

reacher a Certain Value; then it turns on

Conduction Continue until the Current

is reduced below as pecified value

Chavacteristic Curve

state and acts ar a closed Switch

* When the anode Current IA drops back

The Capacitor rapidly discharge through the device until IA < IH The device switch back to the off state

Circuit between Anode and Cathod

When
$$
Is=0
$$
; it act an the Schockley diode
\nin the off state (open Circuit)
\n— When a positive pulse of Cuvvent (trigger)
\niv applied to the gate, both transistov:
\ntuvn on
\n— The SCR stays on (Latchen) once
\nit is triggered on
\n— In this state, SCR Can be approximated
\nby close switch.

Forward blocking region, 5 This region Correspond to the OFF Condition of the SCR where the forward Current from anode to Cathod is blocked by the open Civcuit of the SCR.

Typical Gate Control Circuita Load R_1 $V_{s(1)}$ R_{c}

The Diac \perp o Ai IΉ $\sqrt{R} \sqrt{B_R(R)}$ $\vee_{\mathcal{B}R(F)}$ ΗT Civcuit SymboL Chavacteristic Curve It is a two terminal device It Can Conduct Current in either direction When properly activated Conduction occurs when the breakover Noltage is reached with either polarity

The Diac T_F 4 φ A_1 Iн $\sqrt{R} \sqrt{B_R(R)}$ $\vee_{\mathcal{BR}(F)}$ нT $A₂$ The device turns off when the Current drops below the holding value (IH) The device functions Like two parallel Shockley dioder turned in opposite direction

The Triac
\n9 A1
\n
$$
z_{m}
$$

\n z_{m}
\n z_{m} <

Unijunction Transistor (UJT)

40

Unijunction Transistors

- The **unijunction transistor** (UJT) is a three-terminal semiconductor device that has only one p-n junction.
- The unijunction transistor (UJT) has two base leads, B_1 and B_2 and an emitter (E) lead.
- The interbase resistance, R_{BR} of a UJT is the resistance of its n-type silicon bar.
- The ratio $R_{B1}/(R_{B1} + R_{B2})$ is called the intrinsic standoff ratio, designated η.

Unijunction Transistor (UJT)

• For a Unijunction transistor, the resistive ratio of R_{B1} to R_{BB} is called the **intrinsic stand-off ratio (**η).

$$
\eta = \frac{R_{B1}}{R_{B1} + R_{B2}}
$$

• Typical standard values of n range from 0.5 to 0.8 for most common UJT's.

UJTs are used in conjunction with SCRs and Triacs to control their conduction angle

To five the UJT
\n
$$
\sqrt{\epsilon B_1} \ge \sqrt{D + \frac{RB1}{RB1+RB2}} \sqrt{BP} = \sqrt{P}
$$

\n $\sqrt{\epsilon B_1} \ge \sqrt{D + \frac{RB1}{RBB}} \sqrt{BP} = \sqrt{P}$

$$
\sqrt{EB.} \ge \sqrt{DP + \eta \sqrt{BB}} = \sqrt{P}
$$

\n $\eta = \frac{RBI}{RBB} = \frac{3 \times 100}{100} = \frac{1}{100}$
\n $\sqrt{P} = \frac{peak}{RDB} = \frac{3 \times 100}{100} = \frac{1}{100}$
\n $\frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$
\n $\frac{1}{100} = \frac{1}{100} = \frac$

Current because the prijunction is not forward biased - When VEBI reacher Vp, the pn junction

18. decreases

\nAfter turn on, the UIT operator in a negative resistance region up to a certain

\nValue of
$$
\mathcal{I}\in
$$
.

\nAfter the peak point $(\forall \epsilon = \forall \rho$ and $\mathcal{I}\in \mathcal{I}\rho$)

\n1.6 decreases an $\mathcal{I}\in$ Continuent to increase

\nthus producing the negative resistance

\ncharacteristic.

\nBeyond the Valley point $(\forall \epsilon = \forall \gamma$ and $\mathcal{I}\in \mathcal{I}\sqrt{}$)

\nThe device is in saturation

UJT Chavacteristic Curve

 $Vv = Valley A01+age$

 $Ty = \sqrt{a \log C}$

A UST Application

ReLaxation Oscillator

 $+ \sqrt{88}$ R_{1} B_2 E 工 β_1 R_{2} $V_0(t)$ When the dc power supply is applied, the Capacitor C charges through R. until it reaches \vee At this point, the ph junction becomer forward b_i ared and $I\epsilon$ Conducts, and vs_i , decreaser The Capacitor then quickly discharge through R_2 and $\sqrt{B_1}$ When the Capacitor Voltage decreases to the Valley Voltage, the UST turns OFF

UJT Relaxation Oscillator

