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CHAPTER

Signal and System Modeling Concepts

1-1 Introduction

This book deals with syszems and the interdction of signals in systems. A system, in its most general
form, is defined as a combination and interconnection of several components to perform a desired task.t
Such a task might be the measurement of the acceleration of a rocket or the transmission of a message
from New York to Los Angeles. The measurement of the acceleration might make use of visual obser-
vation of its position versus time. An equally unsophisticated solution to the message delivery problem
might use a horse and rider. Obviously, more complex solutions are possible (and probably better). Note,
however, that our definition is sufficiently general to include them all.

We will be concerned primarily with /inear systems. Such a restriction is reasonable because many
systems of engineering interest are closely approximated by linear systems and very powerful tech-
niques exist for analyzing them. We consider several methods for analyzing linear systems in this book.
Although each of the methods to be considered is general, not all of them are equally convenient for
any particular case. Therefore, we will attempt to point out the usefulness of each.

A signal may be considered to be a function of time that represents a physical variable of interest as-
sociated with a system. In electrical systems, signals usually represent currents and voltages, whereas
in mechanical systems, they might represent forces and velocities (or positions).* In the example men-
tioned above, one of the signals of interest represents the acceleration, but this could be integrated to
yield a signal proportional to velocity. Since electrical voltages and currents are relatively easy to
process, the original signal representing acceleration, which is a mechanical signal, would probably be
converted to an electrical one before further signal processing takes place. Examples illustrating these
remarks will be given in the next section.

Just as there are several methods of systems analysis, there are several different ways of represent-
ing and analyzing signals. They are not all equally convenient in any particular situation. As we study
methods of signal representation and system analysis we will attempt to point out useful applications
of the techniques.

So far, the discussion has been rather general. To be more specific and to fix more clearly the ideas
we have introduced, we will expand on the acceleration measurement and the message delivery prob-
lems already mentioned.

"The Institute of Electrical and Electronics Engineers dictionary defines a system as “an integrated whole even though com-
posed of diverse, interacting structures or subjunctions.”

*More generally, a signal can be a function of more than one independent variable, such as the pressure on the surface of an
airfoil, which is a function of three spatial variables and time.
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7 2 Examples of Systems Solution:
{ (a) The force, Ma, on the weight due to acceleration is baianced by the force, Kx, due to the spring
A AMPLE 1-1 tension. Thus
[ An accelerometer, consisting of a spring-balanced weight on a frictionless slide, is shown schemat- Ma = Kz (a-n
ically in Figure 1-1. It is to be used to measure the longitudinal acceleration of a rocket whose ac- o
celeration profile is shown in Figure 1-2a. (a) If the weight used to indicate acceleration is 2 g, where x is the departure from the equilibrium position, taken to be x = 0, M is the mass of the
Hdetermine the Spring constant K such that the deparmre of the Wﬁighl from its qullhbrlllm pOSitiOﬂ weight’ K is the Spring constant, and a represgnts acceleration of the rocket. Sl)l\-"lﬂg for K, we
at the maximum acceleration of 40 m/s2, achieved at ¢ = 72 s from launch, is 1 cm. (b) If a minimum obtain
increment of 0.5 mm of movement by the weight can be detected, to what minimum increment of 3
acceleration does this correspond? (c) Derive the profile for the longitudinal velocity of the rocket K= Mayq, = (0.002 kg)(40 m/s") = 8 kg/s? (1-2)
and sketch it. X max 0.01 m
. (b) With Ax,;, = 0.5 mm = 0.0005 m, we have
I i K Axp,  (8)(0.0005)
RTET 3 { Aa_, = = =2 m/s? 1-3
' X\\\&\\\\\‘G&S\\\\\\ \ : : 0 M 0.002 / e
§ ‘ 1 \ ! (¢) Fort = 0, let the acceleration as a function of time be represented as*
W—o— M—uu—\ : _[a =g
i t)= 1-4
§ § | W=\o, >4 -
‘1) \ ‘ where t, = 72 s and o = 5/9 m/s? for this example. The velocity is obtained by integration of
! 2
- _|at?f2, t=4
FIGURE 1-1. System for measuring the acceleration of a rocket. , v, (1) = o2/2, >0, (1-5)
' Using the given value for e, the velocity at ¢ = ¢, (burnout) is
i 5 (72 _
40 | v, (72) = 9 2 - 1,440 m/s = 4,724 ft/s = 3,221 mi/hr (1-6)
2 i
:E: i : The velocity as a function-of time is shown in Figure 1-2b.
L > 1,5 EXAMPLE 1-2
0 36 72 ) ] ]
tal Accelerition profile 3 To determine velocity by means of the accelerometer of the previous example, an operational am-
plifier integrating circuit is used as shown in Figure 1-3. The wiper of the potentiometer at the in-
put is tied to the accelerometer weight and can provide a maximum input voltage of 0.1 V depending
1500 : on whether the acceleration is positive or negative. The operational amplifier is ideal (infinite in-
. put resistance and infinite gain). However, its maximum output is limited to 10 V. Choose RC such
W N ! that the operational amplifier output will not be overdriven for the maximum velocity expected (as-
: i sume R, < < R).
J g - Solution: Kirchhoff’s current law at the node joining R, C, and the amplifier input can be ex-
pressed as
1 i >[5 vy — U d
0 36 72 Rl + C&r (v, —vy) =0 (1-7)

(b) Velocity profile
FIGURE 1-2. Acceleration and velocity profiles for rocket.

"But for a few exceptions, the signals in this chapter are assumed to be zero for 1 < 0.
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. c
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FIGURE 1-3. Integrator circuit used to determine velocity from the accelerometer analyzed in Example 1-1.

However, v, = 0 at the negative input of the operational amplifier since its infinite gain consl:rail:!s
voltages at its inverting and nonintverting inputs to be approximately equal, and the positive input is
grounded. Thus Kirchhoff’s current law equation, when rearranged, simplifies to

e T TSP R——
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alt)
6
a(6T) |
5 | a(7T)
I
]
4 - | [
Trapezoidal
(N a(3T) | -«-1""’ rule: area
I | | | for this
| I | { T step is
a(2T) | Rectangular | 2 [a(6T) + a(1T)]
2 ”J(/ rule:area || 2
| | for this | |
- -
1 | | Ta(3T) 1 |
[ | |
0 | ] | L ] | |

1
0 T 2T it 4r 5T 6T T

(1

FIGURE 1-4. lllustration of discrete-time integration rules.

Wi ot = 3y
vo(t) = — o v,(A) dA (1-8) where v(nT) is the approximation to the velocity at sampling time nT, T'is the sampling interval, and
0 a(nT) s the acceleration at sampling time nT. If trapezoidal integration is used, the area under a curve
where the capacitor is assumed initially uncharged. From the previous example, we take the voltage is approximated as a sum of contiguous trapezoids of width T seconds. The algorithm for finding the
at the potentiometer wiper to be velocity from the acceleration in this case is given by
v () = B, O=st=1y (1-9) i ol(n + 1)T] = U(nT) + {a(nT) + al(n + DTINTR) (1-13)
where v (t,) = 0.1 V, giving 8 = 0.1/72 = 1.4 X 1073 V/s. Thus, at t,, the operational amplifier out- |
put veltage is . TABLE 1-1
: 2 Numerical Resuits for Example 1-2
vo(ty) = oo | (1-10)
RC 2 n nT,s v(nT), rect. v(nT), trap.
Setting this equal to —10 V, which is the constraint imposed by the operational amplifier at its out- 5 5 . :
put, and solving for RC, we obtain R 1 4 8.9 Lk
2 2 2 8 26.7 17.8
2
re = Bo _ QU72)@2)° _ (¢ (1-11) 3 12 53.3 40.0
20 20 . 4 16 88.9 711
‘ _ 5 20 1333 111.1
= Cis 7.2 pFE.
For R = 50 k{2, the required value of C'is 7.2 pu 6 24 186.7 160.0
T 28 248.9 217.8
EXAMPLE 1-3 8 32 320.0 284.4
. : . ; ional 9 36 400.0 360.0
Another way to carry out the integration operation of the previous example (ql‘ 31!)’ signal process- 10 40 488.9 444.4
ing function, for that matter) is by sampling the voltage analog to the acc.elerauon signal 6&01'.1 T sec- 1 a4 5867 Hivk
onds, quantizing the samples so that they can be represented numerically, and pgrfor{mng the 12 48 693.3 £40.0
integration numerically. It will be shown in Chapter 8 that all the information present in a signal can (3 52 808.9 7511
be represented by sample values taken sufficiently often if the signal is bandlimited (a term to be pre- 14 56 933.3 8711
cisely defined later). Two simple integration methods that might be used are the rectangular and 15 60 1066.7 1000.0
trapezoidal rules. These are illustrated in Figure 1-4, The former approximates the area unde.r acurve i 16 64 1208.9 1137.8
as the sum of a series of “boxcars” or rectangular areas, and can be carried out as the algorithm g :; ?3 Ilgggg 1234_3
i . 1440,
o[(n + 1)T] = o(nT) + Tal(n + 1)T] (1-12) i
§
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I Note that these algorithms are recursive in that the next approximate value for the velocity is com-
puted from the old approximate value plus the sample value for the acceleration. The recursive struc-

( ure can be removed by writing the equations forn = 0, 1, 2, . . . and doing a substitution of the one

( for n = 0 into the one for n = 1, then this result into the one for n = 2, and so on. In the case of the

trapezoidal rule, two sample values for the acceleration are used—the present one and the immedi-

( 1te past one. Note, also, that the T in the argument of the various sampled signals is unnecessary—
the index n is the independent variable. More will be said about integration algorithms in Chapter 9.
To finish this example, we give a table of values for both algorithms. Note that for the acceleration

[ profile shown in Figure 1-2, the trapezoidal rule gives exact results. Had the acceleration profile not

~ been linear, this would not have been the case.

( The starting point of any systems analysis or design problem is a model which, no matter how
fined, is always an idealization of a real-world (physical) system. Hence the result of any sys-
tems analysis is an idealization of the true state of affairs. Nevertheless, if the model is sufficiently
( urate, the results obtained will portray the operation of the actual system sufficiently accurately
t~be of use.
( The previous examples illustrate the concept of a system and the design of systems to accomplish desired
( ks. Each example involved the concept of a signal. In Example 1-1, the signal was the displacement of the
acceleration measuring weight. This was coupled to the operational amplifier system of Example 1-2 to pro-
—..ce voltage signals, one proportional to acceleration and the other proportional to velocity.
Another concept demonstrated by the first two examples is that of a subsystem. When taken sepa-
rately, we can speak of each as a system, whereas both taken together also compose a system. To avoid
_nfusion in such cases, we refer to the separate parts (accelerometer and signal-processing integrator
(' this case) as subsystems. The third example illustrated the idea of digital signal processing, a con-
cept explored later in the book.
( After considering one more example, which is somewhat different from the first three, the remain-
tar of this chapter will be concerned with an introduction to usefidl signal models. In Chapter 2, meth-
uds for describing and analyzing systems in the time domain will be examined. Throughout the rest of
(e book we consider other methods of signal and system analysis.

— - —

{ _XAMPLE 1-4 Communications Link

( Figure 1-5 is a pictorial representation of a two-way communications link as might exist, for ex-
( ample, between New York and Los Angeles. It might consist entirely of earth-based links such as
| wire lines and microwave links. Alternatively, a relay satellite could be employed. Regardless of the
( particular mechanization used, the systems analyst must decide on the most important aspects of the
| physical system for the application and attempt to represent them by a model.
( | Let us suppose that the link employs a synchronous-orbit satellite repeater, stationed 35,784 km
( above the earth’s equator. At this altitude the satellite is stationary with respect to the earth’s sur-
| face since the period of the satellite’s orbit is equal to one day. Let us also suppose that the analyst
( is concerned primarily about echoes in the system due to reflections of the electromagnetic-wave
( carriers at the satellite and at the receiving ground station. Assume that the transmitter and receiver
| are equidistant at a slant distance d = 40,000 km from the satellite, and that the delay (up or
{ down) is
( __d _ (40,000 km)(1000 m/km)
| ¥ 3 X 1P m/s

P, C

| =013s
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Satellite
repeater

ax(r—r)

7 afx(t—27) I/

Y. LA

L

FIGURE 1-5. Satellite communications link.

where ¢ = 3 X 108 m/s is the velocity of electromagnetic propagation in free space. The slant dis-
tance d accounts for the satellite being located above the earth’s equator midway between the

ground stations, each of which is assumed to be at a latitude of 40° north. The signal received at
the satellite is

Se(8) = ax(t — 1), r=t=T+r (1-14a)

where x(f) is the transmitted signal and [0, T) is the interval of time over which the transmission takes
place. The parameter « is the attenuation, which accounts for various system characteristics as well
as the spreading of the electromagnetic wave as it propagates from the transmitter antenna. A por-

tionlof S4a(?) is reflected and returned to the New York ground station terminal to be received by the
receiver at that end; we represent it as

Senlt) = afx(t — 27), (1-14b)

whtj.re B is another attenuation factor. The remainder of s, () is relayed to the Los Angeles ground
station after processing by the satellite repeater. A portion of this signal may be reflected, but we will
assume its effect to be negligible compared to that of afBx(¢ — 27) when received at the New York
station. Thus a speaker at New York will hear

s(t) = x(1) + apx(r — 27), (1-15)

That is, the speaker will hear his undelayed speech as well as an attenuated version of his speech de-
layed by approximately

2r=t=T+ 27

0=t=T+ 27

AT=2r=026s

‘Psychologic:ally, .th‘e effect of this can be very disconcerting to a speaker if the delayed signal is suf-
ficiently strong; it is vuftually impossible for the person to avoid stuttering. Thus a systems analyst
would proceed by relating « and B to more fundamental systems parameters and designing for an
acceptably small value of af.

L VERSIDADE FEDERAL DO PARA
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8 Ch.1 / Signal and System Modeling Concepts
1-3 Signal Models

Examples of Deterministic Signals
In this book we are concerned with a broad class of signals referred to as deterministic. Deterministic
signals can be modeled as completely specified functions of time. For example, the signal
AL
D= ——=
® B+

where A and B are constants, shown in Figure 1-_6a,/is a deterministic signal. An example of a deter-
ministic signal that is not a continuous function of time is the unit pulse, denoted as I1(¢) and defined as

I(r) = {1' "=

0, otherwise

—m<t<® (1-16)

(1-17)

1t is shown in Figure 1-6b.

A second class of signals, which will not be discussed in this book, are random signals. They are sig-
nls taking on random values at any given time instant and must be modeled probabilistically. A ran-
dom signal is illustrated in Figure 1-6¢. 3

Continuous-Time Versus Discrete-Time Signals

The signals illustrated in Figure 1-6 are examples of continuous-time signals. It is important to note that
“continuous time” does not imply that a signal is a mathematically continuous function, but rather that
it is a function of a continuous-time variable.

In some systems the signals are represented only at discrete values of the independent variable (i.e.,
time). Between these discrete-time instants the value of the signal may be zero, undefined, or of no in-
terest. An example of such a discrete-time or sample-data signal is shown in Figure 1-7a. Often, the in-
tervals between signal values are the same, but they need not be.

A distinction between discrete-time and quantized signals is necessary. A quantized signal is one
whose values may assume only a countable! number of values, or levels, but the changes from level to
level may occur at any time. Figure 1-7b shows an example of a quantized signal. A real-world situa-
tion that can be modeled as a quantized signal is the opening and closing of a switch.

Discrete-time signals will be considered in Chapter 8. The following example provides an illustra-
tion of two such signals.

EXAMPLE 1-5

Two common discrete-time signals are the unit pulse and unit step signals. The first is defined by the
equation*

1 n=>0
8nl=4. : 1-18
(7] {0, otherwise (18
and the second by the equation
: 1 n=0
— ki 1-19
uln] { 0, s (1-19)

where n takes on only integer values.

A countable set is a set of objects whose members can be put into one-to-one correspondence with the positive integers. For
example, the sets of all integers and of all rational numbers are countable, but the set of all real numbers is not.

*The brackets are used to indicate a discrete-time signal.

T Tt o m
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x(t)

A=2;8=1

=3 _a _; t
(a) Signal of Equation I-16
(e
y ]f_-"-__| 1
| |
I I
:'l t ' .
o 4
(b) Unit pulse signal
4 T T T T T T T T T
ol ..
; [ I | Il
Ot I I
| I | : | 1
2L
4 1 1 ! ] L L ! 1 1
0 1 2 3 4 5 6 7 8 9 10

t
(c) Random signal

;I;I;IFIE 1-6. Graphical representation of two deterministic continuous-time signals and a random

O.th_er discrete-timt:: signals may be built from these elementary signals. For example, a pulse con-
sisting .of five 1's in a row starting at n = 0 and ending at n = 4 and 0’s elsewhere may be repre-
sented in terms of the discrete-time unit step as

1, O=n=4
0, otherwise

pln] = u[n] — uln — 5] = {

The student should veri fy this by sketching uln], u[n — 5], and their difference.
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xg(1)

,.--r"“T-m
i e 0
| T.--- T | | | | Y
| | | | | | | |
| | | I | | | |
l | | ] ] i | | ¢
(a) Sample-data signal
xq(t)
Z""___'__"—I'”'I
- L] 1
m |
- ;
r l I '
0 1t ty fa s Ig fy ]

(b) Quantized signal

EIGURE 1-7. Sample-data, or discrete-time, and quantized signals.

Periodic and Aperiodic Signals
3 A signal x(r) is periodic if and only if

X Xt + Ty = 300, (1-20)

—oo < [ < o0

alue of T, such that (1-20) is satisfied is referred to

? where the constant T, is the period. The smallest v
referred to as the period. Any deterministic signal

as the fundamental period, and is hereafter simply
not satisfying (1-20) is called aperiodic.
A familiar example of a periodic signal is

x(r) = A sin(2mfyt + 6),

and @ are constants referred to as the amplitude, frequency in hertz,t and relative phase, re-
= 27f, is sometimes used, where w, is the frequency in rad/s. The period
1/f,, which can be verified by direct substitution and use of trigonomet-

a sinusoidal signal that may be expressed as

— << (1-21).

where A, fi,
spectively. For simplicity, oy

of this signal is Ty = 27w, =
ric identities as follows. We wish to verify that

x(f 4 :—ZE) = x(f), allt (1-22)
(r.)o
But
2
x(r + 2—”) =A sin[wo(r + —w) + 6]
ay L Wy
= Asin(ayt + 27 + 6)

(1-23)

= Alsin(wyt + 8) cos 27 + cos(wt + g) sin 2]

1One hertz is one cycle per second.

T RN S
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2mfeag

(a) Sinusoidal signal

X (0

at

=

(b) Triangular signal

xg (1)

A\

gt ) L

e o7
P

(c) Sawtooth signal
FIGURE 1-8. Various types of periodic signals.

?‘mfgi;).ri, 2_11' =1 and s‘m 27 = 0, the required relationship for periodicity is verified. Note that

Ty o 18 Fhe smallest value of T, such that x(1) = x(r + T). Several types of periodic signal

lllu_s[;hirated in Figure 1-8 together with the sinusoidal signal. y it i

tweene t;:::l n:: t\a;(:. or more sinusoids may or may not be periodic, depending on the relationships be-

e pective per.lods or frequencies. If the ratio of their periods can be expressed as a rational
er, or their frequencies are commensurable,* their sum will be a periodic signal

*Two frequencies, f; and f, if
2 . fi and f;, are commensurable if they have a common i i i i
each an integral number of times. Thus, if £, is the largest such number, i L G S

fi=nf and fr = nyofy

where n, and n, are integers; f, is called th i
e 4 blel,.r'r: " :;__,M I‘, u e fundamental frequency. The periods, T, and T, corresponding to f, and f,, are there-
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12 Ch. 1 / Signal and System Modeling Concepts
EXAMPLE 1-6

Which of the following signals are pericdic? Justify your answers.
(a) x,(t) = sin 1072

(b) x,(r) = sin 20w

{c) xy(t) =sin3ls

(@) x,(0) = x,(0) + x(8)

(&) x5() = x,(8) + x35(D)

Solution: Only (g) is not periodic. To show that waveforms x,(£), x,(f), and x;() are periodic, we
note that

/) A
sin(wyt + ) = sin wo(r + :,;) = sin wyt (1-24)

if @ is an integer multiple of 2ar. Taking the smallest such value of 8, we see that the (fundamental)
period of sin(awyt + 6) is ' AR

5 :
S (1-25)
gy

Thus the periods of x,(1), x,(f), and x,(1) are 1/5, 1/10, and 27/31 ) respegtively.

The sum of two sinusoids is periodic if the ratio of their respective periods can be expressed as a
rational number. Thus x,(#) is periodic. Indeed, we see that the second term goes through two cycles
for each cycle of the first term. The period of x,(r) is therefore 1;":.3 8.

After a little thought, it is apparent that there is no 7, for which x5(2) - xs(t + 7o), becalfse the
ratio of the periods of the two separate terms is not a rational number (i.e., their frequencies are
incommensurable).

Phasor Signals and Spectra

Although physical systerms always interact with real signals, it is often mathematically convenient to
represent real signals in terms of complex quantities. An example of this is the use of phasors. The stu-
dent should recall from circuits courses that the phasor quantity

X = A = A6 (1-26)
is a shorthand notation for the real, sinusoidal signal'
x(f) = Re(Xe/™) = A cos(wyt + 6), —oo <t <o (1-27)
We refer to the complex signal
x(1) = Aefw9, —n<t<®
= Xe/™ (1-28)

We could also project the sinuscidal signal onto the imaginary axis. Projection onto the real axis is used throughout this book,
however.

ey A I i T v

PERC SES

o e
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as the rotating phasor signal.! It is characterized by the three parameters A, the amplitude; 6, the phase;
and wy > 0, the radian frequency. Using Euler’s theorem, which is exp(ju) = cos u + j sin u, we may
readily show that X(¢) is periodic with period 7, = 2/ Wyt

In addition to taking its real part, as in (1-27), to relate it to the real, sinusoidal signal A cos (wyt + 6),
we may relate x() to its sinusoidal counterpart by writing

x(1) = 3%(1) + Lex(r) (1-29)

= A ot L A ) o cw

2 2 ?
which is a representation in terms of conjugate, oppositely rotating phasors. These two procedures, rep-
resented mathematically by (1-27) and (1-29), are illustrated schematically in Figure 1-9. These ex-
pressions for x(r) = A cos{awyt + 6) are referred to as time-domain representations.

Note that (1-29) can be thought of as the sum of positive-frequency and negative-frequency rotating
phasors. This mathematical abstraction results from the fact that it is necessary to add complex conju-
gate quantities to obtain a real quantity. It is emphasized that negative frequencies do not physically ex-
ist, but are merely convenient mathematical abstractions that result in mnicely symmetric equations and
figures such as (1-29) and Figure 1-9b,

A rotating phasor signal is not necessarily associated with any physical quantity that rotates. It is simply a mathematical con-
venience to represent sinusoids by the Re(-) operation.

*Complex algebra basics: Many times students will do more work than necessary in complex algebra manipulations. This
footnote hopefully will give some pointers to minimize such manipulations. A complex may be rep d in the alter-
native forms of cartesian and polar;

X=a+jb=Re®=Rcos @+ R sinp

where a is its real part, b its imaginary part, R its magnitude or modulus, and @ its argument or angle. The latter equation follows
by virtue of Euler’s relationship, or exp(j#) = cos(f) + j sin(6). Matching real and imaginary parts, we see that Re(X) = a =
R cos(#) and Im(X) = b = R sin(#), where Re(-) and Im(-) denote the real and imaginary parts, respectively. The inverse rela-
tionships are R = (a? + 5?12 and = tan~'(b/a). Most programmable calculators have built-in routines for going back and forth
between the cartesian and polar forms. Consider a second complex number, defined by

Y =c¢+ jd = Sei* = S cos ¢ + j§ sing
Addition and subtraction are facilitated with cartesian representation; i.e.,
XZ1f'=(a+jb)i(c+jd)=(a:c‘)+j(btd)

Multiplication and division may be carried in either cartesian or polar form, but usually the polar form is most convenient. For
example, multiplication in cartesian form becomes £

XY = (a + jb)c + jd) = (ac + j2bd) + jlbe + ad) = (ac — bd) + j(bc + ad)
where /2 = —1 has been used. In polar form, multiplication is more simply performed as
XY = (Re/)(Sei#) = RSeX# = RS cos( + ¢) + jRS sin(8 + ¢b)
Division in cartesian form is facilitated by the process of rationalization as
X @b =La+jb)(c—jd}_ (ac + bd) + j(bec — ad) _ac+bd | bc—ad

Y c+jd (c+jd)c—jd) +d? crat e
This fairly lengthy process is shortened considerably by rep ion of the s in polar form:
X _Re* R

: R R
= _ o Ty 2 s i
Y sk s¢ G cos(B — ) + j G sin(@ — ¢)

As a numerical example, consider X = 8 + j6 and ¥ = 3 + j4. Their sum is (8 +j6) + (3 + j4) = 11 + j10 and their difference
is (8 +j6) — (3 + j4) = 5 + j2. Their product computed in cartesian form is (8 + j6)3 + j4) = (24 — 24) + j(18 + 32) =
J30. In polar form it is {10 expltan~'(3/4]) {5 exp[tan=1(4/3)]} = 50 exp(jn/2) = J50. Their quotient in polar form is
{10 exp[tan=1(3/4)]}/(5 exp[tan—'(4/3)]} = 2 expj{tan—!(3/4) — tan~'(4/3)]} = 2 exp[—j0.284] = 1.92 — j0.56, which fol-
lows by Euler’s relation. If the rationalization procedure is used, the same result in cartesian form is obtained.

R R R A - S S S T LD A _: m——y
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< wyt + 0 I
L Re
A cos (wot +8) |
(a) Projection of a phasor onto the real axis
Im
L3
.‘"‘\
— Re
//
A cos (wpt +8)

h

(b) Addition of lex conj P
FIGURE 1-9. Two ways of relating a phasor signal to a sinusoidal signal.

An alternative representation for x(r) is provided in the frequency domain. Since x(® =
A explj(wyt + )] is completely specified by A and 0 for a given value of f, this alternative frequency-
" domain representation can take the form of two plots, one showing the amplitude A as a function of fre-
quency £, and the other showing # as a function of f. Because X(1) depends only on the single frequency f;,
the resulting plots each consist of a single point or “line” at f = f;, as illustrated in Figure 1-10a. Had we
considered a signal that is the sum of two phasors, each plot would have had two points or lines presfent.
The plot of amplitude versus frequency is referred to as the single-sided amplitude spectrum. The modifier
“single-sided” is used because these spectral plots have points or lines only for positive frequencies.

If a spectral plot corresponding to (1-29) is made, spectral lines will be present at f = f afxd at
f= —f, since x() is obtained as the sum of oppositely rotating phasors. Spectral plots for the single
sinusoidal signal under consideration here are shown in Figure 1-10b. Such plots are referred to as
double-sided amplitude and phase spectra. Had a sum of sinusoidal components been present, the spec-
tral plots would have consisted of multiple lines. Note that because of the convention of taking the real
part [see (1-27)], any signal expressed as a sine function must first be converted to a cosine function be-
fore obtaining the spectrum. For this purpose, the identity sin(wyf + 6) = cos(wyt + 8 — /2) is useful.

It is important to emphasize two points about double-sided spectra. First, the lines at negative fre-
quencies are present precisely because it is necessary to add complex conjugate phasors to obtain the real
sinusoidal signal A cos(wyt + 6). Second, we note that the amplitude spectrum has even symmetry about

P

£ A

S
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Amplitude Phase
ALl 1
r i/ — 1
! I
I |
| |
1 f t f
a fo 0 fo
(a) Single-sided
Amplitude Phase
3 i m B
e = :
: : 5 B
f f ! f— + f
e 0 fo I! 0. fo
I
I
{ SO — i

(b) Double-sided

FIGURE 1-10. Amplitude and phase spectra for the signal A cos(w,t + 6).

the origin, and the phase spectrum has odd symmetry. This symmetry is again a consequence of x(¢) be-
ing a real signal, which implies conjugate rotating phasors must be added to obtain a real quantity.
Figures 1-10a and b serve as equivalent spectral representations for the signal A cos(wyt + 8) if we are
careful to identify the spectra plotted as single-sided or double-sided, as the case may be. We will find later
that the Fourier series and Fourier transform lead to spectral representations for more complex signals.

.

EXAMPLE 1-7
‘We wish to sketch the single-sided and double-sided amplitude and phase spectra of the signal

x(f) = 4sin(20m—%), —o < <o
To sketch the single-sided spectra, we write x(£) as the real part of a rotating phasor and plot the
amplitude and phase of this phasor as a function of frequency for r = 0. Noting that cos(u — #/2) =
sin u, we find that

x(1) =4 cns(ZOm — = —)

= 4005(20111 — 232)

- Refaexpj{20m - 27) |}

(1-31)

FEDERAL DO PARA
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Phase shift
Amplitude (radians)
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4 ? 0 i f,Hz
|
2 | I
' fHz |
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S
(a) Single-sided
Amplitude
' 21 1
I ! ‘i
4 4 f,Hz
—10 (1] 10
Phase (radians)
2_1
1 3
|
I
|
! 10
; +— /. Hz
]
—l0 |
|
1
2 i
.__3.,-_.'..

(b) Double-sided
FIGURE 1-11. Amplitude and phase spectra for Example 1-6.

which results in the amplitude and phase spectral plots shown in Figure l-l.la. To p]ot‘the double-
sided amplitude and phase spectra, we write x(f) as the sum of complex conjugate rotating phasors.
Recalling that 2 cos u = exp(ju) + exp(—ju), we obtain

. 2 | 20 G
x(t) =2 cxp{;(ﬂ]m‘ = ?)] + Zexp[-—;(Z(}m = ?)] (1-32)
from which the double-sided amplitude and phase spectral plots of Figure 1-11b result.
EXAMPLE 1-8
As an example involving a sum of two sinusoids, consider the spectrum of the signal
x(1) = 2 cos(107t + w/4) + 4 sin(307r — 7/6) (1-33a)

T A O T W
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Changing the second term to a cosine function gives

x(1) = 2cos(10mt + w/4) + 4 cos(30m — w/6 — m/2)
= 2 cos(107t + 7/4) + 4 cos(30m — 27/3)

This can be written in terms of the real part of the sum of rotatin
the single-sided spectra as

(1-33b)

g phasors in preparation for plotting

x(1) = Re[2ei10m+miay 4 4ej(30'm'—2m’3J]

(1-33c)
In order to plot the double-sided spectra, we write the signal as a sum of counterrotating phasors as

x(t) = eiI0m+ma) + o={10m+wie) 4 I pi30m—2uf3) 4 D -{30m—2m13) (1-33d)

Single-sided and double-sided spectral plots are shown in Figure 1-12.

Singularity Functions

An important subclass of aperiodic signals is the singularity functions, which we now discuss. We be-
gin by introducing the unit step and unit ramp functions and using them to represent more complicated
signals, such as in the acceleration in Example 1-1.

Consider the unir step function, u_ (1), defined as

0, <0

ww=u,p={} !5 (1-34)

The value of u(r) at t = 0 will not be specified at this time except to say that it is finite. Other singular-
ity functions are defined in terms of u_,(7) by the relations

() =f w(Md\, i=...,-2,-1,0,1,2... (1-35a)
Amplitude Amplitude
4[
2' l i 2
o 5 s (R
0 5 R AR A AL B
(a) Single-sided amplitude (c) Double-sided amplitude
spectrum spectrum
Phase, rad. Phase, rad.
i T
-5
30k, 15
0 s L l 0 5 5 e
-2n/3 =213
(b) Single-sided phase (d) Double-sided phase
spectrum spectrum

FIGURE 1-12. Spectra for Example 1-7.
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or

du,(t)

T (1-35b)

ui'+ l(r) ==
Figure 1-13a shows the unit step. We may graphically integrate it to obtain u«_,(¢), shown in Figure
1-13b. This singularity function is referred to as the unit ramp function, r(t), and can be expressed al- ,
gebraically as’

1 5 t=0
B =u_ ()= 1-36
=ua={g 12 (1-36)
Carrying this discussion one step further, we see that a unit parabolic function is given by
22, t=0
£ = 1-37
u_s(e) {0, t<0 (13

This singularity function is sketched in Figyre 1-13c. It is clear that the unit ramp and unit parabolic
functions would be convenient for representing the acceleration and velocity of Example 1-1.

We may shift any signal on the tinie axis simply by replacing tby ¢ — t,. If t;, = 0, the signal is shifted
to the right; if ¢, < 0, it is shifted to the left. For example, replacing ¢ by ¢t — 4 in the definition of the
unit step, (1-34), we obtain

1
0, t—5<0
u(t — 1) = { 2 (1-38a)
1, I_E>U
or
0, t<i
w-p=b 1<
? 74

Similarly, replacing ¢ by ¢ + 4 results in a unit step that “turns on” at t = —3. Using this technique, we
can represent other signals in terms of singularity functions. For example, the unit pulse function, de-
fined by (1-17), can be represented as

L 1 . 1
() = ult + 3) —"ut - 3)
For the definition of I1(¢) given by (1-17), it would be consistent to define u(0) = 1.
We note, also, that replacing ¢ by — ¢ turns a function around.* Doing this in (1-36), we obtain

) t=0
r(—t)={0 Cean (1-40)

which is a ramp that starts at ¢t = 0 and increases linearly as t decreases.

Also, we can obtain a change of scale on the abscissa simply by multiplying ¢ by a constant, say, 8.
If B = 1, the signal is compressed. If 8 < 1, the signal is expanded.

To summarize, consider an arbitrary signal represented as x(ft + a). We rewrite it as

x(Bt + a) = x[B(t + a/B)] (1-41)

"The subscripts are needed on (1-35a) and (1-35b) to identify different members of the class of singularity functions. Since
the step and ramp are very commonly used members, they are often denoted by the special symbaols u(1) and r(1), respectively.

*The negation of the independent variable is often referred to as folding, since the resulting reversal of the signal in time can
be viewed as folding a paper on which the signal has been plotted along its ordinate and viewing it from behind the paper.

ult)=u-1(r)

i
i
" t
(a) Unit step function
r(t)=u_2(1)
) I
|
|
|
|
i
0 1 !
(b) Unit ramp function
u_3(0)
20}
15
i
4 10 -
1
E
sk
! . RN ; ‘
(c) Unit parabolic function
FIGURE 1-13. Examples of three singularity functions.
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Consider the following signals. Sketch each, discussing how the individual plots are obtained.
(a) x, () =II2r + 6)

(b) x,(r) = cos(20mt — 5m)

() xy(t) = r(—0.5t + 2)

Solution: For (a), we write

x, () = 1[2(¢ + 3)]

by factoring out the 2 multiplying . The 3 added to ¢ means that the rectangular pulse function is
shifted left by 3 units, and the 2 results in the original 1-unit-wide pulse function being compressed
by a factor of 2 to a 3-unit-wide pulse function. The result is shown in Figure 1-14a.

For (b), the 207 multiplying ¢ is factored out to give

x(1) = cos[207(t — 0.25)]

which shows that x,(¢) is a cosine waveform shifted right by 0.25 time unit (assumed to be seconds)
with a period of T, = 27w, = 2204 = 0.1 5. This is a shift of 2.5 periods. The result is sketched
in Figure 1-14b.

For x,(t), we write

(1-42)

(1-43)

X0 = A-05¢ - 9] X

which says r(¢) is reflected about ¢ = 0, expanded by a factor of 2 (1/0.5 = 2), and delayed or shifted
right 4 units. A sketch is shown in Figure 1-14c.

It is sometimes useful to check results by writing out the definition of a singularity function. For
part (c), tpis takes the form

(1-44)

-05t+2 —05t+2>=0
— = ! 1-45
L i {0, otherwise (1-490)
:{—O.S(r—4), t<4 _ (145b)
0, otherwise

From this, it is clear that x,(/) = 0 for ¢t = 4. Checking a few values, we see that x,(3) = 0.5,
x(2) = 1, and x3(0) = 2 so that the result is a reflected or reversed ramp starting at t = 4 and in-
creasing 1 unit for each 2-unit decrease in .

EXAMPLE 1-10

Express the signals shown in Figure 1-15 in terms of singularity functions.

Solution: One possible representation for x () is

x,() =u(t) — r(t — 1) + 2r(¢ — 2) — r(t — 3) + u(t — 4) — 2u(t — 5) (1-46)

e}

If £, & /B is positive, x(r) is shifted left by a/B; if ¢ is negative, it is shifted right by o/B. If B < 0, x(1) (2 + 6)
is reversed or reflected through the origin. If | ,Bl > 1, x(f) is compressed; if ] ,81 < 1, x(t) is expanded.
An example will illustrate these remarks. ; 1
EXAMPLE 1-9
L L 1 1 1 | 1 1
—5 =3 0

(a)

g iy
WNAAA
JURAVAVAVAY

(b)

0.1s

r(—0.5t +2)

e

(c)
FIGURE 1-14. Signals relating to Example 1-9.

The step function u(f) is unity for t > 0. At t = 1, the ramp function —r(t — 1) goes downward with
slope — 1. The sum of ramps —r(t — 1) + 2r(t — 2) goes upward with slope +1 starting at ¢ = 2.
The ramp —r(t — 3) then flattens out this upward ramp starting at ¢ = 3, and the step u(t — 4) in-
creases the plateau of unity height to a value of 2. The final step, 2u(t — 5), “shuts off” the preced-
ing sum of singularity functions so that x(z) = 0 for ¢t > 5.

For x,(1) we use a product representation. A possible representation is

x () = 2u(u(2 — ) + u(t — 3u(S — 0 (1-47)

The product of unit step functions 2u(f)u(2 — £) forms the first pulse, and the product u(t — 3)u(5 — 1)
forms the second pulse. Note that u(2 — £) and #(5 — ¢) are step functions that are unity from¢ = —c
tor= 2 and ¢ = 5, respectively, and zero thereafter.

The student should attempt to find other possible representations for x,(f) and x,(1).
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(1) by impulse functions. In neither case are we able to measure, nor are we particularly interested in, what

( happens at exactly the moment the action takes place. Rather we are able to observe only the conditions
1t ——————— - i beforehand and afterward.

Other examples of physical quantities that are modeled by mathematical entities having infinitely
small dimensions and infinite “weight” are point masses and point charges.

| |
| I
] |
( 1 ! ) S ;
1| ‘l I : Since it is impossible for any conventional function to have the properties (1-48), we attemnpt to pic-
( t . : : ; t } ture the unit impulse function by considering the limit of a conventional function as some parameter
( 0 1 2 3 4 5 approaches zero.’ For example, consider the signal
¢ ]
: () 4 i 5.00) 1]_[ r) 2’ = e
. Xpit L . P X
( ¥ , 7 P £ 2e  \2e (149
f 2 ————— ,/;\/ S 0, e > e
| 2 3 g e
1 : which is shown in Figure 1-16. We see that, no matter how small € is, 8,() always has unit area. Fur-
( ko ! e | 7 A —E’_' thermore, this area is obtained as the integration is carried out from t = —€tot = €. As € — 0 this area
( lI 1| 1 —T1 i i is obtainedsin an infinitesimally small width, thus implying that the height of 8,(r) — = such that unity
t + — + — t ) areq lies between the function and the t-axis. This limit is shown as a heavy arrow in the figure.
( . . . 3 4 3 Many other signals exist that provide heuristic visualizations for &() in the limit as some parameter
FIGURE 1-15. Signal to be expressed in terms of singularity functions. approaches zero. Examples are
1 [sin(t/€) |?
( EXERCISE _ _ 8,(1) = [—1;;; (1-50)
Represent the acceleration and velocity of the rocket of Example 1-1 in terms of singularity functions. which iy sketehed in Figure 1-178; and
2 — S — -_—
Answers: a(f) = 40u_,(t/72u_(72 — 1) m/s2. v(f) = au_3(r)u_1(’!2 £+ 1440u_,(t — 72) m/s. | g - |{|/e)f,€‘ M B
. (Other answers are possible.) : (1) = 0, o ? (1-51)
We turn next to the unit impulse function or delta function,! &(t), which has the properties . "The present discussion is aimed at providing an intuitive understanding of the unit impulse function. We will give a more
formal mathematical development shortly.
an =0, 1+ 0 (1-48a)
and ) x
o H / e—=+0
j 8(¢) de = 1 (1-48b) _ ;
oS 5 - . x . P 3 P | 2
Equation (1-48b) states that the area of a unit impulse function is unity, and (1-46a) indicates that this | !
unity area is obtained in an infinitesimal interval on the -axis. : :
The motivation for defining a function with these properties stems from the need to represent phe- 1| e %.‘
nomena that happen in time intervals short compared with the resolution capability of any measuring !
apparatus used, but which produce an almost instantaneous change in a measured quant{ty. Examples |
are the nearly instantaneous increase in voltage across a capacitor placed across the terminals of a bat- = | =]
tery, or the nearly instantaneous change in velocity of a billiard ball struck by a rapidly moving cue bfall, : I ! !
In the first example, the voltage across the capacitor is the result of an extremely large current flowing |4 i
for a very short time interval, whereas the billiard ball’s velocity changes almost instant:meo_usly due to ! |! ]| 3
the transfer of momentum from the cue ball at the moment of impact. The current flowing into the ca- l I |
pacitor and the force transmitted by the cue ball are examples of guantities that are usefully modeled F } |= .
S {0 N R T
“The iwo names stem from the use of this function in engineering and physics; the u:rm"dgiw function” _is Iassoc]alcd wit_h Dirac, | 2 4 4 2
a physicist, who introduced the notation 8() into quantum mechanics. We will refer to 8(f) simply as a unit impulse function. FIGURE 1-16. Square-pulse approximations for the weliimdiin tneion:
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-0 0 0.1 0.2 0.3 04 05

; 2
(a) &g() =% ]:%l}

05 —04 -3 —02

t f f —t f
-05 —04 —03 —02 —01 O 01 02 03 04 05

(b) Triangular

FIGURE 1-17. Two approximations for the unit impulse. .

shown in Figure 1-17b. Although the three families of functions illustrated in Figures 1-16 and 1-17 are
symmetric about ¢ = 0, an equally good example of an approximation for a unit impulse function in
terms of the properties (1-48) is e~ ! exp(—#€)u(t), which is asymmetric about ¢ = 0. These examples
illustrate that it is not the actual behavior of &(r) at ¢t = 0 that is important but rather the integral of 8(¢).

Note that by integrating the square-pulse approximation of Figure 1-16 between —c and t we obtain

T
L‘“ =1 e

In the limit as € — 0, the right side becomes a unit step function. It will be shown later that u(¢) of (1-
35b) and 6(f) have the same properties as expressed by (1-48).

(1-52)

EXERCISE

Verify that all the families of approximating functions &,(¢) discussed above satisfy (1-48) in the
limit as € — 0.
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The considerations above illustrate that the unit impulse function is not really a function in the nor-

mal sense. Indeed, it was not until the 1950s that Laurent Schwartz’s pioneering work with the theory

of distributions provided a firm mathematical basis for the unit impulse function. A more formal math-
ematical definition of the unit impulse function proceeds by defining it in terms of the functional

j " x()8() dt = x(0) (1-53)

where x(f) is continuous at ¢ = 0. That is, 8(¢) is a functional as defined by (1-53), which assigns the
value x(0) to any function x() continuous at the origin.*

Several useful properties of 8(7) can be proved by insisting that (1-53) obey the formal properties of
integrals. For example, by considering &(ar), where a is a constant, we may show that

1
8at) = o %0 (1-54)

by changing variables of integration and considering the cases a > 0 and a < 0 separately. If we let
a = —1 in (1-54), we have

2 &(—n = 8(n (1-55)

which agrees with the definition of an even function. Even though 8(r) is not a function in the conven-

tional sense, we may make use of (1-55) in manipulations involving unit impulse functions as long as we

remember that it was a consequence of the defining relation (1-53) and the formal properties of integrals.
A second useful property of the delta function is the sifting property, which is

-

- <

J xX()8(t — 1) dt = x(1;) (1-56a) §

where x() is assumed to be continuous at ¢ = ¢,. This property can be proved from (1-53) by letting =%
A =t — 1, in the integral (1-56a) to obtain ‘1
f X(A + 1)8(A) dA = x(ty) (1-56b) =3

e [

-t

If we define y(A) = x(A + t,), this integral is the same as ( 1-53); ¥(A) is continuous at A = 0 as required ‘f;

because x(1) is continuous at = ¢,.
An alternative form of (1-53) which will prove useful in Chapters 2 and 3 is

J'w X(A)8(t — A) dA = x(t)

—u

(1-57)

which is obtained by simple renaming of variables in (1-56a) and by using the “even” property of the
delta function expressed by (1-55). The form of the integral in (1-57), known as a convolution, is dealt
with in more detail in Chapter 2.

Integrals with finite limits can be considered as special cases of (1-56a) by defining x(f) to be zero
outside a certain interval, say 1, < ¢ < t,. Thus (1-56a) becomes

J-"1 x()8(t — ty) dt = {x(rﬂ), h<t<t

1-58
Y 0, otherwise o8]

*For a further discussion, see A. Papoulis, Signal Analysis (New York: McGraw-Hill, 1977), or R. N. Bracewell, The Fourier

Transform and Its Applications, 2nd ed. (New York: McGraw-Hill, 1978).
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A fourth property of 6(r) is that
x(D8(1 — ty) = x(t)8(t — 1) (1-59)
if x(f) is continuous at ¢ = t,, which follows intuitively from &(t — t;) = 0 everywhere except at
=1
We may find integrals similar to (1-56a) involving derivatives of x(r). For example, assuming x(t)

to have a first derivative that is continuous at r = f, and using the chain rule for differentiation, we
obtain

d ; .
Eum&rwm=xmar—@+xm&r~@ (1-60)

where the overdot denotes differentiation with respect to time.t Assuming x(#) to be continuous at t = t;
and using (1-59), we have

' ::3 [x()8(t — t)] = x(t)(t — t5) + x(D)5(t — 1) (1-61)

* Integrating from t = ¢, to t = t,, where 1, <1, <1,, we obtain

b d b, & .
f 2 (08— o) dz=J- Ht)8(t — 1) de + j WO — ) dr, 4 <t <p

or

4 f
0= 3(t,) + j OB - ) d, H<t<h (1-62)
where we have used

5
=0 o Sl (1-63)
I

1

J: :& [(0)5(¢ — 1,)] dt = x(6)8(t — 1)

and
ty = 1 "
J' 08t — 1) dt = X(t5) f 8t —t)dt =%(ty), H<t<t * (1-64)
f h

which follow because (1 — t,) = 0 everywhere except at 1 = ¢, and x() is continuous at t = f;, so that
x(t,) is defined. Rearranging (1-62), we obtain

t . .
f x(O8(t — )y dt = —x(t), H<lH<h (1-65)
Ll

In general, if the nth derivative of x(¢) exists and is continuous at z = f,, it can be shown that

sz(r)ai"i(: —t)dt= (1)), H<h<h (1-66)

*The derivative of the unit impulse function is sometimes referred to as the unit doublet, or simply doublet. It can be visual-
ized by graphically differentiating the triangular approximation for the unit impulse shown in Figure 1-17b. Again, we empha-
size that 8(1) is to be interpreted in the context of an integral similar to (1-53}. Tt is not simply two opposite-sign impulses located
at the origin.
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where
(1) A %EQ - and 8" — 1) A % [8(t — to)]

A unit impulse function and its derivatives may be treated as generalized functions in the sense that if
F(O) = ayd(t) + ad(t) + -+ + a,8(t) (1-67a)

and
g(t) = byd(t) + byd(t) + -+ + b,8"(0) (1-67b)

then
£2) + 8(0) = (@y + bp)8(1) + (ay + by)a(t) + - (1-68)

Equation (1-68) applies also if a,, b,, a,, b,, a;, bs, . . . are functions that are continuous at ¢ = 0.7

EXERCISE .

Evaluate the following integrals: *

@) j e ' 3(¢ — 10) dt

) f e~ 8t + 10) dt
[i]

© j e 5(t — 10) dt

(d) f i [58(r) + e "D§(r) + cos Smt 8(¢) + e~ 8(6)] dt

Answers: (a) e~10a; (b) 0; (c) 20ae~1%=; (d) 6 + e.

We now return to the assertion made earlier that

u) =u = [ mydr=[ s0)dr (1-69)
or, equivalently, that
_du(1)
8(t) = —dr (1-70)

P'I‘]'J.Ls again, is formally proved by using (1-53). Another question that may vex the student is, “What about 0 - )7 To show
that this is zero, use (1-53) to write

r 0 8(0)x() de = 0 - f 8(0)x(r) = 0 x(0) = 0

where x(¢) is continuous at ¢ = 0.
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which is (1-35b) with i = — 1, Letting x(r) be continuous at t = 0, we consider
o d o
[ 50 % de = souto| - [t 5 ar
» " dx_(f)
= x() ot

= x(®) — x(1)f
= x(») — x(=) + x(0)
= x(0) (1-71)

which was obtained through integration by parts, That is, du(t)/dt has the same property as () as ex-
pressed by (1-53).

1-4 Energy and Power Signals

Quite often the pamcular representation used for a signal depends on the type of signal mvolvad Itis
therefore convenient to introduce a method for signal classification at this point. It is useful to classify
signals as those having finite energy and those having finite average power. Some signals have neither
finite average power nor finite energy.

To introduce these signal classes, suppose that e(?) is the voltage across a resistance R producing a
current i(f). The instantaneous power per ohm is

e(2)i(t)
R

p(t) = = i*(1) (1-72)

Integrating over the interval |r| = T, we define the total energy and the average power on a per ohm ba-
sis as the limits

T
E = lim f 2(f)dt  joules (1-73)
Baaet |
and
1 T
P = Jim z—fJ_sz(r) dt  watts (1-74)
respectively.

For an arbitrary signal x(z), which may, in general, be complex, the total energy normalized to unit
resistance is defined as

T
E & lim J ()P d:  joules (1-75)
B
and the average power normalized to unit resistance is defined as

P £ lim ZLJ' (O dt  watts ~(1-76)
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Based on the definitions (1-75) and (1-76), the following classes of signals are defined:

1. x(z) is an energy signal if and only if 0 < E < =, so that P = 0.

2. x(#) is a power signal if and only if 0 < P < o, thus implying that E = .
3. Signals that satisfy neither property are therefore neither energy nor power signals.t

EXAMPLE 1-11

Consider the signal
x,(t) = Ae™"u(r), a >0, (1-77)
where A and « are constants. Using (1-75), we can verify that x,(r) has energy
= ‘2-% (1-78)
Letting & — 0, we obtain the signal :
x,(1) = Aur) - (1-79)

which has infinite energy but finite power, as can be verified by applying (1-76):

AZ
Pr=i— 1-80
| 2 (1-80)
Thus x,(#) is a power signal.
EXAMPLE 1-12
Consider the periodic, sinusoidal signal
x(r) = A cos(wyt + 6) (1-81)
The normalized average power of this signal is &
P = lim E—J A? cos*(wyt + ) dt (1-82a)

Using appropriate trigonometric identities, we may rewrite this integral as

2

= A
P = lim ZTJ [2 -cos 2wyt + O] dt = > (1-82b)

which follows because

lim 4TJ' cos 2(ayt + 0) dt = - (1-83)

tIt is easy to contrive examples of signals with infinite énergy and zero average power that are nonzero over a finite range of
t, but we classify such signals as neither energy nor power. An example is x(r) = =¥, ¢ = 1, and zero otherwise.

AAL DO PARA

i
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Average Power of a Periodic Signal

We note that there is no need to carry out the limiting operation to find P for a periodic signal, since an
average carried out over a single period gives the same result as (1-76); that is, for a periodic signal, x,(1),

1 + Ty
P=— J Ik, () dt (1-84)
TU Ty
where 7, is the period. The proof of (1-84) is left to the problems.
EXAMPLE 1-13
From (1-84), the power of a rotating phasor signal of the form (1-28) is
[t ™ : }
p=2 |Aeit O dr = A2 (1-85)
2
Using Euler's theorem, we may write .
AeHot® = A cog(wyt + ) + jA sin(wyt + 0) (1-86)
The power of the real and imaginary components is A%2. Thus we may associate half the power in
a rotating phasor with the real component and half with the imaginary component.

1-5 Energy and Power Spectral Densities

It is useful for some applications to define functions of frequency that when integrated over all fre-
quencies give total energy or total power, depending on whether the signal under consideration is, re-
spectively, an energy signal or a power signal, For an energy signal, a function of frequency when
integrated that gives total energy is referred to as an energy spectral density. Denoting the energy spec-
tral density of a signal x(¢) by G(f), we have, by definition, that '

z ‘E= f G(f) df (1-87) *

where E is the signal’s total energy. We will give a means for obtaining G(f) for an arbitrary energy sig-

nal in Chapter 4.
Denoting the power spectral density of a power signal x(r) by S(f), we have, by definition, that

P=[ sthdr (1-88)
where P is the average power of the signal. From our consideration of amplitude spectra for periodic
signals, we can deduce what their power spectral densities are like. Since, for a single sinusoid of am-
plitude A and frequency.f,, the two-sided amplitude spectrum has a line at —f;, of amplitude A/2 and a
line at f; of amplitude A/2, we associate half of the power of the sinusoid, or AZ/4, with the frequency
—f; and the other half, or A%4, with the frequency f;. Since the power spectral density is integrated to
give total average power, its representation at f = —f; must be (A%/4) 8(f + f) and that at f = f, must
be (A%4) 8(f — f;). A plot is shown in Figure 1-18a. Generalizing, for any signal possessing a two-
sided line (amplitude) spectrum, we obtain the corresponding power spectral density by taking each
line of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function located
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A2 A2
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(a) Power spectral density for a single sinusoid
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{b) Power spectral density for the sinusoidal sum of Example 1-14

FIGURE 1-18. Power spectral densities for sinusoidal signals (numbers by impulses show weights).

at that particular frequency to get its power spectral density at that frequency. Note that the power spec-
tral density of any signal is an even function of frequency, and it possesses no phase information about
the signal.

EXAMPLE 1-14
Consider the signal P
x(t) = 10 cos(10mt + «/7) + 4 sin(30mt + w/8)

(1-89)

(a) Plot its power spectral density.
(b) Compute the power lying within a frequency band from 10 Hz to 20 Hz.

Solution:
(a) The power spectral density is shown in Figure 1-18b. Analytically,
S(f) = 258(f + 5) + 258(f — 5) + 48(f — 15) + 48(f + 15)

(b) The power in the frequency band from 10 to 20 Hz is obtained by integrating S(f) from f = —20
Hz to —10 Hz and from /' = 10 Hz to 20 Hz since two-sided spectra show equal portions of the
signal’s spectrum on either side of f = 0. The result is 8 W. The total power of the signal is

(1-90)

P=f S(f)df=50+8=58W (1-91)
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1-6 MatLAB in Signal Analysis

It is handy to be able to verify the material presented in this chapter on signal analysis and in fu-
ture chapters on system analysis with computer programs. This book will utilize MatLAB for this
purpose for several reasons, not the least of which is that it includes very good plotting capabilities.
MATLAB is an array-based programming language in that every variable is treated as a matrix. Ap-
pendix A gives several helpful hints for using MATLAB. The reader is also referred to The Student
Edition of Matr.AB, Version 5 and Marrag User's Guide, Version 5 listed in the references at the end
of this chapter.

The purpose of this section is to introduce several MATLAB functions that are used throughout the
book for signal and system analysis. These include functions used in MATLAB and user-defined func-
tions to be given here.

One has the option of executing MATLAB statements one at a time from the command window, cre-
ating a program and saving it in an M-file for future executation, or creating a function and executing
that from the command window. Several useful functions are given below for generating the singular-
ity and other elementary functions defined in this chapter:

t '

% Function for generating a unit step
%

function u = stp_fn(t)

=u = 0.5%(sign(t+eps) + 1): % The constant eps is used te ensure

% against the sign argument being O,

% where it's value is 0 giving u = 0.5

oL

Note that a sign, or signum, function is used to generaté this step because it can handle vectors.

The same result could have been achieved by using a for loop, but since MATLAB is an interpretive

. .language, this is considerably less efficient than using vector operations. The function stp_fn may

" be used for generating several other signals defined in this chapter. For example, function pro-

" grams for generating a unit impulse approximation, a ramp function, and a square pulse signal are
given below:

% A function generating a rectangular approximation for
% the unit impulse function; width is delta

%

function imp = impls_£n(t, delta)

imp = (stp_fn(t+delta/2)-stp_fn(t-delta/2))/delta;

% Function for generating a unit ramp
%
function r = rmp_£fn(t)

r=0.5"t."(sign(t)+1):

% This function generates & unit-high pulse centered at zerc
% and extending from -1/2 to 1/2

K

function y = pls_fn(t)

y = stp_fn(t+0.5) - stp_fn(t-0.5-eps);

"

EXAMPLE 1-15

delta(t+3) u(t-2)

2r(4-t)
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To demonstrate the use of these functions we generate and plot the following:

1. A step starting at + = 2 and going to the right;
2. A unit impulse occuring at ¢ = —3.5;
3. Aramp of slope 2 going backward from ¢ = 4.

Note that to give the appearance of continuous-time signals in many cases we must choose the inde-
pendent variable values sufficiently close together so that the plots appear to be smooth curves. The
normal plot routine for MATLAB connects adjacent points with straight lines. In the cases considered
here, the signals chosen will appear as they should when plotted because they consist of straight line
segments. The MATLAB program listing below is in the form of an M-file. What is given below is ex-
actly what one sees in the command window of The Student Version of Marrag if the “echo on” switch
command is executed first (a switch command stays in effect until the off switch command is executed,
in this case “echo off”” where the quotation marks are not typed but are used here to set the command
off from the rest of the text). The results of the program are given ia- '1

! UNIVER 0 PAR

SIUADE FEGERAL

EDU»clexl5 ' Al b
% M-file for Example 1-15 BIBLIGTECA CENTRAL
% 232 A0
£=-10:.005:10; ZNes A0

i
x=gtp. fn(t - 2); % Generate step sta N e i
y=impls_fn(t+3.5, 0.05): % Generate unit impulse at t=-3.5
z=2*rmp_fn(4 - t):; % Generate backwards ramp starting at t = 4
subplot(3,1,1),plot(t,x).axis([-10 10 0 1.5]), xlabel('t'),
ylabel('u(t - 2)')

L5 T T T T = T T T —T

=R AL DO PARA

_!:
BIRLIOTEC A CENTRAL

1=

05 -

0
-10 -3 -6 -4 = 0 2 4 6 8 10

RSIDADE F

-
bl

MY

20 -

IK
=
do
&1
L
b
[=]
(=]
IS
o
oS
=

FIGURE 1-19.
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subploi[?.l.E].plmt(t.y)_axis([ 10 10 0 25)).xlabel('t’).
ylabel('delta(t + 3)') ¢
subplot{3,1.3),plot(t.z} .xlabel('t').ylabel('2r(4 - t}')

Further examples of elementary signal generation and the building up of more complex signals
from these are suggested in the computer exercises at the end of the chapter.

EXAMPLE 1-16

As a final example, we plot a sample-data signal using a special plotting feature of MATLAB. T}.xe
chosen signal is a sinewave of frequency 0.5 hertz sampled at 0.2 second intervals. wpat appears u:
the MATLAB command window when the program is executed is given below (assuming “echo on
has been executed first). The output plot, which uses a stem plot function, is shown in Figure 1-20.

“EDU», clexl®

% M-file for Example 1-16; plots a sample-data sinewave
",

del _t = 0.2:

O =2y

n = 0:10;

x = sin(2*pi*n*del_t/T0}:

stem(n*del_t,x).xlabel('n*del _t'), ylabel(' x(n*del_t)')

0.8

0.6

0.2+

x(n*del_t)
3

-0.2r

0.8} | | <L S

1.2 1.4 1.6 1.8 2

15 0.2 0.4 0.6 0.8 1
n*del_t

FIGURE 1-20. A sample-data sinewave plotted with the aid of MarLAB.
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Summary

In this chapter, the concepts of a signal and a system were introduced. Two simple examples of systems
were given. The remainder of the chapter then concentrated on models for signals. The following are
the main points made in this chapter.

1.

2.

3.

o

A system is a combination and interconnection of several components to perform a desired task.
Systems may be interconnected with each other to form other systems. In such cases the com-
ponent systems are referred to as subsystems.

A signal is a function of time that represents a physical variable of interest. Signals may repre-
sent voltages, currents, forces, velocities, displacements, etc.

Signal processing is necessary to convert signals to more convenient forms and to produce de-
sired quantities from measured quantities. An example was provided with the accelerometer,
where the displacement of the mass, which was proportional to acceleration, was converted to
an electrical voltage proportional to the acceleration, and this voltage was integrated to produce
a signal proportional to velocity. A second integration would have produced a signal proportional
to distance.

. Signals can be deterministic or random. A deterministic signal is modeled as a completely speci-

fied function of time, whereas a random signal takes on a random value at any given time in-
stant. This book is concerned only with deterministic signals.

. Signals can be further categorized as continuous time or discrete time. The former type of sig-

nal is a function of a continuous-time variable, and the latter is a function of an independent vari-
able assuming values from a discrete set. A quantized signal is one whose values are taken from
a discrete set and should not be confused with a discrete-time signal. All signals discussed in this
paragraph may be deterministic or random.

Signals may also be categorized as periodic or aperiodic. A periodic signal is one for which

x(t + T) = x(2), —m << ®

where T}, is termed the period. The smallest value of T, for which the above equation holds is
called the fundamental period. (It should be clear that if T, is the fundamental period, then any
integer multiple of 7}, is also a period.)

. A useful periodic signal is the rotating phasor signal; defined as

x(t) = Ael@t)  _p <<

where A is the amplitude, wy is the frequency in radians per second, and @ is the phase angle in
radians. The quantity A exp(j6) is called a phasor. Rotating phasor signals are convenient in that
a cosinusoidal signal can be represented either as the real part of a rotating phasor signal or as
one-half the rotating phasor plus one-half its complex conjugate. A signal which is the sum of
sinusoids can be represented as the sum of rotating phasor signals, with either the real part or
half the rotating phasor sum plus half its complex conjugate taken.

. Representation of sums of sinusoids in terms of rotating phasor sums allows one to plot signal

spectra easily. Single-sided spectra are obtained by representing the sum of sinusoids as the real
part of the corresponding rotating phasor sum; the phasor amplitudes are plotted versus fre-
quency to obtain the amplitude spectrum, while the phasor phase angles are plotted versus
frequency to obtain the phase spectrum. Since only positive-frequency components are present,
the spectra exist only for frequencies greater than zero, which is the reason for the adjective
“single-sided.” Double-sided spectra are obtained by representing the sum of sinusoids as one-
half the corresponding rotating phasor sum plus one-half its complex conjugate; the phasor
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10

11.

12.

13.
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amplitudes are plotted versus frequency to obtain the amplitude spectrum, while the phasor
phase angles are plotted versus frequency to obtain the phase spectrum. Since both positive- and
negative- (due to the conjugation) frequency components are present, the spectra exist for both
positive and negative frequencies, which is the reason for the adjective “double-sided.”

. Important examples of singularity functions are the unit impulse, the unit step, and the unit ramp.

The unit impulse is defined by the property that

f " 8(o)x() dt = x(0)

where x(¢) is any signal continuous at ¢ = 0. From this property, it can be deduced that a unit im-
pulse as a “function” can be viewed as occurring at the origin and being infinitesimally narrow
and infinitely high such that its area is unity. The unit step is defined to be unity for ¢ > 0 and
zero for ¢ < 0, with the value at zero immaterial as long as it is finite. The unit ramp is a func-
tion that is zero for ¢ < 0 and that increases linearly with unit slope for ¢ > 0. The unit step is the
derivative of the unit ramp, and the unit impulse is the derivative of the unit step. Likewise, a
“unit doublet” could be defined as the derivative of the unit impulse, and a “unit parabola” could
be defined as the integral of the unit ramp. The differentiation process or integration proce'ss can
be carried out indefinitely to obtain a doubly infinite class of singularity functions. For purposes
of the analyses carried out in this book, the unit impulse, step, and ramp functions will suffice.
More complex functions can be built up of sums or products of singularity functions.

The sifting property of the unit impulse function mentioned above can be generalized to

&
J' X8 — ) dt = (~1)x(), <t <h

[ &
where the superscript (1) denotes the nth derivative, and the nth derivative of x(f) is assumed to
exist and be continuous at t = ;.
Another classification of signals is that of energy, power, or neither. To define this classification,
we first define the energy of a signal to be

T
E & lim f (o a

and the power of a signdl to be

T—om

1 T
PAJ —J' (0)? dt
m o[ b
The following classes of signals can then be defined:

1. x(1) is an energy signal if and only if 0 < E < o, so that P = 0.
2. x(1) is a power signal if and only if 0 < P < %, thus implying that E = =,
3. Signals satisfying neither property are neither power nor energy signals.

The energy spectral density of a signal G(/), is a function which, when integrated over frequency
from —o < f <o (fin hertz), gives the total energy in the signal.

The power spectral density of a signal, S(f), is a function which, when integrated over frequency
from —oo < f < oo, gives the total power in the signal. For any signal possessing a two-sided line
(amplitude) spectrum, we obtain the corresponding power spectral density by taking each line
of the amplitude spectrum, squaring its value, and multiplying it by a unit impulse function lo-
cated at that particular frequency.
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Further Reading

Many circuits books have a simplified treatment of some of the material in this chapter. Recent ones are:

L. S. BoBrow, Elementary Linear Circuit Analysis. New York: Holt, Rinehart, and Winston, 1987

W. H. HaYT, JR. AND J. E. KEMMERLY, Engineering Circuit Analysis. New York: McGraw-Hill, 1993

D. R. CUNNINGHAM AND J. A. STULLER, Circuit Analysis. 2nd ed. New York: John Wiley, 1995

L. P. HUELSMAN, Basic Circuit Theory, 3rd ed. Upper Saddle River, NI: Prentice Hall, 1991

The spectrum analysis ideas introduced in this chapter are also treated in various communications texts. One ex-

ample is:

R. E. ZIEMER AND W. H. TRANTER, Principles of Communications: Systems, Modulation, and Noise, 4th ed. New
York: Wiley, 1995

There are many other books treating continuous- and discrete-time signal and system theory with the order of top-

ics not necessarily the same as used here. Recently published examples are:

A. V. OPPENHEIM AND A.S. WILLSKY, Signals and Systems, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997

E. W. KAMEN anND B. 8. HECK, Fundamentals of Signals and Systems Using MaTLAB. Upper Saddle River, NI:
Prentice Hall, 1997

C. L. PHILLIPS AND J. M. PARR, Signals, Systems, and Transforms. Upper Saddle River, NJ: Prentice Hall, 1995

Several older books treating signal and system theory should be mentioned to recognize the pioneering efforts in

this field. A by-no-means-complete list is:

R. A. GABEL AND R. A, ROBERTS, Signals and Linear Systems, 3rd ed. New York: Wiley 1987

W. M. SiEBERT, Circuits, Signals, and Systems. New York: McGraw-Hill, 1986

C. D. McGILLEM AND G. R. CooPER, Continuous and Discrete Signal and System Analysis. New York: Holt,
Rinehart, and Winston, 1974

R. J. ScCHWARZ AND B. FRIEDLAND, Linear Systems, New York: McGraw-Hill, 1965

5. J. Mason aND H. I. ZIMMERMAN, Electronic Circuits, Signals, and Systems. New York: John Wiley, 1960

The following books provide further reading on the treatment of singularity functions from the standpoint of gen-

eralized function theory:

A. PapoULIS, Signal Analysis. New York: McGraw-Hill, 1977

R. N. BRACEWELL, The Fourier Integral and Its Applications, 2nd ed. New York: McGraw-Hill, 1978.

For programming help with MATLAB, see the following references:

The MaTLaB User's Guide, Version 5, Natick, MA: Mathworks, 1996

The Student Edition of MarLas, Version 5. Upper Saddle River, NJ: Prentice Hall, 1997

Problems .
Section 1-2

1-1. (a) Derive an expression for the distance traveled by the rocket of Example 1-1 valid up to the
time of burnout.

(b) Suppose a voltage analog to distance is to be provided by another operational amplifier inte-
grator circuit cascaded with the one of Example 1-2. If the same RC value is used, design a
voltage divider to be placed at the output of the first operational amplifier integrator so that
the second one is not overdriven at burnout (t = 72 s).

1-2. (a) For the rectangular integration rule given in recursive form in Example 1-3, show that the
nonrecursive form up through time NT is

B(NT) = 5(0) + Ti a(nT)
n=1

Check this using some of the values given in Table 1-1 (page 5).
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(b) For the trapezoidal integration rule given in recursive form in Example 1-3, show that the 1-7. Idca% sampling is represented in two ways depending on whether the signal is considered to be
nonrecursive form up through time NT is continuous-time or di.scretfe—tlmc,
: N T (a) The continuous-time signal cos(27rt) is to be represented in terms of samples by multipiying
B(NT) = 5(0) + {a((}) + a(NT) + 2 E a(n?)}( ...... ) by a train of impulses spaced by 0.1 seconds. Let the impulse train be written as
n=1 2 g 2
Check this, using values from Example 1-3. > 8~ 0.1n)

| nm—m

1-3. Rework Example 1-1 if the acceleration profile for the rocket is i siow thatthe idsalimpulse-Sanplad waverols give by

a(t) = 20 m/s?, 0=1=50s m
> cos(02mm)8(t — 0.1n)

n=—os

and zero otherwise. Assume the same parameter values as given in Example 1-1. Find and

plot the velocity profile. by using appropriate properties of the unit impulse.

1-4. Rework Example 1-1 with the acceleration profile shown. Sketch the resulting velocities. (b) Show that the discrete-time representation is the same, except that the continuous-time unit
impulse is replaced by a discrete-time unit pulse function, 6[n], appropriately shifted. Sketch
aft), mis’ __ for the signal cos(27r7) sampled each 0.1 seconds

20 : 1-8. Sketch the following signals:
r : ; (a) TI(0.15) 2
| | (b) TI(100)
0 10 20 30 40 / (c) II(r — 1/2)
FIGURE P1-4 _ (d) TI[(r — 2)/5]
(e) II[(r— 1)/2] + II(z — 1)

i

ARA

(a) Assume an initial velocity of zero. *

8 (b) Assume an initial velocity of 1500 m/s. 1-9. What are the fundamental periods of the signals given below? (Assume units of seconds for thg é
' i -vari -

', 1-5. In the satellite communications example, Example 1-4, let the transmitted signal be x(r) = cosa. Ea‘;m:;b;i;-: 2 €

(a) Show that the received signal can be put into the form (B) cos 60mt }- ﬂ:

z _y_@Bsin 2w,T ) (c) cos 70t g

3 E— e AL ol oo =G

y(t) = V1 + 2aB cos 2wy + (aB) cob(moi R e o . Vil s O 5

. (e) sin 50wt + cos 707t 2

(b) Plot the envelope of the cosine in the above equation versus w,t for a8 = 0.1. Note that g 3:]3.

the received signal will “fade” as  varies due to satellite motion. 1-10. Given the two complex numbers A = 3 + j3 and B = 10 exp(jn/3). M

Section 1-3

1-6. (a) A sample-data signal derived by taking samples of a continuous-time signal, m(?), is often
represented in terms of an infinite sequence of rectangular pulse signals by multiplication.
That is,

(b) Compute their sum. Show as a vector in the complex plane along with A and B.

(¢) Compute their difference. Show as a vector in the complex plane.

(d) Compute their product in two ways: by multiplying both numbers in cartesian form and by
multiplying in polar form. Show that both answers are equivalent.

(e) Compute the quotient A/B in two ways: by dividing with both numbers expressed in carte-
sian form and by dividing with both numbers expressed in polar form. Show that both an-
swers are equivalent.

X,a(t) = m(z) i H("‘_T”‘n)

n=-—m

If m(r) = exp(—#/10)u(t), 7= 0.5 5, and 1, = 2 s, sketch xgHfor—1=t=10s.
(b) Flat-top sample representation of a signal is sometimes preferred over the above scheme. In
this case, the sample-data representation of a continuous-time signal is given by

=S ming) II(’ ~an0)

n=-—=

1-11. Find the periods and fundamental frequencies of the following signals:
(a) x,(r) = 2 cos(10mt + 7/6)
(b) xy(1) = 5 cos(17mr — m/4)
4 (€ x(H) =3 sin(19m — #/3)
: (d) x (6 = x,(0) + x,(0
(e) x,(n= x,(1) + x (1)
® x{0) = x,(0) + x (1)

Sketch this sample-data representation for the same signal and parameters as given in
part (a). Discuss the major difference between the two representations.

(a) Put A into polar form and B into cartesian form. What is the magnitude of A? The argumenl-i-f_-
of A? The real part of B? The imaginary part of B? =

L
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1-12. (a) Write the signals of Problem 1-11 as the real part of the sum of rotating phasors.
(b) Write the signals of Problem 1-11 as the sum of counterrotating phasors.
(¢) Plot the single-sided amplitude and phase spectra for these signals.
(d) Plot the double-sided amplitude and phase spectra for these signals.

1-13. (a) Write the signals given in Problem 1-9 as the real parts of rotating phasors.
(b) Write each of the signals given in Problem 1-9 as one-half the sum of a rotating phasor and
its complex conjugate.
(¢) Sketch the single-sided amplitude and phase spectra of the signals given in Problem 1-9.
(d) Sketch the double-sided amplitude and phase spectra of the signals given in Problem 1-9.

1-14. (a) Express the signal given below in terms of step functions. Sketch it first.
x,(0) = T[(r — 3)/6] + [[(r — 4)12]

(b) Express the derivative of the signal given above in terms of unit impulses.

1-15. Suppose that instead of writing a sinusoid as the real part of a rotating phasor, we agree to usé
the convention *

sin(wgt + 6) = Im explj(wyt + N1}
or
sin(ayt + 6) = expljlwg + N2 — exp[—j(wyt + B)/2f
(a) What change, if any, will there be to the two-sided amplitude spectrum of a signal from the
case where the real-part convention is used?

(b) What change, if any, will there be to the two-sided phase spectrum of a signal from the case
where the real-part convention is used?

1-16. Sketch the following signals:
(@) uf(rt—2)4] (@) I(-3¢+ 1)
() i+ 1¥3]  (e) 1[(¢ — 3)12]
(€) r(—2t+3) i

1-17. Derive expressions for singularity functions u() fori = —4andi = —5. Generalize to arbitrary
negative values of i.

1-18. Plot accurately the following signals defined in terms of singularity functions:
(@) x,(t) = r(Ou2 — 1)
M) x,) =r®)—r(t—1) —rt—=2) +r(t = 3)
(¢) x(t) = 27, x,(t — 2n) (Plot for 0 = =8, and use three dots to indicate its semi-infinite
extent.)
(d) x(n) =22 4x,(t — 3n) (Plotfor 0 == 9 and use three dots to indicate its semi-infinite
extent.)

1-19. (a) Sketch the signal y(f) = Zr_ u(t — 2mu(l + 2Zn — 1).
(b) Is it periodic? If so, what is its period? If not, why not?
(¢} Repeat parts (a) and (b) for the signal y(t) = 3r_ou(t— 2mu(l + 20 — 6.

Problems 41

1-20. Express the signals shown in terms of singularity functions (they are all zero for ¢ < 0):

(0 %0
2
1
] _l |—_| e :
0 5 0 2 4 6
(a) (b)
%, (0 “'“(j X, ()
({ ﬁ ;
; t N >J '
0 25 5 7.5 0 3 6
(e) (d)

FIGURE P1-20

1-21. Represent the signals shown in terms of singularity functions.

Parabolic
X0
: .l 1 I L :
0 1 2 3 4 5 6
(a)

FIGURE P1-21

1-22. Write the signals shown in Figure P1-22 in terms of singularity functions.
1-23. (a) Show that

e—!.-"ﬁ
- ul)

8/1) =

has the properties of a delta function in the limit as € — 0.
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{
xy () x262)

1-26. Evaluate the following integrals.

10
(a) J cos 2wt 8(t — 2) dt
5

5
(b) J' cos 2mt 8(t — 2) dt
0

W ———
o ————

>
I
=1 5

4 0 1 s
(@) _ ll (c) J; cos 2mt 8(t — 0.5) dt
I. (b) o
; e
' x3(1) s (d) j_w(r 2)*8(t — 2) dt

@ [ " P8t - 2)dt

1+=——

L}
v
v

1-27. Evaluate the following integrals (dots over a symbol denote time derivative).

I |
0 15 . " .a
. / | (@) f A8t — 2) dt

—1

10 i
( FIGURE P1-22 (b) f cos(2m)5(t — 0.5) dt
0

(©) J'm [ + cos(2m)]8(r) dt

(b) Show that exp[—/20?}/ \/2mo? has the properties of a unit impulse function as o — 0.
W : i P " . .
(Hint: Look up the integral of exp( - ot ) in a table of definite integrals.) . Find the unspecified constants, fi'cnuted O .o i TSI

( 1-24. (a) By plotting the derivative of the function given in Problem 1-23(b) for o= 0.2 and o = 0.05, (@) 108(1) + C,8(0) + (2 + C)8(1) = (3 + C)&(1) + 58(1) + 65(1)
deduce what a unit doublet must “look like.” (b) (3 + C)EN) + C,8(1) + C;8(1) = C,8(1) + Cs8(0)
i (b) By plotting the second derivative of the function given in Problem 1-23(b) for the same val-

ues of o as given in part (a), deduce what a unit triplet must “look like.” . (a) Sketch the following signals:

(D xO=rt+2)—2r(n + r(t — 2)

(
( 1-25. In taking derivatives of product functions, one of which is a singularity function, one must exer- (2) xt) = w(Du(10 — 1)
cise care. Consider the second derivative of (3) x3(r) = 2u(r) + &(t — 2)
( (4) x,(0) = 2u()d(t — 2)
( B = e~ou(l) (b) For the signal shown, write an equation in terms of singularity functions.
( Blindly carrying out the derivative twice yields
x(t)
{ 4%h "
f‘—l = ofeu(r) — 2ae”*8(r) + e "3(1)

( dt 44

|
[ |
( Use the fact that /-—J !

|
( ! I

ae~8(t) = ae”"5(1) = ad(t) !; } oy i
—4 0 N T T % 4

to obtain the correct result. FIGURE P1-29
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1-30. For the signal shown, write an equation in terms of singularity functions. xa(1)
x{” 24 -*I
: X . T
! . T :
'. i 0 T 2T 3T !
|+ : i (a)
|
!
0 2 4 6 g Al
FIGURE P1-30 1 -L i _atin)
|
1-31. Evaluate the integrals given below. |
@ [ o -3)d : N :
L I
|
o . r e Bo e
() j (3t + cos 2mt)d(t — 5)d ; .
g e : ) .
© J (A + )d(t — 1.5) dt : o
1-32. Write the signals in Figure P1-32 in terms of singularity functions.
1.5
; 1.0
Section 1-4
0.5

1-33. Sketch the following signals and calculate their energies. ]
(a) e 'Om(r) 3 0
(b) u(t) — u(t — 15) ) §
(c) cos 107t u()u(2 — t)
d r(t) -2t = 1) +rlt —2)

1-34. Obtain the energies of the signals in Problem 1-22. 2

1-35. Which of the signals given in Problem 1-18 are energy signals? Justify your answers. | _ x(f) = 2 cos(6mt — 7/3) + 4 sin(1077)
] (a) Is it periodic? If so, find its period.
: S | (b) Sketch its single-sided amplitude and phase spectra.

1-37. Obtain the average powers of the signals given in Problem 1-11. i (c) Write it as the sum of rotating phasors plus thl; Poviinconiugiion
1-38. Which of the following signals are power signals and which are energy signals? Which are nei- | (d) Sketch its two-sided amplitude and phase spectra.

ther? Justify your answers. (e) Show that it is a power signal.

(a) u(d) + Su(t — 1) — 2u(t — 2) 4 1-40

() w(H) + Su(t — 1) — 6u(t — 2) j

(€) e=>u(h)

(d) (e—5+ 1u(t)

(e) (1 — e uls)

() )

(@ r—re—1)

(h) V(s — 3)

FIGURE P1-32

1-39. Given the signal

1-36. Obtain the average powers of the signals givén in Problem 1-9.

. Which of the fi ing si : i ? Fi i
eaChCSi ;1 % e following signals are energy signals? Find the energies of those that are. Sketch

@) w(r) — u(t — 1)

®) rt) —rc = 1)~ r(t—2) + r(t — 3)
(©) rexp(—20u(n)

@ r)—rt—2)

() u®) — Ju(t — 10)
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1-41. Given the following signals:
(1) cos 57t + sin 61t
(2) sin 2t + cos mt
(3) e~10u(r)
(4) eXu(t)
(a) Which are periodic? Give their periods.
(b) Which are power signals? Compute their average powers.
(c) Which are energy signals? Compute their energies.

1-42. Prove Equation (1-84) by starting with (1-76).

1-43. Given the signal
x(t) = sin¥(7m — 7/6) + cos(3mt — 7/3)
(a) Sketch its single-sided amplitude and phase spectra.

(b) Sketch its double-sided amplitude and phase spectra aftes writing it as the sum of complex
conjugate rotating phasors. 3

Section 1-5
1-44. Plot the power spectral density of the signal given in Problem 1-43.

1-45. Given the signal
x(f) = 16 cos(20mt + /4) + 6 cos(307r + /6) + 4 cos(40mt + 7l3)

(a) Find and plot its power spectral density.
(b) Compute the power contained in the frequency interval 12 Hz to 22 Hz.

Computer Exercises

1-1. Use the functions given in Section 1-6 for the step and ramp signals to plot the signal shown in
Problem 1-30 using MATLAB.

1-2. Use the functions given in Section 1-6 for the step and ramp signals to plot the signals shown in
Problem 1-32 using MATLAB.

1-3. Use the elementary function programs given in Section 1-6 to compute and plot the following:
(a) A step of height 3 starting at ¢ = 3 and going backwards to 1 = —o;
(b) Asignal thatstarts at# = 1, increases linearly to avalue of 2att = 2, and is constant thereafter;
(¢) A stairstep signal thatis 0 forr < 0, jumpstoa value of 1 atz = 0,2 value of 2 att = 1,a value
of 3 at ¢ = 2, a value of 4 at + = 3, and stays at 4 thereafter;
(d) A ramp starting at t = 2 and going downward with a slope of —3.

1-4. (a) Generate a cosine burst of frequency 2 Hz, lasting for 5 seconds; (b) generate a sine burst of
frequency 2 Hz and lasting for five seconds; (¢) combine the results of (a) and (b) to produce a si-
nusoidal burst of frequency 2 Hz, 5 seconds long, and with starting phase at = 0 of /4 radians.
[Hint: recall the trigonometric identity sin(x + y) = 0.5(sin x cos y — cos x sin y). Sety = nf4d.]

'y

Computer Exercises 47

1-5. (a) Write a MATLAB function to generate a sequence of impulses spaced by an arbitrary amount
t_rep, lasting fort_widthandcenteredont = 0.Callitemb_fn(t,t_rep, t_width,delta)
(b) Generate an impulse comb with spacing between impulses of 1.25 seconds and containing
5 impulses starting at r = 0,

1-6. (a) Write a MATLAB function to generate a unit parabola singularity function.
(b) Write a MATLAB function to generate a unit cubic singularity function.
(c) Use them to generate a plots of the signals shown in Problem 1-21.




CHAPTER

System Modeling and Analysis
in the Time Domain

2-1 Introduction

Having discussed some continuous-time signal models, we now wish to consider ways of rfmdcling sys-
tems and to analyze the effects of systems on signals. The systems analysis problem is: given a system
and an input, what is the output? System design or synthesis is important also, but generally is more
difficult than analysis. In addition, analysis procedures also suggest synthesis techniques.

We will discuss several mathematical characterizations for systems in this chapter, but our main fo-
cus throughout the book will be on linear, time-invariant systems. The reasons for this are threefold:
First, powerful analysis techniques exist for such systems. Second, many real-.wor!d systfzms ca:n be
closely approximated as linear, time-invariant systems.! Third, analysis techniques for linear, time-
invariant systems suggest approaches for the analysis of nonlinear systems. o

There are three basic approaches for finding the response of a fixed, linear system to a given input:
(1) Obtain a solution to the modeling equations through standard methods c?f solving differential equa-
tions. (2) Carry out a solution in the time domain, using the superposition integral. (3) Use frqugncy—
domain analysis by means of the Fourier or Laplace transforms. The first method should be familiar to
the student from circuits courses. The objective of this chapter is to examine the second method. The
third method is dealt with in later chapters. . ‘

In passing, we note that the condition of time invariance is not necessary in many of the ana]ym_s pro-
cedures presented in this chapter, but computational problems are simplified under the assumption of
time invariance. ‘ .

We begin our consideration of systems in the time domain with appropriate cla.smﬁcat:qn procedures
and modeling techniques. The primary tool for analysis of linear, time-invariant systems will be the con-
volution integral, discussed in Section 2.4,

2-2 System Modeling Concepts

Some Terminology

We now wish to look at ways of representing the effects of systems on signals; ‘that iS,‘Wt: need to be
able to construct appropriate system models that adequately represent the interaction of slagnals and sys-
tems and the relationship of causes and effects for that system. Usually, we refer to certain causes of in-

The terms “linear” and “time invariant™ will be given precise mathematical definitions shortly. Alt?hou@ it is possible to an-
alyze systems that are time varying, it is more difficult than for time-invaniant systems. Because of this, and because many sys-
tems are time invariant, we restrict our attention to this category.
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terest as inputs and certain effects of interest as ourputs. For example, in the accelerometer example of
Chapter 1, the input of interest could be the position of the weight and the output could be a voltage
proportional to velocity.

An obvious choice for input and output quantities may not always be readily apparent, easily isolated,
or physically distinct. For instance, in the communications link example, the input, x(1), and output of
interest, s(f), appear at the same physical location: the transmitter. The relationship governing their in-
teraction was very simple: that is,

(1) = x(t) + apx(t — 27),
Usually, we will not have such simple input-output relationships.

It is convenient to visualize a system schematically by means of a box, as shown in Figure 2-1,
(Sometimes symbols other than x and y may be used.) On the left-hand side of the box we represent the
inputs (excitations, causes, stimuli) as a series of arrows labeled x, (1), x,(1), .. . , x,,(2). The outputs (re-
sponses, effects), y (2), y(2), . . ., ¥,(2), are represented as arrows emanating from the right-hand side of
the box. In general, the inputs and outputs vary with time, which is represented by the independent vari-
able 7; sometimes it will not be shown explicitly in order to simplify notation. The number of inputs and
outputs need not be equal. Quite often, however, we will be concerned with situations where there is a
single input and a single output. Such systems are referred to as two-port or single-input, single-output
systems since they have one input port and one output port. ’

O0=t=T+ 27 (1-15)

Representations for Systems

Usually, we are interested in obtaining explicit relationships between the input and output variables of
asystem, and we discuss systematic procedures for doing so shortly. For now, however, we will express
the dependence of the system output on the input symbolically as

y(t) = H[x(0)] (2-12)
Eliminating the explicit use of #, we can write this more compactly as
y = ¥x (2-1b)

which is read

y(2) is the response of ¥ to x(r)

where initial conditions are included if pertinent. The symbol 3, which is known as an operator, serves
the dual role of identifying the system and specifying the operation to be performed on x(f) to produce
¥(t). (For a multiple-input, multiple-output system, x(z) and y(f) are vectors.)

Several examples of system input-output relationships are given below to illustrate more clearly
some of the basic concepts.

X (1) Ot 0 y, (1)

x2(t) ot f—c y1(t)

SYSTEM
H -]

X () O 0 y,, (1)

FIGURE 2-1. Block diagram representation of a system.
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1. Instantaneous (Nondynamic) Relationships. Many systems are adequately modeled for many
situations by relationships such as

y(6) = Ax(t) + B (2-23)

or

y(t) = Ax(t) + Bx(t) (2-2b)

where A and B are constants. The former equation could represent an amplifier of gain A with a dc bias
of B volts at its output, and the latter equation would be a possible model for an amplifier that intro-
duces nonlinear distortion, BX3(f), into the amplified output, Ax(1). The concept of nonlinearity for a
system will be explicitly defined later. : i

2. Linear, Constant-Coefficient, Ordinary Differential Equations. The student is assumed to be fa-
miliar with obtaining the relationships between currents and voltages in an electrical circuit composed
of passive elements (resistors, capacitors, and inductors) in terms of ordinary integrodifferential equa-
tions through the application of Kirchhoff’s voltage and current laws. If all integrals are removed
through repeated differentiation, the general form for 'such equations may be written as

d"y(1) a"ty(n d™x(1) d™ 'x(1)

R e SRR e et NI o (4 2-3
n df" aﬂ- 1 df"_l' ﬂ;)y(f] bm dfm bm--l d!m_l bOx( ) ( )
where a,, a, _y, ..., Qy by by - - -, by are constants that depend on the structure of the system and

where nonzero initial conditions may be specified. For systems whose input-output relationships can be
represented in this manner, the order of the system is defined as the order of the highest derivative of the
' dependent variable, or system output, present (integrals on the input might still be present in some cases)."

Three variations of (2-3) sometimes result from the modeling and analysis of systems. First, time-
varying components may be presentin the system (e.g., a capacitor whose capacitance varies with time).
Tn such cases one or more of the coefficients of (2-3) will be functions of time. These are examples of
time-varying systems, although the class of time-varying systems is broader than that described by or-

" dinary differential equations with nonconstant coefficients.

A second situation that results in a governing differential equation of different form than (2-3) is
where one or more nonlinear components are present in the system. Consider a voltage source v (1) in
series with an inductor and a resistor whose resistance depends on the current through it: for example,

"' R = Ry + ai(f), where R, and « are constants. Then application of Kirchhoff’s voltage law results in
s di

[Ry + ai(O)i()) + L = v,(1) (2-4)

and the relationship between the input, v,(#), and the output, i(#), is no longer linear. This is an example

of a nonlinear system. Precise definitions for time-varying and nonlinear systems are given later.

The third departure from (2-3) which may result is that of a system described by a partial differen-
tial equation. Such systems are said to be distributed, in contrast to lumped systems, for which the
cause-effect properties of the system can be ascribed to elements modeled as infinitesimally small in
the spatial dimension. This is permissible if their dimensions are small compared with the wavelength
of the variable quantities within the system (voltages, currents, etc.), where the wavelength is given by

A= = meters
f

The order of a multiple-input, multiple-output system can be determined through state-variable techniques, which are dis-
cussed in Chapter 7.
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?.vhere ¢= 3x ‘]_0“ m/s is mg speed of electromagnetic radiation and f is the frequency of the oscillat-
mg_ waveform in hertz. A light bulb. for example, has dimensions that are small compared with
A =3 X 10%60 = 5 X 108 m, which is the wavelength of the 60-Hz power-line voltage.

3‘ [ g { RP’I(IHO?L”’H‘ 5. \;\'E discusg an inie ; a sy tem I]l])ﬂ[-(l]lll'llt I Ia{l()ll
ntegra g P28, b grﬂl representation of
p 5Ys €.

y(1) = .E A(A)x(t — A) dA (2-5a)

= f (DAt — A) dA (2-5b)

which is known as a superposition integral. The function A(A) is called the impufse response of the sys-

tr:'m and is its response to a unit impulse applied at A = 0. All systems that can be represented b )c(lr-

dinary, constant-coefficient, linear differential equations can also be represented by an equation u)lf' the

form (2-5). However, not all systems that can be represented by a relationship of the form (2-5) can be

reprcsentt?d by ordinary, constant-coefficient linear differential equations. !
For a time-varying system, the generalization of (2-5) is

y(0) = f; h(t, )x(A) dA (2-6)

where A(z, A) is the response of the system at time  to a unit impulse applied at time A.

EXAMPLE 2-1

To show this, let x(¢) = B(1), so that x(t — A) =
. " X = &t — A). = ifti it i
o R respmsc}m &(61(}‘ A). Then ¥(t) = h(r) by the sifting property of the unit impulse func-

FAn example is an ideal low-pass filter whose impulse response is
I )

2wBt
where 8 is the bandwidth. This type of fi

Iter will be discussed i o i i
sannck becrealizad eyt it sed in Chapter 4. Ideal filters are convenient mathematical models, but

P
‘(
. . . . =
C{m§1d¢:r the RC.‘ cm:m.t deplclefl in Figure 2-2 with input x(z) and output y(r) as shown. We wish to 8
obtz}m (a) the differential equation relating y(z) to x(t), and (b) convert this differential equation to =
the integral form (2-5). Assume that x(¢) is applied at ¢ = 1y and y(ty) = y,. A
Solution: :
(a) The differential equation relating i iti i 3
. ¥(#) and x(#) is found by writing Kirchhoff’s voltage law (K =
around the loop indicated by i(f). This results in the equation ke o)
- U?
x(t) = Ri(t) + y(z) @7) £
where y(1), the voltage across the capacitor, is related to i(¢), the current through it, by =
* =
Loy dy(D)
in=cC dr (2-8)
Eliminating i(¢) in the KVL equation, we obtain
dy(t)
RC—+* =
o Hy0 =30 @9
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R
AW ©
i
x(t) ift) = C y(r)

FIGURE 2-2. RC circuit to illustrate the derivation of input-output relationships for systems.

(b) To write the input-output relationship as an explicit equation for y(#) in terms of x(f), we first ob-
tain the solution to the homogeneous differential equation

dy,(t
RC—);"_E—) +y,(8) =0 2-10)
Assuming a solution of the forth
’ ya(t) = Ae” @2-11) *
and substituting into the homogeneous equation, we find thatp = — 1/RC, so that
' —t
w0 = A exp(ﬁ) 2-12)

The total solution consists of y,(f) plus a particular solution for a specific x(z). Assume that the input
x(1) is applied beginning at ¢ = £, but is otherwise arbitrary. Also assume that the value pf ¥ at.r = rn_
is y,. To find the total solution we use the technique of variation of parameters, which consists of
assuming a solution of the form of y,() but with the undetermined coefficient A replaced by a func-

tion of time to be found. Thus we assume that

~t
- == 2-13)
Y = AQ) exp{ ) (
Differentiating by means of the chain rule, we obtain
dy(t) _ [dA() _ @] (__f) (2_14).
aa | a  Rc|™™\Rrc ]

Substituting the assumed solution and its derivative into the nonhomogeneous differential equa-

tion, we have

o 4 dA(t) i .15
RC exp(R C) — x() (2-15)

where the term —A(f) exp(—#RC) has been canceled by y(t) in the differential equation. S.ohiing for
dA(f)/dt and integrating, we get an explicit result for the unknown “varying parameter.” It is given by

AN = RI—CL x(A) exp(;—c) d\ + Alty) (2-16)

where A is a dummy variable of integration and A(z,) is the initial value of A(f) at the time #, !;hat ll'!e
input x(#) is applied. Since y(r) = A(f) exp(—#/RC), it follows that A(ty) = ¥, exp(ty/RC). Using this
result together with the expression for A(f), we obtain
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il

£=1 X exp[— (£ — A)/RC]
=Y, {:xp(— U) + X /\) dA 2-17
¢ RC J, ( RC el
If we assume that the input x(¢) is applied at t = —o0 and that y, & y(—o0) = 0, then
¢ exp[—(t = A)/RC]
= A ——— AT =
0 =[x = dr 2-18)
If we define
exp(—t/RC)
h = ———- -
(1) RC u(t) (2-19)
so that

h(f — )0 = Mu({ = 1\_) (2-20)

RC

then the solution for y(¢), as determined by the variation-of-parameters approach, is exactly of the
form given by (2-5b).

Propénies of Systems

We now give precise definitions of several system properties, some of which were mentioned in the pre-
vious discussion.

Continuous-Time and Discrete-Time Systems. If the signals processed by a system are continuous-
time signals, the system itself is referred to as a continuous-time system. I, on the other hand, the sys-
tem processes signals that exist only at discrete times, it is called a discrete-time system. The signals in
a system may or may not be quantized to a finite number of levels. If they are, the system is referred to
as quantized. A quantized system may be continuous time or discrete time, although usuaHly a quantized
system is also a discrete-time system and is then referred to as a digital system. Discrete-time systems
are discussed in Chapter 8.

: Examples of continuous-time systems are electric networks composed of resistors, capacitors, and
fnductors that are driven by continuous-time sources. An example of a quantized, discrete-time system
is the optical-wand sensing system of a department store cash register.

' Fix.ed and Time-Varying Systems. A system is time invariant, or fixed, if its input-output rela-
tlonsl.'up does not change with time. Otherwise, it is said to be time varying. In terms of the symbolic
notation of (2-1a), a system is fixed if and only if

Hlx(t — ] = y(t — 1) (2-21)

for any x(1) and any 7. The system must be at rest' prior to the application of x(z). In words, (2-21) states
that if (1) is the response of the system to an input x(z), then its response to a time-shifted version of

"A system is at rest, or relaxed, prior to some initial instant, say { = &, if all energy storage elements have zero initial energy
:leEd For an nth-order system deseribed by an nth-order ordinary linear differential equation, this means that the dependent vari-
e and all its derivatives up through the (n — 1)st are zero for ¢ < 1,
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this input, x( — 7), is the response of the system to x(f) time-shifted by the same amount, or y(t — 7).
For example, the system with input-output relationship

y() = x(t) + Ax(t = T)

is fixed if A and T are constants, and time varying if either or both are functions of time. Thus the satel-
lite communication system is fixed if a8 and 7are constants. Similarly, a system described by a differ-
ential equation of the form (2-3) is fixed if the coefficients are constant, and time varying if one or more
coefficients are functions of time.

(2-22)

Causal and Noncausal Systems. A system is causal or nonanticipatory if its response to an input
does not depend on future values of that input.t A precise definition is that a continuous-time system is
causal if and only if the condition

x,(1) = x,(0) (2-23a)

fort=t,
implies the condition
#x,(0)] = Hlxy(0)]

for any f,, x,(f), and x,(¢). Stated another way, if the difference between two system inputs is zero for
t = t,, the difference between the respective outputs must be zero for t = ¢, if the system is causal. Thus
the definition applies to systems for which the response to zero input is not zero, such as a system con-
taining independent sources, as well as systems with nonzero inputs.

fori=t, (2-23b)

EXAMPLE 2-2

Consider a system described by (2-2a). Let x)(1) = u(t) and x,(t) = r(t). For t = £, < 0, both inputs are
equal. The outputs for ¢ = ¢, for both inputs are y,() = y,(f) = B. In general, it is seen from
(2-2a) thatif x,(1) = x,(1), £ = &, then (1) = y,(f) = Bfort = i, because Ax(f) = Ax,(1). Itis easy to see
that this holds for any pair of inputs for which it is true that x(1) = x,(8),t = t,. Thus this system is causal.
An easy way to see that the system is causal is to note that y(¢) cannot do anything in anticipation of x(f).

Dynamic and Instantaneous Systems. A system for which the output is a function of the input at
the present time only is said to be instantaneous (or memoryless, or zero memory). A dynamic system,
or one which is not instantaneous, is one whose output depends on past or future values of the input in
addition to the present time. If the system is also causal, the output of a dynamic system depends only
on present and past values of the input. Mathematically, the input-output relationship for an instanta-
neous system must be of the form

y(1) = flx(0), ] (2-24)

where fi-) is a function, possibly time dependent, which depends on x(t) only at the present time, 1.
The systems described by (2-2a) and (2-2b) are instantaneous. Systems described by differential equa-

tions are dynamic (nonzero memory). For example, an inductor is a system with memory. This is easy to

see if the input is taken as the voltage across its terminals and the output as the current through it so that

(2-25)

1 o
i(t) = — A) dA
=7 v
It is clear that i(f) depends on past values of v(f) through the integral.

tAnother way of informally defining a causal system is that such a system does not anticipate its input.
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Linear and Nonlinear Systems. From your circuits courses, you should already be familiar with

the concept of linearity. It allows the analysis of circuits with multiple sources by means ol super-

position, or addition of currents or voltages calculated when each source is applied separately. A pre-

cise mathematical definition of a linear system is that superposition holds, where superposition for a
system with any two inputs x,(r) and x,(r) is defined as

K, (1) + axy(0)] = e #x; (0] + & [x(0)]
a y,(1) + ayy,(0)

In (2-26), y,(f) is the response of the system when input x,(¢) is applied alone, and y,(1) is the response
of the system when input x,(¢) is applied alone; @, and «, are arbitrary constants.

1l

(2-26)

EXAMPLE 2-3

Show that the system described by the differential equation

dy(1)

2+ o) = x(0) .

is linear.

Solution: The response to x,(1), y,(£), satisfies

dy,

Eth + 9
and the response to x,(t), y,(f), satisfies

dy,

_dr Ty, =X,

wher‘e t}1e time dependence of x,, x;, v,, and y, is omitted for simplicity. Addition of these equations
multiplied, respectively, by «, and a, results in
’ dy, dy,
@ g Tia g Yyt adyy = afytay

or
d
E(“L}'l + ayyy) + tay, + ay,) = e + o,

That is, the response to the input a,x, + a,x, is ayy; + a,y,. Thus superposition holds and the sys-

tem is linear.

EXAMPLE 24

The system described by the differential equation

dy(t)
dt

+ 10y(0) + 5 = x(f)
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is nonlinear. This is demonstrated by atterpting to apply the superposition principle. Letting y,(f)
be the response to the input x,(#) and y,(¢) be the response to the input x,(f), we write

dy
_dfl+10y‘+5:x1
and
dy
-d_tz + 10y, + 5=1x,
where the time dependence is again dropped for simplicity. Multiplying the first equation by an ar-
bitrary constant e,, the second equation by the arbitrary constant a,, adding, and regrouping terms,
we obtain.
d
dt (ayy; + epyy) + 10(eyy, + ayy) + 5(ey + @) = axy + Xy (2-27)

We cannot put this equation into the same form as the original differential equation for an arbitrary
choice of @, and a,. Thus the system is nonlinear. .

2-3 The Superposition Integral for Fixed, Linear Systems

:In this section we show that (2-5) can be used to obtain the output of a fixed, linear system in response
eto an input, x(#), where the response of the system to a unit impulse applied at £ = 0 is h(f) [h(?) is re-
* ferred to as the impulse response of the system]. In this context, (2-5) is called the superposition inte-

{ gral. We must emphasize that this integral is more general than for just the computation of the response

O

of a linear, time-invariant system. Some of the other applications of the superposition integral are dis- ~

cussed in Chapter 4.
A short, mathematical derivation of (2-5) is as follows. Represent the input signal to the linear, time-
invariant system in terms of the sifting property of the unit impulse as

|

“x(f) = I X8t — 7) dr (2-28)
In terms of the system operator, 7€, the output i:
(1) = H[x(1)]
- %Uw X(7)5(t — 7) d-r] (2-29)

Assuming that the order of integration and operation by the system can be interchanged, (2-29) becomes

Y1) = r AnH[S( — 7)) dr (2-30)

By definition, #[8(t — 7)] is the response of the system to a unit ihpulse applied at t = 7. Fora fixed

system, we can write this as A(f — 7), where h(z) is the system’s response to a unit impulse applied at

¢ = 0. Substitution of k(s — 7) for #[8(t — D] in (2-30) results in (2-5).
In addition to being strictly mathematical, an additional difficulty with this derivation is the blind

faith required in the interchange of the improper integral and the 9-operator. Thus we consider another |

derivation that is more graphic in nature.
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' Assyme‘for the time being that the input to the fixed, linear system is a continuous function of time
in the time interval T, < ¢t = T, and zero elsewhere. Figure 2-3a illustrates an arbitrary input, x{¢), in the

time interval 7, = ¢ = T, which has been a i i ion x X
_ pproximated by a stairstep function x(¢). That i
expressed in terms of the unit pulse function I1(z) as the summationp A

Ny

x(t) = 2 x(n A)‘_)H(ﬂ)
sy AX
Y 1 _ft—nAA
= -n
%}V XnAX) H(——»M ) A, Ty=t=T, (2-31)

where T} d= ™, = 1I2! Aland T, = (N, + 1/2) AA. The reason for multiplying and dividing by AA to obtain

:I;;jleco; I::qua.n{m W%ﬂ be apparent shortly. Clearly, the approximation of X(¢) to x(f) improves as AA gets

smaller. In fact, in the limit as AA — 0, (2-31) becomes the sifting integral for the unit impulse function since
lim I[(t — n AX)/AX] .

AA50 AX 8(t - f\)l (2-32)

where n AA has been replaced by the continuous variable A. *

AL DO PARA

i

|
|
|
! i
I iy |
| 1
I i
} 1
; ;

]
I
I
!
II
I
1
+

FVEH

F".-..

Ty = (N P

2 Ty = (N + 3)an

(a) Input to a fixed, linear system and a stairstep approximation

Superposition of all
pulse responses; Fi{r)

// Response to rectangular
pulse occurring at + = A\

UNIVERSIDAD

(b) Qutput of a fixed, linear system due to the stairstep approximate input.

FIGU - i i
RE 2-3. Input and output signals for a fixed, linear system used to derive the superposition integral.
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Now consider the response of a fixed linear system to the summation of pulses (2-31). Let the re-
sponse of the system to TT(t/AX) AA be h(f). That is, in terms of the operator notation

AN (2-33)

E(r) =% {
where %]-] signifies the operation that produces the system output in response to a particular input.
We want the output of a fixed, linear system in response to the input (2-31). In terms of the operator
H[-], itis

5(1) = (D] = 3{{ % (n AX) 1o (’;f‘—f‘—“) M] (2-34)
PR Ok = BN AA
Because #[-] represents a linear system, superposition holds and (2-34) can be written as
N -
A 3 1 t—nAA
= | —II| ——— | | AA 2-
y(6) Z; x(n AX) l — n( = )] (2-35)

where we assume that all initial conditions are zero. More will be said about nonzero initial condi-
tions shortly. Although the superposition property is stated by (2-26) for inputs of the form
x(f) = ayx,(t) + aux,(1), we may generalize it easily to the linear combination of any finite number of
terms (Problem 2-15).

Because the system is assumed to be fixed, it follows that

%[1\17 H(f _:AM)} = hie = nAd)

(2-36)

where , was defined as the response of the system to [I(/AA)/AAX in (2-33). That is, the system’s re-
sponse to a pulse centered at f = nAA is simply A (f) shifted by f = nAA. Using (2-36) in (2-35), we can
express the system output, y(#), in response to the stairstep approximation to x(1), x(r), as
N, -
(@) = > x(n AMR(t — n AX) AA

n=N,

(2-37)

which shows thaty is the superposition of N = N, — N, elementary repsponses, ﬁ(f — n AA), of the
system to I1[(t — n AA)/AA]/AA, each of which is weighted by the value of the input signal at the time
t = n AA. A typical superposition of elementary responses is shown in Figure 2-3b corresponding o
the stairstep input of Figure 2-3a. Note that h (1) is a characteristic of the system in the sense that it tells

us how the system responds to the test pulse TT(#/A/A)/AX of width AA and height 1/AA. To remove the §

dependence of h(#) on AA, we define the impulse response of the system as

- TI(t/AA
o = Jim 50 = fim o |

where we recall that zero initial conditions were assumed. By interchanging the order of the limit and
the operator #[-], which is a linear operator by assumption, and recalling that limy, o [I(#/AA)/AA has
the properties of a unit impulse function, it is seen that the impulse response of a system is its response
to a unit impulse applied at time t = 0 with all initial conditions of the system zero. That is,

h(r) L %[8(1)]  (zero initial conditions) (2-39)

Returning to (2-37) and taking the limit as AA — 0 and n AA — A, a continuous variable, we recog- §

nize (2-37) as an approximation to the integral

—_—

(2-38) _f
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1

y(1) = L

Assuming that the input may have been present since the infinite past and may last indefinitely into the
future, we have, in the limitas 7, — —=< and T, — =,

x(Mh(t - AN dr, T, st=T, (2-40)

£

1) = f x(A)h(t — A) dA

—

(2-41)

for the response of a system characterized by an impulse response A(¢) and having an input x(z).

With the lower limit of ¢ = —o on (2-41), we can include the response due to initial conditions by
identifying it as the response due to x(f} from ¢ = —=toan appropriately chosen starting instant, £, usu-
ally chosen as £, = 0. In Chapter 5 we consider another way to handle initial conditions. Making the
substitution ¢ = t — A, we obtain the equivalent result

y) = j"’ x(t — o)h(o) do (2-42)

Because these equations were obtained by superposition of a number of elementary responses due to
each individual impulse, they are special cases of what are referred to as superposition integrals.t A
simplification results if the system under consideration is causal. We defined such a system as being
one that did not anticipate its input. For a causal system, A(t — ) = 0 for # < 7, and the upper limit of
(2-41) can be set equal to £. Furthermore, if x(t) = 0 for t < 0, the lower limit becomes zero, and the re-
sulting integral is given by

) = f{x()t)h(f —A)dAr, =0 (2-43)
i 0

for a causal system with input zero for ¢ < 0 and zero initial conditions.

EXAMPLE 2-5

A concrete example of the previous discussion will help to make the derivation clearer and lend
credence to the stairstep approximation to x(t) being convolved with A(r) actually providing a good
approximation to y(#). The signals x(¢) and A(¢) in this example are given by

x(t) = (t + 10)e "4+ 10%(¢ + 10)
and
k(1) = e”'u(r)

A MATLAB program (not given here, since the purpose of this example is to illustrate the preceding
discussion) provides the plots shown in Figure 2-4. The top figure gives x() and the stairstep ap-
proximation to it, X(#), where the step length is 0.5. The signal k(z) is shown in the second figure, and
the result of convolving X(#) and A(r) is shown in the third figure. Finally, the actual convolution of
x(f) and h(r), computed analytically, is shown in the fourth figure. The approximate and actual re-
sults are amazingly close for the step length of 0.5. As this step length is decreased, the correspon-
dence will be closer and closer, and it is not hard to believe that (2-37) actually converges to (2-40).

In this special case (i.e., a linear, time-invariant system) they are of the same form as the convolution integral to be con-

zlﬁaetﬁi)ln more detail in Section 2-4. A general form for the superposition integral for a linear time-varying system was given
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o’ W= ; : - T . ; ; Applying (2-42), we obtain the output
5 1
@
b o 1

% = a(t) = J_m u(t — a) RC e "RCu(a) do
s .
b . , . . . . : - - = [ mge o, 120 (2-46)

=10 -8 -6 -4 -2 0 2 4 6 8 10 0 RC

t =1- e—r,fRC, t=0
Since a(r) = 0 for ¢ < 0, this output, referred to as the step response of the system, can be written
: . ; : ; : ; . . compactly as
1
—
- a(r) = [1 — exp (:R—Cﬂum (2-47)
Zo0s5
Note that a(r) = J* _h(}) dA.
I 1 I 1 i L L : =
P‘!G -8 -6 -4 -2 ? 2 4 6 8 10 . [
2-4 Examples lllustrating Evaluation of the Convolution Integral )

, ! | - : : , The convolution of two signals, x(f) and A(2), is a new function of time, y(£), which is given by (2-5). A
= 1 ' ' useful symbolic notation often employed to denote (2-5a) and (2-5b), respectively, is <
- v
o () = h(t) * x(1) (248) %
- ¥(0) = x(0) * () 249 %

| L | ] 1 1 I + 4 = i i o i . ksl
5 % o = 2 0 5 4 6 8 10 It is possible to prove several properties of the convolution integral. These are listed below, but their =
t proofs are left to the problems. el
= wd
1. A(t) * x(t) = x(2) * h(t). <
2. h(t) * [ax(f)] = a[h(?) * x(1)], where « is a constant. 'E
| | . 3. h(1) * Dx(8) + (0] = h(t) * x,(8) + h(t) * x(2). 52
1 ! ) ' ' : : 4. (D) * [x,() * x,(0] = [AQ) * x,(D] * x,(0). =
P i 5. If A(r) is time-limited to (a,b) and x(¢) is time-limited to (c,d), then A(z) * x(1) is timne-limited to %
Zos 4 T (a+c, b+ d).
i ' e s 6. If A, is the area under h(t) and A, is the area under x(1), then the area under h(f) * x(t) is A|A,.
4 T - - —_——
oL . I ! :Ia 6 fl—_' _A _'6_ S _é e In these relations, A(f), x, (1), and x,(¢) are signals. The parentheses and brackets show the order of car-
-10 -8 -6 -4 = :

- rying out the operations.

The integrand of (2-5a) is found by three operations: (1) reversal in time, or folding, to obtain x(— A);
(2) shifting, to obtain x(t — A); and (3) multiplication of A(A) and x(t — A), to obtain the integrand. A
similar series of operations is required for (2-5b).

X Four examples will be given to illustrate these three operations and the subsequent evaluation of the
Integral to form y(z).

FIGURE 2-4. Plots for Example 2-5 showing a specific example for the stairstep approximation to the &
derivation of the superposition integral.

EXAMPLE 2-6

Consider the system with impulse response

ol 2l EXAMPLE 2-7
= — ¢ REY(¢ 2 3
A RC® ® E Consider the convolution of the two rectangular-pulse signals
i b it step: f (=5
Let the input be a unit step o < 158 (1) = 21-[(_ 2__) (2-50)
x(f) = u(?) (2451

—
E
tad
o

BIBLIOTECA
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and

h(t) = H(f I 2) (2-51)

These signals are sketched in Figures 2-5a and b. _

We base our evaluation of the convolution of x(z) and A(t) on (2-5a). Thus x(f) is reversed ?und the
variable changed to A, which results in x(—A), also shown in Figure 2-5. Finally, J.r( — A) is shifted so
that what was the origin now appears at A = 1. It is sometimes helpful loh think of x(t — }) as
[ —(A — n]; that is, ¢ in x(f) is replaced by A — 1, with A thought of as the independent variable,

x(r)

| I
| |
| 1
| |
| |
| I .
+ F + + f } 1 t
0 1 2 3 4 2] 6 7 .
(a)
hith
| 1
|
} t 1 : f 1 t
0 1 2 3 4 5 6
(b}
X=X}
——— 2
£ I
| |
I | 1
I |
| |
| |
t t + } + } A
—a =5 —4 —3 -2 =1 0
{c)
xr — A)
r—-——-————1 2
| I . .
| | Note: r=2
| |
| | i
| |
| |
g f f 1 + A
—6 =5 —4 —3 2 -1 0

(d)
FIGURE 2-5. Signals to be convolved in Example 2-7.
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whereupon the function x(A — ) is reversed or folded (its mirror image about the ordinate is taken).
The result of these operations is x(t — A), which is shown in Figure 2-5d for t = 2.

The product of x(t — A) and h(A) is formed, point by point, and this product integrated to form
y(1). Clearly, the product will be zero if ¢ < 4 in this example. If 1 = 4, the rectangles forming h(A)
and x(t — A) overlap until ¢ > 10, whereupon the product is again zero.

After a little thought, we see that three different cases of overlap result. These are illustrated in
Figure 2-6. In each case, the area of integration is shaded; because the height of h(z) is unity, the area
is simply the width of the overlap times the height of x(r — A). Thus the area for Case I is 2(r — 4);

|

.

Case l: 4<t=6

.,
g U—

'(a)

Casell: 6<r=8

i

1

|

|
T 1 T + 4
0 1 2 3 4
t—6 t—4

(b)

CaseIlII: 8<r=10

. 7

T T T T
0 1 2 3 4 5 6
t—=6 t—4
(c)
+ } + } } 1 I '
g 2 3 4 5 |l5 7 8 9 |'|}_
(d)

FIGURE 2-6. Steps in the convolution of Example 2-7 and the final result.
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that is, it is linearly increasing with ¢. For Case I1, it is 2[(t — 4) — (t — 6)] = 4. Finally, for Case m, 1 2-7 in that part of the area under the product x(A)h(t — A) is negative. Our first step is to express
it is 2[4 — (t — 6)] = 2(10 — ); that is, the area linearly decreases with «. The result for (1) is Bt — A) mathematically. Since
sketched in Figure 2-6d. % o O EED

h(t) = (2-52)
EXAMPLE 2-8 . 0, otherwise
As a second example of the convolution operation, we consider the signals sh.own in Figure 2-7a. -
We use the convolution integral (2-5b) in obtaining the result. This example differs from Example weo
: = A
4 s 0st-A=<2 or t—2=A=st
x(0) n(n) _ he—-2=1 2 (2-53)
x| 5 g 0, otherwise
1 | : e .
i il h{t—X) : 1 ] The signals x(A) and h(t — A) are sketched in Figure 2-7b. Some thought on the part of the student
! i | ! 1 : should result in the four cases of nonzero overlap illustrated in Figures 2-7c¢ through f. The resultin,
| | 1 | Bp g
| ) H P I } } A convolutions for, these cases are expressed mathematically by the following equations:
' ' % : 2 R !
= I 0 2 r= = I
r e ] . ! . (O, t<-1 or t>3 :
I | 5
A i K LSS (t — A) da, -1=1<0
=1
0 t
) | j (r—A)dA—f(:—A)dA, 0=r<1
¥ : : ¥y ={ ) o (2-54)
0 1
(1 - )\)d)(—J’ (t—Ndy, 1=t<2
-2
x(h) : g 1 ;
£ <) —j (t-A)dr, 2=t<3
e 1 e ! \ i
Re=2) | k(=2 * BUE=NL " ; : . o
I 3 | +1 ! \ Integration of these expressions results in the following for y(z):
i | 1 1 :
;\'§\ — Ty A AT ; A i 0, t<-=1 or t>3
=2 4t | = l: ; i £ +1y, —1s1<0
i i
[ ! 1 Yy w2
_-2-__{1 - ‘_.—{ il ) y(f) == 2( te + 2t + 1), 0=t<1 (2_55)
_ M-P-2+1)+2, 1=t<2
© @ ) - Wr—uen-=2- 2=t<3
The resulting signal, which is the convolution of x(r) with h(z), is shown in Figure 2-7g.
x(h) y(n
=2
: Marrap Application
1+ 1 ;
i Wﬂ : MATLAB can be used to do convolutions with the conv (x,h) function. The MATLAB program given
H ' F A ; ; \.!/'3 t ] below implements the convolution of the signals of Example 2-8 (echo on):
=1 t—2 t =
| |
i
| E EDU» cZex8
2 e 4 % MATLAB plot of Example 2-8
® ; %
® 3 del_t=.005;
FIGURE 2-7 Waveforms pertinent to the convolution of Example 2-8. 1 terdidel vig;




66 Ch.2 / System Modeling and Analysis in the Time Domain

L=length(t);

gp=[2*t(1) :del t:2*t(L)];

x=2‘(pis_fn(r+.3)-pls_fn(t-.S)): % Defined in Chapter 1

h+.5’rmp_fn(t).*stp_fn(z—t); % Defined in Chapter 1 _

y=del_t*conv(x.,h): % Multiply by step size to approximaie
N % rectangular rule integratiomn.

subplot(3,1,1). plot(t.x). xlabel{'t'), ylabel ('=(t)').

axis([t(1) =(L) -3 3])

subplot(3.1,2), plot(t.h), xlabel('t'), ylabel('h(t)'),

axis[(t(1) (L) 0 2]) .

subplot{3.1,3), plot(tp.y). xlabel('t'), ylabel('y(t)').

axis([t(1) t(L) -2 21}

The plot output of the program, given in Figure 2-8, is seen to be identical to Figure 2-7g.

EXAMPLE 2-9

In this example, we consider the convolution of a ramp and the decaying exponential signal of the
form x(¢) = exp(— afu(t). The convolution integral in this case is

’_ 1 T T T T
2—
% 0
-2 : 5
| 1 4 L
-2 | 0 1 2 3 4
1
2 T T T T T
1.5} i
g 1t
05F |

y(t)

FIGURE 2-8. MarLag verification of the result of Example 2-8.
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¥ = J‘m r(re Mt — 1) dr

i
=f e dr =0
0

=e"“‘f e d, t=0
]

t 1 -
=ioSa-en =0 (2-56)

Note that the first term increases linearly like the ramp, but with a slope of 1/e. The second term ap-
proaches —1/a? as t — . The student should sketch the result of the convolution along with the
components of the integrand for different values of ¢ to provide justification for the result.

2-5 Impulse Response of a Fixed, Linear System

We have shown in Section 2-3 that the response of a fixed, linear system with impulse response A(f) to
an input x(¢) is the convolution of A(f) and x(z). In this section we therefore consider the impulse re-
sponse of a linear system. Although the impulse response of a time-varying system can be defined also,

' we limit our consideration to fixed linear systems.

We have defined the impulse response, denoted h(r), of a fixed, linear system, assumed initially un-
exited, to be the response of the system to a unit impulse applied at time t = 0. Since the system is as-
sumed to be fixed, the response to an impulse applied at some time other than zero, say ¢ = 7, is simply

. h(t — 7). We now illustrate by example two techniques for obtaining the impulse response of a system.

- EXAMPLE 2-10

Find the impulse response of a system modeled by the differential equation

dy(1)

TD? + y(1) = x(t), —co < [ << o0 (2-57)

where x(f) is the input and y(f) the output.
Solution: Setting x(f) = &(¢) results in the response y(£) = k(). For t > 0, 8(r) = 0, so that the gov-
erning differential equation for the impulse response is
dh(1)
"t h(ty=0, >0 (2-58)

t

Assuming a solution of the form
h(f) = AP (2-59)

and substituting into the equation for A(f), we obtain

(myp + 1)Ae” =0 (2-60)
which is satisfied if

e (2-61)
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Thus
h(t) = Ae™v, 1>0 (2-62)

To fix A, we require an initial condition for h(r). The system is unexcited for # < 0. Therefore, from
the definition of the impulse response,

h(t) =0, t<0 (2-63)
From (2-57) it follows that the impulse response for ¢ = 0 obeys the differential equation
dh(i
-rn—dEl + k() = 8(), t=0 (2-64)

For the left-hand side to be identically equal to the right-hand side, one of the terms on the left-hand
side must contain an impulse at t = 0. Tt cannot be h(?), for then Ty[dh(t)/df] would contain a dou-
blet,t and there is no doublet on the right-hand side [recall (1-68)]. Thus A(z) is discontinuousatt = 0,
but ne impulse is present in h(f). Therefore, its integral through 7 = 0 must be zero,

o+ :

J. h(f)dt =0 (2-65)
=0~

and the integral of (2-64) from ¢ = 0~ tot = 07 gives
o

5 : .
f iy d};(t’) di + j h(t) dt -j 8(0) dt
=0 =0~ =0

1-0[!1(0+) — h(07)] + 0 = 1 (2-66)
Since A(0~) = 0, it follows that

Wo*) = 7 @-67)

Setting this result equal to (2-62) with ¢ = 0* shows that

1 (2-68)
’TQ =

Thus

is the impulse response of the system.

EXAMPLE 2-11

Considering next the RC circuit shown in Figure 2-9, we see that the governing differential equation 2
is (2-57) with 7, = RC. We will find the impulse response by considering the physical properties of 1§

the resistor and capacitor.

A doublet was defined as d8(1)/dt in Chapter 1.

R ———

h(e) = 269 §
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R -

"
+0

5(r) C == hir)

O <

FIGURE 2-9. RAC circuit to illustrate the calculation of impulse response.

Att - 0=, the capacitor is uncharged and acts as a short cireuit (infinite charge sink) to any cur-
rent flowing through R. With x() = (t), the current through R at t = 0 is given by

o 8() s +
i(t) = R’ 0=r=0 (2-70)
The charge stordd in C due to this initial current flow is :
o .
t) 1
Wiogh i o
0= k=g @71

Thus !h(.i capacitor voltage is v,(0*) = 1/RC. For t > 0, x(f) = 0; that is, the input is a short circuit
and C discharges. The voltage across C exponentially decays according to

v () = Ae™RC >0 (2-72)

Setting v (0*) = A = 1/RC and noting that A(t) = v (f), we obtain the same result for A(f) as in Ex-
ample 2-10 with 7, = RC.

- EXAMPLE 2-12

Find the impulse response of the LC circuit shown in Figure 2-10.

Solution: For the unit impulse input, the differential equation governing the response of the circuit is
dh(p)
LC—5~ +h() = &) @-73)
For 1 > 0 the right-hand side is zero, and the solution to the homogeneous differential equation is
h(t) = (A cos wyt + B sin wy)u(t) (2-74)

where w, = I/LC and the fact that A(f) = 0 for ¢ < 0 has been incorporated into the expression
for h(z) by multiplying by a unit step function. To obtain the unknown constants A and B, we

al

FIGURE 2-10. Circuit for Example 2-12.
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differentiate A(f) twice with respect to ¢ and substitute the result back into (2-73). The first differen-

tiation gives
dh(t) ; ;
i (— Awy sin wyt + Boy cos wpt)u(t) + (A cos wyt + Bsin wyt)8(t)

= — wy(A sin oyt — B cos wyt)u(t) + A1) (2-75)
where we used the facts that 0 - 8(f) = 0 (see Problem 1-25 and the footnote on page 27). A second
differentiation gives

2
h
Ci T wi(A cos wyt + B sin wet)u(t) — wy(A sin ayt — B cos wt)8(t) + A %Eﬁ

—7
2 : ds(r)
= — wi(A cos wyt + B sin wptu(t) + wB(r) + A ol (2-76)
_Substitution of this resulf into (2-73) along with the assumed h(1), (2-74), gives
. db
LC{— wi(A cos axt + Bsin ag)u(t) — wpBa(1) + A %] ¥
+ (A cos wyt + B sin wyt)u(t) = 8(1) (2-77)
But @} = (LC)~!. Canceling like terms, we have
LC[%BB(t) + A d_fi{rg] = (1) (2-78)

By equating coefficients of like derivatives of &(r), we obtain A = 0 and B = w,. Thus the result for
the impulse response of this circuit is

h(f) = w,sin (wyt) u(t) (2-79)

2-6 Superposition Integrals in Terms of Step Response

We saw in Example 2-6 that the step response of the RC circuit shown in Figure 2-11 is simply the in- |
tegral of the impulse response of the circuit. We now ask: Can the response of a system to an arbitrary §

input be expressed in terms of its step response? The answer is yes.
To find the appropriate relationship, consider the superposition integral in terms of impulse response.
Repeating (2-5a) here for convenience, we have

o) = [ " x(t — DA dA @-5)

We employ the formula for integration by parts:

b b ;
j wdv = uw lﬁ—f v du (2-80) |

u

with # = x(t — A) and dv = h(A) dA. Thus

() = J R(D) dL & a()) sy §
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is simply the step response, and
du(A) = —x(t — A) dA (2-82)

where the overdot denotes differentiation with respect to the argument. Substituting these expressions
into (2-80), we obtain

y(1) = a(A)x(t — M) [7-_. + f i x(t — A)a(A) di (2-83)

The system is initially unexcited, so that a{ —o) = 0 and x(t — A)l, - ., = 0. Thus the first term is zero
when the limits are substituted, and the final result is

1) = f #(t — Aa(r) dA (2-84)

The change of variables 1 = ¢ — A results in the alternative form

"

y(©) = [ ima(e - m) dn (2-85)

—o

Thus inl ter.ms of the step response a(t), the response of a system to an input x(¢#) is the convolution of
the derivative of the input with the step response. Equations (2-84) and (2-85) are known as Duhamel’s
integrals. Note the similarity to (2-5a) and (2-5b), respectively.

EXAMPLE 2-13

Consider a system with a ramp input for which
x(6) = tu(r) (2-86a)
x(1) = u(t) (2-86b)
Applying (2-85), we obtain the response to a ramp as I

o

ya(t) = J u(t — A)a(A) di

4

= j_ a(A) dAa (2-87)

Thus the response of a system to a unit ramp, which is the integral of the unit step, is the integral of

~ EXAMPLE 2-14

the step response.

Generalizing, we conclude that for a fixed, linear system, any linear operation on the input produces

. _the same linear operation on the ouiput.

Find the response of the RC circuit of Figure 2-9 to the triangular signal

X By =r(t) = 2r(t — 1) + r(t — 2) (2-88)
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subplot(3,1,1).plot(t.x _del _dot).xlabel('t'),ylabel('der.of input'),
; axis([t_min t_max -1.5 1.5])

subplot(3,1,2),plot{t,a"),xlabel('t') ylabel('step resp.'),axis{[t_min

—A
J:w [1 T BXP(EE)] u(h) da t_max 0 1.5])
subplot(3,1,3),plot(tp.y),.xlabel('t'),.ylabel('output'),axis([t_min

t_max 0 1])

Solution: We first substitute (2-47) into (2-87) to obtain the ramp response. Thus

vr(t)

Il

(1) + RC[exp(;—é)]; u(r)

gl A plot of the output of the system in response to the triangle input is shown in Figure 2-12 for
rf) - RC[I - exp(:é-é)]u(t) (2-89) RC = 0.1. Note that it is the same as the corresponding response plotted in Figure 2-11.

1l

By superposition, the response to the triangle x (1) is y4(1) = yg(t) — 2yt — 1) + yglt — 2). This in-
put and output are compared in Figure 2-11. Note that for RC < < 1, the output closely approxi- EXAMPLE 2-15
mates the input, whereas if RC = 1 the output does not resemble the input.

We again consider the RC circuit of Figure 2-9 and compute its impulse response by first finding its

MATLAB Application step response and then differentiating it. The differential equation relating input and output is
" In this example, we verify the result of Example 2-14, shown in Figure 2-11, by writing a MATLAB dy(t)
program to carry out a Duhamel’s integral evaluation. The program listing is given below: RC ok +'y(6) = x(1) (2-90)
EDU>>c2exl4d
% DuHammel's computation of the output for Example 2- 14
%
RC=0.1; 4 T T T T
t_min=-0.5; % Minimum t-value for = 1r 4
% computation window i B
t_max=2.5; % Maximum t-value for 50
% computation window 5
del_t=0.001; % Step size for 3 =] ik
t=t_min:del t:t_max; % Vector of t-values = ol
L=length(5}; . 1 S 1 L 1 I 1
tp=[27t(1) :del_t:2*t(L)]; % t-variable defined for : 9 05 1 15 2 25
% plotting output L ; . ; ;
x_del_dot=s‘r.p_fn(5)-2"stp,_fn(t-1)-stp_fn[t-?) . % Derivative of the input T
a=(1 - exp(-t/R€)).*stp_£fnlt): % Step response of the 3 gk
% system a =
y=del_t*conv(x_del_dot.,a): % The convolution; 2
% multiply by del_t to % 05 i
% scale
0 L 1 L |
Y (0 Triangular 1 -0.5 0 0.5 1 15 2 2.5
A /i.nput £ t
- 1 T
1.0 q A Syen T T - :
i System E.
i response é 05~ =
05 forRC = 1.0
‘\\\ 0 ! L 1 1 |
G L e N 1 i =05 0 0.5 1 15 2 25
0 0.5 1.0 1.5 2.0 ! :
FIGURE 2-11. Response of an RC circuit to a triangular input signal. i FIGURE 2-12. The response of an RC lowpass filter to a triangular input.

- - - AT,
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which is (2-57) with 7, = RC. With a unit step input, this equation can be written as : The complex function of frequency
la(t i H(w) = A(w)e™ 2.97
RC{H{)+EI{I)‘_—"1, t=0 (2_91) H ( ) ( ) ( )
dt is called the frequency-response function of the system; A(w) and &(w) are referred to as the amplitude-
where a(f) is the step response. We have already considered the solution of this differential equation response and phase-response ﬁmqims of the system, respective]}c_
in Example 2-1 for an arbitrary input. As mentioned in that example, the solution consists of the sum The frequency-response function, (2-97), completely characterizes the steady-state response of a
of a homogeneous solution, which is fixed, linear system to a sinusoid or, equivalently, a rotating phasor, e, That is, the steady-state output
of a fixed, linear system is of the same form as its input when its input is e/ In mathematical terms,
a(f) = A exp(——f) (2-92) it is said to be an eigenfunction of the system. That this is the case can be shown by considering the
& RC superposition integral with the input x(f) = e/«. Then the output is
plus a particular solution for the forcing function u(f). This particular solution 18 silmply a1 - B i
which can be seen by direct substitution into the nonhomogeneous differential equation for a(t). Thus i) = v e NR(A) dA (2-98)
a(t) = a,(t) + a () = A exp(_—t) 1 (=0 (2-93) where A(A) is the impulse response. Since ¢/ can be factored out of the integral, the output can be writ-
: 4 RC . ten as

The initial charge on the capacitor is zero for £ < 0. Since the forcing function does not contain i £ POREE
impulses (it is a step and therefore cannot change the capacitor charge instantaneously), it follows ¥ y(t) = e I_ h(A)e ™ d\ 2 e/ H(w) v (2-99)

that the ch the capacitor at ¢ = 0+ is zero. Therefore, a(0*) = 0 or . ; .
s ® We identify the integral multiplying &/ as the frequency response H{w). That is,

=i
a0") = Acxp(gg)  F1=A4+1=0 @94) -

RC /=0 H(w) = j R(A)e~ dx (2-100)

and i -
of b | Later we shall see that H(w) corresponds to the Fourier transform of the impulse response A(z).
a(r) =1- (:xp(ﬁ), t=0 (2-953) 3
o { EXAMPLE2-16
Using the fact that a(r) = 0 for ¢ < 0, we may write this as .
_ 3 To illustrate these remarks, consider the RC filter of Example 2-1 as illustrated in Figure 2-2. Its im-
a(t) = [] o exp(.R_C)]u(I) (2-95b) pulse response was found in Examples 2-10 and 2-11 to be

Since 8(f) = du(r)/dt and using the principle stated after Example 2-13 that for a fixed, linear sys-
tem, any linear operation on the input produces the same linear operation on the output, we can ob-
tain the impulse response by differéntiating a(?) with respect to ¢. The result is

sy =20 [1' — exp(%)]a(:) + R1E exp(;—-é)u(r)

dt
1 =
RC EXP(RC)H(E) ¢

which follows by using the chain rule for differentiation and noting that 1 — exp(—#/RC) =0 for
L t=0.

1
h(t) = — —t/RC, _ :
(t) RCE u(t) (2-101)
From (2-100), the frequency response function is found to be

| ;
H(w) = f Re"”“:e‘““u(f) di

e Le—(jw+URC}l dt
0

= ’;_.l&e—[}'«ﬁ IIRQ(}M
jo + 1/RC 0

- " - b 1
2-7 Frequency Response Function of a Fixed, Linear System i 7 21003
If the input to a fixed, linear system is a sinusoid of frequency rad/s, the steady-state response (i.e. : We write this in polar form (2-97) as
the response after all transients have approached negligible values) is a sinusqid of the same frgquency,
but with amplitude multiplied by a factor A(w) and phase-shifted by &(w) radians. We prove this asser- H(w) = S S o~ tan (wRC) (2-103)
tion in this section and illustrate it with an example. 1+ (@RCY

S ——
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Thus, the amplitude and phase responses are, respectively, given by ' 2-8 Stablllfy of Linear Syste ms
; : Sh
Alw) = = (2-104a) One of the con31dc.ranons in any system design is the question of stability. Although there are various
V1 + (oRC) definitions of stabll‘ity in common usage, the one we use is referred to as bounded-input, bounded-
e output (BIBO) stability. By definition, a system is BIBO stable if and only if every bounded input re-
% sults ina bounde.d output. Clearly, stability is a desirable property of most systems.
#w) = —tan"{(wRC) (2-104b) For a ﬁ.x.ed, linear system we may obtain a condition on the impulse response which guarantees
The output, for an input of the form e/, s [?LBO stablhtvy. To derive this condition, consider (2-41), which relates the input and output of a fixed,
; linear system:
o -1
Ne @ flutr'(wRO) 2-105 i
W= s (2-105) YO = [ x(ntc— 0 dr
For a cosinusoidal input, we may find the output by writing the cosine in exponential form and us- | It follows that
ing superposition to obtain the output = %
L ~ [y(»] = U_ x(A)h(t — ) da‘ = f (V)| [a(t — A)| dA (2-110)
y(f) = —————+— cos[wt — tan"*(w@RC)] (2-106) . g : o
V1.+ (wRC)? : If the input is bounded, then '
Note that the same result could have been obtained by taking the real part of (2-105). This is not sur- k(M| =M <= ) (2-111)
prising, since the cosinuosidal input is obtained by taking the real part of the rotating phasor input, bre Miinadiniie - ; ) ) -
and the operations of taking the real part and convolution are interchangeable since both are linear e ,x(;\)| i \g
operations. . 2
Some numerical values will illustrate the behavior of A(w) and &w) versus w. For 2QmRC)™! = Iy (:)l =M J’_m lh(‘ = ’\)‘ dA (2-112a) 3 g
1 kHz and @ = 1, the values in Table 2-1 result. For example, for x(z) = cos(2,00071), the out- e oy
put is % E
s = ;_'.‘_' J
y(f) = 0.707 cos(2,0007t — 45°) (2-107) bl =M f h(m)| dn @uz) & &
Using the superposition property of the linear RC filter, we obtain the output for an input of the form which follows by the change of variables = t — A. Thus the output is bounded provided that }-ij g
x(t) = cos(2,000at) + cos(20,0007t) (2-108) = 5: 3
J Ih(0)| dt < o0 @2-113) = D
as oo }
That is, (2-113) is a sufficient condition for stability. . %

1) = 0.707 2,000t — 45°) + 0.0995 cos(20,000m — 84.29° 2-109 e
(1) cos( ) cos( ) ( ) To show that it is also a necessary’ condition, consider the input

Applying the superposition property an indefinite number of times, one could find a series expres- |
sion for the output due to any periodic input simply by representing the input in terms of its Fourier §
series, as we will show in the next chapter.

+1  if A(t—=2A)>0
| x(A)={ 0 if h(t—A) =0 (2-114)
1 -1 if A=) <0

TABLE 2-1 is i i
For this input it follows that

Amplitude and Phase Response Values
for an AC Filter

ly(| =

L (e — A)| dA| = J’ " h(m)| dn (2-115)

o Alw) Kw)
2004 0.995 _5791° _f01‘ any ﬁx'ed value of ¢ since the integrand is always nonnegative. Thus the output will be unbounded
1,000 0.894 —26.57° if (2-113) is not satisfied. That is, it is also a necessary condition for BIBO stability.
2,000 0.707 —45.00°
10,0007 0.196 —78.69" 'A condition from which a given stat logically follows is said
: g e om a given statement logically follows is said to be a sufficient condition; a condition which is a logi-
20,0007 0.0995 g cal consequence of a given statement is said to be a necessary condition. A condition may be necessary but not sulf?ﬁc;:l, (:lf‘lld

vice versa,
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EXAMPLE 2-17

The system of Example 2-11 is BIBO stable since

@

otk 5
~YRC(p) df = J -
J_m RC e u(t) : exp(—uv) dv

= —exp(—v)fg

=1<w (2-116)

' EXAMPLE 2-18

Is the system whose impulse response was derived in Example 2-12 BIBO stable?

Solution: Substituting the impulse response for this system into (2-113), we obtain

f (o)) dt = w{,J' Isin(awyt) u(t)| dt = wﬁj Isin wy| dr @-117)
—n & — 0

The integral dees not converge, so the condition for BIBO stability does not give a bounded re-
sult. This system is BIBO unstable.

We will return to the idea of stability of a system in Chapter 6, where additional methods for deter-
mining the stability of systems describable by constant coefficient, linear differential equations, are
discussed.

2-9 System Modeling and Simulationt

We briefly consider in this section how systems can be modeled and simulated in terms of several basic
building blocks. These basic building blocks are given in Table 2-2, and consist of ideal adders or sub-
tractors, constant multipliers, and integrators. Any rth-order constant-coefficient differential equation
can be simulated by means of these components. It may seem that we are simply replacing one unsolved
problem with another in so doing, or that yve really don’t need such simulations at all because linear, con-
stant-coefficient differential equations are amenable to solution. In answer to the first thought, when a
simulation block diagram is available for a system, the realization of such a simulation can take one of
two forms: (1) The realization can be accomplished in analog fashion by means of operational amplifier
circuits that approximate the ideal summers and integrators needed (such circuits are also shown in Table
2-2): (2) the simulation can be realized by means of a digital computer program where the integration is
done numerically, as in Example 1-3. In regard to simulations being unnecessary because the differen-
tial equation representing a system is analytically solvable, we simply point out that the system realiza-
tions and simulation procedures touched on in this section also apply to cases where the system is
nonlinear or time varying as well, and these problems are often not solvable by analytical means.

To see how one might simulate a system, either by means of operational amplifier circuits or by digi-
tal computer algorithms, consider the first-order differential equation

dy

7 +ay=b]i{+b,}x (2-118)

dt

tSystematic modeling procedures for electrical and mechanical systems are discussed in Appendix B.
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TABLE 2-2
Building Blocks for System Modeling

Operation Symbol Op Amp Realization
Multiplication by Ry
a constant A
R’
x(f) a »0) x(1) 0'_‘V——— =
-0 ¥(1)
rt)=ax(t) 2
—a= Ry/ Ry
Integration ” {5
X ) ] af' | —— ] .
i
: X(I)O——--N—q
v(0) = af'xfA) dA b0 y(1)
—a=|/RC
Summation R R
3
= x (1) A A
() 0] B T i
- x(1) O—N—J
B —0 j{1)
x3(0)
— 0= 10+ x(0) w
RyRy=1
Ry/R =1

b .

It is realized by the block diagram of Figure 2-13. To show that this is the case, let the output of the

integrator be g(#). Its input is then dg/dt. Equating dg/dt to the sum of the inputs to the lefi-hand sum-
mer, we obtain

dq
& ot byx (2-119)

Considering the output of the right-hand summer, we find that

y=gq +bx (2-120)
leferenfiat:ing both sides of (2-120) and substituting (2-119), we obtain (2-118).
' I_n a 51m1.lar manner to the first-order case, we can realize an nth-order system by a block diagram
similar to Figure 2-12. For the differential equation
dﬂ t n—1 i t n i
O STONE O

: x(f)
dt = G A ] (2-121)
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by

+ d q(1)
x(1) by > - ik

e ¥(1)

a

FIGURE 2-13. Integrator realization of a general first-order system.

we have the realization diagram shown in Figure 2-14. That this is the realization of (2-121) can b.e
demonstrated in a similar, although longer, procedure to that used for the first-order case. [Nott? that l.hl.S
is only one of many ways to realize this system. Also note that the number of derivatives on either side

of (2-121) can differ by having some a;s or b;’s zero.]

- r{1)

]’11
kel
—[“'1[
B8 S
=
rit o

FIGURE 2-14. Integrator realization of a general rth-order system.

G

EXAMPLE 2-19
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Consider the RLC circuit shown in Figure 2-15. Obtain an integrator realization of this circuit.

Solution: The differential equation describing the voltage response of the circuit is

vy 1 f du(t)
= Adr+ C——+= -
LR f v(A) o = (1) (2-122)
Differentiating once and rearranging, we obtain
v Ly 1 ldr 2o
a* " RCdt LC" Car N

This is of the form (2-121) withy = v,n = 2,4, = 1/LC,a, = 1/RC, b, = 0, b, = 1/C, and b, = 0.
The integrator realization is shown in Figure 2-16.

MaTtLAB APPLICATION

An integrator (or state variable) simulation of a system can be carried out using SIMULINK, which
is a block diagram oriented toolbox. There is a limited version available in The Student Version
of MATLAB. One invokes SIMULINK by typing “simulink” after the command window prompt. One
can then construct a block diagram realization of the desired system using the menus available. Such

a SIMULINK block diagram realization is shown in Fig. 2-17 for the RLC circuit of Example 2-19.

d) R é L ¢ =R U0

FIGURE 2-15.

Circuit for Example 2-19.
e
5
+
; = " Ch]
/ a2\~ I w0
1
®¢ [T
=]
c [
FIGURE 2-16. Integrator realization of a parallel RLC circuit.
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[

Step Input 1c
+
) - =
Integratori = Integrator2 v Scope
Sum
J\-‘}%
1/RC

<o

inc
FIGURE 2-17. A SIMULINK simulation block diagram for the RLC circuit of Example 2-19.

The simulation can be carried out directly in the model window or it can be carried out in the
MAaTLAB command window using the function 1sim as suggested by the script below:

EDU>>c2ex19pl

% Plot of simulation cutput for Example 2_19
%

[t.ql=lsim('c2ex1%',20);

plot{t, g(:.1)), xlabel('t'). ylabel('output')

The output variables are defined by dropping down the menu under “Simulation” in the simulation
window, and then the menu under “parameters.” This brings up the “SIMULINK Control Panel” in
which various simulation variables are specified such as start and end time of the simulation. The
last blank to be filled out is labeled “Return Variables” which can be left blank if desired and the re-
turn variables default to time () and the state variables or integrator outputs (x). In our example here
we gave the state variables the label g. This is a matrix g(m,n) with m denoting the time index and n
indicating the number of the state variable. Thus by specifying g(:, 1) we have specified the output
in this example, which is shown in Figure 2-18. The step size was set to 0.1.

A useful way to write the equations for a system are in terms of state variables, to be discussed fur- .'
ther in Chapter 7. For now, we simply point out that the state variables for a system are the outputs of ]

the integrators of ihe integrator realization of a system. The state variable equations are then written
down by taking the input to each integrator (the derivative of that state variable) and setting it equal to
the summer output appearing there.

The advantage of writing the system equations in terms of state variables is that the same form is ob-
tained no matter what the order of the system. For orders greater than one, the equations become ma-
trix equations, as will be pointed out in Chapter 7. For example, the state equations for the system of
Example 2-21 are
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0.7 T T T T T T T T T

output

0.1 1 L I L 1 L L i I
g 2 4 6 8 10 12 14 16 18 20

FIGURE 2-18. OQutput of the parallel RLC circuit of Figure 2-15 obtained by SIMULINK for parameter
values shown in Figure 2-17.

dg, (1) 1 1
= "Re® — @ + X0
dg,() 1
& - Lch® (2-124)

and the output equation is v(r) = g,(#). This can be put into the form of the matrix equation
Q(?) = AQ(r) + Bx(¢)

where A and B are matrices and Q(f) is a column matrix or vector with elements g,(t) and g,(2).

(2-125)

EXAMPLE 2-20

Reconsider the accelerometer of Example 1-1 and the integrator circuit for determining velocity of
Example 1-2. We make one addition to the accelerometer model to make it more realistic—the ad-
dition of viscous friction between the weight and its housing. Such friction is often modeled as be-
ing proportional to velocity so that (1-1) now is modified to

Ma=Kx+de

X (2-126)

where B is the constant of proportionality. A small amount of friction will hardly affect the ac-
celerometer action at all, whereas a large amount will make its response sluggish and the indicated
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velocity at the integrator circuit output will lag that of the actual velocity. To investigate this effect,
we model the rest of the system and simulate it with SIMULINK. The remaining equations neces-
sary for constructing the SIMULINK model are (1-8), which is repeated here

v(t) = - s J‘r v(X)dA or Bty w3

RC 1y dt " RC Ae)

and the equation relating v, to the mass excursion from equilibrium, x. To make the maximum of
v, = 0.1 V when the mass is at its maximum excursion of 1 cm = 0.01 m, this equation is simply

v,(f) = 10x(1) (2-128)

We define auxiliary variables (called state variables) as the outputs of the integrators in the
SIMULINK model. Thus ¢, = x and g, = v,, and the system governing equations may be written as

(2-127)

_dﬂh(f) _ K M
& B gq(n) + B a(r)
“and
dg)(t) _ 1 10
& = RO = "rc™® )

The desired output is g,(f) = v,(#) which is proportional to the velocity of the rocket (recall that the
integrator circuit was designed in Example 1-2 such that when the operational amplifier output volt-
age is —10 volts, the rocket’s velocity is the burnout value of 1500 m/s).

A SIMULINK block diagram modeling the accelerometer and integrator circuit is shown in Fig-
ure 2-19. Recall that the following parameter values were used in Examples 1-1 and 1-2:

M = 2 grams = 0.002kg; K=38 kg/s?; RC=036s

We will take three values for B, in particular 1, 10, and 100 kg/s which corresponds to low, moder-
ate, and high damping. Note that the ramp acceleration input has been modeled as a step integrated.

The SIMULINK simulation can take place either in the SIMULINK model window itself, in
which variables of interest can be monitored on scopes strategically placed, or it can be run in the
MaTLAB command window with the statement below:

EDUDY [t. gl=sim(’'c2ex20'.72): .

Various plots can then be made with the plot command. In this case, three simulations were run for
the three different values of B (1, 10, and 100) and the plot held in each case so that the integrator
output for each succeeding case could be plotted on top of the previous cases. The resulting graph is
shown in Figure 2-20. Note that the largest value of B = 100 gives considerable lag in the output.
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FIGURE 2-19. SIMULINK model for the accelerometer/integrator circuit of Examples 1-1 & 1-2.
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FIGURE 2-20 ‘Output voltages for the accelerometerfintegrator system of Examples 1-1 and 1-2 for
the three damping parameter values of 1, 10, and 100 kg/s.

EXAMPLE 2-21

As a final example using SIMULINK, we do another system that involves both mechanical and
electrical subsystems. Figure 2-21 represents a direct current (dc) motor with separately excited
field coils (a separate source supplies the dc current to provide the magnetic field in which the
armature rotates). The applied voltage to the armature, v,(f), is assumed to be a step applied at
¢ = 0. The angular velocity (rotational speed), radians/second, of the armature as a function of time
is desired.

The left-hand side of the block diagram of Figure 2-21, representing the armature circuit, in-
cludes the applied source, a resistor representing the resistance of the armature windings, an induc-
tor representing the inductance of the armature windings, and a controlled source v, = K d/dr = K{}
representing the back-electromotive force (emf) generated because the armature turning in the
magnetic field also acts as a generator. The latter is proportional to the angular velocity of the
armature.

The right-hand side of the block diagram of Figure 2-21 represents the rotating armature of the
motor. Tt consists of an ideal torque source T, = Ki (note that the same constant relates torque to
current as relates back emf to angular velocity) which is proportional to the armature current, an
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FIGURE 2-21. Schematic diagram of a separately field-excited dc motor with viscous friction loading. 0.8

T T T r T T T T T

angular momentum J which is due to the mass of the armature, and a rotational damper B which rep-
resents damping due to air and mechanical friction (part of which may be the load).

Since both the electrical and mechanical parts of the system are represented by circuit diagrams
(the circuit diagram for the mechanical side is perhaps easier for electrical engineers to understand Gl . I
than mechanical diagrams), we can apply Kirchhoff’s circuit laws to write down the governing dif- ; /J = 0.707
ferential equations which are

0.7 b

di(t : D05F- i
v(f) = Ri(t) + L % + KO & 3
1 z
do(t Boal a
T(f) = Ki(t) = J % + BO() (2-130) g 04
B
If we are interested in the angular velocity ((r), we could eliminated i(f) between these two equa- : %0 4l J=2 |

tions and solve the resulting second-order differential equation for £(f) using standard techniques. ¥
The purpose of this example is to illustrate the application of SIMULINK, however. Easier tech-
niques for solving system equations based on Laplace transforms will be presented in Chapters 5 and

i ; 021 4
6. In order to easily construct the SIMULINK block diagram, we solve (2-130) for difdt and dW/dt. |
These will then be the inputs to the two required integrators. 1 =4
di(f) R K 1 1 01 ’ _
— = —— () — — ) + v l¢
2 = i) = 0 + 70 1
dQ(t) B K . F 0 I I L I L | I L L
S Q) + 5 i(0) (2-131) 0 1 2 3 4 5 ) 7 8 9 10
Using these equations, the SIMULINK diagram shown in Figure 2-22 can be corxstructe.d. We b FIGURE 2-23. Angular velocity versus time for motor armature for different coefficients of friction.
have two options for running the simulation—in particular, we can simulate directly in the
SIMULINK window, or we can use 1sim in the MATLAB command window. The latter is conve-
: Summary

nient for