EE 261 The Fourier Transform and its Applications Fall 2005 Final Exam, December 12, 2005

Notes:

There are 6 questions for a total of 100 points Write all your answers in your exam booklets Please be neat and indicate clearly the main parts of your solutions

1. (15 points) (a) Let $f(t)$ be periodic of period 1 and $g(t)$ be periodic of period 2. Find the Fourier series of $h(t) = f(t) + g(t)$, that is, find the Fourier coefficients of $h(t)$ in terms of the Fourier coefficients of $f(t)$ and $g(t)$.

(b) Suppose $f(t)$ is periodic of period T. Find a delay τ_n so that the n'th Fourier coefficient of $f(t - \tau_n)$ is real and positive; real and negative; purely imaginary. The answers should be expressed in terms of the *n*'th Fourier coefficient of $f(t)$.

2. (15 points) "Hey", said a student excited by the sampling theorem, "I'm not so sure you need infinitely many sample points. Suppose a signal $f(t)$ is bandlimited, like always, with $\mathcal{F}f(s) \equiv 0$ for $|s| \geq p/2$, like always. Now use a *finite* version of the III function, say

$$
\Pi_p^N(x) = \sum_{k=-N}^N \delta(x - kp),
$$

N

and we still have

$$
\mathcal{F}f = \Pi_p(\mathcal{F}f * \Pi_p^N)
$$

just like in the derivation of the usual sampling theorem. Now if we take the inverse Fourier transform don't we get $f(t)$ back using just finitely many samples?"

Do you? What formula do you get?

- 3. (20 points) Fourier transforms
	- (a) Find the Fourier transform of

$$
f(t) = \frac{t}{1 + 2t^2 + t^4} = \frac{t}{(1 + t^2)^2}.
$$

Use

$$
\mathcal{F}(e^{-|t|}) = \frac{2}{1 + 4\pi^2 s^2}.
$$

- (b) Find the Fourier transform of the polynomial $f(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$. (This was one of Professor Osgood's quals questions a few years ago.)
- (c) Given that

$$
\mathcal{F}(|t|) = -\frac{1}{2\pi^2 s^2},
$$

find the Fourier transform of the unit ramp

$$
r(t) = \begin{cases} t, & t \ge 0, \\ 0, & t \le 0. \end{cases}
$$

(d) Find $\underline{1} * \underline{f}$, where $\underline{1} = (1, 1, \dots, 1)$ and \underline{f} is a discrete signal.

4. (20 points) Let

$$
\underline{f} = (\underline{f}[0], \underline{f}[1], \underline{f}[2], \underline{f}[3], \underline{f}[4])
$$

be a real-valued five-point signal. Append 2 zeros to $\underline{\mathbf{f}}$, making the seven-point signal

 $(\underline{\underline{f}}[0], \underline{\underline{f}}[1], \underline{\underline{f}}[2], \underline{\underline{f}}[3], \underline{\underline{f}}[4], 0, 0)$,

and let $\underline{\mathbf{F}}$ denote the DFT of this seven-point signal. Let

 $\underline{G}[m] = \text{Re } F[m]$ (real part),

and let $\underline{\mathbf{g}}$ be the seven-point signal whose DFT is
 $\underline{\mathbf{G}}.$

- (a) Show that $\underline{\mathbf{g}}[0]=\underline{\mathbf{f}}[0].$
- (b) Show that $\underline{\mathbf{g}}[1] = \frac{1}{2}\underline{\mathbf{f}}[1]$.
- 5. (20 points) Consider an LTI system $y(t) = Lx(t)$. When the input is a pulse $x(t) = u(t)$ $u(t-1)$, where $u(t)$ is the unit step, the output is $y(t) = e^{-t}u(t) - e^{-(t-1)}u(t-1)$.
	- (a) Find the impulse response of the system and the transfer function. Is the system (essentially) a low pass or a high pass filter? That is, if $H(s)$ is the transfer function, examine the behavior of $|H(s)|$ as $s \to 0$ and as $s \to \infty$.
	- (c) Suppose the input is given by $x(t) = \sin(2\pi\nu t)$. Find the output $y(t)$ in terms of real functions.

6. (10 points) Projections and 3D Fourier transforms

Let $f(x_1, x_2, x_3)$ be a 3-dimensional function whose Fourier transform is $\mathcal{F}f(\xi_1, \xi_2, \xi_3)$

(a) Let

$$
g(x_1, x_2) = \int_{-\infty}^{\infty} f(x_1, x_2, x_3) dx_3.
$$

One says that g is the projection of f along the x_3 direction. Find $\mathcal{F}g(\xi_1, \xi_2)$ in terms of $\mathcal F f$

(b) Let

$$
h(x_3) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2, x_3) dx_1 dx_2.
$$

One says that h is the projection of f onto the x_3 direction. Find $\mathcal{F}h(\xi_3)$ in terms of $\mathcal F f$