7 Continuous-Time Fourier Series

Recommended
Problems

P71

P7.2

(a) Suppose that the signal ¢**' is applied as the excitation to a linear, time-invar-
iant system that has an impulse response k(t). By using the convolution inte-
gral, show that the resulting output is H(w)e™*, where H(w) = f"fm h(De ™ dr.

(b) Assume that the system is characterized by a first-order differential equation

dy(t) _
—-—dt + ay(t) = x2(t).

If 2(t) = e’ for all ¢, then y(t) = H(w)e’* for all t. By substituting into the
differential equation, determine H(w).

P7.3

(a) Suppose that 2", where 2 is a complex number, is the input to an LTI system that
has an impulse response k[n]. Show that the resulting output is given by H(2)z",
where

H(z)= ) hinlz™"
(b) If the system is characterized by a first-order difference equation,
yln] + ayln — 1] = x[n],

determine H(2).

P7.4

Find the Fourier series coefficients for each of the following signals:

6
() z(t) = 1 + cos (27t)

(a) x(t) = sin (10,.-1; + f)

(©) x(t) = [1 + cos (2xt)] [sin (107rt + %)]

Hint: You may want to first multiply the terms and then use appropriate trigo-
nometric identities.

By evaluating the Fourier series analysis equation, determine the Fourier series for
the following signals.

P7-1
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(a)

_l +

Figure P7.4-1
(b)

Figure P7.4-2

P7.5

Without explicitly evaluating the Fourier series coefficients, determine which of the
periodic waveforms in Figures P7.5-1 to P7.5-3 have Fourier series coefficients with
the following properties:

€Y) Has only odd harmonics
(ii) Has only purely real coefficients

(iii) Has only purely imaginary coefficients

(a)

Ccos ¢t

N

Figure P7.5-1
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Figure P7.5-3

Optional
Problems

P7.6

Suppose x(t) is periodic with period T and is specified in the interval 0 <t < 7/4
as shown in Figure P7.6.

x(t)

T

8
Figure P7.6

IR

Sketch x(¢) in the interval 0 <t < T if
(a) the Fourier series has only odd harmonics and x(¢) is an even function;
(b) the Fourier series has only odd harmonics and x(¢) is an odd function.

P7.7

Let 2(t) be a periodic signal, with fundamental period T, and Fourier series coeffi-
cients a,. Consider the following signals. The Fourier series coefficients for each can

P73
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be expressed in terms of the q, as in Table 4.2 (page 224) of the text. Show that the
expression in Table 4.2 is correct for each signal.

@) x(t —ty)

(b) x(—1t)

(c) 2*(t)

(d) x(at), « > 0 (Determine the period of the signal.)

P7.8

As we have seen in this lecture, the concept of an eigenfunction is an extremely
important tool in the study of LTI systems. The same can also be said of linear but
time-varying systems. Consider such a system with input x(¢) and output y(¢). We
say that a signal ¢(¢) is an eigenfunction of the system if

o(t) = (1)

That is, if 2(t) = ¢(t), then y(t) = Ap(t), where the complex constant A is called the
etgenvalue associated with ¢(t).

(a) Suppose we can represent the input x(t) to the system as a linear combination
of eigenfunctions ¢,(t), each of which has a corresponding eigenvalue A,.

+ oo

(@) = Y. cupult)

k=—c0

Express the output y(t) of the system in terms of {c,}, {¢:(£)}, and {\,}.

(b) Show that the functions ¢,(t) = t* are eigenfunctions of the system character-
ized by the differential equation

d?x(t) dx(t)
)
y@ =t Tt dt

For each ¢,(t), determine the corresponding eigenvalue \,.

P7.9

In the text and in Problem P4.10 in this manual, we defined the periodic convolution
of two periodic signals Z,(t) and Z,(t) that have the same period T,. Specifically, the
periodic convolution of these signals is defined as

Yit) = 2,(t) ® Z(t) = L X, (7)x(t — 1) d7 (P7.9-1)

As shown in Problem P4.10, any interval of length T, can be used in the integral in
eq. (P7.9-1), and §(t) is also periodic with period T,.

(@) If 2,(t), ZLt), and §(t) have Fourier series representations

+o +o0 +00
Z,(t) = Z Qe T (1) = Z b gy = Z Coe KTt
k=—o0 k=— k=—~0o0

show that ¢, = Tya,b,.

(b) Consider the periodic signal Z(t) depicted in Figure P7.9-1. This signal is the
result of the periodic convolution of another periodic signal, 2(t), with itself.
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Find 2(t) and then use part (a) to determine the Fourier series representation
for Z(t).

x(t)
2
/L\ /.\ / .
-7 -5 -3 -2 0 2 3 5 7 8
Figure P7.9-1

(¢) Suppose now that x,(t) and x,(t) are the finite-duration signals illustrated in
Figure P7.9-2(a) and (b). Consider forming the periodic signals Z,(¢) and Z,(¢),
which consist of periodically repeated versions of x,(t) and x,(t) as illustrated
for &,(t) in Figure P7.9-2(c). Let y(¢) be the usual, aperiodic convolution of x,(t)
and x,(1),

y(t) = x,(t) * 25(2),
and let §(t) be the periodic convolution of Z,(t) and Z.(t),

9(t) = 2:(t) B Zy(t)
Show that if T is large enough, we can recover y(t) completely from one period
of §(t), that is,

g, 1t =Ty/2,

y(t) =
0, [t] > To/2
Xy (t)
1
t
-7 T
(a)
Xz(t)
el et
t
-7 T
(b}
X (1)
1
| | l_ t
-T, -T T T,
(c)
Figure P7.9-2
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P7.10

The purpose of this problem is to show that the representation of an arbitrary peri-
odic signal by a Fourier series, or more generally by a linear combination of any set
of orthogonal functions, is computationally efficient and in fact is very useful for
obtaining good approximations of signals. (See Problem 4.7 [page 254] of the text
for the definitions of orthogonal and orthonormal functions.)

Specifically, let {¢(t)}, 7 = 0, £1, £2, ..., be a set of orthonormal functions on
the interval a =<t < b, and let x(t) be a given signal. Consider the following approx-
imation of x(t) over the intervala <t < b:

+N

EE) = Y apd), (P7.10-1)

i=—N

where the a; are constants (in general, complex). To measure the deviation between
x(t) and the series approximation £,(t), we consider the error e,(t) defined as

ex(t) = x(t) — Z\(1) (P7.10-2)

A reasonable and widely used criterion for measuring the quality of the approxi-
mation is the energy in the error signal over the interval of interest, that is, the
integral of the squared-error magnitude over the intervala <t < b:

b
E = f lexd(t)|? dt (P7.10-3)
(a) Show that E is minimized by choosing

b
a; = f x()pi(t) dt (P7.10-4)

a

Hint: Use eqs. (P7.10-1) to (P7.10-3) to express E in terms of a;, ¢,(t), and x(t).
Then express a; in rectangular coordinates as a; = b; + jc;,, and show that the

equations
oF oFE
=0 d — =0, ,=0,x1, £2,..., £N,
ab, e e :

are satisfied by the a; as given in eq. (P7.10-4).

(b) Determine how the result of part (a) changes if the {¢,(t)} are orthogonal but not
orthonormal, with

b
ac= | lswra

a

() Let ¢.(t) = ¢ and choose any interval of length T, = 27/w,. Show that the a;
that minimize E are as given in eq. (4.45) of the text (page 180).
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Solutions to
Recommended Problems

S7.1
(a) For the LTI system indicated in Figure S7.1, the output y(t) is expressed as
y(t) = j h(D)x(t — 7) dr,
where k(1) is the impulse response and x(t) is the input.
LTI
x(t) ——| Rh(t) — y(1)
Figure S7.1
For x(t) = &',
y(t) = f h(m)e’" " dr
= gl J h(v)e " dr
= e¢"“'H(w)
(b) We are given that the first-order differential equation is of the form
dy(t)
—_— - t
TR ay(t) = x(t)
From part (a), when x(t) = ¢, then y(t) = ¢’’H(w). Also, by differentiating
y(t), we have
dy(t .
Z(z )~ joerH(w)
Substituting, we get
Jwel' H(w) + ae’ ' H(w) = ™
Hence,
JoH(w) + aH(w) = 1, or
1
H(w) =
(@) a + jw
$7.2

(a) The output of a discrete-time LTI system is given by the discrete-time convo-
lution sum

ylnl = Y hlklx[n — k)

S7-1
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S§7-2

S7.3

If x[n] = 2", then

> hlkle"*
=2"> hlkl*
= 2"H(2)

y[n]

(b) We are given that the first-order difference equation is of the form

y[n] + ayln — 1] = x[n]
From part (a), if x[n] = 2", then y[n] = 2"H(z). Hence,
yln — 1] = 2" 'H(2).
By substitution,
2"H(2) + az" 'H(2) = 2",
which implies
(1 +az™"HH(2) = 1,

H(z) = 1

1+ az7!

(b) x(t)

(@) z(t) = sin <107rt + %)

ej,r/ﬁ ej27rl5 _ e‘jﬂ/ﬁ
% %
We choose w,, the fundamental frequency, to be 2.

x(t) = ) ae™,
k

e—ijtS

where

eiT/6 — e /6

A5 = 27 ) A_5 = 27

Otherwise a, = 0.

1 + cos(2nt)
ej21rt e—jZﬂrL

1

+ 2 + 2

For Wy = 21", a_; =,

= },and a, = 1. All other a,’s = 0.

(c) x(t) = [1 + cos(2wt)] [sin(lOrt + %)}

= sin(lOart + g) + cos(27rt)sin(101rt + %)

ejar/G . e—j1/6 ) . ) ej1/6 )
= 2 e]2nt5 _ 2 e—]21rt5 + (%e] Tt + ée—ﬂﬂ) 2 e]21rt5 -
J ] ]
7 /6 —jn/6 jr/6 —jn/6
= € gi2mts _ 2 g ~I2rts + € e27e _ € g 72t
% 2 45 45
Jjr/6 —jn/6
+ & gizma _ & e

45 45

—jn/6

2

e —j2rl5)
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Therefore,

x(t) = Z akejkwol,
k

where w, = 2.

ei*/6 — g i/
a, = 4j ] a_, = 4j )
gi™/® —g i/
as = 2]- ’ a_5 = 2j ]
ejw/G _e—jr/ﬁ
Ag = 4f » A_g = 4
All other a,’s = 0.
S7.4
(@)
x(t)
14
} ! 2 .y t
) —1 0 3 4 5
.._1 4
Figure S7.4-1

Note that the period is T, = 6. Fourier coefficients are given by

a, = 1 J x(t)e ~*ot di
To To

We take w, = 27/T, = w/3. Choosing the period of integration as —3 to 3, we

have
1 ! ) 1 2
a, = E j e D gy 6 J g KD gy
-2 1
= L S S - I 1 s ’
6 —jk(m/3) —2 6 —jk(x/3) 1
= jz " [e+j(w/3)k_ e+j(21r/3)k — e—j(21/3)k + e‘j(f/3)k]
- Yy
_ cos(2m/3)k cos(mw/3)k
jrk Jrk
Therefore,
B(®) = Y wmet,  w =g
k
and

_ cos(2w/3)k — cos(w/3)k
B jrk

k
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Note that a, = 0, as can be determined either by applying L’Hbpital’s rule or by
noting that

a, = (1/Ty) jT x(t)dt.

(b)
x(t)

1A I T

—1 1 3

t

-2 0 2 4

Ll

Figure S7.4-2

The period is T, = 2, with w, = 27/2 = 7. The Fourier coefficients are

1 j .
= — t —Jkwot dt
a, To Jn x(t)e

Choosing the period of integration as —1 to %, we have

3/2
a, == J x(t)e *ot dt

—-1/2
3/2

= J [6(t) — 26(t — 1)]e 7*o* dt
—-1/2

) 1 )
— pdkwy = —_ __ —jx\k
e 5 (€7
Therefore,
a = -3 a=3— (-1

It is instructive to plot a;, which we have done in Figure S7.4-3.

o

Figure S7.4-3
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S7.5

(a) (i) and (ii)
From Problem 4.12 of the text (page 260), we have

x (t - -g) = —x(t),

which means odd harmonics. Since x(t) is real and even, the waveform has real
coefficients.
(b) (i) and (iii)
T
etr=2(-2).
which means odd harmonics. Since x(¢) is real and odd, the waveform has imag-
inary coefficients.
(© ()
T
— t) = t — —

which means odd harmonics. Also, x(?) is neither even nor odd.

Solutions to
Optional Problems

S7.6

x(t) is specified in the interval 0 < t < T/4, as shown in Figure S7.6-1.

x(1)

1

4

T
r T
8 4

Figure S7.6-1

(a) Since x(?) is even, we can extend Figure S7.6-1 as indicated in Figure S7.6-2.

x(r)
1
— - t
-Tr _T T T
4 8 8 4
Figure S7.6-2
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Since x(t) has only odd harmonics, it must have the property that x(t — T/2)
= —x(t), as shown in Figure S7.6-3.

T~ _ X([) in
r—2)=-x(t
x(t =)= =0 / Figure $7.6-2 shifted
I I
! ]
I I
} = : S : t
T T T 3
% 4 2 il
—-x(¢)in
Figure §7.6-2
Figure S$7.6-3
So we have x(t) as in Figure S7.6-4.
x(t)
1 —_—
4 + t } t
_T 0 T T 3 T
4 4 2 T
__1 4
Figure S7.6-4

(b) In the interval from ¢ = O tot = T/4, x(t) is given as in Figure S7.6-5.

x(2)

T
4

ool

Figure S7.6-5
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Since x(t) is odd, for —T/4 < t < T/4 it must be as indicated in Figure S7.6-6.

x(t)

1

ool
-

Sl
oo~y
PN

Figure S7.6-6

Since x(t) has odd harmonics, [t — (T/2)] = —x(t). Consequently x(t) is as

shown in Figure S7.6-7.

x()

1

T
1 2 4 t
T T
8 4
—1
Figure S7.6-7
S§7.7
S — —Jkawot
ay To Jn x(t)e dt
. 1 kot
@) a4, =— x(t — ty)e 7ot dit
To To
Substituting = t — t,, we obtain
a, = 1 x(r)e’* " dr - e Freoto
To To
= ake*jkwolo
A 1 —jkwot
M) & == x(—t)e 7ot di
T, To
Substituting 7 = —t, we have

1 )
a, = — j z(r)e™ v dr = a_,
To Ty



Signals and Systems
S7-8

©) a,=—-—| x*(t)e ot dt
T, To
A 1 jkwot
ay = — x(t)e "t dt = a_,,
TO To
dk = afk
@) & = % j w(at)e /T gy
0 To/a

Let 7 = at. Then
A 1 —jk(2x/To)
a, = — x(r)e T dr = q,
T, Jr

Therefore,

S7.8
(a) Since ¢,(t) are eigenfunctions and the system is linear, the output is
y@t) = Z MCidi(L).
k=—o
d?x(t) dx(t)
— #2
®) Yy ==+t
d(l) = tky
dd’k(t) — k—1
TR ke,
2
LoD = kck — e
So if ¢.(t) = x(t), then
y(t) = t’h(k — 1" + the*!
= k(k — 1)t* + kt*
= K’t* = E’pi(t)
The eigenfunction ¢,(t) has eigenvalue A\, = k2
S7.9

(@) 9(t) = 2,(t) ® ZL(t)
= j (1)t — 1) dr
To
The Fourier coefficients for §(t) are given by
1 ' )
C, = — f j Z(E(t — 1) dre /Tt g
To To JTo

jl(.,-)e—jk(zr/To)r dr J i‘z(t _ T)e —jk2x/To)(t—7) dt

TO To To

= Toayb;
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(b) Since 2(t) * 2(t) = x(t), as shown in Figure S7.9-1, then 2(t) is shown in Figure

57.9-2.
x(t)
2
z(r) z(1)
1 1
* =
t t t
-1 1 -1 1 -2 2
Figure S7.9-1
2(1)
1
] 1 t
-T, —1 1 T,
Figure S7.9-2

In Figure S7.9-2, T, = 5. Hence,

2

4 2wk
) - T 2 - — 1 —_—
&(t) 0% = ¢ [smc( 5 )]

(¢) Without explicitly carrying out the convolutions, we can argue that the aperi-
odic convolution of x,(t) and x,(t) will be symmetric about the origin and is
nonzero fromt = —2Ttot = 2T. Now, if #,(t) and &,(t) are periodic with period
T,, then the periodic convolution, #(t), will be periodic with period T,. If T is
large enough, then §(t) is the periodic version of y(t) with period T,. Hence, to
recover y(t) from §(t) we should extract only one period of %(¢) from ¢ =
—T,/2tot = To/2 and set y(t) = O for |t| > Ty/2, where T,/2 = 2T, or T, =
4T.

S7.10

(a) The approximation is
N

Et) = D a(t)

k=—-N
with the corresponding error signal
ex(t) = x(t) — T(t)
N
= 2(t) — ) aul(®)

k=—N



Signals and Systems
S7-10

Hence,

lex(8)|? = [x(t) -> akm(t)] [x*(t) — > alpi(t)
k k
= |2 = D atx(O)ei(t) — Y ax*(@¢u(t) + Y > aal()di(t)
k k k l

b

If we integrate, J |ex(t)|? dt, and use the property that

a

1, k=1,
0, otherwise,

J.a ¢u(t)pi(t) dt =

we get

a

b b
E= j |x(t)|2dt—Za;:f 2(t)pH(t) dit

b
-Ya [ @wemar+ 3 e
k a k

Since a; = b, + jc,,

aEv b b
-a—b— = —f 2(t)pi(t) dt — f x*()e(t) dt + 2b,
and
aE b b
i | swwwan—j | arwewa + 2,
Setting
oF oF
a_m =0 and a_c, = 0,
we can multiply the second equation by j and add the two equations to get
0F OF
FTREA
By substitution, we get
b
b+ o= | @@t ar

= a,

(b) If {¢,(t)} are orthogonal but not orthonormal, then the only thing that changes
from the result of part (a) is

|5 aateawiw dt = 3 ja,a,
i 1 k

It is easy to see that we will now get

1 b
Ly L x(t)pi(t) dt
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(¢) Since

To+a
J ejnwote—jnwot dt = TO

a

for all values of a, using parts (a) and (b) we can write

1 To+a )
a; = — J x(t)e "0 dt

0 a

=—j x(t)e ™t dit
To

S7-11
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Fourier Transform

Recommended
Problems

P8.1

P8.2

Consider the signal x(¢), which consists of a single rectangular pulse of unit height,
is symmetric about the origin, and has a total width T',.

(a) Sketch x(2).

(b) Sketch Z(t), which is a periodic repetition of x(¢) with period T, = 3T,/2.

(¢) Compute X(w), the Fourier transform of x(t). Sketch |X(w)| for |w| < 6#/T),.
(d) Compute a,, the Fourier series coefficients of #(t). Sketch a, for k = 0, £1,

+2, £3.
(e) Using your answers to (c) and (d), verify that, for this example,

1
@, = 7 X(@)

w=(2xk)/Ty

(f) Write a statement that indicates how the Fourier series for a periodic function
can be obtained if the Fourier transform of one period of this periodic function
is given.

P8.3

Find the Fourier transform of each of the following signals and sketch the magni-
tude and phase as a function of frequency, including both positive and negative
frequencies.

(a) ot —5)

(b) e *u(t), a real, positive

(C) e(—l+j2)tu(t)

In this problem we explore the definition of the Fourier transform of a periodic
signal.

(a) Show that if 25(t) = ax,(t) + bxy(t), then X3(w) = aX(w) + bXy(w).
(b) Verify that

. 1 [~ ,
e/t = o J 270(w — wy)e’* dw
s —

From this observation, argue that the Fourier transform of e’ is 2wd(w — wy).
(c) Recall the synthesis equation for the Fourier series:

@
at) = Z akejk(zr/T)L

k=—o

P8-1
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P8-2

P8.4

By taking the Fourier transform of both sides and using the results to parts (a)
and (b), show that

X)) = > 2ra (w — g;—k)

k=—c0

(d) Sketch X(w) for your answer to Problem P8.1(d) for |w| < 4= /T,.

P8.5

(a) Consider the often-used alternative definition of the Fourier transform, which
we will call X,(f). The forward transform is written as

feel

x(t)e * dt,

X () = J-

where fis the frequency variable in hertz. Derive the inverse transform formula
for this definition. Sketch X, (f) for the signal discussed in Problem P8.1.

(b) A second, alternative definition is

X, (v) = x(t)e 7" dt

v

Find the inverse transform relation.

Consider the periodic signal Z(t) in Figure P8.5-1, which is composed solely of
impulses.

-6 -5 —4 -3 -2 -1 0 1 2 3 4 5 6

IR I S -

Figure P8.5-1

(a) What is the fundamental period T,?
(b) Find the Fourier series of Z(t).
(¢) Find the Fourier transform of the signals in Figures P8.5-2 and P8.5-3.

M

x,(2)

1

i ,

-1 0 1

Figure P8.5-2




Continuous-Time Fourier Transform / Problems
P8-3

(ii)
X, (1)

N

t .t

0 1 2 3 4 5

Figure P8.5-3

(d) &(t) can be expressed as either x,(¢) periodically repeated or x,(t) periodically
repeated, i.e.,

0

)= > x(t —kT), or (P8.5-1)
() = Y @it — kTy) (P8.5-2)

k=—c

Determine T, and T, and demonstrate graphically that egs. (P8.5-1) and
(P8.5-2) are valid.

(e) Verify that the Fourier series of &(t) is composed of scaled samples of either
X]((.O) or XQ(O))

P8.6

Find the signal corresponding to the following Fourier transforms.

(a) Xa(w) = 7 +jw
(b)
X, (w)
A 2T A
w
- 7
Figure P8.6-1
(©) X(w) = 9T o

See Example 4.8 in the text (page 191).

(@) X, (w) = X, (w)X,(w), where X,(w) and X,(w) are given in parts (a) and (b), respec-
tively. Try to simplify as much as possible.
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P8-4

(e)
1X, ()|

5 X, (w)

Figure P8.6-2

Optional
Problems

P8.7

P8.8

In earlier lectures, the response of an LTI system to an input x(¢) was shown to be
y(t) = x(t) * h(t), where h(?) is the system impulse response.

(a) Using the fact that

fee]

y(@) = x(t) > h(t) = j _Z(DR(t — 1) dr,

show that

Y(w) = f : f : X(DHh(t — T)e 7 dr dt

(b) By appropriate change of variables, show that
Y(w) = X(w)H(w),

where X(w) is the Fourier transform of x(t), and H(w) is the Fourier transform
of h(t).

Consider the impulse train

p(t) = ) &t —kT)

k=—

shown in Figure P8.8-1.
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p(t)
I T | T I
t
—2T -T 0 T 2T
Figure P8.8-1

(a) Find the Fourier series of p(t).
(b) Find the Fourier transform of p(t).
(¢) Consider the signal x(t) shown in Figure P8.8-2, where T, < T.

x(t)
} 4 t
-T _n I T
2 2
Figure P8.8-2

how that the periodic signal Z(t), formed by periodically repeating x(t),
atisfies

Z(t) = x(t) *p(t)

(d) Using the result to Problem P8.7 and parts (b) and (c) of this problem, find the
Fourier transform of Z(t) in terms of the Fourier transform of x(t).


Adham
Sticky Note
use sifting property in convolution with delta 


8 Continuous-Time
Fourier Transform

Solutions to
Recommended Problems

S8.1

(a)
x(t)

_n Ty

2

Figure S8.1-1

Note that the total width is T',.
(b)

x(t)

) ) L
To _Ty T, To Ty 3T -

1 -1
2 2 2 2 2 2

Figure S8.1-2

(¢) Using the definition of the Fourier transform, we have

© . Ty/2 ) T

X(w) = j x(t)e 7t dt = J. le 7“*dt sincex(t) =0 for |t|> E‘

—o —Ty/2
. T

Ty/2 -1 2 sin ?l

= __(e —joT1/2 __ eijl/Z) =
~Ty/2 jw [}

—1

= —2¢ —jwt
Jw

See Figure S8.1-3.

S8-1
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S8-2

. wly
sin ——

[X(w)l =2
T

w
_bn —A4n —_2n 27 An b
T T, Ty Ty Ty Ty
Figure S8.1-3
(d) Using the analysis formula, we have
a == j Z(t)e ! dt,
To To
where we integrate over any period.
To/2 1 T1/2
a, = — a"c(t)e ~Jjk(2x/To)t dt = — f e ~Jk(2x/To)e dt
o J~Tos2 To J-1y2 ’
a, = 1 1 (e ~F*Ti/To _ gikeTu/Toy — sin kw(T,/T,) - sin 7(2k/3)
To| e 2m 7k wk
J T,
sin 7 2?1(
la, | =
K nk
2
3
sin 2_7.' //’_"-\\\
3 o/ N
m
4 \
. / \ _—
— s . A —
/” \\-:', T\\‘I ‘v/ r i*” S~o k
-3 -2 -1 0 1 2 3
Figure S8.1-4

Note that a, = 0 whenever (27k)/3 = 7=m for m a nonzero integer.
(e) Substituting (27k)/T, for w, we obtain

_ 1 2sin(akT\/Ty) _ sin xk(T\/T,) _
27k/T, B wk =

(f) From the result of part (e), we sample the Fourier transform of x(t), X(w), at
w = 2nk/T, and then scale by 1/T, to get a,.

1
T X(w)

w=(2rk)/Ty TO



Continuous-Time Fourier Transform / Solutions
S8-3

S8.2

(@) X(w) = J x(t)e 7t dt = J. 8(t — b)e 7' dt = e 7** = cos bw — j sin bw,

by the sifting property of the unit impulse.
| X(0)] = |e”] =1 for all w,

o Im{X(w)}] . [—sinBw)
4X(w) = tan™! [_—Re{X(w)} = tan ‘(———COS Ew ) = —bBw

1X(w)| *X(w)

Figure S8.2-1

) X(w) J e " “u(t)e et dt = f e e It dt

— 0

o
—(a+iw)t

e

= joo e—(a+jw)t dt = -
0 a+ jw

0

Since Re{a) > 0, e ' goes to zero as t goes to infinity. Therefore,

-1

X0 =5 P e
1 1 \1" 1
1 X(@)| = [X(@X* (@] = [a + jo (a —m)] @+ o
X x*
Re{X(w)) = (w)J; W S
X(w) — X* -
Im{x(w) = X 2 - @ +ww2’
R Im{X(w)}} - —tan'?
<4 X(w) = tan [ Re(X(w)) = —tan p

The magnitude and angle of X(w) are shown in Figure S8.2-2.
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S8-4

X X(w)
+.72£
I R
i 4 a
| — w
—a
-7
4 — — —
“%ﬂ-
Figure S8.2-2

(c) X(w) = J e 1Dy (1)e ~iet gt = J o (~ 14Dt —dut gy
—oo .
= _.—1.__——-— [—1+5(2—w)]t ®
—1+jC—-w 0

Since Re{—1 + j(2 — w)} < 0, lim,_o, ' 7' 7@~ = 0. Therefore,

X " T
|X(@)] = X(@X @) = ﬁ
Retxe) = X - s
Ifx(a)) = TR L=,
4X(w) = tan™' [%%é%] = —tan'(w — 2)

The magnitude and angle of X(w) are shown in Figure S8.2-3.



Continuous-Time Fourier Transform / Solutions
S8-56

% X(w)

|

EE]

€

ENE]

[NYE]

Figure S8.2-3

Note that there is no symmetry about w = 0 since x(¢) is not real.

S8.3

@ X = |

oo

x4(t)e ¢t dt

Substituting for x;(t), we obtain

Xy(w) =

jm [ax,(t) + bxy(t)]e —iet gt

j ax,(te 7t dt + j ba,(t)e 7t dt

aj x,(t)e 7 dt + b.[ x(t)e 7t dt = aX (w) + bXy(w)

(b) Recall the sifting property of the unit impulse function:

Therefore,

J.w R()o(t — ty) dt = h(t,)

J 218(w — wo)e’™ dw = 2me
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S8-6

(O]

Thus,
1 e ) .
—_— 278w — wy)e’t dw = e’«o!
27|' — o0
Note that the integral relating 2x6(w — w,) and e’ is exactly of the form
1 ol )
x(t) = — j X(w)e’™* dw,
27!' —o
where x(t) = e’ and X(w) = 273(w — w,). Thus, we can think of e¢’* as the

inverse Fourier transform of 2x6(w — w,). Therefore, 2rd(w — w,) is the Fourier
transform of e’«o!,

Using the result of part (a), we have

X(w) = g{j(t)} = [ Z akejk(zr/m] = Z a, F {ejk(Zx/T)t}

k=- k=—oo
From part (b),
) 27k
7 Jk(2x/THt _ 2 6 —_—
{e } ™ (w T )
Therefore,
. ad 27k
X = Y 2ras (w ~ i)
k=—o0 T
(&) -
X(w)
4n
2 sin 27 3 { 2sin 27
[ w
2m
;4w i 4n
sin 3 sin 3
Figure S8.3
S8.4
(a) We see that the new transform is

X.(f) = X(w)

w=2nf

We know that

1 *© )
x(t) = — f X(w)e’' dw
271’ w=—00



Continuous-Time Fourier Transform / Solutions

Let w = 27f. Then dw = 2xdf, and

1 [= 4 o |
x(t) = o J;hm X(2rf)e*2x df = Jf=_m X (e’ df

Thus, there is no factor of 2= in the inverse relation.

X,
T
!
-2 _1 1 2
Tl Tl Tl Tl
Figure S8.4

(b) Comparing

X, () = x(t)e ™ dt  and X(w>=J x(t)e 7 dt,

e -

we see that

1
Xy(v) = Vor X(w)

The inverse transform relation for X(w) is

or X)) = VorX,(w)

w=v

i ) 1 = A
x(t) 511; J_mX(w)e]”t dow = o J-_w Vor Xy (w)e’ dw

1 J‘°° )
— X,(v)e’ dv,
o ) (V)

where we have substituted v for w. Thus, the factor of 1/2x has been distributed
among the forward and inverse transforms.

S8.6

(a) By inspection, T, = 6.
®) a = Ti a(t) e KTt gt

0o JTp
We integrate from —3 to 3:

’ 1 .
= J [lé(t + 1) + 8(t) + S8t — 1)}e‘f"(2”6”dt
6 )2 2

— l l j2xk/6 l —j2rk/6 | — l 2"&
—6<2ef +1+2e —61+cos6

S8-7
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S8-8

SO
&(0) = fjm%(l + cos 2%") oo
© @B Xi(o)= j _0; x(t)e 7t dt = f _Z [$8(t + 1) + 8(t) + 3(t — 1))e 9t dt
=t + 1447 =1+cosw
(i) Xy(w) = f : xy(t)e 7t dt = J _O; [3(t) + $5(t — 1) + $5(¢t — 5)le 7 d¢

1 + de7° + fe o

(d) We see that by periodically repeating x,(t) with period T, = 6, we get &(t), as

shown in Figure S8.5-1.

x,(2)
1
1
2
f ,
-1 0 1
x,(t~-6)
1
1
+———t 2f | f t
0 5 6 7
x,(t+6)
1
1
W[y ,
-7 —6 -5 0
x(t)
1
1
} [ } | } } l } .
7 -6 -5 -1 0 1 5 6 7
Figure S8.5-1

Similarly, we can periodically repeat x,(t) to get Z(t). Thus T, = 6. See Figure
S8.5-2.
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S8-9

x,(2)

N f—
-
=t

~

0 1 S
Xx,(t—6)
T |
[ [
I R
0 6 7 11
x,(t+6)
1
_%
t | t
—6 —5 -1 0
x (1)
11
1
Lt I i I ! t
—6 —5 -1 0 1 S 6 7 11

Figure S8.5-2

(e) Since Z(t) is a periodic repetition of x,(t) or x,(t), the Fourier series coefficients
of Z(t) should be expressible as scaled samples of X;(w). Evaluate X ,(v) at w =
27k/6. Then

27k 1 2wk
Xl(w) w=27k/6 - 1 + cos —‘6_ - 6ak =% = EXI (T>
Similarly, we can get q, as a scaled sample of X,(w). Consider X,(27k/6):
27k 1 1 )
—_— ) = _ p —J2xk/6 — , —Jjl0xk/6
Xz ( 6 ) 1 + 2 e + 2 e

But e—lefk/6 =e —Jj(10xk/6 —2xk) — ej21k/6. Thus,

27k 2
X, (%—-) =1+ cos—:;E = 6a,.

Although X (w) # X,(w), they are equal for v = 27k/6.
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S8-10

S8.6

(a) By inspection,

—at, 7
e u(t) - -
a + jw

Thus,

¥ 1
—-7t t -
u(t) 7 + jow

Direct inversion using the inverse Fourier transform formula is very difficult.
(b) Xy(w) = 20(w + 7) + 20(w — T),

e

1 [~ . 1 (= )
2t) = o j | X(@)e™ dw = o f 200 + ) + 8w — Dl do
1

1 ) ) 2
=—¢ 7" + — " = = cos Tt
s ™ T

(¢) From Example 4.8 of the text (page 191), we see that

2a

e ¢t <«
a® + o

However, note that

F
ax(l) == oX(w)

since
f ax(t)e 7' dt = « J x(t)e 7' dt = aX(w)
Thus,
1 F 1 1 F 1
et Iy - o3It
2a a® + o or 9 + ? 6 ¢

(@) X ()Xy(w) = X ()20(w + 7) + 26(w — T)]
2X.(—Td(w + T) + 2X(T)o(w — 7)

Xy(w) = T w + 7) + 7+ 47 w —T7)
—_ 1 * 2 — Juwt
1) = 5 f_w [7 e L ORI o L C 7)] e do
1 ) 1 )
= — —j7t — Tt
W =TT 7 +47°
Note that
Lo _1(ve) L 1 1(vEy
TH+47 T\ 2 7T—37 T\ 2
Thus
1\ V2 —j(Tt—x/4) JTt=m/a — V2 Ll
x4 t) = (7) 5 le +e 1= 77r cos |7t 1



Continuous-Time Fourier Transform / Solutions
S8-11

we 'j3w’ 0 =w= 1,
(® X, (o) = —we™™, —l1=w=0,
0, elsewhere,
1 [® . 1 1 o 0
x(t) = — J X(w)e]wt dw = — [ J- we ~i3vgiet do — j we gt dw}
27 J-w 27 0 1

Note that
eax
Ja:e‘”‘dx = —0‘7(ax - 1)

Substituting & = j(t — 3) into the integrals, we obtain
1 er—3w . 1 eiU—3h .
x(t) = o [m(](t — 3w —1) ‘0 - m(l(t — 3w —1)
which can be simplified to yield
cos(t—3)—1 sin(t — 3)]
(t — 3y (t —3)

0
)
-1

x(t) = :ll'[

Solutions to
Optional Problems

S8.7
(a) Yo = J:_m y(t)e 7 dt = j:w J:_w x(Dh(t — 1) dre 7 dt
T o — o
(b) Let r = ¢ — 7 and integrate for all 7 and r. Then
Y(w) = f :_w J :m x(nh(r)e 70 dr dr
= fco x(e " dr J- B h(r)e " dr
— X(HW T
S8.8

(a) Using the analysis equation, we obtain

1 T/2 ) 1
a = j 8(t)e KD dL = —
—71/2 T

T
Thus all the Fourier series coefficients are equal to 1/7.
(b) For periodic signals, the Fourier transform can be calculated from a, as
= 27k
X(w) =21 Y ad (w - —;—)

k=—-
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S$8-12

In this case,

Plw) = 2—;: 6(0) — _21r_k>

P(w)
2T
T
_4n _2n 0 2 An
T T T T
Figure S8.8

(¢) We are required to show that
Z(t) = x(t) * p(t)

Substituting for p(t), we have

x(t) * p(t) = x(t)*[ > At — kT)}

k=-w
Using the associative property of convolution, we obtain
2@ *pt) = > [x@)*d(t — kD))
k=-—o0

From the sifting property of i(t), it follows that

(=2}

@) *p) = Y x(t — kT) = &(t)

k=—o0
Thus, x(t) * p(t) is a periodic repetition of x(t) with period T.
(d) From Problem P8.7, we have
X(w) = X(w)P(w)

= X(w) i 2%5<w—%>

k=—o0 T

2 2r 2wk

= — X h —_—
k=z—:co T (w) (w T >

Since each summation term is nonzero only at w = 27k/T,

. 2. 2r _{2xk 27k
X(w) = — ———) B(w - —)
k=Z—oo T T T

From this expression we see that the Fourier series coefficients of Z(t) are

1 2nk
O = iX(T) ’

which is consistent with our previous discussions.



9 Fourier Transform Properties

Recommended
Problems

P9.1

Determine the Fourier transform of 2(t) = e 2u(t) and sketch
(@) |X(w)|

(b) <X(w)

() Re{X(w)}

(@) Im{X(w)}

P9.2
Figure P9.2 shows real and imaginary parts of the Fourier transform of a signal
x(t).
Re{X(w)} Ime(w)}
1 1
w w
—W W —W w
Figure P9.2
(a) Sketch the magnitude and phase of the Fourier transform X(w).
(b) In general, if a signal x(?) is real, then X(—w) = X*(w). Determine whether x(t)
is real for the Fourier transform sketched in Figure P9.2.
P9.3

Determine which of the Fourier transforms in Figures P9.3-1 and P9.3-2 correspond
to real-valued time functions.

(a)

I X ()l % X(w)
|

Figure P9.3-1

P9-1
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P9-2

P9.4

™)
Re) X(w)} = Xp(w) Im{X(w)} = X;(w)

\- 3

Figure P9.3-2

P9.5

(a) By considering the Fourier analysis equation or synthesis equation, show the
validity in general of each of the following statements:

) If x(t) is real-valued, then X(w) = X*(—w).
(i) Ifx(t) = x*(—t), then X(w) is real-valued.
(b) Using the statements in part (a), show the validity of each of the following
statements:
i) If x(t) is real and even, then X(w) is real and even.
(ii)  If x(t) is real and odd, then X(w) is imaginary and odd.

(a) In the lecture, we derived the transform of x(t) = e “‘u(t). Using the linearity
and scaling properties, derive the Fourier transform of ¢ *'*' = x(t) + x(—1t).

(b) Using part (a) and the duality property, determine the Fourier transform of
1/(1 + t?).

(o) If
1

" T e

find R(w).
(d) x(t) is sketched in Figure P9.5. If y(t) = x(t/2), sketch y(t), Y(v), and X(w).

x(t)

A

Figure P9.5




P9.6

Fourier Transform Properties / Problems
P9-3

P9.7

Show the validity of the following statements:

@) x(0) = i Ji: X(w) dw

oo

(b) X(0) = f (1) de

P9.8

The output of a causal LTI system is related to the input x(¢) by the differential
equation

dy(1) _
=+ 2u(t) = x(t)

(a) Determine the frequency response H(w) = Y(w)/X(w) and sketch the phase and
magnitude of H(w).

(b) If x(t) = e 'u(t), determine Y(w), the Fourier transform of the output.

(¢) Find y(t) for the input given in part (b).

By first expressing the triangular signal x(t) in Figure P9.8 as the convolution of a
rectangular pulse with itself, determine the Fourier transform of x(t).

x(t)

5

Figure P9.8

Optional
Problems

P9.9

Using Figure P9.9-1, determine y(¢) and sketch Y(w) if X(w) is given by Figure
P9.9-2. Assume w, > w,.
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P9-4

P9.10

x(1)

\

T > (1)

cos (w,1)

Figure P9.9-1

X(w)

m

—@ Wy

Figure P9.9-2

P9.11

Compute the Fourier transform of each of the following signals:
(a) [e ™ cos wyt]u(t), a>0
() e~ %" sin 2t

sin 7t \ { sin 2=t
© () ()

P9.12

Consider the following linear constant-coeflicient differential equation (LCCDE):

dy(t
dy(t) + 2y(t) = A cos w,t
dt
Find the value of w, such that y(t) will have a maximum amplitude of A/3. Assume

that the resulting system is linear and time-invariant.

Suppose an LTI system is described by the following LCCDE:

dy(t)  2dy(t) _ 4da(t)
ar T ar TWO=—g

— x(t)
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P9-5

(a) Show that the left-hand side of the equation has a Fourier transform that can
be expressed as

A(w)Y(w), where Y(w) = Fy(t)}
Find A(w).

(b) Similarly, show that the right-hand side of the equation has a Fourier transform
that can be expressed as

B(w)X(w), where X(w) = Flx(t)}

(c¢) Show that ¥(w) can be expressed as ¥Y(w) = H(w)X(w) and find H(w).

P9.13
From Figure P9.13, find y(¢) where
2(t) = s1n(twot) and h(t) = sm(?wot)
x(t) ————| h(t) ——— y(?)
Figure P9.13
P9.14

(a) Determine the energy in the signal x(t) for which the Fourier transform X(w) is
given by Figure P9.14.

X(w)

Figure P9.14

(b) Find the inverse Fourier transform of X(w) of part (a).
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P9-6

P9.15
Suppose that the system F takes the Fourier transform of the input, as shown in
Figure P9.15-1.
x(t) ——> F — (1) =21 X (—w) ,
(L) =
Figure P9.15-1
What is w(t) calculated as in Figure P9.15-2?
x(t) —» F > F > F — w(?)
Figure P9.15-2
P9.16
Use propefties of the Fourier transform to show by induction that the Fourier trans-
form of
tn—l
—-— —at
x(t) = -1 e "u(t), a>0
is
X(w) = 1

(a + jw)



9 Fourier Transform Properties

Solutions to
Recommended Problems

S9.1

The Fourier transform of x(¢) is

X(w) = J x(t)e 7 dt = J e 2u(t)e 7 dt

Since u(t) = 0 for t < 0, eq. (59.1-1) can be rewritten as

oo

X(w) = f e~ (/2HIt gy

0

__t2
T 1+ 520
It is convenient to write X(w) in terms of its real and imaginary parts:
. — 4
X() = 2. 1 .7.20) =2 jc:

1+ 72w\l — j2w 1+ 4w

_ 2 . 4w
1+ 40 71+ 40

2

Magnitude of X{ = —
gnitude of X(w) = TA==15
X(w) = tan"'(—2w) = —tan ' (2w)

+2 —4w
Re{X(w)} = 15 4’ Im{X(w)} = 17 40
(@)
| X (w)]
2
_/\ )
Figure S9.1-1
(b)
% X (w)
_________ L7
2
hNE
2
t : @
1
_m 2
T
_n
L ——— —
Figure S9.1-2

(89.1-1)

S9-1
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S9-2

©
Re{X(w)}

___/2\ )

Figure S9.1-3

CY
Im{ X(w)}

——-11

=
____.+_ | -

SR

Figure S9.14

S9.2

(a) The magnitude of X(w) is given by
| X(w)| = VXi(w) + X{(w),

where Xp(w) is the real part of X(w) and X(w) is the imaginary part of X(w). It
follows that

V2, el <W,

| X(w)| =
0, |w| > W
1X ()
2
w
-W W
Figure S9.2-1

The phase of X(w) is given by

X
4X(w) = tan™! <X;(((:)))) =tan" (1), |w| <W




Fourier Transform Properties / Solutions
S9-3

%X (w)
i
+ w
W
Figure $9.2-2

b 1+7, <W

®) X(w) = J o] _
0, otherwise
1+, jlw] < W

X(—w) = .
0, otherwise
1—j, lw| <W
X (w) = .

0, otherwise

Hence, the signal is not real.

$9.3
For x(t) to be real-valued, X(w) is conjugate symmetric:
X(—w) = X*(w)
(@) X(w) = [X(w)|e’*¥®
= | X(w)|cos(IX(w)) + 7| X(w)|sin(<IX(w))
Therefore,
X(—w) = |X(—w)|cos(IX(—w)) + J|X(—w)|sin(ILX(—w))
= [ X(w)|cos(ILX(w)) — j|X(w)|sin(FX(w))
= X*(w)
Hence, x(t) is real-valued.
()  X(w) = Xp(w) + jX(w)
X(—w) = Xp(—w) + jX[(—w)
= Xp(w) + j[—X{w) + 2] forw >0
X*(w) = Xp(w) — JX{(w)
Therefore,
X*w) # X(—w)
Hence, x(t) is not real-valued.
S9.4

o0

@ () Xw = J. wx(t)e""”‘ d

t

We take the complex conjugate of both sides to get

XHw) = j

oo

—oo

x*(t)et dt
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S9-4

(i1

() (O

(i)

S9.5

Since x(t) is real-valued,

foel

X (w) = J- Oc)ar:(t)ej‘”' dt

Therefore,

oo

XH(—w) = f mx(t)e’j”‘ dt

= X(w)

1 bt )
x(t) = o J_m X(w)e’™ dw

Taking the complex conjugate of both sides, we have
1 = .
x*(t) = — j X*(w)e ™ dw
21|' -0
Therefore,
1 = )
x*(—t) = — J X*(w)e’ dw
27|' -0
Since x(t) = x*(—t), we have
1 [° 4 b )
— f X(w)e'' dw = 1 J- XH(w)e' dw
2‘”' -0 21!' —o0

This shows that X(w) must be real-valued.

Since x(t) is real, X(w) = X*(—w). Since x(t) is real and even, it satisfies
z(t) = x*(—t) and, therefore, X(w) is real. Hence, X(w) = X*(—w) =
X(—w). It follows that X(w) is real and even.

If () is real, X(w) = X*(—w). Since x(t) is real and odd, x(t) =
—x*(—t); an analysis similar to part (a)(ii) proves that X(w) must be
imaginary. Hence, X(w) = X*(—w) = —X(—w). It follows that X(w) is also
odd.

@) Fle "} = Fle u(t) + e u(—1t))

1 1
a+jw+a—-jw
_ 2a

a? + o?

(b) Duality states that

Since

F
9(t) =— G(w)
G(t) <z> 27g(—w)

¥ 2a
e_"ltl ~—
2 2
a + w




Fourier Transform Properties / Solutions
S9-5

we have

17
e "

1 F 1 ¥ 1 w
S A 17 J - hat
(0 1+ 3ty 3 e since x(at) a] X ( )

(d) We are given Figure S9.5-1.

x(t)

Figure $9.5-1

T ) A ) .
Xw)=A f et dt = — (e T — ")
-7 —jw

-4 —27 s%n T
—jw
- oTA sin(wT)
w

Sketches of y(t), Y(w), and X(w) are given in Figure §9.5-2.

X(w)
2TA
T T~ (o5}
— \_/_' S E_v —
T T
y(w)
»()
4TA
1
-
t T — T w
2T 2T - T P
2T 2T
Figure S9.5-2




Signals and Systems
S9-6

Substituting 27 for T in X(w), we have

Y(w) = 2(2T) ———Si“j;"f,m

The zero crossings are at

@ 2T = nm, or w, =N E%‘

$9.6
1 (= ot
@) 2(t) = - X(w)e™ dw
27|' -0
Substituting ¢ = 0 in the preceding equation, we get
1 oo
x(0) = — j X(w) dw
27|' —oo
® X = | awe a
Substituting w = 0 in the preceding equation, we get
X(0) = J x(t) dt
S9.7

(a) We are given the differential equation

dy(t) _
PTEREAVREIQ)

Taking the Fourier transform of eq. (§9.7-1), we have

joY(@) + 2Y(0) = X(w)

Hence,
Y(w)2 + jo] = X(w)
and
Y w) 1
H(w) = —= =
@)= Y@ ~ 2470’
1 1 (2 —jw 2 — jo
H(w) = = =
() 2 + jw 2+jw\2—jw> 4 + o?

_ 2 L
1+ 4+

(89.7-1)



Fourier Transform Properties / Solutions
S9-7

2 2
2 _ w - 44+ w
HO =G T arar @+
H@)| = ——
|H(w)| R
H(w)]

o f—

w
XH(w) = —tan" ! (%)
m
T2
4T
2
} } w
-2 2
_nl
4
_nl
2

Figure S9.7

(b) We are given x(t) = e ‘u(t). Taking the Fourier transform, we obtain

Hence,

X(w) =

Y(w)

1+ jow’

1 1 1
T 402 +jw) 14je 2+ je

(¢) Taking the inverse transform of ¥Y(w), we get

y(t) = e"'u(t) — e *u(t)



Signals and Systems

S9-8

S9.8

A triangular signal can be represented as the convolution of two rectangular pulses,
as indicated in Figure S9.8.

(89

-1 -1 -1 —1

Figure S9.8

Since each of the rectangular pulses on the right has a Fourier transform given
by (2 sin w)/w, the convolution property tells us that the triangular function will
have a Fourier transform given by the square of (2 sin w)/w:

4 sin’w
X(w) = >
w

Solutions to
Optional Problems

S9.9

We can compute the function x(t) by taking the inverse Fourier transform of X(w)

1 [«
x(t) = — J- me’ dw
27 J -y

A

_ Sin wot
t

Therefore,

v ) sin (wot)]

cos (w.t) [ ;



Fourier Transform Properties / Solutions
S$9-9

From the multiplicative property, we have

Y(w) = X(w) * [7é(w — w,) — 7w0(w + w,)}

Y(w) is sketched in Figure S9.9.

—We T Wy TWe  Twe tw, W — Wo W we 1wy,

i }
Y t

Figure S9.9

e~ cos wetu(t), a>0
e “u(t)cos(wyt)

Therefore,

X(w) = o ¥ jo * [18(w — wp) + 7w + wp)]

_ 1/2 + 1/2
a+ jlw—w) o+ jlw+ w)

x(t) = e 3" sin 2¢

6
9 + ?

F o
sin 2t = ; [6(w — wp) — 8w + wy)], wy = 2

Therefore,

() x(t) =

6
_ J3 B J3
T4+ (@+2? 9+ (w— 2

sin 7t [sin 2«t
i ’

X(@) = 5= X(0) * Xilw),

1, || <,
Xi(w) =

0, otherwise

Xy )_ll, lw| < 2,
20 0, otherwise



Signals and Systems
S9-10

Hence, X(w) is given by the convolution shown in Figure S9.10.

X,(w) X,y ()
1 1
w t t
- m —2m 2n
X(w)
1
Il : 1 l w
—3r —2m -7 i 2m 3n
Figure S9.10
S9.11
We are given the LCCDE
dy(t
% + 2y(t) = A cos wyt

We can view the LCCDE as

dy(t) _
dt + 2y(t) = x(1),

the transfer function of which is given by

1

H =
(@) 2 + jow

and x(t) = A cos wyt

We have already seen that for LTI systems,

y(t) = |H(wy)| A cos(wet + ¢), where ¢ = <H(w,)

1
= ————A cos(wyt +
Va T o costet + 9)



Fourier Transform Properties / Solutions
S9-11

For the maximum value of y(t) to be A/3, we require

1
4 4 w

Ste
Nl il

Therefore, w, = V5.

$9.12
2
(@) F [d;’tg‘) + 2dgt(‘) + 3y(t)] = —¥(w) + 2je¥(w) + 3¥(w)
= (—® + j20w + 3)Y(w),
A(w) = —® + j2w + 3
) F [4d;t(t) - x(t)J = 4juX(w) — X(w)
= (J4w — DX(w),
B(w) = j4w — 1,
A(w)Y(w) = B(w)X(w),
- B
(w) = A@) X(w)
= H(w)X(w)
Therefore,
_B(@ _ —1+jdw
H(w) = A(w) —o®+ 3+ j20
_ 1 —jdo
T WP — 3 —j2
$9.13
1
sin Wt 4__3:_>
wt
—W 1%
Figure S9.13-1

sin w ! F
x(t)=m 0
wt

Figure S9.13-2




Signals and Systems

S9-12

H(w)
in (2 ) -
sin w nl
h(t) = Tr_ﬂTi.._ <—L>
Figure S9.13-3
Y(w)
a2
Y(w) = X(w)H(w) =
w
—w, N
Figure $9.13-4
Therefore, y(t) = rw-)-
$9.14
1 [~ 2
(a) Energy = o | X(w)|* dw
|X (w)?
4
._1 ——
: : ©
-2 -l ! 2
Figure S9.14-1

Area = (4)(2) + (2)(1)(1)
=10

Energy = 5
™




Fourier Transform Properties / Solutions

(d)

X(w) =

—1 1 -2 2

Figure S9.14-2

S9.15

Given that
yi(t) = 27X(—w)|,-,

we have

oo

v = 2 |

u=—

x(u)e’™ du
Similarly, let y4(t) be the output due to passing x(¢) through F twice.

yu(t) = 27 J 2w J. x(u)e™ du e dv

v=—00 u=—00

= (21r)2J x(u)j ) et dv du

= (2‘”)2',‘00 x(u)(2m)é(t + u) du

u=-—00

= (2r)’ 2(—1)

Finally, let y;(t) be the output due to passing x(t) through F three times.

Ys(t) = w(t) 27rj°° @rY’x(—u)e™ du

= (27)* J. e " x(u) du

= (27)'X(1)

$9.16

We are given

n—1

) =y

e “u(t), a>0

S$9-13



Signals and Systems
S9-14

Letn = 1:
x(t) = e “u(t), a >0,
1
X(w) = a + jw
Letn = 2:

x(t) = te u(t),

d F d
X(w)=7— i tx(t) <= j—
(w) =73 do (a +jw) since (t) J de X(w)
-1
(a + jw)?
Assume it is true for n:
n—1
- —  _ p-—at
x(t) m—1° u(t),
1
X = —
@) = 7oy

We consider the case for n + 1:

tﬂ
x(t) = o e *u(t),

_Ja|_ 1
Xy =4 [(aﬂw)"J
(@ + jo)

(=n)a + jw)™" Y

Therefore, it is true for all n.
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