Dc Power Supply

half wave rectifier center tapped transformer

All electronic circuits and systems require a stable source of dc voltage and current (or dc power) to operate correctly.

Dc Power Supply

- ▶ The basic power supply consists of a transformer, rectifier, filter, and a regulator.
- **Transformer:** Used to increase or decrease the amplitude of the line voltage

$$\blacktriangleright V_2(t) = \frac{1}{n} V_1$$
$$i_2(t) = n i_1(t)$$

Dc Power Supply

- Rectifier: used to convert the ac voltage (zero- average value) into either positive and negative pulsating dc.
- 1) Half- Wave Rectifier

$$V_i(t) = \frac{V_s(t)}{n}$$

► A) when $V_i(t) > 0$, Diode is on (short circuit) $\therefore V_o(t) = V_i(t)$ $\therefore V_D(t) = 0$

B) when $V_i(t) < 0$, Diode is off (open circuit)

 $\therefore V_o(t) = 0$ $\therefore V_D(t) = V_i(t)$

$$V_{o,av} = \frac{1}{T} \int_{0}^{T} V_{o}(t) dt$$

$$= \frac{V_{m}}{2\pi} \int_{0}^{\pi} \sin \theta \, d\theta$$

$$V_{o,av} = \frac{V_{m}}{\pi}$$

$$V_{o,av} = \frac{V_{m}}{\pi}$$

$$f = f_{o}$$

$$i_{o}(t)$$

$$I_{D}(t),av = \frac{V_{m}}{\pi R_{L}}$$

$$\frac{V_{m}}{R_{L}}$$

$$V_{i}(t)$$

$$V_{$$

Important Electrical Ratings

- I_{FM} = Maximum Forward Current
- I_{FM} = Maximum average current that can safely be sustained by the diode when it is forward biased
- \blacktriangleright $V_{RM} = Maximum Reverse Voltage$

 \blacktriangleright **PIV** = V_{RM}

 \triangleright V_{RM} = Maximum voltage that can be applied to the diode in the Reverse bias polarity before voltage break down occur

► ∴ For the have-wave rectifier

 $V_{o,av} = \frac{V_m}{\pi}$ $I_{FM} = \frac{V_m}{\pi R_L}$ $PIV = -V_m \qquad Prove ????$

To calculate PIV

When $V_i(t) < 0$, Diode is off

$$V_D(t)_{,max} = -V_m$$

Full-Wave Rectifier

A) Center-tapped transformer full-wave Rectifier

 $V_A(t) = - V_B(t)$

Simplified Circuit

 D_1 and D_2 are ideal

▶ 1) when $V_s(t) > 0$ $V_A(t) > 0$, D_1 is on $V_B(t) < 0$, D_2 is off

For a complete cycle of $V_s(t)$

To calculate PIV

$$V_{D2}(t) = V_B(t) - V_A(t)$$
$$V_{D2}(t)_{,max} = -V_m - V_m$$
$$V_{D2}(t)_{,max} = -2V_m$$
$$\therefore \text{PIV} = -2V_m$$

 $V_A(t) > 0$, D_1 is on $V_B(t) < 0$, D_2 is off

$$V_{o,av} = \frac{2V_m}{\pi}$$

$$PIV = -2V_m$$

$$T = \frac{1}{2}T_o$$

$$f = 2f_o$$

Diodes currents

If the diodes have Vk

