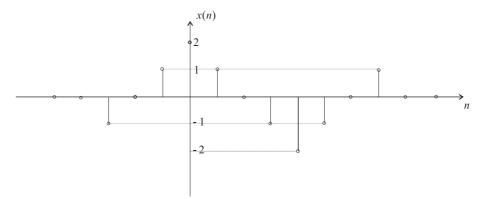
1. (20) Let $r(n) \leftrightarrow Y(e^{i\Omega})$ by DTET, where r(n)

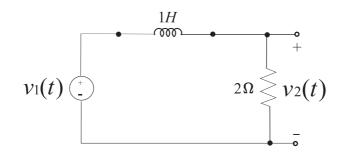


Evaluate the following without explicitly computing $X(e^{j\Omega})$:

- (a) (5) $X(e^{j0})$
- (b) (5) $\arg\{X(e^{j\Omega})\}$
- (c) (5) $\int_{-\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega$
- (d) (5) $\int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j3\Omega} d\Omega$
- 2.(20)

Assume that x(t) is band limited. In other words, X(f) is assumed zero for $|f| \ge f_h$. We now sample this signal with an ideal sampler with $f_s > 2f_h$. Let $x_s(t)$ be this sampled signal and $X_s(f)$ be the corresponding FT. Then express $X_s(f)$ with f_s and X(f) and justify your answer.

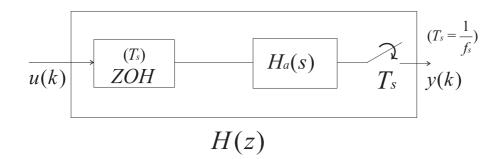
3.(40)



- (a) (5) Find $H_a(s) = V_2(s)/V_1(s)$
- (b) (10)

Using the bilinear z-transform, find H(z) having the same 3dB bandwidth as $H_a(s)$. The sampling frequency f_s is 10Hz.

(c) (10) Plot $|H_a(j\omega)|$ and $|H(e^{j\omega T_s})|$ using the Bode Plot. $(T_s = \frac{1}{f_s})$



(d) (15)

Using the $H_a(s)$ as given in (a), find H(z) in the above block diagram.

(Hint: use $\mathscr{Z}(\mathscr{L}^{-1}\{(1-e^{-sT_s})P(s)\}|_{t=nT_s}) = (1-z^{-1})\mathscr{Z}(\mathscr{L}^{-1}\{P(s)\}|_{t=nT_s}))$

4. (20)

A nonideal sampling operation obtains x(n) from x(t) as

$$x(n) = \int_{(n-1)T_s}^{nT_s} x(t)dt,$$

(a) (15)

Show that this equation can be written as ideal sampling of a filtered signal y(t) = x(t) * h(t) (i.e., $x(n) = y(nT_s)$), and find h(t).

(Hint: let $y(t) = \int_{t-T_s}^t x(t)dt$)

(b) (5)

Express the FT of x(n) in terms of $X(j\omega)$, $H(j\omega)$, and T_s .