at origin, 1/s. 

4. Complex pole factor (0.2)2s2 + 2(0.5)(0.2)s + 1, comer frequency oj = 5, damping ratio 

£ — 0.5. 

The asymptotes for these factors are obtained as previously outlined and are shown in Figures 6-22 

and 6-23. Note that the constant factor introduces no contribution to the phase curve, while the pole 

at the origin yields -90° regardless of frequency. The complete asymptotic magnitude and phase 

curves are shown as dashed lines. They are obtained by adding the individual curves. Finally, the 
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FIGURE 6-24. Output of the Matlab function bode for the transfer function of Example 6-13. 

corrected curves are the solid smooth curves shown. These are constructed by using the results shown 

in Figures 6-17 through 6-21 and adding the various corrections to the final asymptotic curve. 

Matlab Application 

Matlab may be used to plot Bode plots using the function bode. Since only three statements are 

required to plot the Bode plots for Example 6-13, we do them directly-in the command window as 

shown. Plots of the output of bode (magnitude and phase) are shown in Figure 6-24, which shows 

that the same results are obtained as when the plotting is done by hand. 

EDU» num =[0 0 100 200] ; 

EDU» den = [1 5 25 0] ; 

EDU» bode(num, den) 

6-7 Block Diagrams 

We now discuss a special form of system model that is very useful in the analysis of large systems— 

the block diagram. The block diagram is a combination of mathematical and schematic models of the 
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Y(s) 

FIGURE 6-25. Basic element of block diagram. 

system. As such, it not only gives the equations of each of the parts of the system, but also shows 

how these parts are interconnected. Therefore, the block diagram offers considerable insight into the 

system structure and provides all necessary information to determine the system equations or transfer 

function. 

The basic element of block diagrams is the single block shown in Figure 6-25. Signal transmission 

is assumed possible only in the direction of the arrows. In Figure 6-25, XO) is the Laplace transform of 

the input, Y(s) is the Laplace transform of the output, and G(s) is the transfer function discussed in Sec¬ 

tion 6-4. Accordingly, the output is given by 

Y(s) = G(s)X(s) (6-108) 

and this relation is assumed to hold regardless of what is connected to the output of the block. Such an 

assumption is equivalent to neglecting all loading effects. Obviously, there will be cases in which this 

assumption is not valid. In such cases, we must develop the transfer function under the conditions of 

system operation (i.e., we must take into account the effects of loading). Once we do this, we may then 

proceed as though loading were not present. From this point on, then, we will assume that the effects 

of loading have already been taken into account in the development of the transfer function and need 

not be considered further. 

The simplest interconnection of blocks is the cascade connection shown in Figure 6-26. The trans¬ 

fer function can be found easily. Note that 

Y(s) = G2(s)W(s), W(s) = Gfs)X(s) (6-109) 

Hence 

Y(s) = G2(s)Gfs)X(s) (6-110) 

or 

G(s) = = G1(^)G2(s) (6-111) 

The result is readily extended to several blocks in cascade: The transfer function of blocks in cascade 

is the product of the transfer functions of the individual blocks. Rules such as this become very impor¬ 

tant in simplifying complicated block diagrams, as we shall see shortly. Before doing this, however, we 

need to define one further element of the block diagram—the summer. A summer with several inputs is 

shown in Figure 6-27. The output is just the sum of the inputs, each with the sign indicated; that is, for 

the case shown 

Y(s) = Xfs) - X2(s) - X3(s) + X4(s) (6-112) 

Summers are usually used to model the comparison function so essential to the operation of a feedback 

control system, as well as to indicate points where disturbances or other inputs may enter the system. 

X(s) 
Cr , (c) 

W{s) 
G2(s) 

Yis)^ 

FIGURE 6-26. Cascade connection of blocks. 
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X{(m) 

FIGURE 6-27. Symbol for summer. 

When the system block diagram is very complicated it becomes tedious to write equations, as we did 

for the cascade connection, and solve them for the overall system transfer function. It is helpful to have 

some way of systematically reducing the block diagram to some form we can recognize. The most com¬ 

mon simple form is the single-loop feedback system of Figure 6-28. We can obtain the system transfer 

function easily. First note that 

C(s) = G(s)Eis) (6-113) 

Furthermore, 

FJs) = R(s) - H(s)C(s) (6-114) 

Substitution of (6-113) into (6-114) yields 

C(s) = G(s)R(s) - G(s)H(s)C(s) (6-115) 

or 

C(s)[l + G(s)H(s)\ = G(s)R(s) (6-116) 

Rearranging, we obtain the transfer function as 

= CW = o(s) 

V‘’ R(s) 1 + G(s)H(s) 
(6-117) 

Thus the single-loop system may be replaced by a single block whose transfer function is given by 

(6-117). Several relations useful for simplification of block diagrams are given in Table 6-1. It is easy 

to verify these relations by writing down the algebraic relations for each case and showing that the same 

transfer functions result. 

When we reduce a block diagram we make use of the relations shown in Table 6-1 to combine blocks 

in cascade or parallel, moving summing points, pick off points, and simplify loops until only one loop 

FIGURE 6-28. Single-loop feedback system. 
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TABLE 6-1 
Relations for Block Diagram Reduction 
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is left. At that point we can simply write down the answer using the last entry of the table. Although it 

sounds complicated, the procedure is really very straightforward. It is best discussed with a particular 

example in mind. 

EXAMPLE 6-14 

Find T(s) = Y(s)/X(s) for the block diagram of Figure 6-29. 

First, we replace the cascade connection of G2 and G4 by its equivalent block with transfer func¬ 

tion G2G4. This new block is then in parallel with G3, so we perform a further simplification, yield¬ 

ing a block with transfer function G3 + G2G4. At this stage the system appears as shown in Figure 

6-30. Next we replace the inner loop consisting of Gx and Hx by its equivalent transfer function 

Gx/(I + GXHX) and further simplify by combining this block with G3 + G2G4. Now the system is re¬ 

duced to the single loop shown in Figure 6-31. We can immediately write the transfer function of 

this single-loop system as 

EQ) _ Gi(G3 + G2G4)/(1 + GXHX) 

X(s) ~ 1 + F/2G1(G3 + G2G4)/(1 + GXHX) 
(6-118) 

The result may be simplified somewhat to yield 

T(s) = 
_Gj(G3 + G2G4)_ 

1 + GXHX + H2Gx(G3 + G2G4) 
(6-119) 

FIGURE 6-29. Block diagram to be reduced 

FIGURE 6-30. Partially simplified block diagram. 
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FIGURE 6-31. System after reduction to single-loop form. 

Although this example has not used all the equivalencies of Table 6-1, it does indicate the general 

procedure to be followed in reducing block diagrams. 

We close this section with a perhaps simpler, but considerably more realistic, example. 

EXAMPLE 6-15 

The armature-controlled dc servomotor is a common element in position control systems. We wish 

to find the transfer function between the input voltage (armature voltage Ea) and the output position 

(angular shaft position 6). 

First, we must define some parameters of the motor and obtain equations governing its behavior. 

Once we have done this we can construct a block diagram and then determine the transfer function. 

This is an approach commonly employed in the development of models for physical systems. We as¬ 

sume that the motor has inertia J and friction B. Then the torque T produced by the motor and the 

shaft position 6 are related by 

J6 + B6=T (6-120) 

Laplace-transforming with zero initial conditions and rearranging, we obtain 

eM = l 

T(s) s(sJ + B) 
(6-121) 

as the transfer function between torque and shaft position. In an armature-controlled dc motor the 

torque produced is proportional to the armature current, 

T=KJa (6-122) 

where Km is called the motor constant and depends on the particular motor being used. To obtain an 

expression for the armature current, two factors must be considered. First, the armature contains re¬ 

sistance and inductance Ra and La, respectively. Thus its impedance is 

Za(s) = sLa + Ra (6-123) 

Second, a back emf (electromotive force) appears in the armature circuit as a result of the speed of 

the motor: 

Vb(s) = KBm (6-124a) 

or 

Vb(s) = Kbs6(s) (6-124b) 

where KB is a constant of proportionality. This back emf is in opposition to the applied voltage Ea, 

so the voltage appearing across the armature impedance is 

Va(s) = Ea(s) - Vb(s) (6-125) 
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FIGURE 6-32. Block diagram of armature-controlled dc motor. 

The armature current is then given by 

= 

VgW 
sLn + R 

(6-126) 
a a 

Equations (6-121) through (6-126) define a linear model of the armature-controlled dc motor. A 

block diagram representing these equations is shown in Figure 6-32. This is a single-loop negative- 

feedback system with G(s) given by the product of the forward-loop transfer functions; that is, 

G(s) 
K 

and 

Therefore, 

9(s) 

s(sLa + Ra)(sJ + B) 

H(s) = Kbs 

Kj[s(sLa + Ra)(sJ + B)\ 

or 

Ea(s) l + GH 1 + KmKB/[sLa + Ra)(sJ + 5)] 

0(S) = _Kjn_ 

Ea(s) s[(sLa + Ra)(sJ+ B) + KmKB] 

It is perhaps worth pointing out that in most small motors La may be neglected, so that 

9{s) _ _Km_ 

Ea(s) s\s.IRa + (RaB + KmKB)} 

(6-127) 

(6-128) 

(6-129) 

(6-130) 

(6-131) 

By grouping the various parameters in an obvious way we could also obtain the following repre¬ 

sentation as an approximation that is valid for many small motors: 

KL flfr) =_ 
EJs) s(srm + 1) 

(6-132) 

In Example 6-12 we showed how to use the Routh criterion to determine the range of a system para¬ 

meter in order to ensure stability. We are now in a position to see how such a problem might come about. 

EXAMPLE 6-16 _ 

The system shown in Figure 6-33 is a block diagram of a position-control system which, if it is 

stable, will follow a ramp angular position input in steady state. The motor is modeled by 
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FIGURE 6-33. Position-control system. 

(6-132) with K'm = 5 and rm= Is. The controller includes a variable gain K. We wish to know the 

range of K, if any, which yields a stable system. 

Straightforward block diagram reduction yields the system transfer function as (show this) 

0o(s) 5K(s + 1) 

0^0 ~ S3 + S'2 + 5I<Cs + 2.5K (6-133) 

The characteristic polynomial is just 

s3 + s2 + 5 Ks + 2.5K (6-134) 

and must have no r.h.p. roots if the system is to be stable. The Routh array is 

5-3 1 5 K 

s2 1 2.5 K 

s 2.5K 

s° 1 

For stability, there must be no sign changes in the first column; therefore, any K > 0 will yield a 

stable system. In actual design of such a system it would be necessary to choose a value of K that 

led to a suitable transient response. Such topics are discussed in detail in courses concerning con¬ 

trol systems. 

*6-8 Operational Amplifiers as Elements in Feedback Circuits 

As pointed out by the first two examples in Chapter 1, operational amplifiers are convenient elements 

in analog signal-processing circuits. We will not go into the details of operational amplifier electrical 

characteristics here (see Siebert for more details), but we will instead look at a frequency-dependent 

model for operational amplifiers that is convenient for system analysis. 

In Chapter 1, and in most introductory circuits courses, the operational amplifier is represented as 

an infinite-gain amplifier with an infinite input impedance at both its inverting and noninverting 

inputs. In linear signal-processing applications, an operational amplifier is typically used with a feed¬ 

back connection from its output to the inverting input to ensure stability. In reality, the operational 

amplifier does not have the ideal characteristic of infinite input impedance and infinite gain. We 

keep the assumption of infinite input impedance here, but account for a frequency-dependent gain by 

the operational amplifier model shown in Figure 6-34. A simple model for the frequency-dependent 

gain is 

K(s) = 
1 + s/(op 

(6-135) 
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FIGURE 6-34. Frequency-dependent model for an operational amplifier. 

where typical values for the parameters A0, referred to as the low-frequency gain, and a)p, called the 

open-loop bandwidth, are 

A0 = 2 X 105 

and 

cop = 40 rad/s (6 Hz) 

A somewhat more complex model for K(s) involving three poles is 

) (1 + s/(tip i)(l + s/(Op2)2 

Typical parameter values in this model for two popular operational amplifiers are 

A0 = 105; (opl = 20it rad/s; cop2 = 2tt X 106 rad/s (type 741) 

A0 = 105; a)pl = 20077 rad/s; cop2 — 2ir X 106 rad/s (type 748) 

(6-136) 

EXAMPLE 6-17 _ 

Consider the feedback operational amplifier circuit shown in Figure 6-35. Find the transfer function 

of this circuit. 

r2 

FIGURE 6-35. Feedback operational amplifier circuit pertaining to Example 6-17. 
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Solution: Writing a KCL equation at the node marked V2, we obtain 

K,~ ^2 
*2 

+ Vi - ^2 

*1 
= 0 

The defining relation of the operational amplifier, however, is 

VQ(s) = KisXV, - V2) = -K(s)V2(s) 

(6-137) 

(6-138) 

since the noninverting input is grounded. Substitution of (6-138) into (6-136) and solving for the ra¬ 

tio of V0(s) to Vj(s) gives 

ms) = 
Vq(?) 

V,(s) 

R2_ 
/?,(1 + l/K) + R2/K 

(6-139) 

Note that for K—¥<x>, the usual expression for the gain of this amplifier circuit results, namely, 

-R2/Rv Replacing K by the frequency-dependent model given by (6-135), however, we obtain the 

frequency-dependent transfer function 

where 

H(s) = 
_AJ (1 + s/<op)_ 

1 + RJR2 [1 + AJ(\ + s/u>p) j 

Ao<i>pl3(R2/R\) 

s + (1 + A0 fi)up 
(6-140) 

R! 

^ ~r\ + R2 

The low-frequency gain of the amplifier is obtained by setting s = 0, and is given by 

(6-141) 

H( 0) = 
AqP(R2/Ri) 

1 +Aq/3 
(6-142) 

The half-power cutoff frequency is 

(o3 = (1 + A0fi)(op (6-143) 

It is interesting to note that the product of the low-frequency gain and half-power frequency is nearly 

constant if R2 > 107?1 (i.e., the feedback circuit is serving as an amplifier). In particular, from (6-141), 

(6-142), and (6-143) we have 

|tf(0)h = = A0cop, R2 > Rx (6-144) 

One can use this fact to get a rough estimate of the half-power frequency for a given low-frequency 

gain, and vice versa, for a particular feedback configuration. 

Summary 

In this chapter we have treated a number of important applications of the Laplace transform. In par¬ 

ticular, we have used it to solve circuit examples of systems, introduced and discussed the properties of 

the transfer function, illustrated the use of Bode plots to obtain the frequency response of a lumped pa- 
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rameter system, introduced the use of the Routh array to determine whether the roots of a polynomial 

are in the left-half plane, and considered block diagram algebra. The following are the main points made 

in this chapter. 

1. Initial conditions are easily included in Laplace transform analysis by initial-condition genera¬ 

tors in the Laplace-transformed equivalent circuit. Laplace-transformed equivalents for induc¬ 

tors and capacitors are given in Figure 6-2. 

2. Mutual inductance between two coils is easily included in Laplace transform analysis by the 

T-equivalent circuit for a transformer as illustrated in Figure 6-5. 

3. All the network theorems familiar from earlier circuits are applicable in the Laplace-transform do¬ 

main as well. These include Thevenin’s theorem, Norton's theorem, and source transformations. 

4. Loop and node analyses by means of the Laplace-transformed equivalent circuit can be done 

systematically on a loop or node basis. The pertinent equations for the loop basis are (6-44)- 

(6-48), while the applicable equations for node analysis are (6-55)-(6-59). 

5. The transfer function for a fixed, linear system is redefined in this chapter as the ratio of the 

Laplace transform of the output to the Laplace transform of the input with all initial conditions 

zero. The definitions of earlier chapters are obtained by setting s — jo — j2nfii the Fourier 

transform converges on the jo-axis. 

6. For a linear, lumped stable system, the transfer function is a ratio of polynomials in s with the 

following properties: 

(a) Numerator and denominator polynomials have real, nonnegative coefficients. 

(b) The degree of the numerator polynomial must be less than or equal to the degree of the de¬ 

nominator polynomial. 

(c) For BIBO (recall from Chapter 2 that BIBO means bounded-input, bounded-output) stabil¬ 

ity, the roots of the denominator polynomial (i.e., the poles of the transfer function) must be 

in the left-half s-plane for a causal system. 

(d) The roots of the numerator polynomial (i.e., the zeros of the transfer function) need not lie 

in the left-half s-plane unless the transfer function is required to be minimum phase. 

7. The response of a fixed, linear system may be written as the sum of the zero-input response (ZIR) 

and zero-state response (ZSR). The former results from the initial conditions present in the sys¬ 

tem alone, and the latter results from the input with zero initial conditions. 

8. The response of a fixed, linear system may be written as the sum of the transient and steady- 

state responses. The former is due to the natural response of the circuit and dies out as t —» °°, 

and the latter is independent of the natural response and depends only on the form of the input. 

These responses can also be identified as the homogeneous solution to the governing differen¬ 

tial equation and the particular integral, respectively. 

9. A system is asymptotially stable if the ZIR approaches zero as time goes to infinity. It is mar¬ 

ginally stable if the ZIR is bounded as time goes to infinity. If a system is asymptotically stable, 

it is also BIBO stable. 

10. The Routh array can be used to determine if the roots of a polynomial lie in the left-half plane, 

and can therefore be used to test a transfer function of a system for stability. 

11. A Bode plot is a convenient means of obtaining the frequency response corresponding to a trans¬ 

fer function H(s) (i.e., its magnitude and phase for s = jo). 

12. Block diagram algebra allows one to simplify fixed, linear systems consisting of several sub¬ 

systems, including parallel, cascade, and feedback configurations. 

13. The chapter closes with a discussion of operational amplifiers as elements in feedback circuits; 

some practical models for the frequency dependence of such amplifiers are introduced. 
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Further Reading 

In addition to the circuit analysis texts cited in previous chapters, the following one provides a sound treatment 
with many good examples: 
L. S. Bobrow, Elementary Linear Circuit Analysis, 2nd ed. New York: Holt, Rinehart, and Winston, 1987. 
The following text on systems analysis provides several applications involving operational amplifiers and electro¬ 

mechanical circuits: 
W. M. Siebert, Circuits, Signals, and Systems. New York: McGraw-Hill, 1986. 
The following books provide a coverage of many control topics, including stability and tests for stability, block di¬ 

agrams, and Bode plots: 
K. Ogata, Modern Control Engineering. Englewood Cliffs, N.J.: Prentice-Hall, 1997. 
T. Kailath, Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980. 

PROBLEMS 

Sections 6-2 and 6-3 

6-1. Sketch the Laplace-transformed equivalents, including initial-condition generators, of the cir¬ 

cuits shown. Choose initial-condition generators appropriate for writing loop equations. 

(a) 

(b) 
0t) 

FIGURE P6-1a 

L 

► Ri 

6-2. Write the Laplace-transformed loop equations for the circuits of Problem 6-1 by inspection. Use 

matrix notation. Include initial conditions. 

6-3. Sketch Laplace-transformed equivalent circuits for Problem 6-1 using initial-condition genera¬ 

tors appropriate for writing node equations. 

6-4. Write by inspection the Laplace-transformed node equations for the circuits of Problem 6-1. Use 

matrix notation. Include initial conditions. 
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6-5. Find the Laplace transform Thevenin equivalent circuit for the circuit of Problem 6-la between 

the terminals a and b. Assume zero initial conditions. 

6-6. Find v0(t) for the circuit shown. All initial conditions are zero. 

M = 2H C = 0.75 F 

6-7. (a) Write node voltage (Kirchhoff’s current law) equations by inspection for the circuit shown. 

(b) Write mesh equations for this circuit. Note that one of the unknowns will be the voltage across 

the current source. However, the current source completely specifies the left-hand mesh current. 

6-8. If more than two coupled coils are present in the same circuit, it is necessary to show polarity 

markings with more than one set of symbols (e.g., dots and triangles). An example of such a cir¬ 

cuit is shown. 

(a) Assuming mutual inductances of Mu, Ml3, and M23 between the coils with self-inductances Lv 

L2 and L3, respectively, write the governing differential equations on a loop basis for this circuit. 

(b) Laplace transform the differential equations found in part (a), assuming zero initial conditions. 

(c) Discuss the feasibility of replacing the coupled coils with equivalent T-circuits. 

R i 

FIGURE P6-8 
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6-9. Repeat Example 6-6, assuming that Vc(s) = aR^^s). 

6-10. Find the Thevenin and Norton equivalents between a and b of the circuits shown (assume 0 ini¬ 

tial conditions if not shown). 

(c) l F 

6-11. Use source transformations to find the load current in the circuit shown. 

Section 6-4 

6-12. Show that (6-62) results by Laplace-transforming (6-63), assuming zero initial conditions, and 

taking the ratio of Y(s) to X(s), where Y(s) is the Laplace transform of the output and X(s) is the 

Laplace transform of the input. 

6-13. Which of the following rational functions of s are satisfactory for transfer functions of BIBO 

stable fixed, linear systems? Tell why or why not in each case. Then check your answers using 
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Matlab to compute the response to (a) a step; (b) a sine wave. Note that the latter does not prove 

you are right, but will merely increase your confidence. 

(a) H,(s) = 
+ 4 ’ 

(b) H2(s) 

(c) H3(s) 

(d) H4(s) 

5 + 1 

(5 + l)2 + 9 ’ 

52 + f 

s2 + 2s + 1 ’ 

53 + 1 

s1 + Is + 5 ’ 

(e) Hs(s) 
5 + 5 

(5 — 1)(5 + 2)(5 + 3) 

6-14. Given the following circuit with an initial current through the inductor of 70 and a voltage step of 

magnitude A as input. Find the output voltage, v0(r), and write it in the two forms of (a) steady- 

state plus transient response, and (b) zero-input plus zero-state responses. Identify all compo¬ 

nents clearly. 

*1 

6-15. A linear, time-invariant two-port network is represented in terms of the currents and voltages at 

its ports in the block diagrams shown in Figure P6-15. The zero-state response equations of the 

two-port can be expressed in the form 

m = Y^sW.is) + Yl2(s)V2(s) 

m = Y2l(s)Vl(s) + Y22(s)V2(s) 

where Yn(s), Yl2{s), Y2l(s), and Y22{s) can be defined in terms of various conditions on the termi¬ 

nals. For example, 

Yu(s) = 
hi*) 
V1(s) V2(s) = 0 

is called the short-circuit driving-point admittance because it refers to the input port and is ob¬ 

tained by short-circuiting the output port [V^C?) = 0]. Also, 

= 
v2 (s) V,(s) = 0 

is referred to as the short-circuit transfer admittance because it refers to a transfer quantity be¬ 

tween input and output ports and is obtained by short-circuiting the input port. Suppose that the 
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FIGURE P6-15 

input is driven by a voltage source with source resistance R0 as shown in the second figure. Show 

that the voltage transfer function is 

(. = Us) =_-y21(s)/r0_ 

W V0(s) [1/Ro + Yn(s)][\/ZL(s) + YJs)] - Yn(s)Yn(s) 

Derive the short-circuit driving-point and transfer admittances for the twin-T network shown 

in Figure P6-16 (see Problem 6-15 for a definition of these admittances). 

Use the result of Problem 6-15 to show that the voltage transfer function of the twin-T net¬ 

work is given by 

= *2 + i/(RCf 
U s2 + As/RC + 1 /{RCf 

Provide a pole-zero plot for this transfer function. 

(c) Show that \H{jco)\ = 0J0l\H{0)\ for wRC = V5 ± 2. Noting these values, the location of the 

zero found in part (b), and the limiting values for \H(jo))\ as co -> 0 and a> —> plot \H(ja))\ 

versus logl0(wRC). 

(d) It is desired to use this twin-T network as a notch filter to eliminate 60-Hz power-line inter¬ 

ference. If C — 1 ^F, calculate the value of R necessary to place the notch at 60 Hz. 

c c 

FIGURE P6-16 

6-17. (a) Obtain the voltage transfer function of the operational amplifier filter shown. 

(b) If Cj = 0.0022 fjiF, C2 = 330 pF, C3 = 0.0056 /xF, and R = 10 kD, find the location of the 

poles of this transfer function. {Hint: One of them must be real.) 

6-16. (a) 

(b) 
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FIGURE P6-17 

6-18. (a) For the circuit shown in Figure P6-18a demonstrate that under zero-state response conditions 

the transfer function is 

This circuit, referred to as a Sallen-Key circuit, has the feature that the magnitude and angle 

of the pole locations can be adjusted independently. 
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(b) Noting that the poles of a second-order Butterworth filter are located at the ^-locations s1?2 

1 
si,2 = (l ± W* 

where a)3 is the 3-dB frequency in rad/s, choose a set of circuit values and /3 so that the cir¬ 

cuit realizes a second-order Butterworth filter with 3-dB frequency equal to 10 kHz. 

(c) Choose the parameters of two cascaded Sallen-Key filter circuits so that a fourth-order But¬ 

terworth filter with 3-dB frequency of 10 kHz is realized. A fourth-order Butterworth filter 

has the pole locations as shown in Figure P6-18b. 

(b) 

FIGURE P6-18b 

Section 6-5 

6-19. Determine the number of r.h.p. roots of the following polynomials. 

(a) s3 + 6s2 + 3s + 2 

(b) s4 + 3s3 + 12s2 + 12s + 36 

(c) s4 + s3 - s - 1 

(d) 4s5 + s4 + 4s3 + s2 + 15s + 10 

6-20. Find the range, if any, of the parameter K for stability. 

(a) s3 + 7s2 + 11s + 5 + K (c) s3 + (2K + l)s2 + (K + l )2s + K2 + 1 

(b) s4 + 2s3 + 2s2 + s + K 

6-21. Find the condition on the constants a, b, and c for the polynomial shown to have no r.h.p. roots. 

s3 + as2 + bs + c 

6-22. Using the Routh criterion and the models for the type 741 and 748 operational amplifiers given 

in connection with (6-135) and (6-136), discuss the stability of these operational amplifiers when 

used in the voltage-follower circuit in Figure P6-22. 
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6-23. Using the models of the type 741 and 748 operational amplifiers given in connection with 

(6-141) and (6-142), apply the Routh criterion to discuss the stability of the noninverting ampli¬ 

fier shown. Why is the voltage-follower circuit of Problem 6-22 a more severe test of stability 

for these operational amplifiers? (Note: One of the time constants of the type 741 is intentionally 

made larger to avoid the difficulty explored here and in Problem 6-22.) 

Section 6-6 

6-24. Assume that the rational functions of s in Problem 5-13 are transfer functions. Construct ampli¬ 

tude and phase Bode plots (both asymptotic and corrected). You may check your results with 

Matlab. 

6-25. Construct a Bode plot for the transfer function 

G(s) = 
250p + 2) 

s(s2 + 12s + 100) 

6-26. Construct a Bode plot for the transfer function 

lOOOp2 + 5 + 1) 
GO) o + 6)0 + 10)2 

6-27. Show that the complex pole factor given by (6-103) will have no peak in the magnitude curve if 

£ > V2/2 = 0.707. 
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6-28. Given the form of the open-loop gain of an operational amplifier of (6-135) and (6-136): 

(a) Sketch a Bode plot for the open-loop gain using the type 741 parameters. 

(b) Sketch a Bode plot for the open loop gain using the type 748 parameters. Dimension fully. 

Section 6-7 

6-29. Obtain 70) as a function of Xj(^) and X2(s) for the system shown. 

FIGURE P6-29 

6-30. Find the transfer function Y(s)/R(s). 

FIGURE P6-30 

6-31. In the following system, let G(s) = 6/(s + l)(s + 3), R(s) = a/s, and D(s) = b/s, with a and h con¬ 

stants. Show that if K is made large, then lim.t_^y{t) — a; that is, the disturbance has little effect 

on the system output in steady state. 

DU) 

FIGURE P6-31 
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6-32. Given the feedback system shown. 

(a) Determine a and b such that the overall transfer function is 

= (s + 4)(.v 4+) 

(b) If a = 3, what is the range of values for b for which the system is stable? 

(c) For the choices of a and b determined in part (a), obtain the time response of the output if the 

input is a unit ramp. 

6-33. The linear feedback system shown is designed to perform as a tracking system. Ideally the error 

signal, 6(7), is desired to be identically zero, or in other words it is desired that x(t) = y(t). 

x{t) O 
m 

H(s) 
y(t) 

FIGURE P6-33 

(a) If H(s) = i/s and the input is a unit ramp function, obtain the steady-state tracking error. 

(b) If H(s) = Ms2 and the input is a unit ramp function, what is the nature of the steady-state 

tracking error? 

(c) Let H(s) = A(s)/s2 and choose A(v) to avoid the problems uncovered in parts (a) and (b). 

That is, choose A(s) so that 6(7) —» 0 for a unit ramp input. Sketch x(t), y(t), and 6(7) for your 

choice of A(s). 

6-34. Figure P6-34 is a simplified diagram of an RC oscillator. 

(a) With the switch open, show that 

H( . = = KjRCs) 

1 ’ V", (,s-) (RCsf + 'i(RCs) + 1 

(b) With the switch closed, the circuit will be marginally stable if the values of s for which the 

open-loop gain H(s) — 1 lie on the jo)-axis. Equivalently, these are the values of ^ for which 

(RCs)2 + (3 - K)(RCs) +1=0 
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R C 

In practice, the value of K is chosen so that the poles lie just to the right of the jco-axis. Design 

an oscillator that will tune over the range of 10 to 10,000 Hz in decades by continuously vary¬ 

ing R and changing C in steps. Try to use reasonable values for R and C (e.g., kfl and ^lF). 

Problems Extending Text Material 

6-35. (a) Obtain the transfer function of the two-stage /?C-coupled amplifier shown. 

R r—-1 R 

o--AAV—— 
Ideal 

amplifier 

..o™-.—W*.—’ + 

*(r) c- 

o.—1 

gain = 1; 
Infinite 

input impedance 

cA p y(0 

FIGURE P6-35 

(b) Generalize the result of part (a) to n stages and show that 

Hn{s) = (1 + RCs)-» 

where Hn(s) is the transfer function of n RC stages coupled as shown. 

(c) Show that the impulse response of the n-stage 7?C-coupled amplifier is 

K(t) = 
RC 

e~t/RCu(t) 
1 

RC 
e t/RCu(t) 

(d) Using the results of Problem 5-24, show that the effective delay and duration for the im¬ 

pulse response of the n-stage RC-coupled amplifier are given by t0 = nRC and r = Vn RC, 

respectively. 

6-36. Singular cases with initial conditions. If the following situations arise in circuits, we have the so- 

called “singular” cases, resulting in discontinuous capacitance voltages or inductor currents: 

1. Loops consisting entirely of capacitors or capacitors and voltage generators. 

2. Junctions of inductors and current generators. 
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Obtain ift) and i2(t) in the circuit shown, using two methods: 

(a) Employ t = 0“ initial conditions in the Laplace transform. 

(b) Invoke KVL and conservation of charge through t = 0 around each loop. Show that both pro¬ 

cedures give the same result. 

Both capacitors discharged at t = 0. 

Answer: 

i2(t) = + 9 cos t — sin t)u(t) 

ift) = 1S(t) + + 3 cos t - 55 sin t)u(t) 

Note that i;Ci(0+) = | V; t;Ci(0+) = ~ V. 

6-37. Singular example for inductor currents. Referring to the discussion in Problem 6-36, obtain vft) 

and v2{t) in the circuit shown by using two methods: 

(a) Employ t = 0~ initial conditions in the Laplace transform. 

(b) Invoke KCL and require conservation of flux linkages [Li(t)] through t = 0 at each node. 

FIGURE P6-37 

Both inductors have zero current flowing at t = CL. 

Answer: 

Vi(t) = + -9e~2,/3u(t) 

f2(0 = 3S(0 - \e-2‘nu{t) 

Note that the voltage impulses are required to cause the currents to change from 0 to iL (0+) = 

“A and iLj( 0+) = ~ A. 
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6-38. Duality. For planar networks, the following rules allow us to find a dual of a network; that is, the 

loop equations for one network are the same as the node equations for the other network except 

for the symbols: 

1. Assign a node for the dual network to be constructed to each mesh of the given network plus 

an additional reference node. 

2. For each inductor of L henries in the original network, assign a capacitor of L farads in the 

dual. For each capacitor of C farads in the original network, assign an inductor of C henries 

in the dual. For each resistance of R ohms in the original network, assign a conductance of R 

mhos in the dual. For each current (voltage) generator in the original network, assign a volt¬ 

age (current) generator in the dual of the same numerical value. 

3. The mesh (node) equations for the original network will now be identical to the node (mesh) 

equations of the dual network with the following replacements: 

node equations <-> mesh equations 

v f-> i 

L<r^C 

R<r> G 

open circuit short circuit 

Obtain the duals of the networks given in Problems 6-36 and 6-37. Show that they have equiva¬ 

lent equilibrium equations on a mesh and node basis. 

6-39. One way to synthesize a circuit from a driving-point impedance is to use long division to pro¬ 

duce a continued fraction for Z(s). For example, show that the ladder structure illustrated in Fig¬ 

ure P6-39 has a driving-point impedance of the form 

Z(s) = Z,(s) + 

Y2(s) + 
Z3(s) + 

Y4(s) + 
1 

Z5{s) + 
Y6(s) 

Driving-point 

impedance: 

m= V{s) 
ns) 

FIGURE P6-39 

Computer Exercises 

6-1. Assume the following parameters for Problem 6-1(a): R = 1 ohm; Cx = 1/6 farad; C2 = 5/3 farad; 

L = 3/5 henries. Use the symbolic toolbox of Matlab to solve for the time-domain current in the 

left-hand mesh if the input voltage is a unit step, vcl — 0, vcl = 0.5 volts, and iQ = 2 amperes. 
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I-l(s) = 
52 + 3_ 

s3 + 3s2 + 35 + 1 

and a response given by 

1 
y(t) = 

13 
t2 + 

11 217 \ _, / 865 . /rx 217 

169 4394/ \4394 v 2 4394 
cos(5t) Je u(t) 

Using the symbolic toolbox of Matlab, find the Laplace transform of the input assuming zero 

initial conditions. 

6-3. Using the symbolic toolbox of Matlab and following the Matlab application, solve Example 

6-5 for the time domain mesh currents for meshes 2 and 3. 

6-4. (a) Using the signals and systems toolbox features of The Student Edition of Matlab, numerically 

compute and plot the output of the system with numerator and denominator polynomials defined by 

num — [0 0 3 1] and den = [1 3 3 1] 

and input 

x{t) = e~2tcos(5 t)u(t) 

(b) Compute and plot the step response of the previously defined system. 

(c) Compute and plot the impulse response of the previously defined system. 

(d) Check your results analytically by using the residue function of Matlab to do a partial frac¬ 

tion expansion and thereby facilitate an inverse Laplace transform for the three cases (a)-(c). 

6-5. Given the following transfer functions: 

® (ii) "1<s) = 
s3 + 2s2 + 3s + 2 

s4 + 10s3 + 35s2 + 50s + 24 

s2 + 3s + 4 

s3 + 6s2 + 11s + 6 

(iii) H3(s) 

(a) Find and plot the step response of each system; 

(b) Find and plot the impulse response of each system; 

(c) Provide Bode plots for each system. 

6-6. Design (numerator and denominator polynomials) and provide Bode plots for the following filters 

(use “Help” in The Student Edition of Matlab to learn how to insert the parameters). 

(a) A 4th-order highpass Butterworth with cutoff frequency of 5 hertz (Matlab function 

butter); 

(b) A 3rd-order bandpass Chebyshev I with 0.5 dB ripple in the passband going from 4 to 9 hertz 

(Matlab function chebyl); 

(c) A 5th-order bandstop Chebyshev II; stopband from 2 to 6 hertz and ripple 50 dB down 

(Matlab function cheby2). 



CHAPTER 

State-Variable Techniques 

7-1 Introduction 

So far the techniques of system analysis we have discussed have been applied primarily to systems with 

only a single input and a single output. Although such systems are often good models for individual 

parts of a system, they are rarely sufficient for modeling the overall system. Many engineering systems 

of interest have several inputs and several outputs. Although such a system may be modeled as an inter¬ 

connection of single-input, single-output systems, it is not always advantageous to do so. As we will 

see, the state-variable method provides a convenient formulation procedure. It allows us to handle sys¬ 

tems with many inputs and outputs within precisely the same notational framework that we will use for 

single-input, single-output systems. 

The state-variable formulation has other advantages as well. In our previous discussion we have been 

concerned with transfer functions between the system input and output. No information concerning the 

internal behavior of the system is readily available using this formulation. On the other hand, the state- 

variable formulation allows us to determine the internal behavior of the system easily while still giving 

the input-output information we desire. Furthermore, the state-variable formulation is often the most 

efficient form from the standpoint of computer simulation of the system. This characteristic alone leads 

us to prefer the state-variable formulation for highly complex systems. 

In this chapter we develop the concepts and formulation of the state-variable approach to system analysis. 

We solve the state equations using both time-domain and Laplace transform techniques and examine some 

properties of the solution. Finally, we show how the state-variable method may be applied to circuit analysis. 

7-2 State-Variable Concepts 

There are several concepts which, if understood, will make our further discussion both easier and more 

meaningful. The most fundamental concept is that of the state of a system. Instead of giving a detailed 

mathematical definition of the state of a system, we prefer to follow a less formal approach that we be¬ 

lieve yields more insight. We may say that the state of a system at time t0 includes the minimum infor¬ 

mation necessary to specify completely the condition of the system at time t0 and allow determination 

of all system outputs at time t > t0 when inputs up to time t are specified. In short, the state of a system 

at time t0 tells us everything that is important about the system at time tQ. In a linear, time-invariant elec¬ 

tric network, for example, knowledge of all capacitor voltages and inductor currents uniquely specifies 

the network condition at any particular time. Furthermore, this information and knowledge of the input 

allow us to find the condition of the network at any future time. Thus for this example the values of the 

capacitor voltages and inductor currents at some time t0 constitute the state of the system at time tQ. 

312 
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The state of a system at time tQ is simply the set of values, at time t0, of an appropriately chosen set 

of variables. These variables are called the state variables. For the electric network example above, the 

state variables are thus the capacitor voltages and inductor currents. The number of state variables is 

equal to the order of the system and is usually just the number of energy storage elements. The choice 

of state variables is not unique. In fact, there are infinitely many choices for any given system, but not 

all are equally convenient. Usually, state variables are chosen so that they correspond to physically mea¬ 

surable quantities or lead to particularly simplified calculations. 

It is often advantageous to think of an n-dimensional space in which each coordinate is defined by 

one of the state variables xl9 x2,. .., xn, where n is the order of the system. This space is called the state 

space. The state vector is an n-vector x whose elements are the state variables. Then at any time t the 

state vector defines a point in the state space (i.e., the state of the system at that time). As time pro¬ 

gresses and the system state changes, a set of points will be defined. This set of points, the locus of the 

tip of the state vector as time progresses, is called a trajectory of the system. 

The concepts and terminology of this section are used throughout the remainder of this chapter. The 

student may find it helpful to refer to this section from time to time. 

7-3 Form of the State Equations 

An /zth-order linear differential system with m inputs and p outputs may always be represented by n 

first-order differential equations andp output equations in the following manner1": 

Xj = anXj + aux2 + • • • + alnxn + buu{ + bl2u2 + ■ ■ ■ + blmum 

x2 = a21*1 + a22x2 + • • • + a2tpcn + b2lu, + b22u2 + • • ■ + b2mum 

K = amxi + a„2xi + • • • + annXn + bnlux + bn2u2 + • • • + bnmum 

and 

yi = CllXl + CUX2 + • • • + Clnx„ + dnul + dnu2 + • • • + dlmum 

: (7-2) 

yp = cplxx + cp2x2 + • • • + cpnxn + dplux + dp2u2 + • • • + dpmum 

where the dot indicates time differentiation (x= dx/dtf the ui9 i = 1, 2, . . ., m, are the system inputs, 

and the yi9i = 1,2,..., p, are the system outputs. The xi9i = 1,2,..., n, are called the state variables. 

Equations (7-1) are often called the state equations, while (7-2) comprise the output equations. To¬ 

gether, the n + p equations constitute a state-equation model for the system. Many books call these the 

normal-form equations. In the most general case the a's, b’s, c’s, and d’s may be functions of time. How¬ 

ever, the solution of such a set of time-varying state equations is exceedingly difficult and must almost 

always be carried out with the aid of a computer. For this reason we restrict our attention to time- 

invariant systems, ones for which all the coefficients are constant. In this case we can obtain solutions 

without too much difficulty, as we shall see in the following section. 

At this point it is reasonable to ask two questions. First, what are the advantages of this method, if 

any? Second, how do we find the state equations for a system? We consider the second question in a 

later section. For now, we concentrate on providing answers to the first question. The most obvious ad¬ 

vantage of the state-variable representation is that it allows us to treat the case of multiple inputs and 

Tor convenience we have omitted the explicit time dependence. We will follow this approach unless understanding would 
be enhanced by including (t). 
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multiple outputs. This is something that can be done only with considerable difficulty using the other 

analysis techniques we have discussed. Of course, the single-input, single-output system is included as 

a special case of (7-1) and (7-2). For this situation m= p = 1. 

There are other advantages of the state model as well. The model is given in the time domain, and it 

is straightforward to obtain a simulation diagram for the equations. This is extremely useful if we wish 

to use computer simulation methods to study the system. Furthermore, an extremely compact matrix 

notation can be used for the state model. With the laws of matrix algebra, it becomes much less cum¬ 

bersome to maniplate the equations. 

Let us turn our attention to the development of simulation diagrams for state equations. For brevity 

we consider a two-input, one-output second-order system given by 

xx = axxxx + aux2 + bxxux + b[2u2 

x2 = a2\x\ + a2ixi + b2Xux + b22u2 (7-3) 

y — cxxx + c2x2 + dxu j + d2u2 

It is evident that if we knew the states, we could find the output, for the inputs and all coefficients are 

assumed known. Therefore, consider only the first two equations. If we knew x1 and x2 we could ob¬ 

tain x1 and x2 by simple integration. Hence xx and x2 should be the inputs of two integrators. The cor¬ 

responding integrator outputs are xx and x2. This leaves only the problem of obtaining xx and x2 for use 

as inputs to the integrators. In fact, this is already specified by the state equations: xx and x2 are simply 

the appropriate linear combinations of xl9 x2, uv and u2 specified by the first two equations of (7-3). 

Once we do this we simply use the inputs ux and u2 and the integrator outputs xx and x2 to form the sys¬ 

tem output y. The completed diagram is shown in Figure 7-1. Those familiar with analog-computer sim¬ 

ulation techniques will recognize this as essentially an analog computer program for (7-3). Although 

the development has been for a relatively simple system, the extension to more complicated systems is 

obvious. One need only employ more integrators and provide the block diagram elements to reflect the 

mathematical statements of the state model. Of course, the diagram becomes cluttered and more com¬ 

plicated, but this is to be expected—so are the equations. 

An examination of the simulation diagram reveals the significance of the various constants in the 

state model. The a- essentially specify the internal system connection and behavior, even in the absence 

of inputs, but with nonzero initial values of the states. The b- specify the manner in which inputs affect 

the internal behavior of the system. The ctj specify the manner in which the internal workings of the sys¬ 

tem affect the output, while the d- represent direct transmission paths from input to output. If the state 

variables are chosen to be physically measurable variables of interest, considerable insight into system 

behavior can be obtained from the simulation diagram. 

It is perhaps worth noting that the state equations can be obtained directly from a simulation diagram. 

All that is required is to write an expression for the output of each summer in terms of its inputs. In Fig¬ 

ure 7-1 the inputs to the summer whose output is xx are bxxux, bl2u2, axxxx, and aX2x2. Summing these yields 

the first of equations (7-3). Similar equations at the other summers yield the remaining two equations. 

It should be abundantly clear that manipulations of (7-1) and (7-2) will present unnecessary diffi¬ 

culty unless some compact notation can be developed. Fortunately, such a notation is already available 

through the use of vectors and matrices. Let us define vectors 

*1 ux yi 

*2 
, u = 

u2 
, y = y 2 

_ _ ~yP- 

x = (7-4) 
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These equations may also be indicated schematically by a block diagram as shown in Figure 7-2. The 

double lines are used to indicate a multiple-variable signal flow path of the appropriate dimension. 

The blocks represent matrix multiplication of the appropriate vectors and matrices. The block contain¬ 

ing the integrator in fact contains n integrators with appropriate connections specified by the A and 

B matrices. Of course, to obtain a useful simulation model we must know all the elements of all the 

matrices, but at least this block diagram indicates the essential structure of the system and the signal 

flow paths. 

A similar statement can be made regarding the state equations themselves. Before we can obtain nu¬ 

merical solutions in any particular case we must know all elements of the four matrices A, B, C, and D. 

However, as in most problems, it is generally most convenient to do the majority of the work in terms 

of arbitrary matrices. Particular numerical data may then be substituted as a last step. Furthermore, the 

compact matrix notation provides a convenient theoretical tool on those occasions when one is inter¬ 

ested only in general properties of the system, without regard to particular numerical data. We exploit 

this notation in the following section to obtain a solution to the state equations. 

7-4 Time-Domain Solution of the State Equations 

For the purpose of developing the solution of the state equations, let us consider (7-6) repeated here for 

convenience: 

x = Ax + Bu (7-7a) 

y = Cx + Du (7-7b) 

together with the known initial condition 

x(f0) = x0 (7-8) 

We assume that the inputs are specified for all t > t0. It is evident that if the state vector can be found, 

the output vector y can be determined easily from equation (1-lb). The problem then becomes that of 

solving equation (7~7a) subject to the initial condition of (7-8). 

An intuitively pleasing approach to the solution of the state equations is to simply build up the so¬ 

lution as time progresses. Suppose that we divide the time interval t > t0 into an infinite number of 

subintervals, each of duration At. If At is small, then 

x(q + At) - xft-,) A Ax 

a 1 - 4a7 (7‘9) 

FIGURE 7-2. Block diagram of the state model of (7-6). 
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where Ax is the change in x in the time interval from tx to tx + At for any tx = t0 + k At, k = 0,1, 2,. . . . 

Equation (7-9) suggests that, in the time interval t0 to t0 + At, x changes by the amount 

Ax = x(t0) At (7-10) 

so that at t0 + At, 

x(t0 + A/) = x(/0) + x(t0) At (7-11) 

Now x(t0) can be found from (7-7) as 

x(/0) = Ax(f0) + Bu(;0) = Ax0 + Bu(?0) (7-12) 

since all quantities on the right-hand side of (7-12) are known. We thus find x(t0 + AO- Repeating, we can 

find x(t0 + AO from this knowledge and use it to predict x(tQ + 2AO- Continuing the process, we can 

build up the solution one step at a time for as long as we wish. Of course, the result is only approximate. 

Its accuracy depends on how small At is chosen. As At tends toward zero, the approximate solution ap¬ 

proaches the actual one. This method of solution, or modifications of it, is useful for digital computation. 

Actually, the solution process can be expressed concisely as a recursion relation. Let us write (7-9) as 

•/ , i \ x(fo + (k + 1) Al) - x(/o + kAt) 
x(f0 + k At) =--- (7-13) 

where k is any nonnegative integer. Upon rewriting the state equations at time t = t0 + k At, we obtain 

x(*0 T (k + 1) At) — x(tQ + k At) 

At 
= Ax(t0 + k At) + Bu(£0 + k At) (7-14) 

or 

x(t0 + (k + 1) At) = x(t0 + k At) + Ar[Ax(r0 + k At) + Bu(^0 + k Ar)] (7-15) 

Equation (7-15) provides the desired recursion relation. If x(/0 + k At) is considered the present value 

of x, then the next value may be found. Letting k = 0,1,2,... allows the solution to be constructed nu¬ 

merically. This equation is an example of a difference equation. We will study such equations in some 

detail in the following chapter. 

Although the solution technique described above has a great deal of intuitive appeal and is compu¬ 

tationally convenient, it suffers the disadvantage that it does not provide a closed-form solution. Fre¬ 

quently, a closed-form solution is desired, so we must determine how to solve the equations to yield this 

result. Of course, we consider only 

x = Ax + Bu, x(t0) = x0 ’ (7-16) 

realizing that once x is known, y can be easily found. Using the approach familiar to us from differen¬ 

tial equations, we assume that the solution has two parts, 

x = xh + xp (7-17) 

where xh is the solution to the homogeneous equation and xp is a particular solution. The homogeneous 

solution must satisfy the initial condition. 

The homogeneous equation is given by, assuming xp(t0) = 0, 

xlt = Ax,„ Xh(t0) = X0 (7-18) 

By analogy to the scalar equation 

x = ax, x(t0) = x0 (7-19) 
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which has solution 

x(t) = ea(,~to)x0 (7-20) 

we might guess the solution of (7-18) to be 

xh(t) = eA('~'o)x0 (7-21) 

Immediately a question arises as to the meaning of the matrix exponential. We shall have more to say 

about it later, but for now let us assume that it can be differentiated in the same fashion as the scalar ex¬ 

ponential, that it is an n X n matrix, and that it satisfies 

eA*° - I (7-22) 

where I is an n X n identity matrix. Then 

xh(t) = AeA(<_'o)x0 = Ax* (7-23) 

and the assumed solution satisfies the homogeneous equation. Furthermore, in view of (7-22), 

x*(*o) = eA‘°xo = xo (7-24) 

Hence (7-21) gives the homogeneous solution. 

Before determining the particular solution we digress to note some properties of the matrix expo¬ 

nential eA/. For our purposes we may define eA/ in terms of its infinite series expansion as follows: 

aV a?t3 
eAt = I + Af + ■— + — + •• • (7-25) 

Clearly, eA/ is an n X n matrix. The assumptions we have made regarding eA/ may be easily verified di¬ 

rectly from (7-25). The inverse of eA/ may also be found as 

(eA0-i - e~At (7-26) 

Now let us complete the solution of the state equations by determining the particular solution. We 

adopt the method of variation of parameters and assume a particular solution of the form 

xp(t) = eA(,“'»)z (t) (7-27) 

where z(t) is a vector function to be found. Differentiate (7-27) and require that xp satisfy the origi¬ 

nal equation: 

xp(t) = AeA(f ?o)z(t) + eA(' to)z(t) = Axp(t) + Bu(t) 

= AeA('~to)z (t) + Bu (t) 
(7-28) 

Then 

ro)z^) — Bu(t) (7-29) 

or 

z(t) = eA(?0 ^Bu(t) (7-30) 

Equation (7-30) can be solved by direct integration to yield 

z(t) - z(t0) = f eA(?0~A)Bu(A) d\ (7-31) 

Now the particular solution must be such that 

xp(t0) = o (7-32) 
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since the homogeneous solution already satisfies the initial condition. It can be shown that eA(f_f()) is non¬ 

singular; therefore, from (7-27) we must have z(t0) — 0. Then 

z(t) = [* eA^°“A)Bu(A) dk (7-33) 

K 
Using this result in (7-27) then yields the particular solution as 

xp(t) = eA(^} ( eA('°~A)Bu(A) dk (7-34) 

or 

xp(t) = f eA(t~A)Bu(k) dk (7-35) 
•'t0 

The complete solution is obtained by adding the homogeneous solution and the particular solution to yield 

x(r) = eA(;-'»)x0 + f eA('-A)Bu(A) d\ (7-36) 
J'o 

The matrix exponential arises so often that it is usually given a special name and symbol. It is called 

the state transition matrix and denoted by <&(f). Using this notation we may write the solution as 

x(t) = <E>(t - t0)x0 + f <b(t- A)Bu(A) dk (7-37) 
4 

The reason for calling <1>(t) the state transition matrix is clear. Once the input is specified, the state tran¬ 

sition matrix uniquely describes the manner in which the system state changes from its value at t — tQ 

to its value at any time t > t0. After we examine an alternative method of solving the state equations in 

the following section, we shall describe some techniques of finding the state transition matrix. Using 

(7-37), we may write the complete system response as 

y(t) = C<I><7 - t0)x0 + f C<f>(t - A)Bu(A) dk + Du(f) (7-38) 

7-5 Frequency-Domain Solution of the State Equations 

An alternative method of solving the state equation makes use of the Laplace transform technique dis¬ 

cussed in Chapter 6. This method is quite attractive from an analytical point of view. Again we are con¬ 

cerned primarily with 

x = Ax + Bu, x(t0) = x0 (7-39) 

For convenience, we shall assume that t0 = 0. Laplace transforming (7-39) yields 

sX(s) ~x0 = AX(s) + BU(s) (7-40) 

Rearranging yields 

(si - A)X(s) = XQJr BU(-s) (7-41) 

or 

X(^) = (si ~ A)-!x0 + (si - A)-!BU(s) (7-42) 
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When we take the inverse transform we must obtain precisely the x(t) given by our previous analysis, 

with t0 — 0. From the first term of (7-42) it is evident that 

Se-'KsI ~ A)-i] = 0(0 (7-43) 

or 

0(0 = (si ~ A)'1 (7-44) 

where <S>(s) is the Laplace transform of the state transition matrix. 

The second term of (7-42) must yield the integral term of (7-37), which is consistent with the con¬ 

volution property of a product of Laplace transforms, 

^[(sl - A^BUCO] = ^[OCOBuCO] 

= 0(0 * Bu(0 

= O(t - A)Bu(A) d\ 
Jo 

(7-45) 

Therefore, the time-domain solution is exactly as we have written in the preceding section. In the fre¬ 

quency domain, the response of the system is given by 

Y(s) = C(sl - A)"1x0 + C(sl - A)-!BU(5) + DU(s) 

= C(sl ~ A)-% + [C(sl - A)_1B + D]U(s) (7-46) 

Equation (7-46) is simply the Laplace transform of (7-38). 

For single-input, single-output systems we defined the transfer function as the ratio of the Laplace 

transform of the output to the Laplace transform of the input, under the requirement of zero initial condi¬ 

tions. We can extend this concept to the multiple-variable case. For zero initial conditions (7-46) becomes 

Y(.s) = [CCsI - A)-iB + DJU(s) (7-47) 

It is evident that the quantity in brackets plays the role of a transfer function. Accordingly, we define a 

transfer function matrix as 

H(,s) A C(.?I - A)-'B + D = C<I>(s)B + D (7-48) 

Hence we may write 

Y(s) - H(j)U(j) (7-49) 

Since there are m inputs andp outputs, His ap X m matrix having elements H^s), i = 1,2,. . . ,p;j = 1, 

2,... ,m. The element H^s) is the transfer function between the jfth input Uj and the ith output yt. 

We may also define an impulse response matrix H(/) as 

H(r) A 2-i[H(j)] (7-50) 

Hence H(t) may be written as 

H(0 = CO(/)B + D5(0 

= CeAtB + D 8(t) (7-51) 

where 8(t) is an m-vector of unit impulses. H(t) has the same dimension as H(.s) and its elements htp) 

satisfy 

h,ft) = Z-'Wjis)] 

where h^f t) is equal to yff) when a unit impulse is applied at the ;th input. 

(7-52) 
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The formal solution of the state equations is now complete. We have an expression that gives the sys¬ 

tem output for any input and any set of initial conditions. The matrix multiplications and the integral of 

(7-38), although perhaps tedious, are straightforward. The integral may be evaluated either directly or 

with the aid of the Laplace transform form of (7-45), and employing partial-fraction expansions. If we 

use a time-domain approach, it is evident that we must know the state transition matrix ®(t) = eAt. We 

now turn to this problem. 

7-6 Finding the State Transition Matrix 

Two techniques for determining the state transition matrix of a given system have already been men¬ 

tioned, although not specifically identified as such. These make use of the series definition of eAr and 

of the Laplace transform method mentioned in Section 7-5. Recall that we defined the state transition 

matrix in terms of its infinite series as 

\2t2 A¥ 
<E>(0 = eA^ I + At + — + + * * • (7-53) 

For a given A, (7-53) may be evaluated to any desired degree of accuracy at any specified time t by 

performing the indicated matrix multiplications and summation. A simple example will illustrate the 

procedure. 

EXAMPLE 7-1 

In this example, we illustrate finding the state transition matrix using series expansion. Consider, 

for example, 

-1 0 

0 -2 

It is immediately found that 

1 01 

0 4 

-1 

0 
A'2 = 

0 

0 

(—2)"J 

Therefore, 

eA' = 
1 0 

0 1 

- -1 O' 1 O' t2 -1 •O' 
+ t + - _|_ 

-8 0 — 2. _0 4 2 0 
+ 

t2 t3 

1-t+2~6+ 

0 
„ At2 813 
2/ H—— — —+ 

2 6 

We immediately recognize the series representations of e~' and e~2t, so 

„A( 

0 e 

0 
-it 

(7-54) 

(7-55) 

(7-56) 

(7-57) 
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This approach may be satisfactory for numerical computations in which the computer can carry out 

the calculations to whatever degree of accuracy is required. However, except in extremely simple cases, 

it is unsatisfactory for analytical work. The problem revolves around recognizing the closed-form ex¬ 

pression of the infinite series. The following example should prove convincing. 

EXAMPLE 7-2 

In this example the series expansion technique is applied to a more complex problem. Find the state 
transition matrix for 

A - 
0 1 

-6 -5 

We have 

and so on. Using this result in (7-53) yields 

11414 

a2 = 
~-6 — 5 

, A3 = 
30 19" 

A4 = 
—114 -65 

. 30 19 —114 - 65 390 211 

(7-58) 

(7-59) 

eA' = 

1 - 

— 61 

30^ 

2! + 3! 4! 

512 19t3 

? 2! + 3! 

65r 
+ 

3012 11413 390r4 

2! ” 3! + 4! *" " " 
1 - 5/ + 

19r 

2! 

4! 

65t3 21 It4 

3! 4! 
+ 

(7-60) 

This expression for eAr can be shown to be the first five terms of 

3e~2t - 2e^3' 
eA' = 

e 2t — e 31 

-6e 2t + 6e 3t —2e 2t + 3e 3t' 

but it is highly unlikely that we would realize it unless we already knew the answer. 

(7-61) 

The second method of determining the state transition matrix makes use of the fact that 

OCs) - (si - A)-1 (7-62) 

We simply form (si — A), take the matrix inverse, and then take the inverse Laplace transform to find 

4>(£) = eAr. Partial-fraction-expansion methods are usually helpful in taking the inverse transform. An 

example will illustrate this method. 

EXAMPLE 7-3 _ 

The previous example is now worked again to illustrate the Laplace transform for finding the state 

transition matrix. As before 

v —1 

6 s + 5 

(7-63) 

We have 

(Sl - A) (7-64) 
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and 

(si - ar1 

s + 5 

(is + 2)(s + 3) 

-6 

(s + 2)(s + 3) 

1 

(V • 2)(s : 3) 

X 

(s + 2) + 3) 

Performing a partial-fraction expansion of each term and inverse transforming yields 

eAr = !£ ^(vl - A) l] 
' 3e~2' ~ 2c“3r 

— 6e~2t + 6e^3t 

e 2t - e 3t 

-2e~2t + 3e~ 
u(t) 

as promised in Example 7-2. 

(7-65) 

(7-66) 

The Laplace transform method is quite convenient for analytical work since it yields answers in 

closed form. However, it is not very useful for machine computation. There exist other techniques for 

finding eAf which are often useful. One such technique involves finding a suitable coordinate transfor¬ 

mation which takes A to diagonal or Jordan canonical form. Once this is done the state transition ma¬ 

trix for the new matrix can be written by inspection. Then eA/ is found by applying the inverse 

coordinate transformation. A fourth technique makes use of the fact that eA/ may be expressed exactly 

by afinite power series in A. The coefficients of the series expansion are found by solving a set of si¬ 

multaneous algebraic equations. These results are based on the Cayley-Hamilton theorem (see Appen¬ 

dix D). The coefficients of the finite power series representation become functions of time. Therefore, 

it is possible to write 

<f>(t) — eAr = a0(t)I + a{(t)A + a2(t)A2 -F • • * + an _ j(0A" 1 (7-67) 

When the eigenvalues of A are distinct it is straightforward to determine the coefficients cq(t). Suppose 

that the eigenvalues Aj9 i = 1,2,..., n, are distinct. Then we use (7-67) with A replaced by each A; in 

turn to obtain a set of n equations: 

ex'‘ - a0(t) + + u2(t)\] + • • • + an_{(t)A" 1 

C2‘ = a0(0 + «i(0A2 + a2(t) \\ + • • • + an_2(t) A2h 

eKt = a0(f) + «i(0A„ + a2(t)\l + • • • + an_x(t) \"~l 

(7-68) 

Equations (7-68) may be solved for the coefficients cq(r), i = 0, 1, 2, .. . , n — 1. We will use a second- 

order example to illustrate the procedure. 

EXAMPLE 7-4__________ 

The purpose of this example is to illustrate the Caley-Hamilton approach for determining the state 

transition matrix. Assume that 

A = 
0 1 

-6 -5 

The characteristic equation is 

AI — A = 
-1 

A + 5 
A(A + 5) + 6 — A"' + 5A + 6 — 0 

(7-69) 

- (7-70) 
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Clearly, the eigenvalues are 

We have 

and from (7-68) we get 

Aj = -2, A2 = -3 

eA/ = a0(t) I + QLx{t) A 

e~2t = a0(t) - 2at(0 

e~3‘ = a0(t) - 3a,(0 

Subtracting, we obtain 

It follows that 

Then 

— p 21 — 
«i(0 = * 

a0(0 = ~ 2^_ 

eAf = (3e 2t - 2e M) 
1 O' 

0 1 
+ (e 2t — e 3t) 

0 

-6 

or 

a, __ [ 3e~2t - 2e~3t e^2t - e~-3t 

— 6e~2t + 6e~3t —2e~~2t + 3e~3t 

which agrees with the results of the preceding two examples. 

(7-71) 

(7-72) 

(7-73a) 

(7-73b) 

(7-74) 

(7-75) 

(7-76) 

(7-77) 

Matlae Application 

Determining eigenvalues for large matrices often requires considerable effort. The Matlab com¬ 

mand eig reduces the required effort considerably. Consider the following: 

EDU» c7ex4 

a = [0 1; -6 -5] ; 

eiga = eig(a); 

eiga 

eiga = 

% Define the a matrix 

% Compute eigenvalues 

% Display eigenvalues 

The results clearly agree with (7-71). 

If some or all of the eigenvalues are repeated, the method must be modified somewhat. This discus¬ 

sion is not meant to be exhaustive and we refer the interested reader to the references at the end of the 

chapter. 
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We now possess all the tools necessary to find the complete response of a system described by a state 

model. Therefore, we close this section with two examples in which we use the Laplace transform 

method to solve such a set of equations. 

EXAMPLE 7-5 _ 

I In this example we find the complete response for a system defined by the state equations 

T 0 1" 

x2_ -2 -3 

>1" 1 0 

y%. 1 1 _*2- 

x(0) = 

(7-78a) 

(7-7 8b) 

and u is a unit step input. This is a single-input, two-output system. From (7-46) we have the Laplace 

transform of the response as 

Y(s) = C(sl - A)~% + C(sl - A)_1BU(.s) (7-80) 

First, we obtain (si — A)”1 as 

i Ts — 1 1 ~1 1 [s + 3 1 
O . , , = i o , „ (7-81) 

i oir^ + 3 urn n oin + 3 urou 
n 1JL -2 ULU + LI 1JL -2 ULU* 

s2 + 3s + 2 s2 + 3s + 2 

‘l oip + 4i ri oiri 
_i iJL — 2J [1 lj [s_ 

(s + l)(i + 2) s(s + l)(s + 2) 

(s + l)(s + 2) s(s + l)(s + 2) 

= or 4- + , 1 (7-82) 2(v +1) s ~r 1 

_(s + l)(s + 2)_ T l)(*y + 2)_ 

Now, canceling the s + 1 factors in the bottom two terms and applying the partial-fraction expan¬ 

sion yields 

s + 1 s 2 s s T 1 s + 2 

2 + I 1 ___ 2 _ 2 

s + 2 s s + 2 
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or 

y(0 = 
(3e f - 2e 2t)u(t) 

le~2tu(t) 
+ 

(\-e~ 

L (i- 
+ 2e 2>(t) 

2,)u(t) J 
(7-84) 

The first term is the initial-condition response, while the second is the forced response. Combining 

the terms yields the complete response in its simplest form as 

(7-85) 
n(0 (2 + 2e * - le b«(0 

_y2(0_ - (2 + 2e”2')«(0 - 

Matlab Application 

In this Matlab application, we solve (approximately) the state equations given by (7-78a) and (7- 

78b). Since the state equations are for a continuous-time model and the Matlab solution, of neces¬ 

sity, will be based on a discrete-time model, the discrete-time model must first be developed. This is 

accomplished through the use of the Matlab function c2d. Although the entire problem could be 

solved using the Matlab routine 1 s im, we choose instead to show the complete development in 

the following Matlab code. The technique used here will be somewhat clearer to the student after 

Section 7-9, which deals with discrete-time state models, is studied. 

EDU» c7ex5 

a = [0 1; -2 -3] ; 

b = [0; 1] ; 

c = [1 0; 1 1] ; 

Ts = 0.01; 

nf = 501; 

x = zeros(2,nf); 

x(:.1) = [l;l] ; 

u = ones(1,nf); 

[ad.bd] = c2d(a,b,Ts); 

% The next three lines perfo 

for n = 1:nf-1 

% Define a matrix 

% Define b matrix 

% Define c matrix 

% Define sampling period 

% Define number of samples 

% Initialize x matrix 

% Establish initial condition 

% Define input signal 

% Compute discrete system 

the simulation 

x(:,n+l) = ad*x(:,n)+bd*u(n); 

end 

y = c*x; 

yi - yd.:); 
y2 = y(2 , :) ; 

t = (0:nf-1)*Ts ; 

tf = (nf-1)* Ts; 

subplot(2,1,1) 

plot(t,y1) 

axis( [0 tf 0 1.5]); 

xlabel('Time - seconds') 

ylabel('yl(t)') 

subplot(2,1,2) 

plot(t,y2) 

axis( [0 tf 0 2] ) ; 

xlabel('Time - seconds') 

ylabel('y2(t)') 

% Compute system output 

% Determine yl(t) 

% Determine y2(t) 

% Establish time vector 

% Establish 'finish' time 

% Generate first subplot 

% Plot y1(t) 

% Set axis parameters 

% Generate x-label 

% Generate y-label 

% Generate second subplot 

% Plot y2(t) 

% Set axis parameters 

% Generate x-label 

% Generate y-label 

The correctness of the these waveforms can be verified by comparing the Matlab output with the 

results given by (7-85). It is instructive to vary the sampling period and observe the results. 



Note that we did not explicitly find eA', but instead carried through all multiplications in terms of the 

transforms until the final step. Unless eAt is explicitly needed, this is usually the easiest procedure, as it 

leads to somewhat simpler functions which must be inverse transformed. 

EXAMPLE 7-6 

In this example we consider a system with two inputs and two outputs. Such systems are difficult to 

handle unless we use state-variable methods. For simplicity, we use a system similar to that in Ex¬ 

ample 7-5 and let initial conditions be zero. The system equations are assumed to be 

(7-86a) 

(7-86b) 

We assume that ux = u(t), a unit step function, and u2 = e~3tu(t). Forx(O) = 0 we obtain from (7-46), 

Y(s) = C(si ~ A)-!BU(s) (7-87) 
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Using (si — A)-1 from Example 7-5, we obtain 

1 

"1 O' s + 3 1 "2 r 
1 1_ . -2 s_ ^0 i_ 

Y (s) = 
\_s + 3 

(s + 1) (iS1 + 2) 

2 1 

'5 + 3 1 s s + 3 

S + 1 S + 1 i 

s + 3 

(s' + l)(s + 2) 
(7-88) 

or 

Finally, we obtain 

Y(s) = 
1 

(s + l)(s + 2) 

3s2 + 16s + 18 

s(s + 3) 

(s + l)(4s + 6) 

s(s + 3) 

Y(s) = 

3s2 + 16s + 18 

s(s + l)(s + 2)(s + 3) 

4s + 6 

s(s + 2)(s + 3) 

(7-89) 

(7-90) 

We may take the inverse transform with the aid of the partial-fraction expansion to obtain 

r
 

l
_

 

"(3 - le-‘ - e~2t + \er3,)u(t) 

(1 + e~2t - 2e~3,)u(t) 
(7-91) 

Matlab Application 

As mentioned in the previous example, a Matlab simulation of the system requires finding a dis¬ 

crete-time state model for the continuous-time state model given by (7-86a) and (7-86b). The Mat¬ 

lab simulation follows: 

EDU» c7ex6 

a = [0 1 ; -2 -3] ; % Define a matrix 

b = [2 1 ; 0 l] ; % Define b matrix 

c = [1 0; 1 l] ; % Define c matrix 

Ts = 0.01 J % Define sampling period 

nf = 501; % Define number of samples 

x = zeros (2 , nf) ; % Initialize x matrix 

x(: .1) = [0; 0] ; % Establish initial conditions 

t = (0:nf -1) *Ts ; % Define sampling point vector 

u(l, :) = ones(1,nf); % Define first input signal 

u ( 2 , : ) = exp (-3*t) ; % Define second input signal 
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[ad.bd] = c2d(a,b,Ts); % Compute discrete equivalent 

% The next three lines perform the simulation 

for n=l:nf-1 

x(:,n+l) = ad*x(: ,n)+bd*u(: ,n) ; 

end 

y = c * x ; 

yl = y(l,:); 

y2 = y(2,:); 

t = (0:nf- 1)*Ts; 

tf = (nf- 1)*Ts; 

subplot(2,1,1) 

plot(t,yl) 

axis( [0 tf 0 4] ) ; 

xlabel('Time - seconds) 

ylabel('yl(t)' ) 

subplot(2,l,2) 

plot(t,y2) 

axis([0 tf 0 1.5]); 

xlabel('Time - seconds') 

ylabel('y2(t) ' ) 

% Compute system output 

% Determine yl(t) 

% Determine y2(t) 

% Establish time vector 

% Establish 'finish' time 

% Generate first subplot 

% Plot y1(t) 

% Generate axis parameters 

% Generate x label 

% Generate second label 

% Generate second subplot 

% Plot y2(t) 

% Set axis parameters 

% Generate x-label 

% Generate y-label 

This yields the following plots: 
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As before, the correctness of the waveforms shown in Figure 7-4 can be verified by comparing them 

with the results given by (7-91). As mentioned previously, the student should study the effect of 

changing the sampling period. 

Two comments are perhaps in order at this point. First, it would be difficult to solve the equations of 

this example without the use of state-variable methods. The reader should be convinced of this by draw¬ 

ing a block diagram of the equations and considering how it might be used to obtain y, and y2. Second, 

although we have only treated a second-order system, the same techniques can be used on systems of 

any order. The algebra, of course, becomes tedious for higher-order systems. 

7-7 State Equations for Electrical Networks 

We now consider the problem of obtaining state equations for systems. We consider only the special 

case of electrical networks here. However, by the use of suitable analogies, the technique can be ex¬ 

tended to other classes of lumped-parameter systems (e.g., mechanical systems). 

Earlier in this chapter we hinted that a suitable set of state variables for electrical networks were the 

capacitor voltages and inductor currents. Physically, this choice is attractive because the capacitor volt¬ 

ages and inductor currents specify the stored energy. These are convenient choices from a mathemati¬ 

cal point of view as well. We recall the element relations for capacitors and inductors as 

. _ „ dvq _ . Ml 

c dt dt 
(7-92) 

Note that the derivatives of the chosen state variables appear in these expressions. If we can write ex¬ 

pressions for the capacitor current and inductor voltage in terms of the state variables and source volt¬ 

ages and/or currents, then we can obtain equations in the form 

derivative of state variable = linear combination of state variables and inputs 

This is precisely the form of the state equations. The capacitor current and inductor voltage can always 

be expressed in terms of state variables and source quantities by writing suitable KCL and KYL equa¬ 

tions. The output equation can also be obtained in this way. Let us summarize the method in the fol¬ 

lowing algorithm and then consider some examples. 

The algorithm is: 

1. Choose capacitor voltages and inductor currents as state variables. 

2. For each capacitor, write a KCL, expressing the capacitor current C dv/dt in terms of state vari¬ 

ables, source quantities, and other currents as necessary. 

3. For each inductor, write a KVL, expressing the inductor voltage L di/dt in terms of state variables, 

source quantities, and other voltages as necessary. 

4. Write other KCL, KVL, and element relation equations as necessary to eliminate the “other” cur¬ 

rents and voltages in steps 2 and 3 in terms of state variables and source quantities. The resulting 

equations, after dividing by C and L as appropriate, are the state equations. 

5. Write KCL and KVL equations and use element relations as necessary to express the output(s) in 

terms of state variables and source quantities. The state model is then complete. 

We will use this algorithm to obtain state equations for two electrical networks. 
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EXAMPLE 7-7 

In this example we derive a state model for the network shown in Figure 7-5. 

We choose as state variables the capacitor voltage vc and the inductor current iL. Writing a KCL 

for the capacitor yields 

Cvc — (7-93) 

A KVL for the inductor gives 

* 
II r?
 1 

£
 

(7-94) 

But, following step 4 of the algorithm, we obtain 

- VC 

lR' r. 
(7-95) 

and 

II f?
3 II >3
 

to
 (7-96) 

Hence 

r- vs vc . 

CVc ~ Rx RlL 
(7-97a) 

LiL = vc — R2iL (7-97b) 

or 

■ .... vs vc k 

Vc RXC RXC C 
(7-98a) 

\ _ vc RA 

1l ~ L L 
(7-98b) 

Clearly, 

= vr2 ~ Rik (7-99) 

If we wish we may write the equations in matrix form as 

1 -1 

i>c RXC C vc 

_ k _ 1 -k- 

L L _ 

+ 

1 

Rf 

0 

v0 = [0 R2] 

FIGURE 7-5. Network for Example 7-7. 

(7-100a) 

(7-100b) 
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EXAMPLE 7-8 _ 

In this example we consider a more complex case and obtain the state equations for the two-input, 

one-output circuit shown in Figure 7-6. The inputs are v and vSi, and the output is iQ. 

Again we choose vc and iL as state variables. A KCL for the capacitor yields 

Cvc = iQ ~ iRs (7-101) 

A KVL around the left-hand loop gives 

UL = vSi - vR^ (7-102) 

Turning our attention to the inductor current equation, we see that we must eliminate vR . We have 

v* = Rxi» (7-103) 

and writing a loop equation around the loop defined by u , Rl9 R2, and C yields 

R\Irx + Rih vc “ vsx (7-104) 

we have 

l0 ~ lR, lL 

(R\ + RzVr, = \ - vc+ RJl 

(7-105) 

(7-106) 

\ ~ VjC + Rik 

Rl 4- R2 
(7-107) 

\ - vc + RA 
ft, + 7?2 

(7-108) 

and we have 

7?! 7?! 7^7*2 

L‘L ~ Vs' ~ 7?J + 7?2 Vs‘ + 7?, + 7?2 ^ “ /?, + ^ 
(7-109) 

. 7?2 7?! 7?,7?2 

1l = L(7?t + 7?2) + L(7?x + 7?2) U<; _ L(RI + 7?J 
(7-110) 

as one state equation. 

*2 + ^3 

FIGURE 7-6. A two-input, two-output system. 
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Consider next the capacitor voltage equation 

Cvc — h Ir„ (7-111) 

Both i0 and iR must be eliminated. Now 

vr ~ vc 

R, 
(7-112) 

so we have 

vc U, 
Cvc = /0-~ + ~ 

^3 ^3 

(7-113) 

We also had 

l0 — lRx lL (7-114) 

Using the result for iR yields 

Ro 

l° r1 + r2 r{ + r2" r,+ r21l Ll 

UC , ^v2 
+ — It — U (7-115) 

or 

vv 
in = 

lJc 
(7-116) 

Ry + R\ + R2 R\ "f R2 

This is the output equation. We may substitute this into the capacitor voltage state equation to yield 

W Vr 

T? T? 7? _J_ J? + ^ 
Cvr ~~-— — ----.+ — 

Rx + R2 R\ + R2 R3 R\ + R2 R 
(7-117) 

Then the corresponding state equation is 

vr = ~ 
R\ 1 1 

LC/?3 ' C(R1 + R2)fc C(Rt + R2) 1l + C(Rl + R2) V'' + CR3 ^ (7'118) 

1 1 
+ 

We may put all this in matrix form as 

1 1 Ri 

VC CR3 C(Rt + R2) C(R1 + R2) vc 

_4. _ Ri R^2 _ 4. _ 

L L(R\ + R2) Wi + R2) —1 

+ 

1 

C(Rl + R2) CR3 

R, 0 

in = 

LL(i?i + R2) 

1 *1 

(7-119) 

JRi + R-, 7?, + R~, 
+ 

1 

Ri + R. 
(7-120) 
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While the second of our examples requires considerably more equations to be written in order to 

eliminate the undesired variables, both of the examples show that the algorithm may be applied to de¬ 

termine the state equations. Of course, more complicated circuits may be handled by the same method. 

The effort naturally increases. 

7-8 State Equations from Transfer Functions 

In this section we consider systems described by transfer functions of the form 

Y(s) = KjT + + • • • + bts + bp 

U{s) sn + an_xsn~x + an_2sn~2 + • • • + axs + aQ 

where m< n and F(s) and U(s) are the Laplace transformed system output and input, respectively. We 

pose the question “How can we generate an equivalent state-variable description?” Note that (7-121) is 

equivalent to the nth-order differential equation (with zero initial conditions) 

y(n) + an_xy^n~^ + an_2y,1'~2 + • • * + axy + a$ = bmu(m) + bm_xu^m'^ + • • • + bxii + b0u (7-122) 

Thus, if we are able to obtain state equations from transfer functions, then we are also able to obtain 

state-equation representations of nth-order differential equations. 

Since the system is single-input, single-output the state model will take the form 

x = Ax + bn (7-123a) 

y = cx + dn (7-123b) 

The problem is solved when the elements of A, b, c, and d are known. Actually, there are infinitely many 

possible choices for the elements of the matrices such that c[.sl — A] ]b+d yields the transfer function 

in (7-121). Each choice would result from a particular technique of realizing the system described by the 

transfer function in state-equation form. We are going to examine only one realization technique. It is 

not necessarily the easiest or the best, but it does lead to state equations that have some nice properties. 

Let us first consider a much simplified version of (7-121), namely 

Y(s) _ 4 

U(s) ~ (s + 1 )(s + 2) 
(7-124) 

Using the partial-fraction expansion, we may write (7-124) as 

Y(s) = 
4 U(s) 

s + 1 

4U(s) 

s + 2 
(7-125) 

Now define 

*1 (s) = 
m 

s + 1 ’ 
X2(s) = 

m 
s + 2 

Rearranging and inverse transforming (7-126) yields 

xx = —Xx + M, x2 — — 2x2 + u 

These may obviously be written as 

1 •
H

' 
1_

 

1 
1 h—

^ 

o
 

_
1 

—
1

 1 

+ 
1 

l^2j 1 o
 

1 to
 

1
_

 

<N 
X

 _1_ 

(7-126) 

(7-127) 

(7-128) 
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Using the definitions (7-126) in (7-125) and inverse transforming yields 

j--!4 -if!:! (7-129) 

Equations (7-128) and (7-129) are precisely the state model we have been seeking. Note that the A ma¬ 

trix is diagonal. This is a particularly convenient state of affairs (see Problem 7-7). Also, all elements 

of the vector b are unity. 

We can readily generalize this example. Returning to (7-121), let us make the further assumption that 

the numerator and denominator contain no common factors. We will briefly discuss removing this re¬ 

striction later. Let us also assume temporarily that there are no repeated poles. Then we may factor the 

denominator and write (7-121) as 

V'(.v) = ft,,/" + bm_xsm l + '"+V + ^0 

U{s) (s - py)(s - p2) • • ■ (s - p„) 

Using the partial-fraction expansion, we obtain 

Y(s) By B2 Bn 
—— = ---1---1- • • • H-— 

U(s) s - Py s - p2 s - pn 

Now we define 

(7-130) 

(7-131) 

/(/ = 
m 

S - Pi' 
i = 1,2,,n 

and proceeding as in (7-126)—(7-129) we obtain the state model as 

Px 0 0 ... o 
*1 1 

= 
0 Pi 0 ... o x2 

+ 
1 

_0 0 Pn_ _1_ 

y = [B 1 B2 ••• Bn\ 

(7-132) 

(7-133a) 

(7-133b) 

Note that d — 0 due to the fact that m < n. 

There are at least two drawbacks to the method given, but they are not serious. First, the denomina¬ 

tor polynomial must be factored so that the partial-fraction expansion can be carried out. This is certainly 

not a serious problem if a computer is available. A second problem is that if some of the pi are complex, 

then the associated Bi also are complex. Thus the associated states are complex and have no obvious 

physical significance. The computations associated with the solution of the equations also become more 

complicated. Although beyond the scope of this text, it is possible to apply a transformation of variables 

that will convert A back to a real matrix, at the same time keeping that portion of the matrix associated 

with real poles in diagonal form so as to keep the computational difficulty as small as possible. 

We now wish to remove the restriction that all the poles be distinct. Again let us consider a simple 

case and generalize from it. Suppose a transfer function contains a pole pi of multiplicity two. Then the 

partial-fraction-expansion terms associated with these poles will be 

Y,<s) = 
AU(s) 

(s-P,)2 

BU(s) 

s~ Pi 
(7-134) 
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where Y^s) here represents only that part of the output associated with these poles. Now define 

U(s) v _ U(s) 
V,(V = 

0 ~ Pi) 
2 > Xh{s) 

s - pt 

Clearly 

A'.lv) 

Wj±7, 

Inverse transforming the second equation of (7-135) and (7-136) yields 

= Pi\ + xk 

*i2 = Pixi2 + u 

Equation (7-134) leads to 

y, = Ax, + Bx: 
j i ix i2 

Equations (7-137) and (7-138) can be rewritten in matrix form as 

"y" Pi 1 V 
+ 

0 

_Xh_ _0 Pi- 3a_ _i_ 

T, = [A B] 

(7-135) 

(7-136) 

(7-137) 

(7-138) 

(7-139a) 

(7-139b) 

and we can readily see what changes have been introduced by the repeated roots. The A matrix is now 

in the form of a Jordan block. The Jordan block has the pole on the diagonal, ones on the superdiago¬ 

nal, and zeros elsewhere. In this case, the Jordan block is 2 X 2, the multiplicity of the pole. If the pole 

had multiplicity k, then the Jordan block would be k X k. For reference, third- and fourth-order Jordan 

blocks are, respectively, 

(7-140) 

The b vector in (7-139a) has a one in its last position and zeros elsewhere. This is a general prop¬ 

erty of the b vector associated with repeated poles. The c vector is unchanged in that it contains 

the constants in the partial-fraction expansion. Note that the discussion here pertains only to re¬ 

peated poles. When the transfer function contains both distinct and repeated poles those parts of A, 

b, c relating to the distinct poles are unchanged; that is, that portion of A remains diagonal. Those 

parts of A, b, c related to the repeated poles change as indicated here. The following example should 

clarify matters. 

1 
Pi 1 0 0 

Pi 0 
0 Pi 1 0 

0 Pi 

0 

1 and 
0 0 Pi 1 

_0 Pi. _0 0 0 Fi_ 

EXAMPLE 7-9 

The purpose of this example is to illustrate the technique just discussed for developing a state model 

of a system from a transfer function. Consider the system defined by the transfer function 

s2 + 3s + 9 Y(s) 

U(s) + 8s4 + 24s3 + 34s2 + 23s + 6 
(7-141) 



The denominator contains simple roots at s = 

s = — 1. Accordingly, the function may be written as 
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2 and s — —3 and a root of multiplicity three at 

Y(s) Bi B, 
+ 

fit. 5, _|_ - 
51 + 1 s + 2 (/(.V) (5 + l)3 (5 + l)2 

Using techniques of Section 5-4, we may find the constants and write 

y(s) 3.5 4.75 5.875 7 

U(s) 

Then, using the definitions 

w = 

3.5 4.75 5.875 

(5 + l)3 (5 + l)2 + 5+ 1 

U(s) V /o\ _ U(s) 

+ l)3 ’ ^2\S) ~ (5 + l)2 ’ 

s + 3 

1.125 

5 + 2 s + 3 

(7-142) 

(7-143) 

X3(s) = 
U(s) 

s + 1 

m 

s + 2 ’ 
XA{s) 

and inverse transforming we obtain 

-1 

0 

0 

0 

0 

with the output equation 

X5(s) = 
U(s) 

5 + 3 
(7-144) 

1 i 

+2 

h II 
x4 

Js- 

0 

1 

1 

0 

0 

0 

0 

0 

-2 

0 

0 

0 

0 

0 

-3 JL-'SJ 

(7-145) 

y = [3.5 -4.75 5.875 -7 1.125] (7-146) 

Note that the matrix A and the vectors b and c do have the structure promised. 

Matlab Application 

As mentioned in the text, the state model corresponding to a given transfer function is not unique. 

We, therefore, will work backwards and show that the state model just derived is equivalent to the 

transfer function given by (7-141). The Matlab code follows. 

EDU» c7ex9 

% The following four statements define the state model. 

A = [-1 1 0 0 0; 0 -1 1 0 0; 0 0 -1 0 0; 0 0 0 -2 0; 0 0 0 0 -3]; 

B = [0 0 1 1 1] ’ ; 

C = [3.5 -4.75 5.875 -7 1.125] ; 

D = 0; 

[num.den] = ss2tf(A,B,C,D) ; 

num 

% Determine the transfer function 

% Display numerator 
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num = 

0 0.0000 0.0000 1.0000 3.0000 9.0000 

den % Display denominator 

den = 

1 8 24 34 23 6 

We see that the numerator and denominator polynomials agree with the transfer function model as 

expressed by (7-141). 

To show that the state model is indeed not unique, it is interesting to derive a state model based 

on the transfer function model just computed. The Matlab code is 

EDU» [A,B,C,D] = tf2ss(num,den) 

A = 

-8 -24 -34 -23 -6 

1 0 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 1 0 

B = 

1 

0 

0 

0 

0 

c = 

0.0000 0.0000 1.0000 3.0000 9.0000 

D = 

0 

This state model is clearly different from the state model expressed by (7-145) and (7-146) but is still 

equivalent to the transfer function model given by (7-141). 

Recall that when we began this discussion regarding obtaining state models from transfer functions 

we required that the numerator and denominator of (7-121) not have any common factors. Let us see 

what happens if this assumption is not satisfied. We consider the case of only one such factor, s — pt. 

For the pole at s = pt, we expect a term in the partial fraction expansion of the form 

s - Pi 
(7-147) 
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where 

(7-148) 

Since the numerator of Y(s)/U(s) also contains (s — pt) as a factor, the result is Bi = 0. Since the term, 

therefore, does not appear in the partial-fraction expansion, it seems appropriate to ignore the corre¬ 

sponding state variable and obtain an (n — l)-dimension state model. This would be equivalent to can¬ 

celing the common factors in Y(s)/U(s) and then obtaining a state model of the reduced system. Actually, 

however, it is more appropriate to retain the state, still defining 

U(s) 
XYs) = —^ (7-149) 

s “ Pi 

which maintains the original system order. The vector c will contain a zero corresponding to the state 

x-, indicating that the state is not observed in the output. It is also possible to obtain a state model in 

which the state x- is observed in the output but is not affected by the system input u. In the first case the 

system is said to be controllable but not observable, while in the second case it is observable but not 

controllable. When pole-zero cancellation exists, the system cannot be both controllable and observ¬ 

able. A clear understanding of the concepts of controllability and observability is quite important in the 

study of automatic control systems, but is well beyond the scope of this text. We refer the interested 

readers to one of the excellent texts listed at the end of this chapter. 

*7-9 State Equations for Discrete-Time Systems 

Many systems are inherently discrete-time in nature. This is usually because essential data regarding 

system variables are available only at certain discrete instants of time called the sampling instants. For 

example, data regarding economic activity are collected only at monthly or quarterly intervals. Such 

systems must be described by difference equations rather than differential equations. 

In state-space form, the equations that describe a discrete-time system become a set of first-order 

difference equations which constitute a recursion relation. This recursion relation allows computation 

of the state at sampling instant (k + 1 )T from the state at sampling instant kT and the input at time kT, 

where k is an integer. Of course, an output equation must also be specified, so the discrete-time state 

model becomes 

%+i = Fxi + Gut (7-150a) 

y* = Hx* + Ju, (7-150b) 

where we have suppressed the explicit dependence on T for simplicity of notation. For the single-input, 

single-output system and yk are scalars and G and H become vectors g and h, respectively. In most 

cases J is null. 

Our first concern is to find a solution to (7- 150a) and see if any quantity analogous to the state tran¬ 

sition matrix of Section 7-4 exists. Let us assume the initial state is x0. Then we can compute x directly 

from (7-150a) as 

Xj = Fx0 + Gu( (7-151) 

Now we may use (7-151) in (7-150a) to compute x2, etc. 
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The results are 

x2 = Fx1 + Giq = F2x0 + FGu0 + Gux 

x3 = Fx9 + Gu^ = F3x0 + F2Gu0 + FGu] + Gu0 
(7-152) 

xn = F”x0 + F"~]Gu0 + F/I_2Gu1 + • • • + FGu/7_2 + Gu„_1 

This last equation is the solution we seek, since it gives the state at time nT in terms of the initial state 

x0 and the input up to (but not including) time nT. We may write the result more compactly as 

n-1 

x„ = F"x0 + 2 F"”;_1Gu;- (7-153) 
;'=o 

If we compare (7-153) with (7-150a) or (7-150b), the solution obtained for the continuous-time state 

equations, the similarities are obvious. Clearly the quantity Fn is the state transition matrix, denoted 

<P(n). In the absence of an input the quantity indicates how the initial state is changed by the system to 

the state at time nT. The term F,Jx0 is the initial condition response. The second term in (7-153) repre¬ 

sents the forced response. It is analogous to the second term (a convolution integral) in (7-36) or (7-37) 

and is called a convolution summation. Once the solution is obtained, (7-150b) may be used directly to 

compute the system output. 

In all honesty, we must point out that (7-153) is not very well suited for hand calculations. For such 

purposes, methods based on the z-transform, to be discussed in the next chapter, are much more de¬ 

sirable. However, (7-153) can be very convenient for machine computation when the input sequence 

is specified. 

An important application of the discrete-time state model is that of digital computer simulation of 

a continuous-time system. For this purpose it is necessary to obtain a discrete-time model because 

the computer only has values available at certain instants of time. This problem is also important in the 

digital control of continuous-time processes. The problem may be stated concisely as follows. Given a 

continuous-time system 

x = Ax + Bu y = Cx + Du (7-154) 

determine the matrices F, G, H, J in the state model (7-150), where sample times are T seconds apart. 

In solving this problem we note that since the computer cannot obtain values of u(t) between sam¬ 

ple instants it seems sensible to assume that u does not change between the sample instants; that is, we 

assume 

u(0 - for kT < t < (k + \)T (7-155) 

This assumption will allow us to obtain a model for the first equation of (7-154). The second of these 

equations is easy. Since it is valid for all t it is valid at the sampling instants kT. Thus the second equa¬ 

tion of (7-154) becomes 

y(kT) = C x(kT) + Du(kJ) (7-156) 

Using the obvious shorthand notation y(kT) = yk, etc., and comparing (7-156) with (7-150b), we see that 

H = C, J = D (7-157) 

Now let us return to the first equation of (7-154). In order to obtain the state model (7-150a) we 

treat time kT as the initial time tQ. Thus the initial state x0 is just xk. Then using (7-36) we may write 

the solution as 
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x(0 = eM,-kT)xk + J eA('“A)Bu(A) dA (7-158) 

where t > kT. Our interest, however, is in the particular time t = (k + 1 )T, and in view of (7-155) we 

may replace u(A) by uk. Thus we obtain 

r{k+l)T 

x[(yt + 1)71 = eA^+1)r-^ x, + I e^'^Bu^A (7-159) 
hr 

or 

r(k+l)T 

xk+1 = eATxk + eAl(k+1)T-AIBdAuk (7-160) 
hr 

since u*. is a constant. Now, upon comparing (7-160) and (7-150a), we note that 

F = eAr (7-161) 

and 

r(k+l)T 

G = eA[(/f+1)r“A]B d\ (7-162) 
'kT 

In those cases in which A is nonsingular we can simplify (7-162) to 

G = (eAr - I)A_1B (7-163) 

where we have used the fact that 

JePt dt = ep'P“'1 (7-164) 

if P^1 exists. Equations (7-157) and (7-162) or (7-164) specify the matrices of the discrete-time model 

in terms of the matrices of the original, continuous-time system. Hence the problem is solved. 

EXAMPLE 7-10 _ 

The purpose of this example is to illustrate the use of the preceeding material for obtaining a discrete¬ 

time state model for a continuous-time system. Assume that a two-input, one-output, system is de¬ 

fined by the following equations and that a discrete-time model is to be found for a sampling period 

of 0.1s: 

*1 = 0 1 7 + 
i i u 1 

6 -5_ _i i_ _u2_ 

y=[l 2] 

For this system we may compute 

1 _ "-5/6 -1/6" -0.833 -0.167 

1 0 1 0 

(7-165a) 

(7-165b) 

(7-166) 
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so (7-163) may be utilized. We must compute eAT, however. Actually this has been done using three 

different methods in Section 7-6, so we use the result (see Examples 7-2, 7-3, and 7-4 for eAt) 

3e~0'2 - 2e~03 e~o2 . -e-°-3 0.975 0.078 

_-6e~02 + 6e~03 

<N 
©

 1 <N
 

1 + 3e~03_ 0.467 0.585_ 
F = eKT = 

Then from (7-163) and (7-165)—(7-167) we have 

G = 

(7-167) 

0.025 0.078 -0.833 -0.1677 1 1 

0.467 — 0.415_ 1 0 J _1 1_ 

0.025 0.078” ”-l -l” 0.103 0.103 

0.467 -0.415 1 1 0.052 0.052 

The desired discrete-time state model is thus 

X 
Xn 

0.975 0.078 x1 lk 
+ 

_-0.467 0.585 _ — 4_ 

0.103 

0.052 

0.103 

0.052 

yk = [i 2] 
L_ 4_l 

(7-168) 

(7-169a) 

(7-169b) 

Matlab Application 

The Matlab function c 2 d preforms the operations described by (7-161) and (7-162) and, therefore, 

derives a discrete-time state model from a continuous-time state model. For the problem being con¬ 

sidered, the Matlab code is as follows: 

EDU» c7 ex 10 

a = [0 1; -6 - 5] ; 

b = [1 1; 1 1] 

Ts = 0 . 1 ; 

[F.G] = : c 2d (a, b.Ts) 

F 

F = 

0.9746 0.0779 

-0.4675 0.5850 

G 

G = 

0.1034 0.1034 

0.0525 0.0525 

% Define a matrix 

% Define b matrix 

% Define sampling period 

% Compute F matrix and G matrix 

% Display F 

% Display G 

These results agree with (7-167) and (7-168). The results of this problem illustrate the discrete-time 

model development used in the Matlab applications for Examples 7-5 and 7-6. 
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Summary 

The principal objective of this chapter was to introduce the basic concepts of systems analysis using 

state-variable techniques. We saw that system analysis can be earned out by using state equations, which 

are usually expressed in matrix form. These equations can be solved with either time-domain or Laplace 

transform techniques. We also investigated methods for finding the state equations of electrical net¬ 

works, and we briefly discussed state equations for discrete-time systems. The specific points explored 

in this chapter follow. 

1. The state of a system at time t0 is the set of values at time t0 of an appropriately chosen set of vari¬ 

ables that provide the minimum information necessary to specify the condition of the system at 

time t = tQ and, given the system input, obtain the system response for t > t0. These variables are 

referred to as state variables. The state vector is a vector whose elements are the state variables. 

2. An nth-order linear differential system with m inputs and p outputs can be represented by n first- 

order differential equations of the form 

x = Ax + Bu 

and p output equations of the form 

y = Cx + Du 

3. The time-domain solution of state equations allows the complete system response to be written, 

for t > t0, 

y(t) = COO _ 0)xo + [ CO(t ~ A)Bu(A) d\ + Du(f) 

where 0(0 is the state transition matrix and x0 is the vector of state variables at t — t0. 

4. State equations can be solved by Laplace transform techniques. This is referred to as the fre¬ 

quency-domain solution of state equations. In general, the Laplace transform of the system out¬ 

put, denoted Y(0, can be written 

Y(0 - C(sl - A)-% + [C(sl - A)-1B + D]U(0 

The inverse Laplace transform yields the output vector y(t). 

5. There are three basic techniques for determining the state transition matrix. The first technique is 

to use the definition 

0(0 = eA/ 

and expand eAr in a series expansion. This technique is typically useful in extremely simple cases 

in which the closed-form representation for the infinite series resulting from the expansion of eA/ 

can be recognized. Recognizing the appropriate closed form is often difficult. This difficulty is 

overcome by determining 0(0 from the relationship 

0(0 = (si — A)-1 

and inverse transforming 0(0 to obtain 0(0. A third technique makes use of the Caley-Hamil- 

ton theorem. 

6. The state equations for electrical networks are determined by first choosing as state variables ca¬ 

pacitor voltages and inductor currents. KCL and KVL equations are then applied to place the 

equations in the proper form for state equations. 
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7. State equations for a system can be derived from the system transfer function. This is typically 

accomplished by using the Laplace transform. The system realization, and consequently the state 

equations derived from a given transfer function, is not unique. 

8. State equations can be derived for a discrete-time system and take the same form as state equa¬ 

tions for continuous-time systems. 

Further Reading 

A number of excellent textbooks dealing with both linear system theory and control systems contain detailed treat¬ 

ments of state-variable methods. Representative books include the following: 

R. J. Mayhan, Discrete-Time and Continuous-Time Linear Systems. Reading, MA: Addison-Wesley, 1984. 

B. C. Kuo, Automatic Control Systems, 7th ed. Englewood Cliffs, NJ: Prentice-Hall, 1995. 

G. F. Franklin, J. D. Powell, and A. Emani-Naeini, Feedback Control of Dynamic Systems. 3rd. ed. Reading, 

MA: Addison-Wesley, 1984. 

J. G. Reid, Linear System Fundamentals: Continuous and Discrete, Classic and Modern. New York: McGraw- 

Hill, 1983. 

A number of textbooks have recently been developed that make use of Matlab for the analysis and design of con¬ 

trol systems. One book that stresses the application of Matlab to a wide variety of control systems problems is 

D. K. Frederick and J. H. Chow, Feedback Control Problems Using Matlab, Boston, MA: PWS, 1995. 

Problems 

Section 7-3 

7-1. A system is defined by the equations 

xx = — 4xx + 3x2 + 6 u 

x2 = — xx — lx2 — 4 u 

yx = 5xx — 3x2 + 2 u 

y2 = 2x1 + x2 — 2u 

(a) Write the equations in standard matrix form and identify the A, B, C, and D matrices. 

(b) Draw a simulation diagram. 

7-2. Repeat Problem 7-1 for the set of equations 

xx = — 3xj + 2x2 + x3 + 2 u1 + u2 

x2 — 3jcj — 2x2 + x3 + ux 

x3 = —4x2 — x3 + ux 

yx = 5jcj — 3x2 4- x3 + ux 

T2 = xi T x3 T ux T u2 

7-3. Construct a simulation diagram for the system defined by 
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7-4. Write state equations in matrix form which describe the simulation diagram shown in Figure P7-4. 

FIGURE P7-4 

Sections 7-4-7-6 

7-5. Use the series expansion method to compute eAr if 

7-6. Use 4>Cs) = (si — A)1 to compute <I>(t) for 

Check your result using series expansion methods. 

7-7. Show that if an n X n matrix A is given by 

0 

A = ° A2 

_0 0 

eA'f 0 0 ••• 0 

0 eKl‘ 0 0 

0 0 0 • • • ex,f 

then 
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7-8. For the A of Problem 7-5, find x(t) if u(t) is a unit step function and 

x(0) = 

Verify your result using Matlab. 

7-9. In (7-15) we gave the recursion relation for computing the approximate solution to the state equa¬ 

tions. Let the system be described by 

*1 -1 o 1 X1 x,(0) '3 

*2_ 

o
 1 o
 

_
1

 _x2_ ’ _2_ 

(a) With At = ^ s, use (7-15) to compute x(l s). 

(b) Repeat part (a) with At = ^ s. 

(c) Compute the actual value of x(l s) and compare with parts (a) and (b). 

7-10. Use the Laplace transform method to find eA' for the A given in Problem 7-5. 

7-11. Use the Laplace transform method to find eAt if 

A - 

0 

0 

-6 

0 

1 

-6 

7-12. Use the Cayley-Hamilton approach to find eAt if 

7-13. Use the Laplace transform approach to find y(t) for the system given by 

l_-*2J L 

0 

-3 
4- 

y = [i o]|7 
L^2J 

where x0 = and u is a unit step. Verify using Matlab. 

7-14. Find the transfer function matrix for the system 

T 
0 1 *1 + 

0 

_*2_ _ —3 - -4_ _x2_ _2 

y i 1 0 xi 

_j2_ _0 1_ _*2. 

u 



Section 7-7 

7-15. Obtain a state model for the network shown in Figure P7-15. 

W*1 

FIGURE P7-15 

7-16. Obtain a state model for the network shown in Figure P7-16. 

*2 

FIGURE P7-16 

7-17. Obtain a state model for the network shown in Figure P7-17. 

FIGURE P7-17 

7-18. Obtain a state model for the network shown in Figure P7 -18. 
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FIGURE P7-18 
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Section 7-8 

7-19. Obtain a state model for the system defined by 

Y(s) _ s + 1 

U(s) s(s + 3) 

7-20. Obtain a state model for the systems described by 

(a) S£) , _ __3_ 
U(s) (s + l)(v + 3) 

,b, m =_j_+a_ 
U(s) (s + l)(s + 5)(v + 6) 

7-21. Obtain state models for the systems described by 

Y(s) _ s2 + 4s + 1 

U(s) (s + 1 )(s + 2) 

Y(s) _ s2 + 2s + 2 

U(s) s(s + 1 )(s + 3) 

7-22. Obtain state models for the systems described by 

Y(s) _ s2 + s + 3 

(a) U(s) “ s(s + 1) 

y(j) = s2 + 3s + 2 

( } C/(s) ” s(s + l)(s + 3) 

7-23. Obtain a state model for 

(a) y + 2y + 6y 4- 7y = 4u 

(b) y +14y + 25y - 25u 

(c) y4> + 3y + 7y + 10y = u 

7-24. Obtain a state-model for each of the following transfer functions and verify the results using Matlab. 

(a)2M =_i+l_ 
U(s) (s + l)(s + 3) 

... ns) =_^+4 

U(s) s(s + 2 )(s + 3)(s + 6) 

Y(s) __ s2 + 2s + 7 

U(s) s(s + l)(s + 3) 

Section 7-9 

7-25. Obtain discrete-time state equations, for the sampling periods specified, for the systems whose 

state equations are 

7-26. For the system of (7-169) let ulk = 0 and u2k = 1 for k > 0. For zero initial state, compute the 

first 10 values of the output yk by hand. Verify your results using Matlab. 
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Computer Exercises 

7-1. In this computer exercise we investigate the validity of the results obtained in Examples 7-5 and 7- 

6 as shown in Figures 7-3 and 7-4, respectively. A straightforward way of validating these results 

is to make use of the analytical results for yx(t) and y2(t) obtained in the examples. These are given 

by (7-85) for Example 7-5 and by (7-91) for Example 7-6. The Matlab simulations given in Ex¬ 

amples 7-5 and 7-6 must be executed in order to generate sample sequences corresponding to y^t) 

and y2(t). These are to be compared to the theoretical results for yx(t) and y2(t) given by (7-85) and 

(7-91). Experiment with changing the sampling period Ts in order to gain a feel for the relationship 

between the sampling period and the accuracy of the simulation. In performing this investigation 

choose one sampling period that is excessively small and one sampling period that is too large. 

Comment on the results. How do you go about choosing an appropriate sampling period? 

7-2. Much of the Matlab code used to perform the discrete-time simulations given in Examples 7-5 

and 7-6 could have been eliminated by using the Matlab function lsim. Learn to use lsim by 

reworking Examples 7-5 and 7-6 using the lsim command. Comment on the results. 

7-3. Develop a block diagram for the control system of Example 7-6 in the form illustrated in Figure 

7-1. Use the SIMULINK block diagram editor to build the block diagram. Using SIMULINK sim¬ 

ulate the system and compare the results with those obtained in Example 7-6. Comment on the use 

of SIMULINK for problems of this type. 

7-4. A single-input single-output system has the transfer function 

Y(s) _ s + 3____ 

U(s) ” s5 + 14s4 + 56s3 + 85s2 + 46s + 8 

Assume that the system is initially relaxed and that a unit step input is applied. Using state space 

methods, find and plot the output (or an approximate output that you know to be reasonably ac¬ 

curate). Verify your result using analysis. 



CHAPTER 

Discrete-Time Signals and Systems 

8-1 Introduction 

In the preceding chapters we have been concerned only with the analysis of continuous-time signals 

and continuous-time systems. We now turn our attention to discrete-time signals and systems. 

A discrete-time signal is a signal defined by specifying the value of the signal only at discrete times, 

called sampling instants. If the sample values are then quantized and encoded, a digital signal results. 

A digital signal is formed from a continuous-time (analog) signal through the process of analog-to- 

digital conversion. In the following section we make a slight detour and study the process of analog-to- 

digital conversion in some detail so that we will fully understand the relationship between discrete-time 

signals and digital signals. The errors that occur in analog-to-digital conversion must be identified so 

that all later approximations and assumptions can be appreciated. 

In this chapter we consider a discrete-time signal to arise by sampling a continuous-time signal. 

Quantizing and encoding these resulting sample values yields a digital signal. To start with a continuous¬ 

time signal at first appears to be a rather narrow viewpoint, since in many situations digital signals 

occur naturally and there is no continuous-time signal related to the sample values. Output data from a 

computer is a possible example. There are many other examples. However, in taking the view that 

discrete-time signals arise from continuous-time signals we are better able to relate the theoretical con¬ 

cepts in the following two chapters to the previously developed concepts for continuous-time signals 

and systems. 

An important goal of this chapter is to formulate those tools necessary for the analysis of discrete¬ 

time signals and systems. The principal tool will be the z-transform, which will allow us to specify the 

parameters of digital signals and formulate the input-output relationships of digital systems in both the 

time domain and the frequency domain. In Chapter 9 attention will be turned to the more interesting 

task of the synthesis of digital systems. That is, we will design digital systems so that specified tasks 

will be performed and a given set of specifications will be satisfied. 

8-2 Analog-to-Digital Conversion 

A block diagram of an analog-to-digital (A/D) converter is shown in Figure 8-1. The first component 

is a sampler that extracts sample values of the input signal at the sampling times. The output of the sam¬ 

pler is a discrete-time signal but a continuous-amplitude signal, since the sample values assume the 

same continuous range of values assumed by the input signal x(t). These signals are often referred to as 

sampled data signals. The second component in an A/D converter is a quantizer, which quantizes the 

continuous range of sample values into a finite number of sample values so that each sample value can 

350 
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Continuous-time 
continuous- 
amplitude (analog) input 
signal 

continuous- discrete- output 
amplitude signal amplitude signal signal 

FIGURE 8-1. Analog-to-digital converter. 

be represented by a digital word of finite precision or wordlength. The encoder maps each quantized 

sample value onto a digital word. Each of these processes is now examined in detail. 

Sampling 

To sample a continuous-time signal x(f) is to represent xit) at a discrete number of points, t = nT, where 

T is the sampling period, which is the time between samples, and n is an integer that establishes the time 

position of each sample. This process is illustrated in Figures 8-2a and b, which show both a set of sam¬ 

ples of a continuous-time signal and a sampling switch, which is our initial model of a sampling device. 

In order to extract samples of x(t), the sampling switch closes briefly every T seconds. This yields 

samples that have a value of x(t) when the switch is closed and a value of zero when the switch is open. 

For the sampling process to be useful, we must be able to show that it is possible to sample in such a 

way that the signal x(t) can be reconstructed from the samples. This is most easily accomplished in the 

frequency domain. 

First, the sampled x(t), denoted xft), is written 

xs(t) = x{t)p(t) (8-1) 

where pit), called the sampling function, models the action of the sampling switch as shown in Figure 

8-2c. The sampling function pit) is assumed to be the periodic pulse train of period T illustrated in Fig¬ 

ure 8-2d. We will derive the spectrum of xft), and from this spectrum we can choose appropriate val¬ 

ues of T. 
The first step in the development of the spectrum of xs(t) is to recognize that since the sampling func¬ 

tion pit) is periodic, it can be represented by a Fourier series. In other words, 

00 

pit) = 2 Cne+^‘ 
n — — oo 

(8-2) 

where C„ is the nth Fourier coefficient of pit) and is given by 

1 rT/2 
C„ = T p(t)e-^‘dt 

l J-t/7. 
(8-3) 

In (8-2) and (8-3), f is the fundamental frequency of pit), which is also the sampling frequency, and is 

given by 

hertz (8-4) 

Since xs(t) is the product of x(t) and p(t), we have 

xft) = i Cnx(t)e+in2^‘ (8-5) 
n = — oo 
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x(t) 
■© 
_XtU) 

Switch closes a it - nT 

(b) Sampling device 

€> 
x,{t) 

Pit) 
(c) Model of sampling device 

Pit) 

FIGURE 8-2. The sampling operation. 

We can now determine the spectrum of xs(t), which we shall denote by Xs(f), by taking the Fourier 

transform of (8-5). The Fourier transform of x5(0 is defined by 

xs(f) = [ xs(t)e~’2vf‘ dt (8-6) 

J — oo 

which, upon substitution of (8-5) for xs(t), becomes 

-00 00 

W)= X Cnx(t)e+!n2^e-'2^ dt (8-7) 
^ —oo n = —oo 

Interchanging the order of integration and summation yields 

00 — oo 

K( f ) = 2 C„ x(t)e-j2«f-<>‘ dt 
n = —oo •'—oo 

(8-8) 
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From the definition of the Fourier transform, 

r Qo 

X(f ~ nfs) = x(t)e-M-nf* dt (8-9) 
J —oo 

Thus the Fourier transform of the sampled signal can be written 

W)= i C„X(f-nfs) (8-10) 
n = — oo 

which shows that the spectrum of the sampled continuous-time signal, x{t), is composed of the spec¬ 

trum of x(t) plus the spectrum of x(t) translated to each harmonic of the sampling frequency. Each of 

the translated spectra is multiplied by a constant, given by the corresponding term in the Fourier series 

expansion of pit). This is illustrated in Figure 8-3 for an assumed X(f). 

Also shown in Figure 8-3 is the amplitude response of an assumed reconstruction filter. If the sam¬ 

pled signal is filtered by the reconstruction filter, the output of the filter is, in the frequency domain, 

C0X(f), and the time-domain signal is C0x(t). 

In Figure 8-3 the assumed x(t) is bandlimited. In other words, X(f) is assumed zero for |/| > fh. It is 

clear from Figure 8-3 that if X(f) is to be recoverable from Xs(f), and consequently x(t) from xs(t), then 

f,~A*A (8-11) 
or 

fs>2fh hertz (8-12) 

Thus the minimum sampling frequency is 2fh hertz, where fh is the highest frequency in x{t). 

Thus we have derived the sampling theorem for low-pass bandlimited signals. 

X{f) 

FIGURE 8-3. Spectrum of sampled signal. 
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Sampling Theorem: A bandlimited signal x(t), having no frequency components above fh hertz, is 

completely specified by samples that are taken at a uniform rate greater than 2fh hertz. In other words, 

the time between samples is no greater than 1/2fh seconds. 

The frequency 2fh is known as the Nyquist rate. 

Impulse-Train Sampling Model 

The sampling function utilized in the preceding section was general except that it was assumed to be 

periodic. In practice, the time during whichp{t) is nonzero—that is, the pulse width—is small compared 

to the period T. In digital systems, where the sample is in the form of a number whose magnitude rep¬ 

resents the value of the signal x(t) at the sampling instants, the pulse width of the sampling function is 

infinitely small. Because an extremely narrow pulse is a situation modeled by an impulse and also be¬ 

cause of mathematical simplifications that will result, we shall assume p(t) to be composed of an infi¬ 

nite train of impulse functions of period T. Thus 

Pit) = 2 8(t - nT) (8-13) 
n = —co 

which is the sampling function illustrated in Figure 8-4. Note that, when using this model, the weight 

of the impulse carries the sample value. 

The values of Cn can be computed from (8-3). This yields 

1 rT/2 
= - 8(t)e~^dt (8-14) 

1 J-T/2 

which is 

C = — = f 
rj, J S (8-15) 

by the sifting property of the delta function. Thus C„ is equal tof. for all n and the expression for the 

spectrum of the sampled x(t), as given in general by (8-10), becomes 

K(f)=fs X X(f-nfs) (8-16) 
n = —oo 

The effect of sampling with an impulse train is illustrated in Figure 8-5. It should be noted that the 

effect is the same as illustrated in Figure 8-3 except that all translated spectra have the same amplitude. 

p(.t) 

.1 Al At ,1 it At At 

-1-1-1-1-1-1- t 

-3T -IT -T 0 T 2T 3T 

FIGURE 8-4. Impulse sampling function. 
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X{f) 

Once again X(f) can be obtained from Xs(f), and consequently x(t) from xs(t), by using a low-pass fil¬ 

ter for reconstruction of the original continuous-time waveform. 

The effect of sampling at too low a rate can also be seen from Figure 8-5. If a signal is sampled be¬ 

low the Nyquist rate, 

f.-fk^fk (8-17) 

and adjacent spectra overlap making it impossible to recover x(t) by filtering. This effect is known as 

aliasing and is illustrated in Figure 8-6 for X(J) assumed real. 

In a practical situation it is impossible to sample a signal and reconstruct the original signal from the 

samples with zero error because no practical signal is strictly bandlimited. However, in all practical sig¬ 

nals there is some frequency beyond which the energy is negligible. This frequency is usually taken as 

the bandwidth. Another source of error arises from the nonexistence of ideal reconstruction filters. This 

means that some spectral space is required for filtering because of the finite slope of the reconstruction 

filter beyond the break frequency. All these considerations result in the fact that sampling is usually not 

performed at the Nyquist rate, but at some significantly higher frequency. Nonbandlimited signals hav¬ 

ing low-pass spectra are often sampled at approximately 10 times the frequency at which the amplitude 

spectrum is 3 dB down from its maximum value. The problems associated with reconstruction using 

practical filters will be examined in detail in the following section. 

Data Reconstruction 

We saw in the preceding section that the analog signal x{t) can be reconstructed by passing the sampled 

signal xs(t) through a low-pass filter. We now investigate this process in more detail. It follows from 

(8-1) and (8-13) that xs{t) can be written 

oo 

xs(t) = 40 2 s(( ~ kT) 
k — —oo 

(8-18) 
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X(f) 

(a) Assumed input ipectrum 

X,(f) 

X,(f) 

(c) Spectrum of sampled signal for fs <2fh 

FIGURE 8-6. Illustration of aliasing error for real X(f). 

or 

xs(t) = 2 x(kT)8(t - kT) (8-19) 
k— —oo 

since 8(t — kT) is zero except at the sampling instants t = kT. The reconstruction filter, which is as¬ 

sumed linear and time invariant, has unit impulse response h(t). The reconstruction filter output, y(t), is 

given by the convolution 

y(t) = 2 x(kT)S(A - kT)h(t - A) dX 
00 k— —00 

or, upon changing the order of summation and integration, 

00 -00 

y(t) = 2 x(kT) S(A “ kT)h(t - A) rfA 
k =5 —00 ^ —00 

(8-20) 

(8-21) 
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By using the sifting property of the delta function, we can evaluate the integral to obtain 

y(t) = 2 x(kT)h(t - kT) (8-22) 
k= —oo 

This result is certainly not surprising and could have been obtained by inspection rather than by formal 

evaluation of the convolution integral. Since the filter input is a weighted sum of impulse functions, it 

follows that the filter output is a weighted sum of impulse responses. The weights are given by the sam¬ 

ple values at the sampling instants. The impulse responses are determined by recognizing that the filter 

is time invariant so that input x(kT)8(t — kT) yields output x(kT)h(t — kT). The output y(nT) is simply 

the sum of these individual impulse responses. The problem now is to determine the appropriate form 

of the impulse response h(t) so that y(t) is equal to, or is at least a good approximation to, the original 

analog signal x(t). 

Ideal Reconstruction Filter. Assuming that the signal x(t) is sampled at a frequency exceeding the 

Nyquist rate, the ideal reconstruction filter is defined in Figure 8-5. As shown, if the sampled signal xs(t) 

is passed through an ideal low-pass filter, with bandwidth greater than fh but less than/ — fh and with 

a passband amplitude response of T, the filter output is x(t). We choose the bandwidth of the recon¬ 

struction filter to be 0.5/,. This defines the ideal reconstruction filter. The transfer function of this ideal 

reconstruction filter is therefore 

I/I < 0.5/, 

otherwise 
(8-23) 

as shown in Figure 8-7a. It follows that the impulse response of the ideal reconstruction filter is given by 

rfj2 

h(t) = T ei2vft df (8-24) 
~/j/2 

which is 

h(t) = 
jlTTt 

0 
jrfst -j'nfst') 

It follows that h{t) can be written 

(8-25) 

(8-26) 

or 

h(t) = sine// (8-27) 

Substituting (8-27) into (8-22) yields, after noting that y(t) = x(t) for the ideal reconstruction filter, 

oo 

x(t) = X x(kT) sine fs(t - kT) (8-28) 
k= —oo 

A more convenient form for this expression, which is often referred to as an interpolation formula, is 

oo 

*(0 = 2 x(kT) sine 
k = — oo 

Equation (8-29) shows that the original data signal x(t) can be reconstructed by weighting each sample 

by a sine function centered at the sample time and summing. This operation is illustrated in Figure 8-7b. 
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Z x(nT)BU-nT) 
n — — «* 

Ideal reconstruction 
filter x(t) 

= l/l <o.5/t 
u ; \0, otherwise 

(a) Reconstruction filtering 

x(r) Sample of x(t) 

The reconstruction filter is clearly noncausal, and the unit impulse response is not time limited. These two 

observations have two serious implications. Since the ideal reconstruction filter is noncausal, it cannot be 

used for real-time applications. Also, since h(t) is not time limited, an infinite number of impulse responses 

must be used for interpolating values between samples if exact results are to be obtained. The technique is 

still conceptually useful, however. Many non-real-time applications arise. For example, suppose you are 

given a computer disk of sample values and wish to interpolate between samples, which is effectively an in¬ 

crease in the sampling frequency. This is clearly not a real-time application. Also, since h(t) decays as lit, 

the terms many samples distant from the point being interpolated have little effect on the interpolated value 

and may therefore be neglected if small errors can be tolerated. If a value is to be interpolated between nT 

and nT + T, and / samples each side of the value to be interpolated are to be used, we have 

n + l 

x(t) ~ y(t) — 2 x{kT) sine 
k = n-l+1 

Next we consider two simple examples, after which we consider an interpolation technique in which 

h(t) is still noncausal but of finite extent. 

EXAMPLE 8-1 _ 

This example illustrates the effect of sampling a periodic signal. Consider the simple signal 

x{t) = 6 cos 2ir(5)t (8-31) 

sampled at 7 and 14 Hz. Since the highest frequency (the only frequency in this case) is 5 Hz, we 

will see the effect of sampling a signal at both a frequency less than and greater than twice the high¬ 

est frequency in x(t). Since 

- k , nT < t < nT + T (8-30) 
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X(f) = 3S(f - 5) + 38(f+ 5) (8-32) 

it follows from (8-16) that the spectrum of the sampled x(t) is given by 

00 

K(f) = 3/, 2 m - 5 - nfs) + 8(f+ 5- nfi)] (8-33) 
n — -oo 

The spectrum of x(t) is shown in Figure 8-8a. The spectrum of the sampled signal is shown in Fig¬ 
ure 8-8b for a sampling frequency of 7 Hz and in Figure 8-8c for a sampling frequency of 14 Hz. 
Both spectra extend from / = - oo to f= +oo5 but are illustrated in Figure 8-8 only in the range 
|/| ^ 33 Hz. The assumed reconstruction filter, H(f), is an ideal low-pass filter with a bandwidth of 

X(f) 

f 
-5 0 5 

(a) Spectrum of x(t) 

Reconstruction 

(b) Spectrum of sampled signal with /, = 7 Hz 
(all impulses have a weight of 3/f =21) 

Reconstruction Xs{f) 

(c) Spectrum of sampled signal with /, = 14 Hz 
(All impulses have a weight of 3/, =42) 

-2 0 2 -5 0 5 

(d) Output of reconstruction (e) Output of reconstruction 
filter with/, = 7 Hz filter with/, = 14 Hz 

FIGURE 8-8. Sampling a single sinusoid. 
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0.5fs and an amplitude response of I Thus the output of the low-pass filter has the spectrum shown 

in Figure 8-8d for a sampling frequency of 7 Hz and has the spectrum shown in Figure 8-8e for a 

sampling frequency of 14 Hz. 

Figure 8-8d illustrates the effect of aliasing arising from using a sampling frequency less than twice 

the highest frequency in x{t). The result is a signal having the proper amplitude but the incorrect fre¬ 

quency. (The student should be convinced that the frequency of the component at the output of the re¬ 

construction filter is always the sampling frequency minus the frequency of the input signal.) 

Figure 8-8e illustrates the effect of sampling properly at a frequency greater than twice the high¬ 

est frequency of x{t). The output of the reconstruction filter is identical to the original signal. 

EXAMPLE 8-2 _____ 

In this example we consider a nonperiodic signal forx(t) so that X(f) has a continuous spectrum. We 

also assume that X(f) is real. 

The spectrum of x{t) is shown in Figure 8-9a. The highest frequency is 5 Hz, so that the minimum 

acceptable sampling frequency is 10 Hz. Once again we assume sampling frequencies of 7 and 14 Hz. 

Equation (8-16) shows that the spectrum of the sampled signal is obtained by multiplying X(f) by fs 
and then reproducing//^/) about dc and all harmonics of the sampling frequency. This is shown in Fig¬ 

ure 8-9b for a sampling frequency of 7 Hz and in Figure 8-9c for a sampling frequency of 14 Hz. For a 

sampling frequency of 7 Hz, overlap of the translated spectra (aliasing) occurs mdXs(f) is found by sum¬ 

ming spectra in those regions of spectral overlap. For a sampling frequency of 14 Hz, there is no spec¬ 

tral overlap with translated spectra since the sampling frequency exceeds the minimum value of 10 Hz. 

As in the previous examples, the reconstruction filter is assumed to be an ideal low-pass filter 

with an amplitude response of T and a bandwidth of 0.5/. The output spectrum of the reconstruc¬ 

tion filter is shown in Figure 8-9d for a sampling frequency of 7 Hz and in Figure 8-9e for a sam¬ 

pling frequency of 14 Hz. The impact of aliasing is clear from a comparison of Figures 8-9d and e. 

Linear Interpolation. If the sampling frequency is large compared with the Nyquist rate, i.e., 

fs» 2fh, linear interpolation can often be used to reconstruct a close approximation of the analog sig¬ 

nal x(t) from the sampled signal xs(t). The unit impulse response of a filter that performs linear inter¬ 

polation is given by 

h(t) = A 
1 - 

= \ 

M 
T ’ 

11\ t \<T 
(8-34) 

0, otherwise 

The situation is shown in Figure 8-10a. The interpolation equation for the linear interpolator is 

oo 

y(t) = 2 x(kT)A(t - kT) (8-35) 
k— —oo 

For t between t — nT — T and t = nT a sketch will show that 

y(t) = x(nT - T)(n - yJ + x(nT)(^,n + lj, (n - l)T < t < nT (8-36) 

Note that only two sample values are necessary to interpolate values between samples. Linear interpo¬ 

lation is therefore very fast. While y(t) is only an approximation to the analog signal x(t), it is a very 

good approximation if the sampling frequency is much greater than the Nyquist rate 2fh. 
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(e) Output of reconstruction 
filter with fs = 14 Hz 

FIGURE 8-9. Sampling a signal having a continuous spectrum. 

The nature of the approximation can also be seen from Figure 8-10b, which illustrates an assumed 

spectrum of the sampled signal along with the amplitude response of the reconstruction filter, which is 

H{f) = T sinc2/Y (8-37) 

There are two sources of error. The first is that since H(f) is not zero for \f\ > ^fh, interference from 

translated spectra occurs. This is shown by the shaded areas in Figure 8-10b. The second source of er¬ 

ror is that H(f) is not exactly constant for |/| <fh. It is clear that iffh is small compared with fs, the re¬ 

construction error can be made negligible. 
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h{t) 

(a) Unit impulse response of linear interpolation filter 

(b) Frequency domain view of linear interpolation 

FIGURE 8-10. Linear interpolation. 

Reconstruction with a Simple RC Filter. Both of the reconstruction techniques previously con¬ 

sidered use noncausal reconstruction filters and are therefore not applicable to real-time applications. 

For many applications a practical causal reconstruction filter is the first-order RC filter shown in Fig¬ 

ure 8-11 a. The transfer function of the filter is 

mi) = 
T 

i + Kf/f3) 
(8-38) 

where/3 is the half-power, or 3-dB, frequency, which is MIttRC. The inverse Fourier transform, which 

is the unit impulse response of the reconstruction filter, is 

h{t) = 2irf3Te-2vfhi(t) (8-39) 

Substituting (8-39) into (8-22) yields the interpolation formula 

y(t) = jcJ(/t7’)(27r/3r)(e-2^fcr)M(f - kT) (8-40) 
k = - oo 

The spectrum of the sampled signal and the amplitude response of the reconstruction filter are shown 

in Figure 8-1 lb. The error sources for this filter are the same as the error sources for the linear interpo¬ 

lation filter. It can be seen that the translated spectra resulting from the sampling operation are not com¬ 

pletely attenuated, and therefore y(t) is only an approximation to the analog signal x(t). This is shown 

by the shaded area. In addition, H(f) is not exactly constant for |/| < fh. The approximation is very good, 

however, if/3 is significantly greater than fh, the bandwidth of the analog signal, and if fs >>/3, so that 

the translated spectra are greatly attenuated. 
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(a) Simple first-order lowpass reconstruction filter 

FIGURE 8-11. Reconstruction with a simple first-order filter. 

Quantizing and Encoding 

The process of quantizing and encoding is illustrated in Figure 8-12. To quantize a sample value is to 

round it to the nearest of a finite set of permissible values. Encoding is accomplished by representing 

each of the permissible sample values by a digital word of fixed wordlength. For a binary representa¬ 

tion, the number of quantizing levels q and the digital wordlength n are related by 

q = 2n (8-41) 

Quantization 
level 

number 

7 

6 

5 

4 

3 

2 

1 

0 

FIGURE 8-12. Quantizing and encoding. 
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For example, in Figure 8-12 we have eight quantizing levels, each of which is uniquely specified by a 

three-bit word. 

Since the quantized value is the only value retained after sample values are quantized, errors are in¬ 

duced in the quantizing process that cannot be removed by additional processing. A quantitative mea¬ 

sure of this error is easily derived. Since we would normally “decode” a quantizing level as the center of 

that level, the maximum error induced by quantizing a sample is ±^S, where S is the width of a quan¬ 

tizing interval. Assume that there are a large number of quantizing intervals, resulting in a small value 

for S. Then, for most quantizing intervals, the signal x(t) will be nearly linear within the quantizing in¬ 

terval, as shown in Figure 8-13a. For the system of interest it is the samples that are quantized and not 

the continuous-time signal x(t). However, since sampling and reconstruction can be accomplished with¬ 

out error for bandlimited signals, the quantizer is the only error source in our A/D converter model. Thus 

we can evaluate the error by simply determining the error resulting from quantizing a continuous-time 

signal. This error is shown in Figure 8-13b, in which 2tx is the time that the continuous-time signal x(t) 

remains within the quantizing interval. The mean-square error, E, is given by 

Since the error is given by 

e2(a) da (8-42) 

we have 

(8-43) 

(8-44) 

which is not a function of tv Since E is a mean-square value of a signal, it has dimensions of watts and 

is therefore interpreted as a noise power. 

The quantizing step size S is related to the dynamic range of the A/D converter. The dynamic range 

D is the range of variation of the input signal x{t). This range is defined as 

D = max[x(t)] — min[x(t)] (8-45) 

Since there are q = 2n quantizing levels, the quantizing step size is given by 

5 = | = D2~n (8-46) 

Substituting (8-46) into (8-44) yields the mean-square error 

E = — 2 
12 

(8-47) 

It can be seen that the mean-square error decreases exponentially with the A/D converter wordlength, n. 

Equation (8-47) is not always a good approximation for the mean-square error, even when the num¬ 

ber of quantization levels is large. If a signal stays at a given level for significant time intervals, (8-47) 

is not valid because it ignores the error contribution at those values. Square waves and constant signals 

are examples. 

A quantitative measure of the quality of a quantized signal is the signal-to-noise ratio (SNR) at the 

quantizer output. The SNR is defined as the ratio of the signal power to the noise power. The approxi¬ 

mation is usually made that the signal power at the quantizer output is identical to the signal power at 
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(a) Quantizing 

e(0 

(c) Square of quantizing error 

FIGURE 8-13. Calculation of quantizing error. 

the quantizer input. This approximation is very good when the number of quantizing levels or, equiva¬ 

lently, the wordlength, is large. If the signal power is denoted Ps, the SNR is 

SNR 
Ps 

E 
(8-48) 

Using (8-47) for E yields 

SNR = {Efi/nv-* = up*D~222n (8~49) 

The SNR is usually expressed in decibels, defined as 10 log10 (SNR), where the logarithm is the base 

10 logarithm. Thus 

(SNR)dB = 10 log10( 12) + 10 log10 Ps - 20 log10 D + 20n log10(2) (8-50) 
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or 

(SNR)dB - 10.79 + 6.02ft + 10 log10 Ps - 20 log10 D (8-51) 

The preceding expression shows that the dynamic range, D, should be matched to the signal. If D is 

larger than necessary to accommodate the signal, the quantizer output SNR is reduced. An important 

observation to be drawn from (8-51) is that the SNR increases approximately 6 dB for each bit increase 

in wordlength. This result is independent of the signal x(t). 

EXAMPLE 8-3 _ 

In this example we explore the relationship between quantizing noise and wordlength for a sinusiodal 

signal. Assume that the signal 

x{t) = A cos cot (8-52) 

is sampled and quantized. The signal power is 

1 rT A^ 
Ps = (A cos wt)2 dt = — (8-53) 

where Tp is the period of the waveform. Thus 

A2 
10 log10 Ps = 10 log10 — = 20 log10 A - 3.01 (8-54) 

The dynamic range for the sinusoidal signal is the peak-to-peak value of the signal. Therefore 

D = 2A (8-55) 

and 

20 log10 D = 20 log10 2A = 6.02 + 20 log10 A (8-56) 

Substituting (8-54) and (8-56) into (8-51) yields 

(SNR)dB = 10.79 + 6.02ft + 20 log10 A - 3.01 - 6.02 - 20 log10 A (8-57) 

which reduces to 

(SNR)dB = 1.76 + 6.02ft (8-58) 

Thus the signal-to-noise ratio at the output of the A/D converter increases by approximately 6 dB for 

each added bit of wordlength. Equation (8-58) is illustrated in Figure 8-14. The importance of using 

as large a wordlength as possible is obvious. The effect of not using the full range of the quantizer 

is an effective decrease in q and thus in the wordlength, n. Therefore, it is also important that the 

peak-to-peak value of the signal being processed span the full range (qS) of the quantizer. 

Equation (8-58) was derived by assuming a sinusoidal signal. It should be pointed out that a simi¬ 

lar result applies to any test signal, since in general, the signal-to-noise ratio increases 6.02 dB for 

each increment in the wordlength. The bias, 1.76 dB in this case, will change as the waveshape of 

the test signal is changed (see Problems 8-5 and 8-6). 

In the remainder of this book, the assumption will be made that quantizing errors are negligible. Thus 

no distinction will be made between sampled-data (nonquantized) and digital (quantized) signals. We 

simply consider the signals to be discrete-time signals. 
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FIGURE 8-14. Quantizing signal-to-noise ratio assuming a sinusoidal signal. 

8-3 The z-Transform 

The z-transform is the basic tool for both the analysis and synthesis of discrete-time systems. In the fol¬ 

lowing sections we develop the basic properties of the z-transform and show how to use the z-transform 

for the characterization and analysis of discrete-time systems. In Chapter 9 we will turn our attention 

to the more interesting synthesis problem. 

Definition of the z-Transform 

It has been shown that a suitable model of a sampled signal is 

00 

xs(t) ~ 2 “ nT) (8-59) 
n = — oo 

Prior to defining the z-transform, we will make two minor modifications to the preceding expression. 

First, since 8(t — nT) is identically zero except at the sampling instants, t = nT, x{t) can be replaced by 

x(nT) if x(t) is continuous at t — nT We will also assume that 

x(t) = 0, t < 0 (8-60) 

which establishes the time reference. Thus (8-59) will be written 

oo 

xs(f) = 2 x(nT)8(t - nT) (8-61) 
n = 0 

Taking the Laplace transform yields J.0° oo 

2 x(nT)8{t - nT)e~st dt 
0 n= 0 

(8-62) 
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which is, upon interchanging integration and summation, 

■30 — 00 

X£s) = 2 x(nT) 8(.{ - nT)e~st dt (8-63) 
n = 0 Jo 

Using the sifting property of the delta function, this integrates to 

oo 

X,(s) = 2 x(nT)e~snT (8-64) 
n = 0 

Finally, defining the complex variable z as 

z = esT (8-65) 

yields 

oo 

X(z) = 2 x(nT)z~" (8-66) 
n = 0 

In (8-66) X(z) is known as the z-transform of the sequence of samples, x(nT). Note that the subscript s, 

which has been used to denote a sampled quantity, has been deleted. This can be done without confu¬ 

sion since only sample values are used to compute the z-transform. Therefore, the subscript s is redun¬ 

dant when the argument of the function is z. 

Within a sequence of samples, a given sample can be represented by an ordered pair of numbers. One 

number in the ordered pair is used to represent the value of the sample and the other number in the or¬ 

dered pair is used to specify the occurrence time of the sample. Each term in the summation of (8-66) 

has this form. The coefficient, x(nT), denotes the sample value and z~n denotes that the sample oc¬ 

curs n sample periods after the t = 0 reference. It is also instructive to recognize that esT is simply the 

T-second time shift operator discussed in Chapter 5. In (8-64) the sample value x(nT) is multiplied by 

e~snT, which places that sample value at t = nl Thus the parameter z is simply shorthand notation for 

the Laplace time shift operator. As an example, 128.7z-37 denotes a sample, having value 128.7, which 

occurs 37 sample periods after the t = 0 reference. 

Recall from Chapter 5 that the Laplace variable s was given by 

s = a + joj (8-67) 

where <x was a constant used to ensure convergence of the integral defining the Laplace transform and 

thus the existence of the transform itself. From (8-65), 

z = eaTe^T (8-68) 

so that the magnitude of z is given by 

|z| = e«T (8-69) 

Thus, the right-half s-plane, cr > 0, corresponds to |z| > 1, while the left-half s-plane, a < 0, corre¬ 

sponds to |z| < 1. We see that the left-half s-plane maps into the interior of the unit circle in the z-plane 

and that the right-half s-plane maps outside the unit circle in the z-plane. This mapping of the Laplace 

variable s into the z-plane through z — esT is illustrated in Figure 8-15. 

Recall from Chapter 5 that functions of the Laplace variable 5 having poles with negative real parts 

(left-half plane poles) decay to zero as t —> oo in the time domain. In a similar manner, functions of z 

having poles with magnitudes less than one decay to zero in the time domain as n —> oo. Poles on the joj 

axis in the s-plane correspond to poles on the unit circle in the z plane, and imply time-domain func¬ 

tions that oscillate at a frequency determined by the angle of the pole. A function having a pole at the 
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FIGURE 8-15. Mapping defined by z = esT. 

origin in the s-plane is a unit step in the time domain and, as we will see in an example, a function hav¬ 

ing a pole in the z-plane at z = 1 corresponds to a sampled unit step in the time domain. This is not sur¬ 

prising since s = 0 corresponds to z = 1. 

As mentioned at the beginning of this chapter, we could define the z-transform, and develop the ap¬ 

propriate theory, without reference to continuous-time functions and the s-plane. We could simply take 

(8-66) as the definition of the z-transform. As we saw in the previous paragraph, however, relating z to 

the Laplace variable s allows us to make good use of our previously developed theory of continuous¬ 

time signals and systems. We will continue to use this relationship in this chapter and in the two chap¬ 

ters that follow. 

The following three examples illustrate the derivation of three very basic z-transform pairs. The re¬ 

sults of these three examples will serve as building blocks for deriving other z-transform relationships. 

EXAMPLE 8-4 _ 

The unit pulse sequence is defined by the sample values 

";o}isw <8-7o) 
and is illustrated in Figure 8-16a. Substituting x{nT) into the defining equation for the z-transform, 

(8-66), yields 

X(z) = 1 + Oz-1 + 0z~2 + ■■■ (8-71) 
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I x(nT) 

2 3 

(a) Unit pulse 

(b) Sampled unit step 

Envelope = e 

(c) Sampled unit exponential 

FIGURE 8-16. Elementary sample sequences. 

Thus 

X(z) = 1 (8-72 

This is an extremely important result. Note that from (8-70) we can write 

x ,, f 1, n = k 
8{n-k) = \ 

[0, n ¥= k 
(8-73 

Thus 
00 

x(nT) = 2 x(kT)8(n - k) 
k=- oo 

(8-74 

This should remind us of the sifting property of the unit impulse function, <5(0, as defined in (1-48) 

We will see that the unit pulse sequence plays a similar role in discrete-time systems as the unit im 

pulse function does in continuous-time systems. 
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EXAMPLE 8-5 

The unit step sample sequence is defined by the sample values 

x(nT) = 1, n > 0 (8-75) 

and is illustrated in Figure 8-16b. Substitution into (8-66) yields 

We know that for be < 1 

X{z) = 
n = 0 

2* 
n — Q 

Thus, with x — z~l, we have1- 

X{z) = 
H = 0 

1 

1 - z"1 ’ 
kl >1 

(8-76) 

(8-77) 

(8-78) 

It should be noted that the unit step sample sequence is defined such that x(0) = 1. Therefore, it is 

not simply a sampled u(t) unless u(0) is defined as 1, since u(t) is not continuous at t = 0. The unit 

step sample sequence is, however, often denoted u(ri). 

EXAMPLE 8-6 _ 

The unit exponential sequence is defined by the sample values 

x(nT) = e~anT, a > 0, n > 0 

which is illustrated in Figure 8-16c and has the z-transform 

00 00 

X(z) = 2 e-anTz~n = 2 (e~aTz~l)n 
n=0 n=0 

Using (8-77) with* = e~aTz~1 yields 

X(z) = e-«rz-i . kl > e~aT 

With the sampling period T and the parameter a fixed, e~aT is a constant. Letting 

K = e~“T 

gives the z-transform pair 

X{z) = al[Kn] = —\zx' \Z\>K 

(8-79) 

(8-80) 

(8-81) 

(8-82) 

(8-83) 

fThe sum X”=0 z~n converges absolutely to 1/(1 - z~l) outside the unit circle (|z| >1). The function 1/(1 - z~l) is well be¬ 

haved everywhere in the complex z-plane except at the pole z — 1. We take (8-78) as the definition of the z-transform of the sam¬ 
pled unit step. This result could have been derived rigorously by other methods beyond the scope of this text. 
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This is often the most convenient form to use. Equation (8-83) can be written 

1 z 

1 -Kz~x ~ z-K 
(8-84) 

which shows that X(z) has a zero at z = 0 and a pole at z = K. Thus only for |^| < 1 does Kn go to 

zero for large n. 

A short table of z-transforms is given in Table 8-1. The first three transforms have been derived in the 

preceding examples. The remaining transform pairs are easily proved (see Problems 8-13 through 8-15). 

EXAMPLE 8-7 _:_ 

The purpose of this example is to consider the z-transform of a sequence somewhat more compli¬ 

cated than the simple examples previously considered and to illustrate the use of Matlab for deter¬ 

mining z-transforms. The z-transform of the sequence 

(njr\ 
—J (8-85) 

TABLE 8-1 
Short Table of z-Transforms 

Transform Continuous-time 

Pair Function Sample Values z-Transform 

Number fit) for t > 0 f{nT) for n > 0 Of AnT) 

1. — 
/(wr)={a ”;!!}4s(n) 

1 

1 

1 - z'1 
2. 1 (unit step) i 

3. e~°“ g-anT = (g-ory. = Rn 1 1 

1 - e aTz~] ~ 1 - Kz 1 

4. t nT 
Tz~] 

(1 - z~1)2 

5.t te~at nTe~anT 
Te~aTz~l 

(1 - e~aTz~1)2 

64 sin bt sin bnT 
(sin bT)z^ 

1 — 2(cos bT)z~~l + z~2 

7.+ cos bt cos bnT 
1 - (cos bT)z^ 

1 - 2(cos bTfz'1 + z~2 

84 e~at sin bt e~anT sin bnT 
e~aT(sm bT)z~l 

1 - 2e"a7'(cos fcOz-1 + e'~2aTz~2 

94 e~at cos bt e-anT CQS fon J1 1 — e~aT(cos bT)z l 

1 - 2e“‘,r(cos bT)z+ e~2aTz~2 

tIn transforms 5 through 9, e~~aT and bT can be replaced by constants, K{ and K2, respectively, as was done in transform 3. Con¬ 

vergence of the z-transform requires |Aj| < 1. 
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X(z) = X a" cos(^r)z " (8-86) 

Note that cos(n7r/2) = 0 for n odd and is ± 1, depending upon the value of n, for n even. It follows 

that X(z) can be written in the form 

X(z) = 2 a2k(-l)kZ-2k 
k = 0 

which can be expressed 

k = 0 

Assuming convergence of the series1^ we obtain 

™ -1*'? 

(8-87) 

(8-88) 

(8-89) 

Note this also follows from Table 8-1 [entry 9] by replacing e~aTby a and bT by 7r/2. 

Mat lab Application 

The Matlab Symbolic Math Toolbox provides routines for performing z-transforms and inverse 

z-transforms. The following code illustrates the technique: 

EDU» c8ex7 

syms a n z 

xn = aAn*cos(n*pi/2) 

xz = ztrans(xn,n,z); 

xz 

xz = 

zA2/(aA2+zA2) 

This result, although written in terms of positive powers of z instead of negative powers of z, agrees 

with the previously obtained result. Matlab always expresses results in terms of positive powers 

of z. 

% Declare symbolic 

% Define x(n) 

% Determine X(z) 

% Display result 

Linearity 

The "-transformation is a linear operation. In other words, if A and B are constants, 

00 

2 [Ax^nT) + Bx2(nT)] z~n = AX,(z) + BX2(z) (8-90) 
n = 0 

+The series in question converges for |z| > |a|. 
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where X^z) and X2(z) are the z-transforms of x{(nT) and x2(nT), respectively. This is easily seen by rec¬ 

ognizing that the left-hand side of (8-90) can be written 

oo oo oo 

£ [Ax{(nT) + Bx2(nT)] z~n = A2 (nT)z~" + B 2 x2{nT)z~n (8-91) 
n = 0 n = 0 n = 0 

By definition, the two sums on the right-hand side of (8-91) are X{(z) and X2(z). 

Initial Value and Final Value Theorems 

The initial value and the final value theorems are useful in that they provide quick insight into the be¬ 

havior of a time sequence, x(nT), without having to compute the inverse z-transform of X(z). When the 

inverse z-transform of X(z) is computed, the initial value and final value theorems provide a partial 

check on the results. 

The initial value theorem states that 

x(0) = lim X(z) (8-92) 
Z —>00 

This result is easily derived. By definition 

00 00 

X(z) = 2 x(nT)z~n = x(0) + 2 x(nT)z~n (8-93) 
7i — 0 n = 1 

As z —» °°, the summation on the right vanishes and (8-92) results. 

The final value theorem states that 

x(oo) = lim (1 - z~1)X(z) (8-94) 
z-> 1 

The proof of this theorem is more difficult than the proof of the initial value theorem, and we shall 

not take the time and space to construct the proof here. However, (8-94) can be easily justified. If 

X(z) has any of its poles outside the unit circle, X(z) corresponds to an unstable function and x(°°) = °°. 

If X(z) has all its poles inside the unit circle, x(nT) represents samples of a function that decays 

with time and *(oo) = 0. If X{z) has simple poles on the unit circle but not at z = 1, the resulting time 

response is oscillatory and jc(oo) is not defined, although it is bounded by the limits of the oscillation. 

By continuing this argument we see that a nonzero steady-state constant value must result from a 

simple pole in the z-plane at z = 1. Thus assume that X(z) has a simple pole at z = 1 and decompose 

X(z) as 

X(z) = — -—f + G(z) (8-95) 
1 - z 

where all the poles of G(z) lie inside the unit circle. Clearly, by the preceding argument, K is the steady- 

state value of X(z). Applying (8-94) yields 

*(oo) = lim (1 - z^Xiz) = K + lim (1 - z"1)G(z) = K (8-96) 
Z-> 1 Z->1 

which is the expected result. 

Several interesting proofs of the final value theorem are given in the literature.1' 

fAs an example of two very different proofs of the final value theorem, the interested student should refer to S. R. Atre, “An 

Alternate Derivation of Final and Initial Value Theorems in the z Domain,” Proceedings of the IEEE, Vol. 63, No. 3, March 

1975, pp. 537-538, and J. R. Ragazzini and G. F. Franklin, Sampled-Data Control Systems (New York: McGraw-Hill, 1958), 

pp. 61—63. 
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Inverse z-Transform 

The z-transform of a sample sequence is written, by definition, 

X(z) = x(0) + x(T)z~l + x(2T)z~2 + • ■ * (8-97) 

If we can manipulate X(z) into this form, the sample values, x(nT), can be determined by inspection. 

This is easily accomplished by long division when X(z) is expressed as a ratio of polynomials in z. Be¬ 

fore the long division is earned out, it is usually most convenient to arrange both the numerator and the 

denominator in ascending powers of z_1. A simple example will illustrate the method. 

EXAMPLE 8-8 _ 

The purpose of this example is to illustrate the determination of the inverse z-transform using long 

division. Assume that 

X(z) (z - l)(z - 0.2) 

First X(z) is written in the form 

Xb) - - liz + 0.2 

which is, after multiplying numerator and denominator by z“2, 

X(Z) = 1- 1.2.- + 0.2- •' 

(8-98) 

(8-99) 

(8-100) 

The division is illustrated below: 

1 + 1.2z_1 + 1.24z~2 + 1.248z-3 • • • 
1 - 1.2c 1 + 0.2c 2 Ti 

1 - 1.2c"1 + 0.2c”2 

1.2c_1 - 0.20c-2 
1.2c-1 - 1.44c-2 + 0.240c-3 

1.24c-2 - 0.240c-3 
1.24c-2 ~ 1.488c-3 + 0.248c-4 

1.248c.-3 

Thus 

-1 + 1.24z-2 + 1.248z“3 + * • • (8-101) 

x(0) = 1 (8-102a) 

x(T) = 1.2 (8-102b) 

x(2 T) = 1.24 (8-102c) 

x(3T) = 1.248 (8-102d) 

from which 
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The division can obviously be continued to give as many terms as desired. Although long divi¬ 

sion is generally the easiest method for inverting a given X(z), the method has the disadvantage of 

not yielding the general sample value term, x(nT), in closed form. 

Note that from the initial value theorem 

x(0) = lim X(z) = 1 (8-103) 
z—> 00 

which checks with our previous result. The final value theorem yields 

a 

xM = lim —1 X(z) = lim-= 1.25 (8-104) 
v 7 Z->1 Z *->i z - 0.2 

Matlab Application 

Long division can be accomplished in Matlab using the command dimpulse in the Signals and 

Systems Toolbox included in the Student Edition of Matlab. We will see later that we are simply 

determining the unit pulse response of a system determined by the arguments of the dimpulse 

function. The following Matlab code illustrates the application to the example considered here. 

EDU» c8ex8 

num = [1 0 0]; 

den - [1 -1.2 0.2]; 

n = 8; 

x = dimpulse(num,den,n); 

x 

X = 

% 

% 

% 

% 

% 

Define numerator 

Define denominator 

Display n terms 

Compute implse response 

Display result 

1.0000 

1.2000 

1.2400 

1.2480 

1 . 2496 

1 . 2499 

1.2500 

1.2500 

We see that these results are in agreement with the previously computed results. 

Although the long vision method of inverse z-transforming a function does not yield the general term 

in closed form, it is sometimes sufficient. For example, if the time sequence approaches an asymptote 

in a well-behaved manner, often one only needs to compute the first several values of the time sequence 

and then compute the asymptote by the final value theorem. 

Partial-fraction expansion overcomes the disadvantage of the long-division method in that partial- 

fraction expansion yields the general term of the time expansion, x(nT). The basic disadvantage of the 

partial-fraction-expansion method is that the denominator of X(z) must be factored. The technique is 

exactly the same method as that used to find inverse Laplace transforms by partial-fraction expansion. 

The idea is to manipulate X(z) into a form that can be inverse z-transformed by using Table 8-1. 
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Because of the form of the transforms given in Table 8-1, it is usually best to perform a partial frac¬ 

tion expansion of H(z)/z. As an alternative z_1 can be treated as the variable in the partial fraction ex¬ 

pansion. We will, however, expand in terms of z in the following examples. 

EXAMPLE 8-9 

In this example, the use of partial-fraction expansion for performing inverse z-transform operations 

is illustrated. We use the same X(z) that was used in the previous example so that 

X(z) = 7-7^,-1 . »„_-2 = 72 7771 7777 (8-105) 
12z~l + 0.2 z (z - l)(z - 0.2) 

First, we write 

Z(z) = _Z_ _ Kt _^2_ 
z (z - l)(z - 0.2) z - 1 z - 0.2 

The constants Kx and K2 are given by 

Kx - lim(z — 1) ^ = 1.25 
z->lV Z 

(8-106) 

(8- 107a) 

and 

K2 = lim (z - 0.2) 
z z-»0.2v 

X{z) 
= -0.25 (8-107b) 

Thus 

or 

X(z) 
1.25z _ 0.25z 

z - 1 z - 0.2 
(8-108) 

Az) = 
1.25 

1 - z"1 

0.25 

1 - 0.2z-1 
(8-109) 

We can find the inverse transform of X(z) by using transform pair 3 in Table 8-1. The first term has 

K = 1, which is a unit step sample sequence, and the second term has K = 0.2, which is a sampled 

exponential. Thus 

x(nT) = 1.25 - 0.25(0.2)'\ n > 0 " (8-110) 

The values of x(nT) are 

x(0) = 125 - 0.25(0.2)° =1 (8-111a) 

x{T) = 1.25 - 0.25(0.2)! = 1.2 (8-11 lb) 

x(2T) = 1.25 - 0.25(0.2)2 = 1.24 (8-111c) 

jt(3D = 125 - 0.25(0.2)3 = 1.248 (8-1 lid) 

It should be noted that these values agree with the values determined by long division in the pre¬ 

ceding example. Also, note from (8-110) that 

x(o°) = 1.25 (8-llle) 
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Matlab Application 

The Matlab command residuez allows the residues, poles and the k vector* to be computed for 

a given X(z). Consider the following Matlab code: 

EDU» c8ex9 

b = 1; 

a = [1 -1.20.2]; 

[r,p,k] = residuez (b,a) 

r 

r = 

1.2500 

-0.2500 

p % Display poles 

P = 

1.0000 

0.2000 

k % Display k vector 

k = 

[] 

The residues and poles determined through the use of residuez allow (8-109) to be written di¬ 

rectly. The inverse transform is then obvious. 

It is interesting to continue. The Matlab Symbolic Math Toolbox contains routines that allow us 

to take the inverse z-transform of functions of z. The following short Matlab session illustrates the 

use of the command invztrans for performing inverse z-transforms. The routines in the Symbolic 

Math Toolbox for inverse z-transforms require that the polynomial coefficients be expressed as ra¬ 

tional numbers rather than as floating-point numbers. A moments thought tells us that this is the only 

way that pole (and zero) locations can be exact.* Thus 1.2 and 0.2 must be written as 6/5 and 1/5, re¬ 

spectively, or as any rational equivalent to these numbers. 

EDU» c8ex9b 

syms n z % Declare symbolic 

xz = 1/(1-(6/5)*(zA(-1))+(1/5)*zA(-2)); % Define X(z) 

% Define numerator 

% Define denominator 

% Determine residues 

% Display residues 

^ee the Matlab manual for an explanation of the k vector. In this example, the k vector is empty. In the following chapter 

(Example 9-1) we will use residuez to compute residues for a case in which the k vector is not empty. This will illustrate the 

use of the information returned in the k vector. 

^Recall that 1.2 represents a number between 1.15+e and 1.25—e, where e is an arbitrarly small positive number, to a preci¬ 

sion of two significant figures. Thus 1.2 is not an exact quantity but 6/5 is an exact quantity. 
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xn = iztrans (xz,z,n); % Compute x(n) 

xn % Display x(n) 

xn = 

5/4-1/4*(1/5)An 

This result is identical to (8-110) for non-negative values of n. 

EXAMPLE 8-10 

The purpose of this example is observe the effect of multiplying the X(z) by z-2. This will lead to the 

delay operator. Thus we consider 

m i i 

1.2z + 0.2 (z - 1 )(z - 0.2) 
(8-112) 

The first step in performing the inverse z-transform is to divide both sides by z. This yields 

Y(z) =_1_= — + ~ 
z z(z - 1 )(z - 0.2) z z - 1 z - 0.2 

from which 

and 

Thus 

i£i = lim z 
1 z-> 0 

Y(z) 

z 

Ki = Jim P “ 1) 

” 0.2 

Y(z) 

z 

5 

0.8 
1.25 

K3 = lim (z - 0.2) 
J Z->0.2 v 7 

Y(z) 

z 
-6.25 

Y(z) = 5 + 1.25 - -- 
Z — 1 

(8-113) 

(8-114a) 

(8- 114b) 

(8-114c) 

(8-115) 

or 

Y(z) = 5 + 1.25 ~ 625 i _ ^ 2z~ 1 (8'U6) 

We can now inverse transform using transform pairs 1 and 3 in Table 8-1. This yields 

y(nT) = 58(n) + 1.25 - 6.25(0.2)”, n > 0 (8-117) 

The student should check this result by using long division. Upon doing so, it will be noted that 

y(0) = 0, y(T) = 0, and y(2T) — 1. This is obvious from an inspection of Y(z), since the leading term 

in the division process is z-2. Simple observations of this type are useful in that computational er¬ 

rors are often revealed. 
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Matlab Application 

The Matlab code for executing the inverse z-transform of T(z) follows. 

% Declare symbo1ic 

% Define XI(z) 

% Define X2(z) 

% Determine X(z) 

% Compute x(n) 

% Display x(n) 

xn = 

5*Delta(n)+5/4-25/4*(1/5)An 

which is equivalent to (8-117) for non-negative values of n. 

EDU» c8exl0 

syms n z 

xzl = 1/(1+(6/5)*(zA(-1)) + (1/5)*zA (- 2)) ; 

xz2 = z A (- 2) ; 

xz = xz1*xz2; 

xn = iztrans(xz,z,n); 

xn 

The essential difference between Examples 8-9 and 8-10 is that division by z to form 7(z)/z intro¬ 

duced an additional pole, and therefore an additional term in the partial-fraction expansion, in Ex¬ 

ample 8-10. 

The preceding examples treated partial-fraction expansion of z-domain transfer functions having 

first-order poles. Partial-fraction expansion of z-domain transfer functions with higher-order poles pro¬ 

ceeds in exactly the same manner as partial-fraction expansion of ^-domain transfer functions with 

higher-order poles. 

Delay Operator 

The delay operation is of fundamental importance in the analysis and synthesis of discrete-time or digi¬ 

tal systems, as we shall shortly see. We now show that if the time sequence [x(nT)] is delayed by K sam¬ 

ple periods, the effect in the z-domain is to multiply X(z) by z~K. 

This is easily proved. Since 

X(z) = 2 x(nT)z " (8-118) 
n = 0 

the z-transform of the sequence {x(nT — KT)} is 

3,[x(nT - KT)] = ^ *(»T - KT)z~n (8-119) 
n = 0 

Letting m = n — K yields 

3l[x(nT - KT)] = J x(mT)z~m~K (8-120) 
m= —K 

Since x(mT) is assumed zero for m < 0, we have 

°£{x(nT - KT)] = 2 x(mT)z~m~K 
m = 0 

(8-121) 
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or 

00 

%{x(nT - KT)} = z~K 2 x(mT)z~m = z~KX(z) (8-122) 
m = 0 

The delay operation is illustrated in Figure 8-17, where it is clear that delay by K sample periods is 

equivalent to multiplication by z~K- 

x(nT) 

K K+ 1 K + 2 K+ 3 K + 4 

FIGURE 8-17. Illustration of delay operation. 
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8-4 Difference Equations and Discrete-Time Systems 

Now that we have an understanding of the z-transform, we have the tools necessary to explore discrete¬ 

time systems. The development will closely parallel the development of continuous-time systems. 

Properties of Systems 

In Chapter 1, the properties of continuous-time systems were defined. As in Chapter 1, the dependence 

of the system output, y(nT), on the system input, x(nT), is symbolically expressed as 

y(nT) = W[x(nT)] (8-127) 

where W is an operator that both identifies the system and specifies the operation to be performed on 

the input, x(nT), to produce the output y(nT). 

Shift-Invariant Systems. A system is fixed or time invariant if the input-output relationship does 

not change with time. Discrete-time systems that are fixed are referred to as shift-invariant systems. In 

other words, a discrete-time system is shift invariant if a shift of the input by na sample periods results 

in a shift of the output by the same na sample periods. Expressed as an equation, a discrete-time system 

is shift invariant if and only if 

W[x(nT - n0T)] = y(nT - n0T) (8-128) 

for any finite value of nQ. 

Causal and Noncausal Systems. A system is causal or nonanticipatory if the system response to 

an input does not depend on future values of the input. Parallel to the definition for continuous-time 

systems, a discrete-time system is causal if and only if the condition 

xfnT) = xfriT) for n < nQ (8-129a) 

implies the condition 

KlxfnT)] = %C[x2(nT)] for n < na (8-129b) 

for any xfnT), x2(nT) and nQ. In other words, if the difference between two system inputs is zero for 

n < nQ, the difference between the respective outputs must be zero for n < na. If this condition is not 

satisfied, then the system is noncausal. 

Linear Systems. Also parallel to continuous-time systems, a discrete-time system is linear if and 

only if superposition holds. In other words, a discrete-time system is linear if and only if 

Wla^fnT) + a2x2(nT)\ = ^[cqx^/iT)] + 9t[a2x2(nT)] 

- a^lxfnT)] + a2W[x2(nT)] 

= atffnT) + a2y2(nT) (8-130) 

where 

yfnT) = VeixfnT)] for / =1,2 (8-131) 

Two observations follow from (8-131). First, the system operation, 9^, performed on a sum of signals 

is equivalent to the sum of the operations performed on the individual signals if the system is linear. In 
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addition, we see that multiplication of the system input by a constant results in the multiplication of the 

output by the same constant for a linear system. 

It follows from (8-74) that we can write 

y(nT) — %t[x(nT)] = 2 x(kT)8(n - k) 
U = 

where 8(n) is the unit pulse. Assuming a linear system, (8-132) can be written 

(8-132) 

oo 

y(nT) = 2 W[x(kT)8(n - *)] 
k = — oo 

For a given value of k, x(kT) is simply a constant and we can therefore write 

y(riT) = 2 x(kT)W[8(n - k)] 
k= —oo 

The unit pulse response of a system is of fundamental importance, and is defined as 

h(nT) = W[8(n)] 

(8-133) 

(8-134) 

(8-135) 

If the system is shift invariant, we have 

hinT - kT) = 3€[S(w - k)] (8-136) 

and (8-134) becomes 

00 

y(nT) = 2 x(kT)h(nT - kT) (8-137) 
k= —oo 

This is known as the convolution sum and defines the input-output relationship for linear shift-invariant 

systems. The change of variable l = n — k shows that 

y(nT) = 2 h(lT)x(nT - IT) (8-138) 
/= —oo 

and, as in the case of continuous-time systems, convolution is commutative. 

All the systems we consider will be causal, and all signals will be zero for negative index. Thus, in 

(8-137) 

x(kT) = 0, k< 0 (8-139a) 

and 

h(nT — kT) = 0, n~k< 0 or k> n (8-139b) 

For this case the convolution sum can be written 

y{nT) = 2 h{kT)x{nT - kT) = 2 x(kT)h{nT - kT) (8-140) 
£=0 k=0 

EXAMPLE 8-12 ____ 

In this example we examine the steps involved in discrete convolution for a specific set of sample se¬ 

quences. We see that the steps involved in discrete convolution are essentially the same as those used 

for convolution of continuous-time waveforms. The basic difference is that multiplication of waveforms 

and integration is replaced by multiplication of sample values and summation. The second part of this 

example explores the use of Matlab for performing discrete convolution and for plotting the results. 
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We will use discrete-time convolution to compute the output of a discrete-time processor whose 

input x(nT) and unit pulse response h(nT) are shown in Figure 8-18a. The terms in the summation 

n 

y{nT) = ^ x(mT)h(nT - mT) (8- 141a) 
m = 0 

are shown in Figure 8-18b for n < 0. Clearly, y(nT) = 0 fovn < 0 since there is no overlap of the 

functions x(mT) and h(nT - mT). The table shown in Figure 8-18c is used to evaluate y(nT) for 

0 < n < 6. The sample values of x(mT) are shown across the top and the samples of h(nT - mT) are 

shown in the table for n = 0, 1, 2, 3, 4, 5, 6. The samples of h(nT - mT) shift to the right 1 unit for 

each increment of n. The value of the convolution sum is determined by multiplying and summing 

the two sets of sample values for each value of n. For example, 

y(0) = 1*3 = 3 (8- 141b) 

y(T) = 1 • 2 + 2 • 3 = 8 (8-141c) 

y(2T) = 1-1+2-2 + 2- 3=11 (8-141d) 

y(6T) = 1-1 = 1 (8-141e) 

x (mT) 

Samples x (m T) 

1 2 2 1 1 0 

n —0 1 2 3 0 0 0 0 0 

n = 1 0 1 2 3 0 0 0 0 

n = 2 0 0 1 2 3 0 0 0 

» = 3 0 0 0 1 2 3 0 0 

n =4 0 0 0 0 1 2 3 0 

ft = 5 0 0 0 0 0 1 2 3 

n = 6 0 0 0 0 0 0 1 2 

(c) Table for evaluating summation 

FIGURE 8-18. Discrete convolution. 



8-4 / Difference Equations and Discrete-Time Systems 385 

For n > 6, y{nT) = 0 since there is no overlap of x(mT) and h(nT — mT). The result of the convolu¬ 

tion is shown in Figure 8-18d. 

Matlab Application 

Matlab contains a command conv which performs discrete convolution. We now use Matlab for 

convolving the sequences just considered and plot the results. Note that only the first three lines of 

code are required to perform the convolution. The rest of the code is used to format the plot, perform 

the plot and to label axes. Matlab allows us to plot all three functions of interest in the same win¬ 

dow. It is helpful to have all three sequences the same length when plotting and note how this is ac¬ 

complished. Note also, the use of stem for plotting, that the sample indices begin at zero and that 

two zero samples are appended to the end of y(nT). 

EDU» c8exl2 

x = [12211]; 

h = [3 2 1] ; 

y = conv(x,h); 

% Format for plot, 

nz = 2 ; 

ly = length(y)+nz; 

xz = [x,zeros(1,ly-length(x) )] ; 

hz = [h,zeros(1,ly-length(h))] ; 

yz = [y,zeros(1,nz)]; 

nn = 0:ly-1; 

% Now plot the results. 

subplot(2,2,1) 

stem(nn,xz) 

xlabel('Samplex Index - n') 

ylabel('x(nT)') 

subplot(2,2,2) 

stem(nn,hz) 

xlabel('Sample Index - n’) 

ylabel(’h(nT)') 

subplot(2,2,3) 

stem(nn,yz) 

xlabel('Sample Index - n') 

ylabel('y(nT)') 

% Define samples of x 

% Define samples of h 

% Convolve x and h 

% Extra zeros on y 

% Length of y 

% Zero pad x 

% Zero pad h 

% Zero pad y 

% Establish x-axis indices 

% Top left plot 

% Plot x as discrete sequence 

% Label x axis 

% Label y axis 

% Top right plot 

% Plot h as discrete sequence 

% Label x axis 

% Label y axis 

% Bottom left plot 

% Plot y as discrete sequence 

% Label x axis 

% Label y axis 

EXAMPLE 8-13 ____ 

In the previous example, the sequences that were convolved both had finite extent. In this example 

we consider sequences that have infinite extent. The graphical convolutional method is clearly not 

suited to problems of this kind unless we wish to determine only a few samples of the result of the 

convolution. The method illustrated in this example, which is nothing more than a direct application 

of (8-140), gives us a closed form result. 

For this example assume 

x(nT) = u(n), h(nT) = (8-142) 
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0 2 4 6 8 
Sample Index - n 

FIGURE 8-19. Matlab plots for Example 8-12. 
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y(nT) - 3(|) n > 0 (8-147) 

Matlab Application 

Even though the Matlab Symbolic Math Toolbox does not contain a routine for performing sym¬ 

bolic convolution, we can still use Matlab for solving this example problem by simply recogniz¬ 

ing that discrete convolution is equivalent to multiplication in the z-domain. First, we z-transform 

x(nT) and h(nT) to formX(z) and H(z). Multiplying these yields Y(z) and inverse transforming gives 

y(nT), which is the desired result. The Matlab code follows: 

EDU» c8exl3 

syms n z 

xn = (1/2)An; 

hn = (l/3)An; 

xz = ztrans(xn,n,z); 

hz = ztrans(hn,n,z); 

yz = xz*hz; 

yn = iztrans(yz,z,n); 

yn 

yn = 

3*(l/2)An-2*(l/3)An 

This agrees with (8-147) for non-negative values of n. Note that we have written a routine for sym¬ 

bolic convolution. 

% Declare symbolic 

% Define x(n) 

% Define h(n) 

% Z-transform x(n) 

% Z-transform h(n) 

% Multiply 

% Inverse transform Y(z) 

% Display y(n) 

Stable Systems. The stability of discrete-time linear systems is defined in the bounded-input, 

bounded-output (BIBO) sense, as was the case for continuous-time systems in Chapter 2. A linear 

discrete-time system is BIBO stable if 

|y(n7)|<°°, all n (8-148) 

for all bounded inputs. Since we are considering linear shift-invariant systems, 

00 

y(nT) = 2 x(kT)h(nT - kT) - (8-149) 
k— —oo 

Taking the absolute value of both sides of (8-149) yields 

oo 

\y(nT) | 2 x(kT)h(nT - kT) (8-150) 
\k=-oo I 

Since the absolute value of a sum is bounded by the sum of the absolute values of the individual terms 

in the sum, we have 

00 

\y(nT)\< ^ \x(kT)\\h(nT - kT)\ (8-151) 
k— —oo 

all n 

For a bounded input 

[x(n7)| ^ M < 00, (8-152) 



388 Ch. 8 / Discrete-Time Signals and Systems 

and (8-151) becomes 

\y(nT)\ <M^ | h(nT - kT)\ 
k= —co 

00 

= \h{nT)\ (8-153) 
h = - oo 

Thus the system output is bounded if 

00 

2 \h(nT)\ < oo (8-154) 
n— —oo 

For causal systems this is equivalent to the requirement that the system poles be inside the unit circle 

in the z-plane. 

EXAMPLE 8-14 _ 

In this example we illustrate the use of (8-154) by showing that the system defined by 

Difference Equations 

Just as the differential equation can be used to model a continuous-time system, the difference equation 

can be used to model a discrete-time system. Consider, for example, a first-order continuous-time sys¬ 

tem defined by the differential equation 

^- + ay(t) = bx(t) (8-158) 
at 

The system output, y(i), can be expressed in the form 

y(t) = b x{a) da — a\ y(a) da 
J — oo J —oo 

(8-159) 

This equation tells us that the present value of the system output, y(t), is a function of all previous 

values of the system input, b x(a) da, and is also a function of all past values of the system output, 

/-oo .yO) da. 
A linear discrete-time system operates in somewhat the same way in that the present system output, 

y(nT), must be computed using the present input x(nT), past inputs x(nT - kT), and past system outputs 
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y(nT — kT). The structure of such a processor is illustrated in Figure 8-20. The general difference equa¬ 

tion for this processor is 

y(nT) = Lqx(yiT) + Lxx(nT — 7) + L2x(nT — 27) + • • • 

+ Lfx(nT — rT) — Kxy(nT — 7) 

- KyyinT - 27)-Kmy(nT - mT) (8-160) 

In other words, the processor illustrated in Figure 8-20 generates an output by weighting the present in¬ 

put, the past r inputs, and the past m outputs. 

At the present time, we are concerned with the analysis of discrete-time systems. The analysis prob¬ 

lem is usually a problem of determining the system output given the system input and a specification 

of the system. There are many different ways in which the system may be specified, but the most con¬ 

venient method is to specify the coefficients of the difference equation. 

In Chapter 9 we turn our attention to the synthesis of discrete-time systems, in which the problem is 

to determine the coefficients of the difference equation to perform some specified task. 

The first step in the analysis of a discrete-time processor is to solve the difference equation. This is 

accomplished by first writing the difference equation in the form 

y(nT) + Kxy(nT — 7) T- K^yinT — 27) + ■ • • + Kmy(nT — mT) 

= LtfcinT) + Lxx{nT — 7) + L2x(nT — 27) + • ■ * + Ltx(nT — rT) (8-161) 

and z-transforming both sides of the difference equation by using the time-delay operator 

3£[x(«r - kT)} = z~kX(z) (8-162) 

FIGURE 8-20. Linear digital signal processor. 
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developed previously. Application of the time-delay operator yields 

Y(z) + KlZ~l Y(z) + K2z~2Y{z) + ■ • • + Kmz~mY{z) 

= LqX(z) + LlZ~[X(z) + L2z~2X(z) + • ■ ■ + Lrz~rX(z) (8-163) 

which is 

T(z)(l + Kxz~l + K2z 2 + * * • + Kmz'm) = X(z)(L0 + Lxz~l + L2z~2 + • • • + Ltz~r) (8-164) 

The ratio of Y(z) to X(z) is the transfer function of the discrete-time system, which is often referred to 

as the pulse transfer function. For the processor of Figure 8-19 the pulse transfer function is given by 

Y{z) _ jj, x _ U + Ltf 1 + L2z 2 + • • • + Lrz 

X(z) ~ [Z) ~ 1 + KlZ~l + K2z~2 + • • ■ + Kmz~m 
(8-165) 

By the definition of the pulse transfer function, we can write 

Y(z) — H(z)X(z) (8-166) 

It was shown previously that the z-transform of a unit pulse is unity. Thus if a discrete-time system has 

a unit pulse input, the system output is 

Y(z) — H(z) (8-167) 

which can be inverse z-transformed to yield 

y(nT) = h(nT) (8-168) 

The time sequence {h(nT)}, which is the inverse z-transform of the pulse transfer function H(z), is 

known as the unit pulse response. We will now see that the unit pulse response plays essentially the 

same role in discrete-time systems that the unit impulse response plays in continuous time systems. 

Steady-State Frequency Response of a Linear Discrete-Time System 

The steady-state frequency response is an important characterization of a linear fixed discrete-time sys¬ 

tem, just as it was for a continuous-time system. Recall that the steady-state frequency response of a con¬ 

tinuous-time system was determined by placing a sinusoidal signal on the input of the system. Since the 

system is fixed and linear, the output signal is also sinusoidal at the same frequency as the input signal. 

Thus, in passing through the system, the input signal is subjected only to an amplitude scaling and a phase 

shift. The ratio of the output signal amplitude to the input signal amplitude is the amplitude response at 

the input frequency and the output phase minus the input phase is the phase response at the input frequency. 

As a parallel to the previous discussion, the sinusoidal steady-state response of a fixed, linear, dis¬ 

crete-time system is determined by placing the complex sampled sinusoid 

x(nT) = AeXQmT+0) (8-169) 

on the input of a discrete-time system as illustrated in Figure 8-21. Using (8-140), the output of the sys¬ 

tem can be written 

y(nT) = A h(mT)ei[^n~m)T+e] (8-170) 
m = 0 

The system output can be placed in the form 

n 

2 h(mT)e~i<omT 
-m = 0 

y(nT) = Ae’(anT+e) (8-171) 
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x(nT) = AeH“nT + e) Linear, fixed y(nT) = BeiiuinT + <t>\ 
discrete-time 

system 

FIGURE 8-21. Input-output relationship for a discrete-time system. 

For n sufficiently large, the terms h(nT) of the unit pulse response are negligible, and we say that the 

steady-state response has been reached. The term in brackets is then a complex function depending only 

on the input frequency, co. Denoting this function by G(a>>), we can write, for n sufficiently large, 

y(nT) = G(co)Ae^nT+^ (8-172) 

Since we know that the output y(nT) is a sampled sinusoid, we can write 

Bej(omT+4>) - G(oj)Aej{ojnT+^ 

in which B is the output amplitude and cf> is the phase of the output. This yields 

G(m) = Aei(wnT+e) A 

Thus, at frequency cu, 

and 

Since GO) can be represented 

|G(o»)| = 
B 

A 

/G(co) = <f> — 6 

G(co) = 2 KmT)e-i“mT 
m = 0 

and 

(8-173) 

(8-174) 

(8-175) 

(8-176) 

(8-177) 

H(z) = 2 h(mT)z~m (8-178) 
m = 0 

it follows that the sinusoidal steady-state response of a discrete-time system is given by 

GO) = H{e^T) (8-179) 

Thus the steady-state response is easily obtained from the pulse transfer function by simply replacing z 

in the pulse transfer function by e^7. 

Of fundamental importance is the fact that the sinusoidal steady-state frequency response of a dis¬ 

crete-time system is periodic in the sampling frequency, cos. This is easily seen by writing Hie^7) with 

a) replaced by 

where k is an integer. This yields 

coa = a) + kcos (8-180) 

H[ej(*+k<o,)r| = H(ej<oTejkcosTj (8-181) 
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Since cosT = 2tt, we have 

H[eKco+k<os)rj = H(ej(oTeik2n) = H{ej(oT) (8-182) 

which shows that H{e^T) is periodic with period (os. 

Since H(ei™7) is periodic in the sampling frequency, it is often advantageous to normalize the fre¬ 

quency variable with respect to the sampling frequency. Defining the frequency ratio r as 

allows coT to be replaced by 

r = 

O) 

0)c 

off = ra)sT = 2irr 

so that the sinusoidal steady-state frequency response is expressed as H{ef2m). 

The concepts developed in this section are illustrated in the following examples. 

(8-183) 

(8-184) 

EXAMPLE 8-15 _ 

This example illustrates calculation of the steady-state frequency response. Specifically, we determine 

the amplitude and phase response of the discrete-time system defined by the difference equation 

y(nT) = x(nT) + x(nT - 21) (8-185) 

It follows from the difference equation that the pulse transfer function of the system is 

H(z)= 1 + Z~2 (8-186) 

Thus the sinusoidal steady-state frequency response is 

H(e>ar) = 1 + e~^T (8-187) 

or 

H{e’MT) — {e^T + e-j^e-jv7 

which can be written as 

H(ej°)T) = (2 cos 

In terms of the normalized frequency r, (8-189) is 

H(eftm) = (2 cos 2nr)e~j2'nr 

(8-188) 

(8-189) 

(8-190) 

The magnitude and phase responses of the system are illustrated in Figure 8-22 for r between 

0 and 0.5. The it radian discontinuity in the phase response at r = 0.25 is due to the sign change of 

cos 2irr at r = 0.25. 

EXAMPLE 8-16 _ 

The purpose of this example is to illustrate the amplitude and phase response of a system that pro¬ 

duces an output equal to the input delayed by K sample periods. Such a system is illustrated in Fig¬ 

ure 8-23a and has the pulse transfer function 

H(z) = z~K (8-191) 
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(b) Phase response 

FIGURE 8-22. Amplitude and phase responses for Example 8-15. 

The sinusoidal steady-state frequency response is, in terms of normalized frequency, given by 

H(eJ27rr) = e~J27rKr (8-192) 

so that the time-delay system has the unity amplitude response and theTinear phase response illus¬ 

trated in Figures 8-23b and c, respectively. The student should note that these results are consistent 

with the Fourier transform result given in Table 4-1 (entry 2), which states that a time shift in the 

time domain is equivalent to a linear phase shift in the frequency domain. 

Frequency Response at f = 0 and f= 0.5fs 

As can be seen from the previous section, the expression for the frequency response of a discrete-time 

system of digital filter is often rather complicated. It is easy, however, to determine H^271?1) at/= 0 

and/ =0.5fs if we first recognize that 

ej2nfT = ej0 = 1 
/= o 

(8-193) 
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r = f/fs 

(c) Phase response of delay system 

FIGURE 8-23. Discrete-time delay system. 

and 

ej2nfT = eM*T = ej7r = -1 (8-194) 
f=0.5fs 

Thus, the dc response is 7/(1) and the response at one-half the sampling frequency is H(— 1). 

These calculations are very simple and are important for two reasons. First, they often offer valuable 

insight into system performance. In addition they can be used to provide a partial check on frequency- 

response calculations. If the system transfer function, H(z), is a ratio of polynomials in z with real co¬ 

efficients, then 77( 1) and H(— 1) are both real. 

EXAMPLE 8-17 _ 

This example illustrates determination of the frequency response at specific frequency points. Con¬ 

sider the discrete-time system defined by the difference equation 

y(nT) - 0.5y{nT - T) + 0.38y(nT - 27) - x(nT) + 0.5x(nT - 7) (8-195) 
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The pulse transfer function is 

The dc response is 

and the response at f — 0.5fs is 

H(z) 
1 + 0.5z -1 

1 - 0.5z-1 + 0.38z~ 

H(1)=1-0.50A38°L70 

"<-1) = I+A°'50.38 -a27 

(8-196) 

(8-197) 

(8-198) 

8-5 Example of a Discrete-Time System 

As a simple example of a discrete-time system, and as a review of the various techniques that have been 

studied in this chapter, we will examine the performance of the system illustrated in Figure 8-24. We 

will determine the difference equation, the pulse transfer function, and the sinusoidal steady-state fre¬ 

quency response (both magnitude and phase) of the system. 

It follows from the block diagram of the system that the difference equation defining the operation 

of the system is 

y(nT) = kx(nT) + ay(nT — T) (8-199) 

from which we have 

y(nT) — ay{nT — T) = kx(nT) (8-200) 

Since a delay of T is equivalent to multiplication by z~K Y(z) becomes 

Y(z) - az~lY(z) = kX(z) (8-201) 

which yields the pulse transfer function 

i K
? 

*
 

8
 1 

rH
 

II ii K
? 

ST (8-202) 

As we saw in the preceding section, the sinusoidal steady-state response can be determined from 

H(z) by setting z = ejo)T. For our example this yields 

H(^T) = , *; ,„r (8-203) 

FIGURE 8-24. Example digital processor. 
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or 

me"”'1) = --* . ..— (8-204) 
1 — a cos oj I + ja sm (ol 

In terms of the normalized frequency ratio, r = f/fs, this becomes 

= ,---- t ——  (8-205) 
1 — a cos lirr + ]a sm 2rrr 

To plot the amplitude and phase responses of the system, we place (8-205) in the form 

H(eJ27rr) = A(r)0^r) (8-206) 

in which A(r) and are the amplitude and phase responses, respectively. It follows from (8-206) that 

the amplitude response A(r) is 

M') = T7- 2 \ = <8-2OT> 
V 1 + a — 2a cos 27rr 

and that the phase response is 

0(r) = —tan 
a sin 2irr 

1 — a cos 2rrr 
(8-208) 

Observation of (8-207) shows that the discrete-time system in Figure 8-24 is a low-pass system since 

A(r) has a maximum at r = 0 and decreases with increasing r for r in the range 0 < r < If the filter 

is to have unity gain at r = 0, 

A(0) = 
k 

Vl - 2a + a2 
(8-209) 

from which 

k= 1 - a (8-210) 

It should be noted that any desired dc gain can be achieved by an adjustment of L 

The amplitude and phase responses of the system are illustrated in Figures 8-25 and 8-26, respec¬ 

tively, for r in the range 0 < r < The amplitude response is even and the phase response is odd since 

they are the magnitude and phase of a Fourier transform. This, together with the fact that the amplitude 

and phase responses are periodic, since H(ejl7Tr) is periodic, fully defines A(r) and 4>(r) for all values of 

r. The amplitude response is illustrated with a log frequency scale so that the 6 dB per octave slope char¬ 

acteristic of a first-order system can be observed. 

*8-6 Inverse z-Transformation by the Inversion Integral 

In Section 5-5 the technique of determining inverse Laplace transforms by the inversion integral was 

briefly investigated. We now briefly consider the inversion integral method as applied to ^-transforms. 

The basic inversion integral is easy to derive. By definition, the z-transform of the sample sequence 

{x(nT)} is 

oo 

X(z) = 2 x(mT)z~m 
m = 0 

(8-211) 
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FIGURE 8-25. Amplitude response of example filter. 

Multiplying both sides of (8-211) by zn~l and integrating along a path Cin the complex z-plane that lies 

entirely within the region of convergence of X(z) yields 

<f> X(z)zn~x dz = (f> 2 x(mT)z~m+n-1 dz (8-212) 
Jc m==0 

Normalized frequency, r 

0 0.1 0.2 0.3 0.4 0.5 

FIGURE 8-26. Phase response of example filter. 
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Assuming that 
oo 

2 \x(mT)\ < oo (8-213) 
m = 0 

in other words, the sequence {x(mT)} is absolutely summable—the order of integration and summation 

can be interchanged. This yields 

X x(jnT)(h z m+n 1 dz 
m = 0 

(8-214) 

The integral on the right-hand side can be evaluated through the use of the residue theorem presented 

in Appendix C. For m = n, z~m+n~1 has a first-order pole at z = 0 and the residue is 1. For m ¥= n, 

z-m+n-1 has no first-order pole, and therefore the residue is zero. Thus 

dz m = n 

m ± n 
(8-215) 

and the only nonzero term in the summation on the right-hand side of (8-209) is the term for which 

m = n. Therefore, 

which gives 

= x{nT)2irj 

x(nT) = A (j) X(z)zn 1 dz 

We can illustrate the inversion integral by means of an example. 

(8-216) 

(8-217) 

EXAMPLE 8-18 

This example illustrates the inversion integral for a simple X(z). The inverse z-transform of 

1 
X(z) = 

1 - Kz -1 ’ < i (8-218) 

will be determined by use of the inversion integral. The integral for x(nT) can be written as 

x(nT) = 
1 

2tt] 
s 
Jr 

(8-219) 

For n> 0, the integrand has only a single pole at z = K. The region of convergence is \Kz~l\ < 1 or 

\z\ > ^.Assuming that K < 1, so that the resulting time sequence is bounded, ensures that X(z) converges 

everywhere outside the unit circle. Thus in (8-219) the path of integration is taken as a circle with z = 0 

as the center and radius 1 + 6, in which e is positive. Application of the residue theorem then gives 

x(nT) = Kn, n> 0 (8-220) 

Summary 

The basic theme of this chapter was the analysis of discrete-time signals and systems. We initiated the 

chapter with a discussion of analog-to-digital (A/D) converters. We saw that A/D conversion involves 
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the operations of sampling, quantizing, and encoding. If the sampling frequency is sufficiently high, the 

original signal can be reconstructed from the sequence of samples. We saw that reconstruction can take 

a variety of forms if small errors can be tolerated. 

The basic mathematical tool used in this chapter was the z-transform. A useful table of z-transforms 

was developed, and techniques for inverting the z-transform were presented. A number of useful z- 

transform theorems and concepts were then presented. These included the definition of linearity, the 

initial value and final value theorems, and a discussion of the very important delay operator. 

After introducing the z-transform and discrete-time signals, we turned our attention to discrete-time 

systems. System properties were discussed. These included shift invariance, causality, linearity, and sta¬ 

bility. We saw that a linear, shift-invariant system can be represented by a linear difference equation 

with constant coefficients. The difference equation led immediately to the pulse transfer function and 

the unit pulse response. The output of a linear, shift-invariant system is given by the convolution of 

the input sequence with the unit pulse response. We saw that the steady-state frequency response of a 

discrete-time system is found by evaluating the pulse transfer function on the unit circle. The analysis 

of a simple discrete-time system served to bring together the basic ideas of discrete-time analysis. 

The following items summarize the specific points made in this chapter: 

1. Analog-to-digital conversion consists of sampling, quantizing, and encoding. 

2. To sample a continuous-time signal x{t) is to represent it at discrete points t = nT, where n is an 

integer and T is referred to as the sampling period. The sampling period is the reciprocal of the 

sampling frequency,/. 

3. A continuous-time function is sampled by multiplying x(t) by a periodic waveform, p(t), which 

is usually taken to be a sequence of pulses. Impulse-train sampling is a model in which 

oo 

Pit) = 2 8(t - nT) 
n = —oo 

4. The frequency-domain effect of sampling is to multiply the spectrum (Fourier transform) of x(i), 

denoted X(f), by /, reproduce X(f) at/ = 0 and all harmonics of the sampling frequency / = nfs. 

In equation form this gives 

Xsif)=fs ± X(f-nfs) 
n = —oo 

where Xs(f) represents the Fourier transform of the sampled signal. 

5. A bandlimited signal can be reconstructed without error if the signal is sampled at a sampling 

frequency / > 2fh, where fh is the highest frequency present in the signal being sampled. 

6. Reconstruction of a signal x(t) from the sequence of samples is accomplished by passing the 

samples of x(t) through an ideal low-pass filter with bandwidth W, Where W is equal to one-half 

the sampling frequency. This technique, called ideal reconstruction, is equivalent to weighting 

each sample by a sine function and summing the contributions of the individual sine functions. 

The ideal reconstruction filter is noncausal, and the unit impulse response has infinite duration. 

Approximations to the ideal reconstruction filter that overcome these difficulties are possible. 

7. The purpose of a quantizer is to allow continuous-amplitude samples to be represented by dig¬ 

ital words of finite length. If an n-bit analog-to-digital converter is used, 2n quantizing levels are 

available for representing each sample value. The signal-to-noise ratio at the output of an ana- 

log-to-digital converter is approximately 6 dB per bit. 

8. The z-transform (one-sided) of a discrete-time sequence x(nT) is defined by 

oo 

X(z) = 2 x{nT)z~n 
n = 0 
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and is related to the Laplace transform, s, by 

z — esT 

where Tis the sampling period. The z-transform is a linear operator since the z-transform of a sum 

of discrete-time sequences is equal to the sum of the z-transforms of the individual sequences. 

9. The initial value x(0) of a sequence x(nT) that is zero for n < 0 is given by 

x(0) = lim X(z) 
Z->co 

The final value, x(°°), is given by 

jc(oo) = lim (1 - z~l)X(z) 

10. The inverse z-transform can be computed by using long division or partial-fraction expansion. 

With partial-fraction expansion it is usually best to expand //(z)/z. 

11. Delay of a sample sequence x(nT) by k sample periods is equivalent to multiplying X(z) by z~k. 

12. A discrete-time system is fixed, or shift invariant, if a shift in the input by n0 samples results in 

a shift of the output by the same n0 samples. 

13. A discrete-time system is causal if the system response to an input does not depend on future 

values of the input. Stated another way, if the difference between two system inputs is zero for 

n < n0, the difference between the respective outputs will be zero for a causal system for n ^ nQ. 

14. A system is linear if superposition holds. In other words, a system is linear if 

Vtia^inT) + a2x2(nT)] = affixx(nTj] + affix2(nT)] 

where a1 and a2 are arbitrary constants. If a discrete-time system is both linear and shift variant, 

the system output, y(nT), is given by the convolution of the system input, x(nT), with the system 

unit pulse response, h(nT). The convolution is written 

OO 00 

y(nT) = 2 x(mT)h(nT - mT) = ^ h(mT)x(nT - mT) 
m — —oo m = — oo 

15. A linear discrete-time system is stable in the bounded-input, bounded-output sense if the unit 

pulse response h(nT) is absolutely summable. 

16. A linear shift-invariant discrete-time system is defined by a difference equation with constant 

coefficients. Solving this equation for the current output h(nT) allows the current output to be 

written in terms of the current input, x(nT), past inputs, x(nT — kT) for k ^ 1, and past outputs, 

y(nT - kT) for k > 1. 

17. The pulse transfer function H(z) of a discrete-time system is found by z-transforming the dif¬ 

ference equation of the system term by term and solving for the ratio of the z-transform of the 

system output, T(z), to the z-transform of the system input, X(z). 

18. The steady-state frequency response of a linear shift-invariant system is determined by evaluat¬ 

ing the pulse transfer function H{z) at z = eJ°jT. The frequency response of a discrete-time sys¬ 

tem is periodic in the sampling frequency. The frequency response at/ = 0, the dc response, is 

H( 1). The frequency response at/= 0.5fs, where fs is the sampling frequency, is H( -1). 

19. The inverse z-transform of X(z) is given by the contour integral 

x(nT) = (£ X(z)zn~1 dz 
2tt7 Jc 

where the contour C lies in the region of convergence of X(z). 
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Further Reading 

A large number of very readable books have been written that treat the analysis of discrete-time signals and sys¬ 

tems. The following are representative: 

A. V. Oppenheim and R. W. Schaefer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice 

Hall, 1989. 

J. G. Parokis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 

2nd ed. New York: Macmillan, 1992. 

R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing. Reading, MA: 

Addison-Wesley, 1988. 

J. A. Cadzow, Foundations of Digital Signal Processing and Data Analysis. New York: Macmillan, 1987. 

A number of books have been written over the past few years that introduce computer methods for the analysis of 

linear systems. Many of these make extensive use of Matlab. The following three books are good examples: 

R. D. Strum and D. E. Kirk, Contemporary Linear Systems Using Matlab. Boston, MA: PWS, 1994. 

J. R. Buck, M. M. Daniel and A. C. Singer, Computer Explorations in Signals and Systems Using Matlab. 

Upper Saddle River, NJ: Prentice Hall, 1997. 

C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. C. Schafer and H. W. Schuessler, 

Computer-Based Exercises for Signal Processing Using Matlab. Upper Saddle River, NJ: Prentice 

Hall, 1994. 

PROBLEMS 

Section 8-2 

8-1. The signal 

x(t) = 4 + 8 cos 8 irt 

is sampled at a rate of 16 samples per second. Plot the amplitude spectrum of the sampled signal 

showing the weight and the frequency of each component for |/| < 40 Hz. Show, by drawing an 

illustration similar to Figure 8-8, how the signal can be reconstructed from the samples. 

8-2. Assume that the signal 

x(t) = 4 + 8 cos 8rrt 

is sampled at a frequency of 6 samples per second. Plot the amplitude spectrum for |/| < 17 Hz. 

Can the original signal be recovered from the samples? Why or why not? 

8-3. The signal 

X(t) = 3+4 COS 10777 + 5 COS 1477t + 2 COS 20777 

is sampled at a rate of 30 samples per second. Plot the spectrum of the sampled signal showing 

all components for |/| < 80. Fully explain how x{t) can be reconstructed from the samples. 

8-4. The signal having the spectrum shown is sampled. Plot the spectrum of the sampled signal for 

the three sampling frequencies fs = 30, 40, and 60 hertz. [Note: Assume that X{f) is real.] 

Label all amplitudes and frequencies of interest. Which of the three sampling frequencies are 

acceptable? 
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X(f) 

8-5. An A/D converter has the input signal 

x(t) = 5 cos 200 77? + 4 cos 600irt 

Determine: 

(a) The required dynamic range of the A/D converter. 

(b) The output signal-to-noise ratio as a function of the wordlength, n. Express this result in deci¬ 

bels. Plot and compare with the result determined in Example 8-3. 

8-6. Repeat Problem 8-5, assuming the signal x(t) shown. 

x(t) 

8-7. An A/D converter has an input signal given by the Fourier series 

oo 

40 = 2 Xne** 
n = —oo 

Show that the signal-to-noise ratio at the output of the A/D converter is given by 

SNR 
12 

D2 
22- i w 

n — —oo 

|2 

8-8. Assume that the signal x(t) given in Problem 8-1 is digitized with an A/D converter utilizing 8-bit 

arithmetic. Compute the signal-to-noise ratio at the output of the A/D converter. Compare with the 

result obtained using 10- and 12-bit arithmetic. 

8-9. An RC low-pass filter having transfer function 

//(/) = 
i 

i + Kf/fi) 

where f3 is the 3-dB frequency of the filter, is used for reconstruction of a signal from its sam¬ 

ples. We can ignore the multiplying constant T since this multiplication can be realized as a mul- 
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tiplier external to the filter. The signal x(t) to be reconstructed is assumed to be a low-pass signal 

with bandwidth W. We wish to determine an appropriate sampling frequency so that X(f) in 

(8-16) is passed by the filter with negligible error and that the translated spectra X(f ± fj are suf¬ 

ficiently attenuated. 

(a) Let the filter magnitude responses, in dB, at/ = W and at / = fs~ W, be denoted 

20 log10 |ff(W)| = 5, dB 

and 

20 log10 \H(fs -W)\ = S2 dB 

We clearly wish 8X to correspond to negligible attenuation relative to the dc gain and 82 to a 

large attenuation. For fixed 8V 82 and signal bandwidth W, show that the necessary sampling 

frequency,/, is 

Vi(rai5< - l + Vio-0-1* - l 
f = w. .. 

Vkt0-1^ -1 

(b) Use this result to determine the ratio fJW for 

(i) 8{ = -3 dB and 82 = -30 dB 

(ii) Sj = -1 dB and 82 = -30 dB 

(iii) 8{ = — 1 dB and 82 = —40 dB 

Comment on these results. How can large values of fJW be avoided? 

8-10. In this problem we repeat the preceding problem using the second-order Butterworth recon¬ 

struction filter defined by 

H(f) = 
(2^/3)2 

(a) Show that 

+ V^(277/3)5' + (27r/3)2 

Hft - ^ 

S=j2TTf 

(b) Using the definitions for and 82 used in Problem 8-9, show that the necessary sampling 

frequency,/, is 

_ [10-01^ - 1]1/4 + [10-* - 1]1/4 

Js~ w [IQ-oi^, — 1]1/4 

(c) Use this result to determine the ratio fJW for the same three sets of 8{ and 82 considered in 

the previous problem. Compare the results with those obtained in Problem 8-9. Comment on 

this comparison. 

8-11. Assume that a reconstruction filter is second order and has Laplace transform transfer function 

Tcoj 
H(s) = 

s2 + \^2sa)n + o£ 

where (o3 is the half-power frequency in radians per second and T is the sampling period. Deter¬ 

mine the interpolation formula corresponding to this filter. 
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8-12. Assume that a constant signal is sampled so that x(nT) = a for all N. Show that, for fs >>/3, the 

interpolation formula for an RC low-pass reconstruction filter yields an output y(nT) that is equal 

to the sample values x(nT). 

Section 8-3 

8-13. Use "-transform pair 3 in Table 8-1 to establish z-transform pairs 4 and 5. (Hint: First write 

2 e~anTz 
1 — e aTz 1 

i, A 
- it, % 

and differentiate both sides with respect to a.) 

Use z-transform pair’3 in Table 8-1 to establish z-transform pairs 6 and 7. (Hint: Again first write 

00 1 

Y p—anT —n _ --- 
Zj C 1 _ 0-aT„-1 

71 = 0 L t z 

Let a = jb and equate real and imaginary parts.) 

Use z-transform pair 3 in Table 8-1 to establish z-transform pairs 8 and 9. (Hint: The procedure 

is the same as in Problem 8-14. What should you let a be now?) 

Show that the z-transform of anx(nT) is X(z/a). Use this result to show that entry 3 in Table 8-1 

follows from entry 2. 

Show that the z-transform of nx(nT) is given by —z dX(z)/dz. Use this result to show that entry 4 

in Table 8-1 follows from entry 3. 

The signal below is sampled at 25 samples per second. Determine the z-transform of x(nT) for 

0 < n < 8. 

x(t) = 5 sin 20ut + 2U 
t - 0.14 

8-19. Determine the z-transform for the following sequences of samples: 

(a) x(nT) = u(n) 

(b) x(nT) = | ^) u(n) 

(c) x(nT) = u(n) + (Jj u(n - 4) 

(d) x(nT) = 2u(n) — 2u(n - 8) 

8-20. Verify the results of Problem 8-19 using Matlab. 

8-21. Determine the z-transform of the following sequences of samples: 

(a) x(nT) = j u(n - 4) 

(b) x(nT) = - 4) 

8-22. Verify the results of Problem 8-21 using Matlab. 
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8-23. Determine x{5T) given that X(z) — exp{az~1} where a is a real constant. 

8-24. Determine the z-transform of x{nT) = an sin^ — n j for n > where a is a real constant. 

8-25. Determine the z-transform and the z-plane poles for the following sequences: 

(a) x(nT) = (~)n[u(n) — u(n — 10)] 

(b) x(nT) = )n[u(n) + u(n — 10)] 

8-26. The energy associated with a sequence of samples, x(nT), is defined to be 

e= s k«ol2 
n — —oc 

Determine the energy, E, for the following sequences: 

(a) x(nT) = (i)««(n) 

(b) x(nT) = (\)nu{n - 6) 

(c) x(nT) = (l-)n~-(,u(n - 6) 

(d) x(nT) = [4(i)'« - 3(\)»]u(n) 

8-27. Determine the samples, x(nT), corresponding to each of the following examples of X(z). 

(a) X{z) = 1 - 0.3z-1 + 0.7z-2 + 0.&z~3 ~ 0.3Z~4 

(b) X(z) = (1 - z^1)3 

(c) X(z) = (1 - 0.8Z-1)3 

(d) X(z) = (1 - 0.9z~2)3(l + 0.9z~2)3 

8-28. Determine the samples, x(nT), corresponding to each X(z) here. 

(a) X(z) = z~2( 1 + 0.3z_1 - 0.7z~2)(l + zr3) 

(b) X(z) = z~2(l + 0.3z-> - 0.7z~2)2(l + z-3) 

8-29. Use long division to determine x(0), x(7), x(27), x(3T) and x(47) for the following functions of z: 

(a) X(z) = 

(b) X(z) = 

(c) X(z) = 

_1 

1 - 0.3z_1 + 0.3z"2 
1 - 0.7z'1 

(1 + 0.5Z'1)2 
zT\ 1 + 0.2Z"1)2 

(1 - 0.4zk2 

0.5z“3 

8-30. Use long division to determine x(0), x(7), x(2T), x(3T) and x(47) for the following function of z: 

(1 - z"1)4 
X(z) 

1 - 0.3z_1 + 0.3z‘ 0.5z 
-3 

8-31. Rework Problems 8-29 and 8-30 using Matlab. 

8-32. Determine the inverse z-transform of the following sequences using partial fraction expansion: 

(a) X(kZ) = (1 - Z_1)(l + 0.2z_1) 
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(b) X(z) 

(c) X(z) 

(d) X(z) = 

(1 - Z x)(l + Z 
1 + 0.3z~x 

(T + 0.2z_1)(l - 0.4z_1) 

1 + 0.3Z"1 

(1 + 0.2z_1)(2 - 0.4Z'1) 

8-33. Determine the inverse z-transform of the following sequences using partial fraction expansion: 

1 
(a) X(z) - - _ + 0.5z_1)(l - 0.2z_1) 

,hl Y(. =_(1 - 0-5Z-1)_ 
( ( ) (1 - zM)( 1 + 0.5z_1)(l - 0.2Z-1) 

8-34. Work Problem 8-33 using Matlab. 

8-35. Determine the inverse z-transform of the following sequences using partial fraction expansion: 

(a) X(z) = (i-r'w-as-y 

(b) X(z) - a-'ffify 
8-36. Determine the inverse z-transform of the following sequence using partial fraction expansion: 

= 1 + 0.81z“2 

8-37. Work Problems 8-35 and 8-36 using Matlab. 

8-38. Determine the inverse z-transform of the following for all n. 

H(z) = 
(z + 0.5)(z - 0.25) 

8-39. For the function H(z) given below determine h(n) for all n using partial-fraction expansion. Par¬ 

tially check your result by computing h(0), h(T), h(2T), and h(<x>) by an alternate method. 

(l - z^Xl - + iz'1) 

8-40. Repeat the preceding problem for 

(1 - Z-1)2(l - \z~l) 

8-41. Determine the inverse z-transform of 

(1 - z-1)(l + 0.8z-1)(l - 0.5z_1) 
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8-42. Determine the inverse z-transform of 

6 X{z) It ' f (1 - z-’Xl + z-1)(l - 0.5z-!)(l - 0.2z-') 

8-43. Determine the inverse z-transform of 

X(z) 
,-i 

(1 - z_1)(l + 0.2z~y 

8-44. Determine the inverse z-transform of 

X(z) = 
(1 - z ^(l 4- 0.2z x) 

Section 8-4 

8-45. Determine the pulse transfer function, //(z), and the unit pulse response h(nT), for each of the sys¬ 

tems defined by the following difference equations. 

(a) y(nT) — y(nT — T) = x(nT) 

(b) y(nT) — 2y(nT — 7) + y(nT — 27) = x(nT) + 3x(nT — 37) 

(c) y(nT) — y(nT — T) + 0.16y(nT — 27) = x{nT) 

(d) y(nT) + 0.6y(nT — 7) — 0.16y{nT — 27) = x(nT) + 4x(nT — 7) 

(e) y(nT) — 0.701y(nT — T) + 0.25y(nT — 27) = x{nT) + x(nT — 27) 

8-46. Determine the range of values of the parameter K for which the systems defined by the follow¬ 

ing difference equations are stable. 

(a) y{nT) — Ky(nT — 7) + fPyinT — 27) = x(nT) 

(b) y(nT) - 2Ky(nT - 7) + K^yinT - 27) = x(nT) 

(c) y(nT) — IGyinT — 27) = x(nT — 37) 

8-47. For each of the systems defined by the difference equations given, classify the system as linear 

or nonlinear, causal or noncausal, and shift-invariant or non-shift-invariant. The system input is 

x(nT), and the system output is y{nT). 

(a) y(nT) = ax(nT) + b, a and b are constants. 

(b) y(nT) = xiyiT — n0T), n0 is a constant integer 

(c) y(nT) = xiyiT + 7) + x(nT — 7) 

8-48. The convolution sum (8-132) or (8-133) can be derived by using the z-transform. Start with 

F(z) = H(z)X(z) and substitute the defining sums for H(z) and X(z). Perform the indicated multi¬ 

plication and show that (8-135) results. 

8-49. Convolve hinT) and x(nT) shown in Figure P8-49. 

8-50. A digital filter has the unit pulse response and input shown in Figure P8-50. Determine the out¬ 

put. 
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-1 -1 -1 

8-51. Work Problems 8-49 and 8-50 using Matlab. 

8-52. Convolve the two functions shown in Figure P8-52 and plot the result. 

8-53. Convolve the two functions shown in Figure P8-53 and plot the result. 
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h(nT) = )n~5u(n - 5) 

8-57. Determine y(nT) as the convolution of h(nT) and x(nT), where 

x{nT) = (\)"u(n - 3) 

h.(nT) = (~)nu(n — 5) 

8-58. Determine y(nT) as the convolution of h(nT) and x(nT), where 

x(nT) = (^)"u(n) 

h(nT) = - 1) -(“)"«(« - 3) 

Check your result using z-transform techniques. 

8-59. A linear, shift-invariant, filter has the unit pulse response 

h(nT) = - 1) - (1 )»M(n - 3) 

Determine the step response of the filter. 

8-60. A linear, shift-invariant, filter has the unit pulse response 

h(nT) = (\)nu(n - 4) 

Determine the response to x(nT) = h(nT). 

8-61. Determine the amplitude and phase response of the system defined by the difference equation 

y(nT) = xinT) — x(nT - 107) 

Sketch the amplitude and phase responses as functions of normalized frequency r = f/fs for r in 

the range 0 < r < 

8-62. Repeat Problem 8-49 for the system defined by the difference equation 

y{nT) = 2x(nT) + 4x(nT - T) + 2x(nT - IT) 

8-63. Repeat Problem 8-49 for the system defined by the difference equation 

y(nT) + 0.25y(nT - T) = x(nT - T) 

8-64. A simple discrete-time differentiator is defined by the difference equation 

y(nT) = j, [x{nT) - x(nT - 7)] 

Determine the amplitude and phase responses of the discrete-time differentiator. Plot the ampli¬ 

tude and phase responses as functions of normalized frequency r = f/fs. Compare these responses 

with the amplitude and phase responses of an ideal differentiator. We will consider this problem 

in more detail in the following chapter. 

8-65. A discrete-time filter has the unit pulse response 

h(nT) — 4 [u(ri) — u(n — 12)] 

Place the frequency response in the form 
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H(ej(oT) = K 
sin A(co) 

sin B(w) 
ejC((o) 

and determine A(cu), B(co), C(a>), and K. Assuming a sampling frequency of 1000 Hz, determine 

the amplitude and phase responses of the filter at/ = 0, 25, and 50 Hz. 

8-66. For each of the systems defined below, determine the amplitude and phase responses at/ = 0 (dc) 

and f=\f, 

(a) y(nT) = x(nT) + ~y(nT — T) 

(b) y(nT) = x(nT) + ^x(nT — T) + ~y(nT — T) 

(c) y(nT) = x{nT) — y(nT — T) + ~y(nT — 27) 

(d) yinT) — x(nT) — |y(nT — T) + ^y{nT — 2T) 

8-67. Show that the steady-state frequency response at/ = 0.25fs is H(j 1), where/ is the sampling fre¬ 

quency. Use this result to determine the amplitude and phase responses of the system defined by 

the difference equation 

y{nT) = x(nT — T) + 0.5 y(nT) — 0.2y(nT — 27) 

at/= 400 Hz, assuming that the sampling frequency is 1600 Hz. 

8-68. A discrete-time system is defined by the difference equation 

y(nT) = x(nT) + 0.2y(nT - 7) - 0.5y(^7 - 27) 

Assuming a sampling frequency of 2000 Hz, determine the amplitude and phase responses of the 

network at/= 0,/= 500, and/= 1000 Hz. 

8-69. A discrete-time system is defined by the difference equation 

y{nT) = x(nT) 4- 03y(nT — 7) — 0Ay(nT — 27) 

Assuming that the sampling frequency of 2000 Hz, determine the amplitude and phase responses 

of the network at/= 0,/= 500, and/= 1000 Hz. 

8-70. Repeat Problem 8-69, assuming that the system is defined by 

y(nT) = \x(nT) + \y(nT - T) - \y(nT - 2T) 

8-71. A discrete-time system is defined by 

y(nT) = x{nT) — axy{nT — T) — a^yiyiT — 27) 

Determine ax and a2 such that the amplitude response at/ = 0 is 1.0 and the amplitude response 

at f= 0.5/ is 0.1, where/ is the sampling frequency. 

8-72. A digital filter is defined by the difference equation 

y(nT) = y(nT — 7) + 3x(nT) 

The input is defined by 
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x{nT) = 5 cos — n 

The steady-state output can be written 

ys(nT) = A cos(unT + </>) 

Determine a, (/>, and the product ooT. 

Section 8-5 

8-73. Determine the amplitude and phase responses of the digital signal processor illustrated in Figure 

8-23 for the case in which a = —Determine k such that the maximum value of the amplitude 

response is unity. At what normalized frequency does this maximum occur? Plot the resulting 

amplitude and phase responses. 

8-74. Repeat Problem 8-61 for the case in which a = 

Section 8-6 

8-75. Use contour integration to find the inverse z-transform of 

X(z) - (1-_ z_i)(1 _ a2z-ij 

Compare the result with Example 8-8. 

8-76. Use contour integration to find the inverse z-transform of 

1 
X(z) = 

(1 - 0.25z_1)(l - 0.1z~ ) 

Computer Exercises 

8-1. In this computer example we consider the problem of reconstructing a waveform from a sequence 

of samples. The first step is to generate 5,000 samples of a waveform having a known bandwidth. 

A convenient method of accomplishing this is to generate samples of a series of sinusoids hav¬ 

ing known frequency. For example let 

x{nT) = A sin[277-/^ + (fiA\ + B sin[27r(2/1)r + <fiB] + C sin[27r(3/j)£ + <fic] 

where A, B, C, 4>A, <pB and cpc are arbitrary. Let^T = 0.005. Such a small value offxT will result in 

a waveform that is significantly oversampled. We will pretend that this waveform is continuous. 

Next we decimate the waveform just generated by forming a vector consisting of every 10th 

sample of x(nT). These represent samples of the continuous-time waveform. The continuous-time 

waveform is to be reconstructed from the samples by using (8-22) with an h(t) that is a truncated 

version of (8-27). The reconstruction error can be evaluated by comparing the reconstructed 

waveform with the continuous-time waveform from which the samples were extracted. 

Evaluate the reconstruction error as a function of the time duration of h{t). It might also be in¬ 

teresting to change the sampling frequency and observe the impact of this change. 
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8-2. The puipose of this computer exercise is to study the quantizing process and the effect of quan¬ 

tizing errors. As a first step develop a Matlab M-file that allows you to quantize a signal hav¬ 

ing a maximum value M and a minimum value of —M. In other words the signal has symmetrical 

maximum and minimum limits with a dynamic range, D, of 2M. The quantizer input signal is to 

be quantized into 2" levels where n = 2, 4 or 8. 

Using the quantizer just developed, quantize a sinusoidal signal for n = 2,4 and 8. Determine 

the mean-square value of the quantizing error and compare with the theoretical values. 

8-3. In this computer exercise we wish to develop an interactive system that allows us to enter filter 

parameters and observe important filter characteristics that result from these parameters. We start 

be generating a unit circle and displaying the z-plane. (Note: For purposes of this exercise it might 

be useful to represent the z-plane in polar coordinates. The Matlab routine polar might be use¬ 

ful for accomplishing this.) 

Develop a routine that allows you to enter the poles, zeros and any appropriate filter constants 

from the command line prompt. It might be useful to write the program in such a way that 

you are prompted for the pole and/or zero locations and also be prompted for any necessary con¬ 

stants. Once the poles, zeros and necessary constants have been entered they serve as inputs to a 

Matlab routine that generates the amplitude response (in dB), phase response and group delay 

of the digital filter defined by the entered data. The ambitious student might wish to consider 

entering the poles and zeros using the mouse. 

8-4. Using appropriate functions from the Matlab Symbolic Math Toolbox, develop an m-file for 

performing symbolic convolution. The input to the m-file is to be two character strings repre¬ 

senting the two functions to be convolved. The output is to be the symbolic convolution of the 

two functions. Thoroughly test the resulting routine. 

8-5. In this computer exercise a digital filter is implemented and used to filter, on a sample-by¬ 

sample basis, a vector of sample values. The digital filter to be used is defined by (8-194) with 

the constraint of (8-205) applied. In other words 

y(nT) = (1 — a)x(nT) + ay(nT — T) 

In order to use this filter generate a sampled sinusoid of the form 

x(nT) = A sin(27rffHT) 

Note that we can represent ftT by 

so that 

x(nT) = A sin(277772) 

We wish to implement the filter on a sample-by-sample basis (not typically desirable in Matlab). 

In other words, the expression for y(nT) is embedded in a “for loop” which takes the nth sample 

of the input from an array and generates the nth sample of the output, x(nT). 

Choose a value of a and r-, execute the program, and generate the output array y(nT). The am¬ 

plitude of the input sinusoid, A, is arbitrary. After waiting an appropriate period of time for the 

transient response of the filter to become negligible, plot on the same set of axes one or two pe¬ 

riods of the filter input x(nT) and the filter output y(nT). By making appropriate measurements 

on the filter input x{nT) and the filter output y(nT) determine the amplitude and phase response 
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of the filter at the particular value of rt previously chosen. By varying rt plot the filter amplitude 

response (in dB) and the filter phase response. Do this for several values of a and in each case 

compare the results with the theoretical results. 

8-6. If the contour in (8-219) is chosen as a circle, the integral can be expressed in terms of a real vari¬ 

able of integration. By the simple change of variables z = rce>0 the contour integral (8-129) can 

be placed in the form 

x(nT) = 
l *2ir rn + lej(n + l)d 

Tde 
where rc is the radius of the contour. After convincing yourself that the preceding equation is cor¬ 

rect, write a Matlab program to evaluate the integral for a given value of K and specific values 

of n. Do you get the correct result? Experiment with different values of rc for a fixed value of K. 

Comment on your results. 



CHAPTER 

Analysis and Design of Digital Filters 

9-1 Introduction 

Throughout this book we have been concerned with the analysis of continuous-time and discrete-time 

linear systems. We now turn our attention to a much different type of problem. This is the synthesis 

problem, wherein one is asked not to analyze a given system but to find the system that satisfies a given 

set of specifications. Typically, the synthesis problem for discrete-time systems is to determine the pulse 

transfer function H{z) that satisfies the given specifications. Then, as we will see in the first section of 

this chapter, a number of different systems (structures or realizations) can be found, all of which have 

the same pulse transfer function H(z). The system designer then chooses that realization which is most 

compatible with the requirements. 

A number of different techniques that allow us to go from a set of specifications to a pulse transfer func¬ 

tion are studied in this chapter. All have their advantages and disadvantages. These will be summarized 

later. Several synthesis techniques have as their starting point the transfer function of an analog filter or 

system that satisfies a given set of specifications. Synthesis of the digital filter or system then simply con¬ 

sists of finding the discrete-time equivalent of some given analog system. For those who are not familiar 

with the terminology and characteristics of analog filters, a brief review is contained in Appendix E. 

9-2 Structures of Digital Processors 

In this section several different techniques for realizing pulse transfer functions are examined. 

Direct-Form Realizations 

In Chapter 8 we determined the general form of the pulse transfer function of a fixed discrete-time sys¬ 

tem. The result was (8-165), which can be written as 

H(z) 
Y(z) 2U Uz-'1 Z = U l 

(9-1) 
X{Z) 1 + Sylj KjZ~' 

The difference equation corresponding to (9-1) is 

r m 

y(nT) = 2 LfcinT - iT) - £ K}y{nT - )T) (9-2) 
/ = () y = l 

and is realized by the structure illustrated in Figure 8-20. If the storage of the present and past inputs 

and storage of past outputs is represented through the use of the z~l delay operator, Figure 9-1 results. 

415 
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H2(z) 

FIGURE 9-1. Direct Form I realization. 

The block labeled z~l represents storage of a sample value (a number) for one sample period T. The 

summing operation illustrated in Figure 8-20 has been broken into two summing junctions, each of 

which forms one of the summation terms in (9-2). The structure illustrated in Figure 9-1 is known as 

the Direct Form I realization of the digital signal processor defined by the difference equation (9-2). 

Implementation of the processor shown in Figure 9-1 requires r + m unit delays (z”1 elements). This 

requirement can be significantly reduced in many applications by identifying the processor as the cas¬ 

cade of two networks, Hx(z) and H2{z). The first network, Hx(z), realizes the zeros of the processor and 

the second network, H2(z), realizes the poles. Interchanging Hx(z) and H2(z) results in the structure 

shown in Figure 9-2. Clearly, the signals at points A x and Bx are equal, as are the signals A2 and B2, and 

so on down the z~l delay elements. Thus the cascaded z~l elements can be combined to yield the real¬ 

ization illustrated in Figure 9-3, which is known as the Direct Form II realization. Figure 9-3 is drawn 

for the case in which the number of poles, m, exceeds the number of zeros, r. 

Cascade and Parallel Realizations 

The Direct Form I realization resulted directly from the general discrete-time difference equation, (9-2). 

A simple manipulation of the block diagram resulted in the more practical Direct Form II realization. 

The cascade realization results by recognizing that since poles or zeros of the pulse transfer function are 

either real or occur in complex conjugate pairs, H(z) can be written in the factored form 
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h2(z) a i(M 

H(z) = Kz~m 
nfi! (1 - a,*-1) nfit (1 - bfz-'X 1 - bjZ~^) 

nfii (i - v-1) nfjj (i - dfz~l)(i - 
(9-3) 

In this expression we have Nx real zeros at values z = Af2 complex conjugate zero pairs at z = and 

z = bf,D{ real poles at z = ck, and D2 complex conjugate pole pairs at z — dx and z = df. The real poles 

and real zeros are typically realized using the Direct Form II realization. For example, a general term 

of the form 

H,(z) = 
I ",z 1 

1 - c*z-1 
(9-4) 

is realized using the structure illustrated in Figure 9-4a. The complex conjugate poles and zeros are re¬ 

alized by pairs. For example, the general term 

(1 - foz_1)(l - bfz~l) 1 - (b: + bf)z~l + b:bfz~2 

Hz(z) = (T- - dfz-1) = 1~(d, + ~df)z 1 + (9'5) 

is realized by the structure illustrated in Figure 9-4b. Since A + A* and AA* are both real numbers, 

where A is complex, all multipliers in Figure 9-4b are real numbers. The multiplier Kz~M is included in 

(9-3) to realize any multiplicative constant and also to allow for the fact that H(z) may have a factor of 

the form zrM, where M > 0. 
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The parallel form results by expanding H(z) using partial-fraction expansion. The general form of 
the partial-fraction expansion for simple poles is 

M 

H{z) = 2 A-z-; + 2 Bk + 2 Q-— 
1=0 k= i 1 ckz ;= i l1 ~ 

1 e,z 
)(1 - dfz ) 

(9-6) 

in which the first summation is included to realize the terms in the partial-fraction expansion that result 

if r> m in (9-1). The second summation realizes the real poles, and the third summation realizes the 
complex conjugate pole pairs. 

EXAMPLE 9-1 

In this example, a cascade and parallel realization of 

H(z) = 
(1 

(1 ~ z"1)3 

2Z_1)(1 - \Z-') 
(9-7) 

will be found. 
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dfdf* bjbj 

(b) Second-order section 

FIGURE 9-4. Basic first- and second-order filters. 

The cascade realization is relatively simple. For example, H(z) can be written in the form 

1 - z"1 1 - z'1 
H(z) = 

1 \ Z_1 1 
7(1 -z-1) (9-8) 

which is realized using the structure illustrated in Figure 9-5a. 

The parallel realization is found by first writing H(z) as 

H(z) = 
(z ~ l)3 

z(z - 2>(z “ g) 
(9-9) 

In order to find the parallel realization, we first determine the partial-fraction expansion of z lH(z), 

just as we did to determine inverse z-transforms. This yields 

H(z) _ (z - l)3 

^ Z2(Z - \)(Z - £,) 

The constants A, B, C, and D are 

(z - l)3 

ABC D 
= -TT + — + -7 +- 

A = lim 
z—>0 (z - “)(z - 1) 

= -16 

Z? = lim — 
z->o az 

- n3 n 
(* ~ 0 

.(z - i)(z - i)J 
-112 

(9-10) 

(9-11a) 

(9-lib) 
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Thus 

FIGURE 9-5. Cascade and parallel realizations for Example 9-1. 

c=limb-l>3_ 4 

D = lira 

z^2 z\z - 1) 3 

(z - l)3 343 

z2^z _ k 

4 1 343 1 
/f(z) = -112 - 16z_1 - ~i-7 + 

3 1 - iz"1 3 i — tz 

(9-11c) 

(9-lid) 

(9-12) 

which is realized using the structure illustrated in Figure 9-5b. This example problem is chosen to 

illustrate the role of the first summation in (9-6). 

Matlab Application 

Since (9-7) gives the numerator and denominator of the transfer function in factored form, it is only the 

parallel realization that requires any significant computational effort. The Matlab function residuez 
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can determine (9-12) as illustrated by the following Matlab code. Note the use of convolution for de¬ 

termining the numerator and denominator coefficient vectors. Also note that the k vector provides the 

first two terms in (9-12), made necessary because of the z2 factor in the denominator of H(z) / z. 

EDU» c9exl 

nl = [1 -1] ; 

niim = conv (nl , conv (nl , nl) ) ; 

dl - [1 -1/2] ; 

d2 = [1 -1/8] ; 

den = conv(dl,d2); 

[r,p,k] = residuez(num,den); 

r 

r = 

- 1 . 3333 

114.3333 

p % Display poles 

P = 

0.5000 

0. 1250 

k % Display k vector 

k = 

% Define numerator factor 

% Calculate numerator 

% Define denominator factor 

% Define second den. factor 

% Calculate denominator 

% Calculate residues 

% Display residues 

-112 -16 

If quantizing errors are neglected, all realizations of the pulse transfer function are equivalent. If 

quantizing errors are important and must be considered, it is then no longer true that all realizations are 

equivalent. For example, suppose that the computed value of one of the K- s is an irrational number. Be¬ 

fore the H(z) can be realized, the value of K• must be truncated or rounded to a value that can be repre¬ 

sented by a finite number of bits. This changes the denominator polynomial slightly and as a result all 

poles of the transfer function change by some amount. For high-order systems this quickly becomes a 

complicated problem. If the original H(z) has poles close to the unit circle, the movement of the poles 

due to quantization of K■ can actually drive the system unstable. 

Consider, however, the corresponding problem if the system is realized using a cascade or parallel 

combination of first- and second-order sections. In this case, truncating or rounding a coefficient value 

causes movement of at most two poles. This is a much more tolerable situation and is a basic advantage 

of cascade or parallel realizations. 

EXAMPLE 9-2 _ 

Up to this point we have considered only systems with real poles. In this example we consider a sys¬ 

tem having a complex conjugate pole pair at 

z — ae^6 (9-13) 

as shown in Figure 9-6a. The transfer function for this system is given by 

(z - ae+>e){z ~ ae-'") 
(9-14) 
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(b) Direct form implementation 

FIGURE 9-6. Pole-zero plot and implementation for Example 9-2. 

which can be written 

z2 
z2 - 2a(cos 6)z + a2 

(9-15) 

or 

H{z) = 
_1_ 

1 - 2n(cos 0)z~1 + a2z~2 
(9-16) 

The Direct Fc#m realization is shown in Figure 9-6b. Since the numerator is a constant, there is no 

difference between the Direct Form I and the Direct Form II realizations of this system. 

It is interesting to examine the frequency response of this system as the radius vector a and the 

pole angle 6 are varied. In terms of normalized frequency, r = f/fs, the frequency response becomes 

H(ei2vr) = 
_1_ 
1 — 2a(cos d)e~]2irr + a2e~iA'irr 

(9-17) 

The magnitude response is shown in Figure 9-7a for 0 = 7t/2 and various values of a. Note that the 

maximum gain of the filter increases as the pole approaches the unit circle. The phase responses 

corresponding to the amplitude responses shown in Figure 9-7a are shown in Figure 9-7b. The 
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(b) Phase response for 0 = y and varying a 

(d) Phase response for a = 0.95 and varying 0 

FIGURE 9-7. Magnitude and phase response for second-order filter. 
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magnitude response corresponding to (9-15) is shown in Figure 9-7c for a — 0.95 and various val¬ 

ues of 8. The corresponding phase responses are shown in Figure 9-7d. Note that the maximum gain 

of the filter increases as 0, and consequently the resonant frequency of the filter, decreases. 

9-3 Discrete-Time Integration 

As a specific example of a discrete-time approximation to a continuous-time process, we will now con¬ 

sider the discrete-time integrator. Both rectangular and trapezoidal integration are considered and we 

will see that while both of these techniques are approximations to continuous-time integration, they 

have distinctly different characteristics. 

Rectangular Integration 

A discrete-time integrator is defined by 

y(nT) = y{nT — T) + Ay(nT — 7, nT) (9-18) 

where Ay(nT - 7, nT) is the value added to the integral in the time increment (nT - 7, nT). The algo¬ 

rithm for rectangular integration is illustrated in Figure 9-8a, in which the value of Ay(nT - 7, nT) is 

defined to be 

Ay(nT -T,nT)k Tx(nT - 7) (9-19) 

which results in the difference equation 

y(nT) = y(nT — T) + Tx(nT — T) (9-20) 

The pulse transfer function is determined by z-transforming (9-20), which yields 

Y(z) = z~lY(z) + z~lTX(z) (9-21) 

Integration method 

Implementation 

(a) Rectangular integration 

FIGURE 9-8. Rectangular and trapezoidal integration. 



Solving for Y(z)/X(z) results in 

H(z) = 
Y(z) _ z~lT 
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(9-22) 
X(z) 1 - z 1 

The digital processor that accomplishes rectangular integration is also illustrated in Figure 9-8a. 

Trapezoidal Integration 

The algorithm for trapezoidal integration is illustrated in Figure 9-8b. It follows that Ay(nT — T, nT) is 

Ay{nT - T, nT) t Tx(nT - T) + \T[x(nT) - x(nT - T)] (9-23) 

which gives the difference equation 

y(nT) = y(nT - T) + TxUTV — T) + \T\x(nT) - x(nT - T)\ (9-24) 

The z-transform of the difference equation is 

Y(z) = z~'Y(z) + | X(z) + | z~lX(z) 

which yields 

H(z) 
Y(z) _ T 1 + z"1 

(9-25) 

(9-26) 
X(z) 2 1 - z"1 

for the pulse transfer function. The realization of a trapezoidal integrator is illustrated in Figure 9-8b. 

EXAMPLE 9-3 _ _ 

As shown in this example the amplitude and phase characteristics of the rectangular and trapezoidal 

integrators are easily derived. From (9-22) with z — ethe transfer function of the rectangular in¬ 

tegrator, Hr(ejb)T), is 

Tp-juT tp-juT/2 

H (e]ojT) =-=-—- 
± _ e —jo)T e+jcoT/2 _ e~jcoT/2 

or 

Hr(eju)T) 
Te~J:(oT/2 

2j sin coT/2 

In terms of the normalized frequency r = f/fs, this becomes 

llr(ej2m) = 
Te 

2j sin 7tt 

(9-27) 

(9-28) 

(9-29) 

In the range 0 < r < sin ur > 0. Thus the amplitude response Ar(r) of the integrator is given by 

Ar(r) = 
2 sin 77r 

and the phase, <j>r{r), is given by 

<t>Xr) = —| 

(9-30a) 

(9-30b) 
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The sinusoidal steady-state response of the trapezoidal integrator is, from (9-26), 

Ht{e’mT) = 
71+ e~io>T 

2 1 - e~iwT 

which can be written 

J e+jo>T/2 _|_ e~j(oT/2 

2 e+i<°T/2 — e~j<*>T/2 

(9-31) 

(9-32) 

or 

In terms of normalized frequency, (9-33) is 

H,(e>2nr 

In the range 0 < r < both cos nr and sin nr are nonnegative. Thus it follows from (9-34) that 

the amplitude response of a trapezoidal integrator is given by 

z j sin col I l 

T COS 7TY 

2 j sin tty 
(9-34) 

and the phase response is 

At(r) = 
T COS TTY 

2 sin tty ’ 
0 < Y < ; 

4>,(r) = 

(9-35) 

(9-36) 

The magnitude and phase responses of the rectangular and trapezoidal integrators are given in 

Figure 9-9 for the case where the sampling period T is equal to unity. Also illustrated are the ampli¬ 

tude and phase responses of the ideal continuous integrator, defined by H(f) = \lj2irf. Both the rec¬ 

tangular and trapezoidal integrators exhibit amplitude distortion but neither exhibit phase distortion. 

The rectangular integrator does, however, delay the input signal by 772 seconds as can be determined 

from the slope of the phase response. 

It is interesting to consider the form of (9-28) and (9-33) for input frequencies much less than the 

sampling frequency (i.e., for coT « 1). For this case 

cos coT/2 ^ 1 ^ 2 

sin cl>772 sin <ujT/2 ojT 

so that (9-27) and (9-33) become 

II(eJwT) = 1 e'iaTI2, (oT « 1 
J<0 

and 

Ht(e>ojr) = —, o)7 «1 
](0 

respectively. Thus, for low input frequencies, the rectangular and the trapezoidal integrator 

both closely approximate an ideal integrator. The basic difference for low input frequencies is 

(9-37) 

(9-38) 

(9-39) 



9-3 / Discrete-Time Integration 427 

(a) Amplitude response of rectangular 
and trapezoidal integrators 

(b) Phase response of rectangular and 
trapezoidal integrators 

FIGURE 9-9. Amplitude and phase responses of rectangular and trapezoidal integrators. 

that the rectangular integrator has a 772-second group delay and the trapezoidal integrator has 

zero group delay. 

Example 9-3 illustrates the importance of investigating the performance of a system by studying both 

the time- and frequency-domain characteristics of the system. A simple comparison of the integration 

methods illustrated in Figure 9-8 leads us to the conclusion that trapezoidal integration yields a better 

approximation to the area under a curve. However, a comparison of the frequency responses in Figure 

9-9 provides additional insight. We see that the rectangular integrator provides less attenuation of high 

frequencies than an ideal integrator, whereas the trapezoidal integrator provides more high-frequency 

attenuation than an ideal integrator. 
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The trapezoidal integration algorithm will gain additional significance when the bilinear z-transform 

is studied in the following section. 

EXAMPLE 9-4 

In this example we determine a digital equivalent (one of many) for the system defined by the dif¬ 

ferential equation 

dJ- = X(t) - fiy(t) (9-40) 

The block diagram of the system represented by the differential equation is shown in Figure 9-10a. 

The only block in the system having memory is the integrator. A simple digital equivalent is derived 

by substituting a trapezoidal integrator for the analog integrator. Using (9-26) results in the block di¬ 

agram illustrated in Figure 9-10b. 

The transfer function of the system illustrated in Figure 9-10b is easily derived. From the block 

diagram it follows that 

Y(z) = f [X(z) - fiY(z)] (9-41) 

which reduces to 

= Y(z) = T( 1 + z"1) 

X(z) (£7+2) + 08T- 2)z~1 
(9-42) 

We will return to this problem in a later section to derive this same result by a different method. 

FIGURE 9-10. Analog and digital equivalents using trapezoidal integration. 
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9-4 Infinite Impulse Response (MR) Filter Design 

We now turn our attention to a fundamental problem, the problem of determining the required coeffi¬ 

cients of a linear difference equation in order that a specified task be performed. This is the synthesis 

problem. The resulting structures are referred to as digital filters and are classified as either infinite- 

duration unit pulse response (HR) filters ox finite-duration unit pulse response (FIR) filters, depending 

on the form of the unit pulse response of the system. We will see that HR filters are usually implemented 

using structures having feedback (recursive structures) and FIR filters usually are implemented using 

structures with no feedback (nonrecursive structures), but this is not a necessary restriction. In this sec¬ 

tion we examine the synthesis of HR filters, and in the following section we examine the synthesis of 

FIR filters. 

In designing HR filters, the usual starting point will be an analog (continuous-time) system transfer 

function, Ha(s). The problem will be to determine a discrete-time system, in other words, to determine 

H(z), which in some sense approximates the performance of the analog system. The process of deriving 

a digital filter from an analog prototype can be performed using either time-domain or frequency- 

domain techniques and we will see that satisfactory correspondence between the analog and digital sys¬ 

tems in the time domain does not imply that satisfactory correspondence exists in the frequency domain. 

Synthesis in the Time Domain—Invariant Design 

The concept of time-domain invariance is a simple one. A digital filter is equivalent to an analog filter, 

in the time-domain-invariance sense, if equivalent inputs yield equivalent outputs. The simplest, as well 

as the most often used, invariant design is the impulse-invariant digital filter. After a quick look at the 

impulse-invariant filter we will consider the general invariant synthesis technique. 

Impulse-Invariant Design. The synthesis technique for an impulse-invariant digital filter is illus¬ 

trated in Figure 9-11. Assume an impulse function signal source. The output of the analog filter will be 

the unit impulse response ha(f). Sampling this impulse response yields the sample values ha(nT). 

We now consider a second signal path in which the analog filter and sampler are replaced by a sam¬ 

pler and a digital filter. The discrete-time equivalent of a unit impulse function is a unit pulse (the weight 

MO M*n 

lw„ Jfiw flam 

FIGURE 9-11. The concept of impulse invariance. 
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of the impulse denotes the sample value). Therefore, the input to the digital filter is a unit pulse, and the 

digital filter output is the unit pulse response of the digital filter. If the parameters of the digital filter 

are adjusted so that this unit pulse response is identical to the previously specified ha(nT), the analog 

filter and sampler are equivalent to the sampler and digital filter. With this condition we say that the 

digital filter is the imp ulse-invariant equivalent of the analog filter. 

To illustrate the impulse-invariant synthesis technique, assume that the transfer function of an ana¬ 

log filter has m distinct real poles such that the partial-fraction expansion of Ha(s) has the form 

HM = 2 
i = i 

Kj 

S + Sf 
(9-43) 

in which s = — s; are the pole locations and Kt is the residue of the pole at ~sr Taking the inverse 

Laplace transform yields 

ha(t) = 2 Kie sf’ 1 -0 (9-44) 
1=1 

for the unit impulse response of the analog filter. The z-transform of the sampled unit impulse response is 

H,(z) = 2 K(nT)z~n 
n = 0 

which, upon substitution of (9-44), yields 

oo m 

Hr(z) =22 Ue-’>Tz~y 
n = 0 i = l 

Interchanging the order of summation allows (9-46) to be written 

m oo 

H,(Z) = 2^-2 (e^Tz-lr 
/ = 1 n = 0 

which gives, after summing on n, 

Hi(z) 
K, 

2, 4 
~e s' Tz-1 

(9-45) 

(9-46) 

(9-47) 

(9-48) 

The filter described in (9-48) has a unit pulse response equivalent to the sampled impulse response of 

the analog filter from which it was derived. We will later see, however, that the amplitude response of 

the digital filter will be scaled by fs due to the sampling operation. Therefore, scaling the amplitude re¬ 

sponse of the digital filter to approximate the amplitude response of the analog filter requires multipli¬ 

cation of H{(z) by T — 1 /fs. Thus the pulse transfer function of the impulse invariant digital filter 

equivalent to (9-43) is 

m K 
H(Z) = T XT_.bi (9-49) 

It should be noted that this synthesis technique yields the parallel realization illustrated in Figure 9-12. 

Now that the impulse-invariant design technique has been illustrated, we examine the general con¬ 

cept of invariant design. Then we shall consider several example problems. 

General Time-Invariant Synthesis. The general concept of time-domain invariance is illustrated 

in Figure 9-13. The input to the analog filter is x(t), and the input to the digital filter is x(nT), the sam- 
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pled version of x(t). With these equivalent inputs applied to the analog and digital filters, the filter co¬ 

efficients that determine H(z) are adjusted until the sampled output of the analog filter corresponds to 

the output of the digital filter. 

The required H(z) is determined by writing 

y(t) = r±^[Ha(s)Xa(s)} (9-50) 

Input: 
/-domain: x(t) 
.9-domain: ACCs) 

Sample 

Input: 
/-domain: x(nT) 
z-domain: X(z) 

Analog filter 

Output 
/-domain: y(t) = x(/) * ha (/) 
.9-domain: Y(s) = Xa (s) Ha (s) 

I Time-domain 
invariant 
equivalents 

Sample 

Digital filter 
h(nT), H(z) 

Output: 
/-domain: y{nT) = x(nT) * h(nT) 
z-domain: Y(z) = X(z)H(z) 

FIGURE 9-13. Time-domain invariance. 
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where !£~l denotes the inverse Laplace transform. The output samples of the digital filter are defined to be 

y(nT) = = nT (9-51) 

The z-transform of this quantity yields the z-domain output of the digital filter. This gives 

Y(z) = H(z)X(z) = G%{ [2 - '[Ha(syXa(s)]]\t = nT) (9“52) 

where % denotes the z-transform. The constant, G, has been included to give similar frequency responses 

for both the analog and digital filters. Solving (9-52) for H(z) yields the general synthesis equation 

H(z) = (9-53) 

The impulse-invariant filter is perhaps the most popular digital filter synthesized using a time-do- 

main invariant synthesis technique. For impulse invariance, (9-53) is used with 

X(z) = Xa(s) = 1 (9-54) 

and 

G=T (9-55) 

To understand the role of G in this example, recall that the sampling operation, assuming the impulse- 

train sampling function, multiplies the spectrum of the sampled signal by Cn = l/T =fs [see (8-16)]. 

Multiplication by T is required if the spectrum, which in this case is the transfer function of the filter, 

is to be scaled so that the analog and digital filters have approximately equivalent amplitude responses. 

Thus the synthesis equation is 

H(z) = m{[£-'[Ham\t = nT} (9-56) 

An example illustrates the method. 

EXAMPLE 9-5 

The purpose of this example is to illustrate the design of impulse invariant digital filters. Particular 

attention will be paid to scaling the amplitude response and compensating for the effects of aliasing. 

We begin by considering the analog prototype 

Ha(s) 

By partial-fraction expansion Ha (s) can be written 

1.5 

(s + 1)(*S' 3 

Ha(s) = 
+ 1 

(9-57) 

(9-58) 

The unit impulse response of the analog filter is, for t > 0, 

ha(t) = 1.5<?-r — e~2t 

Thus the unit pulse response of the desired digital filter is, fox n > 0, 

hJjiT) = l.5e~nT — e~2nT 

which upon z-transforming and multiplying by T yields 

H(z) = 
1.5 T 

1 - e'V1 

T 
~2T-—\ 

(9-59) 

(9-60) 

(9-61) 
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The parallel realization of the digital filter is illustrated in Figure 9-14. 

It is interesting to compare the frequency response of the two filters. For the analog filter, the fre¬ 

quency response is 

0.5(4 + jco) 

M (1 + ja>)( 2 + jco) 
(9-62) 

while, for the digital filter, it is 

H(e^)= L5T - T ~ 
K } 1 - e~Te~^T 1 - e~2Te~^T 

(9-63) 

It follows that dc responses of the analog and digital filters are given by 

Ha(0) = 1 (9-64) 

and 

1 ST T 
H(el°) = W) = J I e-T j _ e~2T (9-65) 

respectively. Thus the dc responses are different due to aliasing at dc. However, if the sampling fre¬ 

quency is high, T is small, which yields 

and 

which results in 

e -t ~ 

e -IT ~ 

H( 1) = 
\.5T_ 

1 - (1 - T) 

1 - T (9-66) 

1 - IT (9-67) 

T 

1 - (1 -2 T)~ 
(9-68) 

FIGURE 9-14. Impulse-invariant filter for Example 9-5. 
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We can illustrate this concept using a numerical example. Let the sampling frequency be 20 rad/s 

so that 

and 

T = ~~ = 0.31416 s 
20 

e~T = 0.7304 

0.5335 

With these values, the dc gain of the impulse-invariant digital filter is, from (9-65) 

H( 1) = 1.0745 

(9-69) 

(9-70) 

(9-71) 

(9-72) 

which is slightly larger than the gain of the analog filter, as expected, due to the aliasing at dc. For a 

large sampling frequency, T is small and the approximation e~x — l — x becomes valid. For suffi¬ 

ciently large sampling frequency, the aliasing effect becomes negligible and the dc gain is unity as 

indicated by (9-68). 

Figure 9-15 illustrates the amplitude response of both the analog and digital filters. From (9-63) 

the amplitude response can be written as 

= To 'Jj?, 
0.25488 - 0.06983 cos 2m 

:.74925 - 3.51275 cos 2ttt + 0.77932 cos 4m 

Also, the frequency response of the analog filter is 

\Ha(jco)\ = 0.5 
16 

4 + 5 or + 

(9-73) 

(9-74) 

Normalized frequency, r 

FIGURE 9-15. Amplitude response of impulse-invariant filter. 
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As expected, the amplitude response of the digital filter is a very good approximation to the analog 

filter for most values of r. The phase responses are illustrated in Figure 9-16. 

In some applications it is desirable that both filters have the same dc gain. Note that this could 

have been accomplished in this example by multiplying by 

G = 
T 

1.0745 
0.2924 (9-75) 

in (9-73) instead of multiplying by 

G=T 
77 

10 
= 0.3142 (9-76) 

Mat lab Application 

Matlab supports the design of impulse invariant digital filters through the command imp invar 

in the Signals and Systems Toolbox. The s-domain transfer function is first defined along with the 

sampling frequency. The command imp invar determines the numerator and denominator of the 

z-domain transfer function. Since the transfer function is to be expressed in series form as shown in 

(9-61) partial fraction expansion is next applied. The Matlab code follows: 

EDU» c9ex5 

num = 0.5 * [1 4] ; 

den = conv([1 1] , [1 2] ) ; 

Fs = 20/(2*pi); 

[bz.az] = impinvar(num,den,Fs); 

[r,p,k] = residuez(bz,az); 

r 

% Define numerator 

% Define denominator 

% Define samp. freq. in Hz 

% Determine imp. invar, filter 

% Place in parallel form 

% Display residues 

Normalized frequency, r 

FIGURE 9-16. Phase response of impulse-invariant filter. 
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r - 

1.5000 

- 1.0000 

p % Display poles 

P = 

0.7304 

0.5335 

k B % Display k vector 

k = 

[] 

Several comments are in order. First note that the pole locations as determined by imp invar agree 

with the preceding analysis as shown by (9-70) and (9-71). The residues, as determined by 

impinvar, are as shown in (9-58). We see that impinvar produces a true impulse invariant 

digital filter in which samples of the analog response match exactly the impulse response of the 

digital filter. No scaling of the frequency response by T and no compensation for aliasing effects is 

carried out in impinvar. If desired, this can be done as a separate operation. 

Another popular digital filter synthesis procedure using a time-domain criterion is the step-invariance 

synthesis procedure, which is a direct application of (9-53). The step-invariant filter is derived by plac¬ 

ing a unit step on the input of an analog filter and a sampled unit step on the input to a digital filter. The 

pulse transfer function of the digital filter, //(z), is adjusted until the output of the digital filter represents 

samples of the output of the analog filter. Thus, in (9-53), we let 

G = 1 (9-77) 

Xa(s) = I (9-78) 

and 

X{Z) = —-Vt <9-79> 
1 — Z 

This yields 

H(Z) = (i - z-lm% 
0-1 Ha(s) 

t — nT 

(9-80) 

EXAMPLE 9-6 

The step-invariant equivalent of 

Ha(s) = 
0.5(j + 4) 

(s + 1 )(s + 2) 
(9-81) 
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will now be found. Since 

we have 

so that 

1 0.5 (s + 4) = 1 1.5 0.5 

5 “ s(s + 1 )(s +2)~ s s + 1 + 5 + 2 

Ha(s) = 1 - 1.5e“"'+ 0.5e" 
S t_m7■> 

H(z) = (1 - z-1) 
1 1.5 0.5 

- 1 - + 1 - e~1Tz~x 

(9-82) 

1 — z 1 1 — z 1 

H{z) = 1-1.5 -- 7- , + 0.5 --.=T 
1 - e lz 1 - e Lz 

To compare this result with the result of Example 9-5, let 

T = 0.31416 s 

This yields 

Q.17115Z-1 + Q.04538z~2 

1 - 1.2639Z”1 + 0.3897z'2 

(9-86) 

(9-87) 

Figure 9-17 compares the amplitude responses of the step-invariant and impulse-invariant digital 

filters. 

FIGURE 9-17. Amplitude response of step-invariant filter. 
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Design in the Frequency Domain—The Bilinear z-Transform 

The time-domain invariance method of filter synthesis was simple to apply, but for many applications 

the effects of aliasing preclude its use. We now examine a synthesis technique that overcomes the alias¬ 

ing problem and is even easier to apply than the time-domain invariance method since it is not neces¬ 

sary to inverse transform Ha(s). This synthesis method is known as the bilinear z-transform method. 

To avoid the effects of aliasing, the transfer function of the analog filter must be bandlimited to the range 

\fs —f\ — \fs (9-88) 

Since typical analog transfer functions do not satisfy this property, they must first be modified using a 

nonlinear transformation so that they are bandlimited. The technique is to transform the entire complex 

5-plane into the Sy-plane such that the entire jco-axis in the 5-plane is mapped into the region 

1^/,^ (9-89) 

in the 5rplane. Although there are many transformations that will accomplish this, we seek one that is easy 

to apply and yields a pulse transfer function for the digital filter directly as a ratio of polynomials in z~l. 

A transformation that satisfies these requirements is 

cox T 
= C tan -j~ (9-90) 

or 

C tan 
OJ i 77 

1—2 
CO, 

CjO j T 
C — co cot - (9-91) 

This transformation is illustrated in Figure 9-18. It can be seen that co = o° for the analog filter maps 

into o)l = }^oos for the digital filter. The constant C can be chosen so that the correspondence co = cox can 

be established at any desired frequency. As an example, if co= cox = cor, we have, upon solving for C, 

C = co,. cot 
corT 

(9-92) 

For small cor such that 

« 1 

we can write 

(9-93) 

(9-94) 

since cot x — l/x for small x. This relationship is indicated by the C = 2IT curve in Figure 9-18 and 

shows that for this value of C, co = cox for frequencies that are small compared to the sampling fre¬ 

quency. On the other hand, if C — 1/fwe have 

1 co\T 
co = — tan ——- 

T 2 
(9-95) 

and, as shown in Figure 9-18, co = cox at a normalized frequency of 0.74, where normalization is with re¬ 

spect to ^ cos. It should be noted that co and cox are always equal at/ = 0. Thus the dc response of the bilin¬ 

ear z-transform digital filter is always equal to the dc response of the analog filter from which it is derived. 
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FIGURE 9-18. Bilinear z-transformation frequency mapping. 

The relationship between s and s1 is easily determined from (9-90). First, recall that tan x can be writ¬ 

ten as 

smx 
tan x =- 

cos x 

ejx _ e-jx 

1 e’x + 

Letting s = jco and sx = jcox in (9-90) then yields 

e+sJ/2 _ 

-js = e+s,T/2 + 

e~s'T/2 

V7'm 

which can be written as 

-.5,772 

s = C 
sj 

e°j/i + e-sjn c tanh' 2 

The digital filter is determined from Ha(sx) by letting 

= gs\T 

With this substitution, (9-98) becomes 

s = C 
1 - 

1 + e~SlT 
= C 

1 - z"1 
1 + z"1 

(9-96) 

(9-97) 

(9-98) 

(9-99) 

(9-100) 
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yielding 

(i)cT 7T0)C 
C = (x) cot ——— — (i) cot 

2 oj, 

Thus, for .v in (9-102) we substitute 

This substitution is simplified by defining 

7T(Qc 1 - Z~ 

al 1 + Z~ 

m = cot- 
„ rfc 

cot —— 
Is 

so that 

1 - z 1 
s = wcm—T 

This yields, in (9-102), the pulse transfer function 

m -r 
c 1 + z'1 

1 - z~! 

'cVcmT+lrx 

(9-104) 

(9-105) 

(9-106) 

(9-107) 

(9-108) 

It is important to note that coc cancels in (9-108). This illustrates the fact that the pulse transfer func¬ 

tion is only a function of the ratio of coc to cos through the parameter m as defined in (9-106). Multi¬ 

plying the numerator and denominator of (9-108) by (1 + z-1)2 and grouping like terms yields 

H(z) = 
1 + 2 z'1 + z~2_ 

(m2 + \^2m + 1) + 2(1 — m2)z~l + (m2 — V2 m + !)<■ 
(9-109) 

Thus H(z) is determined by the ratio offc to fs. For the case where fc = 500 Hz and fs = 2000 Hz, 

m — cot = 1 
4 

(9-110) 

and the pulse transfer function becomes 

1 + 2 z"1 + z~2 

3.414214 + 0.585786z~ 
(9-111) 

Dividing numerator and denominator by 3.414214 yields the pulse transfer function in standard form: 

0.292893 + 0.585786z_1 + 0.292893z~2 

//(Z) “ ^ 1 + 0.171573z”2 
(9-112) 

The amplitude response is determined by substituting ei2m' for z in (9-112) and taking the magnitude 

of the resulting expression. This was done and the result is illustrated in Figure 9-20. Also illustrated in 

Figure 9-20 is the amplitude response of the analog second-order Butterworth filter, which is given by 

\Ha(f}\ = 
4 + (///c)4 

(9-113) 
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Normalized frequency 

0.05 0.1 0.2 0.5 

Since for the case analyzed 

f/fc in (9-113) reduces to 

Thus,/= 4rfc, and 

fc = ifs 

L 
fc 

\Ha(4rfc)\ = 
1_ 

VTT256? 

(9-114) 

(9-115) 

(9-116) 

Matlab Application 

The Matlab Signals and Systems Toolbox provides the capability to design bilinear z-transform 

digital filters. The transfer function for the analog prototype is first determined. The numerator and 

denominator polynomials of the analog prototype are then mapped to the numerator and denomina¬ 

tor polynomials for the bilinear z-transform digital filter. The example problem is solved using the 

following code: 

EDU» c9ex7 

Wn = 2*pi*500; 

n = 2 ; 

Fp = Wn/(2*pi); 

Fs = 2000; 

[b,a] = butter(n,Wns'); 

[num.den] = bilinear(b,a,Fs,Fp); 

% 3-dB freq. analog prototype 

% Order of analog prototype 

% Prewarping frequency in Hertz 

% Sampling frequency in Hertz 

% Define analog prototype 

% Determine digital filter 
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num % Display numerator 

num = 

0.2929 0.5858 0.2929 

den % Display denominator 

den = 

1.0000 0.0000 0.1716 

Note that the numerator and denominator polynomials of the resulting digital filter agree with (9-112). 

The analog and digital filter responses illustrated in Figure 9-20 compare poorly because the 3-dB 

break frequency of the digital filter is relatively close to half the sampling frequency. The amplitude re¬ 

sponses of bilinear z-transform digital filters derived from a low-pass Butterworth prototype were de¬ 

termined for n = 1, 2, 3, 4, and 5. The results are shown in Figure 9-21 for fjfs — 0.01 and in Figure 

9-22 for fjfs = 0.05. It can be seen that the nonlinear effects of the bilinear z-transformation are negli¬ 

gible for r < 0.1. 

FIGURE 9-21. Digital Butterworth filter responses with fjfs = 0.01. 
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FIGURE 9-22. Digital Butterworth filter responses with fjfs = 0.05. 

Thus for input frequencies less than 0.1fs, the amplitude response of the digital filter closely ap¬ 

proximates the amplitude response of the analog Butterworth prototype. 

EXAMPLE 9-8 __ 

An analog integrator is defined by 

H„(s) = 

1 

so that the bilinear z-transform integrator is 

ll 
H(z) 

If C is set equal to the limiting value of 2/7, we have 

T1 + z~l 

11 + z -1 

s = C[(l-Z-1)/(l+z ')] C 1 - z 1 

2/7, we 1 

H(z) = 
2 1 -z 

-l 

(9-117) 

(9-118) 

(9-119) 

Comparison of this expression with (9-26) illustrates the equivalence of trapezoidal integration and 

the bilinear z-transformation. 
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As an additional illustration of this equivalence, let us return to Example 9-4, in which we deter¬ 

mined the transfer function of the digital system based on the differential equation 

~ = x(t) - I3y(t) (9-120) 
at 

Laplace transforming this equation yields 

sY(s) = X(s) - /3r(.s) (9-121) 

or 

With .v replaced by 

H.(s) 
Y{s) 

m 

i 

s + /3 

2 1 - z"1 

T 1 + z 1 

(9-122) 

(9-123) 

we have 

H(z) = 
T(1 + z"1)_ 

(f3T + 2) + (0T - 2)z~1 
(9-124) 

which is exactly the same result achieved by replacing the continuous-time integrator by the trape¬ 

zoidal integrator. 

Bilinear z-Transform Bandpass Filters 

Bandpass filters can also be developed using the bilinear z-transform. As shown in Appendix E, a band¬ 

pass filter can be generated from a low-pass filter by substituting (s2 + afy/isai>b) for the Laplace vari¬ 

able s in the system function for the low-pass prototype. The parameter <oc is the geometric center 

frequency and cob is the bandwidth of the analog bandpass filter. The bandpass digital filter is then gen¬ 

erated by replacing s' by C(1 - z-1)/(l + z_1). These two steps can be combined into a single step by 

going from s to z directly. This yields 

s2 + 0)2C 

2 

lCl + z-'\ 

scoh ^ c ri - z_1i 
0)b 

Li + z^J 

(9-125) 

which can be written as 

s2 + at C\ 1 - z1)2 + co2( 1 + z-1)2 
=> 

S(Oh Ccob( 1 - z~2) 

Collecting coefficients of like powers of z results in the transformation 

s2 + m2 

scoh 

C2 + co) 
1 - 2 

C2 wr 

C2 + 
z_1 + z2 

Ccoh 1 - z- 

(9-126) 

(9-127) 
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or 

where 

and 

s2 + 4 1 - Bz_1 + z 2 
scob ^ 1 - z~2 

(9-128) 

C2+ 4 
Cwh 

(9-129) 

C2- 

C2 +co2 (9-130) 

The problem now is to determine the appropriate values of A and B. 

First we consider the value of A. The center frequency ooc in the s-plane must be replaced by C tan 

(o)cT/2) to map the value of the center frequency into the Sj-plane. Since ooc is the geometric frequency, 
as shown in Appendix E, 

(9-131) 

where cou and oo{ are the upper and lower critical frequencies, respectively. The equivalent expression in 

the sy-plane is 

cor C2 tan ——- tan 
2 

oo [T 

~~2~ 

The bandwidth coh in the s-plane becomes 

(oh=> C tan 
2 

C tan 
oofT 

in the srplane. Thus A becomes 

A = 

0 0 oouT oo,T 
C2 + C2 tan —— tan —— 

2 2 

... couT 
C l tan --tan 

oo iT 

or 

Using the trigonometric identity 

yields the convenient form 

A = 

oo T ootT 
1 + tan —- tan - 
_2 2 

couT cotT 
tan —-tan - 

2 2 

, . tan x — tan y 
tan (x y) — --— 

1 + tan x tan y 

A = cot 
T 

(Mu - «/) 2 

(9-132) 

(9-133) 

(9-134) 

(9-135) 

(9-136) 

(9-137) 
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We must now determine the value of B as defined by (9-130). From (9-130) and (9-132) we can write 

~<2 _ r^2 , - C2 - C2 tan 

B = 2 

„ tan - 
2 2 

o)uT a,,T 
C2 + C2 tan tan 4- 

2 2 

or, upon dividing numerator and denominator by C2, 

1 - 1 tan 

£ = 2 

tan — 
2 2 

a) T o)tT 
1 + 1 tan —- tan - 

2 2 

Since 

we have the simple relationship 

1 — tan x tan y _ cos(x + y) 

1 + tan x tan y cos(x — y) 

B = 2- 

COs((Ou + (Ot)- 

cos(<ou - 0Ji): 

(9-138) 

(9-139) 

(9-140) 

(9-141) 

We can therefore easily calculate the necessary values of A and B for use in the transformation defined 

by (9-128). 

The expressions for A and B can be simplified by recognizing that 

(x)xT = 2irrx (9-142) 

where (ox is some specific frequency and rx is that specific frequency normalized to the sampling fre¬ 

quency so that rx = fjfs. Using this relationship gives 

A = cot ir(ru — r) (9-143) 

and 

B 
cos tt(Ju + rj) 

cos v(ru - r,) 
(9-144) 

where ru and r are the upper and lower frequencies used to define the filter bandwidth. 

We can now illustrate these concepts in the design of a simple bandpass digital filter. 

EXAMPLE 9-9 

In this example a bilinear --transform digital filter is designed from the first-order analog prototype 

1 
Ha{s) = 

s + 1 
(9-145) 
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Using the transformation defined in (9-128) yields the pulse transfer function 

1 
H(z) 

1 - Bz~l + z“2 

1 - z~ 

(9-146) 

+ 1 

which can be written in the form 

mz) = 
_1 - z“2_ 

(A + 1) - ABz~l + (A - l)z“2 
(9-147) 

A sampling frequency of 5,000 Hz is assumed, along with upper and lower 3-dB frequencies of 1,000 

and 500 Hz, respectively. Using these values gives the normalized frequency values of 0.2 and 0.1 
for ru and r(. Thus 

A = cot 7r(0.2 - 0.1) = 3.0776835 (9-148) 

and 

B 
. cos 77(0.2 + 0.1) 
2-L—-1 rr = 1.2360680 

cos 77(0.2 - 0.1) 

The pulse transfer function then becomes 

1 -z“2 
H(z) = 

4.0776835 - 3.80422612“' + 2.0776835z“2 

which, in standard form, can be written 

(9-149) 

(9-150) 

mz) = 
0.2452373 - 0.2452373z“2 

1 - 0.9329380z“' + 0.5095254z“2 
(9-151) 

The magnitude and phase responses of this filter are shown in Figure 9-23. The response goes to -00 

at z = 0.5 because of the zero of Ha(s) at s = 00. Note that a first-order low-pass prototype gave rise 

to a second-order bandpass filter. 

9-5 Design of Finite-Duration Impulse Response (FIR) 
Digital Filters 

In the previous section design methods for infinite-duration impulse response (HR) digital filters were 

studied. We found that, by starting with an analog prototype filter, the design techniques were very easy 

to apply. We now turn our attention to a distinctly different problem, the problem of the design of fi¬ 

nite-duration impulse response filters. We will see that a very different implementation will result. The 

design technique to be studied in this section differs from those previously considered in that our start¬ 

ing point is not an analog filter but an arbitrary frequency response that represents the desired frequency 

response of the digital filter being designed. It will therefore be possible to design digital filters that 
have no analog prototype equivalent. 

A number of computer-aided design tools are available for the synthesis of digital filters and a cou¬ 

ple of these techniques will be explored in the following section. Computer-aided design techniques for 

FIR digital filters are, as we will see, especially important. However, even though such methods are 

widely available and easy to use, the student should understand the basic characteristics of FIR digital 

filters, and be familiar with fundamental techniques used for the design of FIR digital filters. In this sec- 



9-5 / Design of Finite-Duration Impulse Response (FIR) Digital Filters 449 

Normalized frequency, r 

(a) Amplitude response 

Normrlized frequency, r 

(b) Phase response 

FIGURE 9-23. Amplitude and phase responses for example bandpass filter. 

tion the Fourier series and windowing technique is studied. This technique is derived by first realizing 

that the transfer function of a digital filter is periodic in the sampling frequency. Thus the transfer func¬ 

tion can be expanded in a Fourier series. We will show that the Fourier coefficients resulting from this 

expansion give the unit pulse response of the digital filter. 

Since we have typically used Fourier series techniques to determine an expansion for a periodic time- 

domain waveform, it may seem strange to expand a function of frequency in a Fourier series. Our dis¬ 

comfort is only a result of conditioning, and Fourier series techniques are valid for any periodic function 

satisfying the conditions discussed in Chapter 3. Before formally presenting this design technique, we 

introduce it by a simple example. 

EXAMPLE 9-10 __ 

Suppose we wish to design an FIR digital filter having the desired transfer function 

Hd(ei2m‘) = ^(1 + cos 2rrr) (9-152) 

in which r is the normalized frequency defined by r — f/fs. Note that the transfer function is real and 

positive so that the phase response is zero for all values of r. The amplitude and phase responses are 

shown in Figures 9-24a and b. 
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(c) Unit pulse response of 
noncausal filter 

(d) Unit pulse response of 
causal filter 

(e) Amplitude response of (f) Phase response of causal 
causal filter fjlter 

FIGURE 9-24. Amplitude and phase responses for Example 9-10. 

By expanding cos 2irr in (9-152), using Euler’s expansion, we obtain 

Hd(eJ2™) = \ei2m' + \ + (9-153) 

which is the Fourier series expansion of the transfer function of the digital filter. It follows by in- 

spection that the z-domain transfer function corresponding to the desired frequency response is 

= \z + \ + jz"1 (9-154) 

Thus the unit pulse response of the example filter is 

hJnT) = \8{nT + T) + \8{_nT) + \b(nT - T) (9-155) 

The unit pulse response is shown in Figure 9-24c. It can be seen that the filter is not causal because 
of the term at n— — 1. 
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Observation of the unit pulse response shown in Figure 9-24c reveals that the filter can be made 

causal by shifting the unit pulse response to the right one sample period. Thus the filter defined by 

Hc(z) = Htl(z)z-' (9-156) 

will be causal and have the unit pulse response 

hc(nT) = \8{nT) + \d(nT - T) + \d(nT - 27) (9-157) 

which is shown in Figure 9-24d. The frequency response of the causal filter is defined by 

Hc(ej2nr) = Hd(eJ2m')e~j27Tr (9-158) 

or 

Hc(eJ27rr) = ^(1 + cos 27Tr)e-i2™ 

The amplitude response is 

Ac(r) = ~(l + cos lirr) 

and the phase response is 

4>c(r) = —27tt (9-161) 

The amplitude and phase responses are shown in Figures 9-24e and f, respectively. Note that the 

amplitude responses of the noncausal and causal filters are identical to the design specification in 

(9-152). The phase response of the causal filter deviates from the desired phase response of </>(r) = 0 

by a linear function of frequency. This linear phase characteristic, as we have seen, is simply equiv¬ 

alent to a delay of one sample period and causes no signal distortion. This can also be seen by cal¬ 

culating the group delay. Since r = JT, the phase response can also be expressed as 

4*f) = -2ttfT (9-162) 

The group delay is then 

T^-~hdJf-‘T <9-163) 

indicating a delay of one sample period. 

The causal FIR digital filter can be implemented as shown in Figure 9-25. It is important to note 

that the multiplying factors, which are known as tap weights, since the cascade of z"1 elements forms 

(9-159) 

(9-160) 

FIGURE 9-25. Implementation for FIR digital filter studied in Example 9-10. 
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a tapped delay line, are exactly equal to the Fourier series coefficients of the desired frequency re¬ 

sponse. Also note from Figure 9-25 that the FIR filter has only feedforward signal paths. Thus, the 

implementation has no feedback signal paths and therefore has no poles except at z = 0. The FIR fil¬ 

ter is therefore always stable. 

We have seen that an FIR filter can be designed by expanding the desired amplitude response in a 

Fourier series and then shifting the resulting unit pulse response so that a causal filter results. This ex¬ 

ample is extremely simple because the desired frequency response can be expressed exactly by a Fourier 

series having a finite number of terms. In general, an exact representation of the desired frequency re¬ 

sponse is not possible with a finite number of terms, and the Fourier series must be truncated if a use¬ 

ful filter is to result. Thus, an approximation to the desired frequency response is obtained. Using this 

example as motivation, we how consider the general case and see the nature of this approximation. 

FIR Filters—A General Design Technique 

As we observed in the preceding problem, the desired frequency response, which is periodic in the sam¬ 

pling frequency, corresponds to a noncausal digital filter. In general we can write 

HJLz) = Hd(e^T) = 2 hd(nT)e~jni,jT (9-164) 

where we have allowed the filter to be noncausal by starting the summation at n = —00 rather than 

n = 0, as we do for causal filters. 

As in our example problem, it is usually convenient to express the frequency variable in terms of the 

normalized frequency r Letting 2rrr = coT in (9-164) yields 

oo 

Hd(e’2m) = 2 hd(nT)e~’2mr 
n = —oo 

(9-165) 

An expression for the Fourier coefficients of the desired frequency response Hd(ej2irr) can be found by 

multiplying (9-165) by eJ27rlr and integrating over one period of the frequency response. This yields 

Since 

r 1/2 oo 1/2 

Hd(e'2"ry2™dr= % hd(nT) 
J-l/2 71= - oo h/2 

ej(l-n)2nr dy (9-166) 

we have 

f 1/2 

I eKl~n)2lTr dr 
-1/2 

l = n 

l ¥= n 
(9-167) 

or, upon replacing / by n 

r 1/2 

Hd(ej2nr)ej27rlr dr = hd(lT) 
^ — 1/2 

r 1/2 

hd{nT) = Hd{eilirr)ej2mr dr 
J-l/2 

(9-168) 

(9-169) 

It follows that hJjiT) represents the values of the unit pulse response of the noncausal digital filter hav¬ 

ing the desired frequency response. 
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At this point we have the weights necessary to implement the FIR digital filter. There are two prob¬ 

lems, however. The first is that the digital filter is noncausal, since the unit pulse response, hJjiT), is 

nonzero for at least one negative index n. This problem was encountered in Example 9-10, where we 

saw that its solution is to shift the noncausal unit pulse response so that a causal unit pulse response re¬ 

sults. Before this can be done, however, the unit pulse response must be of finite extent. This points to 

the second problem. Unless the desired frequency response, Hd{e)l7Tr), can be expressed exactly with a 

finite number of terms, which is usually not the case, the Fourier series coefficients must be truncated 

to a series having a finite number of terms. This truncation introduces errors, and therefore we have a 

trade-off between accuracy and complexity. 

Truncating the Fourier coefficients to a finite number of terms yields the noncausal pulse transfer 

function 

M 

HJz) = 2 hd(nT)z~n (9-170) 
n = — M 

Note that within the range —M < n < M the unit pulse response is still in terms of the Fourier coeffi¬ 

cients of the desired frequency response. The series has simply been truncated to 2M + 1 terms. An¬ 

other way to view truncation is to recognize that the pulse transfer function can be written 

M 

HJz) = 2 hd(nT)z~n = 2 wr(n)hd(nT)z~n 
n = —M n=— oo 

where wr(n) is known as the rectangular window function and is defined by 

wr(n) = 
< M 

>M 

(9-171) 

(9-172) 

The time-domain multiplication by a rectangular window function has an impact in the frequency do¬ 

main. Since multiplication in the time domain is equivalent to convolution in the frequency domain, the 

frequency response of the resulting digital filter is the convolution of the desired frequency response 

with the Fourier transform of the window function. The Fourier transform of wr(n) is 

M 

Wr(eiZm) = 2 
n=-M 

jlirnr _ 
sm 7T\ <2 M + 1 )r 

sin irr 
(9-173) 

in which we have written the transform in terms of the normalized frequency variable. We will see the 

effect of this convolution in the examples. 

Causal Filters 

A causal filter, denoted Hc(z), can be generated from Hnc(z) by multiplying Hnc(z) by z~M. Using (9-171) 

for Hnc(z) yields 

M M 

Hc(z) = z~M 2 hd(nT)z~n = 2 hd(nT)z~(n+^ (9-174) 
n~—M n=—M 

For k = n + M, (9-174) becomes 

2 M 

Hc{z) = 2 hAkT ~ MT)z~k (9-175) 
k = 0 

Defining the filter weights of the causal filter as where 

Lk = hd(kT-MT) (9-176) 
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gives 

2 M 

Hc(z) = 2 Lkz~k (9-177) 
k = 0 

The resulting causal FIR digital filter and its unit pulse response are shown in Figures 9-26a and b, re¬ 

spectively. Note that the unit pulse response is identically equal to zero outside of the interval 

0 < k < 2M. This, of course, is a result of applying a rectangular window. Thus, the causal FIR digital 

filter has a time duration of 2M sample periods or 2MT seconds. The implementation of the causal FIR 

digital filter is simply the feedforward network, H^z), shown in Figure 9-1. 

The sinusoidal steady-state frequency response of the causal filter is closely related to the frequency 

response of the noncausal filter. Since 

Hc{z) = Hnc(z)z~M (9-178) 

(a) Implementation of FIR filter 

Lk 

(b) Unit pul»e response 

FIGURE 9-26. FIR filter and unit pulse response. 
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it follows that 

Letting 

Hc{e>2'nr) = Hnc(ej27rr)e~j2nMr (9-179) 

and 

Hc(e’l7n) = Ac(r)eiMr) (9-180) 

gives 

Hnc(e’2n = AJf)e>**) (9-181) 

Thus 

Ac(r)eMr) = A^e’^e-^Mr (9-182) 

and 

Ac(r) = Anc(r) (9-183) 

<t>c(r) = - flirMr (9-184) 

We see from these results that the causal and noncausal filters have the same amplitude response. The 

phase of the causal digital filter differs from that of the noncausal filter only by a linear function of fre¬ 

quency. This was to be expected, of course, since multiplication by z~M is a delay of M sample periods, 

which in turn is equivalent to a linear phase shift. 

Most applications that will be encountered fall into one of two classes. 

1. Filtering. For filtering applications the desired transfer function is usually defined in terms of the 

amplitude response of the filter. Typically, some portion of the input signal spectrum is to be at¬ 

tenuated, and some portion of the input signal spectrum is to be passed to the filter output with 

no attenuation. Ideally, this is accomplished with no phase distortion. The ideal transfer function 

is therefore real, corresponding to an even unit pulse response as shown in Figure 9-27a. Since 

the transfer function is real, the phase response corresponding to the unit pulse response shown 

in Figure 9-27a is zero for all frequencies, as shown in Figure 9-27b. Shifting the unit pulse re¬ 

sponse to the right to obtain a causal filter imparts a linear phase shift as shown in Figure 9-27c. 

2. Filtering plus Quadrature Phase Shift. These applications include integrators, differentiators, and 

Hilbert transform devices. The desired frequency response, Hd(eJ27Tr), is imaginary. The unit pulse 

response of the noncausal filter is odd, as shown in Figure 9-28a. The phase response is ± tt/2 for 

all frequencies, as shown in Figures 9-28b and c, respectively. Shifting the unit pulse response to 

form a noncausal filter results in the phase responses shown in Figures 9-28d and e. Figure 9-28d 

applies if the desired phase is — tt/2 for/ > 0, as would be the case for an integrator or a Hilbert 

transformer. Figure 9-28e applies if the desired phase is + irll for/ > 0, as would be the case for 

a differentiator. 

Design Summary 

In summary, the procedure for the design of an FIR digital filter consists of the following steps: 

1. A sampling frequency is first selected. This selection is usually made after considering the band¬ 

width of the signals to be processed by the filter. Once the sampling frequency is selected, the 

normalized frequency variable, r, is defined. 
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(a) Even unit-pulse response 

r 

(b) Phase response for even unit-pulse response 

(c) Phase response for causal filter derived from noncausal 
filter having even unit-pulse response 

FIGURE 9-27. Unit pulse response and phase responses for filtering operations. 

2. The desired frequency response, Hd(ej2nr)> is then expanded in an exponential Fourier series. It is 

recognized that the resulting Fourier coefficients, hd(nT), are the filter weights (the unit pulse re¬ 

sponse) of a noncausal digital filter that satisfies the design specifications. The unit pulse response 

corresponding to the desired digital filter is also infinite in extent. 

3. The sequence, hd{nT), is next made finite in extent by multiplying the sequence by an appropri¬ 

ate window function. The number of nonzero terms in the window function is a trade-off between 

accuracy, allowable delay and complexity. The result of this step is a pulse transfer function 

#nc(z), that is noncausal but which has a finite number of nonzero terms. 

4. The noncausal transfer function resulting from the previous step, Hnc(z), is then multiplied by z~M, 

with M chosen to ensure that a causal digital filter results. 
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After this procedure is applied, the amplitude and phase responses of the resulting digital filter should 

be computed to ensure that the original design specifications are satisfied. 

EXAMPLE 9-11 __ 

In this example we will design a FIR digital differentiator. The ideal analog differentiator is defined 

by the transfer function 

Ha(f)=j2irf 

Since r — flfs, so that/ = rfs, we have for the desired digital filter response 

= j2irfsr 

The desired unit pulse response (we drop the subscript) is 

f1/2 
h(nT) = {j2rrfsr)ejl'nnr dt 

n. 

(9-185) 

(9-186) 

(9-187) 

Integrating by parts yields 

h(nT) = j2irfl~- e*™' 
r-1/2 1 ,1/2 

e>2mr dr 

This becomes 

h{nT) 
fs[( 1 
n \2 

e]Tm _|—e~J7TnJ-(e]im — e~~}7m) 

(9-188) 

(9-189) 

h(nT) = — \ cos rm (9-190) 

Recognizing that 

cos rrn = (— l )n (9-191) 

(9-192) 

h{nT) - 8{n)} 
n 

(9-193) 

In other words, 

h(nT) 

n = 0 

-(-1)", n^O 
n 

(9-194) 
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Figure 9-29 illustrates the performance of the differentiator for the case in which 15 terms or 

weights are used in the realization. In other words, h(nT) = 0, \n\ ^ 8. A Hamming window for this 

case is given by 

wh(n) = 0.54 + 0.46 cos - , \n\ < 7 (9-195) 

Table 9-1 illustrates the terms of the unit pulse response for the FIR differentiator with rectangu¬ 

lar and Hamming windows. The phase response is shown in Figure 9-30. In reading Table 9-1, 

keep in mind that M — 7, and, therefore, the filter weights for the causal digital differentiator are 

given by 

Ln = h{nT - IT) (9-196) 



TABLE 9-1 
Filter Weights for FIR Differentiator 

n 

Unit Pulse Response 
with Rectangular 
Window, h(nT) 

Hamming Window 
Function, 

wh(nT) 

Unit Pulse Response 
with Hamming 

Window, wh{nT)h{nT) 

-7 -0.142857 0.08 +0.011429 
-6 -0.166667 0.125554 -0.020926 
-5 + 0.2 0.253195 +0.050639 
-4 -0.25 0.437640 -0.109410 
-3 +0.333333 0.642360 + 0.214120 
-2 -0.5 0.826805 -0.413403 
-1 + 1.0 0.954446 +0.954446 

0 0 1.0 0 
1 -1.0 0.954446 -0.954446 
2 +0.5 0.826805 +0.413403 
3 -0.333333 0.642360 -0.214120 
4 +0.25 0.437640 +0.109410 
5 -0.2 0.253195 -0.050639 
6 +0.166667 0.125554 +0.020926 
7 -0.142857 0.08 -0.011429 

FIGURE 9-30. Phase response for M = 7 FIR differentiator. 

460 
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As another example of a FIR digital filter design, we approximate an ideal low-pass filter using 

17 weights. Assuming that the filter bandwidth is 0.15fs, we have, in terms of the normalized fre¬ 

quency variable r, 

(9-197) H(e’2m) = 

The filter weights, h(nT), are therefore 

h{nT) = I 

which is, upon performing the integration, 

A 

un 

o
 

VI 

lo, 0.15 < \r\ 

0.15 

ejl7mr dr 
0.15 

h(nT) = -- - (ej037r - e~j037r) 
/2 7777 V 

The filter weights can therefore be expressed as 

h(nT) = - sin 0.37777 
7777 

(9-198) 

(9-199) 

(9-200) 

Since we are assuming 17 weights, the Hamming window for this application can be written 

wh(n) = 0.54 + 0.46cos—, \n\ < 8 (9-201) 
8 

Figure 9-31 illustrates the amplitude response with and without the Hamming window. In drawing Fig¬ 

ure 9-31 we have allowed the amplitude response to be negative over several frequency ranges in or¬ 

der to avoid having to draw the phase. The phase will be ±180° or ± 77 rad for those frequency ranges 

where the amplitude responses are drawn negative. Table 9-2 gives the terms of the unit pulse response 

with a rectangular window and with a Hamming window. The filter weights of the causal filter are 

Ln = h(nT - IT) (9-202) 

EXAMPLE 9-13 

As our last example of the design of a FIR digital filter, consider a 90° phase shifter. This filter is 

frequently referred to as Hilbert transform filter, since the output of a 90° phase shifter is defined as 

the Hilbert transform of the input signal. The desired sinusoidal steady-state frequency response is 

0 < r < 0.5 

-0.5 < r < 0 
(9-203) 

Note that, as in the case of the digital differentiator, Hd(eil7Tr) is imaginary for all r. It follows that the 

unit pulse response is 

f° . f1/2 
h(nT) = ( (+j)ej2mir dr + {—f)e^2imr 

7-1/2 Jo 

Performing the integration yields 

1 

27777 
(1 - e~j7m) - 

1 

277/7 

(9-204) 

h(nT) = (ej7m - 1) (9-205) 
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FIGURE 9-31. Amplitude response of digital low-pass filter. (The negative portions are shown 
negative for convenience.) 

or 

h(nT) = — (1 — cos im\ 
un 

(9-206) 

Thus 

h(nT) 

0, 

_2_ 
un 

n even 

n odd 

(9-207) 

The amplitude response is shown in Figure 9-32 for M = 7 for rectangular and Hamming win¬ 

dows. The Hamming window for this case is given by (9-195). The filter weights are given in 

Table 9-3. 



9-5 / Design of Finite-Duration Impulse Response (FIR) Digital Filters 463 

TABLE 9-2 
Filter Weights for FIR Low-Pass Filter (fc = 0.154) 

n 

Unit Pulse Response 
with Rectangular 

Window, h(nT) 

Hamming Window 
Function, 

wh(nT) 

Unit Pulse Response 
with Hamming 

Window, wh(nT)h(nT) 

-8 0.037841 0.08 0.003027 
-7 0.014052 0.115015 0.001616 
-6 -0.031183 0.214731 -0.006696 
-5 -0.063662 0.363966 -0.023171 
-4 -0.046774 0.54 -0.025258 
-3 0.032788 0.716034 0.023477 
-2 0.151365 0.865269 0.130972 
-1 0.257518 0.964985 0.248501 

0 0.3 1.0 0.3 
1 0.257518 0.964985 0.248501 
2 0.151365 0.865269 0.130972 
3 0.032788 0.716034 0.023477 
4 -0.046774 0.54 -0.025258 
5 -0.063662 0.363966 -0.023171 
6 -0.031183 0.214731 -0.006696 
7 0.014052 0.115015 0.001616 
8 0.037841 0.08 0.003027 

FIGURE 9-32. Amplitude response of digital 90° phase shifter. 
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TABLE 9-3 
Filter Weights for FIR 90° Phase Shifter 

n 

Unit Pulse Response 
with Rectangular 
Window, h(nT) 

Hamming Window 
Function, 

wh(nT) 

Unit Pulse Response 
with Hamming 

Window, wh(nT)h(nT) 

-7 -0.090946 0.08 -0.007276 

-6 0 0.125554 0 

— 5 -0.127324 0.253195 -0.032238 

-4 0 0.437640 0 

-3 -0.212207 0.642360 -0.136313 

-2 0 0.826805 0 

-1 -0.636620- 0.954446 -0.607619 

0 0 1.0 0 

1 0.636620 0.954446 0.607619 

2 0 0.826805 0 

3 0.212207 0.642360 0.136313 

4 0 0.437640 0 

5 0.127324 0.253195 0.032238 

6 0 0.125554 0 

7 0.090946 0.08 0.007276 

9-6 Computer-Aided Design of Digital Filters 

As we saw in the previous section, digital filters can be designed to satisfy a set of specifications that 

are not compatible with any known analog prototype. Filters having an arbitrary amplitude response 

while maintaining a perfectly linear phase response are an example. Simply stated, we can design digi¬ 

tal filters for which analog equivalents do not exist. A number of design algorithms have been devel¬ 

oped that provide the tools for developing these filters. Since the algorithms are usually realized as 

computer programs, we refer to their use as a computer-aided design. Design techniques exist for de¬ 

sign of both HR and FIR digital filters and Matlab provides examples for each. 

The Matlab algorithm used for the design of HR filters is designated yul ewalk and is based on 

a minimum mean-square error fit in the time domain. Thus, the inverse Fourier transform of the desired 

amplitude response is used. The Matlab manual provides somewhat more detail on the algorithm and 

specifies the reference upon which the algorithm is based.1 

The Matlab algorithm used for the design of FIR digital filters is based on the Parks-McClellan* 

algorithm, which for many years has been the most popular algorithm for designing FIR digital filters. 

The Parks-McClellan algorithm makes use of Chebyshev approximation theory, which yields a filter 

design in which the maximum error between the desired and actual frequency responses is minimized 

(referred to as minimax approximations). In addition, as we shall see, the approximation error is uni¬ 

formly distributed over the filter passbands and stopbands. 

The Matlab implementation of the Parks-McClellan algorithm is contained in the routine remez in 

the Signals and Systems Toolbox. The name remez results because the Remez exchange algorithm is 

used in the polynomial interpolation problem that plays a key role in the implementation of the Parks- 

<B. Friedlander and B. Porat, “The Modified Yule-Walker Method of ARMA Spectral Estimation,” IEEE Transactions on 
Aerospace and Electronic Systems, Vol. AES-20, No. 2, March 1984. 

?L. R. Rabiner, J. H. McClellan and T. W. Parks, “FIR Filter Design Techniques Using Weighted Chebyshev Approxima¬ 
tions,” Proceedings of the IEEE, Vol. 63, 1975. 
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McClellan algorithm. Although, in the following example, we consider the design of a dual-band lowpass 

filter, the Parks-McClellan algorithm can be used to design a wide variety of filters, including those that 

have transfer functions that are purely imaginary, such as the differentiator and the Hilbert transform filter. 

In order to demonstrate the use of Matlab for designing both HR and FIR digital filters we consider 

the desired amplitude response to be the two-level passband characteristic given in Figure 9-33. The 

phase response is not specified but we desire the phase response to be as linear as possible. The particu¬ 

lar amplitude response given in Figure 9-33 is chosen simply because it is more interesting than the sim¬ 

ple boxcar (ideal) lowpass filter considered in Example 9-12 and no specific application is in mind. The 

parameter r, as usual, represents frequency normalized with respect to the sampling frequency. For the 

examples to follow we choose rx = 0.1, r2 = 0.11, r3 = 0.25 and r4 = 0.26. (Note that we define r as 

frequency normalized with respect to the sampling frequency while the vector specifying the critical 

frequencies in the Matlab programs specify the critical frequencies in terms of the folding or Nyquist 

frequency.) We choose B = 0.4. The critical frequencies chosen for the examples to follow result in rela¬ 

tively narrow transition bands. This will tend to result in higher errors for a given specified order. 

EXAMPLE 9-14 _ 

As the first example of computer-aided design, we develop an HR digital filter having the desired 

amplitude response given in Figure 9-33. A lOth-order filter is specified. The Matlab code follows. 

EDU» c9exl4 

f = [0 0.2 0.22 0.5 0.52 1] ; 

m = [1 1 0.4 0.4 0 0] ; 

n = 10; 

[b,a] = yulewalk(n,f,m); 

[h,w] = freqz(b,a,512); 

subplot(2,1,1) 

plot(f/2,m,w/(2 *pi) ,abs(h)) 

xlabel('Normalized Frequency - r') 

ylabel('Amplitude') 

phase = angle(h); 

phase = unwrap(phase); 

phasedeg = phase*180/pi; 

subplot(2,1,2) 

plot(w/(2*pi),phasedeg) 

xlabel('Normalized Frequency - r') 

ylabel('Phase - degrees') 

% Specify f vector 

% Specify amplitude response 

% Specify order 

% Compute transfer function 

% Determine filter response 

% Designate first subplot 

% Plot amplitude response 

% Label x-axis 

% Label y-axis 

% Calculate phase 

% Unwrap phase 

% Express phase in degrees 

% Designate second subplot 

% Plot phase response 

% Label x-axis 

% Label y-axis 

The results of this design are shown in Figure 9-34. 

FIGURE 9-33. Desired amplitude response. 
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FIGURE 9-34. Amplitude and phase response for HR filter. (The desired filter characteristic is 
shown using a solid line and the actual filter is shown using a dashed line.) 

We see that the error in the amplitude response, especially in the first of the two passbands, is 

small. In addition, the phase response is reasonably linear up to a frequency of about r = 0.29. Past 

this point, the amplitude is small so that the phase response is of little or no interest. One should, of 

course, be aware that the validity of these statements depends upon the application. 

EXAMPLE 9-15 _ 

In this example we repeat the previous example with the design of a FIR digital filter based on the 

Parks-McClellan algorithm. The Matlab code follows. 

EDU» c9exl5 

f = [0 0.2 0.22 0.5 0.52 1]; 

m = [11 0.40.400]; 

n = 30; 

b = remez(n,f,m); 

[h,w] = freqz(b,1,512) ; 

amp = abs(h); 

subplot (2,1,1) 

plot(f/2,m,w/(2*pi), amp) 

% Specify f vector 

% Specify amplitude response 

% Define n 

% Compute impulse response 

% Compute frequency response 

% Compute amplitude response 

% Designate first subplot 

% Plot amplitude response 



xlabel('Normalized Frequency - r’) 

ylabel('Amplitude') 

phase = angle(h); 

phase = unwrap(phase); 

phasedeg = phase*180/pi; 

subplot(2,1,2) 

plot(w/(2*pi),phasedeg) 

xlabel(1 Normalized Frequency - r') 

ylabel('Phase - degrees') 
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% Label x-axis 

% Label y-axis 

% Calculate phase 

% Unwrap phase 

% Express phase in degrees 

% Designate second subplot 

% Plot phase response 

% Label x-axis 

% Label y-axis 

The results of this design are shown in Figure 9-35. 

It is interesting to look at the unit pulse response of the filter just derived. This is easily accom¬ 

plished by entering the Matlab code 

EDU» sb = size(b); 

EDU» nn = 0:sb(2)-1 ; 

EDU» stem(nn,b) 

EDU» xlabel('Discrete Time Index - n') 

EDU» ylabel('Weight') 
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FIGURE 9-35. Amplitude and phase response for FIR filter. (The desired filter characteristic is 
shown using a solid line and the actual filter is shown using a dashed line.) 
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Discrete Time Index - n 

FIGURE 9-36. Unit pulse response of MR digital filter. 

The first two lines of code are necessary for the plot to begin at zero. Since n, the filter order, 

was set equal to 30, the filter has 31 weights, b(0), b( 1), . . ., £>(30). These are shown in Fig¬ 

ure 9-36. 

Note that the filter unit pulse response is even about the center weight at n— 15. Thus, as we saw 

in the last section, the non-causal version of the filter, which is determined by placing the center 

weight at n — 0, has a transfer function that is purely real. The linear phase then results from trans¬ 

lating the unit pulse response to the right 15 sample periods. 

In comparing the results of Examples 9-14 and 9-15, it should be noted that although the order of the 

FIR filter is three times the order of the HR, the error in the amplitude response for the HR filter is much 

larger than the error in the amplitude response for FIR filter. A basic advantage of HR filters over FIR 

filters is that a desired amplitude response characteristic usually can be approximated with a given er¬ 

ror constraint using fewer delays in the HR filter than would be required in the FIR realization. This re¬ 

duced number of delay elements comes at the cost of non-linear phase in the HR realization. The phase 

response, as expected, is perfectly linear in the FIR filter. The sawtooth pattern of the phase response 

in the stopband is due to the fact that the amplitude response is negative for periodic segments. Thus 

each of the phase jumps is 180°. Also note that the error in the two passbands and the error in the stop- 

band are equal for the HR filter. This demonstrates the equiripple characteristic of filters designed using 

the Parks-McClellan algorithm. 
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Summary 

This chapter basically considered two topics: the implementation of digital signal processors from 

the pulse transfer function, //(z), and the design of digital signal processors to meet some performance 

specification. The four main implementations considered were Direct Form I, Direct Form II, cascade, 

and parallel. 

The design or synthesis problem usually involves the development of a digital signal processor that 

meets some time-domain or frequency-domain specification. The impulse-invariant and step-invariant 

digital filters are based on a time-domain specification, while the bilinear z-transform digital filter is 

based on a frequency-domain specification. All of these filters are infinite-duration impulse response 

(HR) digital filters. 

The finite-duration impulse response (FIR) digital filter is based on a frequency-response specifi¬ 

cation, and the filter implementation is accomplished by taking the Fourier transform of the desired 

frequency-response specification. 

There are advantages to the use of both HR and FIR digital filters. The main advantages of HR fil¬ 

ters are as follows: 

1. The design techniques for HR digital filters are very easy to apply. The design is initiated with an 

analog prototype, and one who is familiar with analog filter theory will usually have a good feel 

for the performance of a given filter in a given application. 

2. Hardware requirements for an HR digital filter are usually less than the hardware requirements 

for a comparable FIR filter. However, with modern LSI and VLSI techniques, hardware consid¬ 

erations are becoming less important. 

The main advantages of FIR digital filters are the following: 

1. FIR filters can be designed that have perfectly linear phase. Therefore, phase distortion is eliminated. 

2. Since FIR filters have no feedback, they have no poles and are therefore always stable. 

3. The fast Fourier transform (FFT), which is the main topic covered in the next chapter, gives the 

filter designer a very simple and efficient tool for determining the filter weights. 

4. Since no analog prototype is required in the synthesis procedure, digital filters can be designed 

that have no analog equivalent. 

There are also disadvantages that are often important. The main disadvantages of the HR synthesis tech¬ 

niques treated in this chapter are these: 

1. Since the design procedure is initiated with an analog filter function, it is first necessary to de¬ 

termine an analog filter that meets the desired specifications. 

2. Phase distortion is frequently a problem. 

The main disadvantages of the FIR filter synthesis techniques discussed in this chapter are that: 

1. If the digital filter is to have an extremely small bandwidth, a large number of filter weights may 

be necessary. The result will be a digital filter with a large group delay. 

2. The selection of an appropriate window function may be difficult. 

It should be clear that the designer of a digital filter often has many options available. Choosing the ap¬ 

propriate technique for an application requires a good understanding of digital filter theory and the re¬ 

quirements of the specific application of interest. 
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The main points made in this chapter include the following: 

1. Two digital filter implementations that follow directly from the difference equation of a digital sig¬ 

nal processor or filter are the Direct Form I and the Direct Form II implementations. The Direct 

Form I implementation is actually a cascade of two networks. The first of these networks realizes 

the zeros of the pulse transfer function, and the second realizes the poles of the transfer function. 

The number of unit delay elements, z~1 elements, necessary for a Direct Form I implementation is 

the sum of the number of poles and the number of zeros. If the order of the cascade is reversed, the 

Direct Form II realization results. The total number of z_1 elements necessary for the Direct Form 

II implementation is the number of poles or the number of zeros, whichever is greater. 

2. The cascade realization results from writing the transfer function as a product of poles and zeros. 

The implementation of the filter is then the cascade of first-order or second-order digital filters. 

First-order sections are used for the implementation of simple poles and zeros, and second-order 

sections are used for the implementation of complex conjugate poles and zeros. 

3. The parallel realization results from expanding the transfer function of the digital filter by using 

partial-fraction expansion. Each term in the partial-fraction expansion is realized by using a first- 

or second-order digital filter. First-order sections are used for the implementation of simple poles, 

and second-order sections are used for the implementation of complex conjugate poles. 

4. The integrator is a basic building block for many systems. We investigated two discrete-time in¬ 

tegrators, the rectangular integrator and the trapezoidal integrator. Both of these are approxima¬ 

tions to the ideal integrator. The trapezoidal integrator exhibits a constant phase shift of - tt/2 rad 

for/ > 0 and thus exhibits zero group delay. The rectangular integrator exhibits a group delay of 

1/2T. The rectangular integrator exhibits less attenuation of very high frequencies than does the 

ideal integrator, while the trapezoidal integrator exhibits greater attenuation of high frequencies 

than does the ideal integrator. 

5. Infinite-duration impulse response digital filters can be designed by using either a time-domain or 

a frequency-domain criterion. If a time-domain criterion is used, the design technique is to deter¬ 

mine the digital filter having an output that is equivalent to the sampled output of an analog filter 

for some input signal. If the input signal is a unit impulse, the resulting digital filter is an impulse- 

invariant digital filter. If the signal is a step function, a step-invariant digital filter results. 

6. The impulse-invariant digital filter is designed by first expanding the transfer function, Ha(s), of an 

analog prototype using partial-fraction expansion. Taking the inverse Laplace transform yields the unit 

impulse response ha(t). This is then sampled, z-transformed, and multiplied by T. In equation form 

H(Z) = |,=„r} 

The result of this design technique is a digital filter having a unit pulse response equivalent to 

the sampled impulse response of the analog prototype. 

7. The step-invariant digital filter is designed by first determining the step response of the analog 

prototype from which the digital filter is to be derived. This is then sampled, z-transformed, and 

multiplied by (1 — z-1). In equation form 

H(Z) = (i - J 
The result of this design technique is a digital filter having a unit step response equivalent to the 

sampled unit step response of the prototype analog filter. 

8. The bilinear z-transform technique is an attempt to design a digital filter having a steady-state fre¬ 

quency response that approximates the steady-state response of the analog filter from which the 

digital filter is derived. The procedure is to use the substitution 
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rl - z"1 
1 + z^1 

in the transfer function of the analog prototype Ha{s). By proper choice of C, it is possible to 

match the responses of the analog and digital filters at some reference frequency. The appropri¬ 

ate value of C is 

C = (jo,, cot 

in which cor is the reference frequency and T is the sampling period. A major attribute of the 

bilinear z-transform synthesis technique is that a digital filter can be developed with strictly al¬ 

gebraic techniques. If Ha(s) is expressed as a ratio of polynomials in s, the resulting H(z) is a ra¬ 

tio of polynomials in z. 

9. Finite-duration impulse response digital filters can be implemented as shift registers with tap 

weights given by the Fourier series coefficients of the desired frequency response of the digital 

filter. Since there are, in general, an infinite number of nonzero Fourier coefficients, it is neces¬ 

sary to truncate the Fourier series expansion of the desired frequency response at a finite num¬ 

ber of terms. The error introduced by this truncation can be partially controlled by using an 

appropriate window function. The unit pulse response must then be multiplied by z“M, with M 

chosen to ensure that a causal digital filter results. This multiplication by z-M introduces a lin¬ 

ear phase shift into the frequency-response characteristic and therefore does not contribute to 

phase distortion. 

10. We studied FIR filter design techniques for the implementation to two types of filters. For the 

first type the desired transfer function of the noncausal filter was real, and for the second type 

the desired transfer function of the noncausal filter was imaginary. 

11. Computer-aided design techniques exist for both HR and FIR digital filters. FIR digital filters 

designed using the Parks-McClellan method, which is the most popular of these techniques, re¬ 

sult in linear phase filters having equiripple error characteristics. It typically takes more delay 

elements (higher filter order) to realize an FIR digital filter than it takes to realize an HR digital 

filter given a desired filter characteristic and a constraint on the maximum error. 

Further Reading 

The four textbooks listed in the previous chapter treat the design and analysis of digital filters: 
A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 

1989. 
J. G. Parokis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 

2nd ed. New York: Macmillan, 1992. 
R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing. Reading, MA: 

Addison-Wesley, 1988. 
J. A. Cadzow, Foundations of Digital Signal Processing and Data Analysis. New York: Macmillan, 1987. 
Two additional books focus almost exclusively on the digital filter synthesis problem: 
R. W. Hamming, Digital Filters, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1989. 
E. P. Cunningham, Digital Filtering: An Introduction. Boston: Houghton Mifflin, 1992. 
A number of books have recently been published that provide examples of digital filter synthesis using Matlab. 

The following book is especially recommended: 
V. K. Ingle and J. G. Proakis, Digital Signal Processing Using Matlab V.4. Boston, MA: PWS, 1997. 
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PROBLEMS 

Section 9-2 

9-1. Determine and sketch the Direct Form I and the Direct Form II realizations for each of the fol¬ 

lowing pulse transfer functions: 

,, 1 + 0-3z_1 - 0.7 z“2 
(a) H(z) = 

(b) H(z) = 

(c) H(z) = 

(d) H(z) = 

1 + 0.6Z"1 
1 + 0.3z_1 

1 - 0.6z_1 + 0.9z“2 
(1 + 0.3z~1)2(1 ~ O.lz"1) 

1 - 0.2z~2 + 0.3z“4 
f + 0.3z~] - 0.6z~2 - 0.7z"3 

(1 + 0.2z-1)3 

9-2. Determine and sketch the Direct Form I and Direct Form II realizations for each of the follow¬ 

ing pulse transfer functions: 

, , . 3 + 0.4Z’1 + 0.5z-2 
(a) H{z) = 

t-2 

1 

2 - 0.6z_1 + 0.8z 

(b) "<2) = H^+ 1-0.2,- 

(0 hu) = (i - rv + rr^2 

(d) H(z) = 2 + 3Z"1 - 0.4z"2 

9-3. Determine and sketch the Direct Form I and the Direct Form II realizations for each of the fol¬ 

lowing pulse transfer functions: 

(a) H(z) = 2 1 + 
1 - z"1 ' (1 - 0.2z-1)2 

(b) H(z) = (1 - z-1) + 

(c) H(z) 

(1 - 0.3z-1)2 
1 

1 - 0.6z~] + 0.4z~2 4- 0.8z^3 

9-4. Determine a cascade and parallel realization, using only first-order structures for the following 

pulse transfer function. 

H(z) 
zjz - 1)_ 

(z - \)(z - b 

9-5. Determine a parallel realization for the following pulse transfer function using structures having 

minimum order. 

H(z) 
1 

(1 - 0.1z-1)(l - 0.9z-1 + 0.81z“2) 

9-6. Determine a parallel realization for 

H(z) = 
(1 - 0.1z_1)(l - 0.5z_1) U2 



FIGURE P9-11 

9-12. Realize the system shown using only one z~l element. 

FIGURE P9-12 
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9-13. Determine the pulse transfer function of the system shown as a ratio of polynomials in z~l. The 

parameters a, b, c, and d are arbitrary. 

FIGURE P9-13 

9-14. Determine the pulse transfer function of the system shown and draw the Direct Form II 

realization. 

FIGURE P9-14 

9-15. Determine the pulse transfer function of the system shown in Figure P9-15 and draw the Direct 

Form II realization. 

9-16. Determine the pulse transfer function of the digital filter shown in Figure P9-16 and draw the 

Direct Form II realization. 

9-17. Determine the pulse transfer function of the system shown in Figure P9-17 and draw the Direct 

Form II realization. 

9-18. Determine the pulse transfer function of the digital filter shown in Figure P9-18 and draw the 

Direct Form II realization. 
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FIGURE P9-17 

FIGURE P9-18 
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9-19. Show that the digital filter examined in Example 9-2 has the unit pulse response 

an 
h(nT) = ——-sin [(n + 1 )6]u(n) 

9-20. Show that the amplitude response of the digital filter examined in Example 9-2, evaluated at 

coT = 0, is 

\H(el6)\ = ~1_a + fl2 _ 2fl cos 26 

Use this result to show that, at 0 = 7t/2, the amplitude response is 

Section 9-3 

9-21. The two-term running average filter is an approximation to an integrator. It is defined as 

y(nT) = \[x(nT) + x(nT - T)] 

Determine the pulse transfer function and plot the amplitude and phase responses as functions 

of r =fffs in the range 0 < r < 0.5. In what sense is the two-term running average filter an 

integrator? 

9-22. Repeat Problem 9-21 for the four-term running average filter defined by 

y(nT) = \[x(nT) + x(nT — T) + x(nT - 2T) + x(nT - 3T)} 

Is this a better integrator than the two-term running average filter? Why or why not? 

9-23. Determine the pulse transfer function for the Wterm running average filter defined by 

y(nT) = 2 X x{nT - kT) 
k = 0 

Express the amplitude response as a function of the normalized frequency variable r = f/fs. 

9-24. Determine and plot the unit pulse response of both a rectangular and trapezoidal integrator. Com¬ 

pare with the unit impulse response of an ideal analog integrator. Comment on your results. 

9-25. Assume that an ideal analog integrator has input 

x(t) = Ae~at 

Determine and plot the output. Now assume that samples of x(t) defined by 

x(nT) = A(e~aT)n 

are applied to both a rectangular and trapezoidal integrator. Determine and plot the output se¬ 

quence, y(nT), for both integrators and compare with the sampled output of an ideal integrator. 

Comment on the results. 
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9-26. A first approximation to a digital differentiator is a system that generates an output equal to the 

slope of the line connecting the sample points x(nT) and x(nT - T). 

(a) Show that the defining difference equation is 

y(nT) = ~{x(nT) - x(nT - T)} 

(b) Determine the amplitude response and phase response of the system. Compare with an ideal 
differentiator. 

Section 9-4 

9-27. Determine the pulse transfer function of both an impulse-invariant and step-invariant integrator. 

Determine and plot both the amplitude and phase responses of each design in the range 

0 < r < 0.5. Compare your results with the results of Example 9-3. 

9-28. Design a digital integrator by using the bilinear z-transform synthesis technique. Show that the 

result is trapezoidal integration. 

9-29. Design a digital differentiator by using the step-invariant method. Plot the amplitude response 

and phase response of your design. Compare your results with the differentiator designed in Prob¬ 
lem 9-26. 

9-30. Determine the pulse transfer function, using impulse-invariant synthesis, corresponding to the 

following analog transfer functions. The sampling period, T, is to be left arbitrary. 

(a) Ha(s) = b 

fl>) Ha(s) = 

(c) tia(s) = 

0 + 2)0 + 4) 

8 

s(s + 2) (s + 4) 

s + 1 

0 + 0.5)0 + 4) 

9-31. Assuming a sampling frequency of 40 radians/second, plot the amplitude and phase responses 

for each of the digital filters found in Problem 9-30. On the plots include the amplitude and phase 

responses of the analog filters, from which each of the digital filters is derived. You may wish to 

use Matlab for calculating and plotting the responses. 

9-32. Repeat Problems 9-30 and 9-31 using step-invariant synthesis. 

9-33. For the analog transfer function 

flW (s + 0.5)0 + 2)0 + 20) 

determine the impulse-invariant digital filter. Assume a sampling frequency of 15 Hz. Draw the 

parallel realization of the filter using only first-order structures. 

9-34. Plot the amplitude and phase responses the digital filter found in Problem 9-32. On the plots 

include the amplitude and phase responses of the analog filter from which the digital fil¬ 

ter was derived. Once again, you may wish to use Matlab for calculating and plotting the 
responses. 
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9-35. Repeat Problems 9-32 and 9-33 using step-invariant synthesis. 

9-36. Determine an impulse-invariant and a step-invariant digital filter corresponding to the analog 

transfer function 

= IQfr + 1) 
H() (s + 2)(s + 6) 

Leave the sampling frequency arbitrary. 

9-37. Determine the pulse transfer function, using both impulse-invariant and step-invariant synthesis, 

for each of the following analog transfer functions. The sampling period, T, is to be left arbitrary. 

Draw the Direct Form II realizations for each filter. 

(a) m = ^ 
<b) - ^T5) 

9-38. Determine an impulse-invariant and a step-invariant digital filter corresponding to the following 

analog transfer function. Assume a sampling frequency of 20 Hz. Draw the Direct Form II im¬ 

plementation for each digital filter. 

Ha(s) = 
100 

0 + io)2 

9-39. Repeat Problem 9-36, assuming 

Ha(s) = 
100 

(,s + l)(s + 10)2 

9-40. In this problem we wish to design an “exponential-invariant” digital filter corresponding to the 

analog transfer function 

"•<*> = 7T5 

We wish the output of the digital filter to be equivalent to the sampled output of the analog filter 

with input 

x(t) = e~3tu(t) 

The dc (/ = 0) gains of the analog filter and the digital filter are to be equal. Derive H{z) of the 

digital filter, assuming that the sampling frequency is 20 Hz. 

9-41. Design a digital differentiator using the bilinear z-transform synthesis technique. Plot the ampli¬ 

tude and phase responses of both the digital filter and the ideal analog filter. Tell why this is not 

an effective design even for low-input frequencies. 

9-42. Determine H(z), using the bilinear z-transform synthesis technique, for the analog transfer function 

5 
Ha(s) = 

(is + 1)(^ + 5) 
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Assume a sampling frequency of 12 Hz and express your result as a ratio of polynomials in z~x. 
Consider the following two cases: 

(a) The digital filter is to have a response closely approximating the analog filter for very low 
frequencies. 

(b) The digital filter and the analog filter are to have the same response at a frequency of 2 Hz. 

9-43. Work Problem 9-41 using Matlab. 

9-44. A third-order Butterworth filter having a 3-dB break frequency of rad/s is given by 

HJs) = r-4- 
aW s3 + 2s1 + 2s + 1 

Assuming a sampling frequency of 6 Hz, determine the pulse transfer function of the bilinear 

z-transform digital filter equivalent to the given HJs). Both the analog and digital filters are to 

have the same response at co = 1 rad/s. 

9-45. Work Problem 9-43 using Matlab. 

9-46. Repeat Problem 9-44 assuming that the digital filter is to have a response closely approximating 

the analog filter response at very low frequencies. 

9-47. Consider the analog system shown. 

R * IQkn 

—vw— 

Input = x(t) -p C = 20 m F Output = y(t) 

FIGURE P9-47 

(a) For a sampling frequency of 15 Hz, determine the pulse transfer function for the impulse-in- 

variant, step-invariant, and bilinear z-transform digital filter corresponding to the given ana¬ 

log system. For the bilinear z-transform filter, match the response of the digital filter to the 

response of the analog filter at co = 5 rad/s. 

(b) Determine and plot the amplitude response (in decibels) of all three filters found in part (a). 

Also plot the amplitude response of the analog filter. Compare the responses. 

(c) Repeat part (b) for the phase responses. 

9-48. Determine //(z), using the bilinear z-transform synthesis technique, corresponding to the analog 
transfer function 

HM = 

16 

s2 + 12s + 16 

Both the analog and the digital filters are to have the same magnitude and phase responses at 

/ — 4 Hz. Assume a sampling frequency of 50 Hz. 
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9-49. Using the bilinear z-transform synthesis technique, determine the pulse transfer function corre¬ 

sponding to 

tt M = 2(s + 4) 

^ (s + l)(s + 8) 

Both the analog and digital filters are to have the same magnitude and phase responses at 

/= 4/77 Hz. Assume a sampling frequency of 14 Hz. 

9-50. Work Problem 9-48 using Matlab. 

9-51. Using the bilinear z-transform synthesis technique, determine the pulse transfer function corre¬ 

sponding to 

Ha(s) = 
2 Q + 3) 

30 + 1)0 + 2) 

Both the analog filter and the digital filter are to have the same response at co = 3 rad/s. Assume 

a sampling frequency of 10/77 Hz. Plot the amplitude response of the resulting filter as a function 

of r in the range 0 < r < 0.5. 

9-52. Work Problem 9-51 using Matlab. 

9-53. A third-order Butterworth filter having a 3-dB break frequency of 1 rad/s is given by 

11 ~ s2 + 2s1 + 2s + 1 

Assuming a sampling frequency of 10 Hz, determine the pulse transfer function of the bilinear 

z-transform digital filter equivalent to the given Ha(s). Both the analog and digital filters are to 

have the same response at co = 1 rad/s. 

9-54. Work Problem 9-53 using Matlab. 

9-55. Derive //(z), the pulse transfer function for a fourth-order bandpass filter based on the second- 

order low-pass Butterworth prototype. Give the result in terms of the parameters A and B. Next 

evaluate A and B assuming a sampling frequency of 5,000 Hz, a lower 3-dB frequency of 800 Hz, 

and an upper 3-dB frequency of 1200 Hz. Using these values, write H(z) as a ratio of polynomi¬ 

als in z, giving the numerical values of each coefficient. 

9-56. A bilinear z-transform digital filter uses C = 1.5fs. Determine the normalized frequency correct 

to two decimal places, at which co = cov 

9-57. Show that a notch (band reject) filter can be developed from a low-pass prototype by using the 

correspondence 

s => D 
1 - z~2 

1 - Ez~l + z~2 

Determine the relationship between D and the bandwidth and between E and the center frequency 

of the notch. 

9-58. Use the relationship developed in the previous problem to design a notch filter based on a first- 

order Butterworth prototype. The sampling frequency is to be 2,000 Hz, and the bandedges of the 

notch are to be 200 and 300 Hz. Plot the amplitude and phase responses of the resulting filter. 
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Section 9-5 

9-59. The triangular window function can be defined by 

w,(n) = 1 - ~, 

Apply the triangular window to the ideal low-pass filter developed in Example 9-12. Plot the re¬ 

sulting amplitude response and compare with the responses obtained with the rectangular and 

Hamming windows illustrated in Figure 9-31. (Note: Window functions can be defined in vari¬ 

ous ways. A more general definition will be discussed in the next chapter. The results are sum¬ 
marized in Table 10-4.) 

9-60. Derive Equation (9-1’73). 

9-61. An FIR digital filter is to be designed that has the rather strange desired frequency response 

[6, 
Hd{ei2m) 

3, 

0 < r < ^ 

-\<r< 0 

Determine the unit pulse response hd(nT). Assuming that a rectangular window is used with M = 8 

(17 total weights), plot the amplitude and phase responses as functions of r for the causal filter. 

9-62. Determine and draw the amplitude and phase responses of the FIR digital filter shown. 

9-63. Repeat Problem 9-55 for the filter shown. 

—j—-C*- 

3 
- 

FIGURE P9-63 
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9-64. Write an equation giving the filter weights, Lk, for the FIR filter defined by the desired amplitude 

response shown. Assume that a Hamming window is to be used, and let M — 12. 

Hd(ej2nr) 

0.6-- 

0 0.1 

_i- r 

0.3 

FIGURE P9-64 

9-65. Plot the amplitude and phase responses of the filter in Problem 9-64. 

9-66. Determine the filter weights, for the FIR filter defined by the desired amplitude response 

shown. Assume that a Hamming window is to be used, and let M = 12. 

Hd{f) 

FIGURE P9-66 

9-67. Plot the amplitude and phase response of the filter determined in Problem 9-66. 

Section 9-6 

9-68. Find an HR and FIR digital filter, using computer-aided design techniques, that realize the ideal 

lowpass filter of Example 9-12. See how well you can do using the same number of weights as 

used in Example 9-12. 

9-69. Design FIR and HR digital filters using the specifications given for Problem 9-66. 

Computer Exercises 

9-1. Develop a Matlab M-file that generates a step invariant digital filter from a ^-domain transfer 

function. The input to the M-file is to be vectors containing the numerator and denominator co¬ 

efficients of the continuous-time filter. The Matlab program generates the numerator and de¬ 

nominator coefficients of the resulting digital filter. Test the resulting program by using the 

program to develop a step invariant digital filter using (9-81) as the analog prototype and com¬ 

paring the result with (9-87). 
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9-2. The purpose of this computer exercise is to develop a program for designing a bilinear z-transform 

bandpass filter. Using the technique illustrated by (9-128) with A and B defined by (9-143) and 

(9-144), respectively, develop a Matlab M-file that computes the coefficients of the numerator 

and denominator polynomials of the pulse transfer function for a bandpass digital filter. Use the 

resulting computer program to verify the results obtained in Example 9-9. 

9-3. In this computer exercise a fourth-order bilinear z-transform digital filter is derived based on a 

lowpass Chebychev I analog prototype. The cutoff of the Chebyshev analog filter is 100 Hz and 

the passband ripple is 1 dB. The digital filter is designed for a sampling frequency of 2,000 Hz. 

Both the analog filter and the digital filter are to have the same amplitude and phase response at 
100 Hz. 

(a) Determine the pulse transfer function, H(z), of the digital filter. 

(b) On the same set-of axes plot the amplitude response in dB for both the analog and digital 
filters. 

(c) Repeat (b) for the phase response. 

(d) Plot the group and the phase delay for both the analog and digital filters. 

(e) Plot the pole and zero locations for both the analog and the digital filters. 

9-4. Repeat the preceding computer exercise using a fourth-order elliptic prototype. Assume that the 

analog elliptic filter has 1 dB ripple in the passband and that the stopband attenuation is 25 dB 

down from the peak amplitude response in the passband. 

9-5. In Section 9-6 it was noted that it is usually possible to satisfy a given amplitude response 

specification with an HR filter having fewer delay elements than would be required for an FIR 

digital filter. In this computer exercise we quantify this statement. The first step is to develop a 

Matlab M-file that determines the squared error between a filter specification (the desired 

characteristic) and the actual digital filter designed using computer-aided techniques. Using this 

M-file determine the mean-square error between the desired filter amplitude response and the 

amplitude response from the HR filter designed in Exercise 9-14. Repeat for the FIR digital fil¬ 

ter developed in Exercise 9-15. Experimentally determine the number of delay elements neces¬ 

sary to approximate the filter specification given in Figure 9-33 using an FIR filter and having 

a mean-square error less than or equal to that achieved with the IIR filter. Comment on the re¬ 
sults of this exercise. 

9-6. Develop both FIR and IIR digital filters based on the following amplitude response specification. 

Experiment with the number of delay elements used in the implementation. Comment on the 
results. 

FIGURE P9-6 
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9-7. Design an HR Hilbert transform filter using the remez routine introduced in Section 9-6. Evalu¬ 

ate the result by applying the using the test signal 

x(nT) = 3 cos(/2irt + —j + 5 sin^hrt + — 

to the resulting FIR filter. Since we can easily compute the exact Hilbert transform of x(nT), the 

error resulting from computing the Hilbert transform by using the filter is easily determined. 

9-8. Repeat the preceding computer exercise for a discrete-time differentiator. Use the same test signal. 



CHAPTER 

The Discrete Fourier Transform and Fast 
Fourier Transform Algorithms 

10-1 Introduction 

The discrete Fourier transform (DFT) was derived in Section 4-13 as a doubly sampled version of the 

continuous-time Fourier transform (i.e., sampled in both time and frequency). The DFT transform pair 

is repeated here for convenience: 

N-1 

Xk = 2 xne~^kn/N, k — 1,2,... ,N (10-1) 
n = 0 

for the direct transform, and 

Xn = T; 2 Xke^kn'N, n = 1,2,..., N (10-2) 
k = 0 

for the inverse transform. 

To derive the DFT from the continuous-time Fourier transform, the time-sampling interval was taken 

as TIN = At, where N is the total number of samples taken in a T-second interval (time window), and 

the frequency-sampling interval was taken as 1 IT. Thus, both relationships imply periodicity—the first 

in frequency with period/^ = NIT = 1/At, and the second in time with period T = NAt = Nlfs. In terms 

of the sample number, the first is periodic in k with period N, and the second is periodic in n with 

period N. 
In this chapter, we look further at the differences between the continuous-time Fourier transform and 

the DFT, derive two fast algorithms for computing the DFT (these are referred to as fast Fourier trans¬ 

form (FFT) algorithms), and illustrate several applications of the DFT and FFT. 

Since Matlab includes an FFT algorithm, we are not required to go through the computation of the 

FFT longhand as in several examples in this chapter. We do it merely to illustrate the DFT and FFT. 

10-2 The DFT Compared with the Exponential Fourier Series; 
Error Sources in the DFT 

To emphasize the difference between the Fourier transform and the DFT, we note that the Fourier trans¬ 

form is used to represent a continuous-time energy signal that lasts for — °° < t < oo, and the resulting 

spectrum generally covers — 00 </ < °°. The DFT represents a finite number of sample values in the fi¬ 

nite observation interval 0 < nT/N < T, and the resulting line spectrum is limited to 0 < k/T < N/T. Of 

course, as noted previously, (10-1) and (10-2) repeat each Appoints due to the periodicity of eN21iMNm 

486 
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We now illustrate by example the effect of sampling and finite observation interval by examining in 

some detail the approximation of a Fourier transform by a DFT. Specifically, the results from Fourier 

transform theory that we wish to make use of are the theorems repeated below for convenience. 

1. Transform of the ideal sampling waveform (4-42): 

OO 00 'I 

ys(t) = 2 <5(r - rnTJ 2 Kf-nfs), 7 = — (10-3) 
m — —oo n = —oo 1 s 

2. Transform of a rectangular pulse (Example 4-6 and the time-delay theorem): 

n| T sine(Tf) exp(-/2irt0/) (10-4) 

3. The convolution theorem of Fourier transforms: 

x1(t)*x2(t)*+X1(f)X2(f) (10-5) 

4. The multiplication theorem of Fourier transforms: 

x^xft) Xff) * X2(f) (10-6) 

EXAMPLE 10-1 

As a specific example, consider the two-sided exponential signal 

x(t) = exp( 

with Fourier transform 

X{f) 
It 

(10-7) 

(10-8) 
1 + (2 it/t)2 

These are sketched in Figure 10-la. 

Since we are considering discrete-time signals, we multiply x(t) by the ideal sampling waveform, 

ys(t), to produce the sampled exponential signal 

HT 
xjt) = ys(t) exp (10-9) 

By the multiplication theorem, the Fourier transform of xs(t) is the convolution of — 

fs _O08(f — nfs) and X(f). The result of this convolution is 

W) = 2Tfs 2 (1 + [2777(7- «7)]2rl (10-10) 
n = —oo 

The sampled signal xs(t) and its spectrum Xs(j) are shown in Figure 10-lb for the case where 

fs = 1 Hz. 
In calculating a DFT only a T-second section of the sampled signal is observed. In effect, xs(t) is 

multiplied by a window function U(t/T). In the frequency domain, this corresponds to convolution 

of Xs(f) with the Fourier transform of the window function, which is T sine Tf. Denoting the Fourier 

transform of the windowed and sampled signal by Xsw(f), we may write it as 

xj f) = 2Tfs i; {1 + [277Tif- nf,)]2}-1 * Tsine Tf 
n — —co 

The sampled, windowed signal and its spectrum are shown in Figure 10-lc. 

(10-11) 
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x(t) 

X(f) 

(a) Signal to be sampled and its spectrum (r = 1 s) 

X,(OII(y) 

-4 ♦ ^4 
-2-1012 

(c) Windowed, sampled sij 

Xm(f) 

and its spectrum (T = 4+ s) 

(/) 

•*»p ,(/) 

4—4—f—f— —i—4—4-/ TlL _LlL -k 
-4-3-2-10123 -1 0 1 

(d) Sampled signal spectrum and corresponding periodic 
repetition of the sampled, windowed signal 

FIGURE 10-1. Signals and spectra illustrating the derivation of the DFT from the Fourier transform. 

Finally, the result of a DFT operation effectively samples the spectrum Xsw(f) at a discrete set of 

frequencies separated by the reciprocal of the observation interval (window duration), 1/7", resulting 

in the sampled spectrum Xsp(f). This corresponds to convolution in the time domain with a sequence 

of ^-functions since 

T 2 S(t-mT2 Sif-nT-1) (10-12) 
m = —oo n = —oo 

This produces a periodic sampled sequence, xsp(r), in the time domain. The resultant sampled signal 

and its spectrum are shown in Figure 10-Id. 
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Matlab Application 

The following Matlab program illustrates the errors incurred through the sampling operations in 

the time and frequency domains when using the FFT. The sampled signal is a double-sided expo¬ 

nential, which we sample at 1, 2, and 4 times per time unit. The time window width is 4 (-2 to 2) for 

the first example computed as illustrated in Figure 10-2, and 8 (-4 to 4) for the second example com¬ 

puted as illustrated in Figure 10-3. The FFT-computed spectrum is compared with the analytically 

computed Fourier transform magnitude, which is plotted in the right-hand set of figures. 

% clOexl 

% 

clg 

T=input('Enter the time window width'); 

Tss=input('Enter the largest time sampling interval'); 

for k=l:3 

k_even=2 *k; 

k_odd=2 *k-1 ; 

Ts=Ts s/(2A(k-1)) ; 

fs=l/Ts; 

tn=-T/2:Ts:T/2; 

FFT pairs for doublesided exponential; T = 4 
1 

0.5 

0 
-2-1012 

tn 

FIGURE 10-2. FFT of a double-sided exponential signal using window width of 4 to illustrate 
sampling errors. Solid lines in right-hand plots show the spectra of the analog signals. 



FIGURE 10-3. FFT of a double-sided exponential signal using window width of 8 to illustrate 
sampling errors. Solid lines in right-hand plots show the spectra of the analog signals. 

L_t=length(tn) ; 

del_f=l/T; 

f_max=(L_t-1)* d el_f; 

fn=0 : del_f : f__max ; 

L_fn=length(fn); 

f=0:.01:f_max; 

L_f=length(f); 

X=fs * 2./(l+(2*pi*f) .A2) ; 

L_X=length(X); 

xs=exp(-abs(tn)); 

L_xs=length(xs); 

Xs=fft(xs); 

L_Xs=length(Xs); 

subplot(4,2,k_odd),stem(tn,xs),xlabel('tn'),ylabel('x(tn)'), . . . 

axis([-T/2 T/2+.01 01]),... 

if k=l 

title(['FFT pairs for double-sided exponential; T — num2str(T)]) 

end 

subplot(4,2,k_even),stem(fn,abs(Xs)),xlabel(’fk,f'), . . . 

ylabel('X(fk),X(f)’),axis([0 f_max 0 2Ak]), hold 

subplot(4,2,k_even),plot(f,X) 
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Over the years, a descriptive terminology has come into common use to denote the effects illustrated 

in Figure 10-1. Because of sampling, the spectrum of the analog signal is repeated about integer multi¬ 

ples of the sampling frequency to produce the spectrum of the sampled signal. The resultant spectrum 

of the sampled signal therefore consists of a superposition of the analog signal spectrum and its trans¬ 

lates in the sampling frequency. The overlapping of the analog signal spectrum with its translates, which 

results in the spectrum shown in Figure 10-lb, is called aliasing. 

Windowing the samples of the signal in the time domain corresponds to convolution of the sampled- 

signal spectrum with the Fourier transform of the window that produces the spectrum of Figure 10-lc. 

Thus the value of the spectrum for the windowed, sampled signal at a given frequency really is the re¬ 

sult of integrating over all spectral components of the windowed spectrum after weighting by the Fourier 

transform of the rectangular window. Thus a large spectral component in the periodic spectrum shown 

in Figure 10- lb, say at/ = 1 Hz, can have a large influence on the spectrum at some other frequency, say 

/ = 0.5 Hz, of the windowed signal. This effect is referred to as the leakage effect, which is descriptive 

of how spectral energy “leaks” from one frequency to another as a result of the windowing. 

The final effect to be discussed is referred to as the picket-fence effect. It simply refers to the fact that 

the spectrum of the sampled, windowed signal is viewed at a discrete set of frequencies. In effect, the 

spectrum is viewed through a picket fence. Figure 10-Id illustrates a rather fortunate state of affairs in 

that the peaks and valleys of the spectrum Xsw(f) are viewed through the picket fence of impulses. Had 

there been a large spectral component or a spectral null at, say, / = 0.375 Hz, its presence would not be 

apparent from the spectral samples shown in Figure 10-Id. 

With all these effects being present any time an analog signal is sampled and the DFT of a finite 

sequence of samples taken, it is indeed surprising that the DFT of the samples comes anywhere 

close to approximating the spectrum of the original signal. Various measures can be taken to mini¬ 

mize the detrimental effects of aliasing, leakage, and the picket-fence effect. These cures are outlined 

in Table 10-1. 

Note that the various effects derived in Example 10-1 are summarized in Table 10-1. With the time¬ 

sampling interval of 1 second in Figure 10-2, considerable aliasing results as noted at the center of the 

frequency spectrum plot. Even for a time sampling interval of 1/4 second, error is evident at zero fre¬ 

quency. This is due primarily to the leakage effect because from the time-window width of 4 seconds. 

In Figure 10-3, we still have considerable aliasing for the time-sampling interval of 1 second. The ef¬ 

fect of leakage is considerably less than that for the results of Figure 10-2, as noted from the bottom 

spectral plot of Figure 10-3. This is because the time-window width is twice that of Figure 10-2. 

TABLE 10-1 
Minimizing DFT Error Effects 

Problem Possible Cure 

1. Excessive errors due to aliasing a. Increase the sampling rate 

b. Prefilter the signal to minimize high-frequency spectral content 

2. Spectral distortion due to leakage a. Increase the window width by increasing the number of 

DFT points 

b. Use window functions that have Fourier transforms with low 

sidelobes (discussed in Section 10-8) 

c. If large periodic components are present in the signal, eliminate 

these before windowing by filtering 

3. Picket-fence effect results in important Increase the number of DFT points while holding the sampling 

spectral components being missed rate fixed. This places “pickets” closer together 
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10-3 Examples Illustrating the Computation of the DFT 

Before developing efficient algorithms for computing the DFT sum given in (10-1), we consider sev¬ 

eral examples in which explicit mathematical expressions for the DFT are developed. Usually this is 

not possible, and the DFT of a sequence must be evaluated numerically. For large sums, this can be ex¬ 

ceedingly time consuming, even for a computer. This is the reason that fast Fourier transform (FFT) al¬ 

gorithms were developed, an idea first attributed to J. W. Tukeyj 

We now write the DFT sum as 

X(k) = 2 x(n)W$, k = 0, l,..., N - 1 (10-13) 

WN = exp [~j2 tt/N] (10-14) 

For a discrete-time sequence {x(n)} of length N, the sum (10-13) gives a discrete-frequency sequence 

(X(&)} of length TV. 

EXAMPLE 10-2 _ 

Find the N = 8 DFT of the signal 

x(n) = 4 + 3 sin( 7m/2) 

= 4 + 3 sin[277(27z/8)], 0 < n < 7 (10-15) 

Note that if extended beyond the interval 0 < n < 7, this is a periodic discrete-time signal that goes 

through two cycles for each 8 values of n. 

Solution: We first write x(h) as 

x(n) =4 + 3 
gjim/2 _ e-jim/2 

= 4 - j - ej7m/2 + j ~ e~j7m/2 
J 2 J 2 

and note that the sum for X(k) can be written as the sum of three terms: 

(10-16) 

X(k) = 2 xin) e 
—j(2Tr/8)kn 0<£<7 

7 3 7 3 7 4 ^ e~jirkn/4 — j — ^ ejTm/2e-jirkn/4 + j — ^ e-jTm/2e-jirkn/4 

n = r\ 2 M_n 2 n 
(10-17) 

To evaluate these sums, consider 

SN(l, k)=^2 ei2”ln,NWnNk 

— ^ ei2<l~k)n/N 

fFor an interesting article that goes into some of the history of the FFT along with several alternative derivations, see “A 

Guided Tour of the Fast Fourier Transform” by G. D. Bergland in the IEEE Spectrum, Vol. 6, July 1969, pp 41-52. 
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N-1 

= 2 [e’2^'~k)/N]n (10-18) 
n = 0 

Using the result for the sum of a geometric series given by (4-136), this sum can be evaluated for 

k =£ l as 

l _ ej2ir(l-k) 

SN(l, k) = | _ej2ir(l-k)/N = k i1 l (10-19) 

which follows because — 1 when l — k is any integer. If l — k the denominator is also 0 and 

this must be handled as a special case. If / — k = 0 (i.e., k = /), then the sum for SN(l, k) becomes 

N-1 

SN(l, «) = 2 1 = w (10-20) 
n = 0 

Thus, SN(l, k) can be written compactly as 

SN(l, k) = N8kl (10-21) 

where 8kl = 1 for k = € and zero otherwise and is the Kronecker delta defined previously. Using this 

result in (10-17) gives 

X(k) = 4(8 V - j | (88k2) + j | (88k_2) 

= 328kfl - jl28k2 + jl28k _2 (10-22) 

Note that the last term is nonzero for k = — 2, which is not in the range 0 < k < 7. However, {X(k)} 

is periodic with period 8 (this can be checked by replacing k with k ± 8 in (10-17)), and 8k _2 can 

be replaced by v This is shown in Figure 10-4 in which two periods of {2f(k)} are depicted. The 

period for 0 ^ k ^ 7 is shown by the solid lines and the period for — 8 < & < — 1 is given by dashed 

lines. Noting this periodicity and keeping in mind that the DFT is defined for 0 < k ^ N — 1, we 

can see that the result for the DFT of the sequence of this example is 

X(0) = 32 X(l) = 0 X(2) = —jl 2 X(3) = 0 

X(4) = 0 X(5) = 0 X(6) = j 12 X{1) = 0 

We recall from Chapters 3 and 4 that the amplitude spectrum of a real signal should be even and the 

phase spectrum should be odd. Although the values listed above for X(k) do not, at first glance, ap¬ 

pear to obey these requirements, we see that these symmetry properties are indeed obeyed by the se¬ 

quence {X(&)} if it is periodically extended. 

EXAMPLE 10-3 _ 

In this example the two-point DFT algorithm, which has two input time-domain samples, x(0) and 

x(l), and two output frequency-domain samples, X(0) and X(l), is derived. This is illustrated as a 

block diagram in Figure 10-3a. For this case N = 2 and the frequency-domain samples are given by 

l 

X(k) = 2 x{n)Wf, k = 0,1 (10-23) 
n = 0 

Performing the summation for k = 0 and k — 1, we obtain 

X(0) = jc(0) + x(l) (10-24a) 
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\X(k)\ 

same components (b) 

FIGURE 10-4. Spectra pertaining to Example 10-2: (a) amplitude; (b) phase. 

and 

X(l) = x(0)-x(l) (10-24b) 

where (10-24b) results because 

W\ = e~i2v/2 = «-*■ = -1 (10-25) 

Equations (10-24a) and (10-24b) are represented by the signal flow graph in Figure 10-5b. The 

arrows represent both direction of the signal flow and a multiplying factor (gain). If a multiplying 

m 

Xil) 

2-point 
DFT 

*(0) 

*0) 

(a) Two-point DFT 

*0)C*^— ——-jp jto) = jc(0) + jc(1) 

*<1) —■—*0 X(D = x(0)-x(l) 

(b) Signal flow graph for two-point DFT 

FIGURE 10-5. Two-point DFT. 



10-3 / Examples Illustrating the Computation of the DFT 495 

factor is not shown, it is understood to be +1. The calculation in Figure 10-5b is known as a butter¬ 

fly calculation because of the shape of the diagram. In the following sections we will see that the 

butterfly is the basic building block of the FFT algorithm. 

Before going on to the next example, we examine W1^ for three specific values of k. For k = N/2 

we have 

WNJ2 = exp -j2-1 = e~* = -1 (10-26) 

Two other special cases of interest are 

W%4 = exp = e';V/2 = -7 (10-27) 

and 

W3^4 = exp = e~j37r/2 = ejir/2=j (10-28) 

These values for WkN will now be used in deriving the four-point DFT algorithm. 

EXAMPLE 10-4 _ 

j Generalize the derivation of Example 10-3 to a four-point DFT, which is indicated pictorially by the 

block diagram of Figure 10-6a. 

Solution: For a four-point DFT, N = 4 in (10-1), which yields 

3 

X(k) = X x(n)Wf, k = 0,1, 2,3 (10-29) 
n = 0 

This equation can be expanded with the aid of (10-26)-( 10-28) as the four equations 

X(0) = x(0) + x(l) + jc(2) + x(3) (10-30a) 

X(l) = x(0) ~ jx( 1) - x(2) + jx{3) (10-30b) 

X(2) = x(0) - jc(1) + x(2) - x(3) (10-30c) 

X(3) = x(0) + jx( 1) — x(2) — jx( 3) . (10-30d) 

Rearranging these equations gives 

X(0) = [jc(0) + x(2)] + [x(\) + x(3)] (10-3 la) 

X(l) = [x(0) - x(2)] -Ml) ~ x(3)] (10-3lb) 

X(2) - [x(0) + x(2)] - [x(l) + x(3)] (10-31c) 

X(3) - [x(0) - x(2)] + M1) - xQ)] (10-3Id) 

Careful study of the terms in brackets shows that, with proper ordering of the input samples, they 

can be generated by using the two-point DFT algorithm developed in Example 10-3. This is 

shown in Figure 10-6b as the left set of two butterflies. The results of this first series of computa¬ 

tions, called a recursion, can then be put into a second pair of butterflies to produce the final output 
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m 
41) 

42) 

43) 

4-point 

DFT 

X(0) 

X(\) 

X(2) 

X(3) 

(a) Four-point DFT 

4D 

43) 

X(0) 

X(\) 

X(2) 

X(3) 

(b) Signal flow graph for four-point DFT 

FIGURE 10-6. Four-point DFT. 

frequency-domain samples. This set of calculations constitutes the second recursion. The systematic 

process represented by Figure 10-6b is one form of a fast Fourier transform for four input data points. 

Before considering the generalization of the FFT algorithm development of Example 10-4, we con¬ 

sider one additional example in order to illustrate the computations involved in the FFT algorithm just 

developed. In considering this example, we will also illustrate an interesting application. 

EXAMPLE 10-5 ___ 

As a simple example to illustrate the computation of a four-point DFT consider the complex signal 

where x(ri) and y(n) are given by 

z(n) = x(n) + jy(n) (10-32) 

x{n) 
n u 

= COS —— , 
2 

n = 0,1, 2, 3 (10-33a) 

and 

yin) 
n tt 

= sin —, n = 0,1,2, 3 (10-33b) 

Thus, z(n) becomes 

z(n) = cos — + / sin— (10-34) 

These two sample sequences are shown in Figure 10-7a, and taken together they completely specify 

z(n). In this case, the complex signal is equivalent to exp(/7Z7r/2). One might form such a complex 
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(a) Real and imaginary components of z(n) 

k 
0 12 3 

(b) Four-point DFT of zin) 

FIGURE 10-7. Four-point DFT of a discrete-time analytic signal. 

sample sequence, for example, when processing data from the output of a receiver such as a radar 

system. The sequence [x{n)} might represent samples from the antenna signal multiplied by a co¬ 

sine reference, whereupon it is low-pass filtered (this operation is referred to as mixing). The se¬ 

quence [y(n)} might represent samples from the antenna signal multiplied by a sine function and 

low-pass filtered. From the definitions of x(n) and yin), it follows that 

z(0) = 1 z(l) - j zi2) - -1 z(3) - -j (10-35) 

Substitution of these values into (10-31) (or using the signal flow graph of Figure 10-6b) yields the 

four-point transform: 

Z(0) = [1 — 1] + [/ — y] = 0 

Z(l) — [1 + 1] ~ j\j + y] — 4 

Z( 2) = [1 - 1] — [/—/] = 0 

Z(3) — [1 + 1] + j\j + 7] = 0 (10-36) 

A plot of this spectrum is given in Figure 10-7b. Note that it consists of a single line at k = 1 in keep¬ 

ing with the fact that the signal is a rotating phasor signal (recall the discussion in Chapter 1 in re¬ 

gard to spectra of continuous-time rotating phasor signals). Another way of looking at this signal is 
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that its real and imaginary parts constitute a Hilbert transform pair, and z(n) is therefore an analytic 

signal. As discussed in Section 4-12, analytic signals have spectra that are identically zero for either 

negative or positive frequencies, depending on the sign of the complex part of the signal (which is 

the Hilbert transform of the real part of the signal). This signal is therefore an example of a discrete¬ 

time analytic signal. 

The examples in this section have illustrated the calculation of the DFT. In the following section, we 

provide a general derivation of two FFT algorithms. Some of our derivation has already been accom¬ 

plished, however. In Example 10-3, we derived the butterfly calculation, which was a building block 

for the four-point DFT computation obtained in Example 10-4. Example 10-4, it will be seen, is a spe¬ 

cial case (.N = 4) of a decimation-in-time FFT algorithm. 

10-4 Mathematical Derivation of the FFT 

In this section we provide a mathematical derivation of two FFT algorithms known as the decimation- 

in-time and decimation-in-frequency FFT algorithms. These are two different algorithms that perform 

the same operation, namely, that of finding the DFT of a sequence. To find the inverse DFT, these same 

algorithms can be used as discussed below (4-142) by conjugating the frequency samples, performing 

the DFT computation, conjugating the output samples from the DFT operation, and dividing by N. 

Decimation-in-Time FFT Algorithm 

Consider the DFT sum of (10-13) with the summation earned out separately over the even- and odd- 

indexed terms in the sum. Fetting n = 2r for the even-indexed terms and n = 2r + 1 for the odd- 

indexed terms, we may write the DFT of x(n) as 

N/ 2-1 iV/2-1 

X(k) = X *(2r)W%k + X x(2r + 1 )W%r+1)k 
r=0 r=0 

N/ 2-1 N/ 2—1 

= X x(2r)W%k + WkN X *(2r + 1 )Wff 
r=0 r=0 

(10-37) 

Now 

W2rk = p~j(27r/N)(2rk) — p~j(27r/(N/2))(rk) _ TJTrk 
VV N e e N/2 (10-38) 

which allows (10-37) to be written as 

N/ 2—1 N/ 2-1 

X(k) = X x(2r)W%2 + tv* X x(2r + lWm 
r=0 r=0 

= G(k) + WkNH(k), k = 0,1,..., N - 1 (10-39) 

where 

N/ 2-1 

G{k) = X x{lr)W%2 
r= 0 

(10-40) 

and 

N/2-1 

H(k) = 2 x(2r + 1 )W*/2 
r = 0 

(10-41) 
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are (A//2)-point DFTs of the even- and odd-indexed points of the sequence x(n), respectively. Although 

the frequency index k ranges over N values from 0 to N - 1, only M2 values of G(k) and H(k) need to 

be computed since G(k) and H(k) are periodic in k with period M2. Assuming that an algorithm is avail¬ 

able for computing an (M2)-point DFT, we may combine the (M2)-point DFTs, G(k) and H(k), in ac¬ 

cordance with (10-39) to provide the Mpoint DFT of the time sequence x(n). In Figure 10-8a, the lines 

with arrows indicate the quantities to be added, with the power of WN alongside the arrow indicating 

*(0) 

*0) 

X{2) 

X{3) 

*(4) 

X(5) 

X{6) 

XO) 

FIGURE 10-8. Flow graphs showing the decimation-in-time decomposition of an Mpoint DFT 
computation (N = 8). 
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the multiplication of H(k) in (10-39) by WkN. Arrows with nothing beside them are understood to be 

multiplications by unity (i.e., the G(k)’s are transmitted as they appear at the output of the DFT boxes). 

This is illustrated in Figure 10-8a. Furthermore, we can break up each of the (M2)-point DFTs shown 

in Figure 10-8a into two (A/4)-point DFTs, which results in the flow graph of Figure 10-8b. Note that 

in combining the sums for G(k) and H(k), the relation WfN/2 — W2^ is used. 

The decimation procedure can be continued until a series of N/2 two-point DFTs results for the first 

stage of the A-point DFT computation. The flow graph that results for A = 8 is precisely that of Figure 

10-9. Since this flow graph was arrived at by separating the input samples into successively smaller sets, 

the resulting algorithm is referred to as a decimation-in-time (DIT) algorithm. 

We note that the bit-reversed ordering of the input samples results because at each stage of decima¬ 

tion the sequence of input samples is separated into even- and odd-indexed samples. Each even-indexed 

sample for the first decimation has a least significant bit (LSB) of zero, while each odd-indexed point 

has an LSB of one. On the second decimation it is the second-most LSB that determines whether a se¬ 

quence number is included in the even- or odd-indexed DFT, and so on until the last decimation takes 

place, whereupon it is the most significant bits of the sequence-member indices that determine what 

DFT sum the sequence members are associated with. What has just been described, therefore, is an or¬ 

dering of the input samples in bit-reversed order. 

FIGURE 10-9. Complete flow graph for an FFT developed by applying decimation in time (N = 8). 

(Arrows not labeled have multipliers of unity.) 
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Decimation-in-Frequency FFT Algorithm 

To derive another type of algorithm for finding the DFT we now consider the DFT sum (10-13) with the 

sum carried out over the first half and the last half of the input samples separately. This results in the sums 

N/ 2-1 TV—1 

X(k) = 2 x(n)W% + 2 x(n)WkN" 
77 = 0 n = N/2 

N/2-l N/ 2-1 / N\ 

= 2 x(n)W% + W$/2)k 2 x[m+^)WNk O0-42) 
77 = 0 777 = 0 V 2/ 

where the substitution m — n — N/2 has been made to obtain the second sum of the second equation 

above. We may use the fact that W^^2)k = (—\)kto combine the two sums in (10-42) and obtain 

n/2—\ f / A7\q 

X(k) = 2 x(n) + (-1 )kx(n+-) Wnk (10-43) 

We now consider k even and odd separately. Letting k — 2r and k = 2r + 1, respectively, to indicate 

the even- and odd-indexed output points, we have 

N/2~l r / 7v\i 
X(2r) = 2 x(n) + x[n +—) W2'n (10-44) 

and 

N/2-l r / AAI 

X(2r + 1) = X •*(«) - xin + — WnNW%a r = 0,1,..., N/2 - 1 (10-45) 
77 = 0 L V 2 /_ 

Since as noted previously, we recognize (10-44) and (10-45) as (M2)-point DFTs. The 

flow graph for obtaining X(k) in this fashion is shown in Figure 10-10. This process can be used to re¬ 

place each (M2)~point DFT by two (AV4)-point DFTs, and so on until only two points are left in each 

DFT. The resulting flow graph, shown in Figure 10-11, is precisely the reverse of Figure 10-9, with all 

arrows reversed and input and output interchanged. Since the output, or frequency, points were subdi¬ 

vided to obtain this algorithm, it is referred to as a decimation-in-frequency (DIF) FFT algorithm. 

The following terminology is sometimes used with respect to FFT algorithms. Each basic computa¬ 

tion in Figures 10-9 and 10-11 is referred to as a butterfly because of its criss-cross appearance. For the 

DIT FFT algorithm, a butterfly computation is of the form 

Xm+l(P) = Xm(P) + WNXm(q) 

Xm+M) = Xm(P) “ WNXmCl) (10-46) 

and involves a pair of nodes, denoted as p and q, called dual nodes. For the DIF FFT algorithm, a butter¬ 

fly computation is of the form 

Xm+i(P) = *777 iP) + Xm(q) 

*m+i(P) = [*77,(P) ~ Xm(q)]WsN (10-47) 

In either case, a butterfly computation requires one complex multiplication and two complex additions 

(a subtraction is really an addition after negation of the second term in the summation). 

Carrying out all the computations in going from one column of nodes to the next in an FFT flow- 

graph is referred to as completion of a recursion. For the particular FFT algorithms shown in Figures 

10-9 and 10-11, once all the values for a particular recursion are computed, the old values that were 

used to obtain them are never required again. Such FFT algorithms are called in-place algorithms. A re¬ 

sult of the in-place property of the DIT and DIF algorithms illustrated in Figures 10-9 and 10-11 is the 
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FIGURE 10-10. Flow graph after a single decimation. 

scrambled (bit-reversed) input required for the DIT algorithm and the scrambled output required for the 

DIF algorithm. With a little imagination it should be apparent to the student that if the input nodes of 

Figure 10-9 or the output nodes of Figure 10-11 are rearranged to avoid the scrambling, then it is im¬ 

possible to have an in-place algorithm. 

In computing the FFT, additional time savings can be obtained by precomputing W^ and storing the 

required values. This, of course, requires additional memory. Whether precomputed and stored or com¬ 

puted as needed, use can be made of the symmetry properties of W™, as illustrated in Table 10-2 for 

N = 8, to save time. There it is noted that W^+N^2 = — 0 < m < N/2 — 1. 

By examining (10-1), we see that (N — 1) complex multiplications and (N — 1) complex additions are 

required to compute each output point for the DFT (the first term in the sum involves exp(yO) = 1 and there¬ 

fore does not require a multiplication). Thus, to compute N output points, we require N(N — 1) complex 

multiplications and the same number of complex additions. Now each complex multiplication is of the form 

(A + jB)(C + jD) = (AC - BD)+ j(BC + AD) (10-48) 

and therefore requires four real multiplications and two real additions. Hence computation of all the out¬ 

put points for an Appoint DFT requires 4N(N — 1) real multiplications and 4N(N — 1) real additions. 

To compare the number of computations required for the FFT with the number required for the 

DFT, we note that an Appoint FFT, where N is a power of 2, requires log2 N recursions which are each 

composed of N/2 butterflies. Regardless of whether the DIT or DIF algorithm is used, each butterfly 

involves one complex multiplication and two complex additions, or four real multiplications and six 

real additions. Thus each FFT requires 2N log2 Nreal multiplications and 3N log2 N real additions. Ac¬ 

tually, the number of multiplications is less than this because several of the multiplications by Wr are 

really multiplications by ±1 or ±j, which are not multiplications at all. 

We can get a rough comparison of the speed advantage of an FFT over a DFT by computing the num¬ 

ber of multiplications for each since these are usually more time consuming than additions. The com¬ 

parison is given in Table 10-3. 
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FIGURE 10-11. Flow graph pertaining to decimation-in-frequency FFT (N = 8). 

TABLE 10-2 TABLE 10-3 
Symmetry Properties Comparison of the Number of Real Multiplications for the DFT 
of for N = 8 and FFT 

m = Wi 
n Number of Points DFT FFT Speed Factor 

0 1 2 8 4 2 

1 4 48 16 3 
I 

V2 8 224 48 5 

2 ~j 16 960 128 8 

1 + 7 
32 3,968 320 12 

3 
L 1 J 

64 16,128 768 21 
V2 128 65,024 1,792 36 

4 -1 -w° 256 261,120 4,096 64 

5 1 “7 _ -TT1 512 1,046,528 9,216 114 
V2 1,024 4,190,208 20,480 205 

6 j 
: _W2 2,048 16,769,024 45,056 372 

7 i + i 
. rz -W3 4,096 67,092,480 98,304 683 
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EXAMPLE 10-6 __ 

To illustrate the use of the algorithms shown by the flow graphs of Figures 10-9 and 10-11, we con¬ 

sider the DFT of the sequence {x/;} = {1,0,0, 0, 0, 0, 0, 0} by means of the DIT and DIF algorithms. 

Figure 10-12a illustrates the computation of the DFT using the DIT algorithm, with the numbers 

above the circles indicating the results at each recursion. Note that all 1 ’s are obtained, which is in 

keeping with the fact that the spectrum of a unit pulse is a constant. Figure 10-12b illustrates the com¬ 

putation of the inverse DFT using the DIT algorithm, with the numbers above the circles again indi¬ 

cating the results at each recursion. Since the DFT of a unit pulse turned out to be real, there is no need 

to conjugate the input samples. Also, since all values are unity, there is no need to exercise care in 

putting the input samples into the algorithm in bit-reversed order. Note that we get a single output 

sample which is nonzero, namely, the zeroth sample, which has value 8. Recalling that the DFT, when 

used to obtain the inverse DFT, requires the output samples to be conjugated and divided by A, we 

see that this result is correct. There is no need to conjugate the output since it is real. Scaling by N = 8 

gives x0 = 1 and all other values zero, which is the same sample sequence as the original input. 

The use of the DIF algorithm to compute the DFT of the unit pulse is illustrated by Figure 10-13a. 

Again, the numbers above the circles indicate the results at each recursion. The same result as obtained 

1 = x(0) 

0 = x(4) 

0 = x(2) 

0 = x(6) 

0 = *(1) 

0=*(5) 

0 = x(3) 

0 = x(7) 

BE 8 an 8 
wt 

> m 
BE 8 8 7 

[*\ 

0 n't 

0 88)508 WJS 

BE 6 8 
2 i 

W°8 
*0 7^ V 

wi 0 M'S 6 w 

*(0) = 1 

*(D«1 

X(2) = 1 

*(3) = 1 

X(4) = 1 

*(5)= 1 

X(6) = 1 

Xil) = 1 

(a) The DFT of a unit pulse gives a spectrum of unity for all frequencies 

FIGURE 10-12. Computation of the DFT of a unit pulse using the DIT algorithm. 
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(b) The inverse DFT computation using the DIF algorithm gives the same result as given by the DIT algorithm. 

FIGURE 10-12. Continued. 

with the DIT algorithm is obtained by again using the DIF algorithm. The computation of the inverse 

DFT using the DIF algorithm is shown graphically in Figure 10-13b; the same result is obtained as 

with the DIT algorithm. 

10-5 Properties of the DFT 

As in the case of the Fourier transform, several useful properties can be proved for the DFT. The proofs 

of these properties may be carried out in a similar fashion to the proofs of the analogous properties of 

the Fourier transform by using the defining relationships for the DFT given by (10-1) and (10-2). Proofs 

of the properties stated below are left to the problems. The following notation will be employed in stat¬ 

ing the properties of the DFT, where all sequences are assumed periodic with period N: 

Discrete-time sequences are denoted as x(n) and y(n). 

Their DFTs are denoted as X(k) and Y(k). 

N is the length of the sequence or size of the DFT. 
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(a) The DFT using the DIF algorithm gives the same result as with the DIT algorithm 

FIGURE 10-13. Computation of the DFT of a unit pulse using the DIF algorithm. 

A and B are arbitrary constants. 

The subscript e denotes a sequence that is even about the point (N — 1 )/2 for N even and TV/2 for 

TV odd. 

The subscript o denotes a sequence that is odd. 

Any real sequence can be expressed in terms of its even and odd parts according to 

x(k) = xc(n) + x0(n) 

= \[x(n) + x(N - «)] + x[x(n) - x(N - n)\ (10-49) 

The subscript r denotes a real sequence (or the real part of a complex sequence). 

The subscript i similarly denotes the imaginary part of a complex sequence. 

A double-headed arrow (<->) denotes a discrete-Fourier transform pair: for example, x(n) <-> X(k). 

Sequences are assumed periodically repeated if necessary. 
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FIGURE 10-13. Continued. 

With this notation, the following properties of the DFT may be stated. 

1. Linearity: 

Ax(n) + By{n) <-» AX(k) + BY(k) 

2. Time shift: 

x(n — m) <r^X(k) exp(—j27rkm/N) = X(k)Wk^n 

3. Frequency shift: 

4. Duality: 

x(n) exp(j27mm/N) <-> X(k — m) 

(10-50) 

(10-51) 

(10-52) 

N~lX(n)^x(-k) (10-53) 
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5. Circular convolution:1' 

N-1 

2 x(m)y(n - m) = x(n)®y(n) <-> X(k)Y(k) (10-54) 
m = 0 

6. Multiplication: 

N—l 

x(n)y(n) ^ N~l ^ X(m)Y(k - m) k X~xX{k) (§) Y{k) (10-55) 
m = 0 

7. Parseval’s theorem: 

2 k«)|2 = 2 IWl2 (10-56) 
n = 0 /c = 0 

8. Transforms of even, real functions: 

xei(n)^Xer(k) (10-57) 

(The DFT of an even, real sequence is even and real.) 

9. Transforms of odd, real functions: 

xor(n) <r->jXoi(k) (10-58) 

(The DFT of an odd, real sequence is odd and imaginary.) 

10. Assume that x(n) and y(n) are the real and imaginary parts, respectively, of a complex sequence 

z(ri)\ that is, 

z(n) = x(n) + jy(n) (10-59) 

Then 

z(n) ^ Z{k) = X{k) + jY(k) (10-60) 

To see how to proceed in separating out the DFTs of x(n) and y{n) using property 10, we write both 

in terms of their even and odd parts as 

z(n) = x{ri) + jy(n) = [xe(n) + xQ(n)] + j[yt(n) + y0(n)] (10-61) 

where the subscripts “e” and “o” denote “even” and “odd”, respectively. Recalling properties 8 and 9, 

we may write the DFT of the real and imaginary parts of z(n) as 

xe(n) + x0(n) DFT XJk) + jXJk) = X(k) 
(10-62) 

and yjji) + yjn) DFT yjk) + jYoi(k) = Y(k) 

where XJk) is a even, real function, which is the DFT of xjn) (property 8), XJk) is an odd, real func¬ 

tion, which, when multiplied by j, is the DFT of xjri) (property 9), and similarly for Yjk) and Yjk). 

Thus, we may write the DFT of z(n) as 

m = XJk) +jXJk) +j{YJk) + jYJk)) 

= [XJk) - Yjk)] +j[XJk) + Yjk)] 

= Re[Z(£)] + j\m]Z(k)] (10-63) 

'The circular convolution operation can be viewed as placing the N samples of {x(n)} on the circumference of a cylinder and 

the N samples of {y(/?)} in reverse order on another cylinder, sliding one cylinder inside the other, while multiplying coincident 

samples, and adding the products. It is illustrated by Example 10-9 and discussed further in the next section. 
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That is, 

Re[Z(fc)] = XJk) - Yoi(k) 

\m[Z(k)} = XJk) + YJk) (10-64) 

Since XJk) is even and YJk) is odd, we may separate these two sequences from each other in the first 

equation of (10-64) as follows: 

XJk) = t [Re[Z(fc)] + Re[Z(yV - k)}] 

YJk) = [Re[Z(/c)] - [Re[Z(M - *)]] 00-65) 

Similarly, since Xoi(k) is odd and Yer(k) is even, we may separate them from each other in the second 

equation as 

XJk) = 2 [\m[Z(k)\ - lm[Z(N - k)]] 

YJk) = | [Im[Z(£:)] + lm[Z(N - k)\j (10-66) 

This allows the reconstruction of the separate DFTs of x(ri) and y(ri) according to (10-62). 

It is important to think of the properties listed above as applying to periodic sequences. To illustrate 

these properties, we now consider several examples. In particular, they will illustrate properties 1,2, 5, 

and 10. 

EXAMPLE 10-7 __ 

Reconsider Example 10-6 which used the signal 

z(n) = x(n) + jy(n) = exp(j>27r/2) 

= cos(ft7r/2) + j sin(n7r/2), n = 0, 1, 2, 3 (10-67) 

as an illustration of a four-point DFT. In this example, we use supeiposition to compute the DFTs of 

cos (mr/2) and sin(n7r/2) separately and then combine them in accordance with (10-49) to get the 

DFT of exp(/z7r/2). We first evaluate cos(mr/2) for n = 0, 1, 2, 3 to get x(0) = 1, x(l) = 0, 

x(2) = - 1, andx(3) = 0 and substitute these into (10-31) to get 

X(0) = (1 - 1) + (0 + 0) = 0 

X(l) = (l + 1)-7(0 + 0) = 2 

X(2) = (1 - 1) - (0 + 0) = 0 

X(3) = (1 + 1) +7(0 - 0) = 2 (10-68a) 

We next evaluate sin(zz7r/2) for n = 0, 1,2, 3togety(0) = 0, y(l) = l,y(2) = 0, andy(3) = -1 and 

substitute these into (10-31) to get 

7(0) = (0 + 0) + (1 - 1) = 0 

7(1) = (0 + 0) — 7(1 + 1) = ~j2 

7(2) = (0 + 0) - (1 - 1) = 0 

7(3) -(0-0) +y(l + 1) =7*2 (10-68b) 
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Finally, substituting into (10-50) with A = 1 and B — j, we obtain the same result as given by (10-36): 

fO, k = 0 

2 + j(~j2) = 4, k = 1 

0, k = 2, 

U + 7(7 2) = 0, k = 3 

Z(fc) = (10-69) 

We now reverse the procedure using (10-63) to see if we can recover {X(k)} and j Y(k)) from 

{Z(k)}. Using the definitions of even and odd parts of a sequence, we have from (10-65): 

XJK) = 2 lRe[zW] + MZ(4 - A)]} 

Similarly, (10-66) gives 

Yoi(k) = -- {Re[Z(A:)] - Re[Z(4 -*)]} = 

'0, k = 0 

2, k = 1 

0, k = 2 

,2, k = 3 

' o, k = 0 

-2, It = 1 

0, k = 2 

. 2, k = 3 

(10-70a) 

(10-70b) 

Also, {Xoi(&)} = {Yer(k)} — 0 since the imaginary part of {Z(k)} = 0. Upon substituting into the 

right-hand side of (10-62), we get (X(&)} and (F(&)} as given by (10-68a) and (10-68b), respectively. 

EXAMPLE 10-8 _ 

I Consider the DFT of 

x(n) = d{n) (10-71) 

which is 

N-1 

X(k) = 2 S(n)Wf =1, k = 0,1,..., N - 1 (10-72) 
n = 0 

Using the time-shift property we find that 

DFT[x(« - n0)] = expf- = W%° (10-73) 

Writing out the DFT sum for x(n — n0) = 8(n — n0), we have 

N-1 

DFT[8(n - n0)} = ^ 5(« - n0)Wf = Wfr (10-74) 
n = 0 

which is the same as obtained using the time-shift property. Note that the DFT is periodic with pe¬ 

riod N. 

EXAMPLE 10-9 _ 

I Consider the circular convolution of the two sequences 

xx{n) = x2(n) = 1, 0 < n < N - 1 (10-75) 
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which is denoted x3C(n). The DFT of each of these sequences is 

xm = x2(k) = 

where use has been made of (10-19) and (10-20). The circular convolution of xx(n) and x2(n) is the in¬ 

verse DFT of 

N-1 
rnk 
N 2 w" 

n = 0 

N, k = 0 

O, k = 1,2,. •, -V - 1 

(10-76) 

(10-77) 

X3(k) = X{(k)X2(k) = kkJ^2,...,N-l (1°'78) 

which is 

x3C(n) = 2 2 N2S(k)W^nk = N, n = 0,1,..., N - 1 (10-79) 
A/ k=0 

This is illustrated in Figure 10-12a for N = 4. 

The linear convolution, denoted x3L(ri), of the two sequences x^ri) and x2{ri) is the triangular se¬ 

quence given by 

n + 1, 

x3L(n) = 2N - n - 1, 

0, 

0 < n < TV 

N <n <2N 

otherwise 

(10-80) 

as illustrated in Figure 10-14b. The student can readily verify this result by considering {xx(n)} and 

{x2(n)} as infinite sequences which are zero for k < 0 and n> N. 

The reason for the difference in the circular and linear convolution results is that in the former 

case aliasing takes place as a result of the sequences xx{ri) and x2(n) being treated as periodic se¬ 

quences because of the DFT operation. To avoid this aliasing, xx(n) and x2(n) each can be augmented 

with N points that are zero to obtain the sequences 

0<fc< N - 1 

N < k < 2N - 1 
(10-81) 

The resulting circular convolution is then a triangular sequence, as illustrated in Figure 10-14c. Any 

fewer than N — 1 zeros would result in time-domain aliasing (note that N — 1 will do it, with the Mh 

point being 0). 

10-6 Applications of the FFT 

Several applications of the FFT are discussed in this section. These include filtering, spectrum analy¬ 

sis, convolution, power spectrum estimation, system identification, and deconvolution. 

Filtering 

The next example illustrates the application of the FFT to filtering. 
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{■*l(rt)}4 (-*2 (^ ) )4 {X$c(n))4 

0123 0123 0123 

(t) The circular convolution of two four-point sequences 
whose member! ire unity is itself a four-point 
sequence whose members are equal because of aliasing 

{*!(")} (xi(n)} {x3/(n)} 

“*0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6 7 

(b) The linear convolution of two sequences consisting 
of four equal-value samples preceded and followed 
by zeros is a triangular envelope sequence 

01234567 01234567 01234567 

(c) The use of circular convolution to calculate the linear 
convolution of two sequences requires zero padding with 
the same number of zeros as nonzero sequence members 

FIGURE 10-14. Comparison of circular and linear convolution using the sequences of Example 10-5. 
In the figures, {•},„ indicates a sequence of length m. 

EXAMPLE 10-10 

To illustrate use of the FFT for filtering, consider the DFT of the 8-point sequence 

, v 7r 77 
x(n) = cos — n + cos — n, 0 < n < 7 (10-82) 

which is sketched in Figure 10-15. 

The DFT of this sequence can be obtained using the technique of Example 10-2. Consider the 

computation of the DFT of the sequence 

x(ri) = cos(2irln/N), 0 < n < N — 1 

The DFT sum for this sequence is 

(10-83) 

X(k) = 2 cos e-j2imk/N 

1 pV-1 N-1 
— _ ^ gjlirin/Ne-j2vkn/N _j_ ^ ^2irln/N^-j2irln/N 

2 ln = 0 n = 0 

(10-84) 





514 Ch. 10 / The Discrete Fourier Transform and Fast Fourier Transform Algorithms 

Next, assume that all frequency components of the spectrum above k= 1 are to be eliminated. 

Note that this entails setting X(k) = 0 for 2 < k < 6 and k = 0. The result for the filtered spectrum is 

Xf(k) = 4[8kl + 8k_ J (10-87) 

Again using the results of Example 10-2, it is clear that the signal corresponding to the filtered spectrum is 

xf(n) = cos(777i/4) (10-88) 

This example illustrates the implementation of filtering by using the FFT to digitally carry out the 

operations expressed by (4-67). In implementing digital filters by this method, care must be exercised 

to invoke the proper symmetry conditions on the transfer function, H(k), as expressed by (4-70) and 

(4-71). In the discrete-time signal case, however, the center of symmetry is the point k = A/2. 

Another problem that arises is leakage, which can be combatted by proper window selection. This 

is discussed in more detail in Section 10-7. 

A problem related to window selection is aliasing in the time domain. When an ideal filter, such as in 

Example 10-10, is implemented in the frequency domain, a (sinx)/x impulse response as expressed by (4- 

92) is implied in the time domain. In such cases, the impulse response does not go to zero, which results in 

the tails of the (sin x)/x impulse response folding back into the A-point region included in the inverse sum 

(10-2). The result is aliasing in the time domain caused by undersampling the filter transfer function in the 

frequency domain. A cure for this problem is to choose a filter with an impulse response that dies out or can 

be truncated so that at least half of its terms are essentially zero, as illustrated by Example 10-9. 

Spectrum Analyzers 

In recent years, digital processor technology has advanced to the point where oscilloscopes and spec¬ 

trum analyzers have been implemented using digital processor technology. The former device utilizes 

sampling and quantization to display a signal on a monitor. Because the samples can be stored in a digi¬ 

tal memory, many operations are possible on the signal that are not possible in analog implementations. 

The digital spectrum analyzer also operates on a signal that has been sampled and quantized, except it 

is now the spectrum that is displayed on the monitor rather than the time-domain waveform itself. Thus, 

the DFT of the signal is taken to display on the monitor as a function of frequency. Again, as in the case 

of the digital oscilloscope, many operations are possible because of the storage capability of digital data 

than are possible with an analog spectrum analyzer. 

Convolution 

When convolutions are implemented by means of the FFT, both the signals being convolved are treated 

as periodic. This was illustrated by Example 10-9. The result is a circular, or cyclical, convolution that 

is entirely different from the noncyclical convolution desired in order to avoid time-domain aliasing. 

The problem is easily avoided in computing the cyclical convolution of two A-point sequences, say 

{g(n)J and {/z(/i)}, by defining (g(n)} and {h(n)} as 

gin) = | f gin), 

[o. 

0<n<TV- 1 

TV < n < 2TV - 1 
(10-89) 

h(n) = < 
\hin), 

to. 
0<«<TV- 1 

TV < n < 2TV - 1 
(10-90) 

respectively. 
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If one of the sequences to be convolved is much longer than the other, transforming the entire se¬ 

quence corresponding to both functions can be avoided by convolving the N = 2M-point zero-padded 

version of the shorter one, with M nonzero points and M points zero, with overlapping 2M-point seg¬ 

ments of the longer one. This is illustrated in Figure 10-16. The shorter sequence, designated {h{n)}, 

can be thought of as the impulse response of a filter that is acting on the longer sequence, designated 

(g(n)}. The present output of the filter is simply a weighted sum of the last M samples it has seen. In 

the example of Figure 10-16, this means that the 2M-term sequence {h(n)} convolved with one of the 

2M-term segments of g(n) would result in M lags for which the correct M-term history is not available, 

and M lags for which the correct M-term history is available. Thus the first M lags computed are incor¬ 

rect and the last M lags are correct. Only the rightmost M points are kept, and the next convolution of 

{h{n)} with a segment of {g(n)} is carried out with M new points and M old points. In each convolu¬ 

tion, only the rightmost M points are saved. When all of these sets of M points are pieced together, the 

result is the desired convolution of {g(rc)} and {h(n)}. This procedure avoids having to pad the long se¬ 

quence with a string of zeros, and the length of the required FFT is determined by the length of the short 

sequence rather than the long one.t Because of the procedure used, this technique is called the overlap- 

save method of convolution. Another commonly used method is the overlap-add method, for which the 

student is referred to the references. 

h(k) 

k 
0 12 3 4 5 

(a) Zero-padded impulse response for the desired convolution 
operation. 

(c) Periodic extension of time-reversed impulse response 
as implied by the DFT used to implement the circular convolution 

FIGURE 10-16. Illustration of the overlap-save method of convolving a short sequence with a long 
sequence. 

1 Actually, if an A-point FFT is used and the short sequence is of length M, zero padding with M — 1 zeros is sufficient with 

N - (M — \)> M “good” points obtained for each lag. 
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EXAMPLE 10-11 _ 

Plotted in Figure 10-17 are the various steps in doing a overlap-save convolution of an exponen¬ 

tially decaying signal with a sinusoid which was computed with a Matlab implementation of the 

overlap-save method. The Matlab code is not given here, but rather is left as a computer exercise 

for the student (Computer Exercise 10-2). The overlap-save convolution shown here uses a 16-point 

FFT and five overlapping segments of the long signal. The input signal segment and the resulting 

convolution are shown for the first two steps (note that the first segment is zero-padded for one-half 

of the window to implement a sinusoid that is zero for negative independent-variable values). After 

Convolution of a decaying exponential and a sinewave 

n 
FIGURE 10-17. The convolution of a short decaying exponential signal with a sinewave using the 
overlap-save method. From top to bottom: short signal; long sinusoid; first segment of long signal; 
resulting convolution of first segment; second segment of long signal; resulting convolution of second 
segment; convolution of entire long signal with short signal. 
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an initial startup transient, the convolution settles down to a steadystate sinusoid as illustrated in the 

bottom figure. 

Energy Spectral Density and Autocorrelation Functions 

If we consider a sequence {x(n)} of length N whose DFT is {X(k)}, its energy is defined as 

N—l 

E = X Ml2 (10-91) 
n = 0 

In the frequency domain, the energy is 

E = (10-92) 

k = 0 ^ 

where Parseval’s theorem, property 7 of the DFT, has been used. Equation (10-92) can be interpreted 

as the sum of an energy spectral density function 

SJk) = lNX(k)XHk) (10-93) 

over all the frequency components to give total energy. Using appropriate theorems, it can be shown that 

Sx(k) = DFT [Rx(m)] (10-94) 

where Rx{m), defined as [.x(n) is assumed to be zero padded] 

i A-|ra| —1 

Rx(m) = — x(n)x*(n + \m\) (10-95) 
N n = 0 

is called the autocorrelation function. Equation (10-94) is known as the Wiener-Khintchine theorem for 

sample-data signals. 

If {x(n)} is a random sequence, care must be exercised in computing power spectra using the DFT 

or FFT due to the convergence properties of (10-93). It can be shown that, whereas the mean of a spec¬ 

tral estimate made using (10-93) equals the true spectrum in the limit of an infinitely long sequence 

{x(n)}, the variance or mean-square deviation from the mean does not get smaller as the sequence length 

is extended. One way to improve the convergence of the estimate is to employ window functions. We 

will not discuss this technique here, but rather will demonstrate a second way. 

This second technique breaks {x(n)} into a number L of shorter subsegments, computes the power 

spectrum of each subsegment according to (10-93), and then takes as the spectral estimate the average 

of the power spectra of these subsegments. The more subsegments used, the smoother the spectral es¬ 

timate, but the less the frequency resolution for a fixed length of {jc( n)}, since each subsegment is of 

length 1/L of the length of the original sequence and the length of the FFT used on each subsegment is 

correspondingly shorter than would be used on the entire sequence. This technique for estimating spec¬ 

tra is called Welch s method. 

EXAMPLE 10-12 _ 

Matlab has a power spectrum estimation function that uses the Welch method. We demonstrate that 

function with the Matlab program given below and the estimates of a unit-amplitude cosine wave 

by itself and in noise shown in Figures 10-18 and 10-19, respectively. 
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FIGURE 10-18. Power spectral density of a unit-amplitude cosine waveform using Welch’s method. 

EDU» c1Oexl2 

% This program utilizes the psd function to plot the power spectral 

% density of a cosine signal in Gaussian noise for various 

% combinations of FFT size and number of segments averaged. 

% 

I_noise=input(?Enter 1 for Gaussian noise of variance 5 added to 

signal'); 

N__t01=2048 ; 

N_s eg__0=8 ; 

k=l:N__tot; 

f_0=20; 

del_t=0.005; 

f_samp=l/del_t; 

t=0 : del__t: (N_tot-l) *del_t; 

max_t=max(t) ; 

x=cos(2 * pi*f_0*k*del_t) ; 

n=sqrt(5)* randn(size(x)) ; 
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FIGURE 10-19. Power spectral density of a unit-amplitude cosine waveform in Gaussian noise of 
variance 5 using Welch’s method. 

if I_noise==l 

x=x+n; 

else 

x=x; 

end 

subplot(4,l,l),plot(t,x),axis([0 2-5 5]),xlabel('t'),ylabel('x(t)') 

for 1=1:3 

N_seg=N_seg__0/ 2 A (1 - 1) ; 

NFFT=N__tot /N_seg; 

[P ,F]=PSD(x,NFFT,f_samp) ; 

subplot(4,1,1 + 1) ,plot(F,P) ,axis( [0 100 -5 80]) ,ylabel(1 PSD-dB') , . . . 

text(40, 50, ['FFT points = ' ,num2str(NFFT) , ' ; no. segments = ' , 

num2str(N_seg)]) 

if 1=3 

xlabel('frequency-Hz') 

end 

end 
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From Figure 10-18 we observe that the resolution (as shown by the narrowness of the peak at the 

frequency of the cosine waveform) of frequency components within the spectrum improves with an 

increased number of FFT points, which should come as no surprise. From this one might conclude 

that the longest possible FFT length should be used. However, Figure 10-19 verifies the earlier as¬ 

sertion made that averaging the power spectra of more segments produces a smoother estimate than 

for fewer segment used. With what data we have in Figure 10-19, it appears that averaging the 512- 

point power spectrum estimates of 4 segments gives the best compromise between resolution and 

smoothness in this case. 

System Identification* 

We recall that the output of a linear system is given by the convolution of the input with the impulse re¬ 

sponse. Alternatively, as discussed in Chapter 4, we may obtain the Fourier transform of the output, 

T(/), by multiplying the transfer function, H(f), by the Fourier transform of the input, X(f): 

Y(f) = H(f)X(f) 00-96) 

This frequency-domain multiplication of H(f) and X(f) can be approximated by employing the over¬ 

lap-save method illustrated in Figure 10-16. 

What if, instead of desiring the output, we wish to find the transfer function of the system? This prob¬ 

lem is referred to as system identification. To see how we might accomplish this, consider the follow¬ 

ing series of operations. First, we multiply both sides of (10-96) by X*(J) to obtain 

Y(f)X*(f) = H(f)\X(f)\2 (10-97) 

Dividing by the nonnegative, real function |X(/)|2, we obtain 

run y(^(-f) nnr, mn - |a,(/)|2 (10-98) 

which avoids division bv a complex function. Comparing this with (10-93), we see a similarity; indeed, 

the quantity (1 /N)Y(f)X*(f) is defined as the cross-spectrum of output with input and its inverse Fourier 

transform is the cross-correlation function of output with input. Thus, to “identify” the system, that is, 

determine H(f), we perform the operations implied by (10-98). To obtain the impulse response [the in¬ 

verse Fourier transform of (10-98)] we would, in effect, be cross-correlating the output with the nor¬ 

malized input <3?~l[X*(f)/\X(f)\2]. If |X(/)|2 = 1, this corresponds to the operation 

h(t) = f y(\)x(t + A) dX (10-99) 
J —00 

which is known as the time-average cross-correlation function of x{t) and y(t). 

What are the pitfalls of this operation when using the DFT? First, we must take care not to divide by 

zero. If |2f(/)|2 = 0 for any/, we must replace these values by a small quantity (perhaps the smallest 

number that the computer can represent). Second, if x(t) and y(t) are functions that are too long for the 

FFT operation, the segmentating procedure illustrated by Figure 10-16 must be used. 

'All independent variables used here are represented as continuous-frequency and time variables for simplicity. Section 

10-8 discusses appropriately choosing sampling rate and FFT size. 
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Signal Restoration or Deconvolution 

Given the output of a fixed, linear system and its transfer function, we may determine the Fourier trans¬ 

form of its input by going through a derivation identical to the one which resulted in (10-98) except that 

X(f) is replaced by H(f). The result is 

X(f) = 
n/m/) 

\H(f)\2 
(10-100) 

In the time domain, this operation consists of cross-correlation of the output with a normalized impulse 

response of the filter given by 

Kif) = 2F-1 
mf) l 
\H(f)\2} 

(10-101) 

To approximate this operation with the DFT, we may have to use the segmenting operation illustrated 

by Figure 10-16 since the output would, in general, be arbitrarily long. 

10-7 Windows and Their Properties 

The discussion given in relation to Figure 10-1 showed that sampling the spectrum of a windowed, time- 

domain signal implied a periodic extention of the signal. Unless the signal is periodic with an integer 

number of periods within the window or unless it smoothly approaches zero at each end of the interval, 

the resulting discontinuities generate additional spectral components. This is illustrated by Problem 10- 

3, part (b), wherein a noninteger frequency L for the rotating phasor generates spectral components at 

all DFT output frequencies. This is referred to as spectral leakage. The reason can be traced directly to 

the discontinuities implied at either end of the sampled signal. In order to minimize spectral leakage, 

the data samples can be multiplied by nonrectangular windows which approach zero smoothly at the 

beginning and end of the signal. Several window functions are available. A few common ones and their 

properties are listed in Table 10-4. Their effects on a cosine signal with a noninteger number of cycles 

within the DFT interval are shown in Figure 10-20. In general, Table 10-4 and Figure 10-20 show that 

it is not possible to have a narrow mainlobe and low sidelobes for the DFT of a window simultaneously. 

However, some windows provide a better compromise than others in trading off between these two pa¬ 

rameters. For example, Table 10-4 shows that a Kaiser-Bessel window with a = 2.5 has a highest side- 

lobe level of - 57 dB and mainlobe 3-dB bandwidth of 1.57 frequency samples. A Hamming window, 

on the other hand, has a highest sidelobe of — 43 dB and a 3-dB mainlobe width of only 1.3 frequency 

samples. fThus if one wishes to resolve closely spaced frequency components while minimizing leak¬ 

age from one component to another, the Hamming window would be a logical choice. Alternatively, if 

suppression of leakage is of primary concern, a Kaiser-Bessel window would be a good choice. 

EXAMPLE 10-13 _ 

Several more window functions than listed in Table 10-4 exist. The following Matlab program con¬ 

tains 10 total window functions. A selected one and its FFT can be displayed. This is done for the 

Hamming and Kaiser-Bessel window functions in Figures 10-21 and 10-22, respectively. Note that 

fA good discussion of windows and their properties appears in the paper by: F. J. Harris, “On the Use of Windows for Har¬ 

monic Analysis with the Discrete Fourier Transform,” Proc. IEEE, Vol. 66, 1978, pp. 51-83. 
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TABLE 10-4 
Various Windows and Their Characteristics 

Highest 3-dB Width 
Sidelobe Frequency Coherent GainIN; 

Window Level (dB)a (bins)b [X w(n)]2/X w2{n) 

1. Rectangular 
w(n) = 1, n = 0, . . . , N — 1 -13 0.89 1.0 

2. Triangular 
w{n) — 2 n/N 

W(N - n - 1) = w(n) 
n = 0, 1, 2,..., M2 -27 1.28 0.75 

3. Hanning 

1 i 2w7r win) = — 1 — cos- 
2 _ N 

n = 0, 1,2,. . ., N- 1 
4. Hamming 

-32 1.44 0.67 

27772 
w{n) = 0.54 — 0.46 cos — 

n = 0, 1, 2,. . . , N - 1 -43 1.30 0.74 

5. Kaiser-Bessel a = 2; 

w(n) = /0(7ra/3)//0(7ra) -46 1.43 0.67 

where a = 2.5; 
-57 1.57 0.61 

a = 3.0; 

-69 1.71 0.56 
1 CN 

o
' 

II K a = 3.5 
-82 1.83 0.52 

I0(x) = modified Bessel function; order zero 

Source: F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proc. IEEE, 
Vol. 66, January 1978, pp. 51-83. 

aTo obtain decibels for voltage (current) samples, take 20 times the logarithm to the base 10. 

bAbin here is taken as one unit of the output independent variable. It is also the equivalent frequency width normalized 

by the sampling frequency. 

low sidelobe level comes at the expense of mainlobe width, but the tradeoff is not a specifiable 

mathematical function. Also, a large FFT length is used to make the sidelobe structure evident. The 

student may wish to experiment with the tradeoff between mainlobe width and sidelobe level using 

this program. 

% Study of weighting (window) functions 

% 

N = input('Enter window size - points') ; 

NFFT - input(’Enter number of FFT points'); 

w = zeros(size(N)); 

K = menu('Weighting Function Options', 'rectangular', . . . 

'triangular', . . . 

'sine lobe', . . . 

'Hanning', . . . 
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X(n) 

(a) Input samples 

X{k) 

0 5 10 15 

(b) Spectrum with rectangular windowing 

X(k) 

0 5 10 15 

(c) Spectrum with Bartlett (triangular) windowing 

X(k) 

0 5 10 15 

(d) Spectrum with Hanning windowing 

FIGURE 10-20. Effects of various windows on the spectrum of a sampled cosine waveform. 
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100 200 300 400 500 600 700 
k 

FIGURE 10-21. The Hamming window and its FFT 

'sine cubed', . . . 

'sine to the fourth', . . . 

'Hamming', . . . 

'Blackman', . . . 

'Kaiser-Bessel', . . . 

'Gaussian'); 

zz = zeros(size(1:NFFT-N)); 

if K == 1 

w(l:N)=ones(1:N); 

elseif K == 2 

for n = 1:N 

if n <= N/2+1 

w(n) = 2*(n-1)/N; 

else 

w(n) = 2*(N-n+1)/N; 

end 

end 

elseif K == 3 

n = 1 : N ; 

w = sin(pi*(n-1)/N); 

elseif K == 4 
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FIGURE 10-22. The Kaiser-Bessel window with parameter a = 2.5 and its FFT. 

w = (sin(pi*(n-1)/N)).A2; 

elseif K == 5 

n = 1:N; 

w = (sin(pi*(n-1)/N)).A3; 

elseif K == 6 

n = 1:N; 

w = (sin(pi*(n-1)/N)).A4; 

elseif K == 7 

n = 1:N; 

w = 0.54-0.46*cos(2*pi*(n-1)/N); 

elseif K == 8 

n = 1 : N ; 

w = 0.42-0.50*cos(2*pi*(n-1)/N)+0.08*cos(4*pi*(n-1)/N); 

elseif K == 9 

alpha = input(’Enter value for parameter alpha’); 

arg = zeros(size(N)); 

for n = 1:N 

arg(n) = pi* alpha*sqrt(1 -(2 *(n-N/2 - 1)/N)A2) ; 
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end 

w = bessell(0,arg)/bessell(0,pi*alpha); 

elseif K == 10 

alpha = input('Enter value for parameter alpha’); 

n = 1 : N ; 

w = exp(-.5*(2*alpha*(n-N/2-1)/N).A2); 

end 

w = [w zz] ; 

W = fft (w) ; 

subplot(2,1,1),stem(w),axis([1 2*N 0 2]),xlabel('n’),ylabel(’W(n)’), . 

if K = 1 

text(15, 1.5,['Rect. window; L=',num2str(N)]) 

elseif K == 2 

text(15, 1 . 5\ [' Triang . window; L=' ,num2str(N)]) 

elseif K == 3 

text(15, 1.5, ['Sine window; L=',num2str(N)]) 

elseif K == 4 

text(15, 1 . 5,['Hanning window; L=',num2str(N)]) 

elseif K == 5 

text(15, 1.5, ['SineA3 window; L=' ,num2str(N)]) 

elseif K == 6 

text(15, 1.5,['SineA4 window; L=',num2str(N)]) 

elseif K == 7 

text(15, 1.5,['Hamming window; L=’,num2str(N)]) 

elseif K == 8 

text(15, 1.5,['Blackman window; L=',num2str(N)]) 

elseif K == 9 

text(15, 1.5, ['Kaiser-Bessel window; L=' ,num2str(N)]) 

elseif K == 10 

text(15, 1.5, ['Gaussian window; L=' ,num2str(N)]) 

end 

subplot(2,1,2),plot(20*loglO((abs(W)+.00000001)/max(abs(W)))), . . . 

axis( [ 1 NFFT -80 0]),xlabel('k’),ylabel(’FFT of window-dB') 

10-8 Selection of Parameters for Signal Processing with the DFT 

In processing a signal by means of the DFT or FFT, the sampling theorem requires a sampling rate of 

fs > 2IV samples per second, where W is the bandwidth of the signal (assumed low-pass). Assuming a 

window width of T seconds and an A-point DFT, the sampling rate is fs = NIT, which must satisfy 

/; = f > 2W Hz (10-102) 

The spacing between frequency samples is 

A/ = 4 = T-1 Hz 
y N 

(10-103) 

which is the resolution in frequency. 
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Combining (10-102) and (10-103), we obtain 

. _ 1 2 W 
Af=T~lv HZ (10-104) 

Given the signal bandwidth, a desired resolution or frequency spacing dictates a required FFT size. To 

make 777), equal to N = 2}\ zeros can be added at the end of the data. This is called zero padding. Al¬ 

though adding to the record length by zero padding increases the FFT size and thereby results in a 

smaller A/, one must be cautious to have sufficient record length to support this resolution. 

EXAMPLE 10-14 _ 

Consider a signal 1 s in duration whose bandwidth is 10 kHz. The spectrum is desired with a fre¬ 

quency resolution of 100 Hz or less. Is this possible? What should Abe? 

Solution: From (10-102) we have 

From (10-103) we have 

fs>2W= 20 kHz 

A/ = 100 Hz = 
20,000 

N 

(10-105) 

(10-106) 

or 

N = 200 (10-107) 

Choosing the next largest power of 2, we let 

N = 256 (10-108) 

With T = N/fs = 256/20,000 = 1.28 X 10“2, we see that the 1-s signal duration is more than suffi¬ 

cient to provide the desired resolution. 

EXAMPLE 10-15 __ 

The spectrum of a transient signal is to be determined by FFT analysis techniques. Its duration is 2 

ms, and it is determined that a sampling rate of 5 kHz should be adequate to avoid significant alias¬ 

ing. A spectral resolution of 100 Hz is desired. Is this possible? 

Solution: The resolution desired, from (10-104), dictates that 

T = — = 0.01 s = 10 ms 
A/ 

(10-109) 

It is not possible to achieve the desired resolution since the transient signal is only 2 ms in duration. 

Unless more data are available, a resolution of 

A/=2 = 500 Hz (10-110) 
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must be accepted. This implies 

^samples = 7* = 10 (10-111) 
1 s 

and a 16-point FFT will suffice. 

*10-9 The Chirp-z-Transform Algorithm 

Several efficient algorithms for computing the DFT of a sequence of finite length, N, have been dis¬ 

cussed in the preceding pages. In order to achieve this efficiency, N must be a power of 2 or 4. The 

chirp-z-transform provides a means for computing the DFT of a time series of length N for a sequence 

of M frequencies where M < N. Furthermore, the chirp-z-transform is conveniently implemented as 

hardware by employing charge-coupled delay lines. 

To derive the chirp-z-transform, consider the z-transform of the sequence x(n), n — 0, 1,2,..., 

N - l, which for a discrete set of values of z = zk, k = 0, 1, 2, . . . , M - 1, can be expressed as 

N—l 

X{zk) = 2 *(«)**"> 0 < k < M - 1 (10-112) 
>2 = 0 

Let zk be a point on a spiral centered at the origin in the z-plane. This can be accomplished by writing 

zk = AW~k, (10-113) 

where 

A = A0eje° (10-114) 

is the point at which the spiral starts and 

W = W0e~J'^ (10-115) 

determines the rate of spiral and the angular separation of the points zk. Figure 10-23 shows typical cases 

for W0< 1, for which the sequence of points {z^} spirals toward the origin, and for W0> 1, for which 

the sequence of points {zk} spirals away from the origin. If \wo\ = 1, the z^-sequence lies on a circle of 

radius A0. 

Substitution of (10-113) into (10-112) yields 

N-1 

X(zk) = 2 x(n)A~nWnk, 0 < k < M - 1 (10-116) 
22 = 0 

The next step in the derivation is to make the observation that 

nk = \[n2 + k2 - (k - n)2] (10-117) 

Thus (10-116) can be written as 

JV—1 

X(zk) = Wk2/1 2 [■x(n)A-nWn2/2]W-ik~n)2/2, 0 < k < M - 1 (10-118) 
22 = 0 

With the aid of the definitions 

h(ri) 4 W“"2/2 (10-119) 
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Im(z) 

(b) Spiral away from the origin 

FIGURE 10-23. z-Plane spirals for development of the chirp-z-transform. 

and 

g{n) tx(n)A~nWnl/1 (10-120) 

one may put (10-118) into the form 

^ N-l 

X(zk) = tttt 2 g(n)h(k - n), 0<k<M - 1 (10-121) 

The summation is recognized as a convolution of the sequences [g(ri)} and {h(n)}. Thus (10-121) can 

be viewed as the series of operations represented by the block diagram of Figure 10-22. If A and W0 are 

unity, the sequence h(n) is given by 

h(n) = (e-M>)“"2/2 

= e^'1 (10-122) 

which can be thought of as a complex exponential sequence with linearly increasing frequency. Such 

signals are known as chirp signals in radar system applications—hence the name chirp-z-transform for 

(10-121). 
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Fixed discrete-time 
linear filter 

A 7h(n) 1 /h(n) 

FIGURE 10-24. Block diagram representation of the chirp-z-transform. 

All operations implied in Figure 10-24 could, of course, be carried out digitally. However, the con¬ 

volution operation for the chirp-z-transform can be implemented by means of charge transfer devices 

(CTDs), and CTD chirp-z transformers are available commercially. 

Basically, a CTD can be viewed as a shift register for analog charge samples. As illustrated in Fig¬ 

ure 10-25a each stage of capacitance can weight the charge stored on it differently through employment 

of split electrodes and differential sensing of the charge. With the application of each clock pulse, the 

charge stored on each capacitor is transferred to the next capacitor in the chain and a new charge sam¬ 

ple is stored on the first capacitor in the chain. The impulse response h(n) of the convolution operation 

is implemented by varying the capacitance values of each stage of the CTD in accordance with the de¬ 

sired weighting for the convolution. Since h(n) is complex, the convolution operation must be imple¬ 

mented to compute the real and imaginary parts of h(n) * [(A~n/h(n))x(n)]. 

The input and output chirping operations are implemented by means of multiplying analog-to- 

digital converters, with real and imaginary parts of the chirp coefficients, h(n), being stored in read¬ 

only memories. 

A schematic representation of a CTD-implemented chirp-z transformer is shown in Figure 10-25b. All 

complex operations are implemented as equivalent real operations. It is left for the student to show that 

the block diagram of Figure 10-25b implements the operations of the block diagram of Figure 10-24. 

The major advantage of a CTD-implemented chirp-z-transformer over the equivalent digital im¬ 

plementation appears to be cost. The inherent error sources associated with the CTD implementation 

are charge-transfer inefficiency and the inaccuracy associated with storing the chiiping coefficients in 

the read-only memory as binary numbers. The former error source is due to the fact that the charge- 

transfer operation in the CTD is not 100% efficient. 

EXAMPLE 10-16 __ 

The chirp-z-transform may be used to obtain a finer resolution over a fraction of the sampling fre¬ 

quency extent than for the FFT. With the FFT, we get the entire frequency extent from 0 to the sam¬ 

pling frequency fs, the number of points A is the size of the FFT, and the frequency resolution is fJN. 

With the chiip-z-transform, the starting frequency, resolution, and extent of our frequency analysis 

for a signal are adjustable. This is illustrated in this example by the following Matlab implemen¬ 

tation of a chirp-z-transform. Some typical outputs are compared with the corresponding outputs of 

an FFT in Figures 10-26 and 10-27 for the spectral analysis of a pulse signal. 

% Implementation of the chirp-z transform of a pulse signal and 

% comparison with the corresponding results for the FFT 

% 

elf 

theta_0 = input('Enter starting point, theta__0, on unit circle in 

radians '); 
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Clock signal 

^ [(«—1)7’] x[(n-2)T] x[(n-N+\)T] 

(a) Schematic representation of a charge transfer device 
wherein each charge storage element can be weighted 
independently of the others 

analog 
converter 

(b) Block diagram of a chirp-z transformer employing charge 
transfer devices 

FIGURE 10-25. Illustration of the use of charge transfer devices to implement a chirp-z transformer. 

ph±_0 = input('Enter frequency resolution, phi_0, around unit circle in 

radians 1); 

N = input('Enter total number of points for pulse signal '); 

N_pulse = input('Enter number of nonzero points for pulse signal '); 

M = input('Enter number of frequency cells for chirp-z transform '); 

W = exp (- j *phi__0) ; 

A = exp(j*theta_0); 

n = 0 : N - 1 ; 
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n 

FIGURE 10-26. Chirp-z transform (middle) of a 8-point square pulse (top) compared with the pulse’s 
FFT (bottom). The resolution of the chirp-z transform is three times that of the FFT with 40 points 
computed for the chirp-z versus 32 for the FFT. Abscissa scales have been adjusted to show the same 
absolute frequency extent. 

m = 0:M-1; 

x = zeros(size(1:N)); 

for nn = 1 : N__pulse 

x(nn) = 1; 

end 

k = 1 :M; 

T = A. *W . A (- (k-1) ) ; 

Y = ones(size(T)); % Form matrix of (awa(-i: i)A(k*n); k = columns 

n = rows 

for nn = 2:N 

Y = [Y;T.A(nn- -1)] ; 

end 

X_chirp = x*Y; % Use matrix multiply to compute chirp-z sum 

X_FFT = fft(x); % Compute FFT for comparison 

% Shift chirp-z and set up axes in plot to make direct comparison 

% between chirp-z and FFT results. 

NN = 2 *pi/phi_0-1; 
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n 

FIGURE 10-27. Chirp-z-transform (middle) of a 8-point square pulse (top) compared with the pulse’s 
FFT (bottom). The resolution of the chirp-z-transform is twice that of the FFT with the resolution range 
taking up the last part of the transform. The initial Os have been manually placed there to put the 
transforms in the correct relationship to each other. Abscissa scales have been adjusted to show the 
same absolute frequency extent. 

zz = zeros(size(1:theta_0*(NN+1)/(2 * pi))) ; 

X_chirp = [zz X__chirp] ; 

L = length(X_chirp); 

1 = 0:L-1; 

subplot(3,1,1) ,stem(n.x) ,axis( [0 N-l 0 1]) ,xlabel('n') ,ylabel('x(n) ’) 

subplot(3,1,2),stem(l,abs(X_chirp)),axis([0 NN-1 0 N_pulse]), 

xlabel('k_chirpf), . . . 

ylabel('Magn. of chirp-z'), . . . 

text(NN/27*N_pulse,['Resolution = ',num2str(phi__0),' radians']) 

subplot(3,1,3),stem(n,abs(X_FFT)),axis([0 N-l 0 N_pulse]), 

xlabel('k_FFT'), . . . 

ylabel('Magn. of FFT') 
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Summary 

In this chapter we have considered the discrete Fourier transform (DFT) as a tool for computing the 

spectra of discrete-time signals. Under suitable restrictions, the DFT closely approximates the spectrum 

of a continuous-time signal at a discrete set of frequencies. Fast algorithms to compute the DFT, re¬ 

ferred to as FFT algorithms, were derived. Several applications of the FFT were discussed. The fol¬ 

lowing are the main points made in this chapter. 

1. The DFT of an A-point sequence {xn} is defined as 

N— 1 

Xk = ^ xne->2vkn/N, k = 0, 1,..., N - 1 (10-1) 
» n = 0 

and the inverse DFT of the sequence {X^} is given by 

i jV-l 

xn = — X Xke’2mk/N, /i = 0,1,.... AT - 1 (10-2) 
N k= 0 

These are often written in terms of WN = e~jl7r,N. 

2. When DFTs are used to process continuous-time signals by sampling, several potential error 

sources may be important. These are aliasing, spectral leakage, and picket-fence effect. The first 

one results from the fact that signals that are not strictly bandlimited may be sampled, and the 

sampling results in overlap between the signal spectrum and its translates about the sampling fre¬ 

quency. Spectral leakage comes about because the signal may be infinite in extent, and multipli¬ 

cation by a window function is necessary to limit the signal in time. This amounts to convolution 

with the Fourier transform of the window in the frequency domain, which gives rise to a spectral 

component at one frequency “leaking” or adding to the spectral components at another frequency 

location. The picket-fence effect is a reflection of the fact that the DFT gives spectral estimates 

only at the discrete frequences fk = k/T hertz, where T is the observation window length. Hence, 

spectral components between these discrete frequencies cannot be observed by means of the DFT. 

3. An inverse DFT can be computed using a direct DFT algorithm by conjugating the frequency 

samples, taking the DFT of these conjugated samples, conjugating the output of the DFT opera¬ 

tion, and dividing by A 

4. There are many algorithms for efficiently computing the DFT. These are referred to collectively 

as the fast Fourier transform (FFT). The decimation-in-time and decimation-in-frequency FFT 

algorithms were derived in this chapter. Both algorithms produce a DFT with approximately 

2A log2 A real multiplies, whereas direct computation by means of the DFT sum requires about 

4A(A — 1) real multiplies. For large A this gives tremendous computational savings in perform¬ 

ing the transform by an FFT algorithm over a direct evaluation of the DFT. 

5. Several properties of the DFT were given in Section 10-5. These include linearity, time shift, fre¬ 

quency shift, duality, circular convolution, multiplication, ParsevaTs theorem, and various sym¬ 

metry properties. 

6. Applications of the DFT include filtering, spectrum analyzers, convolution (with applications to 

filtering and system identification), and processing of random signals through computation of 

such statistics as autocorrelation functions and power spectra. 

7. The use of window functions to minimize spectral leakage requires windows having transforms 

with narrow mainlobes and low sidelobes. Useful window functions having transforms with side- 

lobes lower than those of rectangular windows include triangular, Hanning, Hamming, and 

Kaiser-Bessel windows. 
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8. In applying the DFT to signal analysis, the sampling theorem and the desired resolution impose 

a constraint between total signal duration, T, signal bandwidth, W, and the number of DFT points, 

N. This relationship is 

1 > 2 W 

T~ N 

An additional requirement for radix-2 FFTs is that N = 2n, where n is an integer. 

9. The chirp-z-transform is of interest because it can be used to obtain a set of spectral estimates 

in a frequency band other than from 0 to the sampling frequency. In fact the number of output 

points does not have to be equal to the number of input points. A method to compute the chirp-z- 

transform using charge-coupled device technology was presented. This is becoming less im¬ 

portant because of the tremendous advances being made each year in digital signal processor 

technology; 1990s technology provides a programmable processor that can compute a 1,024- 

point FFT in 120 jus. 

Further Reading 

In addition to the references in previous chapters, the following are useful from the standpoint of the DFT and FFT 
and their applications: 

A. Oppenheim and R. Schaffer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. 
O. Ersoy, Fourier-Related Transforms, Fast Algorithms and Applications, Upper Saddle River, NJ, Prentice 

Hall, 1997. 

E. O. Brigham, The Fast Fourier Transform and Its Applications. Englewood Cliffs, NJ: Prentice-Hall, 1988. 
C. S. Burrus and T. W. Parks, DFT/FFT Convolution Algorithms: Theory and Implementation. New York: 

Wiley, 1985. 

J. S. Walker, Fast Fourier Transorms, 2nd ed., Boca Raton, FL, CRC Press, 1996. 
The following reference summarizes FFT algorithms, both for performing the DFT and implementing signal pro¬ 
cessing functions. It also includes a summary of hardware for performing the FFT and signal processing functions, 
and includes design examples: 

W. W. Smith and J. M. Smith, Handbook of Real-Time Fast Fourier Transforms, Piscataway, NJ: IEEE 
Press, 1995 

PROBLEMS 

Section 10-1 

10-1. Obtain the DFT of 

jcb=1, 0<rc<A-l 

by using (4-139) to sum the series (10-1). Why is this result reasonable? 

10-2. (a) Obtain the DFT of 

0<n<K<N-l 

K<n<N- 1 

by using the sum for a geometric series (4-136), to sum (10-1). Plot the periodically extended 

time series which corresponds to the inverse DFT of the resulting DFT (see Figure 10-1). 

(b) Plot \X(k)\ versus A; for N = 8andW = 2, 3. Explain your plots in terms of the spectral analy¬ 

sis ideas developed in Chapter 4. What departures, if any, are there from the ideas of Chap¬ 

ter 4? (See Figure 10-1.) 
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Section 10-2 

10-3. Lttxn = Aexp[j(2vLn/N + 0O)] in (10-1), whereO < L < TV - 1 and A and d0 are constant am¬ 

plitude and phase, respectively. 

(a) Use the sum for 1N given by (4-139) to sum the series and show that 

Mk) = 
A 

sin 7t(L — k) 
exp 

sin[77(L - k)/N] 

NA exp(j0Q), L = k 

7 % + “ 0 1 
1 

TV. 
L + k 

(b) Plot \X(k)\ versus kfox A= 1, TV = 8, and (1) L = 1; (2) L = 1.1 .Answers: (1) For L = 1, 

{|X(*)|} = {0,8,0,0,0,0,0}; (2) forL = 1.1, {|X(fc)|} = {0.74,7.87,0.89,0.46,0.34,0.31, 

0.33,0.42}. ’ 

{Note: Part (b) illustrates the leakage phenomenon of the DFT.) 

10-4. Using the result of Problem 10-3(a), obtain the DFT of 

xn = A cos{2 7rLn/N + 00) 

by writing it as xn = ~xn + and noting that the DFT is a linear transform. 

10-5. Reproduce Figure 10-1 for the following signals. Plot magnitudes of transforms. Assume con¬ 

venient values for the parameters involved. 

(a) x{t) = Ae~atu{t) 
(b) x(t) = AH(t/T) 
(c) x{t) = A cos co0t 

Section 10-3 

10-6. (a) Use the technique of Example 10-2 to compute the DFT of 

x{n) = e~nll° cos mi, 0 < n ^ N — 1 

for general N. 
(b) Plot the amplitude spectra for the cases N = 8 and N — 16. Use a scale that is twice as 

course for N = 8 as for N = 16. 

(c) Suppose you are now told that the discrete-time signal above was obtained by sampling the 

signal 

x{t) = e~~2t cos 2077/, t > 0 

From this you should be able to deduce the sampling rate and fix the frequency scale on 

your plots of part (b). Compare the spectra obtained in part (b) with the amplitude spectrum 

obtained by Fourier transforming the continuous-time signal x{t). 

10-7. Use the technique of Example 10-2 to obtain the DFT of cos2(7777/4) for N = 8 and 16. Plot both 

the signal and its DFT. 

Section 10-4 

10-8. (a) Using the flow graph of Figure 10-9, manually compute the FFT of the sequence 

x(0) = 1 jc(4) - 0 

41) = 1 45) = 0 



x(2) — 0 x(6) = 0 

x(3) = 0 x(l) = 1 
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(b) Taking into account the periodicity implied by the DFT, plot at least two periods of the sig¬ 

nal for which the FFT was found in part (a). 

(c) If the signal of part (a) is an approximation of a single continuous-time periodic pulse, dis¬ 

cuss the errors in the spectrum of the DFT spectrum as compared with the spectrum of the 

continuous-time pulse. 

10-9. (a) Use the flow graph of Figure 10-11 and repeat Problem 10-8a. 

(b) Using the same flow graph as in part (a) and the observation (4-142) about using an FFT 

algorithm to find an inverse FFT, check your results above by obtaining an inverse FFT 

found in part (a) and comparing it with the sequence given in Problem 10-8. 

10-10. (a) Obtain the eight-point FFT of the following pulse signal using the flow diagram of Fig¬ 

ure 10-9. 

x(0) = x(l) = x(2) = x(3) = 1 

jc(4) = 0 

jc(5) - x(6) - x(7) - 1 

Discuss the departure of this FFT from the result for the Fourier transform of the ideal pulse 

signal by comparing plots of their amplitude spectra. 

(b) Obtain the inverse FFT of the result in part (a) by applying (4-142) and scaling by N = 8. 

10-11. Obtain an algorithm for determining the powers of W shown in Figure 10-9. Generalize to ar¬ 

bitrary N. 

10-12. (a) Use the decimation-in-time approach to develop an FFT algorithm based on a four-point 

basic DFT computation for N = 16. Do this by grouping the input samples into four sets of 

four samples each. 

(b) Repeat part (a) using decimation in frequency. 

10-13. Write the butterfly computation for the DIT algorithm, given by (10-46), entirely in terms of 

real computations. For this purpose, let RXni(p) = Re[Xm(p)\, IXm(p) = Im[Xm(p)\, etc. Also 

note that WSN = cos(2tts/N) — j sin(27rs/N). Draw a block diagram of the hardware that would 

be used to compute the butterfly. Use the minimum possible number of multipliers and adders. 

10-14. Repeat Problem 10-13 for the DIF butterfly computation expressed by (10-47). Which butter¬ 

fly requires the least number of real multiplications and additions? 

Section 10-5 

10-15. Prove the linearity property of the DFT sum. 

10-16. (a) Prove the time-shift property of the DFT by using the fact that x(n — m) is a periodic 

sequence. 

(b) Prove the frequency-shift property by using the fact that X(k — m) is a periodic sequence. 
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10-17. Prove the convolution property of the DFT by substituting for y(n — m) in the convolution sum 

N-1 

x(n) (N) y(n) = x(rn)y(n - m) 
/w = 0 

in terms of the inverse DFT of Y(k), which represents the DFT of y(n). Use the implied period¬ 

icity of Y(k). 

10-18. Show that 

n = 0 Iy k = o 

by writing the left-hand sum as ^=o x{ri)x*(ri) and substituting for x*(n) in terms of the inverse 

DFT of X(k). 

10-19. Prove the multiplication property of the DFT by substituting for Y(k — m) in terms of the DFT 

of y(n). 

10-20. Discuss how property 10 in Section 10-5 could be used to obtain the DFT of a real sequence IN 
points long by using an Appoint DFT. 

10-21. For each of the sequence pairs shown, obtain the circular convolution by padding with enough 

zeros so that the ordinary linear convolution corresponds to the first period of the result. 

xa(n) hm(n) 

0 12 3 0 1 2 3 

(c) 

FIGURE PI0-21. 

10-22. Quadrature sampling. To have a lower sampling rate for bandpass signals, quadrature sampling 

is often used as illustrated in Fig. PI0-22. After the sample/quantizing operation, a complex FFT 

is taken with the real part of each complex sample corresponding to the cosine (upper) channel 

and the imaginary part corresponding to the sine (lower) channel. 
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(a) The FFTs of the cosine and sine channels are desired separately at the output of the FFT. 

Which property in Section 10-5 applies? Tell how to implement it. 

(b) The magnitude of the output spectrum is desired. What are the operations that should be 

earned out at the FFT output? 

(c) The phase of the output spectrum is desired. What operations should be performed at the 

FFT output? 

FIGURE PI 0-22 

Sections 10-6 

10-23. (a) Referring to Example 10-7, find the four point DFT of 

z(n) = x(n) + jy(n) = sin(n7r/2) + jcos(/i7r/2) 

using superposition. 

(b) Taking your result for the DFT of {z(n)}, separate out the transforms of {x(n)} and {y(n)} 

and show that the proper results are obtained. 

10-24. Given the DFT samples 

Z(0) = 1 -U Z(l) = 2 + j, Z(2) - 2 -j, Z(3) = 1 +j 

The four point signal whose DFT was taken to obtain these DFT values consists of real and 

imaginary parts, and {y(n)J. Find the FFTs of these real and imaginary parts. 

10-25. Consider the convolution of a 50-point impulse response with a 1,000-point random sequence. 

Choose an appropriate DFT size which is a power of 2 and state how many segments must be 

chosen for the 1,000-point sequence. How many points are valid for each circular convolution 

operation when implemented by means of a DFT of the size you have chosen? 

10-26. (This problem is meant to illustrate the steps in obtaining an energy spectral estimate as ex¬ 

plained in Section 10-6 and does not contain numbers representative of a practical situation.) 

Consider the eight-point sequence {x(n)} defined as 

x(n) = 
n = 0,1 

n = 2, 3, 4, 5, 6, 7 

If N = 8, use (10-95) to compute the autocorrelation function Rx(n). Use an eight-point FFT to 

compute Sx(k) from (10-93). Next, compute Sx(k) from (10-94) and compare with the result ob¬ 

tained from (10-93). 
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Section 10-7 

10-27. Obtain the DFT of a Hanning window and show that it has the properties quoted in Table 10-4. 

10-28. Obtain the DFT of a Hamming window and show that it has the properties quoted in Table 10-4. 

Section 10-8 

10-29. Compute an appropriate sampling rate and DFT size Win order to analyze a signal spectrally with 

no significant frequency content above 10 kHz and with a resolution of 100 Hz. Make N a power 

of 2. Assume an arbitrarily long signal. What is the minimum observation interval length? 

Section 10-9 

10-30. Sketch the locus of points in the z-plane for the following parameter values for (10-113), 

(10-114), (10-115): 

(a) M = 8, W0 = 2, (f>0 = 77/16 rad, A0 = 2, and 90 = tt/4 rad. 

(b) M = 8, WQ = 4>0 = 77/I6 rad, A0 = 2, and 90 = tt/4 rad. 

10-31. Show that the block diagram of Figure 10-25b provides an implementation of the operations for 

the chirp-z-transform operation illustrated in Figure 10-24. 

10-32. Compare the number of multiplications required for an FFT implementation of the chirp-z- 

transform with W0 = 1 for various values of N and M with the FFT assuming that \he frequency 

resolution for both is the same. 

Computer Exercises 

10-1. Write a Matlab program to perform circular convolution using the FFT. Convolve two square 

pulses, choosing appropriate zero-padding to avoid aliasing, and verify that the proper result for 

linear convolution occurs. Compare your results with the conv function of Matlab. 

10-2. Write a program to carry out convolution of a long sequence with a short sequence employing the 

overlap-save method illustrated in Figure 10-16. As a test, verify the results shown in Figure 10-17. 

10-3. Experiment with the capability of the psd function of Matlab. Use help psd to see a de¬ 

scription of the various options available. In particular, experiment with the overlap capability to 

maximize simultaneously the resolution and noise suppression characteristics. Use a sinusoid in 

Gaussian noise, as in Example 10-12, for your tests. 

10-4. Experiment with the chirp z-transform program of Example 10-16. Choose different starting 

points for the spectral analysis, 0O, different resolutions, <fiQ, and different numbers of spectral 

points. Use a rectangular pulse signal. 

10-5. Use the window analysis program of Example 10-13 to extend Table 10-4 to all the windows in¬ 

cluded in the program. 



APPENDIX A 
Comments and Hints on Using Matlab 

A-1 Introduction 

The purpose of this appendix is not to give an extensive description of the Matlab language, but rather 

to give the student some helpful hints that may make writing and running of Matlab programs easier. 

For a relatively inexpensive way to get into using the Matlab language, if it is not available in an open 

computer laboratory, the Version 5 User’s Guide for The Student Edition of Matlab is recommended. 

If SIMULINK programs are to be run, the Version 2 User’s Guide for The Student Edition of SIMULINK 

is recommended. In addition to the User’s Manual, each package includes a scaled-down version of 

Matlab or Simulink as the case may be. Versions of both programs are available to run under either 

Microsoft Windows or on a Mac. 

A-2 Window and File Management 

The discussion in this appendix assumes that you have The Student Version of Matlab running under 

Microsoft Windows 95. 

There are two ways to carry out computations with Matlab. One is to type the commands directly 

into the Command window, which is the first window that comes up when the Matlab is activated by 

double clicking its icon with the left mouse button or activating its menu listing. For moderately ex¬ 

tensive calculations, this becomes unwieldy after a few commands, so an alternative is desired. This al¬ 

ternative is to write a Matlab script file or M-file by using an editor (the one supplied with Matlab 

is called Notepad). Such a program is then stored in a directory as “name.m” (just the letters are typed, 

not the quotes) and then run by typing “name” at the » prompt in the Command window. Note that the 

“ m” is not typed after the Command window prompt. When debugging a program, it is sometimes use¬ 

ful to type “echo on” as your first command in the Command window before running the program. 

When the program is run, as described here, each statement will be displayed on the screen as it is ex¬ 

ecuted. When the program gets to a bug, it will stop executing, with the last statement executed dis¬ 

played on the screen and a diagnostic for the cause of the error displayed next. To stop the echoing of 

each statement, type “echo off “ at the command prompt. 

In using Matlab it is recommended that you create a directory on your hard disk (or use a floppy 

disk, although this is slower) for your programs and execute the command “cd c:\mystuff” at the 

Matlab prompt to direct Matlab to that directory (given the name “mystuff”, the quotation marks 

are not used, but are employed here to set names used on the computer off from the rest of the text) 

when retrieving, saving, or running programs. This will save considerable mouse clicking. If you have 

several programs dealing with different subjects, or even chapters of the book in this course, you will 
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probably benefit from setting up subdirectories for them. Another piece of advice: Save often and al¬ 

ways create a backup of a program that runs before doing extensive modification to it. 

In writing and running programs, three or more windows may be open at one time. These will in¬ 

clude the Command window, one or more Notepad windows, and one or more plot windows. Especially 

in the case of writing programs and testing them, the student will want to have both the Command and 

Notepad windows open at the same time and use the left mouse button to click on the desired one and 

bring it to the foreground. This will save considerable time in going back and forth to modifying your 

program in Notepad and running your program from the Command window. 

A-3 Getting Help 

If you aren’t sure about how Matlab will treat a certain command or series of commands, it is recom¬ 

mended that you try them in the command window by themselves before putting them into a pro¬ 

gram. For example, suppose you don’t remember whether log() or loglO() is the notation for finding 

the base-10 logarithm of a number. This can be easily tested in the Command window as follows: 

» loglOCLO) 

ans = 

1 

Since the answer returned is 1 for the log10( 10), we conclude that we have guessed correctly at the proper 

Matlab notation, and you can now put it in your program assured that you will not have a wrong an¬ 

swer at this point. 

The Command window may get very messy at times, and you will have difficulty locating a desired 

quantity among all the clutter. Clicking the “Edit” drop down menu at the top of the Command window 

and then clicking the “Clear Session” button under it will clear the screen, but not clear its memory of 

previously typed and executed commands. These can be displayed after the command prompt and exe¬ 

cuted again if desired by repeatedly pushing the up arrow T on your keyboard. Of course, it may be eas¬ 

ier just to type the command all over again. 

Matlab has an extensive help capability. If one knows the name of a desired operation or function, 

help is obtained on it simply by typing “help name” where “name” indicates the name of the operation 

or function (again, only the words should be typed, not the quotation marks). 

Just typing “help” at the prompt brings different categories of help topics, which is handy if you can’t 

think of what something might be under. This is illustrated here: 

» help 

HELP topics: 

matlab\general 

matlab\ops 

matlab\lang 

matlab\elmat 

matlab\elfun 

matlab\specfun 

matlab\matfun 

matlab\datafun 

matlab\polyfun 

matlab\funfun 

matlab\sparfun 

matlab\graph2d 

- General purpose commands. 

- Operators and special characters. 

- Programming language constructs. 

- Elementary matrices and matrix manipulation. 

- Elementary math functions. 

- Specialized math functions. 

- Matrix functions - numerical linear algebra. 

- Data analysis and Fourier transforms. 

- Interpolation and polynomials. 

- Function functions and ODE solvers. 

- Sparse matrices. 

- Two dimensional graphs. 
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matlab\graph3d 

matlab\specgraph 

matlab\graphics 

matlab\uitools 

matlab\strfun 

matlab\iofun 

matlab\timefun 

matlab\datatypes 

matlab\dde 

matlab\demos 

toolbox\symbolic 

fuzzy\fuzzy 

fuzzy\fuzdemos 

toolbox\stats 

images\images 

images\imdemos 

nnet\nnet 

nnet\nndemos 

toolbox\signal 

toolbox\optim 

toolbox\robust 

toolbox\ident 

toolbox\control 

control\obsolete 

stateflow\stateflow 

stateflow\sfdemos 

simulink\simulink 

simulink\blocks 

simulink\simdemos 

simulink\dee 

toolbox\tour 

toolbox\local 

Three dimensional graphs. 

Specialized graphs. 

Handle Graphics. 

Graphical user interface tools. 

Character strings. 

File input/output. 

Time and dates. 

Data types and structures. 

Dynamic data exchange (DDE). 

Examples and demonstrations. 

Symbolic Math Toolbox. 

Fuzzy Logic Toolbox. 

Fuzzy Logic Toolbox Demos. 

Statistics Toolbox. 

Image Processing Toolbox. 

Image Processing Toolbox - demos and sample images 

Neural Network Toolbox. 

Neural Network Demonstrations and Applications. 

Signal Processing Toolbox. 

Optimization Toolbox. 

Robust Control Toolbox. 

System Identification Toolbox. 

Control System Toolbox. 

(No table of contents file) 

Stateflow 

(No table of contents file) 

Simulink 

Simulink block library. 

Simulink demonstrations and samples. 

Differential Equation Editor 

An interface to Matlab demos, installed Toolboxes 

demos, and information 

Preferences. 

For more help on directory/topic, type "help topic". 

Typing “help” with any one of these topics will bring up more detailed help in that category. For example: 

» help elfun 

Elementary math functions. 

Trigonometric. 

sin - Sine. 

sinh - Hyperbolic sine. 

asin - Inverse sine. 

asinh - Inverse hyperbolic 

cos - Cosine. 

cosh - Hyperbolic cosine. 

acos - Inverse cosine. 

acosh - Inverse hyperbolic 

tan - Tangent. 

tanh - Hyperbolic tangent 

atan - Inverse tangent. 
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atan2 

atanh 

sec 

sech 

asec 

asech 

CSC 

csch 

acsc 

acsch 

cot 

coth 

acot 

acoth 

- Four quadrant inverse tangent. 

- Inverse hyperbolic tangent. 

- Secant. 

- Hyperbolic secant. 

- Inverse secant. 

- Inverse hyperbolic secant. 

- Cosecant. 

- Hyperbolic cosecant. 

- Inverse cosecant. 

- Inverse hyperbolic cosecant. 

- Cotangent. 

- Hyperbolic cotangent. 

- Inverse cotangent. 

- Inverse hyperbolic cotangent. 

Exponential. 

exp 

log 

loglO 

log2 

pow2 

sqrt 

nextpow2 

Exponential. 

Natural logarithm. 

Common (base 10) logarithm. 

Base 2 logarithm and dissect floating point number. 

Base 2 power and scale floating point number. 

Square root. 

Next higher power of 2. 

Complex. 

abs 

angle 

conj 

imag 

real 

unwrap 

isreal 

cplxpair 

- Absolute value. 

- Phase angle. 

- Complex conjugate. 

- Complex imaginary part. 

- Complex real part. 

- Unwrap phase angle. 

- True for real array. 

- Sort numbers into complex conjugate pairs. 

Rounding and 

fix 

floor 

ceil 

round 

mod 

rem 

sign 

remainder. 

- Round towards zero. 

- Round towards minus infinity. 

- Round towards plus infinity. 

- Round towards nearest integer. 

- Modulus (signed remainder after division). 

- Remainder after division. 

- Signum. 

Then typing “help” with anyone of these functions will bring up help on it: 

» help fix 

FIX Round towards zero. 

FIX(X) rounds the elements of X to the nearest integers 

towards zero. 

See also FLOOR, ROUND, CEIL. 
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Typing “help operation ’ where “operation” indicates any operation such as + will provide a list of all 

such operations and their characteristics. 

Another handy way of getting help is to use the “lookfor” command. This will provide a list con¬ 

taining the word following “lookfor.” For example, 

» lookfor sort 

CPLXPAIR Sort numbers into complex conjugate pairs. 

SORT Sort in ascending order. 

SORTROWS Sort rows in ascending order. 

EIGFUN Function to return sorted eigenvalues (used in GOALDEMO). 

V2S0RT Sorts two vectors and then removes missing elements. 

DSORT Sort complex discrete eigenvalues in descending order. 

ESORT Sort complex continuous eigenvalues in descending order. 

PLOTRLOC Sorts points along root locus 

SORTRLOC Sorts points along root locus 

VSORT Matches two vectors. Used in RLOCUS. 

dlg_sort_uicontrols.m: %DLG_SORT_UICONTROLS( FIG ) 

fnd^objprop.m: %[0UT1, 0UT2] = FND_OBJPROP( INI ) Function to perform 

initial sort and build object 

objprop.m: %OBJPROPN Function to perform initial sort and build object 

Finally, help is available by the menu button “help” at the top right of the Command window. Un¬ 

der this drop down menu is included a table of contents (under which is a search function) and an in¬ 

dex of all Matlab terms alphabetically. 

A-4 Programming Hints 

Since Matlab is an interpretive language, it behooves a programmer to spend some time thinking about 

ways to avoid execution of extra commands. This is particularly true of loops. There are often ways to 

avoid the use of loops in building up arrays or doing general computation. This procedure is illustrated 

by the programs of Chapter 3 where partial sums of Fourier series were computed by using the matrix 

multiply feature of Matlab (see the Matlab Application for Example 3-6, for example). This is also 

true of building arrays. Loops may often be avoided in such cases by using the append, flip, and in¬ 

dexing capabilities of Matlab. 

Another smart programming technique is to make effective use of functions for executing a series of 

commands over several times in a program. This is illustrated in the text by the special functions 

stp_fn, pls_fn, etc. 
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APPENDIX B 
Systematic Procedures for Writing 
Governing Equations for Lumped Systems 

B-1 Introduction 

In the analysis of simple systems composed of two or three components, it is usually possible to write 

down the governing equations by inspection. In more complicated cases, however, we require system¬ 

atic procedures for obtaining the system equations. For lumped systems, this procedure consists of the 

following basic steps: 

1. Identify the important system elements or components and determine their individual describing 

equations (sometimes referred to as the current-voltage relationships in the case of electrical sys¬ 

tems); examples are Ohm’s law, v = iR, for a resistor, or Coulomb’s law, v = qJC, for a capacitor. 

2. Write down the combining equations, which relate the variables of the individual elements to each 

other; examples are Kirchhoff’s voltage and current laws, and application of d’Alembert’s prin¬ 

ciple for mechanical systems. 

3. Eliminate all variables that are not of interest by means of the combining equations. The variables 

of interest will include, but may not be limited to, the input and output variables. Quite often, 

other auxiliary variables will be involved. 

4. Examine the model closely to determine if it is an adequate representation of the physical system. 

If stray capacitance, lead inductance, or nonlinear effects are of importance, these may be added 

to the model. Quite often, the first solution for the desired quantities will be earned out with the 

simplest model that is deemed adequate and refinements will be made in subsequent solutions. 

5. Solve the governing equations of the system using a systematic method of solution. 

We now discuss further the procedures involved in each of these steps. In order to be able to solve 

the resulting system equations analytically, it is almost a necessity (except in a few specific cases) that 

the describing equations be linear. Furthermore, many physical components are well approximated by 

linear relationships. Therefore, we limit our attention to system components that are described by lin¬ 

ear relationships. The resulting system equations then satisfy the superposition principle. 

B-2 Lumped, Linear Components and Their 
Describing Equations 

The student is already familiar with the describing equations for lumped, linear circuit elements. These 

are the basic relations or laws relating the terminal currents and voltages for resistance, inductance, and 

capacitance. Each of these equations constitutes a model of the physical device by mathematically re¬ 

lating two variables that can be measured at the device terminals; in particular, the voltage across the 
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device and the current through it. To generalize such describing equations to other physical components, 

such as mechanical or hydraulic components, it is useful to think of the terminal variables as either 

across variables or through variables. An across variable is one that is measured by placing an appro¬ 

priate meter across the terminals of the device; a through variable is measured by placing an appropri¬ 

ate meter in series with the device so that the measured quantity is transmitted through the meter. Thus 

voltage is an across variable and current is a through variable. For a mechanical device such as a spring, 

the appropriate variables are force and displacement (or, possibly, the velocity) of one end with respect 

to the other. To measure the force transmitted by the spring to another object, we would need to place 

a force meter in series with the spring so that force is a through variable. Measurement of the displace¬ 

ment of one end relative to the other, on the other hand, would require that a ruler be placed across the 

spring. Thus displacement (and relative velocity, since it is the derivative of the displacement) is an 

across variable. 

In writing down the describing equations for a device, some convention regarding sign must be 

adopted. Each device is represented by a schematic diagram symbol with reference directions shown 

for the through and across variables. Consider, as an example, a resistance of value R, the schematic 

representation of which, together with reference directions for through (current) and across (voltage) 

variables, is shown in Figure B-l. The describing equation is Ohm’s law, given by 

v = iR (B-l) 

The convention we will adopt regarding signs for the through and across variables is the following. To 

measure the through variable (current), we must insert an instantaneous reading meter in series with the 

device. If the actual through variable flow is in the direction of the reference arrow on the schematic 

representation of the device, the meter will read a positive value for the through variable. For the across 

variable (voltage), the convention is that the meter is connected so that the product of instantaneous 

across- and through-variable meter readings is positive when power is delivered to the device. 

The describing equations for several types of components are summarized in Table B-l. The termi¬ 

nology and conventions regarding signs is that described above. Symbols that are used in schematic di¬ 

agrams showing interconnection of various devices are also shown. 

In addition to the passive elements defined in Table B-1, ideal sources are also useful models. These 

include both independent and dependent sources. For electrical systems, the two types of independent 

sources are constant-voltage and constant-current sources; for translational mechanical systems, the two 

types of independent sources are constant-velocity and constant-force sources, with analogous sources 

defined for rotational mechanical systems. By this terminology, of course, we do not mean that a source 

delivers a time-independent quantity, be it electrical or mechanical, but rather that the delivered quan¬ 

tity does not depend on the load placed on the source. For example, an ideal velocity source given by 

ks(t) = A cos co0t (B-2) 

maintains the velocity A cos co0t regardless of the forces applied. 

FIGURE B-1. Schematic representation of a resistor, together with reference directions for the 
associated through and across variables. 
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TABLE B-1 
Electrical, Translational Mechanical, and Rotational Mechanical Elements 

Component; Across Through 
Symbol Schematic Variable; Variable; 
(Units) Symbol Units Units Describing Equations 

Resistance, 

R (ohms) 

Inductance, 

L (henries) 

Capacitance, 

C (farads) 

Translational 

damper, B 

(kg/s) 

Translational 

spring, K 

(kg/s2) 

Mass (inertance), 

Af(kg) 

Rotational 

damper, B 

(kg - m2/s) 

Rotational 

spring, K 

(N - m) 

Voltage (volts) 

Voltage (volts) 

Voltage (volts) 

Velocity (m/s) 

Current 

(amperes) 

Current 

(amperes) 

Current 

(amperes) 

Force 

(newtons) 

v = iR 

l = RV 

di 
V = L y 

dt 

i rf 
i = — J v(A) dA 

v = c I /(A) d\ 

i = C 
dv 

dt 

f*B A 

Velocity(m/s) Force • 1 df 

(newtons) A ~ ~K~dt 

/= 

= kJ A(A )d\ 

Velocity(m/s) 

Note: The mass 

element is always 

grounded. 

Force 

(newtons) k - 

f-uii 
Angular velocity 

(rad/s) 

Torque 

(N- m) e = iT 

T = BO 

Angular velocity 

(rad/s) 

Torque 

(N - m) 
• 1 dT 

6 ~ K dt 

0(A) dX T = K 
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TABLE B-1 (Continued) 

Component; 
Symbol 
(Units) 

Schematic 
Symbol 

Across 
Variable; 

Units 

Through 
Variable; 

Units Describing Equations 

Rotational 

inertance, J 

(kg - m2) 

(moment of 

inertia) 

Angular velocity 

(rad/s) 

Note: Rotational 

inertances are 

always grounded. 

Torque 

(N - m) 1 rf 
0 = - I T(A) dX 

rd6 
r==/TT dt 

A controlled source produces a terminal quantity whose value is proportional to some other system 

variable but is independent of the load placed on the source. For example, an ideal angular velocity 

source that is controlled by the current il (t) can be represented by the equation 

m = KFiim (B“3) 

independent of the load placed on the source, where F(-) is a specified function and K is a constant of 

proportionality. 

EXAMPLE B-1 _ 

To illustrate some of the ideas introduced here and demonstrate, at least in a particular case, that the 

analogies given in Table B-1 are valid, consider the simple mechanical system shown in Figure B-2. 

The mass has force Fs acting on it and is assumed to move on rollers without friction. Its displace¬ 

ment from equilibrium is A as shown. From d’Alembert’s principle we have 

dk 
M — + BA + AA = F„ (B-4) 

dt s 

where B is the coefficient of viscous friction describing the damper, as shown in Table B-1. We wish 

to show that by suitable association of elements and variables, this equation may be represented by 

an electrical network. First we rewrite the equation as 

M~ + BA + K f kdt = Fs (B-5) 

FIGURE B-2. Schematic diagram of a simple mechanical system. 
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We have chosen to write the equation in terms of velocity, A, since, as we shall see, it is analogous 

to voltage. Now consider the parallel RLC network shown in Figure B-3. From KCL and the element 

relations we obtain the differential equation for the voltage u as 

_ dv v 
C- +-h 

dt R L 
y v dt = 
Li . 

(B-6) 

Examination of (B-5) and (B-6) shows that the equations are exactly the same if we make the fol¬ 

lowing associations: 

K<—> 

C 

1 
R 

1_ 
L 

(B-7) 

A 

F. 
V 

Since the mechanical and electrical systems are described by the same differential equation, we say 

that the electrical network and the mechanical system are analogous to each other; in particular: 

1. Mass M is analogous to capacitance C. 

2. Coefficient of friction B is analogous to conductance G = B = HR. 

3. Spring constant K is analogous to the inverse of inductance l/L = K. 

4. Across-variable velocity is analogous to across-variable voltage. 

5. Through-variable force is analogous to through-variable current. 

Analogies also exist for other types of systems, as suggested by Table B-l. Clearly, such analogies 

can aid electrical engineers in understanding and analyzing other kinds of systems. The power of the 

analogous-network concept lies in the fact that the analysis of electrical networks is particularly well 

established. Therefore, complicated networks can be handled with relative ease. If the concept of analo¬ 

gous networks can be extended to more complex systems, we will indeed have a powerful tool for sys¬ 

tems analysis. To do this we need systematic procedures for obtaining the analogous network or, 

perhaps more conveniently, the system graph. These topics are examined in more detail in the follow¬ 

ing section. 

FIGURE B-3. Schematic diagram of a parallel RLC network. 
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B-3 System Graphs 

The concept of a system graph, although not absolutely essential for the writing of equilibrium equa¬ 

tions for many lumped systems, nevertheless provides a systematic procedure that one may resort to in 

cases where these equations are not readily written down by inspection. The graph of a system of two- 

terminal components is obtained by simply representing each component by a directed line segment. 

The direction, indicated by an arrow, shows the positive reference sense for the across and through vari¬ 

ables of the component. Each line segment is terminated by two nodes. An example is given in Figure 

B-4, which shows the schematic representation of an electrical system and its graph. The system graph 

of an electrical network bears a resemblance to the shape of the schematic diagram of the original cir¬ 

cuit, a characteristic that is not true of mechanical or other systems. 

The describing equations' for the components of the system of Figure B-4 are: 

V1(t) = Vs(t) (a) 

i2(t) = 0, switch open (b) 

v2(t) = 0, switch closed (c) 

^3(0 ~ ^1*3(0 (d) 

v4(t) = R2i4(t) (e) 

die 
(f) 

1 r‘ 
v6(0 = - i6(A) dX 

^ *1-00 
(g) 

(B-8) 

2 3 4 

FIGURE B-4. Example that illustrates the concept of a system graph of an electrical circuit. (In (b), 
numbers for branches are arbitrarily assigned.) 

' Subscripts refer to the numbering of the graph branches. 
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Note that the component describing equations may be linear or nonlinear; there is no restriction from 

the standpoint of constructing the system graph. 

As a second example, consider the translational mechanical system shown schematically in Figure 

B-5, which represents the suspension system on an automobile. The mass Mx represents the mass of the 

automobile, which is coupled to the axle and wheels by a spring and damper system. The smaller mass, 

M2, of the axle and wheels is coupled to the ground by the tires, which are represented by a second spring 

and damper system. The automobile frame is driven by a force generator fs(t). The system graph is 

shown in Figure B-5b, where it is noted that the component graph for the masses has nodes located by 

the mass and “earth.” The terminal equations for the system components are, from Table B-l, given by 

m=m (a) 

m = BMt) (b) 

m = KMt) (c) 
II js;
 

a-
 (d) 

m = B2k5(n (e) 

M
3 

<1 ii (f) 

dk.it) 
m=u2- (g) 

Node and Circuit Postulates 

We next need a procedure for combining component equations to obtain the system equations. A basis 

for this is provided by graph theory, a few basic definitions for which are given below. 

1. Each line element of a system graph is called a branch (also referred to as an edge in some text¬ 

books). An indicated direction on a branch makes it an oriented branch. 

A 

(b) System graph 

FIGURE B-5. Schematic representation and system graph for an automobile suspension system. 
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2. A node is the end point of a branch. 

3. An oriented graph is a set of oriented branches, no two of which have a point in common which 

is not a node. 

4. A subgraph is any subset of the branches of a graph. 

5. A circuit is a subgraph such that two and only two branches are incident on each node of the 

subgraph. 

6. The complement B of a subgraph G is the subgraph remaining in G when the branches of B are 

removed. 

7. A connected subgraph of a graph is called a separate part if it contains no nodes in common with 

its complement. 

With these definitions stated, we can now give two fundamental properties that relate across and through 

variables of the elements of a system graph. 

1. The Node Postulate. Let the system graph of a physical system be composed of n oriented 

branches. Let uft) be the through variable of the yth element. Then at the Mi node of the graph 

n 

2 ajUj{t) = 0 (B-10) 
;=i 

where 

0 if the yth branch is not incident at the kth node 

(ij = 1 if the y th branch is oriented away from the Mi node 

—1 if the yth branch is oriented toward the kth node 

We recognize Postulate 1 simply as corresponding to a general statement of Kirchhoff’s current law 

(KCL) for electrical systems. The physical principle on which it is based is the conservation of charge. 

For translational mechanical systems, Postulate 1 states that the force components along a coordinate 

direction of each system element connected at a common point must sum algebraically to zero. For ex¬ 

ample, in Figure B-5, the damper Bl9 spring Kv mass Mx, and force generator fs(t) all must exert a net 

force of zero at their common juncture. We recognize this as d’Alembert’s principle. 

To state the second fundamental property of a system graph, we need to define the concept of circuit 

orientation, which is assigned by an oriented arrow paralleling the circuit. Examples of oriented arrows 

are shown in Figure B-4b labeled A and B. 

2. The Circuit Postulate. Let the linear graph of a physical system contain n oriented branches and 

let vp) represent the across variable of the yth branch; then for the kth circuit 

n 

2 bj»j(t) = 0 (B-11) 
j=t 

where 

0 if the jth branch is not included in the kth circuit 

1 if the orientation of the yth branch is the same as 

the orientation chosen for the kth circuit 

1 if the orientation of the yth branch is opposite to 

that of the kth circuit 

Postulate 2 corresponds to Kirchhoff’s voltage law (KVL) for electrical systems. The physical princi¬ 

ple on which it is based is conservation of energy. For translational mechanical systems, Postulate 2 
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states that the oriented sum of each component of the vectorial velocity around a circuit of the system 

graph must sum to zero. 

As an example of writing node equations (Postulate 1), we consider the mechanical system and sys¬ 

tem graph of Figure B-5. Considering node A, and letting the corresponding through variables be/^t), 

f2( 0, ...» we have 

m +m +m +/4« = o (node A) (B-12a) 

For node B, we have 

fsit) + /6(0 + fiit) -fit) - fit) = 0 (node B) (B-12b) 

and for node C, we have 
1 1 1 1 II 0 (node C) (B-12c) 

We note that the three equations are not independent; for example, adding the third to the second gives 

the negative of the first. Therefore, we choose the first two equations. We may eliminate the through 

variables in each equation in favor of the across variables by using the describing equations. Note that 

by doing this we do not decrease the number of unknowns to be equal to the number of equations. How¬ 

ever, suppose that we define the velocities of nodes A, B, and C relative to a common reference. Since 

we have eliminated node C as a Node Postulate equation, we choose its velocity as our reference and 

let it be vc(t) = 0. Then 

^2 it) tJ fft) uB(f) A 3(f) (a) 

Kit) = vA(t) (b) (B-13) 

Kit) = vB(t) = Ko) = Kw (c) 

In terms of vA(t) and vB(t), the terminal equations become 

fit) = -fs(t) (unknown) (a) 

flit) = B,(ua - uB) (b) 

II 

i 8 

> 
1 

to
 (c) 

II js
; i>

 

(d) (B-14) 

f5(t) B2vb (e) 

m = k2 [ vB dx 
J — 00 

(f) 

dvB 

■f'i(t) = Mi~dt (g) 

Substituting these into the node A and node B equations, we obtain 

-fs + B\(va ~ vb) + Ki J (VA ~ vB) dX + M, = 0 (a) 

rt du 
B-iPb + K2 j vB dX + M2 —— Bi(vA — vB) — K2 j (vA — vB) dX = 0 (b) 

(B-15) 
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Rearranging and differentiating, we have 

M, 
dv. dvA 

A + B __A 
dr 1 

dv p 
, + KjVa - B{ , 

dt 1 A 1 if 
.A" 1 ^ R 

1 B dt 

dv A d2vK dv,, 
■81~-K1„A + M2^ + (Bl + £;)-^ 

‘If, 

a 

+ (* 1 + - 0 

(a) 

(b) 

(B-16) 

If we wish, we may eliminate uA(t) or L>B(r) to obtain a differential equation involving one unknown 

variable alone. The elimination is not trivial, however. A much easier method for elimination and solu¬ 

tion is discussed in Chapter 6, which deals with applications of the Laplace transform. 

As an example of writing circuit equations (Postulate 2), we consider the circuit and system graph 
of Figure B-4. The circuit equation for A is 

and for B the circuit equation is 

— vx 4- v2 + v3 + v6 = 0 (B- 17a) 

vA + Vc - V, = 0 (B-17b) 

where vx, v2, • • • are the across variables for branches 1,2,_We may eliminate the branch across 

variables in terms of through variables to obtain 

+ 0 + + 

du 

-cfj‘ dX = 0 

dt C 

where it is assumed that the switch is closed. We note that 

L dX = 0 

h = l a z3’ Ia lj3 Ic 

(a) 

(b) 

(B-18) 

and 

When written in terms of the circuit currents, the Circuit Postulate equations are 

diA . 1 . _ dvs 

dt C1a C Zb dt 
R 

C 

<72/r r//R 1 

lA + L + Ri ~di + c /b 0 

(a) 

(b) 

(B-19) 

where each equation has been differentiated to eliminate the integrals. As with the mechanical system 

example, either iA or iB can be eliminated to obtain an equation involving one unknown variable. The 

order of the resulting equation would be second. The elimination of variables is left to the problems. 

Topology of System Graphs 

In order to select an independent set of node or circuit equations for a system, we introduce some basic 

concepts of graph topology. A subgraph has been defined as any subset of the branches of a graph. A 
subgraph that is of basic importance in determining a set of independent node or circuit equations for a 

system is a t?~ee. A tree of a connected graph with Nv nodes has the following properties: 
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1. All nodes of the graph are included in the tree, and no nodes are left in isolated positions. 

2. A tree contains Nv — 1 branches. 

3. A tree includes no closed paths. 

Those branches removed from a graph in forming a tree are called chords or links. 

There are a number of different possible trees for a given graph. Several examples of trees for the 

graph of Figure B-4b are shown in Figure B-6. 

The number of branches in a tree is obviously related to the number of nodes in the graph (and the 

tree), Nv, by 

number of branches in a tree = Nv — 1 (B-20) 

The number of chords, Nc, in a graph is the difference between the total number, Nb, of branches in the 

graph and the number of branches in a tree. Thus from (B-20) we obtain 

NC = N„- (Nv - 1) 

= Nb-Nv + 1 (B-21) 

(d) 

FIGURE B-6. Trees corresponding to the graph of Figure B-4b. 
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Nc = Nb - Nv + P (B-22) 

Finally, the cotree consists of those branches not included in the tree. 

EXAMPLE B-2 _ 

The number of branches in the graph of Figure B-4b is 

Nb = 6 

and the number of nodes is 

Nv = 5 

The number of chords is 

Nc = 6 - 5 + 1 = 2 

The number of branches in the tree is 

Ntb = 6-2 = 4 = Nv-l 

which checks with (B-20). 

We now use these ideas from the topology of graphs to establish the number of independent equa¬ 

tions that can be written for a system. 

B-4 Choosing Independent Equations for a System 

We assume that each element of a schematic diagram of a system is represented by one branch in the 

system graph. Actually, there is no need to represent the switch of Figure B-4b by a branch if / > 0 

(switch closed). Also, we assume that across-variable sources (voltage sources in the case of electrical 

systems) appear in series with other elements and that through-variable sources (current sources for 

electrical systems) appear in parallel with other elements. 

The procedure we may follow is to use the Node Postulate (1) to write equations for Nv — 1 nodes 

after one has been chosen as a reference. We can then write, in addition, Nb — (Nv — 1) equations us¬ 

ing Circuit Postulate (2), giving a total of Nb equations. Since the Node Postulate equations involve 

through variables and the Circuit Postulate equations involve across variables, we will have 2Nb vari¬ 

ables and only Nb equations. However, the through and across variables for each system element are re¬ 

lated by a describing equation and we may reduce the number of variables from 2Nb to Nb. Hence, if 

the Nb equations obtained by applying Postulates 1 and 2 are independent, we may, in principle, solve 

for the Nb unknown through or across variables, depending on which ones remain after the describing 

equations have been applied. 

It is perhaps a good thing at this point to review what is meant by independence of a set of equations. 

The equations 

x + y = 5 (a) 

2x-2y= 10 (b) 
(B-23) 
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are independent, whereas the pair of equations 

x + y — 5 (a) 

2x + 2y = 10 (b) 
(B-24) 

are not. After some reflection, the reason for the latter set not being independent is clear. The second 

equation can be obtained from the first by multiplying through by two. Geometrically, both sets of equa¬ 

tions represent lines in the x-y plane, the latter pair representing a pair of colinear lines, whereas the 

former set of equations represent a pair of lines that are perpendicular. Thus, for the first set, we may 

obtain a solution for jc and y that corresponds to the crossing point; a unique solution is impossible to 

obtain for the second set. 

We now turn to the problem of choosing a set of independent variables in terms of which to express 

the system equations. To keep the solution of these equations as simple as possible, we want the mini¬ 

mum number of independent variables that can be chosen. For simplicity, discussion will center on the 

choice of voltage and current variables for electrical systems, although it will apply equally well to the 

choice of independent through and across variables for mechanical systems. 

To proceed, consider Figure B-7, which is the tree shown in Figure B-6d for the network of Figure 

B-4. Assume that node e is chosen as the reference, or datum, node. The voltages of nodes a, b, c, and 

d measured with respect to node e are defined as va9 vb, vc, and vd, respectively. Also shown in Figure 

B-7 are the branch voltages (across variables), with polarities indicated by plus and minus signs to em¬ 

phasize the meaning of the reference arrows shown on the tree branches. Now each node voltage can 

be expressed in terms of tree branch voltages. For example, uh is given by 

vb = -vx + v2 (a) 

and vc by (B-25) 

vc = -v3 + vA (b) 

Conversely, if we know the node voltages, we may obtain the tree branch voltages and, as a matter of fact, 

any branch voltage. Hence a KCL equation (Postulate 1) written for each of Nv — 1 nodes in terms of node 

voltages by using the describing equation of each element will provide a set of Nv — 1 independent equa¬ 

tions in terms of the Nv — 1 node voltages relative to the reference node. Note that Nv — 1 < Nb. Other 

choices are also available for determining the branch voltages, but these will not be discussed here. 

We now investigate the possibility for the choice of current variables fewer in number than the branch 

currents. From Figure B-7 we note that insertion of the link labeled 5 will allow the link current i5 to 

flow. The loop current i A is thereby established. Similarly, insertion of the link labeled 6 will allow link 

current i6 to flow and the loop current iB is thereby established. A little thought results in the conclusion 

that any of the branch currents can be expressed in terms of the loop currents iA and /B. For example, 

d + vi c is a + v\ b 

FIGURE B-7. Tree showing appropriate voltage and current variables to establish independent 
through and across variables. 
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h = *a - *b (B-26) 

Thus the link currents and the loop currents defined thereby constitute an independent set of variables. 

We may write 

Nc = Nb-Nv+l (B-27) 

KVL (Postulate 2) equations in terms of these Nc loop currents by employing the describing equations to 

eliminate the across variables for each element in favor of their through variables (branch currents in this 

discussion) and, in turn, express these branch currents in terms of loop currents defined by the link cur¬ 

rents. Thus we will have Nc = Nb — Nv + 1 independent equations involving Nc loop current variables. 

Usually, it will not be necessary to construct a tree to obtain an independent set of KCL or KVL equa¬ 

tions. For example, we note that the circuit (KVL) equations written in terms of loop currents defined 

by the windows or meshes of a planar network will always give an independent set of equations. The 

node equations (KCL) written in terms of the Nv — 1 node voltages with one node used as a reference 

also result in a set of independent equations. Whether one chooses loop current equations or node volt¬ 

age equations usually depends on whether Nc — Nb — Nv + 1 or Nv — 1 is smaller. 

We close this section with an example that illustrates the use of the concepts introduced in this 

section. 

EXAMPLE B-3 _ 

Consider the cubic array of 1 -IT resistors shown in Figure B-8a and its associated graph shown in 

Figure B-8b. Figure B-8c shows one possible tree. The links are the branches numbered 2, 8, 9, 11, 

12, and 14. Insertion of these links establishes loop currents iA, /B,. . . ,zF, respectively. 

Suppose that we desire v0 with u/ = 2 V. To minimize the chance for error, we need a systematic 

procedure to solve for V0. In order to conveniently relate branch currents and loop currents, we con¬ 

struct Table B-2, which is called a tie-set schedule. The method of construction is the following. If 

a loop current established by the insertion of a link includes the zth branch of the graph, a +1 is en¬ 

tered in column i of the row corresponding to that loop current if branch and loop currents are in the 

same direction; a -1 is entered if they are in opposite directions; a 0 is entered if the loop does not 

include the zth branch. The rows of the tie-set schedule give us the KVL equations around each loop 

in terms of branch voltages. For example, row A of Table B-2 tells us that 

-vx + v2 + v3 = 0 (B-28) 

The columns of the tie-set schedule yield the branch currents in terms of the loop currents. For ex¬ 

ample, column 1 of Table B-2 tells us that 

h = a ' (B-29) 

while column 5 gives us 

z5 — ~iB + zE (B-30) 

The procedure in obtaining the KVL equations around each circuit defined by the link currents is 

then the following: 

1. Write down the voltage-law equations for each loop in terms of the branch voltages. 

2. Substitute for each branch voltage the describing equation for each branch with the branch cur¬ 

rent as the independent variable. 

3. Substitute for the branch currents the expressions involving loop currents obtained from the 

columns of the tie-set schedule. 

The result is Nb — Nv + 1 equations in terms of the Nb - Nv + 1 loop current variables. 



(a) Circuit schematic 

X . 3 

X 3 =/ 

All resistors are 
one ohm. 

(b) Circuit graph 

m * 

J 12 ~f? 

(c) Tree 

FIGURE B-8. Circuit showing the selection of loop currents using a tree. 

TABLE B-2 
Tie-Set Schedule for Circuit of Figure B-8 

Branch Number 

A -1 110 0 0 0 0 0 0 

B 0 0-1 o-l 0 1 1 0 0 

C 0 00-100 1 0 1 -1 

D 0 0-1 1 0-1 0 0 0 0 

E 0 0001-1 0 0 0 0 

F 0 0-1 1 0-1 0 0 0 1 
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In the present example, all components are 1-11 resistors, so that these steps are particularly sim¬ 

ple. Thus since vx = 2 V, the row A equation becomes 

or, in terms of branch currents. 

But columns 2 and 3 give us 

v2 + v3 = 2 

i'j T /o 2 

Thus 

h 7a and h 7a 7b 7d 7f 

7A (7A 7B 7D 7f) 2 

^7 A 7B 7D 7F 2 

The student should obtain the remaining five equations. 

(B-31) 

(B-32) 

(B-33) 

(B-34) 

(B-35) 

B-5 Writing State Equations for Lumped Linear Systems Using 
Graph Theory 

It is useful to have systematic procedures for writing state equations (see Chapter 7) for lumped linear 

systems. In this section, methods for obtaining the state equations, or normal form equations, for a lumped 

linear physical system from its graph are considered. One advantage of such equations is that they are 

ideally suited for computer solution. For a lumped linear system, the state equations have the form 

x(t) = Ax(0 + Bu(0 (B-36) 

where A and B are matrices of constants which depend on the system parameters, 

x(0 = x2(t), . . . , xn(t)]T (B-37) 

is the state vector, and 

u(0 = [uft), u2(t),. . ., um(t)Y (B-38) 

is a forcing function, or input, vector (see Appendix D for definitions and operations pertaining to 

matrices). 

Before going through the procedure, we need to define the concept of a normal tree. 

Normal Tree A tree that contains all independent voltage (velocity) sources, no independent cur¬ 

rent (force) sources, the maximum possible number of capacitances (masses), and the minimum pos¬ 

sible number of inductances (springs). 

If a normal tree can be found for a lumped, linear system graph, the equilibrium equations of the sys¬ 

tem can be written in the form (B-36) with the minimal number of state variables using the following 

procedure: 

1. Choose a normal tree for the network under consideration. 

2. Take either the voltages or the charges across the tree-branch capacitors and either the currents 

or the fluxes through the cotree-chord (link) inductors as the state variables. 
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3. Write the independent KCL equations, fundamental loop equations, and branch voltage current 

relations. 

4. Eliminate all the network variables except the state variables chosen in Step 2 from the equation 

obtained in Step 3. 

5. Rearrange the equations obtained in Step 4 and put them in the form of (B-36). 

An example will illustrate the procedure. 

EXAMPLE B-5 

Consider the circuit shown in Fig. B-9a. A normal tree is shown in Fig. B-9b (this is one of the four 

possible normal trees). It is clear that the state variables are xx = v3 and x2 = i5. Writing KCL equa¬ 

tions at nodes nx and n2 gives 

i4 — q — x2 = 0 (B-39) 

and 

x2 - i2 - i6 = 0 

respectively. Writing KYL equations by inserting links lv /2, and l3 in turn gives 

Vx - v4 - vl = 0 

vx- V4- v5- v2- Xl = 0 

v2 — V2 — jtj = 0 

(B-40) 

(B-41) 

(B-42) 

(B-43) 

(a) 

n\ n2 

FIGURE B-9. The circuit for Example B-5 (a) and a normal tree for the circuit (b). 
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The voltage-current relationships for the various branches are 

h = ~h (B-44) 

f4 — Lj (B-45) 

v5 = L2 —— 
dt 

(B-46) 

4 " Cl dt 
(B-47) 

^6 Z3 ^2 (B-48) 

Differentiating (B-43) yields 

dv2 dV2 dxx 

dt dt dt 
(B-49) 

From (B-40) with (B-48) substituted, we get 

^-c' * 

dv? dx i 
-T--C,-~ = 0 (B-50) 

Eliminating dv2ldt between (B-49) and (B-50), we obtain 

dV7 dxi dx i 
jc2- Q—1 - Q—L- C2—1 = 0 

dt 1 dt 2 dr 
(B-51) 

dxx 1 Cx dv2 

dr Cj + C2 2 C| + C2 dr 

which is the first state equation with input u3 = dV2/dt. 

Substituting (B-45) and (B-46) into (B-42), we get 

di4 dx2 

v‘~L'ir-L>!r-v>-*‘=0 

(B-52) 

(B-53) 

From (B-39) and (B-44) we have 

h = h + *2 = ~~h + *2 

When (B-54) is substituted into (B-53) and the result rearranged, we obtain 

dx2 11 Lx dlx 

dt L3 + L2 1 Li + L2 ^ 1 2^ Lj + L2 dt 

which is the second state equation with inputs ux — Vv u2 = V2, and u4 = dIJdt. 

(B-54) 

(B-55) 
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Further Reading 

W. A. Blackwell, Mathematical Modeling of Physical Networks. New York: Macmillan, 1968. Provides a uni¬ 

fied and complete approach to the analysis of linear systems. 

C. M. Close and D. K. Frederick, Modeling and Analysis of Dynamic Systems. Boston: Houghton Mifflin 

Company, 1978. Includes modeling of electrical, mechanical, electromechanical, thermal, and hydraulic 

systems. 

S. C. Gupta, J. W. Bayless, and B. Peikari, Circuit Analysis with Computer Applications to Problem Solving. 

Scranton: Intext Educational Publishers, 1972. Provides a concise treatment of graph theory applications to 

solving network variables. 

R. G. Busacker and T. L. Saaty, Finite Graphs and Networks: An Introduction with Applications. New York: 

McGraw-Hill Book Company, 1965. A thorough treatment of graph theory with a coverage of applications to 

many areas, including the' analysis of physical systems. 

R. J. Wilson, Introduction to Graph Theory. New York: Academic Press, 1978. A concise introduction to graph 

theory with some applications included. 

E. J. Henley and R. A. Williams, Graph Theory in Modern Engineering. New York: Academic Press, 1973. 

Basic concepts of flow graphs with applications, including computer programs. 

A. Gibbons, Algorithmic Graph Theory, 1985, Cambridge: Cambridge University Press. As its title suggests, an 

algorithmic approach to graph theory. 

Problems 

B-l. Assume an applied sinusoidal force of the form f(t) — A cos co0t for the translational mechanical 

elements of Table B-1. The average power delivered to the device is 

PL = 
1 

1 o 
where T = 

2iT 

(a) Show that the average power delivered to the translational damper is A2/2B watts. 

(b) Show that the average power delivered to the spring and mass elements is zero. 

B-2. Assume an applied sinusoidal torque of the form T(t) = A cos co0t for the rotational mechanical 

elements of Table B-l. The average power delivered to the device is 

ff 1 o 

rri/ x dO(t) , 
where to. 

2lT 
'0 

(a) Show that the average power delivered to the rotational damper is A2/2B watts. 

(b) Show that Pav for the rotational spring and mass is zero. 

B-3. Eliminate iB(t) between (B-l9a) and (B-l9b) so that one equation in iA(t) is obtained. 

B-4. For each of the system schematics in Figure PB-4, draw the system graph, choose a tree, and write 

down the Node and Circuit Postulate equations, (B-10) and (B-ll). 

B-5. For System 1 of Problem B-4, let C be the reference node with velocity zero. Write terminal 

equations for all elements in terms of VA and VB, the velocities of nodes A and B relative to node 

C. Express the Node Postulate equations in terms of VA and VB. How many independent equa¬ 

tions are there? 

B-6. For System 2 of Problem B-4, write terminal equations for all elements in terms of appropriately 

chosen loop currents. Substitute into the Circuit Postulate equations obtained in Problem B-4. 

How many independent Circuit Postulate equations are there? 
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® Ri ® 

FIGURE PB-4 

B-7. (a) Sketch trees for each of the system graphs in Figure PB-7. 

2 

a 

FIGURE PB-7 

(b) Assuming that electrical networks are represented, compare the number of independent Pos¬ 

tulate 1 (KCL) equations that can be written in terms of node voltages with the number of in¬ 

dependent Postulate 2 (KVL) equations that can be written in terms of loop currents. 

(c) Assume that link 1 for both parts (a) and (b) corresponds to a voltage source vs(t), and that all 

other links are 1-fl resistors. Write down the KVL equations for each network in terms of loop 

currents determined by your choice of trees. 

(d) Assume that link 1 for both parts (a) and (b) represents a current source is(t), and that all other 

links are 1-fl resistors. Write down the KCL equations in terms of node voltages with node C 

chosen as reference. 



APPENDIX c 
Functions of a Complex Variable- 
Summary of Important Definitions 
and Theorems 

To cover complex variable theory in any detail in an appendix of the length of this one is impossible. 

Therefore, only the definitions and theorems important to the material in this text are summarized with 

few proofs given. 

Let s = a + jco denote a complex variable. Another complex variable W = U + jV is said to be a 

function of the complex variable s if, to each value of s in some set, there corresponds a value, or a set 

of values, of W. We denote the rule of correspondence between s and W by writing W = F(s). If for each 

value of s there is only one value of W, F(s) is said to be a single-valued function of s. If more than one 

value of W corresponds to some value or set of values of s, F(s) is multivalued. 

EXAMPLE C-l_ 

(a) The function W = F(s) = s1 is single-valued. We can express U and V in terms of cr and co as 

W = U+jV= (a + jco)2 

= a2 — co2 + jlcrco (C-l) 

or 

U = cr2 — co2 (C-2a) 

and 

V = 2 o-co (C-2b) 

For each value of s = cr + jco there corresponds one, and only one, value for W = U + jV. 

(b) The function W = F(s) = Vs is double-valued. To show this, we write s in polar form as 

51 = rert (C-3) 

so that 

W = (re^y12 (C-4) 

Now el* = ej^+lk7T\ where k = 0, 1. Therefore, 

W = rmeM 2+k"\ k = 0, 1 (C-5) 

and for each value of s there correspond two values of W, which are 

Wx = rme^12 (C-6a) 

566 
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and 

W2 = rmeM/2+^ (C-6b) 

where rm is the positive square root of r. For example, with .9 = —4, these two values of W are 

Wx = 2eW = 2j and W2 = 2e^/2+^ = -2j 

(c) W = s*, where the asterisk denotes the complex conjugate, is a single-valued function of ,9. If 

= (j + j(o, then W = F(s) — or — jo. 

We now state a few definitions pertaining to functions of a complex variable. 

Definition 1: The neighborhood of a point sQ in the complex plane is the open circular disk 

|s — s0\ < p where p> 0 is a real arbitrary constant. 

Definition 2: A function F{s) is said to have the limit Las s approaches s0 ifF(s) is defined in a neigh¬ 

borhood ofs0 (<except perhaps at s0) and if for every positive real number e > 0, we can find a real num¬ 

ber S such that 

|*Xs) ~l\<€ (C-7) 

for all values of s 41 sQ in the disk \s — 50| < 8 (8 > 0). Note that s may approach s0from any direction 

in the complex plane. 

EXERCISE_ 

I Show that the limit of F(s) = s2 as .9 —» 0 is zero. Note that the value of F(s) at s = 0 is immaterial. 

Definition 3: The function F{s) is said to be continuous at s = s0 if F(s0) is defined and 

lim F(s) = F(s0) (C-8) 
5—>50 

EXERCISE 

Show that F(s) = s2, all s, is continuous at s — 0, and in fact for all .9. 

Definition 4: A function F(s) is said to be differentiable at a point s = s0 if the limit 

V .. F(s0 + As) - F(s0) 

p Oo) = ilm„- (C-9) 

exists. Letting s = s0 + As, we may also write this as 

F(s) - F(sa) 
F(s0) = lim 

S — Sn 
(C-10) 

Note that s may approach s0 from any direction and the resulting limiting values of (C-10) must be the 

same regardless of the direction of approach. 
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EXAMPLE C-2 _ 

Consider the derivative of the complex function F(s) — s2. We find that 

^. (a + As)2 - s2 
F(s) - lim ---1- 

As-^0 A S 

2a Aa + (As)2 
= lim--- 

As—>0 As 

= 2s 

at any point s. 

(C-ll) 

At this point, we simply state that all the familiar rules for differentiation of functions of a real vari¬ 

able continue to hold for functions of a complex variable. For example, the derivative of sin s is cos s, 

etc. The following example gives a function that does not have a derivative anywhere. 

EXAMPLE C-3 _ 

Consider F(s) = s* = a — jco. For this function, 

F(s + As) — F(s) _ (<r + Act) — /(w + Aw) — (cr — jco) 

As Act + /Aw 

Act - /Aw ^ ^ 
-  -TT (C-12) 

Act + yAw 

where As = Act + /Aw. The limit of this ratio depends on the way As approaches zero. For example, 

if Acr —> 0 first and then Aw —> 0, we obtain as the limit -1. On the other hand, if A w -> 0 first and 

then Act—> 0, the limit is +1. Hence this function is not differentiable anyplace, since s was arbi¬ 

trarily chosen. 

Definition 5: A function F{s) is said to be analytic (regular) at a point s = s0 if it is defined and has 

a derivative at every point in some neighborhood of s0. 

Note that this definition is stronger than simply saying that a function is differentiable at a point, 

since the derivative must exist everywhere in a neighborhood of the point. 

Definition 6: A function F(s) that is analytic at every point in a domain D is said to be analytic in 

D. (Note: A domain is simply an open, connected set of points.) 

Definition 7: A function F(s) that has at least one analytic point is called an analytic function. 

Definition 8: A point s0 at which the analytic function F(s) is not analytic is called a singular point. 

It can be shown that an analytic function F(s) of a complex variable has derivatives of all orders, ex¬ 

cept at singular points, and can be represented as a Taylor series in a neighborhood of each point s0 

where F(s) is analytic: 

F(s) = 2 
C%0) 

0 - So)" 
n = 0 n! 

(C-13) 
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where F{n)(s{]) denotes the nth derivative of F(s) evaluated at s = s0. For example. 

n = 0 

V - S0)n 

nl 
(C-14) 

about any point s0 in the complex plane. In fact, this is how the transcendental functions es, sin s, cos s, 

etc., of a complex variable are defined. 

The function F(s) = G(s)/(s — s0)m, where G(s) is analytic at = s0, is singular at s = s0 because of 

the factor (s — s0)~m. Such a singularity is called a pole of order m. This type of singularity is said to be 

isolated and, in the neighborhood of an isolated singularity, the representation 

rn= i cn(s-s0y 
n = —oo 

(C-15) 

can be used. More specifically: 

Definition 9: If there is some neighborhood of a singular point s0 of a function F(s) throughout which 

F is analytic, except at the point itself then sQ is called an isolated singular point ofF. 

The series (C-l 5) is known as the Laurent series expansion for the function at s = s0. If Cn — 0, 

n < —m, F(s) is said to have an rath-order pole at s = s0 (ra > 0); if m — 1, F(s) is said to have a sim¬ 

ple pole at .v = s0; if Cn F 0 for infinitely many negative values of n, F{s) has an essential singularity at 

Ly = Sq. Examples of functions with isolated singular points are 1 Is and es/(s — l)2. The function 

l/sin(7r/s') has isolated singular points at s’ = ±1, ± 1/2, ± 1/3, . . . . At s = 0 this function has a non¬ 

isolated singular point since every neighborhood of s — 0 contains other singular points. 

Theorem 1: A necessary condition that a function F(s) = U + jV of a complex variable s = a + jco 

be analytic at a point s0 is that its real and imaginary parts satisfy the Cauchy-Riemann equations 

dU _ dV 
and 

dU _ dV 

dcr dco dco dcr 
(C-16) 

Theorem 2: Sufficient conditions for a function F(s) of a complex variable s to be differentiable at a 

points = s0 is that U(cr, co) and Via, co) have continuous first partial derivatives that satisfy the Cauchy- 

Riemann equations at the point s — s0. 

Theorem 3 (Cauchy’s Integral Theorem): Let a function of a complex variable F(s) be analytic 

everywhere on and within a simple closed curve C (by simple, we mean that the curve does not cross 

itself). Then 

(j) F(s) ds = 0 (C-17) 

where <J>C (•) ds denotes the line integral in a counterclockwise direction along C. 

Figure C-l illustrates the circumstances of the theorem. Suppose that F(s) has an isolated singular¬ 

ity at s = s0 which is inside C as shown in Figure C-2. Is §c F(s) ds = 0 still? No, because F(s) is 

not analytic everywhere within and on C. However, consider the simple closed curve shown in Figure 

C-3. Since F(s) is analytic within and on the simple closed curve C + Cx + C + C2, it follows by 

Cauchy’s integral theorem that 

F(s) ds = 0 
c+cx+c+c2 

(C-l 8) 
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/co 

FIGURE C-1. Illustration of Cauchy’s integral theorem. 

Breaking the line integral up into the sum of four integrals over the separate curves C, Cl9 C2, and C", 

we obtain 

J F(s) ds + J F(s) ds + J F(s) ds + J F(s) ds = 0 (C-19) 

Now, as the gap between the curves Cx and C2 approaches zero, the second and third integrals will ap¬ 

proach equal magnitude, opposite in sign values (both have the same integrand, are integrated over the 

same length, but are taken in opposite directions). It follows, therefore, that 

F(s) ds = -() F(s) ds, 
Jr' 

6 —> 0 (C-20) 

We now focus our attention on the integral over C as e —» 0. For any point 5 on C', we may write 

(s on C) (C-21) s = s0 + 8eJe 

/6u> 

FIGURE C-2. Line integral around a closed contour that is not zero because of a singularity within 
the contour. 
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FIGURE C-3. Composite closed curve, C + + C2 + C', chosen so as to satisfy Cauchy’s integral 
theorem. 

Therefore, in the integral over C’ of (C-20) we may substitute 

ds = j8ej° d6 (C-22) 

which results by taking the derivative of (C-21) (note that for any point on C\ both s0 and 8 are fixed). 

Also, we may express F(s) in the neighborhood of s0 as a Laurent series as given by (C-15). In particu¬ 

lar, on the curve C\ s is given by (C-21), so that 

j = 8eJ° (C-23) 

and (C-15) may be expressed as 

F(s) = 2 Cn{8e’er 
n = oo 

00 

= 2 Cn8ne'n$ (s on C) 
n = —oo 

Substituting (C-22) and (C-24) into the integral over C', we obtain 

6 F(s) ds = f3 2 CnS 
^ C' J 6=2tt *-n = — oo 

%nejnO j8eje dO 

(C-24) 

(C-25) 

where the line integral can be written as an integral over the angle 6 because of the circular path. Note 

that the integral over 0 goes from 0 = 2irto 0 = 0 because of the clockwise orientation of C. Because 

the Laurent series for F(s) is uniformly convergent to F(s) in the neighborhood of s0, the integral and 

sum in (C-25) can be interchanged to yield 

f 00 2-77- 

d> F(s) ds = - X jCn8n+1 eKn+1)e d6 (C-26) 
n = — oo *^0 

where the integral is now taken from 0 = Oto 6 = 2ir with a minus sign inserted to account for the re¬ 

versal of limits. Now, for n + 1 ¥= 0, the integral of exp[j(n + 1)0] from 0 to 27T is zero (the student 
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may show this by integration and substituting the limits). For n + 1=0, the integral in (C-26) evalu¬ 

ates to 277. Thus all terms in the sum are zero except the term for n = — 1, which gives 

(C-27) iF(s) ds — — 2ir]C_x 

Therefore, as 8 and e approach zero, (C-20) evaluates to 

F(s) ds = 2irjC_1 (C-28) 

where C_x is the residue of F{s) at s = s0. If F(s) has more than one isolated singular point within C, 

say at the points sv s2, . . . ,sN with residues Kv K2,. . ., KN, then we may follow the procedure outlined 

above for each singular point and arrive at the residue theorem: 

Theorem 4 (Residue Theorem): Let F{s) be analytic everywhere within and on the simple closed 

curve C except at the isolated singular points sp s2, , sN. Then 

F(s) ds = 277, 2 Kn 
C n = 1 

(C-29) 

where $c (•) ds is the line integral in a counterclockwise sense of F{s) around C and Kv K2, . . . , KN 

are the residues of F(s) at s2, s2, ... , sN. 

We complete this appendix with several theorems pertaining to the single-sided Laplace transform. 

Theorem 5 (Absolute Convergence of the Single-Sided Laplace Transform): The integral 

X(s) = f x(t)e st dt 
Jo 

converges absolutely for all Re(s) > c if 

CL 
\x(t)\ dt < 

Jn 
K < CO 

for 0 < L < oo and 0 < K < °° and 

|x(t) | < Aect, t > L 

for some real A and c. 

Proof. According to the definition on absolute convergence, we must show that 

1 = f |x(t)e dt < oo for a — Re(s) > c 
Jn 

(C-30) 

(C-31) 

(C-32) 

(C-33) 

We divide I up into two integrals as 

/ - 
rL f00 

\x{t)\e~at dt + I |x(f)| 
In h 

e -m dt 

= h + h 
Now 

h =£ eML [L k(0| dt < Ke^L 

(C-34) 

(C-35) 
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I2<A dt 

Ae-(<r~c)L 

(J — c 
since <j> c (C-36) 

Hence, 

, |, Ae-(,T~C)L 
I = Ix + I2 < KeML +--< oo for cr > c (C-37) 

Definition 10: (Uniform convergence of an in tegral); The integral 

I(s) = f g(Us)dt (C-38) 
Jo 

is said to converge uniformly for s in a specific range (say 0 to 00) if for each e> 0, we can find a 

value d such that 

g(t, s) dt - I(s) < € for b > d (C-39) 

Theorem 6: If the integral 

X(s)=f x(t)e~stdt (C-40) 
Jo 

converges absolutely for s0 = <x0 + jco0, it also converges absolutely and uniformly in the half plane 

Re(s) > o-0. 

Theorem 7: If the single-sided Laplace transform integral converges absolutely for a > aa, then X(s) 

is analytic for a > cra. 

This theorem tells us that the singularities of X(s) must lie to the left or on the line Re(s) = cra. By a 

process known as analytic continuation, X(s) may be defined and shown to be analytic on the entire 

s-plane except, of course, at its singularities. 

Theorem 8: Ifxft) andx2(t) both have the same single-sided Laplace transform, then 

xl(t)=x2(t) _ (C-41) 

except, possibly, at a set of points with u measure zero”; that is, the integral of\xft) — x2(t)\ over the 

range of integration is zero. 

Further Reading 

The books by Churchill and Kreyzig cited as references in Chapter 5 are recommended if the student wishes to 

have a more complete treatment of complex variable theory than that given here. 



APPENDIX 

Matrix Algebra 

The purpose of this appendix is to summarize the basic concepts of matrix theory. 

An n X m matrix A is an array of numbers a- given by 

an ’ ’ ’ alm 

a22 ’ ’ ' a2m 

Y.anl an2 * ’ * anm- 

11 

a21 
(P-1) 

It has n rows and m columns. If m — 1, there is only one column and A becomes a column matrix or 

vector a given by 

ai 

a2 
(P-2) 

The transpose of an n X m matrix A, denoted A', is an m X n matrix obtained from A by inter¬ 

changing rows and columns; that is, 

an 0-21 ■ * ‘ anl 

A' = a\2 a22 Un2 
(D-3) 

J*\m «2m ' ®nm _ 

A square matrix (n = m) is said to be symmetric if and only if A' = A. The transpose of a column vec¬ 

tor is a row vector; that is, 

a' = [ax a2 ... an\ (D-4) 

Two matrices (or vectors) which have the same dimensions may be added or subtracted. These opera¬ 

tions are accomplished by adding or subtracting corresponding elements of the matrices. The operations 

may be defined as 

A ± B = C (D-5) 
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where the elements of C are obtained from those of A and B by the relation 

c.. — a -+" h 
uij ~ uv 

Matrix multiplication may be defined as follows. Let A be n X l with elements a- and B be / X m 

with elements b;i. Then 

where C is nX m with elements c-- given by 

AB = C 

<•,/ = 2 "A/ 
k=l 

Note that the number of columns of the first matrix must equal the number of rows of the second or 

multiplication cannot be accomplished. An an example, let 

1 2 1 
“2 1~ 

B = 1 0 
_3 0 1_ 

_3 2_ 

AB = C = (D-10) 

In general, matrix multiplication is not commutative; that is, in general 

AB A BA CD-11) 

However, it is true that 

A(BC) = (AB)C and A(B A C) = AB + AC (D-12) 

The identity matrix is a square matrix, I, having the property that for any square matrix A 

AI - IA = A (D-13) 

The identity matrix is such that all principal diagonal elements are 1 and all other elements are zero. 

The identity matrix of dimension 2 is given by 

I = P °1 (D-14) 
|_0 lj 

A square matrix A is said to be nonsingular if the determinant of A is nonzero. For a nonsingular ma¬ 

trix A there exists a matrix B with the property that 

AB = BA = I 

B is said to be the inverse of A, and is denoted as 

B = A 1 

The inverse of a nonsingular matrix may be found from 

A-i - adiA 

(D-15) 

(D-16) 

(D-17) 
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where adj A denotes the adjoint of A, which is the transpose of the matrix of cofactors of AT |a| 

determinant of A. As an example, let us find the inverse of 
is the 

We have 

0 1 0“ 

A = 0 0 1 

_ —2 - -3 -1_ 

|a| = -2 

"3 2 0~ 
t 

3 i r 

adj A = 1 0 -2 = -2 0 0 

_1 i 0 0_ 0 -2 0_ 

(D-18) 

(D-19) 

(D-20) 

Then 

0 _t 

2 

0 0 

1 0. 

CD-21) 1 

L 0 
As a check, the student may verify that AA~1 = I. 

The eigenvalues of an n X n matrix A are the roots Xr i = 1,2,..., n. of the characteristic equation 

|AI - A| = 0 (D-22) 

which is an nth-degree polynomial in A. Eigenvalues play an important role in system analysis. 

As an example, we shall find the eigenvalues of the matrix 

A = 
0 

-4 
(D-23) 

We have 

|ai 
— i 

A + 5 
= A(A + 5) + 4 = A2 + 5A + 4 - 0 

The polynomial may be factored and the roots found as 

(D-24) 

Ai = -1, A2 = —4 (D-25) 

These are the eigenvalues of the matrix given. The procedure is exactly the same, but considerably more 
tedious, for larger matrices. 

The characteristic equation is an important quantity associated with a matrix, having other uses 

than merely the determination of the eigenvalues. Let us denote the characteristic equation of an n X n 
matrix A as 

A" + an_xkn 1 + • • • + axX + a0 = 0 (D-26) 

The Cayley-Hamilton theorem states that a matrix satisfies its own characteristic equation. Therefore, 
A satisfies the matrix equation 

A* + an_x An~l + • • • + axA + a0l = 0 (D-27) 

tThe i-jth cofactor of a matrix is obtained by striking out the ith row andyth column, evaluating the resulting determinant, and 
multiplying by (— l)i+i. 
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from which 

A" = —{an_x An~l + an_2 An~2 + • • • T^A + a0I) (D-28) 

If we multiply both sides of this equation by A, we obtain 

An+1 = -(an_l An + an_2 A'7-1 + • • • + ax A2 + a0A) (D-29) 

Clearly, we can substitute for A" on the right to obtain an expression for An+1 in terms of powers of A 

no higher than n — 1. The expression will be of the form 

A;1+1 = b01 + bx A + • • • + bn_x A71-1 (D-30) 

where the b{ can be determined from the av By continuing this kind of operation and successively sub¬ 

stituting, it is possible to write any power of A in terms of powers of A no higher than n— 1. This is 

the basis of one of the methods of finding the matrix exponential eAr in Chapter 7. 

Differentiation or integration of a matrix with respect to time is accomplished by performing the ap¬ 

propriate operation on each element of the matrix. For example, suppose that 

A - (D-31) 

Then 

dA _ - e 1 e 1 - te 1 

dt 0 
(D-32) 

Since the Laplace transform is an integral operation, the Laplace transform of a matrix is obtained by 

Laplace transforming each of the elements. The Laplace transform of A above is 

2[A] = 

1 

5 + 1 

0 

1 

(s + l)2 

1 

s + 1 

(D-33) 
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Analog Filters 

In Chapter 9 a number of methods were studied for the design of digital filters. Many of these design 

methods assumed knowledge of an analog prototype from which the digital filter could be derived. The 

design process for the digital filter was then carried out in order to obtain a digital filter whose time- 

domain or frequency-domain characteristics approximated the corresponding characteristics of the 

assumed analog prototype. For example, the impulse invariance design technique results in a digital 

filter whose unit pulse response is the sampled unit impulse response of the analog filter from which it 

was derived. The bilinear z-transform design technique results in a digital filter whose frequency re¬ 

sponse approximates the frequency response of the analog filter from which it was derived. 

The puipose of this appendix is to present the defining characteristics of several analog prototypes 

in order to better understand our starting point when we develop digital filters from an analog proto¬ 

type. The subject of analog filter synthesis is an important area of study and this brief introduction is of 

necessity incomplete. The student interested in exploring this area in greater detail should consult one 

of the many textbooks available. Several are cited in the references. 

The synthesis of analog filters is now a very mature subject area. Extensive sets of tables exist which 

give not only the frequency and phase responses of many analog prototypes, but also the element val¬ 

ues necessary to realize those prototypes.f Many of the design procedures for digital filters have been 

developed in ways that allow this wide body of analog filter knowledge to be utilized effectively. 

Generally, filter tables contain the amplitude response, phase response, pole-zero locations, and ele¬ 

ment values for the normalized filter, which is defined to be a low-pass filter having a reference fre¬ 

quency, which is often the bandwidth, of 1 rad/s. Then, using standard techniques, this filter can be 

transformed into a high-pass, bandpass, or notch filter having any desired bandwidth. We examine sev¬ 

eral of these transformation techniques later in this appendix. 

The Signal and Systems Matlab toolbox contains a number of routines for designing analog filters. 

Many of these are contained in the Student Edition of Matlab. A wide variety of filter types are included 

along with routines for scaling filter bandwidths and for converting lowpass filters to bandpass, notch 

(bandstop) and highpass filters. For many applications, including all of those considered here, the avail¬ 

ability of these routines has replaced the need for traditional filter tables. 

E-1 Group Delay and Phase Delay 

In Chapter 4 ideal filters were defined. Recall that the ideal filter resulted by investigating the condi¬ 

tions under which a linear system is distortionless. A distortionless system was defined in Chapter 3 as 

TSee, for example, Zverev (1967). See “Further Reading.” 
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a system in which the system output is an amplitude-scaled and time-delayed version of the system in¬ 

put. In other words, if the input x(t) is applied to a distortionless system, the output y(t) is 

y(t) = Gx(t - r) (E-1) 

in which G is the system gain and r is the system time delay between system input and output. By 

Fourier transforming (E-1) we were able to show that the transfer function of an ideal system is 

H(f) = Ge-J2^ (E-2) 

The amplitude response is the constant 

A(f) = G (E-3a) 

and the phase response is the linear function of frequency 

<Kf) = (E-3b) 

Often, instead of specifying the phase response of a filter, the group time delay is specified. The group 

time delay is defined as 

Tg(co) = (E-4) 

or, equivalently, 

w <E-5) 

where tilde indicates a function of co. Since an ideal filter has a phase response that is a linear function 

of frequency, the group delay of an ideal filter is constant for all frequencies. This is easily seen by sub¬ 

stituting (E-3) into (E-5), which shows that the group delay of an ideal filter is 

7g(/) = 2Trfr) = t (E-6) 

Thus if an input to an ideal filter has a spectrum extending over a range of frequencies, the filter output 

will be distortionless if the filter gain and group delay are both constant over the nonzero range of the 

input spectrum. 

Linear system theory tells us that if a sinusoidal input is applied to a linear time-invariant system, 

the output will also be sinusoidal, although the output may have a different amplitude and phase refer¬ 

ence. Thus if a single spectral component is applied to a linear time-invariant system, the output is al¬ 

ways distortionless. For this case we refer to another type of system time delay called phase delay, which 

is the actual time delay between input and output at the frequency of a single spectral component. Phase 

delay is easily illustrated by a simple example. 

Assume that a system has input 

x{t) = A cos 277fQt (E-7a) 

and output 

y(t) = B cos(2nf0t + 6) (E-7b) 

The output can be written 

Wo/ 
y(t) = B cos 2Trf0 t + (E-8) 
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Recognizing that since the output must be distortionless, y(t) must be of the form 

y(t) = B cos 2irf0(t - t0) (E-9) 

Thus comparing (E-8) and (E-9) we see that the time delay between system input and system output is 

e 

2rfo 

which is the phase delay for this example. In general, the phase delay is written as 

<Kf) Uf) = 
27Tf 

(E-10) 

(E-ll) 

in which 4>(f) is the system'phase shift, in radians, at the frequency/(hertz). Ideal filters have equal 

group and phase delays. 

E-2 Approximation of Ideal Filters by Practical Filters 

Since ideal filters are not physically realizable (recall that the unit impulse response for an ideal filter is 

noncausal), the filtering problem is to select, from among the many available filter prototypes, that pro¬ 

totype which satisfactorily approximates the desired filter characteristic with a minimum of hardware. 

For an ideal filter, each value of frequency either falls within the filter passband, which is characterized 

by constant gain, or falls within the filter stop band, which is characterized by infinite attenuation. Prac¬ 

tical filters have a region between each passband and stop band known as a transition band. 

A typical set of filter requirements is illustrated in Figure E-l. Within the passband, the filter ampli¬ 

tude response is not required to be constant; some variation about the nominal gain G0 is allowed. In 

Figure E-l a, this variation has a peak-to-peak value of A^. Within the stop band the amplitude response 

is required to be below the value A. In order for the transition band to be as small as possible, the am¬ 

plitude response of the filter often passes through the two heavy dots shown in Figure E-l a. Typical ap¬ 

plications also place requirements on the group delay of the filter, as illustrated in Figure E-lb. Some 

variation about the nominal value Tg is allowed. The peak-to-peak variation is denoted by AT in Figure 

E-lb. The group delay in the transition band and in the stop band is often unimportant. Although Fig¬ 

ure E-l is drawn for a low-pass filter, the extension to other types should be obvious. 

Many different trade-offs are possible among the parameters depicted in Figure E-l, and each of the 

standard prototypes makes a different trade-off. We now briefly review some of the most popular filter 

prototypes in order to become familiar with the various trade-offs possible. 

A sketch of the amplitude response of each prototype to be discussed is illustrated in Figure E-2. 

Each filter is fourth order, and the highest passband frequency is 1 rad/s. Thus these are the amplitude 

responses of the normalized filters. 

Butterworth Filter 

The Butterworth filter is designed to have a maximally flat amplitude response in the passband. The 

edge of the passband is usually defined to be the frequency where the amplitude response is 0.707 times 

the maximum value. Thus e in Figure E-l is 0.707. The amplitude response of a Butterworth filter 

decreases monotonically in the transition band and in the stop band. Since the Butterworth filter is 
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FIGURE E-1. Typical set of filter requirements. 

designed to have a maximally flaC passband amplitude response, no constraints are placed on the phase 

response or group delay. However, the group delay of a Butterworth filter is reasonably constant over 

most of the passband, as we shall observe later. The Butterworth filter is studied in more detail in the 

following section. 

Bessel Filter 

The Bessel filter is designed to exhibit a maximally linear phase response, which implies a maximally 

constant group delay. The Bessel filter has less stop band attenuation than a Butterworth filter of equal 

order and bandwidth. (See Problems E-3 and E-4 for more on Bessel filters.) 

Chebyshev I Filter 

The Chebyshev I filter allows the amplitude response to have ripple in the passband. This allows the 

amplitude response to have a steeper rolloff outside the passband for a fixed filter order. The ripples in 

the filter passband have equal amplitude and the amplitude response outside of the passband is monot¬ 

onic. Where a given stopband attenuation is required, a Chebyshev I filter having lower order than a 

Butterworth filter can sometimes be used. This results in hardware simplifications assuming, of course, 

that the passband ripples can be tolerated in the given application. In Figure E-2c the passband ripple 

is 6 dB. This is an extremely large value but was done to illustrate this characteristic of the filter. We 

study the Chebyshev I filter in more detail in the following section. 

tThe nth order Butterworth filter amplitude response function has (2n — 1) derivatives equal to zero at oj — 0. 
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0 1 

(e) Elliptic 

FIGURE E-2. Amplitude response of various prototypes. 

Chebyshev II Filter 

The Chebyshev II filter has a monotonic amplitude response and equal amplitude ripples in the stop 

band. For the filter illustrated in Figure E-2d, the minimum stop-band attenuation is 20 dB. 

Elliptic Filter 

The elliptic filter is a combination of the Chebyshev I and Chebyshev II filters in that the elliptic filter 

has amplitude response ripples in both the passband and stop band. The advantage of the elliptic filter 

is that for a given allowable ripple in the passband and a minimum attenuation in the stop band, the 

width of the transition band is minimized. In Figure E-2e, the passband ripple is 6 dB and the minimum 

attenuation in the stop band is 20 dB. 
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E-3 Butterworth and Chebyshev Filters 

To gain a better understanding of filter characteristics, we now examine the Butterworth and Cheby¬ 

shev I prototypes. Only normalized filters will be considered. In the following section we shall see how 

to convert these normalized filters to other types of filters. 

Butterworth Filters 

The Butterworth filter having a 3-dB bandwidth of 1 rad/s has the steady-state amplitude response 

where co = 2nf and n is the order of the filter. As stated in the preceding section, the Butterworth filter 

is designed to have a maximally flat passband amplitude response. The system function corresponding 

to (E-12) is 

Hb(s) = 
(-i)y2 •••■?„ 

(s - Sj)(s - s2) ■ ■ ■ (s - s„) 
(E-13) 

The poles of the Butterworth filter (sv s2,..., sn) all lie on a circle having a radius of 1 rad/s and cen¬ 

tered on the origin of the s-plane. The poles are symmetrical with respect to the real axis. Figure E-3 il¬ 

lustrates the pole locations for n = 2, 3, 4, and 5. Note that the angle between the poles is 180°/n and 

that odd-order filters have one real pole at s = -1. Even-order Butterworth filters have no real poles. 

The transfer function for an nth-order Butterworth filter is given by 

H,(s) - ^ ,E-14, 

where Bn(s) represents the Butterworth polynomial of degree n. These polynomials are easily derived 

from knowledge of the pole locations (see Problem E-2). The first six Butterworth polynomials are tab¬ 

ulated in Table E-l. The amplitude responses, in decibels, of several Butterworth filters are illustrated 

in Figure E-4. All Butterworth filters have a gain at coc = 2nfc = 1 of 

= vTTp ’0707 <E'15) 

which expressed in decibels is 

20 log|tf(«c)| = 20 log 0.707 = -3 (E-l6) 

The group delay of the nth-order Butterworth filter is given byf 

~ 1 oj^m 

^ 1 + co2n sin(2m + l)(7r/2n) ^ ^ 

and is illustrated in Figure E-5 for several values of n. It can be seen that the group delay is reasonably 

constant over most of the filter passband. 

tSee Weinberg (1962), p. 497. 
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FIGURE E-3. Pole locations for normalized Butterworth filters. 

TABLE E-1 
Butterworth Polynomials 1 < n < 6a 

B}(s) = 5 + 1 

B2(s) = s2 + 1.4142136j + 1 

S3(5) = 53 + 2.000000052 + 2.00000005 + 1 

S4(5) = 54 + 2.613125953 + 3.414213652 + 2.61312595 + 1 

B5(s) = 55 + 3.236068054 + 5.236068053 + 5.236068052 + 3.23606805 + 1 

B6(s) = 56 + 3.863703355 + 7.464101654 + 9.141620253 + 7.464101652 + 3.86370335 + 1 

aH„(5) = 1/B„(5). 
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FIGURE E-4. Amplitude response of Butterworth filters. 

Chebyshev I Filter 

The amplitude response of an nth-order Chebyshev I filter is defined by the equation 

|tfc(«u)| 
_1_ 

Vi + Tcfro) 
(E-18) 

in which Cn{co) is the Chebyshev polynomial and e is a parameter to be discussed later. The Chebyshev 

polynomial is defined by 

Cn(co) = cos(n cos-1 co) (E-19) 

Since the argument of the cosine function is only a real angle for co in the range — 1 < co < 1, it is con¬ 

venient to define Cn(co) in two ranges as 

Cn(co) = cos(n cos-1 co), |o>| < 1 (E-20) 

and 

Cn(aj) = cosh(n cosh-1 co), |co| > 1 (E-21) 

Equation (E-20) describes the filter in the passband and (E-21) describes the filter outside of the passband. 

From (E-20), we see that at zero frequency 

cm n odd 

n even 
(E-22) 
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so that 

|tfc(0)| =1, n odd 

and 

\HM\ = ^==, n even 

Since 

C2( 1) = cos2 0 = 1, all n 

both even-order and odd-order Chebyshev I filters have an amplitude response at band edge, 

2nfc= 1, equal to 

|tf(*0l 
i 

VTT7 
for all n. Thus, at band edge, the amplitude response of a Chebyshev I filter is 

20 log|#(/c)| = —10 log(l + e2) 

(E-23) 

(E-24) 

(E-25) 

= wc = 

(E-26) 

(E-27) 
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The parameter e establishes the amplitude of the passband ripple discussed in the preceding section. 

Since the maximum value of \Hc(co)\ within the filter passband is 1, and the minimum \ alue of \Hc(oj)\ 

within the passband is 1/Vl T e2, the peak-to-peak passband ripple is 

An = 1-- 
* VTT7 

(E-28) 

The total number of points within the passband (including co = 0) at which the derivative of //(,(co) with 

respect to co is zero is equal to the order of the filter. This observation makes it relatively easy to sketch 

the frequency response of a Chebyshev I filter. 

It is relatively simple to compute the additional stop-band attenuation given by the Chebyshev I fil¬ 

ter over the Butterworth filter by comparing the amplitude responses of both filters for co >> 1. For the 

Butterworth filter 

1"'M| - vrT (E-29) 

so that for co > > 1, 

l«»Ml» CO 
(E-30) 

which, expressed in decibels, is 

20 log\HB(o))\ = —20n log co (E-31) 

For the Chebyshev I filter with co > >> 1, we have 

\Hc(<o)\= 1 
eCn(co) 

(E-32) 

even for small e (see Problem E-12). 

Placing (E-32) in a form that allows comparison with (E-31) requires some effort. Since co >> 1, 

we use (E-21) 

Cn(co) — cosh(n cosbr1 co), |co| > 1 (E-33) 

For large x 

cosh^1 x — In 2x, x » 1 (E-34) 

so that 

Cn(co) — cosh(n In 2co) = cosh[ln(2co)n], co >> 1 (E-35) 

Equation (E-34) results from the fact that for large x 

coshx — ^ex, co >> 1 (E-36) 

Also, for co >> 1, we have 

C„(w) “ I exp[ln(2w)"] = j(2o>)", w » 1 (E-37) 

Substituting (E-37) into (E-32) yields 

\Hc(co)\^2e(2coyn, w» 1 (E-38) 
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which, expressed in decibels, is 

20 log|tfcO)| — 20 log 2 — 20 log e — 20n log 2co (E-39) 

or 

20 log|//c(«)| = - 20(n - 1) log 2 - 20 log e - 20n log co (E-40) 

The additional attenuation of the Chebyshev I filter over the Butterworth filter, expressed in decibels, is 

Aa = 20 log\HB(co)\-20\og\Hc(a»\ 

= 20(n - 1) log 2 + 20 log e (E-41) 

For e >> 1, the value of Aa can be negative, indicating less stop-band attenuation for the Chebyshev 

I filter. However, if e < 1, the bandwidth of the Chebyshev I filter is effectively larger than the band¬ 

width of the Butterworth to which it is being compared. Letting 6=1, which yields 3-dB attenuation 

at co — 1, results in 

Aa - 20(n - 1) log 2 = 6(n - 1) dB (E-42) 

indicating equal stop-band attenuation for n— 1. The value of Aa increases as n and e increase above 

these values. 

The preceding discussion illustrates that there is a fundamental difficulty in comparing the Butter¬ 

worth and Chebyshev I filters. This difficulty results because, at bandedge (co = 1), the amplitude re¬ 

sponse of the Butterworth filter is 1/V2 and the amplitude response of the Chebyshev I filter is 

1/Vl + e2. In other words, co = 1 defines the half-power point for the Butterworth prototype and 

co = 1 defines the end of the ripple band in the Chebyshev prototype. 

It is easy to determine the half-power frequency for the Chebyshev I filter. If the amplitude response 

is to be 0.707, then 

eCn(co3)= 1 (E-43) 

where co3 is the half-power frequency. The value of co3 will be greater than one unless e > 1. Since e < 1 

for typical applications, we shall use (E-21) for Cn(co). This yields 

6cosh(ft cosh-1 co3) = 1 (E-44) 

or 

/ JL _ i _L 

con = cosh — cosh — 
\n 6 

It is easily seen that for e < 1, the 3 dB frequency exceeds co = 1. 

It is worth noting that for n — 1 

C{(co) = co 

so that 

(E-45) 

(E-46) 

\HCH\ 

1 

\/l + (we)2 
(E-47) 

We shall show in the following section that this is simply a first-order Butterworth filter with a scaled 

3-dB frequency of 1/6 radians per second. 

It is also worth noting that since Aa is not a function of co, the slopes of the stop-band amplitude re¬ 

sponses of both the Butterworth and Chebyshev I filters for large co are equal. 



E-3 / Butterworth and Chebyshev Filters 589 

The amplitude responses of several Chebyshev I filters are illustrated in Figure E-6 for 1-dB pass- 

band ripple and in Figure E-7 for 3-dB passband ripple. A comparison of Figures E-6 and E-7 illustrates 

that, as the passband ripple increases, the stop-band attenuation also increases for fixed frequency and 

filter order. A comparison of Figures E-6 and E-7 with Figure E-4 illustrates the increased stop-band at¬ 

tenuation of the Chebyshev I filter compared with the Butterworth filter. 

The passband responses of Chebyshev I filters are illustrated in greater detail in Figures E-8 and 

E-9. Figure E-8 shows the amplitude response assuming 1 dB passband ripple for the order n = 1,2, 

3, and 4. In Figure E-9 the filter order is 4 and the amplitude response is shown for 0.1, 0.5, 1.0, and 

2.0 dB passband ripple. 

The pole locations of a normalized Chebyshev I filter are only slightly more difficult to specify than 

the pole locations of a Butterworth filter. The process of locating the poles is illustrated in Figure E-10 

for the filter order n — 4 and 1 dB passband ripple. The first step is to draw two circles having radii a 

and b. The values of a and b are determined by the passband ripple factor, e, according to 

b,a=\ [(V1 + 1/e2 + l/e)1/n ± (Vl - 1/e2 + 1 /eyx/n] (E-48) 

in which n is the order of the filter. The two circles define the major and minor axes of an ellipse, as 

shown by the dashed line in Figure E-10. The next step is to define the angles to the poles of a Butter¬ 

worth filter having order n and to mark these points on both of the circles. These points are indicated 

by the heavy dots on Figure E-10. Projecting these points horizontally from the b circle and vertically 
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FIGURE E-6. Amplitude response of Chebyshev I filter with 1-dB passband ripple. 
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FIGURE E-8. Amplitude response of Chebyshev I filters with 1-dB passband ripple and orders n = 1, 
2, 3, and 4. 
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0.2 0.4 0.6 0.8 1 1.2 

Normalized frequency, rad/s 

FIGURE E-9. Amplitude response of fourth-order Chebyshev I filters with passband ripple of 0.1,0.5, 
1, and 2 dB. 
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from the a circle defines the ellipse and the poles of the normalized Chebyshev I filter. It follows that 

the pole locations are 

sx — a cos 4>l + jb sin <f>x (E-49a) 

s2 = a cos (/>2 + jb sin <p2 (E-49b) 

s3 = a cos (f)2 — jb sin (f>2 (E-49c) 

and 

s4 = a cos (pl — jb sin cj)l (E-49d) 

The numerical values are determined in the following example. 

EXAMPLE E-l 

In this example we determine the system function, H(s), of a Chebyshev I filter in order to illustrate 

the concepts discussed in Section E-3. As an intermediate step the pole locations will be determined. 

For a 1 dB passband ripple the value of £ is 

62 = 101/10 _ i = 0.25893 (E-50) 

from which 

£ = 0.50885 (E-51) 

Using these values in (E-48) yields 

b = 1.06440 and a = 0.36463 (E-52) 

as shown in Figure E-10. 

The angles are 

(j)x = 90° + 22.5° = 112.5° (E-53a) 

and 

(f)2 = fa + 45° = 157.5° (E-53b) 

Therefore, from (E-49), 

Si = -0.13954 + j0.98338 (E-54a) 

s2 = -0.33687 + j 0.40733 (E-54b) 

s3 = -0.33687 - j0.40733 (E-54c) 

and 

= -0.13954 - j0.98338. (E-54d) 

From these pole locations the transfer function can be determined. The result is 

~ (s2 + 0.279085 + 0.98651)(.v2 + 0.67374s' + 0.24940) 
(E-55) 

The dc response of the filter is 

(0.98651)(0.27940) 0.27563 
(E-56) 
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If A is set equal to 0.27563, the product of the constant terms in the denominator, the dc gain will be 

one. Since this is an even-order Chebyshev I filter, we desire the dc gain to be 1/VT + e2. Thus we 

must scale A by 1/Vl + e2. Therefore 

0.27563 _ 0.27563 

Vl + e2 Vl.25893 
0.24566 (E-57) 

and H(s) can be written 

H(s) = 
0.24566_ 

s4 + 0.95282s3 + 1.45394s2 + 0.74263s + 0.27563 
(E-58) 

Mat lab Application 

Using the routine chebyl from the Matlab signals and Systems Toolbox allows the numerator and 

denominator polynomials to be easily determined and from the denominator polynomial the pole lo¬ 

cations can be determined easily. The Matlab code is 

EDU» aeexl 

n = 4; % 

Rp = 1 ; % 

Wn = 1 ; % 

[b,a] = chebyl(n,Rp,Wns'); % 

poles = roots(a); % 

poles % 

poles = 

-0.1395 + 0.9834i 

-0.1395 - 0.9834i 

-0.3369 + 0.40731 

-0.3369 + 0.40731 

a % 

a = 

1.0000 0.9528 1.4539 

b % 

b = 

0 0.0000 0.0000 

Define filter order 

Set passband ripple in dB 

Set critical freq in rad/s 

Design analog prototype 

Poles 

Display poles 

Display denominator coefficients 

0.7426 0.2756 

Display numerator coefficients 

0.0000 0.2457 

We can see that the poles, numerator coefficients and the denominator coefficients are, to the preci¬ 

sion displayed, in agreement with the previously obtained results. 
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E-4 Filter Transformations 

In the previous sections emphasis has been placed on the normalized filter prototypes, that is, low-pass 

filters having a bandwidth of 1 rad/s. In this section we see how to convert the normalized filter to low- 

pass filters having arbitrary bandwidth and also how to convert the normalized filter to bandpass and 

notch (band reject) filters. 

Frequency Scaling 

The 1 -rad/s bandwidth of a normalized prototype is converted to a bandwidth of (oc radians per second 

by substituting s/coc for ^ in the normalized prototype system function H(s). This is equivalent to sub¬ 

stituting co/a)c or f/fc in the sinusoidal steady-state transfer function. 

EXAMPLE E-2 _ 

This example illustrates the use of frequency scaling to convert the amplitude response of a proto¬ 

type filter to a lowpass filter having an arbitrary bandwidth. 

The amplitude response of an nth-order Butterworth filter having a 3-dB bandwidth of 150 Hz is, 

from (E-29), 

\Hb((o)\ = . .- = -.;.1 - = (E-59) 
Vl + [«/2tt(150)]2" Vl + (//150)2" 

EXAMPLE E-3 

This example illustrates the development of the transfer function for a second-order Butterworth fil¬ 

ter having an arbitrary 3-dB bandwidth. The result of this example is used in Example 9-7 in which 

the bilinear z-transform digital filter, based on a second-order Butterworth analog filter, is developed. 

The transfer function of a second-order Butterworth filter with a 3-dB bandwidth of a)c radians 

per second is found by using B2(s) in Table E-l with v replaced by s/a>c. The result is 

which yields 

ms) 
_i_ 

(V+ V2 (Vft)c) + 1 

ms) = 
V + V2 (x)rS + o>2c 

(E-60) 

(E-61) 

EXAMPLE E-4 _ 

In this example frequency scaling is illustrated using a third-order Butterworth filter prototype. The 

system function H(s) for a third-order Butterworth filter having a 3-dB bandwidth of 150 Hz is de¬ 

termined by first substituting 

2tt(\ 50) 

for .v in B3(s) in Table E-l. The required system function is then 

s \ 

(E-62) 

H(s) = 1/B3 
2tt(150) 

(E-63) 
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b, 
2tt(150) 

Since 

which is 

83 \27r(150)y 

the required system function is 

H(s) = 

s \ j?3 + 2[27r(150)]y2 + 2 [2tt(150)]25 + [2tt(150)]3 

[2tt(150)]3 

.?_^ _ s3 + 1.88496(103y + 1.77653(106> + 8.37169(108) 

8.37169(108) 

_8.37169(108)_ 

s3 + 1.88496(10>2 4- 1.77653(106)s + 8.37169(108) 

(E-64) 

(E-65) 

(E-66) 

Mat lab Application 

In the following Matlab program, we first explicitly perform frequency scaling using the Matlab 

command lp2 lp from the Signals and Systems Toolbox. As a check, the scaled filter is developed 

directly by using the scaled frequency in the argument of the butter function. The results, of 

course, agree. Note the roundoff error present in the calculated numerator coefficients. Note that the 

two design methods result in different roundoff errors. 

EDU» aeex4 

format short e 

n =3; 

Wn = 1 ; 

Wo = 2 * pi * 150; 

[b,a] = butter(n,Wns’); 

[bl,al] = lp21p(b,a,Wo); 

bl % Numerator coefficients 

bl = 

0 1.8190e-012 4.6566e-009 8.3717e+008 

al % Denominator coefficients 

al = 

1.0000e+000 1.8850e+003 1.7765e+006 8.3717e+008 

% 

% Check on previous results 

% 

[b2,a2] = butter(n,Wo,1s’); % Determine coefficients 

b2 % Numerator coefficients 

b2 = 

% Set display format 

% Define order 

% Prototype bandwidth 

% Specify new bandwidth 

% Prototype coefficients 

% Convert bandwidth 

0 6.8212e-013 -4.6566e-010 8.3717e+008 

a2 % Denominator coefficients 
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Low-Pass-to-Bandpass Transformation 

Assume that H(s) represents the system function of a low-pass filter having a bandwidth of 1 rad/s (i.e., 

a normalized prototype). This filter is easily converted into a bandpass filter having a geometric center 

frequency of ojc radians per second and a bandwidth of coh radians per second by substituting for s in 

H(s) the quantity 

s2+ cu2 

S0)b 

In other words, the bandpass transfer function is defined by 

(s2 + (02\ 

Hbp(s) = H[-^ (E-67) 
F \ scob J 

This transformation illustrates that the order of the bandpass filter is twice the order of the low-pass fil¬ 

ter from which it is derived. 

The bandwidth of the low-pass prototype is oj = 1. Thus the corresponding critical frequencies+of 

the bandpass filter are given by the two solutions of the quadratic equation 

co1 
— = j 1 (E-68) 

This yields 

of — o)0)b — co2 = 0 (E-69) 

whose solutions are 

OJ = ~cob ± ^ Va>2? + 4CL)2 (E-70) 

The upper critical frequency oju is obtained by using the plus sign. Thus 

+ 2 Vw* + 4a?c (E-71) 

Using the minus sign in (E-70) clearly results in a negative quantity. This is reconciled by realizing that since 

the amplitude response is an even function of frequency, the lower critical frequency oj{ can be written 

co, = -\cob + \ Vt4 + AJc (E-72) 

Taking the difference between (E-71) and (E-72) illustrates that 

Mu ~ o)l = o)h (E-73) 

which is the standard definition of bandwidth. 

The relationship between the two critical frequencies and coc is also easily derived. The product of 

the two critical frequencies is, from (E-71) and (E-72), 

muMi = \{ojb + V(o2b + 4co2)(— o)b + Voj2b + 4 off) 

tUsually we speak in terms of 3-dB break frequencies. However, for some filter prototypes the attenuation at co = 1 is not 

3 dB (consider, for example, the Chebyshev filter). Thus we must be careful in our terminology. 

S2 + O)2 — of + 

SMh s=j(0 j(OCOb 
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Thus 

cor (E-74) 

(Oc = \fZ\u>l (E-75) 

which states that the center frequency of a bandpass filter, derived by use of the transformation (E-67), 

is the geometric mean of the upper and lower critical frequencies. Thus we refer to coc as the geometric 

center frequency. 

It should be noted that if coc » cob, which is typically the case, (E-71) and (E-72) become 

~ + 2 Mb (E-76a) 

and 

(Oi^COc~ \(ob 

respectively. Adding these two equations yields 

— 2(<°u + ^l) 

(E-76b) 

(E-77) 

An example will illustrate the application of the low pass-to-bandpass transformation. 

EXAMPLE E-5 

The purpose of this problem is to illustrate the lowpass bandpass conversion. In this example the 

transfer function of a fourth-order Butterworth bandpass filter having a geometric center frequency 

of 1,000 Hz and a bandwidth of 100 Hz will be determined. Equation (E-67) illustrates that a sec¬ 

ond-order low-pass filter will yield a fourth-order bandpass filter upon application of the low-pass- 

to-bandpass transformation. Thus the required transfer function is 

H(s) 
B2 [0 + 

Using B2(s) from Table E-l yields 

H(s) 
[(s2 + (o2c)/scobf + 1.41421 [(s2 + co2)/so)b] + 1 

which can be written as 

H(s) = 
__ 
s4 + 1.41421 (obs2 + (2cu2 + ofys2 + 1.41421ct)2a)^5' + 

The required specifications are realized by letting 

u;c = 2tt(1000) = 200077 

and 

(Ob = 277(100) = 20077 

Substituting these values into (E-80) yields 

_ 3.94784(105>2 
H(s) = 

s4 + 8.88577(102>3 + 7.93516(107>2 + 3.50796(101> + 1.55855(1015) 

(E-78) 

(E-79) 

(E-80) 

(E-81) 

(E-82) 

(E-83) 
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Matlab Application 

Lowpass to bandpass conversion is carried out easily using the routine lp2bp in the Matlab Sig¬ 

nals and Systems Toolbox. The following code illustrates the process: 

EDU» aeex5 

n = 2; 

Wn = 1 ; 

Wo = 2*pi*1000; 

Wb = 2 *pi*100; 

[b,a] = butter(n,Wns'); 

[bt.at] = lp2bp(b,&,Wo,Wb); 

bt 

bt = 

% Define order 

% Define 3-dB freq in rad/s 

% fc in rad/s (Wc) 

% fb in rad/s (Wb) 

% Establish analog prototype 

% Convert to bandpass filter 

% Display numerator coefficients 

0 2.2737e-013 3.9478e+005 1.5259e-005 2.5000e-001 

at % Display denominator coeffs. 

at = 

1.0000e+000 8.885 8e+002 7. 

% The rest of this file is to 

w 2 *pi*logspace (2,4,500) ; 

h = freqs(bt,at,w); 

mag = 20*logl0(abs(h)); 

f=w/(2*pi) ; 

semilogx(f,mag) 

xlabel(’Frequency - Hz’) 

ylabel('Amplitude Response - dB 

35 2e+007 3.5080e+010 1.5585e+015 

o the plot. 

% Compute freq. vector in rad/s 

% Compute frequency response 

% Determine amplitude response 

% Convert to Hz for plot 

% Execute plot 

% Label x axis 

') % Label y axis 

Note that the denominator polynimial appears correct (and it is). The numerator polynomial indi¬ 

cates small values as coefficients to terms other than the s2 term. The small values shown result from 

roundoff errors in the Matlab program. 

Low-Pass-to-Band-Reject (Notch) Transformation 

A band-reject filter can be obtained from a standard low-pass prototype by using the transformation 

/ SO), \ 

HbXs) = HWTJj (E-84) 

which is the reciprocal of the low-pass-to-bandpass transformation. The analysis of the resulting para¬ 

meters (bandwidth and center frequency) is exactly parallel to the analysis of the bandpass filter; thus 

it will not be pursued here. However, it can be easily shown that the bandwidth of the notch filter is cob 

radians per second and that coc is the geometric center frequency of the notch in radians per second. 
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EXAMPLE E-6 _ 

The purpose of this example is to design a notch filter, suitable for removing 60 Hz power line in¬ 

terference from signals within a control system, based on the lowpass to notch transformation. The 

analytical development is left as an end-of-chapter problem. We, therefore, go immediately to the 

Matlab Application. 

Matlab Application 

Except for the fact that we use the Matlab routine 1 p 2 b s to realize the lowpass to notch filter trans¬ 

formation and that we change the center frequency and bandwidth to appropriate values to remove 

the 60 Hz power line interference, this problem is identical to the previous problem. We set the cen¬ 

ter frequency to 60 Hz and the bandwidth to 2 Hz. The corresponding Matlab code is as follows: 

EDU» aeex6 

n = 2 ; 

Wn = 1 ; 

Wo = 2 *pi* 60; 

Wb = 2*pi*2; 

[b,a] = butter(n,Wns'); 

[bt,at] = lp2bs(b,a,Wo,Wb); 

bt 

% Define order 

% Define 3-dB freq in rad/s 

% fc in rad/s (Wc) 

% fb in rad/s (Wb) 

% Establish analog prototype 

% Convert to bandstop filter 

% Display numerator coefficients 
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bt = 

1.0000e+000 0 2.8424e+005 0 2.0199e+010 

at % Display denominator coeffs. 

at = 

1.0000e+000 1.777 2e+001 2.8440e+005 2.5257e+006 2.0199e+010 

% The rest of this file is to do the plot. 

w = 2*pi*logspace(1,2,500); 

h = freqs(bt,at,w); 

mag = 20*logl0(abs(h)); 

f=w/(2*pi); 

semilogx(f,mag) 

xlabel('Frequency - Hz') 

% Compute freq. vector in rad/s 

% Compute frequency response 

% Determine amplitude response 

% Convert to Hz for plot 

% Execute plot 

% Label x axis 

ylabel('Amplitude Response - dB') % Label y axis 

Note that we have a deep notch at 60 Hz as required to remove power line noise. 

FIGURE E-12. Amplitude response to notch filter. 
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Further Reading 
L. Weinberg, Network Analysis and Synthesis, New York: McGraw-Hill, 1962. This is the classic text on filter 

synthesis. It is written at the senior or beginning graduate level and is extremely complete. The transfer func¬ 

tions of all the filter prototypes discussed in this chapter are derived in detail. Implementations using lumped- 

parameter, passive circuit elements are discussed. 

A. I. Zverev, Handbook of Filter Synthesis, New York: Wiley, 1967. This volume contains extensive collections 

of amplitude response and group delay characteristics that are valuable in learning the characteristics of the 

various prototypes. It also contains extensive sets of tables giving the required element values for various im¬ 

plementations. 

L. P. Hueesman and P. E. Allen, Introduction to the Theory and Design of Active Filters, New York: McGraw- 

Hill, 1980. This book is a standard text on active filter theory, which is an important area not covered in this 

book. The student who has an interest in the implementation of analog filters should be aware of the concept 

of the active filter and should appreciate the techniques used in implementing active filters. 

M. E. Van Valkenburg, Analog Filter Design. New York: Holt, Rinehart and Winston, 1982. This book contains 

much information on classical filter theory as well as information on the synthesis of active analog filters based 

on a large number of prototypes. 

Problems 

Section E-3 

E-l. It can be shown that the coefficients of the nth-order Butterworth polynomial 

Bn(s) = 2 a/ 
k = 0 

are given by the recursion formula 

cos(kir/2n) 

Uk+1 ~ sin[(jfc + l)(ir/2n)] &k 

with a0= If By using this recursion formula, derive Bn(s) in Table E-l for n = 2, 3, and 4. 

E-2. Use the fact that the poles of the Butterworth filter are distributed on the unit circle to find the 

Butterworth polynomials Bn(s) for n = 1, 2, 3, 4, 5, and 6. Compare the results with those given 

in Table E-1. 

E-3. It can be shown that the system function for a low-pass Bessel filter is given by 

H(s) = 
k 

Y„(s) 

where Yn(s) is the Bessel polynomial of degree n and k is a suitably chosen constant. Assume that 

Y2(s) is given by^ 

y20) — s2 + 3s + 3 

(a) Determine k so that the dc gain is 1. 

(b) Plot the amplitude response of both the second-order Bessel and Butterworth filters together 

using a single coordinate system. Comment on your results. 

+Weinberg (1962), p.494. 

-Weinberg (1962), p. 500. 
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(c) Plot the phase response of both the Bessel and Butterworth filters together using a single co¬ 

ordinate system and linear scales. Comment on your results. 

(d) The bandwidth of a low-pass Bessel filter is defined to be 

(Oc 1 

^c 2ir 277rt0 

where tQ is the nominal passband group delay of the filter. Using this definition, compare the 

bandwidths of the Bessel and Butterworth filters. 

E-4. Repeat Problem E-3 for third-order Bessel and Butterworth filters assuming that 

Y3(s) = s3 + 6s2 + 15s + 15 

E-5. Determine the values of e required to give a Chebyshev I filter having a passband ripple of (a) 

0.2 dB, (b) 0.5 dB, (c) 2 dB, (d) 2.5 dB, (e) 3 dB, and (f) 5 dB. 

E-6. Determine the 3-dB bandwidth for a normalized fourth-order Chebyshev I filter assuming a pass- 

band ripple of (a) 0.05 dB, (b) 0.2 dB, (c) 1 dB, (d) 2 dB, (e) 3 dB, and (f) 5 dB. 

E-7. Repeat Problem E-6 assuming that the Chebyshev I filter is fifth order. 

E-8. Determine the values of a and b for a normalized Chebyshev I filter assuming that the pass- 

band ripple is 0.75 dB and that the filter order, n, is three. Determine the pole locations and de¬ 

termine H(s). 

E-9. Repeat Problem E-8 assuming that the passband ripple is 2 dB and that the filter order, n, is four. 

E-10. Repeat Problem E-8 assuming that the passband ripple is 2 dB and that the filter order, n, is five. 

E-ll. Sketch, approximately to scale, the amplitude response of a Chebyshev I filter having a 3-dB 

passband ripple for n = 2, 3, 4, and 5. Pay particular attention to the response at co = 0 and at 

(o=l. Also pay particular attention to the number of passband ripples. 

E-12. Show by plotting Cn(a>) as a function of co in the range 0 < co < cox, where cox > 1, that Cn{co) 

oscillates in the filter passband and increases rapidly for co > 1. Let n — 2, 3, and 4. 

E-13. A low-pass filter is to have a dc (/ = 0) gain of 1 and is to have a gain of 0.707 (-3dB) at 100 

Hz. The attenuation is to be at least 45 dB at 400 Hz. Determine the necessary filter order as¬ 

suming that a Butterworth filter is used. 

E-14. Repeat the preceeding problem assuming that a Chebyshev I filter is used and that the allowable 

passband ripple is 0.5 dB. How does the answer change if we allow 2 dB passband ripple? Re¬ 

peat for 3 dB passband ripple. 

Section E-4 

E-15. Derive the transfer function for a second-order Butterworth low-pass filter having a 3-dB band¬ 

width of 300 Hz. Plot accurately the amplitude and phase responses of the low-pass filter. 

E-16. Derive the transfer function for a second-order Butterworth bandpass filter having a geometric 

center frequency of 300 Hz and a bandwidth of 600 Hz. Verify your result by plotting the am¬ 

plitude and phase responses. 
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E-17. Determine the transfer function for a fourth-order Butterworth bandpass filter with a geometric 

center frequency of 100 Hz and a bandwidth of 50 Hz. Determine the upper and lower 3-dB 

frequencies. 

E-18. Repeat Problem E-17 assuming that the bandpass filter is to be sixth order. 

E-19. Determine the transfer function of a fourth-order Butterworth notch filter with a notch geomet¬ 

ric center frequency of 1,000 Hz and a notch bandwidth of 300 Hz. Plot accurately the ampli¬ 

tude and phase responses of the notch filter. 

E-20. A bandpass filter has a center frequency of 900 Hz and a bandwidth of 600 Hz. Determine f] and 

fu, the lower and upper critical frequencies. 

E-21. Determine the transfer function of a fourth-order Butterworth notch filter for which the geomet¬ 

ric center frequency of the notch is 1,000 Hz and the bandwidth of the notch is 100 Hz. Compare 

the denominator polynomial of the transfer function for the notch filter with the corresponding de¬ 

nominator polynomial found for the bandpass filter found in Example E-5. What do you conclude? 

Computer Projects 

E-l. By writing an appropriate Matlab program, verify the results given in Table E-l. 

E-2. Develop a Matlab M-file that will yield amplitude response plots for a set of Butterworth filters 

as shown in Figure E-4. The input to the program is to be a vector containing the filter orders for 

which the amplitude response is to be determined. Include other features in the program that you 

deem useful. 

E-3. Repeat the previous exercise for a Chebyshev I filter. For this case the input to the program is to 

be a 2 by n matrix X, in which n is total number of curves to be displayed on the plot (n different 

filter orders). The first row of X defines the filter orders for which an amplitude response is to be 

generated and the second row of X corresponds to the passband passband ripple in dB. In other 

words, each column vector defines a filter with the first element defining the order and the sec¬ 

ond element defining the passband ripple of the filter. 

E-4. Develop a Matlab M-file for plotting the pole-zero locations of a system function H(s). The in¬ 

puts to the function are to be the minimum and maximum values of the real parts of the pole-zero 

locations, the minimum and maximum values of the imaginary parts of the pole-zero locations 

and two vectors containing the coefficients of the denominator and numerator polynomials of H(s). 

The M-file plots the poles and zeros and labels the plot accordingly. The resulting M-file is to be 

used for investigating the relationship between the poles and zeros of a prototype filter and the 

pole and zero locations of the bandpass and notch filters derived from the prototype. 

Using the M-file plot the poles and zeros of a tenth-order Butterworth prototype filter (lowpass 

with a bandwidth of 1 radian/second). From the prototype filter develop a bandpass Butterworth 

filter with a center frequency of 10 Hz and a bandwidth of 2 Hz and plot the poles and zeros of 

the bandpass filter. From the prototype filter develop a notch filter with a notch center frequency 

of 10 Hz and a notch bandwidth of 2 Hz. Plot the poles and zeros of the notch filter using the 

M-file developed in the first part of his Matlab project. 

E-5. Figure E-5 illustrates the group delay of Butterworth prototype filters. The calculations used to 

produce the group delay characteristics shown in Figure E-5 were based on (E-17). Develop 

a Matlab M-file (function) that evaluates (E-17) and plots, and appropriately labels, the group 
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delay. The inputs to the function file are to be the 3-dB frequency of the filter and a vector con¬ 

taining the filter orders for which the group delay is to be determined. Use the resulting M-file to 

verify the group delay characteristics shown in Figure E-5. 

As shown in Appendix E, the group delay can be calculated by differentiating the phase re¬ 

sponse of the filter. Develop a second M-file that determines the group delay of a filter by nu¬ 

merical differentiation of the phase response of a filter. Write a Matlab program to generate the 

phase response of a Butterworth filter and use the M-file to determine the group delays of proto¬ 

type Butterworth filters having orders 1-5. Compare the results with those shown in Figure E-5. 

Experiment with the sampling rate applied to the phase response. What do you conclude? 

After you have confidence in the M-file you developed for the first part of this problem, use 

the M-file to determine the group delay of a fourth-order Butterworth bandpass filter having a cen¬ 

ter frequency of 1.000 Hz and a bandwidth of 200 Hz. 



APPENDIX F 
Mathematical Tables 

The Sine Function 

z sinez sine2 z z sinez sine2 z 

0.0 1.0 1.0 1.6 -0.18921 0.03580 

0.1 0.98363 0.96753 1.7 -0.15148 0.02295 

0.2 0.93549 0.87514 1.8 -0.10394 0.01080 

0.3 0.85839 0.73684 1.9 -0.05177 0.00268 

0.4 0.75683 0.57279 2.0 0 0 

0.5 0.63662 0.40528 2.1 0.04684 0.00219 

0.6 0.50455 0.25457 2.2 0.08504 0.00723 

0.7 0.36788 0.13534 2.3 0.11196 0.01254 

0.8 0.23387 0.05470 2.4 0.12614 0.01591 

0.9 0.10929 0.01194 2.5 0.12732 0.01621 

1.0 0 0 2.6 0.11643 0.01356 

1.1 -0.08942 0.00800 2.7 0.09538 0.00910 

1.2 -0.15591 0.02431 2.8 0.06682 0.00447 

1.3 -0.19809 0.03924 2.9 0.03392 0.00115 

1.4 -0.21624 0.04676 3.0 0 0 

1.5 -0.21221 0.04503 

Trigonometric Identities 

Euler’s theorem: e^u = cos u±j sin u 

cos u = ~(eJu + e~iu) 

sin u = (eJu — e~iu)l2j 

sin2 u 4- cos2 u = 1 
cos2 u — sin2 u = cos 2u 

2 sin u cos u = sin 2u 

cos2 u = ^(1 + cos 2m) 

sin2 w — ^(1 _ cos 2m) 

sin(w ± u) = sin m cos v ± cos u sin v 

cos(m ± v) = cos u cos v + sin u sin v 

sin u sin v — ^[cos(m — v) - cos(m + u)] 

cos u cos v = ^[cos(m — v) + cos(m + u)] 

sin u cos v = ^[sin(M — v) + sin(M + v)] 
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Indefinite Integrals 

f sin (ax) dx = - — cos (ax) 
J a 

f cos (ax) dx = — sin(ax) 
J a 

J sin2(ax) dx = x/2 - sin(2ax)/4a 

J cos2(ax) dx = x!2 + sm(2ax)/4a 

J x sin (ax) dx = [sin (ax) - ax cos(ax)]/a2 

J x cos (ax) dx = [cos(ax) + ax sin (ax)]/a2 

J xm sin(x) dx = — xm cos(x) + m J xm~l cos(x) dx 

J xm cos(x) dx = xm sin(x) - m J xm~x sin(x) dx 

sin(g - b)x sin(a + b)x 
sin(ax) sin(Z?x) dx = 

J 2 (a- b) 2 (a + b) 

J sin (ax) cos(bx) dx = — 

J cos (ax) cos (bx) dx 

{ 
/ 

cos (a — b)x cos (a + b)x 

2 (a — b) 2(a + b) 

sin(a - b)x sin(a + b)x 

2(a ~ b) 2(a + b) 

a2 # b2 

a2 b2 

a2 * b2 

eax dx = eax/a 

xm eax dx = 
a a 

e{ 

I 1 eax dx 

f . eax 
J eax sin(£x) dx = ^2 + yi ta ^(bx) — b cos(7?x)] 

f eax 
J eax cos {bx) dx = ^[a cos (bx) + b sin(fot)] 

Definite Integrals 

adx 
2T~2 = w/2> o a + x 

7t/2 

a > 0 

7t/2 

' 1 • 3 • 5 • • • (n ~ f) 77- 

2 ■ 4 • 6 • • • (n) 2’ 

2 ■ 4 • 6 • - • (Vz — 1) 

. 1-3-5 ••■(«) ’ 

sin2(nx) dx = cos2(mx) dx = 7r/2, n an integer 
Jq Jn 

sin7l(x) dx = cos77(x) dx = 
J0 Jo 

n even, n an integer 

n odd 

sin(rax) sin(nx) dx = cos(rax) cos(nx) dx = 0, 
Jn 

n,m and n integer 

sin(rax) cos (nx) dx = 

’ sin(ax) 77 
-dx — — , 

o x 2 

(2m/(m2 - n2), m + n odd 

[0, ra + n even 

a > 0 
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Definite Integrals (continued) 

n X 7T 

Tdx = 2 r, 

f e ax dx = \frrl2a, a > 0 
Jo 

xne~ax dx = n\lan+l, w an integer and a > 0 
Jo 

/' 
J° 

I cos(bx) dx = 
Jo 

sin(/7x) dx = 

Jo 

I cos(bx) dx 
Jo 

1 • 3 • 5 • • ■ (2n — 1) [77 

V <2 2"+V 

a 

a2 + b2’ 

b 

a2 + b2’ 

_ Vrr 

2 a 

a > 0 

a > 0 

e~b2/*a\ a> 0 
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Index of MATLAB Functions 

This appendix contains a list of all Matlab commands used in the text together with the page num¬ 

bers on which the command can be found. The list is subdivided into three groups, a list of the non- 

graphical commands, a list of the commands controlling graphics (graphical commands) and a list of 

user-defined special functions that are specified early in the book and used in later chapters. 

A. Non-graphical Commands 

The following commands are part of the Matlab language. Each use is identified in the following list 

to give the student insight into the many ways that the various commands can be used. 

Commands Page Number(s) 

ab s 128, 192, 465, 467,490, 598, 600 

angle 465,467 

bessel 526 

bilinear 442 

bode 287 

butter 442,595,598,599 

c2d 326,329,342 

chebyl 593 

conv 66, 72, 185, 225, 385, 421, 435 

cos 135, 162, 210, 211, 219, 232, 252, 265,266, 273, 274, 373, 518 

diff 257 

dimpulse 376 

eig 324 

eps 32 

exP 72, 117, 128, 129, 155, 216, 219, 232, 252, 266, 274, 328,490, 526, 531 

608 
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Page Number(s) 

GZplot 155 

factor 216 

fft 192, 490, 526,532 

fliplr 128 

fourier 155 

f r eqs 598, 600 

f reqz 465,467 

Heaviside 155,216,219 

ifft 192 

ilaplace 210,219,232, 252, 257, 266 

impinvar 435 

input 111, 117, 128, 489, 518, 522, 525, 531 

int 257 

iztrans 379, 380, 387 

laplace 210,216,219, 265 

length 66, 72, 111, 117, 128, 184, 191,385,490, 533 

logl 0 598, 600 

logspace 598, 600 

lp2bp 598 

lp2bs 599 

lp2 lp 595 

lsim 82, 273 

max 518 

menu 522 

ones 326, 328, 532 

pretty 210,216,219, 232, 266 

PSD 519 

randn 518 

remez 466 

residue 225, 228 

residuez 378, 421,435 
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Commands Page Number(s) 

roots 593 

sign 32 

sim 82,84 

sin 34, 82, 84, 111, 135, 136,210, 232, 252, 266, 274,524, 525 

sine 162, 166, 185 

size 467, 532 

sqrt 518, 525 

s s 2 tf 337 

subs 155,219 

sym 155, 210, 211, 216, 232, 252, 257, 265 

syms 216,219, 373, 378,387 

tf 2ss 338 

unwrap 465, 467 

yulewalk 465 

zeros 117, 326, 328, 385, 522, 524, 525, 532, 533 

ztrans 373, 387 

B. Graphical Commands 

The following commands are used in many examples throughout the book for plotting functions and 
for annotating plots. Only the first few uses are listed. 

Commands 

axis 

num2 str 

plot 

semilogx 

stem 

subplot 

text 

xlabel 

ylabel 

Page Number(s) 

33, 34, 66, 73 

111, 118, 129, 131, 166, 185 

33, 34, 66, 73 

598, 600 

34, 131, 192, 385,467 

33, 34, 66, 73 

129, 526 

33, 34, 66, 73 

33, 34, 66, 73 
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C. User-defined Special Functions 

The following special functions are defined in Chapter 1 (Section 1.6) and are used later in the book, 

especially in Chapter 2. Since they are not part of the Matlab language, they must be defined in the 

Matlab workspace prior to use. 

Function Usage Page on which defined 

±mpls_fn impulse function 32 

pls_fn unit pulse function 32 

rmp_fn ramp function 32 

stp_fn step function 32 



APPENDIX H 
Answers to Selected Problems 

1-1. (a) x(t) = (5/54)^ km, t ^ 72 seconds; x(72 s) = 35.56 km. 

1-3. (a) K = 4 kg/s2; (b) Aamin = 1 m/s2. 

i-7. (a) ximpsamp = cos(0.2tm)8(t - 0. In). 

1-9. (a) T0 = 0.04 s; (c) T0 = 0.0286 s; (e) T0 = 0.2 s. 

1-10. (b) A + B = 8 + jl 1.6603; (d) A ■ B = -10.9808 + /40.9808. 

1-11. (b) T0 = 0.1176 s; (d) T0 = 2 s; (f) T0 = 2 s. 

1-12. (a)xc(t) = Re{3 exp[/(1077t - 5tt/6)]}\ 

(b)xc(r) = 1.5 exp[/(107T7 - 5-7t/6)] + 1.5 exp[-;(107rf - 577/6)]. 

1-14. (a) x(t) = u(t) + u(t - 3) - u(t - 5) - u(t - 6). 

1-17. In general, u_n{t) = f~'/(n — 1)!, r > 0 and 0 otherwise. 

1-20. = 2“=0 u(t — 4n)u(2 — t — 4n). 

1-22. xx(t) = u(t) + r(t - 1) — 2r(? — 2) + r(t — 3) — u(t — 4) (one possible representation); 

x3(t) = r(t) — r{t — 1) — r{t — 3) + r(t — 4) (one possible representation). 

1-26. (b) 1; (d)0. 

1-27. (a) 9 exp(6); (c) 3. 

1-28. (b) C, = — 3 and all other C’s are 0. 

1-31. (b) -3. 

1-33. (a) E = 1/20 J; (c) E = 1 J. 

1-34. (b) E2= 3 J; (d) £4 = 2/3 J. 

1-37. (a) P = 22/2 = 2 W; (c) P = 32/2 = 4.5 W; (e) P = 22/2 + 32/2 = 6.5 W 

(permissible to add powers because separate sinusoids have harmonically related frequencies). 

1-38. (b) Energy, with E = 37 J; (d) Power, with P = ^W. 

1-40. (a) Energy, with E = 1 J; (d) Power, with P = 2W. 

1-41. (c) Only (3) is an energy signal. Signal (4) is neither energy nor power. 

1-45. (b) 26 W. 

2-2. (a) First; (c) Zero. 

2-5. Hint: consider a value of t < 1. 

2-11. (b) Causal, fixed, dynamic, order 3; (d) causal, dynamic, order 2; (f) dynamic, order 2. 

2-17. (b) y(t) = 0, t < 10; y(t) = t - 10, 10 < t < 12; y(t) = 2, t > 12. 

(d)y(t) = {0.5[1 - exp(—4)]exp[—2(r - 2)] - 0.1 [1 - exp(-20)] 

X exp[— 10(f - 2)]}u(t - 2) + {0.5[1 - exp(-2t)] - 0.1 [1 - exp(-I0t)}u(t)u(2 - t). 
2-20. h{t) = 5(r)/3. 

2-23. h(t) = 
Ri 

P] + R2 W^exp (7?1 + R2)C. 

612 
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2-25. (a) a(t) = -r{t)/RC. 
2-26. y(t) = [1 - e~R,/L]u(t)u(l - t) + [l - e R/L]e R(' x),Lu(t - 1). 

2-29. (b) a/t) = HI - e~R,/L]u(t). 
K 

2-31. (b) y(t) = as(t) -2 as(t - 1) + as(t - 2) where as(t) = [1 - exp{-t/RQ]u(t). 

2-33. (b) A(f) = ^M== where f3 = ; (c) 6(f) = j~ tan _1(///3). 
Vl + (///3)2 2”L 2 

2-36. The system is BIBO stable. 

2- 37. The system is not BIBO stable. 

3- 3. (b) x2(t) = cos(200 771) + j sin(200 771); 

(d) x4(t) = “ COS(2077?) + tt COS(6077t) + — COS(10077t). 
8 lo to 

3-5. The Fourier series for the string is 

4 f (ttx\ 1 (3ttx\ 1 / 5 7TX\ 

**> = ^ lcosU) + 9 His 7 + 25 “W + " j 
3-8. (a) 3/4 W; (b) 5/8 W at the output. 

3-9. (b) 90.3%. 

3-11. (a)/0 = fHz;(c)2/(l + 9 v2)1'2. 

3-13. (b) xb(t) = + !le-i^ + e-/25^ _ + le/90.< 

3-14. (a) F„ = X„exp(—/n w0r); (b) Y„ = Xn_v 

_,( sin A wt \ 
3-19. A(t) = 2lcos(Ao>?/2)l and 0(t) = tan l\~ - ^ A~ 1. 

3-24. y(0 = Y (-„ , — ) cos[n«0r - tan_1(n)]. 
n = — x, n odd \ (tjtY) \\ H / 

3-25. (b) Phase or delay distortion only; (d) amplitude distortion only. 

3-26. (a) Mean-square error = 4A2s/T0\ (c) find the Fourier series of the distorted square wave and 

find the ratio of the second harmonic power to fundamental power at the filter output to get 

°ut = [ Sin[2£(s/T0 + 0-5)] -1— — wjtJi a similar expression for the ratio of third 
O „• r /T-1 l ACM 1 _L Q/V / A r A, out L2 sin[T7(e/r0 + 0.5)]J 1 + 9g2/4 

harmonic to fundamental power. In the second harmonic case setting the ratio = 0.001 gives 

Q = 3.23. 

1 In1. 

(b) cj)2(t) = (6e~2' ~ 4e~')u(t). 

(b) ISE = A2T0(1 - 80/97T2). 

V + (2irf2) 
; oa(f) = -oh{f) = _tan 1(277//“)- IW)| = I xb(f)\ 

<»> - ]w l,v/ -1 r *+ w?1[i - 
cos(Trfs) 

The spectrum can be plotted from X(f) — At sinc(/r) - _ Qsf)1 ’ 
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j 2/ - 1 
~ In —7- . (use the Fourier transforms of the sinc-function and the 
LIT 2/ + 1 

unit step along with the multiplication theorem of Fourier transforms). 

477^ 
(b) The inverse Fourier transform of this signal is ----x. 

a2 + (2tTtf 

(2A a)2 

(C) Gc(/) [a2 + (2nfff 

(a) 70.5%; (b) 50%. 

(a) XJJ) = 2 sinc(/)cos(3-77f); Xc(f) = 4 sinc(4/) + 2 sinc(2If). 

Duality gives x(t) = Xc(—t) = 4 sinc(4f) + 2 sinc(2r). 

sincf f) 
(b) X2(f) =-—— cos(iTf); (c) X3(f) = 2 sinc(2If) - sinc2(/). 

(b) x(t) = 45 sinc2(3r). 

(b) For the raised cosine pulse: 

XRc(f) = t sinc(/r) + | sinc(/r - 1) + ^ sinc(/T + 1) . 

4-25. (a)xfi) * hl(t) = - M— 
p — afp — a \fi — a 

(C) X,(f) * *3(0 = - ‘ + ^«(-0]. 
p — a 

4-29. (b) Phase distortion only. 

4-31. HI/,.:) = -7-7-7--47- - 

1+ 2^W) + + 

- tje u(t); 

/ j«> ) 
1 + 2\ 

( j<» ) 
2 

1 _i_ 1 < \ 

\2tt X loV [2tt X 104) 
1 + | 

\2tt X 104/ 

(b) y(0 = [sinc(f - 0.5) + sinc(t + O.5)]cos(277f00. 

nfoVV 

/oVl2 

The step response is aft) = 1 — e 

■;(d)/„//* = 1.92. 

___ g "V/2 sin| <wcfj u(t). From this, the 10% 

and 90% times can be solved for and used to compute the rise time (coc = 20,000-77). 

(b) Xb(f) = 2 „#0 sinc2(n/2)5(/— n/12). 

5-1. (a) X(s) = -t-?—; (d) X(s) = 1 - <T10s. 
s(s + 2) 

5-3. (a) xft) = (1 + e-10')n(t); (c) x3(r) = (e~5' - e-10>(r). 
1 

5-6. X(s) = -^(1 - e"02. 
s 

5-7. (b)y(0 = ~(1 + e~2t) - e-' u(t). 

5-9. i(0 = (e-2^|e-')tr(0. 

5-10. (b) x2(t) = [cos(r) + sin(r)]exp(—2t)u(t)\ (d)x4(r) = ^sin(3f)exp(-5r)w(0. 
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5-11. 

5-13. 

5-14. 

5-15. 

5-16. 

y = 1 [1 — exp(—-re)]2 

A TS2 1 - exp(-Tas) ' 

(a) Initial value = 1; final value = 0; (c) initial value doesn’t exist; final value = 0. 

(s2 + 4s + 5) 

s + 1/2 
(f) Y6(s) = 2 + 3 

(s2 + 4s + 5)2’ 

s + 10 

s2 + s + 5/16 52 + 205 + 125* 

(b) y(t) = —[—cos(50 + 3 cos(30M0; (d)y(0 
16 

(a)*^) - [9 exp(-0 - 8 exp(-20M0; 

(c) jc3(1) = 5(0 + [3 exp(—0 - exp(-2t)]u(t) 

1 
5 exp(—20 + 2 exp(-30 + —sm(20 

1 
{1 — sin[3(t - 5)]}u(t - 5). 

27 
exp(—0 —^t2 exp(—30 

5-18. (a) x(t) = 

5-20. x(t = 
L 

5-21. (b)x(t) = IJl - 

5-26. (b) x2(t) = (2 - sin(3t) + 

u(t). 

u(t). 

1 
cos(20 + ”Sin(20 t cos(20 exp(—0w(0- 

_^[sin(30 “ 3t cos(30]|m(0; 

(d) jc4(0 = exp(—30m(0 ~ exp[-3(r - 2)]u(t - 2) + 

5-28. (b) i(t) = ” cos^-^=jn(0- 

5-30. (b) jc2(0 = exp(—40«(0 “ exp[-4(f - 2)]u(t - 2). 

5-31. (a) Initial value = 1, final value = 0. 

5-32. (b) x2(t) = 1 - (l - t - — Jexp(-f) u{t). 

5-33. (b) X2{s) 

5-34. 

1 
-1 <Re(5)<0. 

5(5 + 1)’ 

(b)x2(0 = [cos(0 ~ sin(0]w(~0 + exp(~0w(0- 

6-5. 

6-6. 

6-7. 

Vs(s) / x s2LC,R + sL + R 

z«w —1- sCxR + 1 

vjt) = -[exp(-f/3) - exp(—4f/3)]«(r). 
6 

(b) 
sL + R2 ~sL JM ' Vs(s) + LI0 ■ 

— sL sL + R^ + l/sC_ Ms). _-LI0-V0/s_ 

6-10. (a) Voc(s) = 3(9s + 1 )/s2 and ZlhJs) = 6(9s - 1); 

(c) VJs) = and Z,hJs) = 0. 

6-11. IR(s) 

2s2 

5s3 + 2s2 + 10s + 2 

6-16. 

RK ’ s(9s3 + 5s2 + 18s + 6)' 

6-14. va(t) = A exp(—Rt/L)u(t) 

(identify the ZSR and ZIR terms) 

(d) The zero is placed at 60 hertz by setting 2rr(60) = l/RC. 

RI0 exp(-Rt/L)u(t) 
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6-17, H(s) R3C C2C^ + 2R1C2(C] + C3)s2 + R(Ct + 3C2)s + 1' 

6-19. Number of RHP roots: (a) none; (c) 1. 

6-20. (b) 0 < K < %. 

6-22. Construct the Routh array from the denominator polynomial of 

JJ*S\ _ __ 

^ + P, + 2cop)s2 + (2(0p,wp2 + Mp)s + + ^o) 
With the parameter values given it is found that the 748 configuration is unstable. 

6-23. The transfer function is the same as that for Problem 6-22 except that A0 is divided by 10. This 

results in stability for both amplifier types. 

0Gi + G4)G2G3 
6-30. H(s) =-—-- ~ --. 

1 + GlG1H1 G\G2G3H2 
6-32. (a) a = 8 and b = 12; (b) b > -3. 

6-33. (a) s(r) = [1 — exp(—t)]u(t) which approaches 0 as t —> (b) e(t) = s\nU)u{t) which does 

not approach 0 as t —»(c) choose A(s) to produce two LHP real poles in E(s). 

7-5. eAt = 

7-6. e‘ 

7-14. H(s) 

7-20. (a) . 
x 

At = \e~‘ O’ 
. 0 e~4t_ 

~e~2t 0 1 
At — e u 

0 e~5t_ 

xx(t) _ (1 + 2e~2t)u(t) 

x2(t)_ _ (2 + e~4t)u(t) 

l(s) = ' 0 + !)0 + 3) , 

-'- y o + i)o + 3)i 
x r*ii r-i o ir*r 

a) . = n . 
|x2J l 0 -j]lx2] 

[3 31^1 
y = - 

2 2 

+1 -1 0 0 xx 1 

(b) fin = ' 0 -5 0 1 \xA + [r 

^3) , 0 0 -6j U3J L1. 

y = l 0 1 -i]f*2 

7-25. (a)F 

(b)F 

L+sJ 
0.7788 0 

G = 
0 0.6065J’ 

0.9328 0.1920' 
G = 

-0.3840 0.3568J7 

0.4424 

-0.1968 

0.0672 

0.3848 

8-5. (SNR)dB =-1.20 + 6.02« 

8-18. x(nT) = [0 2.29389 -2.7553 6.7553 -0.9389 0 2.9389 -4.7553 4.7553] 
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8-19. (a) X(z) = 

(b )X(z) = 

1~5Z' 

1 + 5 Z_1 

(c) X(z) 

(d) X(z) 

1-jz-1 
4 

2 - 2z~8 

1 - 

8-23. x(5 T 

8-24. X(z) 

*(5T) = 120 

az 

1 + a2z-2 

8-28. (a) x(nT) =[0 0 1 0.3 -0.7 1 0.3 -0.7] 

(b) x(nT) =[0 0 1 0.6 -1.31 0.58 1.09 

8-36. x{nT) = cos(0.9n) 

„ _ 10 32 ( 4\” 

' 9 + 117 ( 5/ 
— ffi" 
13 \2 

8-45. (a) //(z) 

(c) //(z) 

(b) tf(z) = 

(d) H(z) = 

1 + 3z~2 

1 - 2z_1 + z”2 

_1 + 4z-1 

1 + 0.6z_1 - 0.16z“2 vw ay*./ j _ z-i + 0.16z-2 j + 0 6z-i _ 016z-2 

1 + z~2 

(e) H(z) - Y^ojoir1 + 0.25z“2 

y = [0 0000048 12 16 16 12 84000000 0] 

y = [0 1 3 6 9 10 7 1 -6 -9 -8 -4 0 2 2 1 0 0 0 0 0] 

y{nT) = (7) (n - 7)u(n - 8) 8-60. y(nT) 

8-66. (a) H( (a) H(l) = 2; //(-!)= | (b) 7/(1) = 3; //(-!) = | 

(c) H( 1) = |; H(-1) = -2 (d) H(l) = tf(-l) = | 

8- 71. ax = 

9- 11. //(z) = 

9-14. H(z) = 

4.5; a2 = 4.5 

_ 8 + 2.2z"x 

‘ 1 + 0.3z_1 

1 

_ 4^ 
■2 
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9-16. H(z) = 

9-23. H(z) = 

9-56. 

2 — — 7_1 

8 Z- 16 

1 “ ~AZ~2 4 

1 1 ~ z~N_ 1 
iV 1 - z_1 ’ ^ AT 

sin(A^iTr) 

9-30. (a) //(z) = 471 

(b)77(z) = 7l 

1 

sin(77r) 

1 

1 — e 2Tz 1 1 - e_47z_1 

1 - z 
+ 

1 - e~2Tz~x ' 1 - e~AT-~l 

(c) H(z) 

9-40. 77(Z) = 

9-48. H(z) = 

e^V1 1 - e~~,‘z 

2TL 

7 VI - 
0.2201Z"1 

1 - 0.7788z_1 
0.00149 + 0.00297z_1 + 0.00149z~2 

1 - 1.7760z_1 + 0.7819z-2 

9-53 H( ) = C10"4)^-1338 + 3.4015Z-1 + 3.4015z~2 + 1.1338z~3) 
^ 1 - 2.8001z_1 + 2.6197z'2 - 0.8187z~3 

(Or 

0.5coc 
= 0.538 

77 
9-63. A(r) = 10 sin(277r); </>(r) = — — 2iir 

10-1. 

10-2. 

10-7. 

10-10. 

10-14. 

10-22. 

10-24. 

10-25. 

10-27. 

Xu = 0 for k =£ 0 and X, = N for k = 0. 

(a)X,= 
1 - exp[—j2rrkn(K + 1)/AT] 

, 0 < k < N — land X. = K + 1. 
1 - exp^—jlirK/N) 

For the 8-point case, Xk = 48k0 + 2Sk2 + 28k _2. 

X0 = 7; X{ =X3 = X5 = X7= l;X2 = X4 = X6= -1. 

Both require exactly the same number of both. 

(b) Take the square root of the sum of the squares of the real and imaginary parts of each FFT 

output point. 

The FFTs of the real and imaginary parts are {X(&)} = {0, 1.5, 2, 1.5} and 

{Y(k)} = {-1, 1 +7*0.5, -1, 1 -7*0.5}. 

N = 27 is the smallest power-of-2 DFT that will work. 

The result for the DFT of the window can be put into the form: 

1 - exp(—727rfcM/N) _ B 1 - exp[/27rM(l/M - k/N)\ 

1 - exp(-j2irk/N) 2 1 — exp[/27r(l/M - k/N)\ 

B 1 - exp[-/27rM(l/M - k/N)] 

W(k) = A 

2 1 - exp[-;27r(l/M - k/N)] 

In the case of the Hanning window, A = B = 

10-29. The smallest power-of-2 DFT that will work is 2048. 

E-5. (a) 0.2171; (b) 0.3493; (c) 0.7648; (d) 0.8822; (e) 0.9976; (f) 1.4705 

3.553f(106) 
E-15. H(s) = 

+ 2.6657(103)s + 3.5531(106) 
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Abscissa of convergence, 207, 232 

Absolute convergence, 207, 572 

Accelerometer, 2 

Across variable, 249, 547 

Admittance, 251 
Aliasing, 355,491,511,514 

Amplitude, 10 

Amplitude distortion, 132 

Amplitude response, 75, 172, 269 

Amplitude spectrum, 14, 124-126, 151 

Analog computer simulation, 78, 314 

Analog filters, 578-604 

Analogous systems, 547 

Analog-to-digital conversion, 350-366 

Analytic continuation, 573 

Analytic function, 209, 233, 568 

Analytic signals, 188, 498 

Approximation to ideal filters, 580-582 

Armature-controlled, dc servomotor, 292 

Asymptotic stability, 274 

Autocorrelation function, 517 

Auxiliary polynomial, 278 

Average power, 30 

Back electromotive force, 292 

Bandpass digital filters, 445-448 

Bandwidth, 51, 178-181, 355, 596 

Bessel filter, 581 

Bilinear z-transform, 248, 428, 438-448 

Block diagram, 287-294 

Bode plot, 279-287 

Bounded-input bounded-output stability, 

77, 269, 387-388 

Branch, 552 

Butterfly, 495 

Butterworth filter, 133, 304, 480, 481, 

580, 583 
Butterworth polynomial, 583 

Cascade realization, 416-424 

Cauchy integral theorem, 569-572 

Cauchy-Riemann equations, 569 

Cayley-Hamilton theorem, 323, 576 

Characteristic equation, 323, 576 

Characteristic polynomial, 274 

Charge transfer device, 530 

Chebyshev approximation, 464 

Chebyshev filter, 484, 581,582, 585-593 

Chebyshev polynomial, 585 

Chirp z-transform, 528-533 

Chord, 556 

Circuit, 553 

Circuit orientation, 553 

Circuit postulate, 552-556 

Coherent gain, 522 

Combining equations, 546 

Commensurable frequencies, 11 

Communications link, 6 

Complement of subgraph, 553 

Complete set, 137 

Complex algebra, 13 

Complex-conjugate pole, 229 

Complex-conjugate roots, 229 
Complex inversion integral, 206, 232-235, 

396-398 
Complex variable, 232, 556-573 
Computer-aided design, 464-468 

Computer simulation, 78-87, 314, 340 

Connected subgraph, 553 
Conservation of charge, 553 

Conservation of energy, 553 

Continuous function, 567 

Contour integral, 206, 396-398, 569-572 

Controllable system, 339 

Convergence, 106, 107, 151 

Convergence of spectra, 134-136 

Convolution 

circular, 508, 511 
continuous-time, 61-67 

definition, 25 

discrete-time, 383 

evaluation of, 61-67, 383, 385 

fast Fourier transform, 514-517, 524 

with impulse, 25 

integral, 61-67 

linear, 511 

overlap-add method, 515 

overlap-save method, 515 

Convolution (continued) 

sifting property, 25 

sum, 340, 383 

theorem, 168 

Corner frequency, 281 

Cotree, 557 

Coulomb’s law, 546 

Cross-correlation function, 520 

d’Alembert’s principle, 546, 549 

Damping ratio, 221, 283 

Data reconstruction, 355-363 

Datum node, 558 

Decibel, 279 

Decimation in frequency, 501-503 

Decimation in time, 498-500 

Deconvolution, 521 

Definite integrals (table of), 606-607 

Delay distortion, 132 

Delay operator, 380 

Delta function, 22 

Dependent sources, 262-268 

Describing equation, 546-550 

Difference equation, 248, 317, 339, 

388-390 

Differentiable function, 567 

Digital computation of state equation, 317 

Digital differentiator, 458-4-60 

Digital filter, 415-485 

Digital signal, 350 

Dirac delta function, 22 

Direct-form realization, 415—416 

Dirichlet conditions, 106 

Discrete convolution, 383-385, 514 

Discrete Fourier transform 

aliasing, 491 

compared to the exponential Fourier 

series, 486-491 

defined, 190, 486 

error sources, 486-491 

examples, 492-498 

inverse, 190, 486 
leakage effect, 491, 514, 521 

parameter selection, 526-527 

picket fence effect, 491 

properties of, 505-511 

table of error effects, 491 

Discrete-time analytic signal, 498 

Discrete-time integration. 424-428 

Discrete-time system, 382-395 

Distortion 

amplitude, 132 

delay, 132 

harmonic, 148 
nonlinear, 50, 132 

phase, 132 

Distortionless system, 132, 578 

Dot product, 136 

Double-sided Laplace transform, 206, 

235-238 
Doublet, 26, 68 

Driving point impedance synthesis, 310 

Dual networks, 310 

Dual nodes, 501 

DuHamel’s integrals, 71 

Dynamic range, 364 

Edge, 552 

Effective delay, 244 

Effective duration, 244 

Eigenfunction, 75 

Eigenvalue, 323, 576 

Elecrtical elements, 548 

Electromagnet, 254 

Electromotive force, 292 

Elliptic filter, 485, 582 

Encoding, 350, 351, 363-367 

Energy signal, 28 

Energy spectral density, 30, 153-156, 175 

Equivalent circuit elements, 249-252 

Essential singularity, 569 

Euler’s theorem, 13, 106, 162 

Exponential class, 101 

Exponential Fourier series, 116-119 

Exponential invariant filter, 479 

External stability, 274 

Fast Fourier transform 

applications, 511-521 

butterfly calculation, 495, 501 

decimation in frequency, 501-503 

decimation in time, 498-500 

derivation, 498-505 

dual nodes, 501 

in-place algorithm, 501 

619 
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number of computations, 503 

parameter selection, 526-527 

recursion, 495, 501 

speed factor, 503 

Filter 

approximation, 580-582 

bandwidth, 596 

Bessel, 581 

Butterworth, 304, 480, 481 

Chebyshev, 484, 581, 582, 583-593 

digital, 415-485 

elliptic, 485, 582 

FFT implementation, 511-514 
FIR, 448-464 

Hilbert transform, 461 

ideal, 51,511-514, 579 

HR, 424-428 
normalized, 578 

notch, 303 

passband, 580 

quality factor, 148 

reconstruction, 355-363 

stop band, 580 

transformations, 594-600 

transition band, 580 

Filter transformations, 594-600 

FIR digital filter design, 448-464 

Flat-top sample representation, 38 

Flux linkages, 309 

Folding, 18 

Forced response, 205 

Fourier integral, 150-152 

Fourier series 

convergence, 106, 107 

exponential, 112-119 

generalized, 136-140 

symmetry properties, 119-120 

trigonometric, 101-112 

Fourier transform 

convergence, 151 

defined, 151 

inverse, 151 

limit of, 157 

periodic signals, 186-192 

steady-state response, 175-178 

symmetry properties, 151-152 

system analysis, 171-175 

table of transforms, 171 
theorems, 157-170 

Fourier transform pair, 151, 171 

Fourier transform theorems 

convolution, 168 

differentiation, 164 

duality, 160 

frequency translation, 162 

integration, 164 

linearity, 157 

modulation, 162 

multiplication, 169 

scale change, 159 

superposition, 157 

table of, 158 

time delay, 159 

time reversal, 159 

Frequency, 10 

Frequency domain, 14, 48, 101 

Frequency response, 74-76, 126, 279 
Frequency scaling, 594 

Full-rectified sine wave, 116 

Function 

analytic, 568 

of complex variable, 566-573 

complete set, 137 

continuous, 567 

differentiable, 567 

domain, 568 

limit of, 567 

mulitvalued, 566 

normalized, 136 

orthogonal, 136 

single-valued, 566 

Functional, 25 

Fundamental frequency, 11, 102 

Fundamental period, 10 

Generalized Fourier coefficients, 137 

Generalized Fourier series, 136-140 

Generalized Parseval’s theorem, 138 

Generalized time-invariant synthesis, 

430-432 

Geometric center frequency, 596-597 

Geometric series, 190 

Gibbs phenomenon, 102, 111, 181-185 

Graph, 551-557 

Group delay, 451, 578-580 

Half-power frequency, 173 

Half-rectified sine wave, 116 

Hamming window, 459, 461, 522 

Hanning window, 183, 522 

Harmonic distortion, 148 

Harmonic frequencies, 102 

Heaviside’s expansion theorem, 222 

High-frequency asymptote, 281 

Hilbert transform, 168, 169, 188-189, 

461,485 

Homogeneous equation, 317-318 

Homogeneous solution, 205 

Ideal filters, 51, 178, 579 

Ideal reconstruction filter, 357-360 

Ideal sampling waveform, 354 

HR digital filter design, 424-428 

Imaginary roots, 223 

Impedance, 250 

Improper integral, 56, 207 

Impulse function, 22 

Impulse invariant digital filter, 429-436 

Impulse response 
definition, 58 

for fixed linear systems, 58, 

67-70 

Fourier transform, 126 

for ideal filter, 171, 178 

matrix, 320 

Impulse-train sampling, 354-357 
Indefinite integrals (table of), 606 

Independent equations, 557-561 

Initial condition matrix, 262, 267 

Initial condition response, 340 

Initial conditions, 250 

Initial-state response, 271 

In-place algorithm, 501 

Integral-square error, 136 

Integral-square function, 137 
Integration 

bilinear z-transform, 428, 444-445 

rectangular, 4, 424-425 

trapezoidal, 4, 425 

Integrator circuit, 3 

Internal stability, 274 

Interpolation formula, 357 

Inverse Fourier transform, 151 

Inverse Laplace transform, 206 

Inverse z-transform, 375-380, 396-398 

Inversion integral, 206, 232-235, 

396-398 

Isolated singular point, 569 

Jordan block, 336 

Jordan canonical form, 323 

Kaiser-Bessel window, 521-526 

Kirchhoff’s laws, 3, 330, 546, 553 

Kronecker delta function, 191,493 

Laplace transform 

abscissa of convergence, 207 

absolute convergence, 207, 572 

defined, 205 

double-sided, 206, 235-238 

equivalent circuit elements, 249-252 

evaluation of, 206-209 

inverse, 206, 220-235 

inversion integral, 206, 232-235 

matrix, 577 

network analysis, 249-261 

region of convergence, 206-209, 

232-234 

single-sided, 205, 572 

state transition matrix, 319, 321-330 

table, 209, 220 

theorems, 209-220 

Laplace transform theorems 

complex frequency shift, 214 

convolution, 216 

delay, 215 

derivatives, 211 

final value, 218 

frequency shift, 214 

initial value, 217 

integration, 212 

linearity, 209 

product, 217 

scaling, 218 

table of, 219 
Laurent series, 232, 569, 571 

Leakage effect, 491, 514, 521 

Linear components, 546 

Linear differential system, 313 

Linear interpolation, 360 

Line spectra, 124-126 
Link, 556 

Loop analysis, 262-266 

Loop current matrix, 263 
Loop impedance matrix, 263 

Low frequency gain, 295, 296 

Lowpass-to-bandpass transformation, 596 

Lowpass-to-band reject transformation, 

598 

Lumped components, 546-550 

Magnetohydrodynamic generator, 254 
Marginal stability, 274 
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Mathematical tables, 605-607 

MATLAB, 32, 541-545 

Matrix 
addition, 574 

adjoint, 576 

algebra, 315, 574-577 

characteristic equation, 323, 576 

cofactor, 576 

definition, 574 
determinant, 576 
differentiation, 577 

eignvalue, 324, 576 
exponential, 318 

identity, 318, 573 

impulse response, 320 

initial condition, 263, 267, 340 

integration, 577 

inverse, 575 
Laplace transform of, 577 

loop impedance, 263 

multiplication, 575 

node admittance, 267 

nonsingular, 575 

source current, 267 

source voltage, 263 

state transition, 319, 321-330 

subtraction, 574 

symmetric, 574 

theory, 574-577 

transfer function, 320 

transpose, 574 
Maximally flat response, 580 

Measure zero, 573 
Minimax approximation, 464 

Minimum phase, 270 

Mixing, 497 

Model, 6, 48, 78-87 

Motor constant, 292 

Mutual inductance, 253 

Natural frequency, 221, 269 

Necessary condition, 77 

Network analysis, 249-261 

Network theorems 

equivalence, 257 

Norton, 259 

reduction, 257 

source transformation, 259 

Thevenin, 257 

Node, 553 

Node admittance matrix, 267 

Node analysis, 266-268 

Node postulate, 552-556 

Noncausal filter, 178 

Nonisolated singular point, 569 

Nonlinear distortion, 50, 132 

Normal form equations, 313 

Normalized energy, 28, 155 

Normalized filter, 578 

Normalized functions, 136 

Normal tree, 561 

Norton equivalent circuit, 259-261 

Notch filter, 303 

Nyquist rate, 354, 465 

Observable system, 339 

Ohm’s law, 545 

One-port network, 257 

Open loop bandwidth, 295 

Operational amplifier, 3, 78-79, 

294-296 
Operational calculus, 222 

Operator, 49 
Ordinary differential equation, 50 

Oriented branch, 552 

Oriented graph, 553 

Orthogonality, 136 

Output equations, 313 

Overlap-add method, 515 

Overlap-save method, 515 

Parallel realization, 416-424 

Parks-McClellan algorithm, 464 

Parseval’s theorem, 120-124, 138, 154, 

508 

Partial differential equation, 50 

Partial fraction expansion, 174, 234—238, 

377 
Partial sum, 102, 140 

Particular integral, 205 

Particular solution, 317 

Passband, 178, 580 

Period, 10 
Periodic extension, 107 

Phase, 10 

Phase delay, 578-580 

Phase distortion, 132 

Phase response, 75, 172, 269 

Phase spectrum, 14, 124-126, 154 

Picket-fence effect, 491 

Pointwise convergence, 107 

Pole, 209, 269, 279-287, 569 

Position control system, 293 

Power signal, 28 

Power spectral density, 30 

Proper rational function, 220 

Pulse train signal, 114, 116, 354 

Pulse transfer function, 390 

Quadrature phase shift, 455 

Quadrature sampling, 538 

Quality factor, 148 

Quantizing, 363-366 

Quantizing error, 364,421 

Rational functions, 220 

RC filter, 129, 172 

RC oscillator, 307 

Reconstruction filter, 362, 355-363 

Rectangular integration, 4, 424^125 

Rectangular pulse function, 8, 18 

Rectangular window, 453, 522 

Recursion relation, 317, 339 

Recursive algorithm, 6 

Recursive structure, 429 

Reference node, 558 

Relative phase, 10 

Remez algorithm, 464 

Repeated linear factors, 226, 227 

Repeated quadratic factors, 230 

Residue theorem, 232, 233, 572 

Resonant frequency, 283 

Risetime, 178-181 

Rotational mechanical elements, 548-549 

Routh array, 274-279 
Routh (Routh-Hurwitz) criterion, 275 

Sallen-Key circuit, 303 
Sampled-data signals, 8, 38, 350 
Sampling, 351-363 
Sampling function, 351 

Sampling switch, 351 

Sampling theorem, 354 

Satellite repeater, 6 

Sawtooth wave, 102 
Scaler equation, 317 
Self inductance, 253 

Separate subgraph, 553 

Shift register, 530 

Short-circuit driving point admittance, 302 

Short-circuit transfer admittance, 302 

Sidelobe level, 522 

Sifting property, 25, 186, 370 

Signal 

amplitude, 10 

analog, 350 

analytic, 188 

aperiodic, 10 

autocorrelation function, 517 

continuous-time, 8 

definition, 1 

design, 6 

deterministic, 8 

digital, 350 

discrete-time, 8, 350 

encoded, 350, 363-367 

energy, 28 

energy spectral density, 153-156, 

175,517 

exponential class, 101 

exponential order, 207 

frequency, 10 

model, 6, 8-28 

periodic, 10, 186-192 

periodic extension, 107 

phasor, 12 

power, 28 

quantized, 81, 350 

relative phase, 10 

rotating phasor, 12 

sample-data, 8, 350 

sinusoidal, 10 

space, 136 

square-integrable, 137 

Signal processing, 1, 6, 294, 526 

Signal restoration, 521 

Signal-to-noise ratio, 365 

Signiim function, 32, 168-169 

Simple factors, 221 

Simulation, 78-87, 312 

Simulation diagram, 82, 84, 87, 

314-315 

Simulation model, 314 

Sine function, 114, 605 

Sine-integral function, 182 

Single-loop feedback system, 289 

Singularity functions, 17-28 

Singular point, 568 

Source current matrix, 267 

Source voltage matrix, 262 

Spectra 

amplitude, 14, 124, 152-154 

continuous, 150-152 

double-sided, 14, 124 

energy, 30 
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line, 124-126 

phase, 14, 124 

power,' 30 

single-sided, 14 

Spectral leakage, 491, 514, 521 

Spectral width, 126 

Spectrum analyzers, 514 

Square wave, 110, 116 

Stability, 269, 274-279, 387 

Stability 

asymptotic, 274 

bounded-input bounded-output, 77, 

269, 

387-388 

external, 274 

internal, 274 

marginal, 274 

State equation 

defined, 313 

for discrete-time systems, 339-342 

for electrical networks, 330-334 

frequency domain solution, 319-321 

model, 313 

from nth-order differential equation, 

313-316 

time domain solution, 316-319 

from transfer function, 334-339 

using graph theory, 561-563 

State model, 313 

State of a system, 312 

State space, 313 

State trajectory, 313 

State transition matrix 

defined, 319 

determination of, 321-330 

State variable, 

concepts, 312 

defined, 312 

determination for electrical networks, 

330-334 

State vector, 313, 561 

Steady-state system response, 126-134, 

175-178, 390-395 

Step-invariant filter, 436 
Stop band, 580 

Subgraph, 553 

Subsystem, 6 

Sufficient condition, 77, 106, 151 
Summer, 268 

Superposition, 55, 101 

Superposition integral, 50, 56-61, 70-71 
Symmetry 

even, 14, 120 

half-wave, 120 

odd, 15, 120 

Synchronous orbit, 6 

Synthesis, 48, 350, 415, 429 
System 

amplitude response function, 75, 172, 
269 

analysis, 48-87 

block diagram, 287-294 
causal, 54, 382 

characteristic polynomial, 274 

continuous-time, 53 
controllable, 274, 339 

damping ratio, 221, 283 

definition, 1 

design, 48 

differential equation, 50 

digital, 53 

discrete-time, 53, 395-396 

distortionless, 132, 578 

distributed, 50 

dynamic, 54 

fixed, 53, 56-61, 67-70, 74-76, 269 

forced response, 205 

frequency response, 74-76, 279-287, 

390-394 

gain, 579 

graphs, 551-557 

half-power frequency, 175, 296 
ideal, 579 

identification, 520 

impulse response, 50, 67-70 

independent equations for, 557-561 

initial state response, 271 

instantaneous, 54 

linear, 1, 50, 55-61, 67-70, 74-76, 

269, 382 

linear differential, 313 

lumped, 50, 269, 546-563 

marginally stable, 274 

memoryless, 54 

minimum phase, 270 

modeling concepts, 48-56, 78-87, 

287-294 

natural frequencies, 269 

nonanticipatory, 54, 382 

noncausal, 382 

nonlinear, 55 

observable, 274, 339 

order, 50, 313 

phase response function, 75, 172, 269 

physical, 6 

poles, 209, 269, 279-287, 569 

properties, 53-56, 382-388 

pulse transfer function, 390 

representation, 49-51 

resonant frequency, 283 

shift-invariant, 382 

simulation, 78-87 

single-input, single-output, 49 

single-loop feedback, 289 

stability, 269, 274-279, 387 

steady-state response, 126-134, 

175-178 
step response, 70-74 

superposition integral, 50, 70-74 

synthesis, 48, 350, 415, 429 
time delay, 579 

time-invariant, 53 

time-varying, 53 
topology, 555-557 

trajectory, 313 

transfer function, 268-274 
transient response, 205 
two-port, 49 

unit-pulse response, 383 
unstable, 274 

zero-input response, 271 

zero-memory, 54 

zeros, 269 

zero-state response, 271 

Tapped delay line, 451 

Taylor series, 568 

T-equivalent circuit, 254 

Thevenin equivalent circuit, 257-260 

Through variable, 249, 549 

Tie-set schedule, 559 

Time domain, 6 

Time-domain synthesis, 429 

Topology, 555-557 

Trajectory of system, 313 

Transfer function, 268-274 

Transfer function matrix, 320 

Transformer model, 253 

Transient response, 205 

Transition band, 580-581 

Translational mechanical elements, 548 

Trapezoidal integration, 444 

Tree, 555 

Triangular wave, 116 

Triangular window, 482, 522 

Trigonometric Fourier series, 101-112 

Trigonometric identities (table of), 605 

Tustin substitution, 248 

Twin-T network, 302 

Two-port network, 49, 257 

Uniform convergence, 107 

Unit doublet, 26 

Unit exponential sequence, 371 

Unit impulse function, 22 

Unit parabolic function, 17 

Unit pulse function, 18 

Unit pulse sequence, 369 

Unit pulse response, 383 

Unit ramp function, 17 

Unit step function, 17 

Unit step sequence, 371 

Unit vector, 136 

Variation of parameters, 52, 318 

Vector space, 136 

Weiner-Khintchine theorem, 517 

Welch’s method, 517 

Window functions, 181-185, 453, 459, 

482, 483, 521-526 

Yule-Walker equations, 465 

Zero, 269 

Zero-input response, 271 

Zero padding, 527 

Zero-state response, 271 
z-transform 

bilinear, 428 

chirp, 528-533 

defined, 367 

delay operator, 380 

elementary sequences, 369-371 
final value theorem, 374 

initial value theorem, 374 

inverse, 375-380, 396-398 
linearity, 373 

properties, 367-381 

related to Laplace transform, 368 

table of, 372 


