
EE 261 The Fourier Transform and its Applications

Fall 2004

Midterm Solutions
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1. (10 points) Two signals are plotted below. Without computing the Fourier transforms, de-
termine if one can be the Fourier transform of the other. Explain your reasoning, and give at
least two reasons for your conclusion.

Solution Call the top function f(t) and the bottom function g(t). Notice that f(t) is odd, so
it’s Fourier transform is odd. The function g(t) is not odd, so we can’t have Ff = g. Another
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reason why we can’t have Ff = g is that g is not continuous, whereas the Fourier transform
of an integrable function (and f(t) is integrable) must be continuous. In the other direction,
since g(t) has no even-odd symmetries its Fourier transform will be complex, so it can’t be
f(t).
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2. (10 points each)

(a) If f(t) ∗ g(t) = h(t) what is f(t − 1) ∗ g(t + 1)?

Solution Take the Fourier transform. Convolution becomes multiplication and the result
is:That gives

e−2πisFf(s) e2πisFg(s) = Ff(s)Fg(s) = F(f ∗ g)(s) = Fh(s)

Thus we get back what we started with:

f(t − 1) ∗ g(t + 1) = h(t).

The next three parts are related.

(b) Show that the following relation holds for any two functions u and v:
∫ ∞

−∞
u(t)v(−t)dt =

∫ ∞

−∞
Fu(s)Fv(s)ds

Solution Let w(t) = (u ∗ v)(t) then

w(t) =
∫ ∞

−∞
u(τ)v(t− τ)dτ

We also know that w = F−1(Fu · Fv) by the convolution theorem. This means that

w(t) =
∫ ∞

−∞
Fu(s)Fv(s)e2πistds

Hence ∫ ∞

−∞
u(τ)v(t − τ)dτ =

∫ ∞

−∞
û(s)v̂(s)e2πistds

Evaluating this equality at t = 0, we obtain the desired relation
∫ ∞

−∞
u(τ)v(−τ)dτ =

∫ ∞

−∞
Fu(s)Fv(s)ds

(Replace the variable τ with the variable t.)

(c) Using the result derived in the previous part (even if you couldn’t derive it), show that
the following holds for any two functions f and g:

∫ ∞

−∞
f(t)Fg(t)dt =

∫ ∞

−∞
Ff(s)g(s)ds

Solution Notice that v− = FFv. Let g = Fv and f = u then Fg = v− and Ff = û.
Therefore the relation derived in the previous part becomes

∫ ∞

−∞
f(t)ĝ(t)dt =

∫ ∞

−∞
Ff(s)g(s)ds
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(d) Calculate the following integral:
∫ ∞

−∞

eπit sinc(t)
1 + 4π2t2

dt

Solution Take f(t) = ejπt sinc(t) and Fg(t) = 1
1+4π2t2

. Then Ff(s) = Π(s − 1
2) and

g(s) = 1
2e−|s|.

Plugging into the expression derived in the previous part, we obtain the following result
∫ ∞

−∞

ejπt sinc(t)
1 + 4π2t2

dt =
1
2

∫ ∞

−∞
Π(s − 1

2
)e−|s|ds

=
1
2

∫ 1

0

e−sds

= −1
2
[e−s]10

= −1
2
(e−1 − 1)

=
1
2
(1− 1

e
)
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3. (15 points) (a) Find the Fourier coefficients of the signals f(t) and g(t) shown below; assume
period 1 for each. (Hint: it should be sufficient to do the calculation for just one of the
signals.)

(b) Find the Fourier series for the signal h(t) shown below. Again assume period 1.

Solution Formulas for the two functions are:

f(t) =

{
2t + 1, −1

2 ≤ t ≤ 0,

0, else.

g(t) =

{
−2t + 1, 0 ≤ t ≤ 1

2 ,

0, else.
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From looking at the graphs, or from the formulas, we can see that g(t) = f(−t). From
this, and from

f̂ (n) =
∫ 1

2

− 1
2

f(t)e−i2πntdt

we find that
ĝ(n) = f̂(−n).

Thus if we calculate f̂(n) we can get ĝ(n) with no extra work. We proceed:

f̂ (n) =
∫ 0

− 1
2

(2t + 1)e−i2πntdt =
∫ 0

− 1
2

2t e−i2πntdt +
∫ 0

− 1
2

e−i2πntdt =

Integrating by parts, leads us to:

= 2

{[
t

(−i2πn)
e−i2πnt

]0

− 1
2

−
∫ 0

− 1
2

1
(−i2πn)

e−i2πntdt

}
+

[
1

(−i2πn)
e−i2πnt

]0

− 1
2

To simplify the computations, let’s study each part independently so we do not get
confused with all the different signs.

[
t

(−i2πn)
e−i2πnt

]0

− 1
2

= −0 +
−1/2
i2πn

ei2πn1/2 =
1

−i4πn
eiπn

(Note that we have written eiπn but if in your solution you have specified eiπn = (−1)n

the answer is also valid.)
For the second term:

∫ 0

− 1
2

1
(−i2πn)

e−i2πntdt =
[

1
(−i2πn)2

e−i2πnt

]0

− 1
2

=
−1

(2πn)2
+

eiπn

(2πn)2

Combining the terms leads to

2[
1

−i4πn
eiπn − [

−1
(2πn)2

+
eiπn

(2πn)2
]]− 1

i2πn
+

eiπn

i2πn
=

1
2π2n2

[1− eiπn] − 1
i2πn

,

that is,

f̂(n) =
1

2π2n2
[1 − eiπn] − 1

i2πn

Then,

ĝ(n) = f̂(−n) =
1

2π2n2
[1− e−iπn ] +

1
i2πn

(b) Once we have solved the first part, the second one is not that complicated, since it is
clear that ĥ(n) = f̂(n) + ĝ(n). Thus,

ĥ(n) =
1

2π2n2
[2 − (eiπn + eiπn)] =

1
π2n2

[1− cos(πn)] =
1

π2n2
[1 − cos(2π(

n

2
))]

ĥ(n) =
1

π2n2
2 sin2(

nπ

2
)
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The Fourier Series for h is then

h(t) =
∞∑

n=−∞

1
π2n2

2 sin2(
nπ

2
)ei2πnt

which can be written

h(t) =
∞∑

n=−∞

1
2
sinc2(

n

2
)ei2πnt

For those who separated terms when n is odd, even, or 0, the results are: ĥ(n) = 2
π2n2

if n is odd, ĥ(n) = 0 for n even and ĥ(0) = 1
2
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4. (15 points) Sketch the Fourier transform of the periodic cosine pulse shown below. Explain
your work.

Solution The cosine has frequency 2, so it’s given by cos 4πt. To cut it off at ±1 (width 2)
we multiply by Π2(t), producing the single cosine pulse Π2(t) cos4πt. Finally, we periodize
by convolving with III4 (spacing 4) to produce the repeating cosine pulse given by

f(t) = III4(t) ∗ (Π2(t) cos 4πt).

Using the convolution theorem, twice, the Fourier transform is then

Ff = F III4 · (FΠ2 ∗ F cos 4πt).

Look at the convolution first:

FΠ2 ∗ F cos 4πt = 2 sinc 2s ∗ 1
2
(δ(s − 2) + δ(s + 2))

= sinc 2s ∗ δ(s − 2) + sinc 2s ∗ δ(s + 2)
= sinc(2(s− 2)) + sinc(2(s + 2))
= sinc(2s − 4) + sinc(2s + 4)

Next, with

F III4 =
1
4
III1/4

we have

Ff(s) =
1
4
III1/4(s)(sinc(2s − 4) + sinc(2s + 4))

=
1
4

∞∑

k=−∞
(sinc(

k

2
− 4) + sinc(

k

2
+ 4))δ(s− k

4
)

There are many values of k for which both sincs are zero. If k is even and 6= ±8 then

k

2
− 4 and

k

2
+ 4

are nonzero integers and

sinc(
k

2
− 4) = 0 and sinc(

k

2
+ 4) = 0
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Here’s a plot of the Fourier transform. Your answer should have this basic shape, but need
not be so carefully rendered, of course.
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