
7 Continuous-Time Fourier Series 
Recommended 
Problems 
P7.1 

(a) 	Suppose that the signal ei" is applied as the excitation to a linear, time-invar­
iant system that has an impulse response h(t). By using the convolution inte­
gral, show that the resulting output is H(w)ew, where H(w) = f". h(r)e-jw dr. 

(b) 	 Assume that the system is characterized by a first-order differential equation 

dy(t) + ay(t) = x(t). 
dt 

If x(t) = ejw" for all t, then y(t) = H(w)eo" for all t. By substituting into the 
differential equation, determine H(w). 

P7.2 

(a) 	Suppose that z", where z is a complex number, is the input to an LTI system that 
has an impulse response h[n]. Show that the resulting output is given by H(z)z", 
where 

H(z) = E h[n]z-". 

(b) If the system is characterized by a first-order difference equation, 

y[n] + ay[n - 1] = x[n], 

determine H(z). 

P7.3 

Find the Fourier series coefficients for each of the following signals: 

(a) 	x(t) = sin (lort + 

(b) 	 x(t) = 1 + cos (21rt) 

(c) 	 x(t) = [1 + cos (27rt)] [sin (1ort + 

Hint: You may want to first multiply the terms and then use appropriate trigo­
nometric identities. 

P7.4 

By evaluating the Fourier series analysis equation, determine the Fourier series for 
the following signals. 

P7-1
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x( t) 

-3 -1-2 0 
1 

2 
3 

Figure P7.4-2 

P7.5 

Without explicitly evaluating the Fourier series coefficients, determine which of the 
periodic waveforms in Figures P7.5-1 to P7.5-3 have Fourier series coefficients with 
the following properties: 

(i) Has only odd harmonics 
(ii) Has only purely real coefficients 

(iii) Has only purely imaginary coefficients 
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Figure P7.5-1 
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(b) 
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Figure P7.5-2 
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Figure P7.5-3 

Optional 
Problems 
P7.6 

Suppose x(t) is periodic with period T and is specified in the interval 0 < t < T/4 
as shown in Figure P7.6. 

x(t) 

{t
T T 
8 4 

Figure P7.6 

Sketch x(t) in the interval 0 < t < T if 

(a) the Fourier series has only odd harmonics and x(t) is an even function; 

(b) the Fourier series has only odd harmonics and x(t) is an odd function. 

P7.7 

Let x(t) be a periodic signal, with fundamental period To and Fourier series coeffi­
cients a,. Consider the following signals. The Fourier series coefficients for each can 
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be expressed in terms of the ak as in Table 4.2 (page 224) of the text. Show that the 
expression in Table 4.2 is correct for each signal. 

(a) 	 x(t - to) 

(b) 	x(-t) 

(c) 	x*(t) 
(d) 	x(at), a > 0 (Determine the period of the signal.) 

P7.8 

As we have seen in this lecture, the concept of an eigenfunction is an extremely 
important tool in the study of LTI systems. The same can also be said of linear but 
time-varying systems. Consider such a system with input x(t) and output y(t). We 
say that a signal #(t) is an eigenfunction of the system if 

#(t) - Xt) 

That is, if x(t) = #(t), then y(t) = k(t), where the complex constant Xis called the 
eigenvalue associatedwith #(t). 

(a) 	Suppose we can represent the input x(t) to the system as a linear combination 
of eigenfunctions $j(t), each of which has a corresponding eigenvalue Xk. 

± * 

xMt = >7 CAMx( 
k= -o 

Express the output y(t) of the system in terms of {Ck}, {O(t)}, and {Xk}. 

(b) 	Show that the functions #(O = tk are eigenfunctions of the system character­
ized by the differential equation 

d x(t) dx(t) 
dt' dt 

For each $k(t), determine the corresponding eigenvalue Xk. 

P7.9 

In the text and in Problem P4.10 in this manual, we defined the periodic convolution 
of two periodic signals 21(t) and 2 2(t) that have the same period To. Specifically, the 
periodic convolution of these signals is defined as 

9(t) 	= 21(t) @ 22 (t) = 21(r)t 2 (t - r) dr (P7.9-1) 

As shown in Problem P4.10, any interval of length To can be used in the integral in 
eq. (P7.9-1), and 9(t) is also periodic with period To. 

(a) 	If 21(t), t 2(t), and 9(t) have Fourier series representations 
+o+o0 	 +o0 

= aike2r/o~t, 2(t) = ( bkeik( 2,rot, tt) = (3 ce2.rot 

k=-o0 	 k=-o0 k=-o 

show that Ck = Toakbk. 

(b) 	 Consider the periodic signal t(t) depicted in Figure P7.9-1. This signal is the 
result of the periodic convolution of another periodic signal, 2(t), with itself. 
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Find z(t) and then use part (a) to determine the Fourier series representation 
for 1(t). 

x(t) 

2 

7 -5 -3 -2 0 2 3 5 7 8 

Figure P7.9-1 

(c) 	 Suppose now that x1(t) and x 2(t) are the finite-duration signals illustrated in 
Figure P7.9-2(a) and (b). Consider forming the periodic signals 2 1(t) and 2 2 (t), 
which consist of periodically repeated versions of x 1(t) and x 2(t) as illustrated 
for 21(t) in Figure P7.9-2(c). Let y(t) be the usual, aperiodic convolution of x 1(t) 
and x 2(t), 

y(t) = x1 (t) * X2(), 

and let P(t) be the periodic convolution of t 1(t) and t 2 (t), 

X0t = 21l(t) @ 2t2(t) 

Show that if To is large enough, we can recover y(t) completely from one period 
of P(t), that is, 

9(t), |t| 5 To/2, 
YM- 0, |t | > To/2 
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Figure P7.9-2 
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P7.10 

The purpose of this problem is to show that the representation of an arbitrary peri­
odic signal by a Fourier series, or more generally by a linear combination of any set 
of orthogonal functions, is computationally efficient and in fact is very useful for 
obtaining good approximations of signals. (See Problem 4.7 [page 254] of the text 
for the definitions of orthogonal and orthonormal functions.) 

Specifically, let {#o(t)}, i = 0, + 1, i 2, . . . , be a set of orthonormal functions on 
the interval a t b, and let x(t) be a given signal. Consider the following approx­
imation of x(t) over the interval a t - b: 

+N 

N~t= ajo(t), (P7. 10-i1) 
i=-N 

where the a, are constants (in general, complex). To measure the deviation between 
x(t) and the series approximation tN(t), we consider the error eN(t) defined as 

eN(t) = x(t) - tNAht) 	 (P7.10-2) 

A reasonable and widely used criterion for measuring the quality of the approxi­
mation is the energy in the error signal over the interval of interest, that is, the 
integral of the squared-error magnitude over the interval a - t 5 b: 

E = leN(t) 2 dt 	 (P7.10-3) 

(a) 	Show that E is minimized by choosing 

ai = f b 

x(t)$7(t) dt 	 (P7.10-4) 

Hint: Use eqs. (P7.10-1) to (P7.10-3) to express E in terms of aj, 4i(t), and x(t). 
Then express ai in rectangular coordinates as ai = bi + jci, and show that the 
equations 

9E 	 OE 
-	 = 0 and -=0, i = 0, +1, +2, . .. , iN, 
abi 	 aci 

are satisfied by the ai as given in eq. (P7.10-4). 

(b) 	 Determine how the result of part (a) changes if the {#o(t)} are orthogonal but not 
orthonormal, with 

Ai = |faI )|12 dt 

(c) 	 Let #n(t) = e "Oo'and choose any interval of length To = 27r/wo. Show that the ai 
that minimize E are as given in eq. (4.45) of the text (page 180). 
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S7.1 

(a) 	For the LTI system indicated in Figure S7.1, the output y(t) is expressed as 

y(t) =f h(r)x(t - r) dr, 

where h(t) is the impulse response and x(t) is the input. 

LTI 

x(t) ON h(t) y (t) 

Figure S7.1 

For x(t) = ew', 

y(t) = f h()ew(- T) dr 

= ejwt { h(r)e-j' dr 

= e+iwtH(w) 

(b) 	We are given that the first-order differential equation is of the form 

dy(t) + ay(t) = x(t)
dt 

From part (a), when x(t) = eiw', then y(t) = ej"'H(w). Also, by differentiating 
y(t), we have 

dy(t)dt) = jcoej"'H(co) 

Substituting, we get 

jwewtH(w) + aejw'H(w) ewt 

Hence, 

jwH(o) + aH(w) = 1, or 
1 

H(w) = 
a + jw. 

S7.2 

(a) 	The output of a discrete-time LTI system is given by the discrete-time convo­
lution sum 

y[n] = ( h[k]x[n - k] 
k 

S7-1 
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If x[n] = z", then 

y[n] = ( h[k]z"-k 
k 

= z" h[k]z -k 
k 

= z"H(z) 

(b) We are given that the first-order difference equation is of the form 

y[n] + ay[n - 1] = x[n] 

From part (a), if x[n] = z", then y[n] = z"H(z). Hence, 

y[n - 1] = z"-1H(z). 

By substitution, 

z"H(z) + az"- H(z) =z" 

which implies 

(1 + az-')H(z) = 1, 
1 

H(z) = _
1 + az-1 

S7.3 

(a) x(t) = sin (lort + 6 

= j2xt5 _ -j21t5

2j 2j


We choose wo, the fundamental frequency, to be 21r. 

x(t) = a eik-ot, 
k 

where 

ejr/6 	 __e -jr/6


a5 =a_5 
2j 2j 

Otherwise ak = 0. 

(b) 	x(t) = 1 + cos(27rt)

ej2xt e-j2wt


=1+ +ejit

2 2


For wo = 2 7r, a_ = ai = -, and ao = 1. All other ak's = 0. 

(c) x(t) = [1 + 	cos(27rt)] [sin(lort + 

= sin(10it + + cos(2irt)sin( 10irt + 

2 t 5  = e /6 ej2rt5 e 2 e -j2t5) j2+rt + le -j2+ t eji( 6 e r __e 2* e -j27rt5 

-_ 
2j

. _}15_ 

2j 
e -j2xts + 

4j 
ej 2 t6 

_ 

4j 
e-j2xt4 

+ e j21rt4 ee -j2t6 

4j 4j 
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Therefore, 

x(t) = ( ake*4' 

where wo = 2 1r. 

ejr/6 
a4 =- .

43j 
a-4 .4j 

a5 = 
ejr/6 

-, 
2j 

a-5, 
_ e-ir 

-2j 

/6 

I 

ejr/6 _e-jr16 
a6 - 4j 

a_6 = . 
4j 

All other ak's = 0. 

S7.4 

(a) 

Note that the period is To = 6. Fourier coefficients are given by 

ak = - x(t)e -jk" 0t dt 

We take wo = 27r/To = r/3. Choosing the period of integration as -3 to 3, we 

have 
1 1 F2 

ak = 6 e jk( /3)t - 1 -jk(r/3)t dt

2 6 f 1


_ _ 1 e -jk(r/3)t 1 1 -jk(ir/3)t 2 

6 -jk(7r/3) 2 6 -jk(7r/3) 1 

1 [e +j(7/3)k _ e +j(2r/3)k - e-j(21/3)k + e j(-/3)kI 

-j27rk 
cos(2ir/3)k cos(7r/3)k 

jrk jrk 

Therefore, 

7r
x(t) = akejkwot 

3 
k 

and 

cos(27r/3)k - cos(r/3)k 
ak = jrk 
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Note that ao = 
noting that 

0, as can be determined either by applying L'H6pital's rule or by 

(b) 
x(t) 

ao = (1|T0 ) f x(t)dt. 

Figure S7.4-2 

The period is To = 2, with wo = 2-x/2 = r. The Fourier coefficients are 

ak = - fTO x(t)e -iko'dt 
To o 

Choosing the period of integration as -i2 t o -2, we have 

a 3/2 

k= 2 x(t)e -­ikot dt 
-1/2 

3/2 

2 1/2 [6(t) - 26(t - 1)]eikO' dt 

1 . 1. 
e-k-o = - (e-i-)k2 2 

Therefore, 

a o - 2, ak = - ()k 

It is instructive to plot ak, which we have done in Figure S7.4-3. 
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S7-5 

S7.5 

(a) 	 (i) and (ii) 
From Problem 4.12 of the text (page 260), we have 

x {t - T)= -x(t), 

which means odd harmonics. Since x(t) is real and even, the waveform has real 
coefficients. 

(b) 	 (i) and (iii) 

-x(t) = x t ­

which means odd harmonics. Since x(t) is real and odd, the waveform has imag­
inary coefficients. 

(c) 	 (i) 
W~ T) 

-x(t) = x t 4 )' 
which means odd harmonics. Also, x(t) is neither even nor odd. 

Solutions to 
Optional Problems 
S7.6 

x(t) is specified in the interval 0 < t < T/4, as shown in Figure S7.6-1. 

x(t) 

| t 
T T 
8 4 

Figure S7.6-1 

(a) 	Since x(t) is even, we can extend Figure S7.6-1 as indicated in Figure S7.6-2. 

x (t) 

t 
_T _T T T 

4 8 8 4 

Figure S7.6-2 
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Since x(t) has only odd harmonics, it must have the property that x(t - T/2) 
= -x(t), as shown in Figure S7.6-3. 

x(t) in
x(t - T) = -x(t)

2 Figure S7.6-2 shifted 

T T T 37
4 4 2 4 

-x(t) in / 
Figure S7.6-2 

Figure S7.6-3 

So we have x(t) as in Figure S7.6-4. 

x(t) 

_T 0 T T 3T T 
4 4 2 4 

-1-­

Figure S7.6-4 

(b) In the interval from t = 0 to t = T/4, x(t) is given as in Figure S7.6-5. 
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Since x(t) is odd, for - T/4 < t < T/4 it must be as indicated in Figure S7.6-6. 

x(t) 

T	 T T 
4	 8 4 

Figure S7.6-6 

Since x(t) has odd harmonics, x[t - (T/2)] = -x(t). Consequently x(t) is as 
shown in Figure S7.6-7. 

x(t) 

T 

T 	 T T 
8 	 4 

-1 

Figure S7.6-7 

S7.7 

1 
ak = 	 - x(t)e -jkw 0t dt


TO TO


(a) 	alk = - x(t - to)e -jk" 0t dt

T0 fTO


Substituting r = t - to, we obtain 

1F 
ak = - I x(r)eikwor dr - e -jkoto 

OTO 

= ake -jk"0'0o 

1 
-(b) ak = 

f17O x(- t)e jkwot dtT0O 

Substituting r = - t, we have 

1 
ak = -	 = a-k 

T0OfT0 x(T)e kwOdr 
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(c) = - 0x*(t)e -jk 0t dt50TO 
= T0 x(t)ekwot dt = ak, 

6k = ak 

(d) 	 a(d) = fi x(at)eik(
2 ra/T)t dt


0 To la


Let r = at. Then 

ak = - x(r)e -jk(2"/To)' dr = ak 
TO To 

Therefore, 

a 

S7.8 

(a) Since O4(t) are eigenfunctions and the system is linear, the output is 

y(t) = L XkCk'k(t). 
k=-00 

d2x(t) dx(t)
(b) y(t)=t 2 dt 2 +t 

dt2 dt


kk(t) = tk,


d0k(t) ktk1_ 


dt 
'd2	dtk(t) "k-Jt2


dt 2 = ktk - 1)tk-2


So if k(t) 	= x(t), then 

y(t) = t 2k(k - 1)tk-2 + tktk I 
= k(k - 1)tk + ktk 

= kotk = k 4k(t) 

The eigenfunction 4k(t) has eigenvalue Xk = k 2 

S7.9 

(a) 9(t) = 2 1(t) * 2 2(t) 

= fT I 1(r)A2(t - r) dr 

The Fourier coefficients for P(t) are given by 

Ck = -- I 1(r) 2 (t - r) dre -jk(2wTot)t
50TO TOL 

= 	 --
1 J 1 (r)e -<k(2./T 0)Tr 

F 
-r)e jk(2r T0)(t-) dt 

Toakbk 
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(b) Since z(t) * z(t) =x(t), 

S7.9-2. 
as shown in Figure S7.9-1, then 2(t) is shown in Figure 

z(t) z(t) 

x (t) 

2 

-1 1 
t 

-1 
t 

1 

Figure S7.9-1 

-2 2 
t 

In Figure S7.9-2, To = 5. Hence, 

T(t ) - Toz' = 4 sinc 5 

(c) Without explicitly carrying out the convolutions, we can argue that the aperi­
odic convolution of x 1(t) and x 2 (t) will be symmetric about the origin and is 
nonzero from t = -2T to t = 2T. Now, if 1 1(t) and 2 2(t) are periodic with period 

To, then the periodic convolution, P(t), will be periodic with period To. If To is 
large enough, then q(t) is the periodic version of y(t) with period To. Hence, to 

recover y(t) from P(t) we should extract only one period of P(t) from t = 
-TO/2 to t = TO/2 and set y(t) = 0 for ItI > TO/2, where TO/2 2T, or To -
4T. 

S7.10 

(a) The approximation is 
N 

N(t)= 
k=-N 

akk(t 

with the corresponding error signal 

eN(t) = 

= 

x(t) ­

x(t) -

Nt) 
N 

( akk(t) 
k=-N 
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Hence, 

|eN(t)I = x(t) - kk x*() a*t) 
= |x(t)| 2 - ( akx(t)4k(t) - z akx(04k() + ( ( aka14k(M 1()

k k 	 k I 

If we integrate, f eN(t) 12 dt, and use the property that 

k = 1, 
a 1, 

otherwise, 

we get b= 

E = fb Ix(t) I'dt 
a 

- Za* 
k 

x(t)kp(t) cit 

- T ak X*(tk(t)dt + T |akI 
k a k 

Since ai = bi + jc, 

=E r OC x*(t)Oi(t) dt + 2bi 
an d x(t)k7(t) dt ­

and 

-_ = 	j x(t)(t)dt - j f x*(t)i(t) dt + 2c,aci


Setting 

-= 0 and = 0, 

we can multiply the second equation byj and add the two equations to get 

(E aE 

ab + - = 0 

By substitution, we get 

bi + jci = ax(t)O(t) dt 

= a, 

(b) 	 If {4(t)} are orthogonal but not orthonormal, then the only thing that changes 
from the result of part (a) is 

Tab a qk*~c(t) dt Z IakIAk 
ab k1 	 k 2 k 

It is easy to see that we will now get 

a = fbx(t)4it) dt 
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(c) Since 

fTo+a einwot e-jnwot dt = 

for all values of a, using parts (a) and (b) we can write 

ai = a x(t)e-"nwo' dt 

_ 1 
=- x(t)e-nwot dt 

T0 fTo 



8 	 Continuous-Time 
Fourier Transform 

Recommended 
Problems 
P8.1 

Consider the signal x(t), which consists of a single rectangular pulse of unit height, 
is symmetric about the origin, and has a total width T1. 

(a) 	Sketch x(t). 

(b) 	Sketch t(t), which is a periodic repetition of x(t) with period To = 3T 1 /2. 

(c) 	 Compute X(w), the Fourier transform of x(t). Sketch IX(w) I for Iw s 6w/Ti. 

(d) 	 Compute a,, the Fourier series coefficients of t(t). Sketch ak for k = 0 +1, 
+2, 3. 

(e) 	 Using your answers to (c) and (d), verify that, for this example, 

1 
ak = 1-XM (w) / 

(f) 	Write a statement that indicates how the Fourier series for a periodic function 
can be obtained if the Fourier transform of one period of this periodic function 
is given. 

P8.2 

Find the Fourier transform of each of the following signals and sketch the magni­
tude and phase as a function of frequency, including both positive and negative 
frequencies. 

(a) 	 b(t - 5) 

(b) 	 e -a'u(t), a real, positive 

(c) 	 e (-I+j2 )tu(t) 

P8.3 

In this problem we explore the definition of the Fourier transform of a periodic 
signal. 

(a) 	Show that if x3(t) = axi(t) + bx 2(t), then X3(w) = aXi(w) + bX 2(w). 

(b) 	 Verify that 

e-= - 2,7b(w - wo)ej-t dw 

From this observation, argue that the Fourier transform of eiwO' is 27rb(w - wo). 

(c) 	 Recall the synthesis equation for the Fourier series: 

k= -00 

P8-1
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By taking the Fourier transform of both sides and using the results to parts (a) 
and (b), show that 

2irk

k~)= 2ra T 

(d) Sketch X(w) for your answer to Problem P8.1(d) for I oI 4ir/To. 

P8.4 

(a) 	Consider the often-used alternative definition of the Fourier transform, which 
we will call X,(f). The forward transform is written as 

Xa(f) = f x(t)e -j 2 ft dt, 

where f is the frequency variable in hertz. Derive the inverse transform formula 
for this definition. Sketch X(f) for the signal discussed in Problem P8.1. 

(b) 	 A second, alternative definition is 

1 . 
Xb(v) = 1 x(t)ej" dt 

Find the inverse transform relation. 

P8.5 

Consider the periodic signal t(t) in Figure P8.5-1, which is composed solely of 
impulses. 

X(t) 

2 'e ' t
-7 -6 -S -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Figure P8.5-1 

(a)	 What is the fundamental period To? 

(b)	 Find the Fourier series of I(t). 

(c)	 Find the Fourier transform of the signals in Figures P8.5-2 and P8.5-3. 

(i) I 	 I 
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(ii) 
x 2 (t) 

1 
1 
2t 

0 1 2 3 4 5 

Figure P8.5-3 

(d) 	 2(t) can be expressed as either xi(t) periodically repeated or x 2(t) periodically 
repeated, i.e., 

)= xi(t - kTi), or 	 (P8.5-1) 
k=--00 

X)= E x 2(t - kT2) 	 (P8.5-2) 
k= -oo 

Determine T, and T2 and demonstrate graphically that eqs. (P8.5-1) and 
(P8.5-2) are valid. 

(e) 	Verify that the Fourier series of X(t) is composed of scaled samples of either 

XI(w) or X 2(w). 

P8.6 

Find the signal corresponding to the following Fourier transforms. 

1 
(a) 	 X.(w) = . 

(b) 

Xb(W)2-­
-7 	 7 

Figure P8.6-1


1


(c) 	 Xe(W) = 9 + W2 

See Example 4.8 in the text (page 191). 

(d) 	 Xd(w) = X.(x)Xb(w), where X(w) andXb(w) are given in parts (a) and (b), respec­
tively. Try to simplify as much as possible. 
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(e) 
IXe(Co)l 

4 Xe o 
1 -­

-1 +1 

Figure P8.6-2 

Optional

Problems


P8.7 

In earlier lectures, the response of an LTI system to an input x(t) was shown to be 
y(t) = x(t) * h(t), where h(t) is the system impulse response. 

(a) Using the fact that 

y(t) = x(t) * h(t) = x(r)h(t - r) dr, 

show that 

Y(w) = f f x(r-)h(t - r)e j dr dt 

(b) By appropriate change of variables, show that 

Y(w) = X(w)H(w), 

where X(w) is the Fourier transform of x(t), and H(w) is the Fourier transform 
of h(t). 

P8.8 

Consider the impulse train 

p(t) = ( ot - kT) 
k=-0 

shown in Figure P8.8-1. 
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p (t) 

t 
-2T -T 0 T 2T 

Figure P8.8-1 

(a) 	Find the Fourier series of p(t). 

(b) 	 Find the Fourier transform of p(t). 

(c) 	 Consider the signal x(t) shown in Figure P8.8-2, where Ti < T. 

x( t) 

-T _T T1 T 
2 2 

Figure P8.8-2 

Show that the periodic signal t(t), formed by periodically repeating x(t), 
satisfies 

2(t) = x(t)* p(t) 

(d) 	 Using the result to Problem P8.7 and parts (b) and (c) of this problem, find the 
Fourier transform of t(t) in terms of the Fourier transform of x(t). 

Adham
Sticky Note
use sifting property in convolution with delta 



8 Continuous-Time

Fourier Transform

Solutions to 
Recommended Problems 
S8.1 

(a) 
x(t) 

t

Tj 	 Tj 
2 	 2 

Figure S8.1-1 

Note that the total width is T,. 

(b) 

i(t) 

t 
3T1 -- T1 To T1 T1 To Tl 3 T 1=O
2 2 2 2 2 2 

Figure S8.1-2 

(c) 	 Using the definition of the Fourier transform, we have 

X(w) = ox(t)e -j dt = Ti/2 le-j" dt since x(t) = 0 for ItI> 

Til 12 sin wTi 
= e - (e -jwTI1/2 _ eT1/2 ) = 2 

JW -T1/2 (e 

See Figure S8.1-3. 

S8-1
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S8-2 

(d) Using the analysis formula, we have 

ak = T f X(t)e ~jk 0 t dt, 

where we integrate over any period. 

_ 1 
ak -T e -jk(2/T )t dtf T (t)e -jk(2w/T)t dt = f T1 /2 O- To12 TO -T 1 /2 

To1 

ak = (e jkirToT 
0 -- eikir1/TO) = 

sin kr(T1 /T 0 ) _ sin ,r(2k/3) 
TO ,rk 7rk

-jk 2, 

Note that ak = 0 whenever (27rk)/3 = irm for m a nonzero integer. 
(e) Substituting (21rk)/To for o, we obtain 

T_1
X( =2)T 

1 2 sin(7rkT1 /T0 ) sin rk(T1/T 0 ) 
akTO I"=(21rk)/ To To 2,rk/To ,rk = 

(f) From the result of part (e), we sample the Fourier transform of x( t), X(w), at 
w = 2irk/To and then scale by 1/To to get ak. 
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S8-3 

S8.2 

(a) X(w) = fx(t)e -j4t dt = (t - 5)e -j' dt = e ~j = cos 5w - j sin 5w, 

by the sifting property of the unit impulse. 

IX(w)| = |ej5
wI = 1 for all w,


<tX(w) = tan-' tan -sin5wo) = -5w
LIM{X(xc)}Re{X(co)} cos 5w 

(b) X(w) = e -a t u(t)e -i"' dt = e -ate -j't dt 

e - (a+jo)t
0 - (a+jw)t dt -1 

a+jw o 

Since Re{a} > 0, e -at goes to zero as t goes to infinity. Therefore, 

-1 1 
X(W) = 1(0 - 1) = 

a +jwa + jw 

IX(W)I = [X(W)X*(w)]l/ 2 = a +ja -jw)] 2
1 
+o2 >\/ 

X(w) + X*(O) a

Re{X(w)} = 2 a2 + (2 i


Im{X(W)} = X(W) - X*(W) -W 
2 a2 + w2 '> 

Im{X(W)) _ w 
-X(O) = tan- = -tan a 

The magnitude and angle of X(w) are shown in Figure S8.2-2. 
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IX(w)I 

-a a 

4X(W) 

2 

Tro 

-aa 

2T 

Figure S8.2-2 

(c) 	X(o) = e 1+12)tU(t )e -'''dt = e(-1+ 2)te -jct dt 

1 
[ 1-+j(2-)t 0 

1 + j(2 - )0 

Since Re{-1 + j(2 - w)} < 0, lim, e[- 1+j(2-w) = 0. Therefore, 

1 
1 + j(o - 2) 

1 
IX(wO)| = [X(x)X*(W)]11 2 = 

\/1 + (ow- 2) 
2 

X(w) + X*(W) 1 
Re{X()} =	

2 1 + (w - 2)2 

X(w) - X*(co) -(o - 2)
Im{X(W)} = 

2 1 + ((A -2)2 

X() = tan-' ImX(W) -tan-'(w - 2) 
LRe{X(w)} 

The magnitude and angle of X(w) are shown in Figure S8.2-3. 
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X(w)I 

1 

1 2 3 

4X(W) 

Figure S8.2-3 

Note that there is no symmetry about w = 0 since x(t) is not real. 

S8.3 

(a) X3(w) = X3(t)e -' 	 dt 

Substituting for x3(t), we obtain 

X3(() 	 = J [ax 1(t) + bx 2(t0)e 1-'dt 

=f ax1(t)e -wt dt + bx 2(t)e -jwt dt 

= af x1(t)e -j dt + b f x 2(t)e -- ' dt = aX1(w) + bX 2(w) 

(b) 	 Recall the sifting property of the unit impulse function:


f h(t)b(t - to) dt = h(t o)


Therefore,


21rb(w - wo)ej-' do = 2rewot
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S8-6 

Thus, 

1- 2 7rb(w - wo)ei-' dw = ei-o'
2,r -"oo 

Note that the integral relating 2-7rS(w - wo) and e-o' is exactly of the form 

x(t) = - X(w)ej- t dw, 

where x(t) = e jot and X(w) = 2-7rb(co - wo). Thus, we can think of ei-o' as the 
inverse Fourier transform of 2 7rb(w - wo). Therefore, 27rb(o - wo) is the Fourier 
transform of eiwo'. 

(c) Using the result of part (a), we have 

=X(M) = 7{x(t )} = 51 1 ake 2r j T, a, 5T {eik( 2,rs/t 

From part (b), 

5{eik(2,rT)t = 2,irb ( W 
-21rk) 

Therefore, 

Z(w) = 27rab ( W 
k = -00 

(d) 

X(w) 

2 sin 3 2 sin 2 

T o 

3 3 

Figure S8.3 

S8.4 

(a) We see that the new transform is 

Xa(f) = X(w) 
W=2,wf 

We know that 

x(t) = - f X(w)e'j t do 
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S8-7 

Let w = 2irf. Then dw = 21rdf, and


= 
x(t) 
1 X(21rf)ej 2"2ir df = Xa(f )ei2 

,"f df 
27 f= -o 

Thus, there is no factor of 21r in the inverse relation. 

IXa(f)I 
TI 

2 1 1 2 
TI TI TF T, 

Figure S8.4 

(b) Comparing 

Xb(V) = -1 x(t)e jv' dt and X(w) = x(t -j~" dt, 

we see that 

Xb(V) = X(W) or X(w) = \7 X(w) 
V2_ -V7r 

The inverse transform relation for X(w) is 

x(t) -
1 *0 

X(w)e 
j dw = 1 X2r(w)ej- dw 

=1 Xb(v)e jvt dv, 

where we have substituted v for w. Thus, the factor of 1/2-x has been distributed 

among the forward and inverse transforms. 

S8.5 

(a) By inspection, To = 6. 

(b) ak = 1 TO )e -k(
2 

/To)t dt 
TO J T0 

We integrate from -3 to 3:


1 1 1

ak= (ti + 1)+ 6(t) + -6(t - + c 6 

J- 2 2 

(1= 1 +l 1 + 'je -Jlk6.. Cos 2k 
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(t) = 6( + Cos 27rk eik(2 /6)t 

(c) 	 (i) X1(w) = x 1(t)e -"' dt - [6(t + 1) + b(t) + -1(t - 1)]e -j't dt 

- ie * + 1 + ie -"1 + cos w 

(ii) 	 X 2(w) = x 2(t)e -''' dt = [3( t) + it(t - 1) + -3(t - 5)]e - dt 

= 1 + ie -j + le -i5 w 

(d) 	 We see that by periodically repeating x1( t) with period Ti = 6, we get t(t), as 
shown in Figure S8.5-1. 

x1 (t) 

2 
t 

-1 0 1 

x 1 (t - 6) 

0 	 5 6 7 

xl(t + 6) 

2 t t 	 |tt) t 
-7 	 -6 -5 0 

x(t) 

-7 -6 -5 -1 0 1 5 6 7 

Figure S8.5-1 

Similarly, we can periodically repeat x 2(t) to get 1(t). Thus T2 = 6. See Figure 
S8.5-2. 



Continuous-Time Fourier Transform / Solutions 
S8-9 

x 2(t) 

tilt 
t 

01 

X2 (t -6) 

2 

0 	 6 7t 	 1 1
t t 

x2(t ± 6)t2~ 	 2 

-6-5 0 	 7 

X(t) 

IL t2 t It t 
-6 	 -5 -1 0 1 5 6 7 

Figure S8.5-2 

(e) 	Since I(t) is a periodic repetition of x 1 (t) or X 2(0), the Fourier series coefficients 
of t(t) should be expressible as scaled samples of X,(co). Evaluate X1 (0 ) at w= 
21rk/6. Then 

6co-= k*k2rk 1 (27rk\ 

Similarly, we can get ak as a scaled sample of X2(w). Consider X2(21rk/6): 
X2- 1 j2k/6 +5e e


X1(x) =irk1 =6,rk n X x+2o 

62 	 2 

But e njlOrk6e j(lOrk/62rk) 2
rkI

6.Thus,
= 	 ee

X2 = 1 + cos - = 6 a.
A X6


Although X,(w) # X 2(w), they are equal for w =27rk/6.
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S8.6 

(a) By inspection, 

Thus, 

e -atu(t) 7 
9 

1 
. 

a + jw 

(b) 

7I 1 
e- 7tu(t) 1 

7 + jw 

Direct inversion using the inverse Fourier transform formula is very difficult. 
Xb(w) = 26(w + 7) + 26(o - 7), 

Xb(t) = - Xb(w)ej do = - 2 [6(w + 7) + 6(w 

1 1 . 2 
e-­It + e = cos 7t 

- 7)]ei-' dw 

(c) From Example 4.8 of the text (page 191), we see that 

37 2a 
e alti 9 _2a 

a 2 + W2 

However, note that 

since 

ax(t) aX(w) 

ax(t)e -j" dt = a x(t)e -jw dt = aX(w) 

Thus, 

(d) 

1 -
-e -" l 
2a 

1 
a2 + (02 

1 7 
or 

9 + .2 

Xa(w)Xb(W) = Xa(w)[26(o + 7) + 26(w - 7)] 

= 2X(-7)(co + 7) + 2Xa(7)6(w - 7) 

2 2 
XdCO)= - (w +7) + b(o7)

7 - j7 7 +j7 

1f*[2 ±7+ 2
xaOt = f- .7 6(o + 7) + b(co

27r-- 7 -37 7 +j7 

1 1 . 1 1 . 
XA(t) = - e ­ 7' + - ej_ ' 

ir7-j7 xr7+j7 

Note that 

- 7) ej" do 

1 
- e
6 

-31t 

Thus 

1 
7 +j7 7 2 

-jr/4 1 

7 -j7 
1==_ (
7 

, 
2 

+jir/4 

XA(t) = - -r7 -2 [e -j(7t -/4) + ei( 7t-/4)] = -- 
77r 

cos 7t - -)
4 
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we ~j3w, 0 5 w < 1, 

(e) 	 Xe(w) = we -j3 w, -1 ! (O 0,


t0, elsewhere,


x(t) = f X(w)e-' dw = 	i [J'we -jamei' do - we ~i3-ejwl dw 

Note that 

e ax 
xe"f dx = , -(axax -1) 

Substituting a = j(t - 3) into the integrals, we obtain 

1 j(t - 3)w 	 I egj(t - 3)w 0 

= - L( (j(t - 3)w - 1) 0 (j )) 2 (j(t - 3)w - 1) Jx(t) 
21r (j(t - 3)) 	 0 (j(t - 3))­

which can be simplified to yield


1 [ cos (t - 3) - 1 sin (t - 3)

x(t) = 7r (t - 3)2 + (t - 3)_ 

Solutions to 
Optional Problems 
S8.7 

(a) Y(w) = y(t)e -j dt 	 x(r)h( t - -) dr e -j'' dt 

S ft x(,r)h(t - 1)e -j"' dr dt 

(b) Let r t - T and integrate for all r and r. Then 

Y(w) = TT=- .fro x(r)h(r)e -jw( r-+*T) dr dr 

= x(r)e -' d-r {r=-0 h(r)e ~'j dr 

= X(w)H(w) 

S8.8 

(a) 	Using the analysis equation, we obtain


1 rT/2_ 1

Ilk = I T/ e(t)e -jk(21r/T) t dt-T 

T -T/2 T


Thus all the Fourier series coefficients are equal to 1/T.


(b) For periodic signals, the Fourier transform can be calculated from ak as 

X(w) = 21 ak w-T 
k=-00 
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In this case,


21 2rk

PM=T 6 T 

P(wj) 
21Tr 
T 

_47 _ 2n 0 2_ 4 

T T T T 

Figure S8.8 

(c) We are required to show that 

2(t) = x(t )* p(t)


Substituting for p(t), we have


x(t)* p(t) = xt * kT) 
k Ot ­

Using the associative property of convolution, we obtain 

x(t) *p(t) = T, [x(t) * b(t - kT)] 
k= -o 

From the sifting property of b(t), it follows that 

x(t)* pX)O x(t - kT) =t(t) 
k=­

Thus, x(t) * p(t) is a periodic repetition of x(t) with period T. 

(d) From Problem P8.7, we have 

X(w) = X()P(x) 
27rk 

= X(-) - -T­
k= 

2xk 
=jI -- X(w)5(c


Since each summation term is nonzero only at w = 27rk/T,


*0 27r 2rk 2xk 

i = y=) T X( T B 

From this expression we see that the Fourier series coefficients of t(t) are 

- ,ak = X 
T i T


which is consistent with our previous discussions.




9 Fourier Transform Properties 
Recommended 
Problems 
P9.1 

Determine the Fourier transform of x(t) = e-t/u(t) and sketch 

(a) 	 IX(w)I 
(b) 	 <tX(w) 

(c) 	 Re{X(w)} 

(d) 	 Im{X(w)} 

P9.2 

Figure P9.2 shows real and imaginary parts of the Fourier transform of a signal 
x(t). 

Re Ix (C) 	 ]In I(X(O)) 

-W W 	 -W W 
Figure P9.2 

(a) 	Sketch the magnitude and phase of the Fourier transform X(W). 

(b) 	 In general, if a signal x(t) is real, then X(-w) = X*(w). Determine whether x(t) 
is real for the Fourier transform sketched in Figure P9.2. 

P9.3 

Determine which of the Fourier transforms in Figures P9.3-1 and P9.3-2 correspond 
to real-valued time functions. 

(a) 
IX(W)| 4 X(co) 

CF 	 CO 

Figure P9.3-1 

P9-1
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(b) 
Rel X()t = XR (W)	 Im IX(W)= X, (W) 

2
lr 

-W 	 W I 
Figure P9.3-2 

P9.4 

(a) 	By considering the Fourier analysis equation or synthesis equation, show the 
validity in general of each of the following statements: 

(i) If x(t) is real-valued, then X(o) = X*(-c). 

(ii) If x(t) = x*(- t), then X(w) is real-valued. 

(b) 	 Using the statements in part (a), show the validity of each of the following 
statements: 

(i) If x(t) is real and even, then X(o) is real and even. 

(ii) If x(t) is real and odd, then X(w) is imaginary and odd. 

P9.5 

(a) 	 In the lecture, we derived the transform of x(t) = e -'u(t).Using the linearity 
and scaling properties, derive the Fourier transform of e -"t = x(t) + x(- t). 

(b) 	Using part (a) and the duality property, determine the Fourier transform of 
1/(1 + t2 

(c) 	 If 
1 

r(t) = 1 + (3t) 2 

find R(w). 

(d) 	 x(t) is sketched in Figure P9.5. If y(t) = x(t/2), sketch y(t), Y(w), and X(w). 

x(t) 

A 

-T 	 T 

Figure P9.5 
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P9.6 

Show the validity of the following statements: 

(a) 	 x(O) = - X(w) dw 
27r -o 

(b) 	X(O) = x(t) dt 

P9.7 

The output of a causal LTI system is related to the input x(t) by the differential 
equation 

ly(t) + 2y(t) = x(t)
dt 

(a) 	Determine the frequency response H(w) = Y(w)/X(w) and sketch the phase and 
magnitude of H(w). 

(b) 	 If x(t) = e- tu(t), determine Y(w), the Fourier transform of the output. 

(c) 	 Find y(t) for the input given in part (b). 

P9.8 

By first expressing the triangular signal x(t) in Figure P9.8 as the convolution of a 
rectangular pulse with itself, determine the Fourier transform of x(t). 

x (t) 

t 

-2 2 

Figure P9.8 

Optional 
Problems 

P9.9 

Using Figure P9.9-1, determine y(t) and sketch Y(w) if X(w) is given by Figure 
P9.9-2. Assume w, > wo. 
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x(t) I N y(t) 

cos (wet) 

Figure P9.9-1 

X(W) 

-W0 W0 

Figure P9.9-2 

P9.10 

Compute the Fourier transform of each of the following signals: 

(a) [e~a cos wotlu(t), a > 0 

(b) e 31 sin 2t 

(C) sin irt sin 2irt 
rt rt 

P9.11 

Consider the following linear constant-coefficient differential equation (LCCDE): 

dy(t) + 2y(t) = A cos wet 
dt 

Find the value of wo such that y(t) will have a maximum amplitude of A/3. Assume 
that the resulting system is linear and time-invariant. 

P9.12 

Suppose an LTI system is described by the following LCCDE: 

d'ytt) 2dytt) 4dx(t) 
dt2 + 

dt 
+ 3y(t) = 

dt 
- x(t) 
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(a) Show that the left-hand side of the equation has a Fourier transform that can 
be expressed as 

A(w)Y(w), where Y(w) = J{y(t)} 

Find A(w). 

(b) Similarly, show that the right-hand side of the equation has a Fourier transform 
that can be expressed as 

B(w)X(w), where X(w) = {x(t)} 

(c) Show that Y(w) can be expressed as Y(w) = H(w)X(w) and find H(w). 

P9.13 

From Figure P9.13, find y(t) where 

x(t) = sin(wot) 
t 

and h(t) = sin(2wot) 
t 

x(t) h(t) yt) 

Figure P9.13 

P9.14 

(a) Determine the energy in the signal x(t) for which the Fourier transform X(w) is 
given by Figure P9.14. 

(b) Find the inverse Fourier transform of X(w) of part (a). 
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P9.15 

Suppose that the system F takes the Fourier transform of the input, as shown in 
Figure P9.15-1. 

x(t) i F - y(t)=2nX(--w) 

Figure P9.15-1 

What is w(t) calculated as in Figure P9.15-2? 

xt)M F O F F 0 w(t) 

Figure P9.15-2 

P9.16 

Use properties of the Fourier transform to show by induction that the Fourier trans­
form of 

tn-i 

x(t) = 
(n -

-
1)!

1-U(t), a > 0 

1
X(w) = 

(a + jo)" 



9 Fourier Transform Properties 
Solutions to 
Recommended Problems 
S9.1 

The Fourier transform of x(t) is 

X(w) = x(t)e -jw dt = fe-t/2 u(t)e dt (S9.1-1) 

Since u(t) = 0 for t < 0, eq. (S9.1-1) can be rewritten as 

X(w) = e-(/ 2+w)t dt 

+2 
1 + j2w 

It is convenient to write X(o) in terms of its real and imaginary parts: 

X(w) 2 1-j2 2 -j4w 

1 + j2w 1 -j2wJ 1 + 4W2 

2 . 4w 

1 + 4W2 1 + 4W2 

2 
Magnitude of X(w) = /

V1 ++4w 2 

X(w) = tan-'(-2w) = -tan-' (2w) 

+2 -4w 

Re{X()} = 1+4w2 , Im{X(w)} = 1 +4W 2 

(a)
 
IX(w)I
 

2 

Figure S9.1-1 

(b) 
4X(O) 

1T 

____________________4 

21 

Figure S9.1-2 

S9-1 
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(c) 

RelX(w)t 

2 

(d) 
Im 

Figure S9.1-3 

X(o) 

Figure S9.1-4 

S9.2 

(a) The magnitude of X(w) is given by 

IX~)|I = /X2(w) + XI(W), 

where XR(w) is 
follows that 

the real part of X(w) and X(w) is the imaginary part of X(w). It 

|X(W)| = 
IwI < W, 
IwI >W 

IX(co)| 

The phase of X(w) is given by 

<X(w) = tan-' X =wtan-'(1),
'\XRGA))/ 

w i W 

Figure S9.2-1 

IWI < W 



Fourier Transform Properties / Solutions 
S9-3 

4X(w) 
iT 

| Co 

-W 	 W 

Figure S9.2-2 

(b) 	 1M+ jwIl<W
 

X(- C) = 0,L l I0
otherwise

otherwise0,1 + j, |w l < W 

0, otherwise 

Hence, the signal is not real. 

S9.3 

For x(t) to be real-valued, X(w) is conjugate symmetric: 

X(-w) = X*(W) 

(a) X(w) = X(w)|eiX(W) 
= IX(w) Icos(4IX(w)) + j IX(w) Isin(4X(x))
 

Therefore,
 

X(-o) = |X(-w)|cos(4X(-w)) + j|X(-w)|sin(4X(-w)) 
= |X(w) Icos(4X(w)) - j IX(w) Isin(4X(w)) 
= X*(W) 

Hence, x(t) is real-valued. 

(b) 	 X(w) = XR(w) + jXw)
 

X(-w) = XR(-W) +jX,(-W)
 
= XR(w) + j[ -X(w) + 2,r] for w > 0
 

X*(w) = XR(w) - jX 1(
 

Therefore, 

X*(w) X(-W) 

Hence, x(t) is not real-valued. 

S9.4 

(a) 	 (i) X(,w) = x(t)e i* dt 

We take the complex conjugate of both sides to get 

X*(w) = f-x*(t)ej-' dt 
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Since x(t) is real-valued, 

X*(W) = x(t)ei-t dt 

Therefore, 

X*(-o)= f 	 x(t)e - dt 

= X(W) 

(ii) 	 x(t) = - X(w)ej" dw 

Taking the complex conjugate of both sides, we have 

x*(t) = - X*(w)e -w"dw 

Therefore, 

x*(-) =0 X*(w)ej"" do 

Since x(t) = x*(-t), we have 

- X(co)ei" dw = -f X*(w)ejw" dw 

This shows that X(w) must be real-valued. 

(b) 	 (i) Since x(t) is real, X(w) = X*(-w). Since x(t) is real and even, it satisfies 
x(t) = x*(-t) and, therefore, X(w) is real. Hence, X(w) = X*(-w) = 
X(-w). It follows that X(o) is real and even. 

(ii) 	 If x(t) is real, X(w) = X*(-w). Since x(t) is real and odd, x(t) = 
-x*(-t); an analysis similar to part (a)(ii) proves that X(w) must be 
imaginary. Hence, X(w) = X*(- w) = -X(- c). It follows that X(w) is also 
odd. 

S9.5 

(a) 	5{e~""'} = 5{e-"'u(t) + e"'u(-t)} 
_ 1 1 

a +jw 	 a- jo 
2a 

a2 + W2 

(b) Duality states that 

g(t) -G(w) 

G(t) -21rg(-w) 

Since 

ea 2a 
e a 2 + W2, 



Fourier Transform Properties / Solutions 
S9-5 

we have 

1 c7 
1 + t2 

1 s 1 x 
(C) 1 + (3t) 2 -

3
-e since x(at) -

|al 
X 

a 
­

(d) We are given Figure S9.5-1. 

x (t) 

A 

t 

-T T 

Figure S9.5-1 

r T A 
X(w) = A e--'' dt - . (e -jwT - e )wT 

-r -Jw 

- 2j sin coT
=A w 

sin(wT)=2TA T 
eT 

Sketches of y(t), Y(w), andX(w) are given in Figure S9.5-2. 

X(<o) 

/ N 10---.--CO 

T T 

y(t) 4TA 

2T 22T 

Figure S9.5-2 



Signals and Systems 
S9-6 

Substituting 2T for T in X(w), we have 

Y(w) = 2(2T) sin(w2T) 

The zero crossings are at 

w,2T = nr, or w = n 

S9.6 

(a) x(t) = -

Substituting t 

X(w)e- t dw 

= 0 in the preceding equation, we get 

x(0) = 1 
27r --

X( ) de 

(b) X(w) = f x(t)e -jwt dt 

Substituting o = 0 in the preceding equation, we get 

X(0) =x(t) dt 

S9.7 

(a) We are given the differential equation 

dy(t) + 2y(t) = x(t)
dt 

Taking the Fourier transform of eq. (S9.7-1), we have 

jwY(w) + 2Y(w) = X(w) 

Hence, 

Y(w)[2 + jw] = X(w) 

and 

Y(w) _

H(w) = = 
X(W) 

H(w) = 1 
2 + jw 

2 
4 + (,)2 

1 
2 + jw' 

= 1 c 2 - jo
2+j 2-jo) 

-1 3 + x2 ' 

2 - jw 

4 + W2 

(S9.7-1) 
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S9-7 

4 S2 ) 4 +2 
IH(W)1 2 = (4 + c2)2 + 

(4 + W2)2 (4 + W2)2> 

IH(w)I = 
\4 + W2 

(b) We are given x(t) = e~'u(t). Taking the Fourier transform, we obtain 

1 
X(W)= 1+j., Hx)= 2 +jW 

Hence, 

( 1 1 1 1 

+ j)(2 + j) 1 + jo	 2 + jo-(1 

(c) 	 Taking the inverse transform of Y(w), we get 

y(t) = e-u(t) - e -2u(t) 
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S9-8 

S9.8 

A triangular signal can be represented as the convolution of two rectangular pulses, 
as indicated in Figure S9.8. 

Since each of the rectangular pulses on the right has a Fourier transform given 
by (2 sin w)/w, the convolution property tells us that the triangular function will 
have a Fourier transform given by the square of (2 sin w)/w: 

4 sin2 w 
X(()) = 

(0).)2 

Solutions to 
Optional Problems 
S9.9 

We can compute the function x(t) by taking the inverse Fourier transform of X(w) 

x(t) = ±
27r f-. 

ire'' dw 

2 (ei- et~(j) 
sin oot 

t 

Therefore, 

[sin (wot) 1
y(t) = cos (wet) s I 

I t I 



Fourier Transform Properties / Solutions 
S9-9 

From the multiplicative property, we have 

Y(w) = X(W) * [r(o - W) - 7r(WO + (0,] 

Y(o) is sketched in Figure S9.9. 

I T2C Iw 
cj - W() Wc Wc ± W()ic 

0
C Cj C

0 u cj( ± (W) 

Figure S9.9 

S9.10 

(a) 	x(t) = e - cos wotu(t), a > 0
 
= e -"'u(t)cos(wot)
 

Therefore, 

X(w) 	= . * [7r(w - wo) + 76(w + WO)]
2r a 	+ Jw 

1/2 1/2 
a + j(W - WO) a + j(w + wo) 

(b) 	 x(t) = e -31' sin 2t
 
1 6
 

e- 3itiI 9 	+ w2 

sin 2t -	 [6(- wo) - 6(w + wo)], wo = 2 

Therefore, 

X(w)X()=1 (6 2 . + Wo)]= - 2)* 7-[S(o - wo) - b(W
21r 9 + w2 3 

j3 j3 
9 + (w + 2)2 9 + (w - 2)2 

(c) x(t) 	= 	sin wt (sin 2wt 

1 
X(W) 	 = - XI) * X2(W),21 

where 

Xi(w)XM=1, IwI < 7, 
= 

0, otherwise 

IwI < 27, 
= l 

X2(W) 
10, otherwise 
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S9-10 

Hence, X(w) is given by the convolution shown in Figure S9.10. 

XI) X2 (W) 

T 

-w­

7T 

- o---I 

X(W) 

-21T 27T 

-3 -2r -7 	 F r 2r 3 

Figure S9.10 

S9.11 

We are given the LCCDE 

dy(t) 
dt +±2ytt)=Acos oot 

We can view the LCCDE as
 

dy(t) + 2y(t) 
= x(t),
dt 

the transfer function of which 	is given by
 

1
 
H(w) = . and x(t) 	= A cos oot

2 + j 

We have already seen that for LTI systems, 

y(t) = |H(wo)I A cos(oot + 4), where # = <H(wo) 

1 
= \4 -+wA cos(wot + 	 $) 



Fourier Transform Properties / Solutions 

S9-11 

For the maximum value of y(t) to be A/3, we require 

1 _1 

4 0+w9
 
Therefore, wo = ± 5 

S9.12 

(a d2y(t) 2dy(t) 
+ 3y(t) = -w 2Y(W) + 2jwY(w) + 3Y(w)(a) 51 dt2 + dt 

= (-W2 + j2w + 3)Y(o), 

A(w) = -o 2 +j2w + 3 

(4dx(t)
(b)~ 3dt x(t) I = 4jwX(w) - X(w) 

= (j4w - 1)X(w), 

B(o) = j4w - 1, 

A(w)Y(w) = B(w)X(o), 

B(o)
Y(W) = A(w) X(x) 

= H(o)X(w) 

Therefore, 

- B(w) -1 + j4w
H(o) 

A(w) -W 2 + 3 +j2w
 
1 - j4w
 

2 _ 3 -j2w
 

S9.13 

sin W t 

-W W 

Figure S9.13-1 

X(w)
 

sin 0 t 

it 

-W0 0 

Figure S9.13-2 
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S9-12 

H(w) 

sin (2o 0t)
h(t)=i r t 

-2w0 

Figure S9.13-3 
2w0 

Y(w) = X(W)H(w) = 

Y(w) 

7r 
2 

-wo 
-o0 

Figure S9.13-4 

ww 
"0 

Therefore, y(t) = sin(ot)
t 

S9.14 

(a) Energy = -27r |X(W)|2 dw 
-o 

Area = (4)(2) + (2)(1)(1) 
= 10 

5 
Energy = -

Tr 
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S9-13 

(b) 

1 	 1 

-1 1 -2 	 2 

Figure S9.14-2 

sin t sin 2t 
irt rt 

S9.15 

Given that 

yi(t) 	= 2rX(-w)|, 

we have 

yi(t) = 2 1 x(u)ejtu du 

Similarly, let y2(t) be the output due to passing x(t) through F twice. 

Y2) 	 = 21-0 21f x(u)evu du eitv dv 

= (21r)2 fw -Gx(u) fv eft+u)vdv du 

= (2_)2 f -0 x(u)(27r)b(t + u) du 

= (21)' X(-t ) 

Finally, let y(t) be the output due to passing x(t) through F three times. 

yAt = w(t) = 271- (2 7r)x(-u)ej'"du 

= (21r)'f e -'u x(u) du 

= (2.)'X(t) 

S9.16 

We are given 

x(t) = n- e -'u(t), a > 0 
(n - 1)! 



Signals and Systems 
S9-14 

Let n = 1: 

x(t) = e~"'u(t), a > 0, 
1 

X(w) = 
a + jw 

. 

Let n = 2: 

x(t) = te~"u(t), 

X(w) = j - . since tx(t) d-j-X(w)dwa +jw dw 
__ 1 

(a + jw)2 

Assume it is true for n: 

1-atu(t),x(t) = 
(n - 1)! e~"' 

1 
X(w) = 

(a + jw)" 

We consider the case for n + 1: 

x(t) = - e- at)
n! 
j d 1 1X(w) = d (a +jw) 
n 

_j d
do [(a + j,)"n 

n dw 

= (-n)(a + jo)-"-Ij
n 

1 
(a + jo)"+I 

Therefore, it is true for all n. 
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