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Midterm Solutions

1. The signal f(t) is shown below. Its Fourier transform is F (s).

The first modified signal is
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That’s given by f(−t), or, without writing the variable, f−. Its Fourier transform is F−, or,
writing the variable, F (−s).

The next one is

To express this in terms of f we first reverse f to f− (which gives the preceding picture) and
then shift to the right by 2, giving f−(t − 2). The Fourier transform of this is e−2πi2sF(f−)(s) =
e−4πis(Ff)−(s) = e−4πisF (−s).

And next we have

That’s just f(t − 1), and the Fourier transform is e−2πisF (s).
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Driving by next is

This is a little trickier. The figure is twice as large in the horizontal direction, which is accom-
plished by forming f(t/2) and also scaled up by 2 in the vertical direction, so that makes 2f(x/2).
The combination of the two scalings gives a curve of the same shape, just twice as large. Leaving
either of the two scalings out would distort the shape.

The Fourier transform is
2 × 1

1
2

F (2s) = 4F (2s).

The traffic picks up with:

This is given by f(t) + f(t + 2) so its Fourier transform is F (s) + e4πisF (s) = (1 + e4πis)F (s).
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Finally, heading off in opposite directions:

That’s just f(t) + f(−t) so the Fourier transform is F (s) + F (−s)
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2. (15 points) Recall that the inner product of two functions in L2([0, 1]) is defined by

(f, g) =
∫ 1

0
f(t)g(t)dt.

Let {ϕn(t)} be an orthonormal basis for L2([0, 1]). Remember that orthonormality means

(ϕn, ϕm) =

{
1, , n = m

0, n 6= m

To say that the {ϕn} form a basis means we can write any function f(t) in L2([0, 1]) as

f(t) =
∞∑

n=1

(f, ϕn)ϕn(t).

Define a function of two variables

K(t, τ) =
∞∑

n=1

ϕn(t)ϕn(τ).

Show that
(f(t), K(t, τ)) = f(τ).

(Ignore all questions of convergence of series, etc. Because of this property, K(t, τ) is called a
reproducing kernel ; taking the inner product of f(t) with K(t, τ) ‘reproduces’ the value of f at τ .
In Electrical Engineering literature sampling theorems are often expressed in terms of reproducing
kernels.)

We compute the inner product of f(t) and K(t, τ). You can write this out in terms of integrals
or you can use simply the properties of (complex) inner products. I’ll show you both approaches.

(f(t), K(t, τ)) =

(
f(t),

∞∑

n=1

ϕn(t)ϕn(τ)

)

=
∞∑

n=1

(f(t), ϕn(t)ϕn(τ))

=
∞∑

n=1

ϕn(τ)(f(t), ϕn(t))

(The inner product is ‘with respect to t’, and so the ϕn(τ) are constants in
each inner product. Being in the second slot, they come out with a conjugate, i.e. as ϕn(τ))

But this last expression is exactly how to write f(τ) in terms of the orthonormal basis,

∞∑

n=1

(f, ϕn)ϕn(τ) = f(τ).
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If you had trouble keeping your t’s and τ ’s straight in what we just did, here’s how the calculation
looks with integrals.

(f(t), K(t, τ)) =
∫ 1

0
f(t)K(t, τ)dt

=
∫ 1

0

f(t)

( ∞∑

k=1

ϕn(t)ϕn(τ)

)
dt

=
∫ 1

0
f(t)

( ∞∑

k=1

ϕn(t)ϕn(τ)

)
dt

=
∞∑

k=1

(∫ 1

0
f(t)ϕn(t) dt

)
ϕn(τ)

=
∞∑

k=1

(f, ϕn)ϕ(τ)

= f(τ)
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3(a) (10 points) Find the Fourier transform of the signal shown below.

The signal is made out of the unit step function H(t), so for sure we’ll need to use

FH(s) =
1
2
(δ +

1
πis

).

The part of the signal on the right is just a shift of H(t) to the right, and that’s H(t − 1). To
get the part on the left we first reverse to H−, then shift to the left, making H−(t + 1) (which
you could also write as H(−(t + 1)) = H(−t − 1), but I won’t) and then flip it upside down, to
−H−(t + 1). The whole signal is then

f(t) = H(t− 1)− H−(t + 1)

The Fourier transform of this is

Ff(s) = e−2πisFH(s)− e2πis(FH−)(s)
= e−2πisFH(s)− e2πis(FH)−(s)
= e−2πisFH(s)− e2πisFH(−s)

= e−2πis(
1
2
δ(s) +

1
2πis

) − e2πis(
1
2
δ(−s) +

1
2πi(−s)

)

=
1
2
(e−2πis − e2πis)δ(s) +

1
2πis

(e−2πis + e2πis)

= −i(sin 2πs)δ(s) +
1

πis
cos 2πs

=
1

πis
cos 2πs

As a check, notice that the Fourier transform is purely imaginary and odd, which it should be.
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3(b) (10 points) Recall the triangle function

Λ(t) =

{
1 − |t|, |t| < 1
0, otherwise

and consider the signal
f(t) = 1 + Λ(3t) ∗ III1/3(t).

Sketch the graph of f(t), find the Fourier transform Ff(t), and sketch its graph. Comment on
what you see.

Taking the convolution Λ(3t) ∗ III1/3(t) produces the sum

Λ(3t) ∗ III1/3(t) =
∞∑

k=−∞
Λ(3(t − k

3
)) =

∞∑

k=−∞
Λ(3t − k)

A plot of the shifted triangles from k = −4 to 4 looks like this:

If you draw your graph carefully enough (or actually do the algebra) you’ll see that the overlaps
are such that when you add the shifted triangles you get a plot that looks like:

And you would have concluded that Λ(3t) ∗ III1/3(t) = 1, and that f(t) = 2, and, so, for that
matter that Ff(s) = 2δ

However, if you didn’t draw the graph carefully enough you had a second chance to come to
the same conclusion by taking the Fourier transform:

Ff = δ + (
1
3
sinc2(

1
3
s))(3III3(s))

= δ +
∞∑

k=−∞
sinc2(

k

3
)δ(s − 3k)

Midterm solutions–8



Now the thing you have to realize is that sinc2(k/3) is 1 at k = 0 and is zero at the points where
k/3 is an integer, i.e. where k is a multiple of 3. The zeros of sinc2 line up with the impulses
δ(s − 3k), k 6= 0 and hence kill them off. What remains is

Ff = δ + δ = 2δ.

I won’t plot this. But having seen it, if you didn’t get the graph of f(t) right you should now see
that it’s just 2F−1δ = 2.
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3(c) (10 points) As one of our applications of Fourier transforms and convolutions to differential
equations (Lecture 8) we showed that the ordinary differential equation

u′′ − u = f

has solution
u(t) =

1
2

∫ ∞

−∞
e−|t−τ |f(τ) dτ.

We know from elementary courses that the general solution of the equation should include a solution
of the homogeneous equation u′′ − u = 0, and so be of the form

u(t) = c1e
t + c2e

−t +
1
2

∫ ∞

−∞
e−|t−τ |f(τ) dτ.

A student sent an email pointing this out and wondering why methods based on the Fourier
transform will not produce such a solution. Why do you think that is? (You need not look back at
Lecture 8.)

The reason is that neither et nor e−t have Fourier transforms; et grows too fast at +∞ and
e−t grows too fast at −∞. No argument based on using the Fourier transform can handle these
functions as solutions to the differential equation.
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4. (25 points) Let f(t) be a band-limited signal whose Fourier transform Ff(s) is shown below.
The spectrum is nonzero only for 2 < |s| < 3.

According to the sampling theorem, we can reconstruct this signal by a sinc interpolation with
sample points taken at a rate of 6 Hz. Since the spectrum is concentrated in two islands, effectively
with what one might say is a bandwidth of 1 Hz each, it would seem we should be able to do better.
Arguing as in the derivation of the sampling theorem, find an interpolation formula that uses a
sampling rate of 2 Hz. Can you do better still?

If we convolve Ff with III2 each ‘spectral island’ is shifted enough so that there is no overlap
and the copies of the islands are still distinct when added up. The (partial) picture (squeezed
slightly) is:

We still have to recover the original Fourier transform (and then take the inverse). To do that
we multiply by the sum of two Π’s of width 1, one centered at 2.5 and one centered at −2.5. The
picture is:

We thus have
Ff = (Π(s− 5

2
) + Π(s +

5
2
))(III2 ∗ Ff).
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If we now take the inverse Fourier transform we get

f(t) = (2 cos5πt sinc t) ∗ (
1
2
III1/2(t) f(t))

= (cos 5πt sinc t) ∗

( ∞∑

k=−∞
f(k/2)δ(t− k/2)

)

=
∞∑

k=−∞
f(k/2)(cos5πt sinc t) ∗ δ(t − k/2)

=
∞∑

k=−∞
f(k/2) cos(5π(t− k/2)) sinc(t − k/2)

We also see that if we tried to periodize Ff with IIIp for any p < 2 then the islands would
overlap. We could not recover Ff by cutting off, nor could we then recover f .
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