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1. (15 points) (a) Let f(t) be periodic of period 1 and g(t) be periodic of period 2. Find the
Fourier series of h(t) = f(t) + g(t), that is, find the Fourier coefficients of h(t) in terms of the
Fourier coefficients of f(t) and g(t).

(b) Suppose f(t) is periodic of period T . Find a delay τn so that the n’th Fourier coefficient
of f(t − τn) is real and positive; real and negative; purely imaginary. The answers should be
expressed in terms of the n’th Fourier coefficient of f(t).

Solution for (a) h(t) = f(t) + g(t) is periodic of period 2 so has a Fourier series of the form

h(t) =
∞∑

n=−∞
cneπint .

Write the Fourier series for f(t) and g(t), respectively, as

f(t) =
∞∑

n=−∞
ane2πint , g(t) =

∞∑

n=−∞
bneπint ,

so that
∞∑

n=−∞
cneπint =

∞∑

n=−∞
ane2πint +

∞∑

n=−∞
bneπint .

Compare like terms on both sides. For the constant term we have

c0 = a0 + b0 .

The left-hand-side (the series we want) has all multiples of π in the exponential, as does
the series for g(t) (the bn’s), while the series for f(t) (the an’s) contributes only to the even
multiples of π in the exponentials. That is,

n odd =⇒ cn = bn ;
n even =⇒ cn = an/2 + bn .

Solution for (b) Write

f(t) =
∞∑

k=−∞
cke

2πikt/T .

Then f(t − τn) has Fourier series

f(t − τn) =
∞∑

k=−∞
cke

2πik(t−τn)/T =
∞∑

k=−∞
cke

−2πikτn/T e2πikt/T ,

and the n’th Fourier coefficient is
e−2πinτn/T cn .

Now write
cn = |cn|eiarg cn ,

so that
e−2πinτn/T cn = |cn|ei(arg cn−2πnτn/T ) .
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To make this real and positive we want τn so that arg cn − 2πnτn/T = 0, in which case the
Fourier coefficient of the delayed signal is |cn|. We get this by taking

τn =
T arg cn

2πn
.

We can make the new coefficient real and negative, equal to −|cn|, by making arg cn −
2πnτn/T = π, and so

τn =
T (arg cn − π)

2πn
.

We can make the new coefficient purely imaginary by making arg cn − 2πnτn/T = ±π/2,
giving

τn =
T (arg cn ∓ π/2)

2πn
.
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2. (15 points) “Hey”, said a student excited by the sampling theorem, “I’m not so sure you
need infinitely many sample points. Suppose a signal f(t) is bandlimited, like always, with
Ff(s) ≡ 0 for |s| ≥ p/2, like always. Now use a finite version of the III function, say

IIIN
p (x) =

N∑

k=−N

δ(x− kp) ,

and we still have
Ff = Πp(Ff ∗ IIIN

p )

just like in the derivation of the usual sampling theorem. Now if we take the inverse Fourier
transform don’t we get f(t) back using just finitely many samples?”

Do you? What formula do you get?

Solution To obtain the Fourier transform of IIINp we use F(δ(x− a)) = e−2πisa. This gives

F IIINp (t) =
N∑

n=−N

F(δ(t− kp)) =
N∑

n=−N

e−2πinps .

The Poisson summation formula miraculously converts the Fourier transform of the full III
to a sum of impulses, but for the finite III the best we can do is to use the formula for a
geometric series to find a simpler expression. From the formula sheet this is

N∑

n=−N

e−2πinps =
sin(π(2N + 1)s)

sin πs
.

Since IIIN
p is even we also have

F−1IIIN
p (t) =

sin(π(2N + 1)s)
sinπs

.

To see what happens with the derivation of the sampling formula, we still have

Ff(s) = Πp(s)(Ff(s) ∗ IIIN
p (s)),

from which
f(t) = (p sinc pt) ∗ (f · F−1IIIN

p )(t)

= (p sinc pt) ∗
(

f(t)
sin(π(2N + 1)t)

sinπt

)

=
∫ ∞

−∞
p sinc p(t − τ)

(
f(τ)

sin(π(2N + 1)τ)
sin πτ

)
dτ .

This is no longer a ‘sampling formula’ because F−1IIIN
p is not a III on the right hand side of

the expression f(t) = (p sincpt) ∗ (f · F−1IIIN
p )(t), and hence no samples of f are taken.

3



3. (20 points) Fourier transforms

(a) Find the Fourier transform of

f(t) =
t

1 + 2t2 + t4
=

t

(1 + t2)2
.

Use
F(e−|t|) =

2
1 + 4π2s2

.

(b) Find the Fourier transform of the polynomial f(t) = a0 + a1t + a2t
2 + · · ·+ antn. (This

was one of Professor Osgood’s quals questions a few years ago.)

(c) Given that

F(|t|) = − 1
2π2s2

,

find the Fourier transform of the unit ramp

r(t) =

{
t , t ≥ 0,

0 , t ≤ 0 .

(d) Find 1 ∗ f, where 1 = (1, 1, · · · , 1) and f is a discrete signal.

Solutions

(a) From the formula sheet:

F{e−|t|} =
2

1 + 4π2s2

Then, by duality,

F{ 1
1 + 4π2t2

} =
1
2
e−|−s| =

1
2
e−|s|

Let g(t) = 1
1+t2

. By the stretch theorem we get:

Fg(s) = πe−2π|s|

Let us compute the derivative of g:

g′(t) =
−2t

(1 + t2)2

F{g′}(s) = 2πisFg(s) = 2π2ise−2π|s|

Notice that f(t) = −1
2g′(t) then:

Ff(s) = −π2ise−2π|s|

This makes sense: f is real and odd and its Fourier transform is pure imaginary and
odd.
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(b) We use the derivative formula

F(tnG(t)) =
(

i

2π

)n

G(n)(s) ,

where G = Fg. Apply this with g(t) = 1, for which G = δ and we have

F(tn) =
(

i

2π

)n

δ(n)(s) .

Thus the Fourier transform of the polynomial is

F(a0 + a1t + a2t
2 + · · ·+ antn) = a0δ + a1

i

2π
δ′ + a2

(
i

2π

)2

δ′′ + · · ·+ an

(
i

2π

)n

δ(n) .

(c) We can write

r(t) =
1
2
(t + |t|)

From Part (b) (or from the formula sheet), the Fourier transform of the function f(t) = t
is

F(t) =
i

2π
δ′

and from the formula given for F(|t|) we have

Fr(s) =
1
2

(
i

2π
δ′ − 1

2π2s2

)
.

(d) In convolving with the constant vector 1 the m’th component of the convolution is given
by

(1 ∗ f)[m] =
N−1∑

n=0

f[n] ,

i.e., it is a constant, independent of m and, in fact, is simply F f[0]. Thus

1 ∗ f = (F f[0],F f[0], . . . ,F f[0]) = F f[0]1 .

This result also follows easily by taking the discrete Fourier transform. For

F (1 ∗ f) = F 1F f = δ0 F f = F f[0]δ0 ,

and then taking the inverse discrete Fourier transform gives the earlier result:

1 ∗ f = F−1(F f[0]δ0) = F f[0]F−1δ0 = F f[0]1 .

Note that in the continuous case convolving a signal f(t) with the constant function 1
gives the constant value

(1 ∗ f)(t) =
∫ ∞

−∞
f(t) dt = Ff(0) .

The integral of f(t), as compared to the sum of the values f[n], and its value Ff(0) may
be considered as the continuous analog of the result of this problem.
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4. (20 points) Let
f = (f[0], f[1], f[2], f[3], f[4])

be a real-valued five-point signal. Append 2 zeros to f, making the seven-point signal

(f[0], f[1], f[2], f[3], f[4], 0, 0) ,

and let F denote the DFT of this seven-point signal. Let

G[m] = Re F[m] (real part),

and let g be the seven-point signal whose DFT is G.

(a) Show that g[0] = f[0].

(b) Show that g[1] = 1
2 f[1].

Solutions: Let f̃ be the seven-point sequence defined by:

f̃[n] =
{

f[n], n = 0, 1, . . .4
0, n = 5, 6

The easiest approach to the problem is to reindex, using both negative and positive indices.
Using that f̃ is real and hence that F is Hermitian, we find

G[m] = Re(F[m])

=
F[m] + F[m]

2

=
F[m] + F[−m]

2
(reindexing) .

Taking the inverse DFT,

g[n] =
f̃[n] + f̃[−n]

2
Hence

g[0] =
f̃[0] + f̃[0]

2
= f̃[0]
= f[0]

the last line holding since f[0] = f̃[0]. This is part (a). For part (b),

g[1] =
f̃[1] + f̃[−1]

2

=
f̃[1] + f̃[6]

2

=
f̃[1] + 0

2

=
˜f[1]
2
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If you didn’t reindex, the solutions go as follows: The Hermitian property of F implies that
F[7 − m] = F[m] which is equivalent to:

Re(F[m]) = Re(F[7 − m])
Im(F[m]) = − Im(F[7− m])

Note also that F[0] = Re(F[0]) since F[0] =
∑6

n=0 f̃ [n].
Using again f[0] = f̃[0] we obtain

f[0] = f̃[0] =
1
7

6∑

m=0

F[m]

=
1
7

{
F[0] +

3∑

m=1

(F[m] + F[7 − m])

}

=
1
7

{
F[0] +

3∑

m=1

(F[m] + F[m])

}

=
1
7

{
Re(F[0]) + 2

3∑

m=1

Re(F[m])

}

=
1
7

6∑

m=0

Re(F[m])

= g[0]

For Part (b):

g[1] =
1
7

6∑

m=0

Re(F[m])e2πim/7

=
1
7

{
Re(F[0]) +

3∑

m=1

(Re(F[m])e2πim/7 + Re(F[7 − m])e−2πim/7)

}

=
1
7

{
Re(F[0]) +

3∑

m=1

(Re(F[m])e2πim/7 + Re(F[m])e−2πim/7)

}

=
1
7

{
Re(F[0]) + 2

3∑

m=1

Re(F[m]) cos(
2πm

7
)

}

Next,

f̃[1] =
1
7

6∑

m=0

F[m]e2πim/7

and

f̃[6] =
1
7

6∑

m=0

F[m]e2πi(6m)/7 =
1
7

6∑

m=0

F[m]e−2πim/7
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Let us check what f̃[1] + f̃[6] is:

f̃[1] + f̃[6] =
1
7

6∑

m=0

F[m](e2πim/7 + e−2πim/7)

=
2
7

6∑

m=0

F[m] cos(
2πm

7
)

=
2
7

{
F[0] +

3∑

m=1

(F[m] + F[7− m]) cos(
2πm

7
)

}

=
2
7

{
F[0] + 2

3∑

m=1

Re(F[m]) cos(
2πm

7
)

}

= 2g[1]

Now recall that f̃[1] = f[1] and f̃[6] = 0, so

g[1] =
1
2
f [1]
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5. (20 points) Consider an LTI system y(t) = Lx(t). When the input is a pulse x(t) = u(t) −
u(t − 1), where u(t) is the unit step, the output is y(t) = e−tu(t) − e−(t−1)u(t − 1).

(a) Find the impulse response of the system and the transfer function. Is the system (essen-
tially) a low pass or a high pass filter? That is, if H(s) is the transfer function, examine
the behavior of |H(s)| as s → 0 and as s → ∞.

(c) Suppose the input is given by x(t) = sin(2πνt). Find the output y(t) in terms of real
functions.

Solution (a) Since the system is LTI, it’s not difficult to see by inspection that the unit step
response is given by v(t) = e−tu(t). If this wouldn’t be the case, then assuming the system
is LTI would lead us to a contradiction. Another way of finding v(t) is by construction of a
telescopic sum (middle terms would cancel and the last one would tend to zero). Now:

h(t) = v′(t) =
d

dt
e−tu(t) = −e−tu(t) + e−tδ(t) = −e−tu(t) + δ(t)

The transfer function is then given by:

H(s) = − 1
2πis + 1

+ 1 =
2πis

2πis + 1

A different approach would be to first compute H(s) and then take the inverse FT to compute
h(t), obtaining the same result as before:

Y (s) =
1

2πis + 1
− e−2πis

2πis + 1

=
1

2πis + 1
(1 − e−2πis)

X(s) = (
δ(s)
2

+
1

2πis
)(1− e−2πis)

=
1

2πis
(1 − e−2πis)

⇒ H(s) =
Y (s)
X(x)

=
2πis

1 + 2πis
= 1 − 1

1 + 2πis

This is a high-pass filter since |H(s)| → 0 as s → 0 and |H(s)| → 1 as s → ∞

(b) Note that

x(t) = sin(2πνt)

=
1
2i

(e2πiνt − e−2πiνt)
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Now,

Y (s) = H(s)X(s)

=
1
2i

H(s) (δ(s − ν) − δ(s + ν))

=
1
2i

(H(ν)δ(s− ν) − H(−ν)δ(s + ν))

=
1
2i

(
2πiν

1 + 2πiν
δ(s − ν) +

2πiν

1 − 2πiν
δ(s + ν)

)

=
1

2i(1 + 4π2ν2)
(
(2πiν + 4π2ν2)δ(s − ν) + (2πiν − 4π2ν2)δ(s + ν)

)

Hence,

y(t) =
1

(1 + 4π2ν2)
(
2πν cos(2πνt) + 4π2ν2 sin(2πνt)

)

10



6. (10 points) Projections and 3D Fourier transforms

Let f(x1, x2, x3) be a 3-dimensional function whose Fourier transform is Ff(ξ1, ξ2, ξ3)

(a) Let

g(x1, x2) =
∫ ∞

−∞
f(x1, x2, x3) dx3 .

One says that g is the projection of f along the x3 direction. Find Fg(ξ1, ξ2) in terms
of Ff

(b) Let

h(x3) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3) dx1dx2 .

One says that h is the projection of f onto the x3 direction. Find Fh(ξ3) in terms of
Ff

Solution:

(a)

Fg(ξ1, ξ2) =
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)e−2πi(x1ξ1+x2ξ2)dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
f(x1, x2, x3)dx3

)
e−2πi(x1ξ1+x2ξ2)dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3)e−2πi(x1ξ1+x2ξ2)dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3)e−2πi(x1ξ1+x2ξ2+x3·0)dx1dx2dx3

= Ff(ξ1, ξ2, 0)

(b)

Fh(ξ3) =
∫ ∞

−∞
h(x3)e−2πix3ξ3dx3

=
∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x2)dx1dx2

)
e−2πix3ξ3dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x2)e−2πix3ξ3dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x2)e−2πi(x1 ·0+x2·0+x3ξ3)dx1dx2dx3

= Ff(0, 0, ξ3)
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