1.

- (a) (15) Assume that there is no initial energy at the capacitor and the inductor. When $v_1(t) = u(t)$ $(t \ge 0)$ (unit-step input), find $v_2(t)$.
- (b) (15) Find $H(j\omega) = \frac{V_2(j\omega)}{V_1(j\omega)}$, and plot $|H(j\omega)|$ in original ω -scale.
- 2. (20) Assume that the sampling frequency is large compared with the Nyquist rate, i.e. $f_s \gg 2f_h$. The unit impulse response of a filter is given by

$$h(t) = \begin{cases} \frac{1}{2} \left(1 + \cos \frac{\pi t}{T} \right), & |t| < T \\ 0, & \text{otherwise} \end{cases}$$

Then using the interpolation equation

$$y(t) = \sum_{k=-\infty}^{\infty} x(kT)h(t - kT),$$

determine the interpolation formula for the output, corresponding to this filter subject to the input $\{x(nT)\}$.

4.

3. (a) (10) Given a time series

$$x(n) = \sum_{k=0}^{\infty} x_1(k) x_2(n-k),$$

find its z-transform X(z).

(b) (10) Given $X(z) = \frac{2 \cdot z^{-2}}{1 + z^{-2}}$, find its time sequence $\{x(k)\}$, in closed form.

- (a) (5) When initial condition is assumed to be zero (i.e. initial capacitor voltage is zero), find $H_a(s) = \frac{V_2(s)}{V_1(s)}$.
- (b) (10) Using the step-invariance synthesis procedure, find H(z).
- (c) (10) Using the bilinear z-transform, find H(z) having the same 3-dB bandwidth as $H_a(s)$. The sampling frequency is $f_s = 10$ Hz.
- (d) (5) Plot $|H_a(j\omega)|$ and $|H(e^{j\omega T})|$, where T is the sampling period. Use H(z) in (c), and any scale will be O.K.