The Use of Diode Model

3) The use of models

A piece wise linear models is an electrical equivalent circuit of a nonlinear electronic device

It is composed of linear circuit elements arranged to approximate the characteristics of the electronic device.

- When $V_s \ge 0$; the Diode is on, and replaced with short circuit
- When V_s < 0 ; the Diode is off, and replaced with open circuit

b) Knee Voltage model

▶ When V_s ≥ V_k; the Diode is on, and replaced with a constant voltage source

Α

K

Κ

K

 V_k

- ▶ When $V_s \ge V_o$; the Diode is on, and replaced with a constant voltage source V_o and resistance R_o
- When V_s < V_o; the Diode is off, and replaced with open circuit

Α

К

When V_s < V_o; the Diode is off, and replaced with open circuit

Find the Q point (I_{DQ}, V_{DQ}) using

 a) ideal diode model
 b) knee voltage model

since $V_S \ge 0$, the diode is on and replaced with short circuit.

$$\therefore I_{DQ} = \frac{2}{100} = 20 \, mA$$

$$\therefore V_{DQ} = 0 V$$

b) Using knee voltage model

 $R_s = 100 \Omega$ since $V_S \ge 0.7$, the diode is on and replaced with $V_k = 0.7$. $V_{\rm s} = 2 V$... V_{DQ} I_{DQ} $\therefore I_{DQ} = \frac{2-0.7}{100} = 13 \, mA$ $R_s = 100 \Omega$ + $\therefore V_{DO} = 0.7 V$ $V_{\rm s} = 2 V_{-}$ V_D I_{DO}

+

c) using nonlinear mathematic

$$I_{DQ} = 12.137 \ mA$$

 $V_{DQ} = 0.7863 \ V$

Taking the knee voltage into a count

▶ If $V_S \ge 10 V_k$, we could use ideal diode model.

If $V_S < 10 V_k$, we must use knee voltage model.