EE 261 The Fourier Transform and its Applications Fall 2003, Handout 41 Midterm Solutions

1. The signal $f(t)$ is shown below. Its Fourier transform is $F(s)$.

Midterm solutions–1

That's given by $f(-t)$, or, without writing the variable, f^- . Its Fourier transform is F^- , or, writing the variable, $F(-s)$.

The next one is

To express this in terms of f we first reverse f to f^- (which gives the preceding picture) and then shift to the right by 2, giving $f^-(t-2)$. The Fourier transform of this is $e^{-2\pi i 2s}\mathcal{F}(f^-)(s) =$ $e^{-4\pi i s} (\mathcal{F}f)^{-}(s) = e^{-4\pi i s} F(-s).$

And next we have

That's just $f(t-1)$, and the Fourier transform is $e^{-2\pi is}F(s)$.

This is a little trickier. The figure is twice as large in the horizontal direction, which is accomplished by forming $f(t/2)$ and also scaled up by 2 in the vertical direction, so that makes $2f(x/2)$. The combination of the two scalings gives a curve of the same shape, just twice as large. Leaving either of the two scalings out would distort the shape.

The Fourier transform is

$$
2 \times \frac{1}{\frac{1}{2}} F(2s) = 4F(2s).
$$

The traffic picks up with:

This is given by $f(t) + f(t+2)$ so its Fourier transform is $F(s) + e^{4\pi i s}F(s) = (1 + e^{4\pi i s})F(s)$.

Finally, heading off in opposite directions:

That's just $f(t) + f(-t)$ so the Fourier transform is $F(s) + F(-s)$

2. (15 points) Recall that the inner product of two functions in $L^2([0,1])$ is defined by

$$
(f,g) = \int_0^1 f(t)\overline{g(t)} dt.
$$

Let $\{\varphi_n(t)\}\$ be an orthonormal basis for $L^2([0,1])$. Remember that orthonormality means

$$
(\varphi_n, \varphi_m) = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}
$$

To say that the $\{\varphi_n\}$ form a basis means we can write any function $f(t)$ in $L^2([0, 1])$ as

$$
f(t) = \sum_{n=1}^{\infty} (f, \varphi_n) \varphi_n(t).
$$

Define a function of two variables

$$
K(t,\tau) = \sum_{n=1}^{\infty} \varphi_n(t) \overline{\varphi_n(\tau)}.
$$

Show that

$$
(f(t), K(t, \tau)) = f(\tau).
$$

(Ignore all questions of convergence of series, *etc.* Because of this property, $K(t, \tau)$ is called a *reproducing kernel*; taking the inner product of $f(t)$ with $K(t, \tau)$ 'reproduces' the value of f at τ . In Electrical Engineering literature sampling theorems are often expressed in terms of reproducing kernels.)

We compute the inner product of $f(t)$ and $K(t, \tau)$. You can write this out in terms of integrals or you can use simply the properties of (complex) inner products. I'll show you both approaches.

$$
(f(t), K(t, \tau)) = \left(f(t), \sum_{n=1}^{\infty} \varphi_n(t) \overline{\varphi_n(\tau)} \right)
$$

$$
= \sum_{n=1}^{\infty} (f(t), \varphi_n(t) \overline{\varphi_n(\tau)})
$$

$$
= \sum_{n=1}^{\infty} \varphi_n(\tau) (f(t), \varphi_n(t))
$$

(The inner product is 'with respect to t', and so the $\overline{\varphi_n(\tau)}$ are constants in each inner product. Being in the second slot, they come out with a conjugate, *i.e.* as $\varphi_n(\tau)$)

But this last expression is exactly how to write $f(\tau)$ in terms of the orthonormal basis,

$$
\sum_{n=1}^{\infty} (f, \varphi_n) \varphi_n(\tau) = f(\tau).
$$

If you had trouble keeping your t's and τ 's straight in what we just did, here's how the calculation looks with integrals.

$$
(f(t), K(t, \tau)) = \int_0^1 f(t) \overline{K(t, \tau)} dt
$$

\n
$$
= \int_0^1 f(t) \overline{\left(\sum_{k=1}^\infty \varphi_n(t) \overline{\varphi_n(\tau)}\right)} dt
$$

\n
$$
= \int_0^1 f(t) \left(\sum_{k=1}^\infty \overline{\varphi_n(t)} \varphi_n(\tau)\right) dt
$$

\n
$$
= \sum_{k=1}^\infty \left(\int_0^1 f(t) \overline{\varphi_n(t)} dt\right) \varphi_n(\tau)
$$

\n
$$
= \sum_{k=1}^\infty (f, \varphi_n) \varphi(\tau)
$$

\n
$$
= f(\tau)
$$

3(a) (10 points) Find the Fourier transform of the signal shown below.

The signal is made out of the unit step function $H(t)$, so for sure we'll need to use

$$
\mathcal{F}H(s) = \frac{1}{2}(\delta + \frac{1}{\pi i s}).
$$

The part of the signal on the right is just a shift of $H(t)$ to the right, and that's $H(t-1)$. To get the part on the left we first reverse to H^- , then shift to the left, making $H^-(t+1)$ (which you could also write as $H(-(t + 1)) = H(-t - 1)$, but I won't) and then flip it upside down, to $-H^-(t+1)$. The whole signal is then

$$
f(t) = H(t-1) - H^{-}(t+1)
$$

The Fourier transform of this is

$$
\mathcal{F}f(s) = e^{-2\pi is} \mathcal{F}H(s) - e^{2\pi is} (\mathcal{F}H^{-})(s)
$$

\n
$$
= e^{-2\pi is} \mathcal{F}H(s) - e^{2\pi is} (\mathcal{F}H)^{-(s)}
$$

\n
$$
= e^{-2\pi is} \mathcal{F}H(s) - e^{2\pi is} \mathcal{F}H(-s)
$$

\n
$$
= e^{-2\pi is} (\frac{1}{2}\delta(s) + \frac{1}{2\pi is}) - e^{2\pi is} (\frac{1}{2}\delta(-s) + \frac{1}{2\pi i(-s)})
$$

\n
$$
= \frac{1}{2}(e^{-2\pi is} - e^{2\pi is})\delta(s) + \frac{1}{2\pi is}(e^{-2\pi is} + e^{2\pi is})
$$

\n
$$
= -i(\sin 2\pi s)\delta(s) + \frac{1}{\pi is} \cos 2\pi s
$$

\n
$$
= \frac{1}{\pi is} \cos 2\pi s
$$

As a check, notice that the Fourier transform is purely imaginary and odd, which it should be.

3(b) (10 points) Recall the triangle function

$$
\Lambda(t) = \begin{cases} 1 - |t|, & |t| < 1 \\ 0, & \text{otherwise} \end{cases}
$$

and consider the signal

$$
f(t) = 1 + \Lambda(3t) * \Pi_{1/3}(t).
$$

Sketch the graph of $f(t)$, find the Fourier transform $\mathcal{F}f(t)$, and sketch its graph. Comment on what you see.

Taking the convolution $\Lambda(3t) * \Pi_{1/3}(t)$ produces the sum

$$
\Lambda(3t) * \Pi_{1/3}(t) = \sum_{k=-\infty}^{\infty} \Lambda(3(t - \frac{k}{3})) = \sum_{k=-\infty}^{\infty} \Lambda(3t - k)
$$

A plot of the shifted triangles from $k = -4$ to 4 looks like this:

If you draw your graph carefully enough (or actually do the algebra) you'll see that the overlaps are such that when you add the shifted triangles you get a plot that looks like:

And you would have concluded that $\Lambda(3t) * \Pi_{1/3}(t) = 1$, and that $f(t) = 2$, and, so, for that matter that $\mathcal{F}f(s)=2\delta$

However, if you didn't draw the graph carefully enough you had a second chance to come to the same conclusion by taking the Fourier transform:

$$
\mathcal{F}f = \delta + (\frac{1}{3}\text{sinc}^2(\frac{1}{3}s))(3\text{II}_3(s))
$$

$$
= \delta + \sum_{k=-\infty}^{\infty} \text{sinc}^2(\frac{k}{3})\delta(s-3k)
$$

Midterm solutions–8

Now the thing you have to realize is that $\text{sinc}^2(k/3)$ is 1 at $k = 0$ and is zero at the points where $k/3$ is an integer, *i.e.* where k is a multiple of 3. The zeros of sinc² line up with the impulses $\delta(s-3k)$, $k \neq 0$ and hence kill them off. What remains is

$$
\mathcal{F}f = \delta + \delta = 2\delta.
$$

I won't plot this. But having seen it, if you didn't get the graph of $f(t)$ right you should now see that it's just $2\mathcal{F}^{-1}\delta = 2$.

3(c) (10 points) As one of our applications of Fourier transforms and convolutions to differential equations (Lecture 8) we showed that the ordinary differential equation

$$
u'' - u = f
$$

has solution

$$
u(t) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|t-\tau|} f(\tau) d\tau.
$$

We know from elementary courses that the general solution of the equation should include a solution of the homogeneous equation $u'' - u = 0$, and so be of the form

$$
u(t) = c_1 e^t + c_2 e^{-t} + \frac{1}{2} \int_{-\infty}^{\infty} e^{-|t-\tau|} f(\tau) d\tau.
$$

A student sent an email pointing this out and wondering why methods based on the Fourier transform will not produce such a solution. Why do you think that is? (You need not look back at Lecture 8.)

The reason is that neither e^t nor e^{-t} have Fourier transforms; e^t grows too fast at $+\infty$ and e^{-t} grows too fast at $-\infty$. No argument based on using the Fourier transform can handle these functions as solutions to the differential equation.

4. (25 points) Let $f(t)$ be a band-limited signal whose Fourier transform $\mathcal{F}f(s)$ is shown below. The spectrum is nonzero only for $2 < |s| < 3$.

According to the sampling theorem, we can reconstruct this signal by a sinc interpolation with sample points taken at a rate of 6 Hz. Since the spectrum is concentrated in two islands, effectively with what one might say is a bandwidth of 1 Hz each, it would seem we should be able to do better. Arguing as in the derivation of the sampling theorem, find an interpolation formula that uses a sampling rate of 2 Hz. Can you do better still?

If we convolve $\mathcal{F}f$ with III_2 each 'spectral island' is shifted enough so that there is no overlap and the copies of the islands are still distinct when added up. The (partial) picture (squeezed slightly) is:

We still have to recover the original Fourier transform (and then take the inverse). To do that we multiply by the sum of two Π 's of width 1, one centered at 2.5 and one centered at -2.5 . The picture is:

Midterm solutions–11

If we now take the inverse Fourier transform we get

$$
f(t) = (2 \cos 5\pi t \operatorname{sinc} t) * (\frac{1}{2} \mathbb{II}_{1/2}(t) f(t))
$$

$$
= (\cos 5\pi t \operatorname{sinc} t) * \left(\sum_{k=-\infty}^{\infty} f(k/2) \delta(t - k/2) \right)
$$

$$
= \sum_{k=-\infty}^{\infty} f(k/2) (\cos 5\pi t \operatorname{sinc} t) * \delta(t - k/2)
$$

$$
= \sum_{k=-\infty}^{\infty} f(k/2) \cos(5\pi (t - k/2)) \operatorname{sinc} (t - k/2)
$$

We also see that if we tried to periodize $\mathcal{F}f$ with \mathbf{III}_p for any $p < 2$ then the islands would overlap. We could not recover ${\mathcal F} f$ by cutting off, nor could we then recover $f.$