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Preface

The first edition of Electric Circuits, an introductory circuits text, was pub-
lished in 1983. It included 100 worked examples and about 600 problems. It
did not include a student workbook, supplements for PSpice or MultiSim,
or any web support. Support for instructors was limited to a solution man-
ual for the problems and enlarged copies of many text figures, suitable for
making transparencies.

Much has changed in the 31 years since Electric Circuits first appeared,
and during that time this text has evolved to better meet the needs of both
students and their instructors. As an example, the text now includes about
150 worked examples, about 1850 problems, and extensive supplements
and web content. The tenth edition is designed to revise and improve the
material presented in the text, in its supplements, and on the web. Yet the
fundamental goals of the text are unchanged. These goals are:

+ To build an understanding of concepts and ideas explicitly in terms of
previous learning. Students are constantly challenged by the need to
layer new concepts on top of previous concepts they may still be
struggling to master. This text provides an important focus on helping
students understand how new concepts are related to and rely upon
concepts previously presented.

- To emphasize the relationship between conceptual understanding
and problem-solving approaches. Developing problem-solving skills
continues to be the central challenge in a first-year circuits course. In
this text we include numerous Examples that present problem-
solving techniques followed by Assessment Problems that enable
students to test their mastery of the material and techniques intro-
duced. The problem-solving process we illustrate is based on con-
cepts rather than the use of rote procedures. This encourages
students to think about a problem before attempting to solve it.

« To provide students with a strong foundation of engineering prac-
tices. There are limited opportunities in a first-year circuit analysis
course to introduce students to realistic engineering experiences. We
continue to take advantage of the opportunities that do exist by
including problems and examples that use realistic component values
and represent realizable circuits. We include many problems related
to the Practical Perspective problems that begin each chapter. We
also include problems intended to stimulate the students’ interest in
engineering, where the problems require the type of insight typical of
a practicing engineer.

WHY THIS EDITION?

The tenth edition revision of Electric Circuits began with a thorough
review of the text. This review provided a clear picture of what matters
most to instructors and their students and led to the following changes:

- Problem solving is fundamental to the study of circuit analysis.
Having a wealth of new problems to assign and work is a key to suc-
cess in any circuits course. Therefore, existing end-of-chapter prob-
lems were revised, and new end-of-chapter problems were added. As
a result, more than 40% of the problems in the tenth edition have
never appeared in any previous edition of the text.

xvii
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« Both students and instructors want to know how the generalized
techniques presented in a first-year circuit analysis course relate to
problems faced by practicing engineers. The Practical Perspective
problems provide this connection between circuit analysis and the
real world. We have created new Practical Perspective problems for
Chapters 2,3,6,7,8,and 10. Many of the new problems represent the
world of the 21st century. Each Practical Perspective problem is
solved, at least in part, at the end of the chapter, and additional end-
of-chapter problems can be assigned to allow students to explore the
Practical Perspective topic further.

- The PSpice and Multisim manuals have been revised to include
screenshots from the most recent versions of these software simula-
tion applications. Each manual presents the simulation material in
the same order as the material is presented in the text. These manu-
als continue to include examples of circuits to be simulated that are
drawn directly from the text. The text continues to indicate end-of-
chapter problems that are good candidates for simulation using
either PSpice or Multisim.

e Students who could benefit from additional examples and practice
problems can use the Student Workbook, which has been revised to
reflect changes to the tenth edition of the text. This workbook has
examples and problems covering the following material: balancing
power, simple resistive circuits, node voltage method, mesh current
method, Thévenin and Norton equivalents, op amp circuits, first-
order circuits, second-order circuits, AC steady-state analysis, and
Laplace transform circuit analysis.

e The Student Workbook now includes access to Video Solutions,
complete, step-by-step solution walkthroughs to representative
homework problems.

¢ Learning Catalytics, a “bring your own device” student engagement,
assessment, and classroom intelligence system is now available with
the tenth edition. With Learning Catalytics you can:

* Use open-ended questions to get into the minds of students to
understand what they do or don’t know and adjust lectures
accordingly.

e Use a wide variety of question types to sketch a graph, annotate a
circuit diagram, compose numeric or algebraic answers, and more.

e Access rich analytics to understand student performance.

® Use pre-built questions or add your own to make Learning
Catalytics fit your course exactly.

¢ MasteringEngineering is an online tutorial and assessment program
that provides students with personalized feedback and hints and
instructors with diagnostics to track students’ progress. With the tenth
edition, MasteringEngineering will offer new tutorial homework prob-
lems, Coaching Activities, and Adaptive Follow-Up assignments. Visit
www.masteringengineering.com for more information.

HALLMARK FEATURES
Chapter Problems

Users of Electric Circuits have consistently rated the Chapter Problems
as one of the book’s most attractive features. In the tenth edition, there
are over 1650 end-of-chapter problems with approximately 40% that
have never appeared in a previous edition. Problems are organized at
the end of each chapter by section.


www.masteringengineering.com

Practical Perspectives

The tenth edition continues the use of Practical Perspectives introduced
with the chapter openers. They offer examples of real-world circuits, taken
from real-world devices. The Practical Perspectives for six of the chapters
are brand new to this edition. Every chapter begins with a brief descrip-
tion of a practical application of the material that follows. Once the chap-
ter material is presented, the chapter concludes with a quantitative
analysis of the Practical Perspective application. A group of end-of-chap-
ter problems directly relates to the Practical Perspective application.
Solving some of these problems enables you to understand how to apply
the chapter contents to the solution of a real-world problem.

Assessment Problems

Each chapter begins with a set of chapter objectives. At key points in the
chapter, you are asked to stop and assess your mastery of a particular
objective by solving one or more assessment problems. The answers to all
of the assessment problems are given at the conclusion of each problem, so
you can check your work. If you are able to solve the assessment problems
for a given objective, you have mastered that objective. If you need more
practice, several end-of-chapter problems that relate to the objective are
suggested at the conclusion of the assessment problems.

Examples

Every chapter includes many examples that illustrate the concepts
presented in the text in the form of a numeric example. There are
nearly 150 examples in this text. The examples are intended to illus-
trate the application of a particular concept, and also to encourage
good problem-solving skills.

Fundamental Equations and Concepts

Throughout the text, you will see fundamental equations and concepts
set apart from the main text. This is done to help you focus on some of the
key principles in electric circuits and to help you navigate through the
important topics.

Integration of Computer Tools

Computer tools can assist students in the learning process by providing a
visual representation of a circuit’s behavior, validating a calculated solu-
tion, reducing the computational burden of more complex circuits, and
iterating toward a desired solution using parameter variation. This compu-
tational support is often invaluable in the design process. The tenth edition
includes the support of PSpice® and Multisim®, both popular computer
tools for circuit simulation and analysis. Chapter problems suited for
exploration with PSpice and Multisim are marked accordingly.

Design Emphasis

The tenth edition continues to support the emphasis on the design of cir-
cuits in many ways. First, many of the Practical Perspective discussions
focus on the design aspects of the circuits. The accompanying Chapter
Problems continue the discussion of the design issues in these practical
examples. Second, design-oriented Chapter Problems have been labeled
explicitly, enabling students and instructors to identify those problems
with a design focus. Third, the identification of problems suited to explo-
ration with PSpice or Multisim suggests design opportunities using these
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software tools. Fourth, some problems in nearly every chapter focus on the
use of realistic component values in achieving a desired circuit design.
Once such a problem has been analyzed, the student can proceed to a lab-
oratory to build and test the circuit, comparing the analysis with the meas-
ured performance of the actual circuit.

Accuracy

All text and problems in the tenth edition have undergone our strict
hallmark accuracy checking process, to ensure the most error-free book
possible.

RESOURCES FOR STUDENTS

MasteringEngineering. MasteringEngineering provides tutorial home-
work problems designed to emulate the instructor’s office hour environ-
ment, guiding students through engineering concepts with self-paced
individualized coaching. These in-depth tutorial homework problems pro-
vide students with feedback specific to their errors and optional hints that
break problems down into simpler steps. Visit www.masteringengineering
.com for more information.

Student Workbook. This resource teaches students techniques for solving
problems presented in the text. Organized by concepts, this is a valuable
problem-solving resource for all levels of students.

The Student Workbook now includes access to Video Solutions, com-
plete, step-by-step solution walkthroughs to representative homework
problems.

Introduction to Multisim and Introduction to PSpice Manuals — Updated
for the tenth edition, these manuals are excellent resources for those wish-
ing to integrate PSpice or Multisim into their classes.

RESOURCES FOR INSTRUCTORS

All instructor resources are available for download at www.pearson
highered.com. If you are in need of a login and password for this site,
please contact your local Pearson representative.

Instructor Solutions Manual — Fully worked-out solutions to Assessment
Problems and end-of-chapter problems.

PowerPoint lecture images— All figures from the text are available in
PowerPoint for your lecture needs. An additional set of full lecture slides
with embedded assessment questions are available upon request.

MasteringEngineering. This online tutorial and assessment program
allows you to integrate dynamic homework with automated grading and
personalized feedback. MasteringEngineering allows you to easily track
the performance of your entire class on an assignment-by-assignment
basis, or the detailed work of an individual student. For more information
visit www.masteringengineeing.com.

Learning Catalytics —This “bring your own device” student engagement,
assessment and classroom intelligence system enables you to measure
student learning during class, and adjust your lectures accordingly. A wide
variety of question and answer types allows you to author your own
questions, or you can use questions already authored into the system. For
more information visit www.learningcatalytics.com.


www.masteringengineering.com
www.masteringengineering.com
www.pearsonhighered.com
www.pearsonhighered.com
www.masteringengineeing.com
www.learningcatalytics.com

PREREQUISITES

In writing the first 12 chapters of the text, we have assumed that the
reader has taken a course in elementary differential and integral calculus.
We have also assumed that the reader has had an introductory physics
course, at either the high school or university level, that introduces the
concepts of energy, power, electric charge, electric current, electric poten-
tial, and electromagnetic fields. In writing the final six chapters, we have
assumed the student has had, or is enrolled in, an introductory course in
differential equations.

COURSE OPTIONS

The text has been designed for use in a one-semester, two-semester, or a
three-quarter sequence.

o Single-semester course: After covering Chapters 1-4 and Chapters 610
(omitting Sections 7.7 and 8.5) the instructor can choose from
Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits),
Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port
Circuits) to develop the desired emphasis.

» Two-semester sequence: Assuming three lectures per week, the first
nine chapters can be covered during the first semester, leaving
Chapters 10-18 for the second semester.

o Academic quarter schedule: The book can be subdivided into three
parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18.

The introduction to operational amplifier circuits in Chapter 5 can be
omitted without interfering with the reading of subsequent chapters. For
example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7,
Section 8.5, Chapter 15, and those assessment problems and end-of-
chapter problems in the chapters following Chapter 5 that pertain to oper-
ational amplifiers.

There are several appendixes at the end of the book to help readers
make effective use of their mathematical background. Appendix A reviews
Cramer’s method of solving simultaneous linear equations and simple
matrix algebra; complex numbers are reviewed in Appendix B; Appendix C
contains additional material on magnetically coupled coils and ideal trans-
formers; Appendix D contains a brief discussion of the decibel; Appendix E
is dedicated to Bode diagrams; Appendix F is devoted to an abbreviated
table of trigonometric identities that are useful in circuit analysis; and an
abbreviated table of useful integrals is given in Appendix G. Appendix H
provides tables of common standard component values for resistors, induc-
tors, and capacitors, to be used in solving many end-of-chapter problems.
Selected Answers provides answers to selected end-of-chapter problems.
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receive email from instructors and students who use the book, even
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use as many of your suggestions as possible to continue to improve the
content, the pedagogy, and the presentation in this text. We are privi-
leged to have the opportunity to impact the educational experience of
the many thousands of future engineers who will use this text.

JAMES W. NILSSON
SusaN A. RIEDEL



ELECTRIC CIRCUITS

TENTH EDITION



CHAPTER

.- e = [ P )
A - % - o - ~¢
5 25, - - - - > :
o s ==
4 | —e - W E 1
\ - - s -
L B - — T o v »
.. = e b
" [}
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CHAPTER CONTENTS

1.1 Electrical Engineering: An Overview p. 4
1.2 The International System of Units p. 8
1.3 Circuit Analysis: An Overview p. 10

1.4 Voltage and Current p. 11

1.5 The Ideal Basic Circuit Element p. 12
1.6 Power and Energy p. 14

o CHAPTER OBJECTIVES

1 Understand and be able to use SI units and the
standard prefixes for powers of 10.

2 Know and be able to use the definitions of
voltage and current.

3 Know and be able to use the definitions of
power and energy.
4 Be able to use the passive sign convention to

calculate the power for an ideal basic circuit
element given its voltage and current.

Electrical engineering is an exciting and challenging profession
for anyone who has a genuine interest in, and aptitude for,
applied science and mathematics. Over the past century and a
half, electrical engineers have played a dominant role in the
development of systems that have changed the way people live
and work. Satellite communication links, telephones, digital com-
puters, televisions, diagnostic and surgical medical equipment,
assembly-line robots, and electrical power tools are representa-
tive components of systems that define a modern technological
society. As an electrical engineer, you can participate in this ongo-
ing technological revolution by improving and refining these
existing systems and by discovering and developing new systems
to meet the needs of our ever-changing society.

As you embark on the study of circuit analysis, you need to
gain a feel for where this study fits into the hierarchy of topics
that comprise an introduction to electrical engineering. Hence we
begin by presenting an overview of electrical engineering, some
ideas about an engineering point of view as it relates to circuit
analysis, and a review of the international system of units.

We then describe generally what circuit analysis entails. Next,
we introduce the concepts of voltage and current. We follow these
concepts with discussion of an ideal basic element and the need
for a polarity reference system. We conclude the chapter by
describing how current and voltage relate to power and energy.
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Practical Perspective

Balancing Power

One of the most important skills you will develop is the
ability to check your answers for the circuits you design
and analyze using the tools developed in this text. A com-
mon method used to check for valid answers is to balance
the power in the circuit. The linear circuits we study have
no net power, so the sum of the power associated with each
circuit component must be zero. If the total power for
the circuit is zero, we say that the power balances, but if
the total power is not zero, we need to find the errors in
our calculation.

As an example, we will consider a very simple model for
the distribution of electricity to a typical home, as shown

below. (Note that a more realistic model will be investigated
in the Practical Perspective for Chapter 9.) The components
labeled a and b represent the electrical source to the home.
The components labeled c, d, and e represent the wires that
carry the electrical current from the source to the devices in
the home requiring electrical power. The components labeled
f, g, and h represent lamps, televisions, hair dryers, refriger-
ators, and other devices that require power.

Once we have introduced the concepts of voltage, current,
power, and energy, we will examine this circuit model in detail,
and use a power balance to determine whether the results of
analyzing this circuit are correct.
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Figure 1.1 A A telephone system.

1.1 Electrical Engineering: An Overview

Electrical engineering is the profession concerned with systems that
produce, transmit, and measure electric signals. Electrical engineering
combines the physicist’s models of natural phenomena with the mathe-
matician’s tools for manipulating those models to produce systems that
meet practical needs. Electrical systems pervade our lives; they are found
in homes, schools, workplaces, and transportation vehicles everywhere.
We begin by presenting a few examples from each of the five major class-
ifications of electrical systems:

e communication systems
« computer systems
 control systems

« power systems

 signal-processing systems

Then we describe how electrical engineers analyze and design such systems.

Communication systems are electrical systems that generate, trans-
mit, and distribute information. Well-known examples include television
equipment, such as cameras, transmitters, receivers, and VCRs; radio tele-
scopes, used to explore the universe; satellite systems, which return images
of other planets and our own; radar systems, used to coordinate plane
flights; and telephone systems.

Figure 1.1 depicts the major components of a modern telephone sys-
tem. Starting at the left of the figure, inside a telephone, a microphone turns
sound waves into electric signals. These signals are carried to a switching
center where they are combined with the signals from tens, hundreds, or
thousands of other telephones. The combined signals leave the switching
center; their form depends on the distance they must travel. In our example,
they are sent through wires in underground coaxial cables to a microwave
transmission station. Here, the signals are transformed into microwave fre-
quencies and broadcast from a transmission antenna through air and space,
via a communications satellite, to a receiving antenna. The microwave
receiving station translates the microwave signals into a form suitable for
further transmission, perhaps as pulses of light to be sent through fiber-optic
cable. On arrival at the second switching center, the combined signals are
separated, and each is routed to the appropriate telephone, where an ear-
phone acts as a speaker to convert the received electric signals back into
sound waves. At each stage of the process, electric circuits operate on the
signals. Imagine the challenge involved in designing, building, and operating
each circuit in a way that guarantees that all of the hundreds of thousands of
simultaneous calls have high-quality connections.

Computer systems use electric signals to process information rang-
ing from word processing to mathematical computations. Systems range
in size and power from pocket calculators to personal computers to
supercomputers that perform such complex tasks as processing weather
data and modeling chemical interactions of complex organic molecules.
These systems include networks of microcircuits, or integrated circuits —
postage-stampsized assemblies of hundreds, thousands, or millions of
electrical components that often operate at speeds and power levels close
to fundamental physical limits, including the speed of light and the thermo-
dynamic laws.

Control systems use electric signals to regulate processes. Examples
include the control of temperatures, pressures, and flow rates in an oil
refinery; the fuel-air mixture in a fuel-injected automobile engine; mecha-
nisms such as the motors, doors, and lights in elevators; and the locks in the



Panama Canal. The autopilot and autolanding systems that help to fly and
land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power,
which is the foundation of our technology-based society, usually is gener-
ated in large quantities by nuclear, hydroelectric, and thermal (coal-, oil-,
or gas-fired) generators. Power is distributed by a grid of conductors that
crisscross the country. A major challenge in designing and operating such
a system is to provide sufficient redundancy and control so that failure of
any piece of equipment does not leave a city, state, or region completely
without power.

Signal-processing systems act on electric signals that represent infor-
mation. They transform the signals and the information contained in them
into a more suitable form. There are many different ways to process the
signals and their information. For example, image-processing systems
gather massive quantities of data from orbiting weather satellites, reduce
the amount of data to a manageable level, and transform the remaining
data into a video image for the evening news broadcast. A computerized
tomography (CT) scan is another example of an image-processing system.
It takes signals generated by a special X-ray machine and transforms them
into an image such as the one in Fig. 1.2. Although the original X-ray sig-
nals are of little use to a physician, once they are processed into a recog-
nizable image the information they contain can be used in the diagnosis of
disease and injury.

Considerable interaction takes place among the engineering disci-
plines involved in designing and operating these five classes of systems.
Thus communications engineers use digital computers to control the flow
of information. Computers contain control systems, and control systems
contain computers. Power systems require extensive communications sys-
tems to coordinate safely and reliably the operation of components, which
may be spread across a continent. A signal-processing system may involve
a communications link, a computer, and a control system.

A good example of the interaction among systems is a commercial
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor the
plane’s location, permitting the air traffic controller to design a safe flight
path for all of the nearby aircraft and enabling the pilot to keep the plane
on its designated path. On the newest commercial airplanes, an onboard
computer system is used for managing engine functions, implementing
the navigation and flight control systems, and generating video informa-
tion screens in the cockpit. A complex control system uses cockpit com-
mands to adjust the position and speed of the airplane, producing the
appropriate signals to the engines and the control surfaces (such as the
wing flaps, ailerons, and rudder) to ensure the plane remains safely air-
borne and on the desired flight path. The plane must have its own power
system to stay aloft and to provide and distribute the electric power
needed to keep the cabin lights on, make the coffee, and show the movie.
Signal-processing systems reduce the noise in air traffic communications
and transform information about the plane’s location into the more
meaningful form of a video display in the cockpit. Engineering challenges
abound in the design of each of these systems and their integration into a
coherent whole. For example, these systems must operate in widely vary-
ing and unpredictable environmental conditions. Perhaps the most
important engineering challenge is to guarantee that sufficient redun-
dancy is incorporated in the designs to ensure that passengers arrive
safely and on time at their desired destinations.

Although electrical engineers may be interested primarily in one
area, they must also be knowledgeable in other areas that interact with
this area of interest. This interaction is part of what makes electrical

1.1 Electrical Engineering: An Overview

Figure 1.2 A A (T scan of an adult head.

Figure 1.3 A An airplane.

Pearson Education



6

Circuit Variables

engineering a challenging and exciting profession. The emphasis in engi-
neering is on making things work, so an engineer is free to acquire and
use any technique, from any field, that helps to get the job done.

Circuit Theory

In a field as diverse as electrical engineering, you might well ask whether
all of its branches have anything in common. The answer is yes—electric
circuits. An electric circuit is a mathematical model that approximates
the behavior of an actual electrical system. As such, it provides an impor-
tant foundation for learning—in your later courses and as a practicing
engineer —the details of how to design and operate systems such as those
just described. The models, the mathematical techniques, and the language
of circuit theory will form the intellectual framework for your future engi-
neering endeavors.

Note that the term electric circuit is commonly used to refer to an
actual electrical system as well as to the model that represents it. In this
text, when we talk about an electric circuit, we always mean a model,
unless otherwise stated. It is the modeling aspect of circuit theory that has
broad applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the study
of static and moving electric charges. Although generalized field theory
might seem to be an appropriate starting point for investigating electric sig-
nals, its application is not only cumbersome but also requires the use of
advanced mathematics. Consequently, a course in electromagnetic field
theory is not a prerequisite to understanding the material in this book. We
do, however, assume that you have had an introductory physics course in
which electrical and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than
electromagnetic field theory, to study a physical system represented by an
electric circuit. These assumptions are as follows:

1. Electrical effects happen instantaneously throughout a system. We
can make this assumption because we know that electric signals
travel at or near the speed of light. Thus, if the system is physically
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously. A sys-
tem that is small enough so that we can make this assumption is
called a lumped-parameter system.

2. The net charge on every component in the system is always zero.
Thus no component can collect a net excess of charge, although
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system.
As we demonstrate later, magnetic coupling can occur within a
component.

That’s it; there are no other assumptions. Using circuit theory provides
simple solutions (of sufficient accuracy) to problems that would become
hopelessly complicated if we were to use electromagnetic field theory.
These benefits are so great that engineers sometimes specifically design
electrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the
basic circuit elements and the rules for analyzing interconnected elements.

However, we need to take a closer look at assumption 1. The question
is, “How small does a physical system have to be to qualify as a lumped-
parameter system?” We can get a quantitative handle on the question by
noting that electric signals propagate by wave phenomena. If the wave-
length of the signal is large compared to the physical dimensions of the



system, we have a lumped-parameter system. The wavelength A is the
velocity divided by the repetition rate, or frequency, of the signal; that is,
A = ¢/f. The frequency f is measured in hertz (Hz). For example, power
systems in the United States operate at 60 Hz. If we use the speed of light
(c =3 X 108 m/s) as the velocity of propagation, the wavelength is
5 X 10° m. If the power system of interest is physically smaller than this
wavelength, we can represent it as a lumped-parameter system and use cir-
cuit theory to analyze its behavior. How do we define smaller? A good rule
is the rule of 1/10th: If the dimension of the system is 1/10th (or smaller)
of the dimension of the wavelength, you have a lumped-parameter system.
Thus, as long as the physical dimension of the power system is less than
5 X 10° m, we can treat it as a lumped-parameter system.

On the other hand, the propagation frequency of radio signals is on the
order of 10° Hz. Thus the wavelength is 0.3 m. Using the rule of 1/10th, the
relevant dimensions of a communication system that sends or receives radio
signals must be less than 3 cm to qualify as a lumped-parameter system.
Whenever any of the pertinent physical dimensions of a system under study
approaches the wavelength of its signals, we must use electromagnetic field
theory to analyze that system. Throughout this book we study circuits
derived from lumped-parameter systems.

Problem Solving

As a practicing engineer, you will not be asked to solve problems that
have already been solved. Whether you are trying to improve the per-
formance of an existing system or creating a new system, you will be work-
ing on unsolved problems. As a student, however, you will devote much of
your attention to the discussion of problems already solved. By reading
about and discussing how these problems were solved in the past, and by
solving related homework and exam problems on your own, you will
begin to develop the skills to successfully attack the unsolved problems
you’ll face as a practicing engineer.

Some general problem-solving procedures are presented here. Many
of them pertain to thinking about and organizing your solution strategy
before proceeding with calculations.

1. Identify what'’s given and what’s to be found. In problem solving, you
need to know your destination before you can select a route for get-
ting there. What is the problem asking you to solve or find?
Sometimes the goal of the problem is obvious; other times you may
need to paraphrase or make lists or tables of known and unknown
information to see your objective.

The problem statement may contain extraneous information
that you need to weed out before proceeding. On the other hand, it
may offer incomplete information or more complexities than can be
handled given the solution methods at your disposal. In that case,
you’ll need to make assumptions to fill in the missing information or
simplify the problem context. Be prepared to circle back and recon-
sider supposedly extraneous information and/or your assumptions if
your calculations get bogged down or produce an answer that doesn’t
seem to make sense.

2. Sketch a circuit diagram or other visual model. Translating a verbal
problem description into a visual model is often a useful step in the
solution process. If a circuit diagram is already provided, you may
need to add information to it, such as labels, values, or reference
directions. You may also want to redraw the circuit in a simpler, but
equivalent, form. Later in this text you will learn the methods for
developing such simplified equivalent circuits.

11
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3. Think of several solution methods and decide on a way of choosing
among them. This course will help you build a collection of analyt-
ical tools, several of which may work on a given problem. But one
method may produce fewer equations to be solved than another,
or it may require only algebra instead of calculus to reach a solu-
tion. Such efficiencies, if you can anticipate them, can streamline
your calculations considerably. Having an alternative method in
mind also gives you a path to pursue if your first solution attempt
bogs down.

4. Calculate a solution. Your planning up to this point should have
helped you identify a good analytical method and the correct equa-
tions for the problem. Now comes the solution of those equations.
Paper-and-pencil, calculator, and computer methods are all avail-
able for performing the actual calculations of circuit analysis.
Efficiency and your instructor’s preferences will dictate which tools
you should use.

5. Use your creativity. If you suspect that your answer is off base or if the
calculations seem to go on and on without moving you toward a solu-
tion, you should pause and consider alternatives. You may need to
revisit your assumptions or select a different solution method. Or, you
may need to take a less-conventional problem-solving approach, such
as working backward from a solution. This text provides answers to all
of the Assessment Problems and many of the Chapter Problems so
that you may work backward when you get stuck. In the real world,
you won’t be given answers in advance, but you may have a desired
problem outcome in mind from which you can work backward. Other
creative approaches include allowing yourself to see parallels with
other types of problems you’ve successfully solved, following your
intuition or hunches about how to proceed, and simply setting the
problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve
obtained makes sense. Does the magnitude of the answer seem rea-
sonable? Is the solution physically realizable? You may want to go
further and rework the problem via an alternative method. Doing
so will not only test the validity of your original answer, but will also
help you develop your intuition about the most efficient solution
methods for various kinds of problems. In the real world, safety-
critical designs are always checked by several independent means.
Getting into the habit of checking your answers will benefit you as
a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of,
or elaborate on certain steps to solve a particular problem. Use these steps
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units

Engineers compare theoretical results to experimental results and com-
pare competing engineering designs using quantitative measures. Modern
engineering is a multidisciplinary profession in which teams of engineers
work together on projects, and they can communicate their results in a
meaningful way only if they all use the same units of measure. The
International System of Units (abbreviated SI) is used by all the major
engineering societies and most engineers throughout the world; hence we
use it in this book.



TABLE 1.1 The International System of Units (SI)

Quantity Basic Unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Thermodynamic temperature degree kelvin K
Amount of substance mole mol
Luminous intensity candela cd

National Institute of Standards and Technology Special Publication 330,2008 Edition, Natl. Inst. Stand.
Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)

The SI units are based on seven defined quantities:

 length

+ mass

e time

« electric current

- thermodynamic temperature
« amount of substance
 luminous intensity

These quantities, along with the basic unit and symbol for each, are listed
in Table 1.1. Although not strictly SI units, the familiar time units of minute
(60 s), hour (3600 s), and so on are often used in engineering calculations. In
addition, defined quantities are combined to form derived units. Some, such
as force, energy, power, and electric charge, you already know through previ-
ous physics courses. Table 1.2 lists the derived units used in this book.

In many cases, the SI unit is either too small or too large to use conve-
niently. Standard prefixes corresponding to powers of 10, as listed in
Table 1.3, are then applied to the basic unit. All of these prefixes are cor-
rect, but engineers often use only the ones for powers divisible by 3; thus
centi, deci, deka, and hecto are used rarely. Also, engineers often select the
prefix that places the base number in the range between 1 and 1000.
Suppose that a time calculation yields a result of 107 s, that is, 0.00001 s.
Most engineers would describe this quantity as 10 us, that is,
107 = 10 X 107 s, rather than as 0.01 ms or 10,000,000 ps.

TABLE 1.2 Derived Units in SI

Quantity Unit Name (Symbol) Formula
Frequency hertz (Hz) st
Force newton (N) kg - m/s’
Energy or work joule (J) N-m
Power watt (W) J/s
Electric charge coulomb (C) A-s
Electric potential volt (V) J/C
Electric resistance ohm () V/A
Electric conductance siemens (S) A/V
Electric capacitance farad (F) C/V
Magnetic flux weber (WD) V-s
Inductance henry (H) Wb/A

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand.
Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)

1.2

The International System of Units

TABLE 1.3 Standardized Prefixes to Signify
Powers of 10

Prefix

atto
femto
pico
nano
micro
milli
centi
deci
deka
hecto
kilo
mega
giga
tera

Symbol

a

=Nse}

o Bt

o o
o

QZW‘U‘

T

Power

10718
10—15
10712
107°
107°
1073
1072
107!
10
10?
10°
10°
10°
1012

National Institute of Standards and Technology Special

Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec.
Pub. 330,2008 Ed., 96 pages (March 2008)
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10 Circuit Variables

Example 1.1 illustrates a method for converting from one set of units

to another and also uses power-of-ten prefixes.

SETL RN Using SI Units and Prefixes for Powers of 10

If a signal can travel in a cable at 80% of the speed of Therefore, a signal traveling at 80% of the speed of
light, what length of cable, in inches, represents 1 ns? light will cover 9.45 inches of cable in 1 nanosecond.
Solution

First, note that 1 ns = 10™° s. Also, recall that the
speed of light ¢ = 3 X 10°m/s. Then, 80% of the
speed of light is 0.8¢ = (0.8)(3 X 10%) =
2.4 X 108 m/s. Using a product of ratios, we can
convert 80% of the speed of light from meters-per-
second to inches-per-nanosecond. The result is the

distance in inches traveled in 1 ns:

2.4 x 10% meters . 1 second . 100 centimeters 1 inch

_ (24X 10%)(100)

1 second 10° nanoseconds 1 meter 2.54 centimeters

: = 9.45 inches/nanosecond
(107)(2.54)

\/ASSESSMENT PROBLEMS

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10

1.1  Assume a telephone signal travels through a 1.2 How many dollars per millisecond would the
cable at two-thirds the speed of light. How long federal government have to collect to retire a
does it take the signal to get from New York deficit of $100 billion in one year?

City to Miami if the distance is approximately
1100 miles? Answer: $317/ms

Answer: 8.85 ms.

NOTE: Also try Chapter Problems 1.1, 1.3, and 1.5.

1.3 Circuit Analysis: An Overview

Before becoming involved in the details of circuit analysis, we need to
take a broad look at engineering design, specifically the design of electric
circuits. The purpose of this overview is to provide you with a perspective
on where circuit analysis fits within the whole of circuit design. Even
though this book focuses on circuit analysis, we try to provide opportuni-
ties for circuit design where appropriate.

All engineering designs begin with a need, as shown in Fig. 1.4. This
need may come from the desire to improve on an existing design, or it may
be something brand-new. A careful assessment of the need results in
design specifications, which are measurable characteristics of a proposed
design. Once a design is proposed, the design specifications allow us to
assess whether or not the design actually meets the need.

A concept for the design comes next. The concept derives from a com-
plete understanding of the design specifications coupled with an insight into



the need, which comes from education and experience. The concept may be
realized as a sketch, as a written description, or in some other form. Often
the next step is to translate the concept into a mathematical model. A com-
monly used mathematical model for electrical systems is a circuit model.

The elements that comprise the circuit model are called ideal circuit
components. An ideal circuit component is a mathematical model of an
actual electrical component, like a battery or a light bulb. It is important
for the ideal circuit component used in a circuit model to represent the
behavior of the actual electrical component to an acceptable degree of
accuracy. The tools of circuit analysis, the focus of this book, are then
applied to the circuit. Circuit analysis is based on mathematical techniques
and is used to predict the behavior of the circuit model and its ideal circuit
components. A comparison between the desired behavior, from the design
specifications, and the predicted behavior, from circuit analysis, may lead
to refinements in the circuit model and its ideal circuit elements. Once the
desired and predicted behavior are in agreement, a physical prototype can
be constructed.

The physical prototype is an actual electrical system, constructed from
actual electrical components. Measurement techniques are used to deter-
mine the actual, quantitative behavior of the physical system. This actual
behavior is compared with the desired behavior from the design specifica-
tions and the predicted behavior from circuit analysis. The comparisons
may result in refinements to the physical prototype, the circuit model, or
both. Eventually, this iterative process, in which models, components, and
systems are continually refined, may produce a design that accurately
matches the design specifications and thus meets the need.

From this description, it is clear that circuit analysis plays a very
important role in the design process. Because circuit analysis is applied to
circuit models, practicing engineers try to use mature circuit models so
that the resulting designs will meet the design specifications in the first
iteration. In this book, we use models that have been tested for between
20 and 100 years; you can assume that they are mature. The ability to
model actual electrical systems with ideal circuit elements makes circuit
theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be used
to quantitatively predict the behavior of a system implies that we can
describe the interconnection with mathematical equations. For the mathe-
matical equations to be useful, we must write them in terms of measurable
quantities. In the case of circuits, these quantities are voltage and current,
which we discuss in Section 1.4. The study of circuit analysis involves
understanding the behavior of each ideal circuit element in terms of its
voltage and current and understanding the constraints imposed on the
voltage and current as a result of interconnecting the ideal elements.

1.4 Voltage and Current

The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

» The charge is bipolar, meaning that electrical effects are described in
terms of positive and negative charges.

« The electric charge exists in discrete quantities, which are integral
multiples of the electronic charge, 1.6022 X 107" C.

 Electrical effects are attributed to both the separation of charge and
charges in motion.

In circuit theory, the separation of charge creates an electric force (volt-
age), and the motion of charge creates an electric fluid (current).

1.4 Voltage and Current 11
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Figure 1.4 A A conceptual model for electrical engi-
neering design.



12

Circuit Variables

Definition of voltage »

Definition of current »

The concepts of voltage and current are useful from an engineering
point of view because they can be expressed quantitatively. Whenever
positive and negative charges are separated, energy is expended. Voltage
is the energy per unit charge created by the separation. We express this
ratio in differential form as

_dw

p =
dq’

(1.1)

where
v = the voltage in volts,

w = the energy in joules,
q

The electrical effects caused by charges in motion depend on the rate
of charge flow. The rate of charge flow is known as the electric current,
which is expressed as

the charge in coulombs.

i=— (1.2)

where
i = the current in amperes,

q
t = the time in seconds.

the charge in coulombs,

Equations 1.1 and 1.2 are definitions for the magnitude of voltage and
current, respectively. The bipolar nature of electric charge requires that we
assign polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete, moving electrons, we do not
need to consider them individually because of the enormous number of
them. Rather, we can think of electrons and their corresponding charge as
one smoothly flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a compo-
nent strictly in terms of the voltage and current at its terminals. Thus two
physically different components could have the same relationship
between the terminal voltage and terminal current. If they do, for pur-
poses of circuit analysis, they are identical. Once we know how a compo-
nent behaves at its terminals, we can analyze its behavior in a circuit.
However, when developing circuit models, we are interested in a compo-
nent’s internal behavior. We might want to know, for example, whether
charge conduction is taking place because of free electrons moving
through the crystal lattice structure of a metal or whether it is because of
electrons moving within the covalent bonds of a semiconductor material.
However, these concerns are beyond the realm of circuit theory. In this
book we use circuit models that have already been developed; we do not
discuss how component models are developed.

1.5 The Ideal Basic Circuit Element

An ideal basic circuit element has three attributes: (1) it has only two ter-
minals, which are points of connection to other circuit components; (2) it is
described mathematically in terms of current and/or voltage; and (3) it
cannot be subdivided into other elements. We use the word ideal to imply



that a basic circuit element does not exist as a realizable physical compo-
nent. However, as we discussed in Section 1.3, ideal elements can be con-
nected in order to model actual devices and systems. We use the word
basic to imply that the circuit element cannot be further reduced or sub-
divided into other elements. Thus the basic circuit elements form the build-
ing blocks for constructing circuit models, but they themselves cannot be
modeled with any other type of element.

Figure 1.5 is a representation of an ideal basic circuit element. The box
is blank because we are making no commitment at this time as to the type
of circuit element it is. In Fig. 1.5, the voltage across the terminals of the
box is denoted by v, and the current in the circuit element is denoted by i.
The polarity reference for the voltage is indicated by the plus and minus
signs, and the reference direction for the current is shown by the arrow
placed alongside the current. The interpretation of these references given
positive or negative numerical values of » and i is summarized in
Table 1.4. Note that algebraically the notion of positive charge flowing in
one direction is equivalent to the notion of negative charge flowing in the
opposite direction.

The assignments of the reference polarity for voltage and the refer-
ence direction for current are entirely arbitrary. However, once you have
assigned the references, you must write all subsequent equations to
agree with the chosen references. The most widely used sign convention
applied to these references is called the passive sign convention, which
we use throughout this book. The passive sign convention can be stated
as follows:

Whenever the reference direction for the current in an element is in
the direction of the reference voltage drop across the element (as in
Fig. 1.5), use a positive sign in any expression that relates the voltage
to the current. Otherwise, use a negative sign.

We apply this sign convention in all the analyses that follow. Our pur-
pose for introducing it even before we have introduced the different
types of basic circuit elements is to impress on you the fact that the selec-
tion of polarity references along with the adoption of the passive sign
convention is not a function of the basic elements nor the type of inter-
connections made with the basic elements. We present the application
and interpretation of the passive sign convention in power calculations in
Section 1.6.

Example 1.2 illustrates one use of the equation defining current.

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5

1.5  The Ideal Basic Circuit Element

el

7—_.2

Figure 1.5 A An ideal basic circuit element.

<« Passive sign convention

Positive Value Negative Value
v voltage drop from terminal 1 to terminal 2 voltage rise from terminal 1 to terminal 2
or or
voltage rise from terminal 2 to terminal 1 voltage drop from terminal 2 to terminal 1
i positive charge flowing from terminal 1 to terminal 2 positive charge flowing from terminal 2 to terminal 1
or or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2

13



14 Circuit Variables

SR Relating Current and Charge

No charge exists at the upper terminal of the ele- Solution
ment in Fig. 1.5 for t < 0. Atz =0, a 5 A current
begins to flow into the upper terminal. a) From the definition of current given in Eq. 1.2,

the expression for charge accumulation due to

a) Derive the expression for the charge accumulat- ,
current flow is

ing at the upper terminal of the element for ¢t > 0.

t
b) If the current is stopped after 10 seconds, how q(t) = / i(x)dx.
much charge has accumulated at the upper 0
terminal?
Therefore,

t

=5t —5(0) =5C fort>0.
0

t
q(t) = /de = 5x
0

b) The total charge that accumulates at the upper
terminal in 10 seconds due to a 5 A current is
q(10) = 5(10) = 50 C.

v ASSESSMENT PROBLEMS

Objective 2—Know and be able to use the definitions of voltage and current

1.3 The current at the terminals of the element in 1.4  The expression for the charge entering the
Fig. 1.51s upper terminal of Fig. 1.5 is
i=0, 1 <0
1 t 1
p= L (tL)ewe
i = 206*500(” A, t=0. o o o
Calculate the total charge (in microcoulombs) Find the maximum value of the current enter-
entering the element at its upper terminal. ing the terminal if « = 0.03679 s
Answer: 4000 uC. Answer: 10 A.

NOTE: Also try Chapter Problem 1.8.

1.6 Power and Energy

Power and energy calculations also are important in circuit analysis. One
reason is that although voltage and current are useful variables in the analy-
sis and design of electrically based systems, the useful output of the system
often is nonelectrical, and this output is conveniently expressed in terms of
power or energy. Another reason is that all practical devices have limita-
tions on the amount of power that they can handle. In the design process,
therefore, voltage and current calculations by themselves are not sufficient.

We now relate power and energy to voltage and current and at the
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or



absorbing energy. (A water pump rated 75 kW can deliver more liters per
second than one rated 7.5 kW.) Mathematically, energy per unit time is
expressed in the form of a derivative, or

_dw

== 1.
p="1 (13)

where

= the power in watts,

A
I

the energy in joules,

the time in seconds.

-
I

Thus 1 W is equivalent to 1 J/s.
The power associated with the flow of charge follows directly from
the definition of voltage and current in Egs. 1.1 and 1.2, or

_dw _ (dwxdq)
P="ar ~ \ag )\ ar )
SO

p = i (1.4)

where

p = the power in watts,

the voltage in volts,

~
Il

the current in amperes.

Equation 1.4 shows that the power associated with a basic circuit element
is simply the product of the current in the element and the voltage across
the element. Therefore, power is a quantity associated with a pair of ter-
minals, and we have to be able to tell from our calculation whether power
is being delivered to the pair of terminals or extracted from it. This infor-
mation comes from the correct application and interpretation of the pas-
sive sign convention.

If we use the passive sign convention, Eq. 1.4 is correct if the reference
direction for the current is in the direction of the reference voltage drop
across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign.
In other words, if the current reference is in the direction of a reference
voltage rise across the terminals, the expression for the power is

p=—vi (1.5)

The algebraic sign of power is based on charge movement through
voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through a rise in voltage, they gain
energy. Figure 1.6 summarizes the relationship between the polarity refer-
ences for voltage and current and the expression for power.

<« Definition of power

<« Power equation

v

(c)p=—vi

1.6

—o1

—2

Power and Energy

(%

15

—o 1

—®2

(b)p = —vi

—o1

—®2

(d)p =i

Figure 1.6 A Polarity references and the expression

for power.
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We can now state the rule for interpreting the algebraic sign of power:

If the power is positive (that is,if p > 0), power is being delivered to
Interpreting algebraic sign of power » the circuit inside the box. If the power is negative (that is, if p < 0),
power is being extracted from the circuit inside the box.

For example, suppose that we have selected the polarity references
shown in Fig. 1.6(b). Assume further that our calculations for the current
and voltage yield the following numerical results:

i=4A and v=-10 V.
Then the power associated with the terminal pair 1,2 is
p = —(—10)(4) = 40 W.

Thus the circuit inside the box is absorbing 40 W.

To take this analysis one step further, assume that a colleague is solv-
ing the same problem but has chosen the reference polarities shown in
Fig. 1.6(c). The resulting numerical values are

i=—4 A, v=10V, and p =40W.

Note that interpreting these results in terms of this reference system gives
the same conclusions that we previously obtained—namely, that the cir-
cuit inside the box is absorbing 40 W. In fact, any of the reference systems
in Fig. 1.6 yields this same result.

Example 1.3 illustrates the relationship between voltage, current,
power, and energy for an ideal basic circuit element and the use of the pas-
sive sign convention.

m Relating Voltage, Current, Power, and Energy

Assume that the voltage at the terminals of the ele- b) From the definition of power given in Eq. 1.3,
ment in Fig. 1.5, whose current was defined in the expression for energy is
Assessment Problem 1.3, is t
v=0 t<0; w(t) = % p(x)dx
v = 10e " kV, r=0. To find the total energy delivered, integrate the
expresssion for power from zero to infinity.
a) Calculate the power supplied to the element Therefore,
at 1 ms.
o . o0 200.000¢10:000x | 00
b) Calculate the total energy (in joules) delivered Wiotal = / 200,000¢10000% g = 200.000¢ 77
to the circuit element. 0 —10,000 0

= —20e"® — (=20 %) =0 +20=201.

Solution Thus, the total energy supplied to the circuit ele-

) ) ) ) ment is 20 J.
a) Since the current is entering the + terminal of the

voltage drop defined for the element in Fig. 1.5,
we use a “+” sign in the power equation.
p = vi = (10,000e3°%)(20e 39" = 200,000 10000 W,
p(0.001) = 200,000 ~10:0001000D) = 200 0p0e 1
= 200,000(45.4 X 107%) = 0.908 W.




v ASSESSMENT PROBLEMS

Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign
convention

15

Assume that a 20 V voltage drop occurs across

an element from terminal 2 to terminal 1 and

that a current of 4 A enters terminal 2.

a) Specify the values of v and i for the polarity
references shown in Fig. 1.6(a)—(d).

b) State whether the circuit inside the box is
absorbing or delivering power.

¢) How much power is the circuit absorbing?

Answer: (a) Circuit 1.6(a):v = =20 V,i = —4 A;

1.6

NOTE: Also try Chapter Problems 1.12, 1.19, and 1.24.

circuit 1.6(b):v = =20 V,i = 4 A;
circuit 1.6(c):v = 20 V,i = —4 A;
circuit 1.6(d):v = 20 V,i = 4 A;
(b) absorbing;
(c) 80 W.

The voltage and current at the terminals of the
circuit element in Fig 1.5 are zero for ¢+ < 0. For
t = 0, they are

v = 80,000te "V, t=0;

i = 15te™% A, t=0.

Practical Perspective

Balancing Power
A model of the circuitry that distributes power to a typical home is shown in
Fig. 1.7 with voltage polarities and current directions defined for all of the
circuit components. The results of circuit analysis give the values for all of
these voltages and currents, which are summarized in Table 1.4. To deter-
mine whether or not the values given are correct, calculate the power asso-
ciated with each component. Use the passive sign convention in the power
calculations, as shown below.

Practical Perspective 17

a) Find the time when the power delivered to
the circuit element is maximum.

b) Find the maximum value of power.

¢) Find the total energy delivered to the cir-
cuit element.

Answer: (a) 2 ms; (b) 649.6 mW; (c) 2.4 mJ.

1.7 A high-voltage direct-current (dc) transmission
line between Celilo, Oregon and Sylmar,
California is operating at 800 kV and carrying
1800 A, as shown. Calculate the power (in
megawatts) at the Oregon end of the line and
state the direction of power flow.

1.8 kKA

. [ T
Celilo, 800 KV Sylmar,

Oregon California

Answer: 1440 MW, Celilo to Sylmar

Pa = Vay = (120)(—=10) = —1200W  p, = —vpip = —(120)(9) = —1080 W
Pe = vd. = (10)(10) = 100 W pa = —v4ig = —(10)(1) = —10 W
Do = Vi, = (—10)(=9) = 90W pr = —vsi; = —(—100)(5) = 500 W

Py = Vgig = (120)(4) = 480 W

Pn = vhih = (_220)(_5) = 1100 W

The power calculations show that components a, b, and d are supplying

power, since the power values are negative, while components c, e, f, g, and
h are absorbing power. Now check to see if the power balances by finding
the total power supplied and the total power absorbed.
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Paupplied = Pa + Py + pg = —1200 — 1080 — 10 = —2290 W

Pabsorbed = Pc + Pe + pf + pg + Pn
= 100 + 90 + 500 + 480 + 1100 = 2270 W
Psupplied t Pabsorbed = —2290 + 2270 = =20 W

Something is wrong—if the values for voltage and current in this circuit are
correct, the total power should be zero! There is an error in the data and we
can find it from the calculated powers if the error exists in the sign of a sin-
gle component. Note that if we divide the total power by 2, we get —10 W,
which is the power calculated for component d. If the power for component
d was +10 W, the total power would be 0. Circuit analysis techniques from
upcoming chapters can be used to show that the current through component
d should be —1 A, not +1 A given in Table 1.4.

Component

o o

o o

+ v, —
TABLE 1.4 Volatage and current (el
values for the circuit in Fig. 1.7. H
+ % -
oY) Ay ofals o[£ )i
= +
— Vg + —
120 -10 1
d op | | T,
120 9 — 4 [n]ta
+ lq +
10 10 4 [b]t, o, (8]}
10 1 - +v.—
“10 -9 e
~100 5 e
120 4 Figure 1.7 A Circuit model for power
20 _s distribution in a home, with voltages and

= I N o)

currents defined.

Note: Assess your understanding of the Practical Perspective by trying Chapter
Problems 1.34 and 1.35.

Summary

The International System of Units (SI) enables engineers
to communicate in a meaningful way about quantitative
results. Table 1.1 summarizes the base SI units; Table 1.2
presents some useful derived SI units. (See pages 8 and 9.)

Circuit analysis is based on the variables of voltage and
current. (See page 11.)

Voltage is the energy per unit charge created by charge
separation and has the SI unit of volt (v = dw/dq).
(See page 12.)

Current is the rate of charge flow and has the SI unit of
ampere (i = dg/dt). (See page 12.)

The ideal basic circuit element is a two-terminal compo-
nent that cannot be subdivided; it can be described
mathematically in terms of its terminal voltage and cur-
rent. (See page 12.)

« The passive sign convention uses a positive sign in the

expression that relates the voltage and current at the
terminals of an element when the reference direction
for the current through the element is in the direction of
the reference voltage drop across the element. (See

page 13.)

Power is energy per unit of time and is equal to the
product of the terminal voltage and current; it has the SI
unit of watt (p = dw/dt = vi). (See page 15.)

« The algebraic sign of power is interpreted as follows:

- If p > 0, power is being delivered to the circuit or
circuit component.

- If p < 0, power is being extracted from the circuit or
circuit component. (See page 16.)



Problems

Section 1.2

11

1.2

1.3

14

1.5

1.6

There are approximately 260 million passenger
vehicles registered in the United States. Assume
that the battery in the average vehicle stores
540 watt-hours (Wh) of energy. Estimate (in
gigawatt-hours) the total energy stored in U.S. pas-
senger vehicles.

A hand-held video player displays 480 x 320 pic-
ture elements (pixels) in each frame of the video.
Each pixel requires 2 bytes of memory. Videos are
displayed at a rate of 30 frames per second. How
many hours of video will fit in a 32 gigabyte
memory?

The 16 giga-byte (GB = 2% bytes) flash memory
chip for an MP3 player is 11 mm by 15 mm by 1 mm.
This memory chip holds 20,000 photos.

a) How many photos fit into a cube whose sides
are 1 mm?

b) How many bytes of memory are stored in a cube
whose sides are 200 um?

The line described in Assessment Problem 1.7 is
845 mi in length. The line contains four conductors,
each weighing 2526 Ib per 1000 ft. How many kilo-
grams of conductor are in the line?

One liter (L) of paint covers approximately 10 m?
of wall. How thick is the layer before it dries? (Hint:
1L=1x10°mm?’)

Some species of bamboo can grow 250 mm/day.
Assume individual cells in the plant are 10 um long.

a) How long, on average, does it take a bamboo
stalk to grow 1 cell length?

b) How many cell lengths are added in one week,
on average?

Section 1.4

1.7

There is no charge at the upper terminal of the ele-
ment in Fig. 1.5 for t < 0. At t = 0 a current of
125¢ 3% mA enters the upper terminal.

a) Derive the expression for the charge that accu-
mulates at the upper terminal for ¢ > 0.

b) Find the total charge that accumulates at the
upper terminal.

c) If the current is stopped at ¢t = 0.5 ms, how
much charge has accumulated at the upper
terminal?

1.8

1.9

1.10

111

Problems 19

The current entering the upper terminal of Fig. 1.5 is
i = 20 cos 5000¢ A.

Assume the charge at the upper terminal is zero at
the instant the current is passing through its maxi-
mum value. Find the expression for g(t).

The current at the terminals of the element in
Fig. 1.51s

i =0, <0

i=40te " A, 1 =0.

a) Find the expression for the charge accumulating
at the upper terminal.

b) Find the charge that has accumulated at# = 1 ms.

In electronic circuits it is not unusual to encounter
currents in the microampere range. Assume a
35 A current, due to the flow of electrons. What is
the average number of electrons per second that
flow past a fixed reference cross section that is per-
pendicular to the direction of flow?

How much energy is imparted to an electron as it
flows through a 6 V battery from the positive to the
negative terminal? Express your answer in attojoules.

Sections 1.5-1.6

1.12

113

1.14

The references for the voltage and current at the
terminal of a circuit element are as shown in
Fig. 1.6(d). The numerical values for v and i are 40 V
and —10 A.

a) Calculate the power at the terminals and state
whether the power is being absorbed or deliv-
ered by the element in the box.

b) Given that the current is due to electron flow,
state whether the electrons are entering or leav-
ing terminal 2.

¢) Do the electrons gain or lose energy as they pass
through the element in the box?

Repeat Problem 1.12 with a voltage of —60 V.

Two electric circuits, represented by boxes A and B,
are connected as shown in Fig. P1.14. The reference
direction for the current i in the interconnection and
the reference polarity for the voltage v across the
interconnection are as shown in the figure. For each
of the following sets of numerical values, calculate
the power in the interconnection and state whether
the power is flowing from A to B or vice versa.
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1.15

1.16

1.17

1.18

1.19

PSPICE
MULTISIM

Circuit Variables

a) i =60A, v=30V
b) i = —8A, v=-20V
c) i=4A, v=-60V
d) i=-9A, v=40V
Figure P1.14
L
° T °
A () B

When a car has a dead battery, it can often be started
by connecting the battery from another car across its
terminals. The positive terminals are connected
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.15. Assume the current i
in Fig. P1.15 is measured and found to be 30 A.

a) Which car has the dead battery?
b) If this connection is maintained for 1 min, how
much energy is transferred to the dead battery?

Figure P1.15

The manufacturer of a 1.5 V D flashlight battery
says that the battery will deliver 9 mA for 40 con-
tinuous hours. During that time the voltage will
drop from 1.5 V to 1.0 V. Assume the drop in volt-
age is linear with time. How much energy does the
battery deliver in this 40 h interval?

One 12 V battery supplies 100 mA to a boom box.
How much energy does the battery supply in 4 h?

The voltage and current at the terminals of the
circuit element in Fig. 1.5 are zero for ¢+ < 0. For
t = 0 they are

v =15¢"2"V,
i = 40e” 2" mA.
a) Calculate the power supplied to the element at
10 ms.
b) Calculate the total energy delivered to the circuit
element.

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t < 0. Fort = 0
they are

v =75 — 75¢ 1000y

i = 507100 A

a) Find the maximum value of the power delivered
to the circuit.

b) Find the total energy delivered to the element.

1.20 The voltage and current at the terminals of the cir-

cuit element in Fig. 1.5 are zero for¢t < 0. Fort = 0
they are

v = 506716001 _ 5067400[ Vv
i = 50716000 _ 5,400 oA
a) Find the power at t = 625 us.

b) How much energy is delivered to the circuit ele-
ment between 0 and 625 us?

c¢) Find the total energy delivered to the element.

1.21 The voltage and current at the terminals of the cir-

PSPICE
MULTISIM

cuit element in Fig. 1.5 are zero fort < 0. Fort = 0
they are

v = (1500t + 1)e P vV,

i = 40e P mA,

t=0;

t = 0.

a) Find the time when the power delivered to the
circuit element is maximum.

b) Find the maximum value of p in milliwatts.

c¢) Find the total energy delivered to the circuit ele-
ment in microjoules.

1.22 The voltage and current at the terminals of the cir-

PSPICE
MULTISIM

cuit element in Fig. 1.5 are zero fort < 0. Fort = 0
they are
v = (3200r + 4)e "V,
i = (128t + 0.16)e ™" A.
a) At what instant of time is maximum power
delivered to the element?
b) Find the maximum power in watts.

c¢) Find the total energy delivered to the element in
microjoules.

1.23 The voltage and current at the terminals of the

PSPICE
MULTISIM

circuit element in Fig. 1.5 are zero for ¢ < 0 and
t > 40s.In the interval between 0 and 40 s the expres-
sions are

v=1(1—-0025%)V, 0<t<40s;
i=4—-02tA, 0<1t<40s.

a) At what instant of time is the power being deliv-
ered to the circuit element maximum?

b) What is the power at the time found in part (a)?

c) At what instant of time is the power being
extracted from the circuit element maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit
at 0, 10,20, 30 and 40 s.
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1.25

PSPICE
MULTISIM

1.26

PSPICE
MULTISIM

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero fort < 0. Fort = 0
they are

v = 400e %% sin 200r V,

i = 5¢ " sin 200r A.

a) Find the power absorbed by the element at
t =10 ms.

b) Find the total energy absorbed by the element.

The voltage and current at the terminals of the ele-
ment in Fig. 1.5 are

v = 250 cos 8007t V, i = 8 sin 800wt A.

a) Find the maximum value of the power being
delivered to the element.

b) Find the maximum value of the power being
extracted from the element.

¢) Find the average value of p in the interval
0=t=25ms.

d) Find the average value of p in the interval
0 =1t =15.625 ms.

The voltage and current at the terminals of an auto-
mobile battery during a charge cycle are shown in
Fig. P1.26.

a) Calculate the total charge transferred to the
battery.

b) Calculate the total energy transferred to the
battery.

c¢) Find the total energy delivered to the element.

Figure P1.26
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1.27

1.28

1.29

Problems 21

The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are shown in Fig. P1.27.

a) Sketch the power versus ¢ plot for 0 = ¢ = 80 ms.

b) Calculate the energy delivered to the circuit ele-
ment atr = 10, 30, and 80 ms.

Figure P1.27
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An industrial battery is charged over a period of
several hours at a constant voltage of 120 V.
Initially, the current is 10 mA and increases linearly
to 15 mA in 10 ks. From 10 ks to 20 ks, the current is
constant at 15 mA. From 20 ks to 30 ks the current
decreases linearly to 10 mA. At 30 ks the power is
disconnected from the battery.

a) Sketch the current from ¢ = 0 to¢ = 30 ks.

b) Sketch the power delivered to the battery from
t=0tor =30ks.

¢) Using the sketch of the power, find the total
energy delivered to the battery.

The numerical values for the currents and
voltages in the circuit in Fig. P1.29 are given in
Table P1.29. Find the total power developed in the
circuit.

Figure P1.29
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7]




22

TABLE P1.29

Element

o o0 o W

)

Circuit Variables

Voltage (V)
40
—24
-16
—80
40
120

Current (mA)
—4
—4
4
-1.5
2.5
-2.5

1.30 The numerical values of the voltages and currents

Figure P1.31

in the interconnection seen in Fig. P1.30 are given in
Table P1.30. Does the interconnection satisfy the

power check?

Figure P1.30
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TABLE P1.31
Element Voltage (V) Current (A)
a 46.16 6.0
b 14.16 472
c -32.0 -6.4
d 22.0 1.28
e —33.6 —1.68
f 66.0 0.4
g 2.56 1.28
h -04 0.4

1.32 The voltage and power values for each of the ele-

ments shown in Fig. P1.32 are given in Table P1.32.
a) Show that the interconnection of the elements
satisfies the power check.

b) Find the value of the current through each of the
elements using the values of power and voltage
and the current directions shown in the figure.

d
- ? I S Wr
lw + Iy — Ud +
_ Up b _ +
[a]v - I:e:l e [ ]w
+ - : + -
NI
+
TABLE P1.30
Element Voltage (kV) Current (pA)
a -3 —250
b 4 —400
c 400
d 1 150
e —4 200
f 4 50
1.31 Assume you are an engineer in charge of a project

and one of your subordinate engineers reports that
the interconnection in Fig. P1.31 does not pass the
power check. The data for the interconnection are
given in Table P1.31.

a) Is the subordinate correct? Explain your answer.

b) If the subordinate is correct, can you find the
error in the data?

Figure P1.32
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TABLE P1.32

Element Power (kW) Voltage (V)
a 0.6 supplied 400
b 0.05 supplied —100
c 0.4 absorbed 200
d 0.6 supplied 300
e 0.1 absorbed —200
f 2.0 absorbed 500
g 1.25 supplied —500

1.33 The current and power for each of the intercon-

nected elements in Fig. P1.33 is measured. The values
are listed in Table P1.33.

a) Show that the interconnection satisfies the
power check.

b) Identify the elements that absorb power.

c) Find the voltage for each of the elements in the
interconnection, using the values of power and cur-
rent and the voltage polarities shown in the figure.

Figure P1.33
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Problems 23

TABLE P1.33

Element Power (mW) Current (mA)

a 175 25

b 375 75

c 150 =50

d —320 40

e 160 20

f 120 =30

o —660 55

1.34 Show that the power balances for the circuit shown

1.35

in Fig. 1.7, using the voltage and current values
given in Table 1.4, with the value of the current for
component d changed to —1 A.

Suppose there is no power lost in the wires used to
distribute power in a typical home.

a) Create a new model for the power distribution
circuit by modifying the circuit shown in Fig 1.7.
Use the same names, voltage polarities, and cur-
rent directions for the components that remain
in this modified model.

b) The following voltages and currents are calcu-
lated for the components:

v, = 120V i,=—10A
v, = 120V iy = 10 A
v = —120V ii=3A
v, =120V

v, = =240 V ih=-7A

If the power in this modified model balances,
what is the value of the current in component g?
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 CHAPTER OBJECTIVES

1 Understand the symbols for and the behavior of

the following ideal basic circuit elements:
independent voltage and current sources,
dependent voltage and current sources, and
resistors.

2 Be able to state Ohm’s law, Kirchhoff’s current
law, and Kirchhoff’s voltage law, and be able to
use these laws to analyze simple circuits.

3 Know how to calculate the power for each
element in a simple circuit and be able to
determine whether or not the power balances
for the whole circuit.

24

_, - ~ e = el Y
A - % S % . 5 2
5 P - - -
- i -
| —e - W E 1
- - ~, -
Ly . ey - Wy -~ ..
[ 3 e o - -~ -
- k - x i

Circuit Elements

There are five ideal basic circuit elements: voltage sources,
current sources, resistors, inductors, and capacitors. In this chap-
ter we discuss the characteristics of voltage sources, current
sources, and resistors. Although this may seem like a small num-
ber of elements with which to begin analyzing circuits, many prac-
tical systems can be modeled with just sources and resistors. They
are also a useful starting point because of their relative simplicity;
the mathematical relationships between voltage and current in
sources and resistors are algebraic. Thus you will be able to begin
learning the basic techniques of circuit analysis with only alge-
braic manipulations.

We will postpone introducing inductors and capacitors until
Chapter 6, because their use requires that you solve integral and
differential equations. However, the basic analytical techniques
for solving circuits with inductors and capacitors are the same as
those introduced in this chapter. So, by the time you need to
begin manipulating more difficult equations, you should be very
familiar with the methods of writing them.



Practical Perspective

Heating with Electric Radiators

You want to heat your small garage using a couple of electric
radiators. The power and voltage requirements for each radia-
tor are 1200 W, 240 V. But you are not sure how to wire the
radiators to the power supplied to the garage. Should you use
the wiring diagram on the left, or the one on the right? Does
it make any difference?

Once you have studied the material in this chapter, you
will be able to answer these questions and determine how to
heat the garage. The Practical Perspective at the end of this
chapter guides you through the analysis of two circuits based
on the two wiring diagrams shown below.

style-photography.de/fotolia

240V é)
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radiator

240V
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O O

(a) (®)

Figure 2.1 A The circuit symbols for (a) an ideal inde-
pendent voltage source and (b) an ideal independent
current source.

2.1 Voltage and Current Sources

Before discussing ideal voltage and current sources, we need to consider
the general nature of electrical sources. An electrical source is a device
that is capable of converting nonelectric energy to electric energy and
vice versa. A discharging battery converts chemical energy to electric
energy, whereas a battery being charged converts electric energy to
chemical energy. A dynamo is a machine that converts mechanical energy
to electric energy and vice versa. If operating in the mechanical-to-elec-
tric mode, it is called a generator. If transforming from electric to
mechanical energy, it is referred to as a motor. The important thing to
remember about these sources is that they can either deliver or absorb
electric power, generally maintaining either voltage or current. This
behavior is of particular interest for circuit analysis and led to the cre-
ation of the ideal voltage source and the ideal current source as basic cir-
cuit elements. The challenge is to model practical sources in terms of the
ideal basic circuit elements.

An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing in
those terminals. Similarly, an ideal current source is a circuit element that
maintains a prescribed current through its terminals regardless of the
voltage across those terminals. These circuit elements do not exist as
practical devices—they are idealized models of actual voltage and cur-
rent sources.

Using an ideal model for current and voltage sources places an
important restriction on how we may describe them mathematically.
Because an ideal voltage source provides a steady voltage, even if the
current in the element changes, it is impossible to specify the current in
an ideal voltage source as a function of its voltage. Likewise, if the only
information you have about an ideal current source is the value of cur-
rent supplied, it is impossible to determine the voltage across that cur-
rent source. We have sacrificed our ability to relate voltage and current
in a practical source for the simplicity of using ideal sources in circuit
analysis.

Ideal voltage and current sources can be further described as either
independent sources or dependent sources. An independent source estab-
lishes a voltage or current in a circuit without relying on voltages or cur-
rents elsewhere in the circuit. The value of the voltage or current supplied
is specified by the value of the independent source alone. In contrast, a
dependent source establishes a voltage or current whose value depends on
the value of a voltage or current elsewhere in the circuit. You cannot spec-
ify the value of a dependent source unless you know the value of the volt-
age or current on which it depends.

The circuit symbols for the ideal independent sources are shown in
Fig. 2.1. Note that a circle is used to represent an independent source. To
completely specify an ideal independent voltage source in a circuit, you
must include the value of the supplied voltage and the reference polarity,
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal independ-
ent current source, you must include the value of the supplied current and
its reference direction, as shown in Fig. 2.1(b).

The circuit symbols for the ideal dependent sources are shown in
Fig. 2.2. A diamond is used to represent a dependent source. Both the



dependent current source and the dependent voltage source may be con-
trolled by either a voltage or a current elsewhere in the circuit, so there
are a total of four variations, as indicated by the symbols in Fig. 2.2.
Dependent sources are sometimes called controlled sources.

To completely specify an ideal dependent voltage-controlled voltage
source, you must identify the controlling voltage, the equation that per-
mits you to compute the supplied voltage from the controlling voltage,
and the reference polarity for the supplied voltage. In Fig. 2.2(a), the con-
trolling voltage is named v,, the equation that determines the supplied
voltage v is

Vs = MUy,

and the reference polarity for v is as indicated. Note that u is a multiply-
ing constant that is dimensionless.

Similar requirements exist for completely specifying the other ideal
dependent sources. In Fig. 2.2(b), the controlling current is i, the equation
for the supplied voltage v, is

?)S = pix7

the reference polarity is as shown, and the multiplying constant p has the
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is v,,
the equation for the supplied current i is

Iy = avy,

the reference direction is as shown, and the multiplying constant « has the
dimension amperes per volt. In Fig. 2.2(d), the controlling current is i, the
equation for the supplied current iy is

Iy = Bix,

the reference direction is as shown, and the multiplying constant S is
dimensionless.

Finally, in our discussion of ideal sources, we note that they are
examples of active circuit elements. An active element is one that models
a device capable of generating electric energy. Passive elements model
physical devices that cannot generate electric energy. Resistors, induc-
tors, and capacitors are examples of passive circuit elements.
Examples 2.1 and 2.2 illustrate how the characteristics of ideal inde-
pendent and dependent sources limit the types of permissible intercon-
nections of the sources.

2.1 Voltage and Current Sources 27

Vg = pvy J_r iy = av, (4
(a) (c)
v, =pi (' i, = i, {}
(b) (d)

Figure 2.2 A The circuit symbols for (a) an ideal
dependent voltage-controlled voltage source, (b) an
ideal dependent current-controlled voltage source, (c) an
ideal dependent voltage-controlled current source, and
(d) an ideal dependent current-controlled current source.
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Sl AN Testing Interconnections of Ideal Sources

Using the definitions of the ideal independent volt-
age and current sources, state which interconnec-
tions in Fig. 2.3 are permissible and which violate
the constraints imposed by the ideal sources.

b

5A
a a
p
c 0V O 10V 5A
Solution
b

Connection (a) is valid. Each source supplies volt- (a) (b)
age across the same pair of terminals, marked a,b.
This requires that each source supply the same volt-
age with the same polarity, which they do.
Connection (b) is valid. Each source supplies
current through the same pair of terminals, marked b

2A
a a
a,b. This requires that each source supply the same
current in the same direction, which they do.
Connection (c) is not permissible. Each source é 10v c SV SA
supplies voltage across the same pair of terminals,
b

marked a,b. This requires that each source supply
the same voltage with the same polarity, which they
do not.

Connection (d) is not permissible. Each source
supplies current through the same pair of terminals,
marked a,b. This requires that each source supply
the same current in the same direction, which they 5A
do not. a

Connection (e) is valid. The voltage source sup-
plies voltage across the pair of terminals marked
a,b. The current source supplies current through the
same pair of terminals. Because an ideal voltage
source supplies the same voltage regardless of the b
current, and an ideal current source supplies the @)
same current regardless of the voltage, this is a per-

missible connection. Figure 2.3 A The circuits for Example 2.1.

(c) (d)

10V
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m Testing Interconnections of Ideal Independent and Dependent Sources

Using the definitions of the ideal independent and
dependent sources, state which interconnections in
Fig. 2.4 are valid and which violate the constraints
imposed by the ideal sources.

Solution

Connection (a) is invalid. Both the independent
source and the dependent source supply voltage
across the same pair of terminals, labeled a,b. This
requires that each source supply the same voltage
with the same polarity. The independent source sup-
plies 5V, but the dependent source supplies 15 V.

Connection (b) is valid. The independent volt-
age source supplies voltage across the pair of termi-
nals marked a,b. The dependent current source
supplies current through the same pair of terminals.
Because an ideal voltage source supplies the same
voltage regardless of current, and an ideal current
source supplies the same current regardless of volt-
age, this is an allowable connection.

Connection (c) is valid. The independent cur-
rent source supplies current through the pair of ter-
minals marked a,b. The dependent voltage source
supplies voltage across the same pair of terminals.
Because an ideal current source supplies the same
current regardless of voltage, and an ideal voltage
source supplies the same voltage regardless of cur-
rent, this is an allowable connection.

Connection (d) is invalid. Both the independ-
ent source and the dependent source supply current
through the same pair of terminals, labeled a,b. This
requires that each source supply the same current
in the same reference direction. The independent
source supplies 2 A, but the dependent source sup-
plies 6 A in the opposite direction. Figure 2.4 A The circuits for Example 2.2.
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v ASSESSMENT PROBLEMS

Objective 1—Understand ideal basic circuit elements

2.1  For the circuit shown,

a) What value of v, is required in order for the

interconnection to be valid?

b) For this value of v,, find the power associ-
ated with the 8 A source.

Answer: (a) —2 V;
(b) =16 W (16 W delivered).

Ip
-

J_r Vs <l) B

IR

NOTE: Also try Chapter Problems 2.6 and 2.7.

2.2  For the circuit shown,
a) What value of « is required in order for the
interconnection to be valid?

b) For the value of « calculated in part (a), find
the power associated with the 25 V source.

Answer: (a) 0.6 A/V;
(b) 375 W (375 W absorbed).

avy
— -

+

v, <_> 25V
+

s (D

2.2 Electrical Resistance (Ohm’s Law)

R Resistance is the capacity of materials to impede the flow of current or,
more specifically, the flow of electric charge. The circuit element used to
Figure 2.5 A The circuit symbol for a resistor havinga ~ model this behavior is the resistor. Figure 2.5 shows the circuit symbol for
the resistor, with R denoting the resistance value of the resistor.

Conceptually, we can understand resistance if we think about the
moving electrons that make up electric current interacting with and being
resisted by the atomic structure of the material through which they are
moving. In the course of these interactions, some amount of electric
energy is converted to thermal energy and dissipated in the form of heat.
This effect may be undesirable. However, many useful electrical devices
take advantage of resistance heating, including stoves, toasters, irons, and
space heaters.

Most materials exhibit measurable resistance to current. The amount
of resistance depends on the material. Metals such as copper and alu-
minum have small values of resistance, making them good choices for
wiring used to conduct electric current. In fact, when represented in a cir-
cuit diagram, copper or aluminum wiring isn’t usually modeled as a resis-
tor; the resistance of the wire is so small compared to the resistance of
other elements in the circuit that we can neglect the wiring resistance to

—— \WN\—0

resistance R.

il v R iT v R

simplify the diagram.

v =IR v = —IR

Figure 2.6 A Two possible reference choices for the
current and voltage at the terminals of a resistor, and
the resulting equations.

Ohm’s law >

For purposes of circuit analysis, we must reference the current in
the resistor to the terminal voltage. We can do so in two ways: either in
the direction of the voltage drop across the resistor or in the direction
of the voltage rise across the resistor, as shown in Fig. 2.6. If we choose
the former, the relationship between the voltage and current is

v = IR, (2.1)



where

v = the voltage in volts,

~
Il

the current in amperes,

=
|

= the resistance in ohms.
If we choose the second method, we must write
v = —IR, (2.2)

where v, i, and R are, as before, measured in volts, amperes, and ohms,
respectively. The algebraic signs used in Egs. 2.1 and 2.2 are a direct conse-
quence of the passive sign convention, which we introduced in Chapter 1.

Equations 2.1 and 2.2 are known as Ohm’s law after Georg Simon
Ohm, a German physicist who established its validity early in the nine-
teenth century. Ohm’s law is the algebraic relationship between voltage
and current for a resistor. In SI units, resistance is measured in ohms. The
Greek letter omega () is the standard symbol for an ohm. The circuit
diagram symbol for an 8 () resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. However,
expressing the current as a function of the voltage also is convenient. Thus,
from Eq. 2.1,

(2.3)
or, from Eq. 2.2,
(2.4)

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus,

1
G = E S. (2.5)

An 8 () resistor has a conductance value of 0.125 S. In much of the profes-
sional literature, the unit used for conductance is the mho (ohm spelled back-
ward), which is symbolized by an inverted omega (U). Therefore we may
also describe an 8 () resistor as having a conductance of 0.125 mho, (U).

We use ideal resistors in circuit analysis to model the behavior of
physical devices. Using the qualifier ideal reminds us that the resistor
model makes several simplifying assumptions about the behavior of
actual resistive devices. The most important of these simplifying assump-
tions is that the resistance of the ideal resistor is constant and its value
does not vary over time. Most actual resistive devices do not have constant
resistance, and their resistance does vary over time. The ideal resistor
model can be used to represent a physical device whose resistance doesn’t
vary much from some constant value over the time period of interest in
the circuit analysis. In this book we assume that the simplifying assump-
tions about resistance devices are valid, and we thus use ideal resistors in
circuit analysis.

We may calculate the power at the terminals of a resistor in several
ways. The first approach is to use the defining equation and simply calculate

2.2 Electrical Resistance (Ohm’s Law)

8Q
——ANN\—0

Figure 2.7 A The circuit symbol for an 8 () resistor.

31



32

Circuit Elements

Power in a resistor in terms of current »

Power in a resistor in terms of voltage »

the product of the terminal voltage and current. For the reference systems
shown in Fig. 2.6, we write

p = (2.6)

when v = i R and

p = —vi (2.7)

whenv = —i R.

A second method of expressing the power at the terminals of a resis-
tor expresses power in terms of the current and the resistance.
Substituting Eq. 2.1 into Eq. 2.6, we obtain

p =vi=(iR)

SO

p=i’R. (2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have
p = —vi = —(—iR)i = i’R. (2.9)

Equations 2.8 and 2.9 are identical and demonstrate clearly that, regard-
less of voltage polarity and current direction, the power at the terminals of
a resistor is positive. Therefore, a resistor absorbs power from the circuit.

A third method of expressing the power at the terminals of a resistor
is in terms of the voltage and resistance. The expression is independent of
the polarity references, so

S}

v

p = E (2.10)

Sometimes a resistor’s value will be expressed as a conductance rather
than as a resistance. Using the relationship between resistance and con-
ductance given in Eq. 2.5, we may also write Eqgs. 2.9 and 2.10 in terms of
the conductance, or

G?

p = v’G. (2.12)

p (2.11)

Equations 2.6-2.12 provide a variety of methods for calculating the power
absorbed by a resistor. Each yields the same answer. In analyzing a circuit,
look at the information provided and choose the power equation that uses
that information directly.

Example 2.3 illustrates the application of Ohm’s law in conjunction
with an ideal source and a resistor. Power calculations at the terminals of a
resistor also are illustrated.
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Sl Al Calculating Voltage, Current, and Power for a Simple Resistive Circuit

In each circuit in Fig. 2.8, either the value of v or i is
not known.

- i
1Av, 8Q% S0V 025%
(a) (b)
+
1A % 2008 S0V 2503
. iaf
(©) (d)

Figure 2.8 A The circuits for Example 2.3.

a) Calculate the values of v and i.
b) Determine the power dissipated in each resistor.

Solution

a) The voltage v, in Fig.2.8(a) is a drop in the direc-
tion of the current in the resistor. Therefore,

v, = (1)(8) = 8 V.

The current i, in the resistor with a conductance
of 0.2 S in Fig. 2.8(b) is in the direction of the
voltage drop across the resistor. Thus

i, = (50)(0.2) = 10 A.

The voltage v, in Fig. 2.8(c) is a rise in the direc-
tion of the current in the resistor. Hence

ve = —(1)(20) = 20 V.

The current iy in the 25 () resistor in Fig. 2.8(d)
is in the direction of the voltage rise across the
resistor. Therefore

—50
id = f = —-2A.

b) The power dissipated in each of the four resistors is

2
poa = S = (17(®) = 8W.
Pozs = (50)%(0.2) = 500 W,
_ 2
Do = % = (1)%(20) = 20 W,
(50)°

Pse = e = (—2)%(25) = 100 W.

 ASSESSMENT PROBLEMS

Objective 2—Be able to state and use Ohm'’s Law . . .

2.3  For the circuit shown,

a) If v, = 1kVand i, = 5SmA, find the value

of R and the power absorbed by the resistor.

b) Ifi, = 75 mA and the power delivered by
the voltage source is 3 W, find v,, R, and the
power absorbed by the resistor.

c) If R = 300 Q and the power absorbed by R
is 480 mW, find i, and v,,.

»(0) SR

Answer: (a) 200kQ,5 W,
(b) 40V, 53333 O,3 W,
(c) 40mA, 12 V.

NOTE: Also try Chapter Problems 2.11 and 2.12.

2.4  For the circuit shown,

a) Ifi, = 0.5A and G = 50 mS, find v, and
the power delivered by the current source.

b) If v, = 15V and the power delivered to the
conductor is 9 W, find the conductance G
and the source current i,.

¢) If G = 200 uS and the power delivered to
the conductance is 8 W, find i, and v,,.

O

Answer: (a) 10 V,5W;
(b) 40 mS, 0.6 A;
(c) 40 mA, 200 V.
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Having introduced the general characteristics of ideal sources and resis-
tors, we next show how to use these elements to build the circuit model of
a practical system.

2.3 Construction of a Circuit Model

We have already stated that one reason for an interest in the basic circuit
elements is that they can be used to construct circuit models of practical
systems. The skill required to develop a circuit model of a device or system
is as complex as the skill required to solve the derived circuit. Although
this text emphasizes the skills required to solve circuits, you also will need
other skills in the practice of electrical engineering, and one of the most
important is modeling.

We develop circuit models in the next two examples. In Example 2.4
we construct a circuit model based on a knowledge of the behavior of the
system’s components and how the components are interconnected. In
Example 2.5 we create a circuit model by measuring the terminal behavior
of a device.

TR Constructing a Circuit Model of a Flashlight

Construct a circuit model of a flashlight.

Solution

We chose the flashlight to illustrate a practical system
because its components are so familiar. Figure 2.9
shows a photograph of a widely available flashlight.

When a flashlight is regarded as an electrical
system, the components of primary interest are the
batteries, the lamp, the connector, the case, and the
switch. We now consider the circuit model for each
component.

A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is not
excessive. Thus if the dry-cell battery is operating
within its intended limits, we can model it with an
ideal voltage source. The prescribed voltage then is
constant and equal to the sum of two dry-cell values.

The ultimate output of the lamp is light energy,
which is achieved by heating the filament in the
lamp to a temperature high enough to cause radia-
tion in the visible range. We can model the lamp
with an ideal resistor. Note in this case that although
the resistor accounts for the amount of electric
energy converted to thermal energy, it does not pre-
dict how much of the thermal energy is converted to
light energy. The resistor used to represent the lamp
does predict the steady current drain on the batter-
ies, a characteristic of the system that also is of inter-
est. In this model, R; symbolizes the lamp resistance.

The connector used in the flashlight serves a
dual role. First, it provides an electrical conductive
path between the dry cells and the case. Second, it is

Figure 2.9 A A flashlight can be viewed as an electrical system.

formed into a springy coil so that it also can apply
mechanical pressure to the contact between the
batteries and the lamp. The purpose of this mechan-
ical pressure is to maintain contact between the two
dry cells and between the dry cells and the lamp.
Hence, in choosing the wire for the connector, we
may find that its mechanical properties are more

Thom Lang/Corbis



important than its electrical properties for the
flashlight design. Electrically, we can model the
connector with an ideal resistor, labeled R;.

The case also serves both a mechanical and an
electrical purpose. Mechanically, it contains all the
other components and provides a grip for the person
using it. Electrically, it provides a connection between
other elements in the flashlight. If the case is metal, it
conducts current between the batteries and the lamp.

2.3 Construction of a Circuit Model

*———o

(a)

(b)
OFF

- .

ON
(©)
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If it is plastic, a metal strip inside the case connects
the coiled connector to the switch. Either way, an
ideal resistor, which we denote R., models the electri-
cal connection provided by the case.

The final component is the switch. Electrically,
the switch is a two-state device. It is either ON or
OFF. An ideal switch offers no resistance to the cur-
rent when it is in the ON state, but it offers infinite
resistance to current when it is in the OFF state.
These two states represent the limiting values of a
resistor; that is, the ON state corresponds to a resis-
tor with a numerical value of zero, and the OFF state
corresponds to a resistor with a numerical value of
infinity. The two extreme values have the descrip-
tive names short circuit (R = 0) and open circuit
(R = 00).Figure 2.10(a) and (b) show the graphical
representation of a short circuit and an open circuit,
respectively. The symbol shown in Fig. 2.10(c) rep-
resents the fact that a switch can be either a short
circuit or an open circuit, depending on the position
of its contacts.

We now construct the circuit model of the
flashlight. Starting with the dry-cell batteries, the
positive terminal of the first cell is connected to
the negative terminal of the second cell, as shown in
Fig. 2.11. The positive terminal of the second cell is
connected to one terminal of the lamp. The other
terminal of the lamp makes contact with one side of
the switch, and the other side of the switch is con-
nected to the metal case. The metal case is then con-
nected to the negative terminal of the first dry cell
by means of the metal spring. Note that the ele-
ments form a closed path or circuit. You can see the
closed path formed by the connected elements in
Fig. 2.11. Figure 2.12 shows a circuit model for the
flashlight.

Figure 2.10 A Circuit symbols. (a) Short circuit. (b) Open circuit.
(c) Switch.

Lamp

Filament
terminal

Sliding switch

Dry cell #2

Drycell # 1

Figure 2.12 A A circuit model for a flashlight.

We can make some general observations about modeling from our
flashlight example: First, in developing a circuit model, the electrical behav-
ior of each physical component is of primary interest. In the flashlight
model, three very different physical components—a lamp, a coiled wire,
and a metal case —are all represented by the same circuit element (a resis-
tor), because the electrical phenomenon taking place in each is the same.
Each is presenting resistance to the current flowing through the circuit.

Second, circuit models may need to account for undesired as well as
desired electrical effects. For example, the heat resulting from the resist-
ance in the lamp produces the light, a desired effect. However, the heat
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resulting from the resistance in the case and coil represents an unwanted
or parasitic effect. It drains the dry cells and produces no useful output.
Such parasitic effects must be considered or the resulting model may not
adequately represent the system.

And finally, modeling requires approximation. Even for the basic sys-
tem represented by the flashlight, we made simplifying assumptions in
developing the circuit model. For example, we assumed an ideal switch,
but in practical switches, contact resistance may be high enough to inter-
fere with proper operation of the system. Our model does not predict this
behavior. We also assumed that the coiled connector exerts enough pres-
sure to eliminate any contact resistance between the dry cells. Our model
does not predict the effect of inadequate pressure. Our use of an ideal
voltage source ignores any internal dissipation of energy in the dry cells,
which might be due to the parasitic heating just mentioned. We could
account for this by adding an ideal resistor between the source and the
lamp resistor. Our model assumes the internal loss to be negligible.

In modeling the flashlight as a circuit, we had a basic understanding of
and access to the internal components of the system. However, sometimes
we know only the terminal behavior of a device and must use this infor-
mation in constructing the model. Example 2.5 explores such a modeling
problem.

m Constructing a Circuit Model Based on Terminal Measurements

i v, (V) | i (A)
- —40 -10
v, Device 0
. 20
_ 40 10
(a) (b)

for the device in Fig. 2.13.

The voltage and current are measured at the termi- Solution
nals of the device illustrated in Fig. 2.13(a), and the
values of v, and i, are tabulated in Fig. 2.13(b).
Construct a circuit model of the device inside the box.

Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.14(a). The equation
of the line in this figure illustrates that the terminal
voltage is directly proportional to the terminal cur-
rent, v, = 4i;. In terms of Ohm’s law, the device
inside the box behaves like a 4 ) resistor. Therefore,
the circuit model for the device inside the box is a
4 () resistor, as seen in Fig. 2.14(b).

We come back to this technique of using termi-
nal characteristics to construct a circuit model after
introducing Kirchhoff’s laws and circuit analysis.

Figure 2.13 A The (a) device and (b) data for Example 2.5.

I

+
°

v, § 4Q
[ )

(b)

Figure 2.14 A (a) The values of v, versus i, for the device in Fig. 2.13. (b) The circuit model

NOTE: Assess your understanding of this example by trying Chapter Problems 2.14 and 2.15.




2.4 Kirchhoff’s Laws

A circuit is said to be solved when the voltage across and the current in
every element have been determined. Ohm’s law is an important equation
for deriving such solutions. However, Ohm’s law may not be enough to
provide a complete solution. As we shall see in trying to solve the flash-
light circuit from Example 2.4, we need to use two more important alge-
braic relationships, known as Kirchhoff’s laws, to solve most circuits.

We begin by redrawing the circuit as shown in Fig. 2.15, with the
switch in the ON state. Note that we have also labeled the current and volt-
age variables associated with each resistor and the current associated with
the voltage source. Labeling includes reference polarities, as always. For
convenience, we attach the same subscript to the voltage and current
labels as we do to the resistor labels. In Fig. 2.15, we also removed some of
the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots are
the start and end points of an individual circuit element. A node is a point
where two or more circuit elements meet. It is necessary to identify nodes
in order to use Kirchhoff’s current law, as we will see in a moment. In
Fig. 2.15, the nodes are labeled a, b, ¢, and d. Node d connects the battery
and the lamp and in essence stretches all the way across the top of the dia-
gram, though we label a single point for convenience. The dots on either
side of the switch indicate its terminals, but only one is needed to repre-
sent a node, so only one is labeled node c.

For the circuit shown in Fig. 2.15, we can identify seven unknowns:
is, i1, I¢, Iy V1, Ve, and v;. Recall that v, is a known voltage, as it represents
the sum of the terminal voltages of the two dry cells, a constant voltage
of 3 V. The problem is to find the seven unknown variables. From alge-
bra, you know that to find » unknown quantities you must solve » simul-
taneous independent equations. From our discussion of Ohm’s law in
Section 2.2, you know that three of the necessary equations are

v = ilRla (2.13)
v. = iR, (2.14)
v = ilRl' (2.15)

What about the other four equations?

The interconnection of circuit elements imposes constraints on the
relationship between the terminal voltages and currents. These constraints
are referred to as Kirchhoff’s laws, after Gustav Kirchhoff, who first stated
them in a paper published in 1848. The two laws that state the constraints
in mathematical form are known as Kirchhoff’s current law and
Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law:

The algebraic sum of all the currents at any node in a circuit
equals zero.

To use Kirchhoff’s current law, an algebraic sign corresponding to a
reference direction must be assigned to every current at the node.
Assigning a positive sign to a current leaving a node requires assigning a
negative sign to a current entering a node. Conversely, giving a negative
sign to a current leaving a node requires giving a positive sign to a current
entering a node.

2.4 Kirchhoff's Laws

Figure 2.15 A Circuit model of the flashlight with
assigned voltage and current variables.

<« Kirchhoff’s current law (KCL)
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Kirchhoff’s voltage law (KVL) »

Applying Kirchhoff’s current law to the four nodes in the circuit
shown in Fig. 2.15, using the convention that currents leaving a node are
considered positive, yields four equations:

node a ig—i; =0, (2.16)
node b i +i. =0, (2.17)
node ¢ —i, —i; =0, (2.18)
node d ip—i,=0. (2.19)

Note that Egs. 2.16-2.19 are not an independent set, because any one
of the four can be derived from the other three. In any circuit with n nodes,
n — 1 independent current equations can be derived from Kirchhoff’s
current law.! Let’s disregard Eq. 2.19 so that we have six independent
equations, namely, Egs. 2.13-2.18. We need one more, which we can derive
from Kirchhoff’s voltage law.

Before we can state Kirchhoff’s voltage law, we must define a closed
path or loop. Starting at an arbitrarily selected node, we trace a closed
path in a circuit through selected basic circuit elements and return to the
original node without passing through any intermediate node more than
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For
example, choosing node a as the starting point and tracing the circuit
clockwise, we form the closed path by moving through nodes d, c, b, and
back to node a. We can now state Kirchhoff’s voltage law:

The algebraic sum of all the voltages around any closed path in a circuit
equals zero.

To use Kirchhoff’s voltage law, we must assign an algebraic sign (refer-
ence direction) to each voltage in the loop. As we trace a closed path, a volt-
age will appear either as a rise or a drop in the tracing direction. Assigning a
positive sign to a voltage rise requires assigning a negative sign to a voltage
drop. Conversely, giving a negative sign to a voltage rise requires giving a
positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 2.15.
We elect to trace the closed path clockwise, assigning a positive algebraic
sign to voltage drops. Starting at node d leads to the expression

v, — v, t v — v, =0, (2.20)

which represents the seventh independent equation needed to find the
seven unknown circuit variables mentioned earlier.

The thought of having to solve seven simultaneous equations to find
the current delivered by a pair of dry cells to a flashlight lamp is not very
appealing. Thus in the coming chapters we introduce you to analytical
techniques that will enable you to solve a simple one-loop circuit by writ-
ing a single equation. However, before moving on to a discussion of these
circuit techniques, we need to make several observations about the
detailed analysis of the flashlight circuit. In general, these observations are
true and therefore are important to the discussions in subsequent chap-
ters. They also support the contention that the flashlight circuit can be
solved by defining a single unknown.

1 We say more about this observation in Chapter 4.



First, note that if you know the current in a resistor, you also know the
voltage across the resistor, because current and voltage are directly
related through Ohm’s law. Thus you can associate one unknown variable
with each resistor, either the current or the voltage. Choose, say, the cur-
rent as the unknown variable. Then, once you solve for the unknown cur-
rent in the resistor, you can find the voltage across the resistor. In general,
if you know the current in a passive element, you can find the voltage
across it, greatly reducing the number of simultaneous equations to be
solved. For example, in the flashlight circuit, we eliminate the voltages v,
v}, and v, as unknowns. Thus at the outset we reduce the analytical task to
solving four simultaneous equations rather than seven.

The second general observation relates to the consequences of con-
necting only two elements to form a node. According to Kirchhoff’s cur-
rent law, when only two elements connect to a node, if you know the
current in one of the elements, you also know it in the second element.
In other words, you need define only one unknown current for the two
elements. When just two elements connect at a single node, the elements
are said to be in series. The importance of this second observation is
obvious when you note that each node in the circuit shown in Fig. 2.15
involves only two elements. Thus you need to define only one unknown
current. The reason is that Egs. 2.16-2.18 lead directly to

is = il = _ic = il’ (2.21)

which states that if you know any one of the element currents, you
know them all. For example, choosing to use i; as the unknown elimi-
nates iy, i, and i;. The problem is reduced to determining one unknown,
namely, ;.

Examples 2.6 and 2.7 illustrate how to write circuit equations based
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws
and Ohm’s law to find an unknown current. Example 2.9 expands on the
technique presented in Example 2.5 for constructing a circuit model for a
device whose terminal characteristics are known.

S'ET WA Using Kirchhoff's Current Law

Sum the currents at each node in the circuit shown
in Fig. 2.16. Note that there is no connection dot ()
in the center of the diagram, where the 4 () branch
crosses the branch containing the ideal current
source i,.

2.4

Kirchhoff's Laws

Solution

In writing the equations, we use a positive sign for a
current leaving a node. The four equations are

node a i1 +iy — i —i5=0,
node b i, +i3—i; — i, — i, =0,
node ¢ Iy — i3 — iy — i, = 0,

node d is + i, +1i, = 0.

Figure 2.16 A The circuit for Example 2.6.

39




40 Circuit Elements

SET WA Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in
the circuit shown in Fig. 2.17.

Solution

In writing the equations, we use a positive sign for a
voltage drop. The four equations are

path a -+ v+ v — v, — v3 =0,
path b —v, + v3 + v5s = 0,
path ¢ Vp — V4 — V. — Vg — V5 = 0,

path d —v, — v + v, —v. +v; — vy = 0.

Figure 2.17 A The circuit for Example 2.7.

SET W RN  Applying Ohm’s Law and Kirchhoff’s Laws to Find an Unknown Current

a) Use Kirchhoff’s laws and Ohm’s law to find i, in
the circuit shown in Fig. 2.18.

10 Q
W

i(}
120V 50 Q 6A

Figure 2.18 A The circuit for Example 2.8.

b) Test the solution for i, by verifying that the total
power generated equals the total power dissipated.

Solution

a) We begin by redrawing the circuit and assigning
an unknown current to the 50 ) resistor and
unknown voltages across the 10 ) and 50 Q
resistors. Figure 2.19 shows the circuit. The nodes
are labeled a, b, and c to aid the discussion.

a 100 i b
+ v(} o +
120V ili 500 v 6A
c

Figure 2.19 A The circuit shown in Fig. 2.18, with the
unknowns iy, v,, and v; defined.

Because i, also is the current in the 120 V
source, we have two unknown currents and

therefore must derive two simultaneous equa-
tions involving i, and i;. We obtain one of the
equations by applying Kirchhoff’s current law to
either node b or c. Summing the currents at node
b and assigning a positive sign to the currents
leaving the node gives

il_io_6:0.

We obtain the second equation from Kirchhoff’s
voltage law in combination with Ohm’s law.
Noting from Ohm’s law that v,, is 10i, and v is
50i;, we sum the voltages around the closed path
cabc to obtain

—120 + 10i, + 50i; = 0.
In writing this equation, we assigned a positive
sign to voltage drops in the clockwise direc-
tion. Solving these two equations for i, and

iy yields

i,=-3 A and B =3A.

b) The power dissipated in the 50 () resistor is
psoa = (3)%(50) = 450 W.
The power dissipated in the 10 () resistor is

Pioa = (=3)*(10) = 90 W.



The power delivered to the 120 V source is
Praov = —120i, = —120(—3) = 360 W.
The power delivered to the 6 A source is

Pea = —v1(6), but v, =50 =150 V.

2.4 Kirchhoff's Laws

Therefore
Psa = —150(6) = —900 W.

The 6 A source is delivering 900 W, and the
120 V source is absorbing 360 W. The total
power absorbed is 360 + 450 + 90 = 900 W.
Therefore, the solution verifies that the power
delivered equals the power absorbed.

31 Rl Constructing a Circuit Model Based on Terminal Measurements

The terminal voltage and terminal current were
measured on the device shown in Fig. 2.20(a), and
the values of v, and i, are tabulated in Fig. 2.20(b).

l + v (V) | i (A)
. 30 0
Device v
. 15 3
- 0 6
(a) (b)

Figure 2.20 A (a) Device and (b) data for Example 2.9.

a) Construct a circuit model of the device inside
the box.

b) Using this circuit model, predict the power this
device will deliver to a 10 () resistor.

Solution

a) Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

v, = 30 — 5i,.

Now we need to identify the components of a cir-
cuit model that will produce the same relation-
ship between voltage and current. Kirchhoff’s
voltage law tells us that the voltage drops across
two components in series. From the equation,
one of those components produces a 30 V drop
regardless of the current. This component can be
modeled as an ideal independent voltage source.
The other component produces a positive volt-
age drop in the direction of the current i,.
Because the voltage drop is proportional to the
current, Ohm’s law tells us that this component
can be modeled as an ideal resistor with a value
of 5 (). The resulting circuit model is depicted in
the dashed box in Fig. 2.21(b).

v, (V)
30
15— ‘
[
:‘)) 6 i, (A)
(a)

10Q

Figure 2.21 A (a) The graph of v, versus i, for the device in
Fig. 2.20(a). (b) The resulting circuit model for the device in
Fig. 2.20(a), connected to a 10 €} resistor.

b) Now we attach a 10 ) resistor to the device in
Fig. 2.21(b) to complete the circuit. Kirchhoff’s
current law tells us that the current in the 10 Q
resistor is the same as the current in the 5 () resis-
tor. Using Kirchhoff’s voltage law and Ohm’s law,
we can write the equation for the voltage drops
around the circuit, starting at the voltage source
and proceeding clockwise:

=30 + 5 + 10i = 0.
Solving for i, we get
i=2A.

Because this is the value of current flowing in
the 10 Q resistor, we can use the power equation
p = i°R to compute the power delivered to this
resistor:

Pion = (2)%(10) = 40 W.
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v ASSESSMENT PROBLEMS

Objective 2—Be able to state and use Ohm'’s law and Kirchhoff’s current and voltage laws

2.5  For the circuit shown, calculate (a) is; (b) v;; 2.7 a) The terminal voltage and terminal current

(c) vy; (d) vs; and (e) the power deliv
the 24 V source.

Answer: (a) 2 A;

ered by were measured on the device shown. The
values of v; and i, are provided in the table.
Using these values, create the straight line
plot of v, versus i,. Compute the equation of

(b) -4 V; the line and use the equation to construct a
©) 6 V: circuit model for the device using an ideal
’ voltage source and a resistor.
(N b) Use the model constructed in (a) to predict
(e) 48 W. the power that the device will deliver to a
25 () resistor.
30 Answer: (a) A 25V source in series with a 100 )
i resistor;
+ (b) 1W.
24V iSl 15370
+ v — - .
AW H
20 —— v (V) [ @A)
® 25 0
Device v 15 0.1
? B 5 0.2
2.6  Use Ohm’s law and Kirchhoff’s laws to find the 0.25
value of R in the circuit shown.
(a) (b)

Answer: R =4 ().

2.8 Repeat Assessment Problem 2.7 but use the
equation of the graphed line to construct a cir-

«/15» ~ cuit model containing an ideal current source
and a resistor.
+
200V 120V S 24 Q § 80 Answer: (a) A 0.25 A current source connected
- between the terminals of a 100 () resistor;
° (b) 1W.

NOTE: Also try Chapter Problems 2.18, 2.19, 2.29, and 2.31.

a 50

ol
500V v, 320Q Sip

Jon

(¢]

Figure 2.22 A A circuit with a dependent source.

2.5 Analysis of a Circuit Containing
Dependent Sources

We conclude this introduction to elementary circuit analysis with a discus-
sion of a circuit that contains a dependent source, as depicted in Fig. 2.22.

We want to use Kirchhoff’s laws and Ohm’s law to find v, in this cir-
cuit. Before writing equations, it is good practice to examine the circuit
diagram closely. This will help us identify the information that is known
and the information we must calculate. It may also help us devise a strat-
egy for solving the circuit using only a few calculations.



2.5

A look at the circuit in Fig. 2.22 reveals that

« Once we know i,, we can calculate v, using Ohm’s law.

« Once we know iy, we also know the current supplied by the dependent
source Siy.

« The current in the 500 V source is i,.

There are thus two unknown currents, i, and i,. We need to construct and
solve two independent equations involving these two currents to produce
a value for v,

From the circuit, notice the closed path containing the voltage source,
the 5 Q resistor, and the 20 Q resistor. We can apply Kirchhoff’s voltage
law around this closed path. The resulting equation contains the two
unknown currents:

500 = Siy + 20i,. (2.22)

Now we need to generate a second equation containing these two
currents. Consider the closed path formed by the 20 () resistor and the
dependent current source. If we attempt to apply Kirchhoff’s voltage
law to this loop, we fail to develop a useful equation, because we don’t
know the value of the voltage across the dependent current source. In
fact, the voltage across the dependent source is v, which is the voltage
we are trying to compute. Writing an equation for this loop does not
advance us toward a solution. For this same reason, we do not use the
closed path containing the voltage source, the 5 Q) resistor, and the
dependent source.

There are three nodes in the circuit, so we turn to Kirchhoff’s current
law to generate the second equation. Node a connects the voltage source
and the 5 () resistor; as we have already observed, the current in these two
elements is the same. Either node b or node c can be used to construct the
second equation from Kirchhoff’s current law. We select node b and pro-
duce the following equation:

io = iA + SIA = 6ZA (2.23)

Solving Egs. 2.22 and 2.23 for the currents, we get

iv=4 A,

i, =24 A. (2.24)

Using Eq. 2.24 and Ohm’s law for the 20 () resistor, we can solve for the
voltage v,:

v, = 20i, = 480 V.

Think about a circuit analysis strategy before beginning to write equa-
tions. As we have demonstrated, not every closed path provides an oppor-
tunity to write a useful equation based on Kirchhoff’s voltage law. Not
every node provides for a useful application of Kirchhoff’s current law.
Some preliminary thinking about the problem can help in selecting the
most fruitful approach and the most useful analysis tools for a particular

Analysis of a Circuit Containing Dependent Sources
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problem. Choosing a good approach and the appropriate tools will usually
reduce the number and complexity of equations to be solved. Example 2.10
illustrates another application of Ohm’s law and Kirchhoff’s laws to a cir-
cuit with a dependent source. Example 2.11 involves a much more compli-
cated circuit, but with a careful choice of analysis tools, the analysis is
relatively uncomplicated.

SETL P ROR  Applying Ohm's Law and Kirchhoff’s Laws to Find an Unknown Voltage

a) Use Kirchhoff’s laws and Ohm’s law to find the
voltage v, as shown in Fig. 2.23.

b) Show that your solution is consistent with the
constraint that the total power developed in the
circuit equals the total power dissipated.

Figure 2.23 A The circuit for Example 2.10.

Solution

a) A close look at the circuit in Fig. 2.23 reveals that:

e There are two closed paths, the one on the
left with the current i; and the one on the
right with the current i,.

« Once i, is known, we can compute v,,.

We need two equations for the two currents.

Because there are two closed paths and both have

voltage sources, we can apply Kirchhoff’s voltage

law to each to give the following equations:

10 = 6ij,
3i, = 2i, + 3i,.
Solving for the currents yields

i, = 1.67 A,

i,=1A.

Applying Ohm’s law to the 3 ) resistor gives
the desired voltage:

v, = 3i, = 3V.

b) To compute the power delivered to the voltage
sources, we use the power equation in the form
p = vi. The power delivered to the independent
voltage source is

p = (10)(-1.67) = —16.7 W.

The power delivered to the dependent voltage
source is

p = Big(=i,) = (5)(=1) = —5W.

Both sources are developing power, and the
total developed power is 21.7 W.

To compute the power delivered to the resis-
tors, we use the power equation in the form
p = i’R.The power delivered to the 6 () resistor is

p = (1.67)%6) = 16.7W.
The power delivered to the 2 () resistor is
p=(17(Q2) =2W.
The power delivered to the 3 () resistor is
p=(1)’3) =3W.

The resistors all dissipate power, and the total
power dissipated is 21.7 W, equal to the total
power developed in the sources.




2.5  Analysis of a Circuit Containing Dependent Sources

SETL PR Applying Ohm's Law and Kirchhoff’s Law in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common config-
uration encountered in the analysis and design of
transistor amplifiers. Assume that the values of all
the circuit elements— Ry, Ry, R¢, Rg, V¢, and Vy—
are known.

a) Develop the equations needed to determine the
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting iz in terms of the circuit element values.

Figure 2.24 A The circuit for Example 2.11.

Solution

A careful examination of the circuit reveals a total
of six unknown currents, designated iy, i, i, ic, if,
and i¢cc. In defining these six unknown currents, we
used the observation that the resistor R is in series
with the dependent current source Biz. We now
must derive six independent equations involving
these six unknowns.

a) We can derive three equations by applying
Kirchhoff’s current law to any three of the nodes
a, b, c,and d. Let’s use nodes a, b, and ¢ and label
the currents away from the nodes as positive:

(1) iy +ic—icc =0,
(2) ig+i—1i =0,

(3) iE_iB_iCZO.

A fourth equation results from imposing the
constraint presented by the series connection of
R¢ and the dependent source:

4) ic = Big.

We turn to Kirchhoff’s voltage law in deriv-
ing the remaining two equations. We need to
select two closed paths in order to use
Kirchhoff’s voltage law. Note that the voltage
across the dependent current source is unknown,
and that it cannot be determined from the source
current Bip. Therefore, we must select two
closed paths that do not contain this dependent
current source.

We choose the paths bcdb and badb and
specify voltage drops as positive to yield

(5) W +igRg — bR, =0,

(6) - ilRl + VCC - i2R2 = 0.

b) To get a single equation for iz in terms of
the known circuit variables, you can follow
these steps:

+ Solve Eq. (6) for ij, and substitute this solu-
tion for i; into Eq. (2).

+ Solve the transformed Eq. (2) for i,, and sub-
stitute this solution for i, into Eq. (5).

+ Solve the transformed Eq. (5) for ig, and sub-
stitute this solution for ig into Eq. (3). Use
Eq. (4) to eliminate i in Eq. (3).

+ Solve the transformed Eq. (3) for ig, and
rearrange the terms to yield

i (VeeR)/(Ry + Ry) — V)
BT (RiR)/(Ry + Ry + (1 + B)R;:

. (2.25)

Problem 2.31 asks you to verify these steps. Note
that once we know ip, we can easily obtain the
remaining currents.
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v ASSESSMENT PROBLEMS

Objective 3—Know how to calculate power for each element in a simple circuit

2.9  For the circuit shown find (a) the current i; in c) the power delivered by the independent cur-
microamperes, (b) the voltage v in volts, (c) the rent source,
total power generated, and (d) the total power d) the power delivered by the controlled cur-
absorbed. rent source,
e) the total power dissipated in the two resistors.
Answer: (a) 25 uA;
(b)-2V; Answer: (a) 70 V;
(c) 6150 uW; (b) 210 W;
(d) 40 W;
(e) 130 W.
2iy
. A,
10 Q
2.10 The current i, in the circuit shown is 2 A. 5 A(T) i 300 <+> v
Calculate i -
a) vy,
b) the power absorbed by the independent ¢

voltage source,

NOTE: Also try Chapter Problems 2.32 and 2.33.

240V

Figure 2.25 A wiring diagram for two
radiators.

Practical Perspective

Heating with Electric Radiators

Let's determine which of the two wiring diagrams introduced at the begin-
ning of this chapter should be used to wire the electric radiators to the
power supplied to the garage. We begin with the diagram shown in Fig. 2.25.
We can turn this into a circuit by modeling the radiators as resistors. The
resulting circuit is shown in Fig. 2.26. Note that each radiator has the same
resistance, R, and is labeled with a voltage and current value.

is»

240V VU1 IR

Figure 2.26 A circuit based on Fig. 2.25.

To find the unknown voltages and currents for the circuit in Fig. 2.26,
begin by writing a KVL equation for the left side of the circuit:

—240 + v, =0 = o, =240V.



Now write a KVL equation for the right side of this circuit:
_U1+U2=0 = UZ=U1=240V.
Remember that the power and voltage specifications for each radiator are 1200 W,
240 V. Therefore the configuration shown in Fig. 2.25 satisfies the voltage
specification, since each radiator would have a supplied voltage of 240 V.
Next, calculate the value of resistance R that will correctly model
each radiator. We want the power associated with each radiator to be
1200 W. Use the equation for resistor power that involves the resistance
and the voltage:
2 .2 2 ?
V1 (%) V1 240
'"R R 2 P, 1200
Each radiator can be modeled as a 48 () resistor with a voltage drop of 240 V
and power of 1200 W. The total power for two radiators is thus 2400 W.
Finally, calculate the power supplied by the 240 V source. To do this,
calculate the current in the voltage source, i, by writing a KCL equation at
the top node in Fig. 2.26, and use that current to calculate the power for
the voltage source.

=48 Q).

(41 (%) 240 240
A2 oA
R R 48 48 0

P, = —(240)(i,) = —(240)(10) = —2400 W.

_is+i1+i2:() ﬁiszl.l‘i‘izz

Thus, the total power in the circuit is —2400 + 2400 = 0, so the power
balances.

Now look at the other wiring diagram for the radiators, shown in
Fig. 2.27. We know that the radiators can be modeled using 48 () resistors,
which are used to turn the wiring diagram into the circuit in Fig. 2.28.

Start analyzing the circuit in Fig. 2.28 by writing a KVL equation:

—240 + v, +v,=0 = o, + v, =240.
Next, write a KCL equation at the node labeled a:
—i,+i,=0 = i,=i =i
The current in the two resistors is the same, and we can use that current

in Ohm’s Law equations to replace the two unknown voltages in the KVL
equation:
240
48 = 48i = 240 = 96i = i=¥=2.5A.
Use the current in the two resistors to calculate the power for the two
radiators.

P, = P, = Ri* = (48)(2.5)* = 300 W.

Thus, if the radiators are wired as shown in Fig. 2.27, their total power will
be only 600 W. This is insufficient to heat the garage.

Therefore, the way the radiators are wired has a big impact on the
amount of heat that will be supplied. When they are wired using the dia-
gram in Fig. 2.25, 2400 W of power will be available, but when they are
wired using the diagram in Fig. 2.27, only 600 W of power will be available.

NOTE:  Assess your understanding of the Practical Perspective by solving Chapter
Problems 2.41-2.43.

Practical Perspective

Figure 2.28 A circuit based on Fig. 2.27.
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ummary

The circuit elements introduced in this chapter are volt-
age sources, current sources, and resistors:

+ An ideal voltage source maintains a prescribed
voltage regardless of the current in the device. An
ideal current source maintains a prescribed current
regardless of the voltage across the device. Voltage
and current sources are either independent, that is,
not influenced by any other current or voltage in the
circuit; or dependent, that is, determined by some
other current or voltage in the circuit. (See pages 26
and 27.)

« A resistor constrains its voltage and current to be
proportional to each other. The value of the propor-
tional constant relating voltage and current in a
resistor is called its resistance and is measured in
ohms. (See page 30.)

Ohm’s law establishes the proportionality of voltage
and current in a resistor. Specifically,

v = IR

if the current flow in the resistor is in the direction of
the voltage drop across it, or

v = —IR

if the current flow in the resistor is in the direction of
the voltage rise across it. (See page 31.)

Problems

Se

ction 2.1
2.1 a) Isthe interconnection of ideal sources in the cir-
cuit in Fig. P2.1 valid? Explain.

b) Identify which sources are developing power
and which sources are absorbing power.

¢) Verify that the total power developed in the cir-
cuit equals the total power absorbed.

d) Repeat (a)-(c), reversing the polarity of the
20V source.

Figure P2.1
15V

- By combining the equation for power, p = vi, with

Ohm’s law, we can determine the power absorbed by a
resistor:

p = i’R = v*/R.
(See page 32.)

Circuits are described by nodes and closed paths. A
node is a point where two or more circuit elements join.
When just two elements connect to form a node, they
are said to be in series. A closed path is a loop traced
through connecting elements, starting and ending at the
same node and encountering intermediate nodes only
once each. (See pages 37-39.)

The voltages and currents of interconnected circuit ele-
ments obey Kirchhoff’s laws:

 Kirchhoff’s current law states that the algebraic sum
of all the currents at any node in a circuit equals zero.
(See page 37.)

- Kirchhoff’s voltage law states that the algebraic sum
of all the voltages around any closed path in a circuit
equals zero. (See page 38.)

A circuit is solved when the voltage across and the cur-
rent in every element have been determined. By com-
bining an understanding of independent and dependent
sources, Ohm’s law, and Kirchhoff’s laws, we can solve
many simple circuits.

2.2 If the interconnection in Fig. P2.2 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.2

S
<

D

-

50V 40V

—

2.3 If the interconnection in Fig. P2.3 is valid, find the
power developed by the current sources. If the
interconnection is not valid, explain why.
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2.5

Figure P2.3
40V
C )
/
10A 100V SA

If the interconnection in Fig. P2.4 is valid, find the
total power developed by the voltage sources. If the
interconnection is not valid, explain why.

Figure P2.4

3A
(D)
N

15V 25V

D)
_/

4A

The interconnection of ideal sources can lead to an
indeterminate solution. With this thought in mind,
explain why the solutions for v; and v, in the circuit
in Fig. P2.5 are not unique.

Figure P2.5

2A

2.6

V1 5A Vy 3A

®

8V

Consider the interconnection shown in Fig. P2.6.

a) What value of vy is required to make this a valid
interconnection?

b) For this value of vy, find the power associated
with the voltage source.

Figure P2.6

)
_/

400 mA (D :

/50

2.7

2.8

29

2.10

Problems 49

Consider the interconnection shown in Fig. P2.7.

a) What value of « is required to make this a valid
interconnection?

b) For this value of «, find the power associated
with the current source.

c) Is the current source supplying or absorbing
power?

Figure P2.7

6V iy 15 mA

a) Isthe interconnection in Fig. P2.8 valid? Explain.

b) Can you find the total energy developed in the
circuit? Explain.

Figure P2.8

100 mA 30V

3i)

20V 50 mA

If the interconnection in Fig. P2.9 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.9

30V C)

50 mA

40V Jx

é 1800 i,

Find the total power developed in the circuit in
Fig. P2.10ifv, = 5 V.
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Figure P2.10

9A )

v, 10 v,

20V 6A Va

Sections 2.2-2.3

211

2.12

2.13

For the circuit shown in Fig. P2.11
a) Find v.
b) Find the power absorbed by the resistor.

¢) Reverse the direction of the current source and
repeat parts (a) and (b).

Figure P2.11

15 mA<D v $3kQ

For the circuit shown in Fig. P2.12
a) Findi.
b) Find the power supplied by the voltage source.

¢) Reverse the polarity of the voltage source and
repeat parts (a) and (b).

Figure P2.12

40 V(f) | T $25k0

A pair of automotive headlamps is connected to a
12 V battery via the arrangement shown in
Fig. P2.13. In the figure, the triangular symbol V¥ is
used to indicate that the terminal is connected
directly to the metal frame of the car.

a) Construct a circuit model using resistors and an
independent voltage source.

b) Identify the correspondence between the ideal
circuit element and the symbol component that
it represents.

Figure P2.13

Switch

12V battery

2.14 The terminal voltage and terminal current were

measured on the device shown in Fig. P2.14(a). The
values of » and i are given in the table of
Fig. P2.14(b). Use the values in the table to con-
struct a circuit model for the device consisting of a
single resistor from Appendix H.

Figure P2.14

i i(A) |v(kV)
— - -72

[ & 6 !
Y -3 -3.6
Device v 3 3.6
hs B 6 72
10.8

(a) (b)

2.15 A variety of voltage source values were applied to

the device shown in Fig. P2.15(a). The power
absorbed by the device for each value of voltage is
recorded in the table given in Fig. P2.15(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor from
Appendix H.
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Figure P2.15

p (mW)
640

160

160

8 640
12 1440
16 2560

(b)

'Y

Device v
'Y

(a)

A variety of current source values were applied to the
device shown in Fig. P2.16(a). The power absorbed by
the device for each value of current is recorded in the
table given in Fig. P2.16(b). Use the values in the
table to construct a circuit model for the device con-
sisting of a single resistor from Appendix H.

Figure P2.16

i(mA)
0.5
1.0
1.5
2.0
2.5
3.0

p (mW)
8.25
33.00
74.25
132.00
206.25
297.00

(b)

'y

Device v
®

Section 2.4

2.17

2.18

PSPICE
MULTISIM

Consider the circuit shown in Fig. P2.17.
a) Find v, using Kirchoff’s laws and Ohm’s law.

b) Test the solution for v, by verifying that the total
power supplied equals the total power absorbed.

Figure P2.17

2kQ
MWV

20 mA v, Z5KkQ sy

Given the circuit shown in Fig. P2.18, find
a) the value of 7,

b) the value of iy,

¢) the value of v,,

d) the power dissipated in each resistor,

e) the power delivered by the 50 V source.

2.19

PSPICE
MULTISIM

2.20

221

PSPICE
MULTISIM

2.22

PSPICE
MULTISIM

Problems 51

Figure P2.18

.
0,380 Q)

50V 13200

a) Find the currents i; and i, in the circuit in
Fig. P2.19.

b) Find the voltage v,,.

c¢) Verify that the total power developed equals the
total power dissipated.

Figure P2.19

150 Q
AW
15A v, ili 100 Q £250 0

The current iy in the circuit shown in Fig. P2.20 is
50 mA and the voltage v, is 3.5 V. Find (a) iy;
(b) vi; (c) vg; and (d) the power supplied by the
voltage source.

Figure P2.20

50 200
—AM * AM
Iy —™ n—"
+ +
v, 01 3250 Q v 31750

The current i, in the circuit shown in Fig. P2.21 is
2mA.Find (a) i,; (b) iy; and (c) the power delivered
by the independent current source.

Figure P2.21

1k0Q
W
iy
i ’l 2kQ $4kQ
3kQ
* a\A%

The current i, in the circuit in Fig. P2.22is 1 A.
a) Find ;.
b) Find the power dissipated in each resistor.
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2.23

PSPICE
MULTISIM

2.24

PSPICE
MULTISIM

2.25

PSPICE
MULTISIM

Circuit Elements

¢) Verify that the total power dissipated in the cir-
cuit equals the power developed by the 150 V
source.

Figure P2.22

500 o
W
40 100
W\ W\
+
1sov (" 13650 2250

The variable resistor R in the circuit in Fig. P2.23 is
adjusted until i; equals 10 mA. Find the value of R.

Figure P2.23

R
1.5k 3kQ

“I$510 £500 0

For the circuit shown in Fig. P2.24, find (a) R and
(b) the power supplied by the 240 V source.

Figure P2.24
50

—4A
4Q

10 Q

e

10Q 14 Q

The voltage across the 16 () resistor in the circuit in
Fig. P2.25is 80 V, positive at the upper terminal.

a) Find the power dissipated in each resistor.

b) Find the power supplied by the 125V ideal volt-
age source.

c¢) Verify that the power supplied equals the total
power dissipated.

2.26
PSPICE
MULTISIM

2.27

Figure P2.25

O

15Q

30 Q 16 O

The currents i, and i, in the circuit in Fig. P2.26 are
4 A and —2 A, respectively.

a) Findi,.

b) Find the power dissipated in each resistor.

c¢) Find v,

d) Show that the power delivered by the current

source is equal to the power absorbed by all the
other elements.

Figure P2.26

1o <o
e
90 10Q
50 30 Q
® AW
+
100V Vg i 40
150 16 Q
4'A%% ® 4'A%%

The currents #; and i, in the circuit in Fig. P2.27 are
21 A and 14 A, respectively.

a) Find the power supplied by each voltage source.

b) Show that the total power supplied equals the
total power dissipated in the resistors.

Figure P2.27

$350




2.28

2.29

2.30

The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.28(a). The
results are tabulated in Fig. P2.28(b).

a) Construct a circuit model for this device using
an ideal voltage source in series with a resistor.

b) Use the model to predict the value of i, when v,
is zero.

Figure P2.28

) v (V) | i (A)
L 50 0
! +' 66 2
82 4
Device v, 98 6
°
- 114 8
e
130 10
(a) (b)

The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.29(a). The
results are tabulated in Fig. P2.29(b).

a) Construct a circuit model for this device using an
ideal current source in parallel with a resistor.

b) Use the model to predict the amount of power
the device will deliver to a 20 () resistor.

Figure P2.29

L v (V) | i, (A)
! +' 100 0
120 4
Device v, 140 3
°
— 160 12
L e
180 16
(a) (b)

The table in Fig. P2.30(a) gives the relationship
between the terminal current and voltage of
the practical constant current source shown in
Fig. P2.30(b).

a) Plot i versus v;.

b) Construct a circuit model of this current source
that is valid for 0 = v, = 75V, based on the
equation of the line plotted in (a).

¢) Use your circuit model to predict the current
delivered to a 2.5 k() resistor.

d) Use your circuit model to predict the open-circuit
voltage of the current source.

Problems 53
e) What is the actual open-circuit voltage?

f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.30

is (mA)| v, (V)
20.0 0 ;
175 | 25 " e
150 | 50 3 N
12.5 75 CCS Vg
9.0 | 100 .
40 | 125 e
0.0 | 140
(a) (b)

2.31 The table in Fig. P2.31(a) gives the relationship

between the terminal voltage and current of
the practical constant voltage source shown in
Fig. P2.31(b).

a) Plot v, versus i,.

b) Construct a circuit model of the practical
source that is valid for 0 =< i; = 24 mA, based
on the equation of the line plotted in (a). (Use
an ideal voltage source in series with an ideal
resistor.)

¢) Use your circuit model to predict the current
delivered to a 1 k() resistor connected to the
terminals of the practical source.

d) Use your circuit model to predict the current
delivered to a short circuit connected to the ter-
minals of the practical source.

e) What is the actual short-circuit current?

f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.31

v; (V) |is (mA)
24 0 i
22 8
20 16 s -
18 24 CVS /U\
15 32 °
10 40 Y
0 48
(a) (b)
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2.32

2.33

2.34

2.35

PSPICE
MULTISIM

2.36

Circuit Elements

For the circuit shown in Fig. P2.32, find v, and the
total power supplied in the circuit.

Figure P2.32

45A 6Q 2i,

For the circuit shown in Fig. P2.33, find v, and the
total power absorbed in the circuit.

Figure P2.33
450 Q

20V 150 O

Consider the circuit shown in Fig. P2.34.
a) Find i,,.
b) Verify the value of i, by showing that the power

generated in the circuit equals the power
absorbed in the circuit.

Figure P2.34

Find (a) i,, (b) i1, and (c) i, in the circuit in Fig. P2.35.

Figure P2.35
120

18V 100 350

For the circuit shown in Fig. P2.36, calculate (a) i, and
v, and (b) show that the power developed equals the
power absorbed.

Figure P2.36

PSPICE
MULTISIM

2.37 Find v; and v, in the circuit shown in Fig. P2.37

when v, equals 5 V. (Hint: Start at the right end of
the circuit and work back toward v,.)

Figure P2.37
60 Q 2

2.38

2.39

PSPICE
MULTISIM

Derive Eq. 2.25. Hint: Use Egs. (3) and (4) from
Example 2.11 to express i as a function of ig. Solve
Eq. (2) for i, and substitute the result into both
Egs. (5) and (6). Solve the “new” Eq. (6) for i; and
substitute this result into the “new” Eq. (5). Replace
ir in the “new” Eq. (5) and solve for igz. Note that
because icc appears only in Eq. (1), the solution for
ig involves the manipulation of only five equations.

For the circuit shown in Fig. 2.24, R; = 40 kQ),
R, =60kQ, Rc =750Q, R =120, Ve =10V,
Vo = 600 mV, and B = 49. Calculate ig, ic, ig, V34,
Vods 12, I1, Vabs icc», and vy3. (Note: In the double sub-
script notation on voltage variables, the first sub-
script is positive with respect to the second
subscript. See Fig. P2.39.)

Figure P2.39

Sections 2.1-2.5

2.40

DESIGN
PROBLEM

It is often desirable in designing an electric wiring
system to be able to control a single appliance from
two or more locations, for example, to control a
lighting fixture from both the top and bottom of a



stairwell. In home wiring systems, this type of con-
trol is implemented with three-way and four-way
switches. A three-way switch is a three-terminal,
two-position switch, and a four-way switch is a four-
terminal, two-position switch. The switches are shown
schematically in Fig. P2.40(a), which illustrates a
three-way switch, and P2.40(b), which illustrates a
four-way switch.

a) Show how two three-way switches can be con-
nected between a and b in the circuit in
Fig. P2.40(c) so that the lamp / can be turned ON
or OFF from two locations.

b) If the lamp (appliance) is to be controlled from
more than two locations, four-way switches are
used in conjunction with two three-way
switches. One four-way switch is required for
each location in excess of two. Show how one
four-way switch plus two three-way switches can
be connected between a and b in Fig. P2.40(c) to
control the lamp from three locations. (Hint:
The four-way switch is placed between the
three-way switches.)

Figure P2.40
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Problems 55

Suppose you want to add a third radiator to your
garage that is identical to the two radiators you have
already installed. All three radiators can be modeled
by 48 () resistors. Using the wiring diagram shown
in Fig. P2.41, calculate the total power for the three
radiators.

Figure P2.41

240V

Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.42. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.42

240V

I10)RIpEI
I10)BIpRI

Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.43. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.43

240V

I10jBIpRI

I10jRIpRI

Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.44. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.44

radiator |—| radiator

240V




3.1
3.2
3.3

3.4
3.5
3.6

3.7

 CHAPTER OBJECTIVES

1

56

CHAPTER CONTENTS

Resistors in Series p. 58

Resistors in Parallel p. 59

The Voltage-Divider and Current-Divider
Circuits p. 61

Voltage Division and Current Division p. 64
Measuring Voltage and Current p. 66

Measuring Resistance—The Wheatstone
Bridge p. 69

Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits p. 71

Be able to recognize resistors connected in
series and in parallel and use the rules for
combining series-connected resistors and
parallel-connected resistors to yield equivalent
resistance.

Know how to design simple voltage-divider and
current-divider circuits.

Be able to use voltage division and current
division appropriately to solve simple circuits.

Be able to determine the reading of an ammeter
when added to a circuit to measure current; be
able to determine the reading of a voltmeter
when added to a circuit to measure voltage.

Understand how a Wheatstone bridge is used to
measure resistance.

Know when and how to use delta-to-wye
equivalent circuits to solve simple circuits.

Simple Resistive Circuits

Our analytical toolbox now contains Ohm’s law and Kirchhoff’s
laws. In Chapter 2 we used these tools in solving simple circuits.
In this chapter we continue applying these tools, but on more-
complex circuits. The greater complexity lies in a greater number
of elements with more complicated interconnections. This chap-
ter focuses on reducing such circuits into simpler, equivalent cir-
cuits. We continue to focus on relatively simple circuits for two
reasons: (1) It gives us a chance to acquaint ourselves thoroughly
with the laws underlying more sophisticated methods, and (2) it
allows us to be introduced to some circuits that have important
engineering applications.

The sources in the circuits discussed in this chapter are lim-
ited to voltage and current sources that generate either constant
voltages or currents; that is, voltages and currents that are invari-
ant with time. Constant sources are often called de sources. The
dc stands for direct current, a description that has a historical basis
but can seem misleading now. Historically, a direct current was
defined as a current produced by a constant voltage. Therefore, a
constant voltage became known as a direct current, or dc, voltage.
The use of dc for constant stuck, and the terms dc current and
dc voltage are now universally accepted in science and engineering
to mean constant current and constant voltage.
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Practical Perspective

Resistive Touch Screens

Some mobile phones and tablet computers use resistive touch
screens, created by applying a transparent resistive material
to the glass or acrylic screens. Two screens are typically used,
separated by a transparent insulating layer. The resulting
touch screen can be modeled by a grid of resistors in the
x-direction and a grid of resistors in the y-direction, as shown
in the figure on the right.

A separate electronic circuit applies a voltage drop across
the grid in the x-direction, between the points a and b in the
circuit, then removes that voltage and applies a voltage drop
across the grid in the y-direction (between points ¢ and d),

il & 1253

Denis Semenchenko / Shutterstock

and continues to repeat this process. When the screen is
touched, the two resistive layers are pressed together, creating
a voltage that is sensed in the x-grid and another voltage that
is sensed in the y-grid. These two voltages precisely locate the
point where the screen was touched.

How is the voltage created by touching the screen related
to the position where the screen was touched? How are the
properties of the grids used to calculate the touch position? We
will answer these questions in the Practical Perspective at the
end of this chapter. The circuit analysis required to answer these
questions uses some circuit analysis tools developed next.

o
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58 Simple Resistive Circuits

3.1 Resistors in Series

In Chapter 2, we said that when just two elements connect at a single
node, they are said to be in series. Series-connected circuit elements carry
the same current. The resistors in the circuit shown in Fig. 3.1 are con-
nected in series. We can show that these resistors carry the same current
by applying Kirchhoff’s current law to each node in the circuit. The series
interconnection in Fig. 3.1 requires that

is = il = _iz = i3 = i4 = _i5 = _i6 = i7, (3.1)

which states that if we know any one of the seven currents, we know them
all. Thus we can redraw Fig. 3.1 as shown in Fig. 3.2, retaining the identity
of the single current i,.

To find iy, we apply Kirchhoff’s voltage law around the single closed
loop. Defining the voltage across each resistor as a drop in the direction of
i, gives

Figure 3.2 A Series resistors with a single unknown —v, + Ry + iRy + i(Ry + iRy + i,Rs + i;Rg + iR =0, (3.2)
current ig.

or
Vy = iS(R] + Rz + R3 + R4 + R5 + R6 + R7) (3.3)

The significance of Eq. 3.3 for calculating i, is that the seven resistors can
be replaced by a single resistor whose numerical value is the sum of the
individual resistors, that is,

Req:R1+R2+R3+R4+R5+R6+R7 (3.4)
Vs 2 Re
Tl 4 and

h vy = iReq (3.5)
Figure 3.3 A A simplified version of the circuit shown
in Fig. 3.2. Thus we can redraw Fig. 3.2 as shown in Fig. 3.3.

In general, if & resistors are connected in series, the equivalent single
resistor has a resistance equal to the sum of the k resistances, or

k
Combining resistors in series » [y = ERi =R+ R+ -+ + Ry (3.6)
i=1

Note that the resistance of the equivalent resistor is always larger than

that of the largest resistor in the series connection.
4 R, R, R; L Another way to think about this concept of an equivalent resistance is
— — to visualize the string of resistors as being inside a black box. (An electri-
v, R, <= o, Req cal engineer uses the term black pox to imply an opaque container; that is,
- — the contents are hidden from view. The engineer is then challenged to
h R, Ry Rs h model the contents of ‘Fhe box .by studying th.e .relationship between the
voltage and current at its terminals.) Determining whether the box con-
Figure 3.4 A The black box equivalent of the circuit tains k resistors or a single equivalent resistor is impossible. Figure 3.4

shown in Fig. 3.2. illustrates this method of studying the circuit shown in Fig. 3.2.




3.2 Resistors in Parallel

When two elements connect at a single node pair, they are said to be in
parallel. Parallel-connected circuit elements have the same voltage across
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected
in parallel. Don’t make the mistake of assuming that two elements are
parallel connected merely because they are lined up in parallel in a circuit
diagram. The defining characteristic of parallel-connected elements is that
they have the same voltage across their terminals. In Fig. 3.6, you can see
that R; and Rj are not parallel connected because, between their respec-
tive terminals, another resistor dissipates some of the voltage.

Resistors in parallel can be reduced to a single equivalent resistor
using Kirchhoff’s current law and Ohm’s law, as we now demonstrate. In
the circuit shown in Fig. 3.5, we let the currents iy, i, i3, and i, be the cur-
rents in the resistors R; through R,, respectively. We also let the positive
reference direction for each resistor current be down through the resistor,
that is, from node a to node b. From Kirchhoff’s current law,

is = il + iz + i3 + i4. (3.7)

The parallel connection of the resistors means that the voltage across each
resistor must be the same. Hence, from Ohm’s law,

ilRl = isz = i3R3 = i4R4 = V. (3.8)
Therefore,
. vS
"Ry
1
. vS
2 Ry
2
v
iy =—, and
R
. ’US
Iy = E (3.9)

, <1 11 1)
=V +—+—+ =, (3.10)

from which
S e T (3.11)

Equation 3.11 is what we set out to show: that the four resistors in the cir-
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con-
nected in parallel, Eq. 3.11 becomes

—ii——Jr—jLMjLL (3.12)
~ R, R, '

Note that the resistance of the equivalent resistor is always smaller than the
resistance of the smallest resistor in the parallel connection. Sometimes,

3.2 Resistors in Parallel 59

Figure 3.5 A Resistors in parallel.

R,

R, R,

Figure 3.6 A Nonparallel resistors.

~|yw

Vg § R

b

Figure 3.7 A Replacing the four parallel resistors shown
in Fig. 3.5 with a single equivalent resistor.

<« Combining resistors in parallel



60 Simple Resistive Circuits

a R using conductance when dealing with resistors connected in parallel is more
convenient. In that case, Eq. 3.12 becomes
R R k
: $ k. Geg= 2 Gi =Gy + Gy + - + Gy (3.13)
i=1
b i Many times only two resistors are connected in parallel. Figure 3.8
) ) ) illustrates this special case. We calculate the equivalent resistance from
Figure 3.8 A Two resistors connected in parallel. Eq.3.12:

1 1 1 R+R
— =t == (3.14)
R, R, RR,

or

RiR,

R, =——"—
“9 R +R,

(3.15)

Thus for just two resistors in parallel the equivalent resistance equals
the product of the resistances divided by the sum of the resistances.
Remember that you can only use this result in the special case of just two
resistors in parallel. Example 3.1 illustrates the usefulness of these results.

m Applying Series-Parallel Simplification

Find iy, iy, and i, in the circuit shown in Fig. 3.9.

Solution 120V

We begin by noting that the 3 () resistor is in series
with the 6 () resistor. We therefore replace this series
combination with a 9 ) resistor, reducing the circuit
to the one shown in Fig. 3.10(a). We now can replace
the parallel combination of the 9 () and 18 () resis- 40  x
tors with a single resistance of (18 X 9)/(18 + 9), or *
6 Q. Figure 3.10(b) shows this further reduction of
the circuit. The nodes x and y marked on all diagrams 120v
facilitate tracing through the reduction of the circuit.

From Fig. 3.10(b) you can verify that i; equals
120/10, or 12 A. Figure 3.11 shows the result at this
point in the analysis. We added the voltage v; to
help clarify the subsequent discussion. Using Ohm’s
law we compute the value of v;:

Figure 3.9 A The circuit for Example 3.1.

<o

v = (12)(6) = 72 V. (3.16) 120V

But v, is the voltage drop from node x to node y, so
we can return to the circuit shown in Fig. 3.10(a)
and again use Ohm’s law to calculate #; and i,. Thus,

Figure 3.10 A A simplification of the circuit shown in Fig. 3.9.
72

_ U _ 40 x
=Ll=2oyn 3.17
171818 ’ (3.17) W—e
v 72 A
9 9 B
y

We have found the three specified currents by using

series-parallel reductions in combination with Figure 3.11 A The circuit of Fig. 3.10(b) showing the numerical
Ohm’s law. value of i .




3.3

Before leaving Example 3.1, we suggest that you take the time to
show that the solution satisfies Kirchhoff’s current law at every node and
Kirchhoff’s voltage law around every closed path. (Note that there are
three closed paths that can be tested.) Showing that the power delivered
by the voltage source equals the total power dissipated in the resistors also
is informative. (See Problems 3.1 and 3.2.)

v ASSESSMENT PROBLEM

The Voltage-Divider and Current-Divider Circuits 61

Objective 1—Be able to recognize resistors connected in series and in parallel

3.1  For the circuit shown, find (a) the voltage v,
(b) the power delivered to the circuit by the
current source, and (c) the power dissipated in
the 10 Q resistor.

Answer: (a) 60V;

720 60

(b) 300 W;
(c) 57.6 W.

NOTE: Also try Chapter Problems 3.3-3.6.

3.3 The Voltage-Divider
and Current-Divider Circuits

At times—especially in electronic circuits—developing more than one
voltage level from a single voltage supply is necessary. One way of doing
this is by using a voltage-divider circuit, such as the one in Fig. 3.12.

We analyze this circuit by directly applying Ohm’s law and
Kirchhoff’s laws. To aid the analysis, we introduce the current i as shown in
Fig. 3.12(b). From Kirchhoff’s current law, R; and R, carry the same cur-
rent. Applying Kirchhoff’s voltage law around the closed loop yields

v, = iR, + iR, (3.19)
or
""R+ R (3-20)

Now we can use Ohm’s law to calculate v, and v,:

, R

vy = iR, = Usm, (3.21)
, R,

vV = IR, = Usm. (3.22)

Equations 3.21 and 3.22 show that v; and v, are fractions of v,. Each frac-
tion is the ratio of the resistance across which the divided voltage is
defined to the sum of the two resistances. Because this ratio is always less
than 1.0, the divided voltages v; and v, are always less than the source
voltage v;.

Figure 3.12 A (a) A voltage-divider circuit and (b) the
voltage-divider circuit with current i indicated.
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Vo § R,

O .
%

Figure 3.13 A A voltage divider connected to a load R; .

If you desire a particular value of v,, and vy is specified, an infinite
number of combinations of R; and R, yield the proper ratio. For example,
suppose that v, equals 15 V and v, is to be 5 V. Then v,/v; = % and, from
Eq.3.22, we find that this ratio is satisfied whenever R, = %R]. Other fac-
tors that may enter into the selection of R;, and hence R,, include the
power losses that occur in dividing the source voltage and the effects of
connecting the voltage-divider circuit to other circuit components.

Consider connecting a resistor R; in parallel with R,, as shown in
Fig. 3.13. The resistor R; acts as a load on the voltage-divider circuit. A
load on any circuit consists of one or more circuit elements that draw
power from the circuit. With the load R; connected, the expression for the
output voltage becomes

R

Vo = R1 + Requ, ( . )
where
RyR,
Ryy=—""". 3.24
ey (3.24)
Substituting Eq. 3.24 into Eq. 3.23 yields
R,
v, (3.25)

TR+ (R/RD + R,

Note that Eq. 3.25 reduces to Eq. 3.22 as R; — o0, as it should.
Equation 3.25 shows that, as long as R; >> R,, the voltage ratio v, /v, is
essentially undisturbed by the addition of the load on the divider.

Another characteristic of the voltage-divider circuit of interest is the
sensitivity of the divider to the tolerances of the resistors. By tolerance we
mean a range of possible values. The resistances of commercially avail-
able resistors always vary within some percentage of their stated value.
Example 3.2 illustrates the effect of resistor tolerances in a voltage-
divider circuit.

m Analyzing the Voltage-Divider Circuit

the maximum and minimum value of v,.

e

The resistors used in the voltage-divider circuit Solution
shown in Fig. 3.14 have a tolerance of +10%. Find

From Eq.3.22, the maximum value of v, occurs when
R, is 10% high and R; is 10% low, and the minimum
value of v, occurs when R, is 10% low and R; is
10% high. Therefore

_ (100)(110)
v,(max) = 110 + 225 83.02V,

. _ (100)(%0) _
v,(min) = 90+ 275 76.60 V.

Thus, in making the decision to use 10% resistors in

Figure 3.14 A The circuit for Example 3.2.

this voltage divider, we recognize that the no-load
output voltage will lie between 76.60 and 83.02 V.




3.3

The Current-Divider Circuit

The current-divider circuit shown in Fig. 3.15 consists of two resistors con-
nected in parallel across a current source. The current divider is designed
to divide the current i; between R; and R,. We find the relationship
between the current i; and the current in each resistor (that is, i; and i) by
directly applying Ohm’s law and Kirchhoff’s current law. The voltage
across the parallel resistors is

RiR,

v = i]R] = i2R2 = mis. (3.26)
From Eq. 3.26,
ll_R1+R21sa ( )
S T 3.28
12_R1+R21s- (3.28)

Equations 3.27 and 3.28 show that the current divides between two resis-
tors in parallel such that the current in one resistor equals the current
entering the parallel pair multiplied by the other resistance and divided by
the sum of the resistors. Example 3.3 illustrates the use of the current-
divider equation.

m Analyzing a Current-Divider Circuit

. 4 _
is = o4 (®) =324,

and the power dissipated in the 6 () resistor is
p = (32)%(6) = 61.44 W.

The Voltage-Divider and Current-Divider Circuits 63

Figure 3.15 A The current-divider circuit.

Find the power dissipated in the 6 () resistor shown 1.6 Q
in Fig. 3.16. —W—e
10A 16 Q 40 360
Solution | |
First, we must find the current in the resistor by sim- Figure 3.16 A The circuit for Example 3.3.
plifying the circuit with series-parallel reductions.
Thus, the circuit shown in Fig. 3.16 reduces to the
one shown in Fig. 3.17. We find the current i, by
using the formula for current division:
16

iy = 10) = 8 A.

=16 + 410 .
Note that i, is the current in the 1.6 () resistor in .
Fig. 3.16. We now can further divide i, between the 10A 160 4 Q§ l[“
6 Q) and 4 Q) resistors. The current in the 6 () resistor is

Figure 3.17 A A simplification of the circuit shown in Fig. 3.16.
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v ASSESSMENT PROBLEMS

Objective 2—Know how to design simple voltage-divider and current-divider circuits

3.2 a) Find the no-load value of v, in the 3.3 a) Find the value of R that will cause 4 A of

circuit shown.
b) Find v, when R; is 150 k().

current to flow through the 80 () resistor in
the circuit shown.

¢) How much power is dissipated in the 25 kQ b) How much power will the resistor R from
resistor if the load terminals are accidentally part (a) need to dissipate?

short-circuited?

¢) How much power will the current source

d) What is the maximum power dissipated in generate for the value of R from part (a)?

the 75 k() resistor?

25kQ

40 Q

e

75 kQ Vo

*——W\—4
| + o

20A<D R%

§R 80 O
L

Answer: (a) 150V;
(b) 13333V,
(c) 1.6 W,
(d) 0.3 W.

Answer: (a) 30Q;
(b) 7680 W;
(c) 33,600 W.

NOTE: Also try Chapter Problems 3.12, 3.14, and 3.16.

Ry R,
.—Jr—’\/\/\' MWN———— i
Circuit |2 ,\ R; § v,
i
—I—w\ AN —— -

Rn Rn—l

Figure 3.18 A Circuit used to illustrate voltage division.

3.4 Voltage Division
and Current Division

We can now generalize the results from analyzing the voltage divider cir-
cuit in Fig. 3.12 and the current-divider circuit in Fig. 3.15. The generaliza-
tions will yield two additional and very useful circuit analysis techniques
known as voltage division and current division. Consider the circuit shown
in Fig. 3.18.

The box on the left can contain a single voltage source or any other
combination of basic circuit elements that results in the voltage v shown in
the figure. To the right of the box are n resistors connected in series. We
are interested in finding the voltage drop v; across an arbitrary resistor R;
in terms of the voltage v. We start by using Ohm’s law to calculate i, the
current through all of the resistors in series, in terms of the current » and
the n resistors:

R+ R, +--+ R, Ry '

i

The equivalent resistance, Ry, is the sum of the n resistor values
because the resistors are in series, as shown in Eq. 3.6. We apply Ohm’s



law a second time to calculate the voltage drop v; across the resistor R;,
using the current i calculated in Eq. 3.29:

v, = iR, = —wv. (3.30)

Note that we used Eq. 3.29 to obtain the right-hand side of Eq. 3.30.
Equation 3.30 is the voltage division equation. It says that the voltage
drop v; across a single resistor R; from a collection of series-connected
resistors is proportional to the total voltage drop v across the set of series-
connected resistors. The constant of proportionality is the ratio of the sin-
gle resistance to the equivalent resistance of the series connected set of
resistors, or R/ Req.

Now consider the circuit shown in Fig. 3.19. The box on the left can
contain a single current source or any other combination of basic circuit
elements that results in the current i shown in the figure. To the right of
the box are n resistors connected in parallel. We are interested in finding
the current i; through an arbitrary resistor R; in terms of the current i. We
start by using Ohm’s law to calculate v, the voltage drop across each of the
resistors in parallel, in terms of the current i and the n resistors:

v =i(R|Ry] ... |R,) = iReq (3.31)

The equivalent resistance of n resistors in parallel, R, can be calculated
using Eq. 3.12. We apply Ohm’s law a second time to calculate the
current i; through the resistor R;, using the voltage v calculated in
Eq.3.31:

v Reg
== i. (3.32)
j

Note that we used Eq. 3.31 to obtain the right-hand side of Eq. 3.32.
Equation 3.32 is the current division equation. It says that the current i
through a single resistor R; from a collection of parallel-connected resis-
tors is proportional to the total current i supplied to the set of parallel-
connected resistors. The constant of proportionality is the ratio of the
equivalent resistance of the parallel-connected set of resistors to the single
resistance, or R.q/R;. Note that the constant of proportionality in the cur-
rent division equation is the inverse of the constant of proportionality in
the voltage division equation!

Example 3.4 uses voltage division and current division to solve for
voltages and currents in a circuit.

Circuit

Figure 3.19 A Circuit used to illustrate current division.

3.4 \Voltage Division and Current Division

<« Voltage-division equation

<« Current-division equation

65
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Use current division to find the current i, and use
voltage division to find the voltage v, for the circuit
in Fig. 3.20.

Solution

We can use Eq. 3.32 if we can find the equivalent
resistance of the four parallel branches containing
resistors. Symbolically,

Req = (36 + 44)[10]|(40 + 10 + 30)[24

= 80|/10/80|24 = =6Q.
J10180/24 = ——

Applying Eq. 3.32,

€l R Using Voltage Division and Current Division to Solve a Circuit

lo
360 40 Q |
+
8A<D 100 1003 240% v
. _

o 30030,

Figure 3.20 A The circuit for Example 3.4.

This is also the voltage drop across the branch con-
taining the 40 (), the 10 (), and the 30 () resistors in
series. We can then use voltage division to determine
the voltage drop v, across the 30 () resistor given

that we know the voltage drop across the series-
connected resistors, using Eq. 3.30. To do this, we
recognize that the equivalent resistance of the
series-connected resistors is 40 + 10 + 30 = 80 Q:

6
i, = = (8A) =2A.
io = 258 A)

We can use Ohm’s law to find the voltage drop
across the 24 ) resistor:

30
v = (24)(2) = 48 V. Vo = g8 V) =18V

v ASSESSMENT PROBLEM

Objective 3—Be able to use voltage and current division to solve simple circuits

3.4 a) Use voltage division to determine the 40 O 50 O
voltage v, across the 40 () resistor in the N :N” W

circuit shown.
6OV<+> 2005 300 1003
b) Use v, from part (a) to determine the cur- -
rent through the 40 () resistor, and use this 70 Q
current and current division to calculate the WA @ @
current in the 30 () resistor.

Answer: (a) 20V,
(b) 166.67 mA;
(c) 347.22 mW.

¢) How much power is absorbed by the 50 Q)
resistor?

NOTE: Also try Chapter Problems 3.25 and 3.26.

3.5 Measuring Voltage and Current

When working with actual circuits, you will often need to measure volt-
ages and currents. We will spend some time discussing several measuring
devices here and in the next section, because they are relatively simple to
analyze and offer practical examples of the current- and voltage-divider
configurations we have just studied.

An ammeter is an instrument designed to measure current; it is placed
in series with the circuit element whose current is being measured. A
voltmeter is an instrument designed to measure voltage; it is placed in par-
allel with the element whose voltage is being measured. An ideal ammeter
or voltmeter has no effect on the circuit variable it is designed to measure.



That is, an ideal ammeter has an equivalent resistance of 0 ) and func-
tions as a short circuit in series with the element whose current is being
measured. An ideal voltmeter has an infinite equivalent resistance and
thus functions as an open circuit in parallel with the element whose volt-
age is being measured. The configurations for an ammeter used to meas-
ure the current in R; and for a voltmeter used to measure the voltage in R,
are depicted in Fig. 3.21. The ideal models for these meters in the same cir-
cuit are shown in Fig. 3.22.

There are two broad categories of meters used to measure continuous
voltages and currents: digital meters and analog meters. Digital meters meas-
ure the continuous voltage or current signal at discrete points in time, called
the sampling times. The signal is thus converted from an analog signal, which
is continuous in time, to a digital signal, which exists only at discrete instants
in time. A more detailed explanation of the workings of digital meters is
beyond the scope of this text and course. However, you are likely to see and
use digital meters in lab settings because they offer several advantages over
analog meters. They introduce less resistance into the circuit to which they
are connected, they are easier to connect, and the precision of the measure-
ment is greater due to the nature of the readout mechanism.

Analog meters are based on the d’Arsonval meter movement which
implements the readout mechanism. A d’Arsonval meter movement con-
sists of a movable coil placed in the field of a permanent magnet. When cur-
rent flows in the colil, it creates a torque on the coil, causing it to rotate and
move a pointer across a calibrated scale. By design, the deflection of the
pointer is directly proportional to the current in the movable coil. The coil is
characterized by both a voltage rating and a current rating. For example,
one commercially available meter movement is rated at 50 mV and 1 mA.
This means that when the coil is carrying 1 mA, the voltage drop across the
coil is 50 mV and the pointer is deflected to its full-scale position. A
schematic illustration of a d’Arsonval meter movement is shown in Fig. 3.23.

An analog ammeter consists of a d’Arsonval movement in parallel
with a resistor, as shown in Fig. 3.24. The purpose of the parallel resistor is
to limit the amount of current in the movement’s coil by shunting some of
it through R 4. An analog voltmeter consists of a d’Arsonval movement in
series with a resistor, as shown in Fig. 3.25. Here, the resistor is used to
limit the voltage drop across the meter’s coil. In both meters, the added
resistor determines the full-scale reading of the meter movement.

From these descriptions we see that an actual meter is nonideal; both the
added resistor and the meter movement introduce resistance in the circuit to
which the meter is attached. In fact, any instrument used to make physical
measurements extracts energy from the system while making measurements.
The more energy extracted by the instruments, the more severely the meas-
urement is disturbed. A real ammeter has an equivalent resistance that is not
zero, and it thus effectively adds resistance to the circuit in series with the ele-
ment whose current the ammeter is reading. A real voltmeter has an equiva-
lent resistance that is not infinite, so it effectively adds resistance to the
circuit in parallel with the element whose voltage is being read.

How much these meters disturb the circuit being measured depends
on the effective resistance of the meters compared with the resistance in
the circuit. For example, using the rule of 1/10th, the effective resistance of
an ammeter should be no more than 1/10th of the value of the smallest
resistance in the circuit to be sure that the current being measured is
nearly the same with or without the ammeter. But in an analog meter, the
value of resistance is determined by the desired full-scale reading we wish
to make, and it cannot be arbitrarily selected. The following examples
illustrate the calculations involved in determining the resistance needed in
an analog ammeter or voltmeter. The examples also consider the resulting
effective resistance of the meter when it is inserted in a circuit.
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R,
AW

@

Vs R 2

Figure 3.21 A An ammeter connected to measure the
current in Ry, and a voltmeter connected to measure the
voltage across R,.

Rl /\\
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7

Figure 3.22 A A short-circuit model for the ideal amme-
ter, and an open-circuit model for the ideal voltmeter.
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Figure 3.23 A A schematic diagram of a d'’Arsonval
meter movement.

Ammeter R d’Arsonval
terminals A movement
Figure 3.24 A A dc ammeter circuit.
R’U
Voltmeter d’Arsonval
terminals movement

Figure 3.25 A A dc voltmeter circuit.
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SETD RN Using a d’Arsonval Ammeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in an ammeter with a full-scale reading of
10 mA. Determine R 4.

b) Repeat (a) for a full-scale reading of 1 A.

¢) How much resistance is added to the circuit
when the 10 mA ammeter is inserted to measure
current?

d) Repeat (c) for the 1 A ammeter.

Solution

a) From the statement of the problem, we know
that when the current at the terminals of the
ammeter is 10 mA, 1 mA is flowing through the
meter coil, which means that 9 mA must be
diverted through R,. We also know that when
the movement carries 1 mA, the drop across its
terminals is 50 mV. Ohm’s law requires that

9 X 107°R, = 50 X 1073,
or

R, =50/9 = 5.555 Q.

b) When the full-scale deflection of the ammeter is
1 A, R, must carry 999 mA when the movement
carries 1 mA. In this case, then,

999 X 103R, = 50 X 1073,
or
R, = 50/999 ~ 50.05 mq).

c) Let R, represent the equivalent resistance of the
ammeter. For the 10 mA ammeter,

_ 5S0mV
10 mA

=50,

or, alternatively,
_ (50)(50/9)
" 50 + (50/9)
d) For the 1 A ammeter

_ 50mV
" 1A

= 0.050 Q,

or, alternatively,
B (50)(50/999)

= T — 0,050 Q.
"= 50 + (50/999) 0%V

ST N Using a d’Arsonval Voltmeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in a voltmeter in which the full-scale read-
ing is 150 V. Determine R,

b) Repeat (a) for a full-scale reading of 5'V.

¢) How much resistance does the 150 V meter
insert into the circuit?

d) Repeat (c) for the 5V meter.

Solution

a) Full-scale deflection requires 50 mV across the
meter movement, and the movement has a resist-
ance of 50 (). Therefore we apply Eq. 3.22 with
R, = R,, R, = 50,v, = 150,and v, = 50 mV:

50
X103 = ——— )
50 x 10 B3 5(150)

Solving for R, gives

R, = 149,950 Q.

b) For a full-scale reading of 5V,

50
50 X 1073 = ———(5
R, + 50( )
or
R, = 4950 Q.

c) If we let R, represent the equivalent resistance
of the meter,

i
or, alternatively,
R,, = 149,950 + 50 = 150,000 €.
d) Then,

= 150,000 €,

5V

R, =
10 A

= 5000 Q,

or, alternatively,

R,, = 4950 + 50 = 5000 Q.
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v ASSESSMENT PROBLEMS

Objective 4—Be able to determine the reading of ammeters and voltmeters

3.5 a) Find the current in the circuit shown. 3.6 a) Find the voltage v across the 75 k() resistor
b) If the ammeter in Example 3.5(a) is used to in the circuit shown.
measure the current, what will it read? b) If the 150 V voltmeter of Example 3.6(a) is

used to measure the voltage, what will be
the reading?

i 15kQ
1v £100 Q
60V
Answer: (a) 10 mA; Answer: (a) S0V,
(b) 9.524 mA. (b) 46.15 V.

NOTE: Also try Chapter Problems 3.34 and 3.37.

3.6 Measuring Resistance—
The Wheatstone Bridge

Many different circuit configurations are used to measure resistance. Here
we will focus on just one, the Wheatstone bridge. The Wheatstone bridge
circuit is used to precisely measure resistances of medium values, that is, in e
the range of 1 Q) to 1 M. In commercial models of the Wheatstone ~ ~—
bridge, accuracies on the order of +0.1% are possible. The bridge circuit
consists of four resistors, a dc voltage source, and a detector. The resistance
of one of the four resistors can be varied, which is indicated in Fig. 3.26 by
the arrow through Rj;. The dc voltage source is usually a battery, which is
indicated by the battery symbol for the voltage source v in Fig. 3.26. The  Figure 3.26 A The Wheatstone bridge circuit.
detector is generally a d’Arsonval movement in the microamp range and is
called a galvanometer. Figure 3.26 shows the circuit arrangement of the
resistances, battery, and detector where Ry, R,, and R; are known resistors
and R, is the unknown resistor.

To find the value of R,, we adjust the variable resistor R; until there is
no current in the galvanometer. We then calculate the unknown resistor
from the simple expression

R, = —R;. (3.33)

The derivation of Eq. 3.33 follows directly from the application of
Kirchhoff’s laws to the bridge circuit. We redraw the bridge circuit as
Fig. 3.27 to show the currents appropriate to the derivation of Eq. 3.33.
When i, is zero, that is, when the bridge is balanced, Kirchhoff’s current
law requires that

i, = is, 3.34
1 3

iy = i,. (3.35)  Figure 3.27 A A balanced Wheatstone bridge (i, = 0).
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v ASSESSMENT PROBLEM

Now, because i, is zero, there is no voltage drop across the detector, and
therefore points a and b are at the same potential. Thus when the bridge is
balanced, Kirchhoff’s voltage law requires that

i3R3 = ixva (3.36)

ilRl = isz. (3.37)
Combining Egs. 3.34 and 3.35 with Eq. 3.36 gives

i1R3 = isz. (3.38)

We obtain Eq. 3.33 by first dividing Eq. 3.38 by Eq. 3.37 and then solving
the resulting expression for R,:

ij = I;;‘, (3.39)
from which
R, = &R} (3.40)
Ry

Now that we have verified the validity of Eq. 3.33, several comments
about the result are in order. First, note that if the ratio R,/R; is unity, the
unknown resistor R, equals R;. In this case, the bridge resistor R; must
vary over a range that includes the value R,. For example, if the unknown
resistance were 1000 () and R; could be varied from 0 to 100 €, the bridge
could never be balanced. Thus to cover a wide range of unknown resistors,
we must be able to vary the ratio R,/R;. In a commercial Wheatstone
bridge, R; and R, consist of decimal values of resistances that can be
switched into the bridge circuit. Normally, the decimal values are
1, 10, 100, and 1000 Q so that the ratio R,/R; can be varied from 0.001 to
1000 in decimal steps. The variable resistor Rj is usually adjustable in inte-
gral values of resistance from 1 to 11,000 Q).

Although Eq. 3.33 implies that R, can vary from zero to infinity, the
practical range of R, is approximately 1 ) to 1 M(). Lower resistances are
difficult to measure on a standard Wheatstone bridge because of thermo-
electric voltages generated at the junctions of dissimilar metals and
because of thermal heating effects—that is, i°R effects. Higher resistances
are difficult to measure accurately because of leakage currents. In other
words, if R, is large, the current leakage in the electrical insulation may be
comparable to the current in the branches of the bridge circuit.

Objective 5—Understand how a Wheatstone bridge is used to measure resistance

3.7  The bridge circuit shown is balanced when
Ry =100 Q, R, = 1000 O, and R; = 150 Q.
The bridge is energized from a 5 V dc source.

a) What is the value of R,?

b) Suppose each bridge resistor is capable of
dissipating 250 mW. Can the bridge be left

in the balanced state without exceeding the
power-dissipating capacity of the resistors, Answer:  (a) 1500 Q;

thereby damaging the bridge?

NOTE: Also try Chapter Problem 3.51.

(b) yes.



3.7 Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits

The bridge configuration in Fig. 3.26 introduces an interconnection of
resistances that warrants further discussion. If we replace the galvano-
meter with its equivalent resistance R,,, we can draw the circuit shown in
Fig. 3.28. We cannot reduce the interconnected resistors of this circuit to a
single equivalent resistance across the terminals of the battery if restricted
to the simple series or parallel equivalent circuits introduced earlier in this
chapter. The interconnected resistors can be reduced to a single equiva-
lent resistor by means of a delta-to-wye (A-to-Y) or pi-to-tee (7-to-T)
equivalent circuit.!

The resistors Ry, R,, and R, (or R3, R,, and R,) in the circuit shown
in Fig. 3.28 are referred to as a delta (A) interconnection because the
interconnection looks like the Greek letter A. It also is referred to as a
pi interconnection because the A can be shaped into a 7 without dis-
turbing the electrical equivalence of the two configurations. The electri-
cal equivalence between the A and = interconnections is apparent in
Fig. 3.29.

The resistors R;, R,,, and R; (or R,, R,, and R,) in the circuit shown in
Fig. 3.28 are referred to as a wye (Y) interconnection because the inter-
connection can be shaped to look like the letter Y. It is easier to see the Y
shape when the interconnection is drawn as in Fig. 3.30. The Y configuration
also is referred to as a tee (T) interconnection because the Y structure can
be shaped into a T structure without disturbing the electrical equivalence of
the two structures. The electrical equivalence of the Y and the T configura-
tions is apparent from Fig. 3.30.

Figure 3.31 illustrates the A-to-Y (or 7 -to-T) equivalent circuit trans-
formation. Note that we cannot transform the A interconnection into the
Y interconnection simply by changing the shape of the interconnections.
Saying the A-connected circuit is equivalent to the Y-connected circuit
means that the A configuration can be replaced with a Y configuration to
make the terminal behavior of the two configurations identical. Thus if
each circuit is placed in a black box, we can’t tell by external measure-
ments whether the box contains a set of A-connected resistors or a set of
Y-connected resistors. This condition is true only if the resistance between
corresponding terminal pairs is the same for each box. For example, the
resistance between terminals a and b must be the same whether we use
the A-connected set or the Y-connected set. For each pair of terminals in
the A-connected circuit, the equivalent resistance can be computed using
series and parallel simplifications to yield

R(R +Rb)
Ry=—"""—"=R +R 3.41
© "R 4+ R, + R 1 2 (3.41)

Ra(Rb+Rc)
R,.=———=R,+R 3.42
=R TR, + R, 2 3 (3.42)
ca_Ra+Rb+Rc_ 1 3 ()

LA and Y structures are present in a variety of useful circuits, not just resistive networks.
Hence the A-to-Y transformation is a helpful tool in circuit analysis.

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 71

Figure 3.28 A A resistive network generated by a
Wheatstone bridge circuit.

Figure 3.29 A A A configuration viewed as a
7r configuration.

b
R R,
R, a b
R; R;
c

Figure 3.30 A AY structure viewed as a T structure.

C

Figure 3.31 A The A-to-Y transformation.
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Straightforward algebraic manipulation of Eqgs. 3.41-3.43 gives values
for the Y-connected resistors in terms of the A-connected resistors

required for the A-to-Y equivalent circuit:

Reversing the A-to-Y transformation also is possible. That is, we can start
with the Y structure and replace it with an equivalent A structure. The
expressions for the three A-connected resistors as functions of the three

R, R

Ry=—2—-—, (3.44)
R, + R, + R,

R.R
Ry=—""——, 3.45
27 R, + R, + R, (345)

R,R,
A T 3.46
7 R, + R, + R, (3:46)

Y-connected resistors are

Example 3.7 illustrates the use of a A-to-Y transformation to simplify

RiR, + RyRy + R3Ry

a = R1

RiR, + RyRy + R3Ry

Rb = )
R,

RiR, + RyRy + R3Ry

R, = .
R

the analysis of a circuit.

Find the current and power supplied by the 40 V
source in the circuit shown in Fig. 3.32.

100 O 1250

40 O 37.5Q

Figure 3.32 A The circuit for Example 3.7.

Solution

We are interested only in the current and power
drain on the 40 V source, so the problem has been
solved once we obtain the equivalent resistance
across the terminals of the source. We can find this
equivalent resistance easily after replacing either
the upper A (100, 125, 25 Q) or the lower A (40,
25, 37.5 Q) with its equivalent Y. We choose to
replace the upper A. We then compute the three

Y resistances, defined in Fig. 3.33, from Egs. 3.44 to
3.46. Thus,

100 X 125
R =———"""=500Q
! 250 S04,
125 X 25
R, =—""=1250
2 250 >4,
100 X 25
Ry=——""=10Q.
3 250 0

Substituting the Y-resistors into the circuit
shown in Fig. 3.32 produces the circuit shown in
Fig. 3.34. From Fig. 3.34, we can easily calculate the
resistance across the terminals of the 40 V source by
series-parallel simplifications:

(50)(50)
100

The final step is to note that the circuit reduces to
an 80 () resistor across a 40 V source, as shown in
Fig. 3.35, from which it is apparent that the 40 V
source delivers 0.5 A and 20 W to the circuit.

Reg =55 + =80 Q.

100 Q 125 Q

N

25Q

Figure 3.33 A The equivalent Y resistors.

(3.47)

(3.48)

(3.49)



Practical Perspective

50
% ’ o
40V ;T j
00 0V =i $800
to_L 100 1250
40V _— Figure 3.35 A The final step in the simplification of the circuit
- shown in Fig. 3.32.
40 O 37.5Q

Figure 3.34 A A transformed version of the circuit shown in
Fig. 3.32.
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v ASSESSMENT PROBLEM

Objective 6—Know when and how to use delta-to-wye equivalent circuits

3.8  Usea Y-to-A transformation to find the voltage v 280
in the circuit shown.

20 Q) 10 O

[ p
-+

2A (P v 50 $1050
Answer: 35V. - .

NOTE: Also try Chapter Problems 3.60, 3.62, and 3.63.

Practical Perspective

Resistive Touch Screens

Begin by analyzing the resistive grid in the x-direction. We model the
resistance of the grid in the x-direction with the resistance R, as shown in
Fig. 3.34. The x-location where the screen is touched is indicated by the
arrow. The resulting voltage drop across the resistance aR, is V,. Touching
the screen effectively divides the total resistance, R,, into two separate
resistances aR, and (1 — a)R,.

From the figure you can see that when the touch is on the far right side
of the screen, « = 0, and v, = 0. Similarly, when the touch is on the far
left side of the screen, @ = 1, and V, = V.. If the touch is in between the
two edges of the screen, the value of « is between 0 and 1 and the two
parts of the resistance R, form a voltage divider. We can calculate the volt-
age V, using the equation for voltage division:

V, = o 7, = By
*T @R, +(1-R, ° R, * Y

We can find the value of «, which represents the location of the touch
point with respect the far right side of the screen, by dividing the voltage
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Figure 3.36 A The resistive touch screen grid
in the x-direction.

across the grid resistance starting at the touch point, V,, by the voltage
applied across the entire resistive grid in the x-direction, V,:

Now we want to use the value of « to determine the x-coordinate of the touch
location on the screen. Typically the screen coordinates are specified in terms
of pixels (short for “picture elements”). For example, the screen of a mobile
phone would be divided into a grid of pixels with p, pixels in the x-direction,
and p, pixels in the y-direction. Each pixel is identified by its x-location (a
number between 0 and p, — 1) and its y-location (a number between 0 and
p, — 1). The pixel with the location (0, 0) is in the upper left hand corner of
the screen, as shown in Fig. 3.37.

(0,0 (px—1,0)

(0,py—1) (px_l’py_l)

Figure 3.37 A The pixel coordinates of a screen
with p, pixels in the x-direction and p, pixels in the
y-direction.

Since «a represents the location of the touch point with respect to the
right side of the screen, (1 — «) represents the location of the touch point
with respect to the left side of the screen. Therefore, the x-coordinate of the
pixel corresponding to the touch point is

x=(1 - a)p,.

Note that the value of x is capped at (p, — 1).

Using the model of the resistive screen grid in the y-direction shown in
Fig. 3.38, it is easy to show that the voltage created by a touch at the arrow
is given by

Vv, = BV,
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Figure 3.38 A The resistive touch screen grid in the y-direction.

Therefore, the y-coordinate of the pixel corresponding to the touch point is

y=~0—B)py

where the value of y is capped at (py — 1). (See Problem 3.72.)

NOTE:  Assess your understanding of the Practical Perspective by solving Chapter

Problems 3.72-3.75.

Summary

Series resistors can be combined to obtain a single
equivalent resistance according to the equation

k
Reqz ElRl=R1+R2+ +Rk
i=

(See page 58.)

Parallel resistors can be combined to obtain a single
equivalent resistance according to the equation

1 1 1

k
o=t
SR R R Ry

)

1 _
Req

When just two resistors are in parallel, the equation for
equivalent resistance can be simplified to give

- R\R,
‘9 R+ R,

(See pages 59-60.)

When voltage is divided between series resistors, as
shown in the figure, the voltage across each resistor can
be found according to the equations

TR TR
R v(
TR+ RS

(See page 61.)

When current is divided between parallel resistors, as
shown in the figure, the current through each resistor
can be found according to the equations

R *
"TR 4R

I i113Ry HlZRy
T OREL SR
TR 4R
(See page 63.)

Voltage division is a circuit analysis tool that is used to
find the voltage drop across a single resistance from a
collection of series-connected resistances when the volt-
age drop across the collection is known:

o o
j_ 5
Req

where v; is the voltage drop across the resistance R;
and v is the voltage drop across the series-connected
resistances whose equivalent resistance is R.q. (See
page 65.)

Current division is a circuit analysis tool that is used to
find the current through a single resistance from a col-
lection of parallel-connected resistances when the cur-
rent into the collection is known:

cq';
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where i; is the current through the resistance R; and i is
the current into the parallel-connected resistances

whose equivalent resistance is R.q. (See page 65.)

A voltmeter measures voltage and must be placed in par-
allel with the voltage being measured. An ideal voltmeter
has infinite internal resistance and thus does not alter the
voltage being measured. (See page 66.)

+ An ammeter measures current and must be placed in
series with the current being measured. An ideal amme-
ter has zero internal resistance and thus does not alter
the current being measured. (See page 66.)

- Digital meters and analog meters have internal resist-
ance, which influences the value of the circuit variable
being measured. Meters based on the d’Arsonval meter

Problems

Sections 3.1-3.2

3.1 a) Show that the solution of the circuit in Fig. 3.9
PSPICE (see Example 3.1) satisfies Kirchhoff’s current
OB Jaw at junctions x and y.

b) Show that the solution of the circuit in Fig. 3.9
satisfies Kirchhoff’s voltage law around every
closed loop.

3.2 a) Find the power dissipated in each resistor in the
PSPICE circuit shown in Fig. 3.9.

MULTISIM
b) Find the power delivered by the 120 V source.

¢) Show that the power delivered equals the power
dissipated.

Figure P3.3

8kQ 5k

18V 6kQ) 2 7kQ

- 800 Q2 1200 Q
27V 300 Q
- 200 O
AW

movement deliberately include internal resistance as a
way to limit the current in the movement’s coil. (See
page 67.)

The Wheatstone bridge circuit is used to make precise
measurements of a resistor’s value using four resistors,
a dc voltage source, and a galvanometer. A Wheatstone
bridge is balanced when the resistors obey Eq. 3.33,
resulting in a galvanometer reading of 0 A. (See
page 69.)

A circuit with three resistors connected in a A configu-
ration (or a 7 configuration) can be transformed into an
equivalent circuit in which the three resistors are Y con-
nected (or T connected). The A-to-Y transformation is
given by Eqgs. 3.44-3.46; the Y-to-A transformation is
given by Eqgs. 3.47-3.49. (See page 72.)

3.3 For each of the circuits shown in Fig. P3.3,
a) identify the resistors connected in series,

b) simplify the circuit by replacing the series-
connected resistors with equivalent resistors.
3.4 For each of the circuits shown in Fig. P3.4,
a) identify the resistors connected in parallel,
b) simplify the circuit by replacing the parallel-
connected resistors with equivalent resistors.
3.5 For each of the circuits shown in Fig. P3.3,

a) find the equivalent resistance seen by the
source,

b) find the power developed by the source.

YW\
500 O

(®)
500900 800

30 mA <300 Q 1000 270 Q

(d)
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Figure P3.4
210 Q)
A . . 280 Q
24 Q
18V 3603 180 30 mA 200 Q 1200 5 1800
(a) (b)
A
75 kQ
50kQ
W\
+
60V { 100kQ $150kQ 3 60kOQS 900 Q
90 kO
244A% ®
(©
3.6 For each of the circuits shown in Fig. P3.4, 3.7 a) In the circuits in Fig. P3.7(a)—(d), find the equiv-
a) find the equivalent resistance seen by PSPICE alent resistance seen by the source.
MULTISIM
the source, b) For each circuit find the power delivered by the
b) find the power developed by the source. source.
Figure P3.7
45 Q 20 Q)
o [
30V e % -
(a) (b)
300 Q2 750 O 100 Q 150 Q

3.8 Find the equivalent resistance Ry, for each of the 3.9 Find the equivalent resistance Ry, for each of the
PSPICE  circuits in Fig. P3.8. PSPICE  circuits in Fig. P3.9.
MULTISIM MULTISIM
Figure P3.8
24 Q) 60 Q) 4 kQ 52kQ 1200 O 320 Q)
a a
a
90 Q) 6 kQ 8 kQ) 720 O 480 Q)
b
120
b b ® I

(a) (b) (©)
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Figure P3.9

26 Q 40 16 Q 120

a a e—AW\ A * A
36 Q) 100 03 209 1501?3150
b b e—wW\—¢ ° ®
60 140
(a) (b)
1kQ 250 Q 500 Q 28 Q)

a e—W\—+@ M—‘
o - H

3.10

311

(©

a) Find an expression for the equivalent resistance
of two resistors of value R in series.

b) Find an expression for the equivalent resistance
of n resistors of value R in series.

¢) Using the results of (a), design a resistive net-
work with an equivalent resistance of 3 k()
using two resistors with the same value from
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 4 k()
using a minimum number of identical resistors
from Appendix H.

a) Find an expression for the equivalent resistance
of two resistors of value R in parallel.

b) Find an expression for the equivalent resistance
of n resistors of value R in parallel.

¢) Using the results of (a), design a resistive net-
work with an equivalent resistance of 5 k()
using two resistors with the same value from
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 4 k()
using a minimum number of identical resistors
from Appendix H.

Section 3.3

3.12

DESIGN
PROBLEM

PSPICE

a) Calculate the no-load voltage v, for the voltage-
divider circuit shown in Fig. P3.12.
b) Calculate the power dissipated in R, and R,.

mmsin - ¢) - Assume that only 0.5 W resistors are available.

The no-load voltage is to be the same as in (a).
Specify the smallest ohmic values of R; and R,.

3.13

PSPICE
MULTISIM

3.14

DESIGN
PROBLEM

PSPICE
MULTISIM

20Q

(d)

Figure P3.12

160\/C_r

In the voltage-divider circuit shown in Fig. P3.13,
the no-load value of v, is 4 V. When the load resist-
ance R; is attached across the terminals a and b, v,,
drops to 3 V. Find R;.

Figure P3.13
40 Q a

20V

The no-load voltage in the voltage-divider circuit

shown in Fig. P3.14 is 8 V. The smallest load resistor

that is ever connected to the divider is 3.6 k). When

the divider is loaded, v,, is not to drop below 7.5 V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical values
of R; and R,.

b) Assume the power ratings of commercially
available resistors are 1/16,1/8,1/4,1,and 2 W.
What power rating would you specify?
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Figure P3.14

40V R,

Assume the voltage divider in Fig. P3.14 has been
constructed from 1 W resistors. What is the smallest
resistor from Appendix H that can be used as R,
before one of the resistors in the divider is operat-
ing at its dissipation limit?

Find the power dissipated in the 5 () resistor in the
current divider circuit in Fig. P3.16.

Figure P3.16

6 Q) 80

10A 100 120

For the current divider circuit in Fig. P3.17 calculate
a) i, and v,,.
b) the power dissipated in the 6 () resistor.

c¢) the power developed by the current source.

Figure P3.17

6 Q)
@ w @

+

0,24 A 13900
“100

20 Q $100

Specify the resistors in the current divider circuit in
Fig. P3.18 to meet the following design criteria:

iy, = S0mA; v, = 25 V;iij = 0.6iy;
i3 = 212, and i4 = 411

Figure P3.18

+

i, v, ili R, izi R, i‘;i R; i4i§R4

There is often a need to produce more than one
voltage using a voltage divider. For example, the
memory components of many personal computers
require voltages of —12 V,5V,and +12 V, all with
respect to a common reference terminal. Select the
values of Ry, R,, and Rj in the circuit in Fig. P3.19 to
meet the following design requirements:

Problems 79

a) The total power supplied to the divider circuit
by the 24 V source is 80 W when the divider is
unloaded.

b) The three voltages, all measured with respect to

the common reference terminal, are v; = 12V,
v, =5V,and vz = —12 V.

Figure P3.19

. o,
R,
V2
24V <J:> R,
Common
R;
° ® V3
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a) The voltage divider in Fig. P3.20(a) is loaded
with the voltage divider shown in Fig. P3.20(b);
that is, a is connected to a’, and b is connected to
b’. Find v,

b) Now assume the voltage divider in Fig. P3.20(b)
is connected to the voltage divider in
Fig. P3.20(a) by means of a current-controlled
voltage source as shown in Fig. P3.20(c). Find v,,.

¢) What effect does adding the dependent-voltage
source have on the operation of the voltage
divider that is connected to the 380 V source?

Figure P3.20

10 kQ
—_— a
i
180 V 30 kQ
® ® b
(a)
10 kQ 20 kQ)
i
180 V 30kQ 30,0000 40kQZ v,

3.21 A voltage divider like that in Fig. 3.13 is to be
DESIBN. designed so that v, = kv, at noload (R; = ©0) and
v, = avyat full load (R, = R,). Note that by defini-

tiona < k < 1.

a) Show that
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and
k—«a
Ry=—R,.
2 a1l - k)
b) Specify the numerical values of R; and R, if
k = 0.85 a = 0.80,and R, = 34 k().
c) If vy = 60V, specify the maximum power that
will be dissipated in R; and R,.

d) Assume the load resistor is accidentally short
circuited. How much power is dissipated in R,
and R,?

3.22 a) Show that the current in the kth branch of the

psPice - circuit in Fig. P3.22(a) is equal to the source

ORI current i, times the conductance of the kth branch
divided by the sum of the conductances, that is,

. i,Gy
KT G+ Gy +Gs+ -+ G+ + Gy

b) Use the result derived in (a) to calculate the cur-
rent in the 5 resistor in the circuit in
Fig. P3.22(b).

Figure P3.22

o
¢ [()
(b)

Section 3.4

3.23 Look at the circuit in Fig. P3.3(a).

a) Use voltage division to find the voltage across
the 6 k() resistor, positive at the top.

b) Use the result from part (a) and voltage division
to find the voltage across the 5 k() resistor, posi-
tive on the left.

3.24 Look at the circuit in Fig. P3.3(d).

a) Use current division to find the current in the
50 € resistor from left to right.

b) Use the result from part (a) and current division
to find the current in the 70 Q) resistor from top
to bottom.

3.25 Look at the circuit in Fig. P3.7(a).

a) Use voltage division to find the voltage drop
across the 25 () resistor, positive at the left.

b) Using your result from (a), find the current flow-
ing in the 25 Q resistor from left to right.

c¢) Starting with your result from (b), use current
division to find the current in the 50 () resistor
from top to bottom.

d) Using your result from part (c), find the voltage
drop across the 50 () resistor, positive at the top.

e) Starting with your result from (d), use voltage
division to find the voltage drop across the 60 Q
resistor, positive at the top.

3.26 Attach a 450 mA current source between the termi-
nals a-b in Fig. P3.9(a), with the current arrow
pointing up.

a) Use current division to find the current in the
36 () resistor from top to bottom.

b) Use the result from part (a) to find the voltage
across the 36 () resistor, positive at the top.

c) Use the result from part (b) and voltage division
to find the voltage across the 18 () resistor,
positive at the top.

d) Use the result from part (c) and voltage division
to find the voltage across the 10  resistor,
positive at the top.

3.27 Attach a 6 V voltage source between the terminals
a-b in Fig. P3.9(b), with the positive terminal at
the top.

a) Use voltage division to find the voltage across
the 4 Q) resistor, positive at the top.

b) Use the result from part (a) to find the current
in the 4 Q) resistor from left to right.

c) Use the result from part (b) and current division
to find the current in the 16 () resistor from left
to right.

d) Use the result from part (c) and current division
to find the current in the 10 () resistor from top
to bottom.

e) Use the result from part (d) to find the voltage
across the 10 () resistor, positive at the top.

f) Use the result from part (e) and voltage division
to find the voltage across the 18 () resistor, posi-
tive at the top.

3.28 a) Find the voltage v, in the circuit in Fig. P3.28

PSPICE using voltage and/or current division.
MULTISIM
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3.31

3.32
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b) Replace the 18 V source with a general voltage
source equal to V,. Assume V; is positive at the
upper terminal. Find v, as a function of V.

Figure P3.28

2k0 9kQ
+
18V <_> + o -
6 kQ 3kQ

Find v, in the circuit in Fig. P3.29 using voltage
and/or current division.

Figure P3.29

10 kQ 3kQ
2k + v, — 4kQ
18 mA CD
15kQ 12kQ

Find v, and v, in the circuit in Fig. P3.30 using volt-
age and/or current division.

Figure P3.30
90 Q)

60 Q

For the circuit in Fig. P3.31, find i, and then use cur-
rent division to find i,,.

Figure P3.31
I,

-
AW
20

e

For the circuit in Fig. P3.32, calculate i; and
i, using current division.

250 mA

3.33

3.34

3.35
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3.36
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Figure P3.32

A d’Arsonval ammeter is shown in Fig. P3.33.

a) Calculate the value of the shunt resistor, R ,, to
give a full-scale current reading of 5 A.

b) How much resistance is added to a circuit when
the 5 A ammeter in part (a) is inserted to meas-
ure current?

c) Calculate the value of the shunt resistor, R, to
give a full-scale current reading of 100 mA.

d) How much resistance is added to a circuit when
the 100 mA ammeter in part (c) is inserted to
measure current?

Figure P3.33

._
150 mV
Raz " 3ma
7 Ammeter

A shunt resistor and a 50 mV, 1 mA d’Arsonval
movement are used to build a 5 A ammeter. A
resistance of 20 m{) is placed across the terminals
of the ammeter. What is the new full-scale range of
the ammeter?

A d’Arsonval movement is rated at 2 mA and
200 mV. Assume 1 W precision resistors are avail-
able to use as shunts. What is the largest full-scale-
reading ammeter that can be designed using a
single resistor? Explain.

a) Show for the ammeter circuit in Fig. P3.36 that
the current in the d’Arsonval movement is
always 1/25th of the current being measured.

b) What would the fraction be if the 100 mV, 2 mA
movement were used in a 5 A ammeter?

c¢) Would you expect a uniform scale on a dc
d’Arsonval ammeter?
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Figure P3.36
100 mV, 2 mA

I

Imeas
—

—\W\—
(25/12)

A d’Arsonval voltmeter is shown in Fig. P3.37. Find

the value of R, for each of the following full-scale

readings: (a) 50V, (b) 5V, (c) 250 mV, and (d) 25 mV.

Figure P3.37

R,
.—
20 mV
1 mA
.—
Voltmeter

Suppose the d’Arsonval voltmeter described in
Problem 3.37 is used to measure the voltage across
the 45 Q) resistor in Fig. P3.38.

a) What will the voltmeter read?

b) Find the percentage of error in the voltmeter
reading if

measured value
% error = | ——— =1 | X 100.
true value
Figure P3.38
Iy
50 mA 150 3450

The ammeter in the circuit in Fig. P3.39 has a resist-
ance of 0.1 ). Using the definition of the percent-
age error in a meter reading found in Problem 3.38,
what is the percentage of error in the reading of
this ammeter?

Figure P3.39

6«9\,9
10 Q
' Ammeter
50V 2*(/)‘/9 @

3.40

341

PSPICE

MULTISIM

342

343

3.44

The ammeter described in Problem 3.39 is used to
measure the current i, in the circuit in Fig. P3.38. What
is the percentage of error in the measured value?

The elements in the circuit in Fig. 2.24 have the follow-
ing values: Ry = 20kQ, R, = 80k, R = 0.82 k(},
Rr=02kQ, Ve =75V, =0.6 V,and B = 39.
a) Calculate the value of iz in microamperes.

b) Assume that a digital multimeter, when used as a
dc ammeter, has a resistance of 1k(. If the
meter is inserted between terminals b and 2 to
measure the current i g, what will the meter read?

¢) Using the calculated value of iz in (a) as the cor-
rect value, what is the percentage of error in the
measurement?

You have been told that the dc voltage of a power
supply is about 350 V. When you go to the instrument
room to get a dc voltmeter to measure the power
supply voltage, you find that there are only two
dc voltmeters available. One voltmeter is rated
300V full scale and has a sensitivity of 900 /V.The
other voltmeter is rated 150 V full scale and has a
sensitivity of 1200 /V. (Hint: you can find the
effective resistance of a voltmeter by multiplying its
rated full-scale voltage and its sensitivity.)

a) How can you use the two voltmeters to check
the power supply voltage?

b) What is the maximum voltage that can be
measured?

c) If the power supply voltage is 320 V, what will
each voltmeter read?

Assume that in addition to the two voltmeters
described in Problem 3.42, a 50 k() precision resis-
tor is also available. The 50 k() resistor is connected
in series with the series-connected voltmeters. This
circuit is then connected across the terminals of the
power supply. The reading on the 300 V meter is
205.2 V and the reading on the 150 V meter is
136.8 V. What is the voltage of the power supply?

The voltmeter shown in Fig. P3.44(a) has a full-
scale reading of 500 V. The meter movement is
rated 100 mV and 0.5 mA. What is the percentage
of error in the meter reading if it is used to measure
the voltage v in the circuit of Fig. P3.44(b)?

Figure P3.44

: 0.5 mA
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3.47

The voltage-divider circuit shown in Fig. P3.45 is
designed so that the no-load output voltage is 7/9ths
of the input voltage. A d’Arsonval voltmeter having
a sensitivity of 100 0/V and a full-scale rating of
200V is used to check the operation of the circuit.

a) What will the voltmeter read if it is placed across
the 180 V source?

b) What will the voltmeter read if it is placed across
the 70 k() resistor?

¢) What will the voltmeter read if it is placed across
the 20 k() resistor?

d) Will the voltmeter readings obtained in parts (b)
and (c) add to the reading recorded in part (a)?
Explain why or why not.

Figure P3.45

Assume in designing the multirange voltmeter
shown in Fig. P3.46 that you ignore the resistance of
the meter movement.

a) Specify the values of R, Ry, and R;.
b) For each of the three ranges, calculate the percent-

age of error that this design strategy produces.

Figure P3.46

R,
100V e——wWA\—

R,
10V e——WA

Rs 50 mvV
SR e T

Common

The circuit model of a dc voltage source is shown in
Fig. P3.47.The following voltage measurements are
made at the terminals of the source: (1) With the
terminals of the source open, the voltage is meas-
ured at 50 mV, and (2) with a 15 M{) resistor con-
nected to the terminals, the voltage is measured at
48.75 mV. All measurements are made with a digi-
tal voltmeter that has a meter resistance of 10 M.

3.48

DESIGN
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3.49
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a) What is the internal voltage of the source (v,) in
millivolts?

b) What is the internal resistance of the source (R,)
in kilo-ohms?

Figure P3.47

s |

|
I Terminals of
: the source

Design a d’Arsonval voltmeter that will have the
three voltage ranges shown in Fig. P3.48.

a) Specify the values of Ry, R,, and R;.

b) Assume that a 750 k{) resistor is connected
between the 150 V terminal and the common
terminal. The voltmeter is then connected to an
unknown voltage using the common terminal
and the 300 V terminal. The voltmeter reads
288 V. What is the unknown voltage?

¢) What is the maximum voltage the voltmeter in (b)
can measure?

Figure P3.48

300V
R;
150V
R,
30V
R,
50 mV
1 mA
Common

A 600 k() resistor is connected from the 200 V ter-
minal to the common terminal of a dual-scale volt-
meter, as shown in Fig. P3.49(a). This modified
voltmeter is then used to measure the voltage
across the 360k} resistor in the circuit in

Fig. P3.49(b).

a) What is the reading on the 500 V scale of
the meter?

b) What is the percentage of error in the measured
voltage?
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Figure P3.49

| I 500V
' |
I 300kQ |
: | 200V
I
|
| $19995kQ |
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e
| 4
(a)
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|
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40k03 : |
|
I Modified |
+ 360 kQ§ : voltmeter |
6OOV<_> | |
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L1
(b)
Section 3.6
3.50 Assume the ideal voltage source in Fig. 3.26 is
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3.51

PSPICE
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3.52

PSPICE
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replaced by an ideal current source. Show that
Eq. 3.33 is still valid.

The bridge circuit shown in Fig. 3.26 is energized
from a 24 V dc source. The bridge is balanced when
Ry =500 Q, R, = 1000 Q,and R; = 750 Q.

a) What is the value of R,?

b) How much current (in milliamperes) does the dc
source supply?

¢) Which resistor in the circuit absorbs the most
power? How much power does it absorb?

d) Which resistor absorbs the least power? How
much power does it absorb?

Find the power dissipated in the 3 k() resistor in the
circuit in Fig. P3.52.

Figure P3.52
750 Q)

15 kQ 25kQ

e

3kQ

3.53

3.54
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Find the detector current i; in the unbalanced
bridge in Fig. P3.53 if the voltage drop across the
detector is negligible.

Figure P3.53

O

12 k kQ

In the Wheatstone bridge circuit shown in Fig. 3.26,
the ratio R,/R; can be set to the following values:
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor R;
can be varied from 1 to 11,110 (), in increments of
1 Q. An unknown resistor is known to lie between
4 and 5 Q). What should be the setting of the R,/R;
ratio so that the unknown resistor can be measured
to four significant figures?

Section 3.7

3.55

3.56

3.57

3.58
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Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the lower A (25, 37.5, and 40 ) with its
equivalent Y.

Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the Y on the left (25, 40, and 100 Q) with
its equivalent A.

Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the Y on the right (25, 37.5, and 125 Q)
with its equivalent A.

a) Find the equivalent resistance Ry, in the circuit
in Fig. P3.58 by using a Y-to-A transformation
involving resistors R,, R;, and Rs.

b) Repeat (a) using a A-to-Y transformation involv-
ing resistors R3, Ry, and Rs.

c) Give two additional A-to-Y or Y-to-A transfor-
mations that could be used to find R,

Figure P3.58

13 0
a

25Q

30 Q
70



3.59 Use a A-to-Y transformation to find the voltages v,

PSPICE and v, in the circuit in Fig. P3.59.
MULTISIM

Figure P3.59

3.60 a) Find the resistance seen by the ideal voltage

PSPICE source in the circuit in Fig. P3.60.
MULTISIM

b) If v,, equals 400 V, how much power is dissi-
pated in the 31 () resistor?

Figure P3.60

a 150 200
——e—W\—
50 Q 30 Q
100 Q
Vab C_D 71Q 310
60 Q 20 Q)
40 0
o o AW
b

3.61 Use a Y-to-A transformation to find (a) i,; (b) iy;
PSPICE (¢ i; and (d) the power delivered by the ideal cur-
WM rent source in the circuit in Fig, P3.61.

Figure P3.61

3.62 Find i, and the power dissipated in the 140 () resis-

PSPICE  tor in the circuit in Fig. P3.62.
MULTISIM

Figure P3.62

20 20 0
240\/75Q 0o 380

A . A

100 120
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3.63 For the circuit shown in Fig. P3.63, find (a) iy, (b) v,
PSPICE  (¢) iy, and (d) the power supplied by the voltage
MULTISIM source.

Figure P3.63

24 Q) 120 O

5Q

750V 43 Q

14 Q 200

3.64 Show that the expressions for A conductances as
functions of the three Y conductances are

G,Gs
G, + G, + Gy’
B G,Gs
Gy + G,y + Gy
B GG,
G+ G, + Gy’

G, =

Gy

G,

where

3.65 Derive Egs. 3.44-3.49 from Eqs. 3.41-3.43. The fol-
lowing two hints should help you get started in the
right direction:

1) To find R; as a function of R,, R, and R., first
subtract Eq. 3.42 from Eq. 3.43 and then add
this result to Eq. 3.41. Use similar manipula-
tions to find R, and Rj; as functions of R,, R,
and R,.

2) To find Ry, as a function of R;, R,, and R;, take
advantage of the derivations obtained by hint
(1), namely, Egs. 3.44-3.46. Note that these equa-
tions can be divided to obtain

R R R

2= o R. = szb,

Ry R, R;
and

Ri Ry R,

SL_ R, = 2R

Rz Raa or a R1 b

Now use these ratios in Eq. 3.43 to eliminate R,
and R.. Use similar manipulations to find R, and
R, as functions of R, R,, and Rj.

Sections 3.1-3.7

3.66 Resistor networks are sometimes used as volume-

pesien — control circuits. In this application, they are

referred to as resistance attenuators or pads.
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A typical fixed-attenuator pad is shown in
Fig. P3.66. In designing an attenuation pad, the
circuit designer will select the values of R and R,
so that the ratio of v, /v; and the resistance seen
by the input voltage source R,;, both have a speci-
fied value.

a) Show thatif R, = Ry, then

R} = 4R\(R, + Ry),

<

o RZ

v; :2R1+R2+RL.

b) Select the values of R; and R, so that
R,y = Ry = 300 Q and v, /v; = 0.5.

c¢) Choose values from Appendix H that are clos-
est to Ry and R, from part (b). Calculate the
percent error in the resulting values for R,;, and
vo/v; if these new resistor values are used.

Figure P3.66

- - - - - - - - - - = |
a | | ¢
| Rl Rl |
| |
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e— e o — — —_ — —_
Attenuator

a) The fixed-attenuator pad shown in Fig. P3.67 is
called a bridged tee. Use a Y-to-A transforma-
tion to show that R,;, = Ry if R = Ry.

b) Show that when R = Ry, the voltage ratio v,/v;
equals 0.50.

Figure P3.67
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Fixed-attenuator pad

The design equations for the bridged-tee attenuator
circuit in Fig. P3.68 are

2RR}
3R> — R}’

h =

3.69
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3.70

v, 3R - RL

v, 3R+ R
when R, has the value just given.

a) Design a fixed attenuator so that v; = 3.5v,
when Ry = 300 Q.

b) Assume the voltage applied to the input of the
pad designed in (a) is 42 V. Which resistor in the
pad dissipates the most power?

¢) How much power is dissipated in the resistor in
part (b)?

d) Which resistor in the pad dissipates the least
power?

e) How much power is dissipated in the resistor in
part (d)?

Figure P3.68

| R, |

: A |
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a) For the circuit shown in Fig. P3.69 the bridge is
balanced when AR = 0. Show thatif AR << R,
the bridge output voltage is approximately

—ARR,
/U() ~ 71}1]’1
(Ro + R4)2
b) Given R, = 1kQ, R; = 500 Q, Ry = 5k, and

vip = 6V, what is the approximate bridge out-
put voltage if AR is 3% of R,?

c) Find the actual value of v, in part (b).

Figure P3.69

a) If percent error is defined as

approximate value

1:| X 100,

% error =
true value



show that the percent error in the approxima-
tion of v, in Problem 3.69 is

~(AR)R,

——— X 100.
(R, + R3)Ry

% error =

b) Calculate the percent error in v,, using the values
in Problem 3.69(b).

3.71 Assume the error in v, in the bridge circuit in
aeren Fig. P3.69 is not to exceed 0.5%. What is the largest
percent change in R, that can be tolerated?

3.72 a) Using Fig. 3.38 derive the expression for the
voltage Vy.

b) Assuming that there are Py pixels in the
y-direction, derive the expression for the
y-coordinate of the touch point, using the result
from part (a).

3.73 A resistive touch screen has 5 V applied to the grid
RACTICAL in the x-direction and in the y-direction. The screen
e Nas 480 pixels in the x-direction and 800 pixels in

MULTISIM
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the y-direction. When the screen is touched, the
voltage in the x-grid is 1 V and the voltage in the
y-grid is 3.75 V.)

a) Calculate the values of « and B.

a) Calculate the x- and y-coordinates of the pixel at
the point where the screen was touched.

3.74 A resistive touch screen has 640 pixels in the

gmcncal x-direction and 1024 pixels in the y-direction.

sesien  Lhe resistive grid has 8 V applied in both the x- and

o y-directions. The pixel coordinates at the touch

wisi point are (480, 192). Calculate the voltages V.,
and V.

3.75 Suppose the resistive touch screen described in
Problem 3.74 is simultaneously touched at two
points, one with coordinates (480, 192) and the
other with coordinates (240, 384).

a) Calculate the voltage measured in the x- and
y-grids.

b) Which touch point has your calculation in (a)
identified?
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value of the load resistor that satisfies this
condition.
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So far, we have analyzed relatively simple resistive circuits
by applying Kirchhoff’s laws in combination with Ohm’s law. We
can use this approach for all circuits, but as they become struc-
turally more complicated and involve more and more elements,
this direct method soon becomes cumbersome. In this chapter we
introduce two powerful techniques of circuit analysis that aid in
the analysis of complex circuit structures: the node-voltage
method and the mesh-current method. These techniques give us
two systematic methods of describing circuits with the minimum
number of simultaneous equations.

In addition to these two general analytical methods, in this
chapter we also discuss other techniques for simplifying circuits.
We have already demonstrated how to use series-parallel reduc-
tions and A-to-Y transformations to simplify a circuit’s structure.
We now add source transformations and Thévenin and Norton
equivalent circuits to those techniques.

We also consider two other topics that play a role in circuit
analysis. One, maximum power transfer, considers the conditions
necessary to ensure that the power delivered to a resistive load by
a source is maximized. Thévenin equivalent circuits are used in
establishing the maximum power transfer conditions. The final
topic in this chapter, superposition, looks at the analysis of cir-
cuits with more than one independent source.



Practical Perspective

Circuits with Realistic Resistors

In the last chapter we began to explore the effect of imprecise
resistor values on the performance of a circuit; specifically, on
the performance of a voltage divider. Resistors are manufac-
tured for only a small number of discrete values, and any given
resistor from a batch of resistors will vary from its stated value
within some tolerance. Resistors with tighter tolerance, say
1%, are more expensive than resistors with greater tolerance,
say 10%. Therefore, in a circuit that uses many resistors, it
would be important to understand which resistor’'s value has
the greatest impact on the expected performance of the circuit.

o Multiplier
Second digit Tolerance
First digit \ / //
\.\g-o o,;.'
el A_— //
___,_-""'-Iﬁ = Z
N/

rrr
8 n MBS .
\Q{-‘ R =t
2P\

In other words, we would like to predict the effect of varying
each resistor’s value on the output of the circuit. If we know
that a particular resistor must be very close to its stated value
for the circuit to function correctly, we can then decide to
spend the extra money necessary to achieve a tighter tolerance
on that resistor’s value.

Exploring the effect of a circuit component’s value on the
circuit’s output is known as sensitivity analysis. Once we have
presented additional circuit analysis techniques, the topic of
sensitivity analysis will be examined.

Ocean/Corbis
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Figure 4.1 A (a) A planar circuit. (b) The same circuit
redrawn to verify that it is planar.

Figure 4.2 A A nonplanar circuit.

4.1 Terminology

To discuss the more involved methods of circuit analysis, we must define
a few basic terms. So far, all the circuits presented have been planar
circuits —that is, those circuits that can be drawn on a plane with no
crossing branches. A circuit that is drawn with crossing branches still is
considered planar if it can be redrawn with no crossover branches. For
example, the circuit shown in Fig. 4.1(a) can be redrawn as Fig. 4.1(b);
the circuits are equivalent because all the node connections have been
maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be
redrawn in such a way that all the node connections are maintained and
no branches overlap. The node-voltage method is applicable to both pla-
nar and nonplanar circuits, whereas the mesh-current method is limited
to planar circuits.

Describing a Circuit—The Vocabulary

In Section 1.5 we defined an ideal basic circuit element. When basic cir-
cuit elements are interconnected to form a circuit, the resulting intercon-
nection is described in terms of nodes, paths, branches, loops, and meshes.
We defined both a node and a closed path, or loop, in Section 2.4. Here
we restate those definitions and then define the terms path, branch, and
mesh. For your convenience, all of these definitions are presented in
Table 4.1. Table 4.1 also includes examples of each definition taken from
the circuit in Fig. 4.3, which are developed in Example 4.1.

SETENM Identifying Node, Branch, Mesh and Loop in a Circuit

For the circuit in Fig. 4.3, identify

a) all nodes.

b) all essential nodes.

¢) all branches.

d) all essential branches.
e) all meshes.

g) two loops that are not meshes.

Solution

a) The nodes are a, b, c,d, e, f,and g.
b) The essential nodes are b, c, e, and g.

f) two paths that are not loops or essential branches.

c¢) The branches are vy, v5, Ry, Ry, R3, R4, Rs, R,

Figure 4.3 A A circuit illustrating nodes, branches, meshes,
paths, and loops.

f) Ry — Rs — R¢ is a path, but it is not a loop
(because it does not have the same starting and
ending nodes), nor is it an essential branch

R7, and I. (because it does not connect two essential nodes).
d) The essential branches are v; — R;, R, — R3, v, — R, is also a path but is neither a loop nor an
v, — Ry, Rs, Rg, Ry, and 1. essential branch, for the same reasons.
e) The meshes are v, — Rj — Rs — R3 — R, g)vy — R — Rs — Rg — Ry, — v, is a loop but is
v, — Ry — Ry — R¢ — Ry, Rs — R; — R, and not a mesh, because there are two loops within it.
R, — I. I — Rs — Ry is also a loop but not a mesh.

NOTE: Assess your understanding of this material by trying Chapter Problems 4.1 and 4.5.




TABLE 4.1 Terms for Describing Circuits

Name Definition

node A point where two or more circuit elements join
essential node A node where three or more circuit elements join
path A trace of adjoining basic elements with no

elements included more than once
branch A path that connects two nodes

essential branch A path which connects two essential nodes without
passing through an essential node

loop A path whose last node is the same as the starting node
mesh A loop that does not enclose any other loops
planar circuit A circuit that can be drawn on a plane with no

crossing branches

Simultaneous Equations—How Many?

The number of unknown currents in a circuit equals the number of
branches, b, where the current is not known. For example, the circuit
shown in Fig. 4.3 has nine branches in which the current is unknown.
Recall that we must have b independent equations to solve a circuit
with b unknown currents. If we let n represent the number of nodes in
the circuit, we can derive n — 1 independent equations by applying
Kirchhoff’s current law to any set of n — 1 nodes. (Application of the
current law to the nth node does not generate an independent equation,
because this equation can be derived from the previous n — 1 equations.
See Problem 4.5.) Because we need b equations to describe a given circuit
and because we can obtain n — 1 of these equations from Kirchhoff’s
current law, we must apply Kirchhoff’s voltage law to loops or meshes
to obtain the remaining b — (n — 1) equations.

Thus by counting nodes, meshes, and branches where the current
is unknown, we have established a systematic method for writing the
necessary number of equations to solve a circuit. Specifically, we apply
Kirchhoff’s current law to n — 1 nodes and Kirchhoff’s voltage law to
b — (n — 1) loops (or meshes). These observations also are valid in terms
of essential nodes and essential branches. Thus if we let n, represent the
number of essential nodes and b, the number of essential branches where
the current is unknown, we can apply Kirchhoff’s current law at n, — 1
nodes and Kirchhoff’s voltage law around b, — (n, — 1) loops or meshes.
In circuits, the number of essential nodes is less than or equal to the num-
ber of nodes, and the number of essential branches is less than or equal to
the number of branches. Thus it is often convenient to use essential nodes
and essential branches when analyzing a circuit, because they produce
fewer independent equations to solve.

A circuit may consist of disconnected parts. An example of such a cir-
cuit is examined in Problem 4.3. The statements pertaining to the number
of equations that can be derived from Kirchhoff’s current law, n — 1, and
voltage law, b — (n — 1), apply to connected circuits. If a circuit has n
nodes and b branches and is made up of s parts, the current law can be
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Example From Fig. 4.3

vl_Rl_Rs_Rﬁ
R,

v~ R

vy — R —Rs— Rg — Ry — v,
v - R —Rs—R;— R,

Fig. 4.3 is a planar circuit

Fig. 4.2 is a nonplanar circuit
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Figure 4.4 A The circuit shown in Fig. 4.3 with six
unknown branch currents defined.

applied n — s times, and the voltage law b — n + s times. Any two sepa-
rate parts can be connected by a single conductor. This connection always
causes two nodes to form one node. Moreover, no current exists in the sin-
gle conductor, so any circuit made up of s disconnected parts can always
be reduced to a connected circuit.

The Systematic Approach—An Illustration

We now illustrate this systematic approach by using the circuit shown in
Fig. 4.4. We write the equations on the basis of essential nodes and
branches. The circuit has four essential nodes and six essential branches,
denoted i; — ig, for which the current is unknown.

We derive three of the six simultaneous equations needed by applying
Kirchhoff’s current law to any three of the four essential nodes. We use the
nodes b, c, and e to get

_l1+l2+l6_I:0,
il - i3 - i5 = O,
i3 + i4 - iz = 0. (4.1)
We derive the remaining three equations by applying Kirchhoff’s voltage
law around three meshes. Because the circuit has four meshes, we need to
dismiss one mesh. We choose R; — I, because we don’t know the voltage
across I.!
Using the other three meshes gives
Rlil + Rsiz + i3(R2 + R3) -V = 0,
_i3(R2 + R3) + i4R6 + i5R4 — V) = 0,
_iZRS + i6R7 - i4R6 = 0. (4.2)
Rearranging Eqgs. 4.1 and 4.2 to facilitate their solution yields the set
—i1+i2+0i3+0i4+0i5+i621,
ll+0l2_l3+014_l5+0l6:0,
Oll_l2+l3+l4+0l5+0l6:0,
Riiy + Rsiy + (Ry + Ry)is + 0iy + 0is + 0ig = vy,

0i; + 0iy — (R, + Ry)is + Rgiy + Ryis + Oig = vy,

0i; — Rsiy + 0i3 — Rgiy + 0is + Ryig = 0. (4.3)
Note that summing the current at the nth node (g in this example) gives

i5_i4_i6+120. (44)

1'We say more about this decision in Section 4.7.



Equation 4.4 is not independent, because we can derive it by summing
Eqgs. 4.1 and then multiplying the sum by —1. Thus Eq. 4.4 is a linear com-
bination of Egs. 4.1 and therefore is not independent of them. We now
carry the procedure one step further. By introducing new variables, we can
describe a circuit with just n — 1 equations or just b — (n — 1) equations.
Therefore these new variables allow us to obtain a solution by manipulat-
ing fewer equations, a desirable goal even if a computer is to be used to
obtain a numerical solution.

The new variables are known as node voltages and mesh currents. The
node-voltage method enables us to describe a circuit in terms of n, — 1
equations; the mesh-current method enables us to describe a circuit in
terms of b, — (n, — 1) equations. We begin in Section 4.2 with the node-
voltage method.

NOTE: Assess your understanding of this material by trying Chapter
Problems 4.2 and 4.3.

4.2 Introduction to the
Node-Voltage Method

We introduce the node-voltage method by using the essential nodes of the
circuit. The first step is to make a neat layout of the circuit so that no
branches cross over and to mark clearly the essential nodes on the circuit
diagram, as in Fig. 4.5. This circuit has three essential nodes (n, = 3); there-
fore, we need two (n, — 1) node-voltage equations to describe the circuit.
The next step is to select one of the three essential nodes as a reference node.
Although theoretically the choice is arbitrary, practically the choice for the
reference node often is obvious. For example, the node with the most
branches is usually a good choice. The optimum choice of the reference node
(if one exists) will become apparent after you have gained some experience
using this method. In the circuit shown in Fig. 4.5, the lower node connects
the most branches, so we use it as the reference node. We flag the chosen ref-
erence node with the symbol V¥, as in Fig. 4.6.

After selecting the reference node, we define the node voltages on the
circuit diagram. A node voltage is defined as the voltage rise from the ref-
erence node to a nonreference node. For this circuit, we must define two
node voltages, which are denoted v, and v, in Fig. 4.6.

We are now ready to generate the node-voltage equations. We do so by
first writing the current leaving each branch connected to a nonreference
node as a function of the node voltages and then summing these currents to
zero in accordance with Kirchhoff’s current law. For the circuit in Fig. 4.6,
the current away from node 1 through the 1 () resistor is the voltage drop
across the resistor divided by the resistance (Ohm’s law). The voltage drop
across the resistor, in the direction of the current away from the node, is
v; — 10.Therefore the current in the 1 Q resistor is (v; — 10)/1. Figure 4.7
depicts these observations. It shows the 10 V—1 () branch, with the appro-
priate voltages and current.

This same reasoning yields the current in every branch where the cur-
rent is unknown. Thus the current away from node 1 through the 5 Q
resistor is v1/5, and the current away from node 1 through the 2 Q resistor
is (v; — vp)/2. The sum of the three currents leaving node 1 must equal
zero; therefore the node-voltage equation derived at node 1 is

(% 10 (] V1 — Uy (4 5)
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10 20

10V 5Q 10 Q 2A

Figure 4.5 A A circuit used to illustrate the node-voltage
method of circuit analysis.

10V

Figure 4.6 A The circuit shown in Fig. 4.5 with a
reference node and the node voltages.

10V

Figure 4.7 A Computation of the branch current i.
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The node-voltage equation derived at node 2 is

Vy — Vq (%)
+-2-2=0. :
) 10 0 (4.6)

Note that the first term in Eq. 4.6 is the current away from node 2 through
the 2 resistor, the second term is the current away from
node 2 through the 10 Q resistor, and the third term is the current away
from node 2 through the current source.

Equations 4.5 and 4.6 are the two simultaneous equations that
describe the circuit shown in Fig. 4.6 in terms of the node voltages v; and
v,. Solving for v, and v, yields

100
-2 909V
(%1 1 9.09
120
- _ 1091V,
27

Once the node voltages are known, all the branch currents can be cal-
culated. Once these are known, the branch voltages and powers can be
calculated. Example 4.2 illustrates the use of the node-voltage method.

SE WA Using the Node-Voltage Method

cuit shown in Fig. 4.8.

ing power.

Solution

b) Find the power associated with each source, and
state whether the source is delivering or absorb-

a) We begin by noting that the circuit has two essen-

a) Use the node-voltage method of circuit analysis 50

L4

Figure 4.8 A The circuit for Example 4.2.

50

tial nodes; thus we need to write a single node-
voltage expression. We select the lower node as
the reference node and define the unknown node
voltage as v;. Figure 4.9 illustrates these deci-
sions. Summing the currents away from node 1
generates the node-voltage equation

LB S R
5 10 40 -
Solving for v gives
7)1:40V.
Hence
50 — 40
,=———=2A
la 5 ]
40
=—=4A
Iy 10 s
40
=—=1A.
7 40

to find the branch currents i, i, and i in the cir- MhAA
50V (3100 i |3400 3A
3A

+
50V v

10 Q 40 Q

<“—— " \WN—o~—

Figure 4.9 A The circuit shown in Fig. 4.8 with a reference
node and the unknown node voltage v;.

b) The power associated with the 50 V source is

psov = —50i, = —100 W (delivering).

The power associated with the 3 A source is

D3a = —3v; = —3(40) = —120 W (delivering).

We check these calculations by noting that the
total delivered power is 220 W. The total power
absorbed by the three resistors is 4(5) + 16(10)
+ 1(40), or 220 W, as we calculated and as it
must be.
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/ASSESSMENT PROBLEMS

Objective 1—Understand and be able to use the node-voltage method

Use the node-voltage method to find v in the
circuit shown.

4.1 a) For the circuit shown, use the node-voltage 4.2
method to find vy, v,, and ;.

b) How much power is delivered to the circuit
by the 15 A source? _ ENQ 20 40

+
c) Repeat (b) for the 5 A source
45A 10 v 120 30V
50 - .
i Answer: 15V.
15A v,360Q 15Q 2Q v, 5A

Answer: (a) 60 V,10V, 10 A;
(b) 900 W;
(c) =50 W.
NOTE: Also try Chapter Problems 4.6, 4.11, and 4.13.

4.3 The Node-Voltage Method
and Dependent Sources

If the circuit contains dependent sources, the node-voltage equations must
be supplemented with the constraint equations imposed by the presence
of the dependent sources. Example 4.3 illustrates the application of the
node-voltage method to a circuit containing a dependent source.

SETNENN  Using the Node-Voltage Method with Dependent Sources

Use the node-voltage method to find the power dis-
sipated in the 5 () resistor in the circuit shown in
Fig. 4.10.

Figure 4.10 A The circuit for Example 4.3.

Solution

We begin by noting that the circuit has three essen-
tial nodes. Hence we need two node-voltage equa-
tions to describe the circuit. Four branches terminate

on the lower node, so we select it as the reference
node. The two unknown node voltages are defined
on the circuit shown in Fig. 4.11. Summing the cur-
rents away from node 1 generates the equation

v —20 v v — v,
+—+ =0.
2 20 5

Summing the currents away from node 2 yields

o v 8
5 10 2

As written, these two node-voltage equations con-
tain three unknowns, namely, v, v,, and i,. To elim-
inate i, we must express this controlling current in
terms of the node voltages, or

N )
l"’_T'
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Substituting this relationship into the node 2 equa-
tion simplifies the two node-voltage equations to

A good exercise to build your problem-solving
intuition is to reconsider this example, using node 2
as the reference node. Does it make the analysis

0.75v; — 0.2v, = 10, easier or harder?

—v; + 1.6v, = 0.

Solving for v, and v, gives

v = 16 \Y
and
v, = 10V.
Then,
. 16 — 10 Figure 4.11 A The circuit shown in Fig. 4.10, with a reference
lg = 5 =12A, node and the node voltages.

psa = (144)(5) = 72 W.

v ASSESSMENT PROBLEM

Objective 1—Understand and be able to use the node-voltage method

4.3 a) Use the node-voltage method to find the 3

power associated with each source in the

circuit shown.

b) State whether the source is delivering power
to the circuit or extracting power from the

circuit.

Answer:
DPsa = —80W;

(a) psoy = —150 W, p3; = —144 W,

(b) all sources are delivering power to the

circuit.

NOTE: Also try Chapter Problems 4.18 and 4.19.

10 Q

1
*—— W
+ +
100V UI%ZSQ v,

50 Q

—AMWA—0 1O

Figure 4.12 A A circuit with a known node voltage.

4.4 The Node-Voltage Method:
Some Special Cases

When a voltage source is the only element between two essential nodes,
the node-voltage method is simplified. As an example, look at the circuit
in Fig. 4.12. There are three essential nodes in this circuit, which means
that two simultaneous equations are needed. From these three essential
nodes, a reference node has been chosen and two other nodes have been
labeled. But the 100 V source constrains the voltage between node 1 and
the reference node to 100 V. This means that there is only one unknown
node voltage (v,). Solution of this circuit thus involves only a single node-
voltage equation at node 2:

Uy — Vg )

+—--5=0. .
10 50 > (4.7)
But v; = 100V, so Eq. 4.7 can be solved for v,:



bt

Knowing v,, we can calculate the current in every branch. You should ver-
ify that the current into node 1 in the branch containing the independent
voltage source is 1.5 A.

In general, when you use the node-voltage method to solve circuits
that have voltage sources connected directly between essential nodes, the
number of unknown node voltages is reduced. The reason is that, when-
ever a voltage source connects two essential nodes, it constrains the differ-
ence between the node voltages at these nodes to equal the voltage of the
source. Taking the time to see if you can reduce the number of unknowns
in this way will simplify circuit analysis.

Suppose that the circuit shown in Fig. 4.13 is to be analyzed using the
node-voltage method. The circuit contains four essential nodes, so we
anticipate writing three node-voltage equations. However, two essential
nodes are connected by an independent voltage source, and two other
essential nodes are connected by a current-controlled dependent voltage
source. Hence, there actually is only one unknown node voltage.

Choosing which node to use as the reference node involves several
possibilities. Either node on each side of the dependent voltage source
looks attractive because, if chosen, one of the node voltages would be
known to be either +10i, (left node is the reference) or —10i, (right node
is the reference). The lower node looks even better because one node volt-
age is immediately known (50 V) and five branches terminate there. We
therefore opt for the lower node as the reference.

Figure 4.14 shows the redrawn circuit, with the reference node flagged
and the node voltages defined. Also, we introduce the current i because we
cannot express the current in the dependent voltage source branch as a
function of the node voltages v, and v3. Thus, at node 2

Uy — Vg () .
—+ —+i=0 4.9
5 50 T , (4.9)
and at node 3
SR 4.10
100 1 = 0. (4.10)

+ =4+ —=—4=0. (4.11)

The Concept of a Supernode

Equation 4.11 may be written directly, without resorting to the interme-
diate step represented by Egs. 4.9 and 4.10. To do so, we consider nodes 2
and 3 to be a single node and simply sum the currents away from the
node in terms of the node voltages v, and vs. Figure 4.15 illustrates
this approach.

When a voltage source is between two essential nodes, we can com-
bine those nodes to form a supernode. Obviously, Kirchhoff’s current
law must hold for the supernode. In Fig. 4.15, starting with the 5
branch and moving counterclockwise around the supernode, we gener-
ate the equation

Vy — Vg (%) V3
2 2+ 2+ = 4=0 4.12
5 50 100 ’ (4-12)

The Node-Voltage Method: Some Special Cases

Figure 4.13 A A circuit with a dependent voltage
source connected between nodes.

97

Figure 4.14 A The circuit shown in Fig. 4.13. with the
selected node voltages defined.

Figure 4.15 A Considering nodes 2 and 3 to be a
supernode.

4A
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Figure 4.16 A The transistor amplifier circuit shown in
Fig. 2.24.

Figure 4.17 A The circuit shown in Fig. 4.16, with
voltages and the supernode identified.

which is identical to Eq. 4.11. Creating a supernode at nodes 2 and 3 has
made the task of analyzing this circuit easier. It is therefore always worth tak-
ing the time to look for this type of shortcut before writing any equations.

After Eq. 4.12 has been derived, the next step is to reduce the expres-
sion to a single unknown node voltage. First we eliminate v; from the
equation because we know that v; = 50 V. Next we express v; as a func-
tion of v,:

V3 = Uy + 10l¢ (413)

We now express the current controlling the dependent voltage source as a
function of the node voltages:

. Vy — 50
ly = 3 . (4.14)

Using Eqgs. 4.13 and 4.14 and v; = 50 V reduces Eq. 4.12 to

<1 1 1 10
50 5 100 500

+++>=10+4+1,

,(0.25) = 15,
V) = 60 V.
From Eqgs. 4.13 and 4.14:
. 60 — 50
iy = 5 =2A,

vy = 60 + 20 = 80 V.

Node-Voltage Analysis of the Amplifier Circuit

Let’s use the node-voltage method to analyze the circuit first introduced
in Section 2.5 and shown again in Fig. 4.16.

When we used the branch-current method of analysis in Section 2.5,
we faced the task of writing and solving six simultaneous equations. Here
we will show how nodal analysis can simplify our task.

The circuit has four essential nodes: Nodes a and d are connected by
an independent voltage source as are nodes b and c. Therefore the prob-
lem reduces to finding a single unknown node voltage, because
(n, — 1) — 2 = 1. Using d as the reference node, combine nodes b and ¢
into a supernode, label the voltage drop across R, as vy, and label the volt-
age drop across R as v, as shown in Fig. 4.17. Then,

v W~ Vee Ve .

4+ —=———+ = — Big=0. 4.15

R, R, R, Big (4.15)
We now eliminate both v, and iz from Eq. 4.15 by noting that

Ve = (lB + BZB)RE, (416)
V. = v, — Vo (4.17)



Substituting Egs. 4.16 and 4.17 into Eq. 4.15 yields

v[1+1+ L }—VCC+ Yo (4.18)
LR Ry (1+B)Rs] R (1+ PR '
Solving Eq. 4.18 for vy, yields
VeeRy(1 + B)Re + VoR(R
vy = L€ 2( B)Rg oR1R, (4.19)

C RiRy + (1 + B)Re(Ry + Ry

Using the node-voltage method to analyze this circuit reduces the prob-
lem from manipulating six simultaneous equations (see Problem 2.27) to
manipulating three simultaneous equations. You should verify that, when
Eq. 4.19 is combined with Eqs. 4.16 and 4.17, the solution for i is identical
to Eq.2.25. (See Problem 4.30.)

/ASSESSMENT PROBLEMS

Objective 1—Understand and be able to use the node-voltage method

4.5  Introduction to the Mesh-Current Method 99

4.4 Use the node-voltage method to find v, in the 300

circuit shown. R

10 Q 20 Q
ov( " TIA 0,240 Q 201
_ ‘0 A +

Answer: 24V. —
4.5  Use the node-voltage method to find v in the 250 Ly 10

circuit shown. y
Answer: 8V.
4.6  Use the node-voltage method to find v in the 6 iy

circuit shown. Z

Q 60V

Answer: 48 V. —

NOTE: Also try Chapter Problems 4.22, 4.23, and 4.26.

4.5 Introduction to the
Mesh-Current Method

As stated in Section 4.1, the mesh-current method of circuit analysis enables
us to describe a circuit in terms of b, — (n, — 1) equations. Recall that a
mesh is a loop with no other loops inside it. The circuit in Fig. 4.1(b) is shown
again in Fig. 4.18, with current arrows inside each loop to distinguish it. Recall
also that the mesh-current method is applicable only to planar circuits. The

Figure 4.18 A The circuit shown in Fig. 4.1(b), with the
mesh currents defined.
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(%% l’} l R3 (%)

Figure 4.19 A A circuit used to illustrate development
of the mesh-current method of circuit analysis.

Ry

R,
AW

Figure 4.20 A Mesh currents i, and iy,.

circuit in Fig. 4.18 contains seven essential branches where the current is
unknown and four essential nodes. Therefore, to solve it via the mesh-current
method, we must write four [7 — (4 — 1)] mesh-current equations.

A mesh current is the current that exists only in the perimeter of a
mesh. On a circuit diagram it appears as either a closed solid line or an
almost-closed solid line that follows the perimeter of the appropriate
mesh. An arrowhead on the solid line indicates the reference direction for
the mesh current. Figure 4.18 shows the four mesh currents that describe
the circuit in Fig. 4.1(b). Note that by definition, mesh currents automati-
cally satisfy Kirchhoff’s current law. That is, at any node in the circuit, a
given mesh current both enters and leaves the node.

Figure 4.18 also shows that identifying a mesh current in terms of a
branch current is not always possible. For example, the mesh current i, is
not equal to any branch current, whereas mesh currents iy, i3, and i4 can be
identified with branch currents. Thus measuring a mesh current is not
always possible; note that there is no place where an ammeter can be
inserted to measure the mesh current i,. The fact that a mesh current can
be a fictitious quantity doesn’t mean that it is a useless concept. On the
contrary, the mesh-current method of circuit analysis evolves quite natu-
rally from the branch-current equations.

We can use the circuit in Fig. 4.19 to show the evolution of the mesh-
current technique. We begin by using the branch currents (iy, i, and i3) to
formulate the set of independent equations. For this circuit, b, = 3 and
n, = 2. We can write only one independent current equation, so we need
two independent voltage equations. Applying Kirchhoff’s current law to
the upper node and Kirchhoff’s voltage law around the two meshes gener-
ates the following set of equations:

il = i2 + i3, (4.20)
V= ilRl + i3R3, (4.21)
—Vy = isz - i3R3. (4.22)

We reduce this set of three equations to a set of two equations by solving
Eq. 4.20 for i3 and then substituting this expression into Eqs. 4.21 and 4.22:

v = i](Rl + R3) - i2R3, (4.23)

—Uy = _i1R3 + iz(Rz + R3) (4.24)

We can solve Eqs. 4.23 and 4.24 for i; and i, to replace the solution of three
simultaneous equations with the solution of two simultaneous equations.
We derived Eqs. 4.23 and 4.24 by substituting the n, — 1 current equations
into the b, — (n, — 1) voltage equations. The value of the mesh-current
method is that, by defining mesh currents, we automatically eliminate the
n, — 1 current equations. Thus the mesh-current method is equivalent to a
systematic substitution of the n, — 1 current equations into the
b, — (n, — 1) voltage equations. The mesh currents in Fig. 4.19 that are
equivalent to eliminating the branch current i; from Eqs. 4.21 and 4.22 are
shown in Fig. 4.20. We now apply Kirchhoff’s voltage law around the two
meshes, expressing all voltages across resistors in terms of the mesh cur-
rents, to get the equations

v = iaRl + (la - ib)R3, (4.25)
(iy — i) R5 + ipR,. (4.26)

—v,
Collecting the coefficients of i, and i}, in Egs. 4.25 and 4.26 gives

v = ia(Rl + R3) - ibR3, (4.27)

—U) = _iaR3 + ib(RZ + R3) (4.28)
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Note that Eqgs. 4.27 and 4.28 and Egs. 4.23 and 4.24 are identical in form,
with the mesh currents i, and i, replacing the branch currents i; and i,.
Note also that the branch currents shown in Fig. 4.19 can be expressed in
terms of the mesh currents shown in Fig. 4.20, or

iy = i, (4.29)
iy = iy, (4.30)
i3 = ia - ib' (4.31)

The ability to write Egs. 4.29-4.31 by inspection is crucial to the mesh-
current method of circuit analysis. Once you know the mesh currents, you
also know the branch currents. And once you know the branch currents,
you can compute any voltages or powers of interest.

Example 4.4 illustrates how the mesh-current method is used to find
source powers and a branch voltage.

SET L R Using the Mesh-Current Method

a) Use the mesh-current method to determine the
power associated with each voltage source in the
circuit shown in Fig. 4.21.

b) Calculate the voltage v, across the 8 () resistor.

Solution

a) To calculate the power associated with each
source, we need to know the current in each
source. The circuit indicates that these source cur-
rents will be identical to mesh currents. Also, note
that the circuit has seven branches where

20V

Figure 4.21 A The circuit for Example 4.4.

the current is unknown and five nodes. Therefore
we need three [b—(n—1)=7—-(5-1)]
mesh-current equations to describe the circuit.
Figure 4.22 shows the three mesh currents used
to describe the circuit in Fig. 4.21. If we assume
that the voltage drops are positive, the three mesh
equations are

—40 + 2i, + 8(iy — iy) = 0,
8(lb - la) + 6lb + 6(lb - lc) = 0,

6(i, — ip) + 4i, +20 =0. (4.32)

Your calculator can probably solve these equa-
tions, or you can use a computer tool. Cramer’s
method is a useful tool when solving three or
more simultaneous equations by hand. You can
review this important tool in Appendix A.
Reorganizing Eqs. 4.32 in anticipation of using
your calculator,a computer program, or Cramer’s
method gives

10i, — 8iy + 0i, = 40;
—8i, + 20i, — 6i, = 0;
0i, — 6i, + 10i, = —20. (4.33)

The three mesh currents are

i, = 5.6A,
iy = 2.0 A,
i. = —0.80 A.

20V

Figure 4.22 A The three mesh currents used to analyze the
circuit shown in Fig. 4.21.

The mesh current i, is identical with the branch
current in the 40 V source, so the power associ-
ated with this source is

Paov — _40ia = _224 W
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The minus sign means that this source is deliver- The 20 V source also is delivering power to the

ing power to the network. The current in the network.

20 V source is identical to the mesh current i b) The branch current in the 8 Q resistor in the

therefore direction of the voltage drop v, is i, — ip.
Paov = 20i, = —16 W. Therefore

v, = 8(i, — i) = 8(3.6) = 28.8 V.

\/ASSESSMENT PROBLEM

Objective 2—Understand and be able to use the mesh-current method

4.7  Use the mesh-current method to find (a) the 30Q
power delivered by the 80 V source to the cir- YWV
cuit shown and (b) the power dissipated in the 50 90 O
8 () resistor. ) i
sov( " 260 £80
Answer: (a) 400 W; =i

(b) S0 W. .
NOTE: Also try Chapter Problems 4.32 and 4.36.

4.6 The Mesh-Current Method
and Dependent Sources

If the circuit contains dependent sources, the mesh-current equations must
be supplemented by the appropriate constraint equations. Example 4.5
illustrates the application of the mesh-current method when the circuit
includes a dependent source.

ST CHN  Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method of circuit analysis to defined on the circuit shown in Fig. 4.24. The three
determine the power dissipated in the 4 ) resistor mesh-current equations are
in the circuit shown in Fig. 4.23.

1/53 50 = 5(iy — ip) + 20(i; — i3),

5Q 40

0= 5(l2 - ll) + 112 + 4(12 - i3),

+
sov( " i,,)i 200 Vs,

Figure 4.23 A The circuit for Example 4.5.

We now express the branch current controlling the
. dependent voltage source in terms of the mesh
Solution

currents as
This circuit has six branches where the current is
unknown and four nodes. Therefore we need three

mesh currents to describe the circuit. They are

i¢ = il - i3, (4.35)



which is the supplemental equation imposed by the
presence of the dependent source. Substituting
Eq. 4.35 into Egs. 4.34 and collecting the coeffi-
cients of iy, i, and i3 in each equation generates

50 = 2511 - 5l2 - 20i3,
0= _511 + 10l2 - 4i3,

0= _Sil - 4l2 + 913

10
MW

5o ) a4
3

50V i @i({)i ZOQ@ <?15i¢

Figure 4.24 A The circuit shown in Fig. 4.23 with the three
mesh currents.
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Because we are calculating the power dissipated in
the 4 Q resistor, we compute the mesh currents i,
and ix:

i =26 A,
iy = 28 A.

The current in the 4 Q resistor oriented from left
to right is i3 — i, , or 2 A. Therefore the power
dissipated is

Paq = (i — )*(4) = (2)*(4) = 16 W.

What if you had not been told to use the mesh-
current method? Would you have chosen the node-
voltage method? It reduces the problem to finding
one unknown node voltage because of the presence
of two voltage sources between essential nodes. We
present more about making such choices later.

v ASSESSMENT PROBLEMS

Objective 2—Understand and be able to use the mesh-current method

4.8 a) Determine the number of mesh-current
equations needed to solve the circuit shown.

b) Use the mesh-current method to find how
much power is being delivered to the
dependent voltage source.

3% 40
3 A
20 30

NOTE: Also try Chapter Problems 4.39 and 4.40.

4.7 The Mesh-Current Method:
Some Special Cases

When a branch includes a current source, the mesh-current method requires
some additional manipulations. The circuit shown in Fig. 4.25 depicts the

nature of the problem.

We have defined the mesh currents i,, i, and i, as well as the voltage
across the 5 A current source, to aid the discussion. Note that the circuit

Answer: (a) 3;
(b) =36 W.

4.9  Use the mesh-current method to find v, in the
circuit shown.

20

+ . . /T
25 V Q T Ir/) Vo 8 Q 5 ld’ _

Answer: 16 V.

contains five essential branches where the current is unknown and four Figure 4.25 A A circuit illustrating mesh analysis when
essential nodes. Hence we need to write two [5 — (4 — 1)] mesh-current  a branch contains an independent current source.
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Supermesh

60 40

Figure 4.26 A The circuit shown in Fig. 4.25, illustrat-
ing the concept of a supermesh.

equations to solve the circuit. The presence of the current source reduces
the three unknown mesh currents to two such currents, because it con-
strains the difference between i, and i. to equal 5 A. Hence, if we know i,
we know i, and vice versa.

However, when we attempt to sum the voltages around either mesh a
or mesh c, we must introduce into the equations the unknown voltage
across the 5 A current source. Thus, for mesh a:

100 = 3(i, — i) + v + 6i,, (4.36)
and for mesh c:
=50 = 4i, — v + 2(i. — ). (4.37)

We now add Eqgs. 4.36 and 4.37 to eliminate v and obtain
50 = 9i, — 5i, + 6i.. (4.38)
Summing voltages around mesh b gives
0 =33y — iy) + 10iy, + 2(i, — ic). (4.39)

We reduce Eqs. 4.38 and 4.39 to two equations and two unknowns by using
the constraint that

i — iy = 5. (4.40)

We leave to you the verification that, when Eq. 4.40 is combined with
Eqs. 4.38 and 4.39, the solutions for the three mesh currents are

i,=175A, i,=125A, and i =6.75A.

The Concept of a Supermesh

We can derive Eq. 4.38 without introducing the unknown voltage v by
using the concept of a supermesh. To create a supermesh, we mentally
remove the current source from the circuit by simply avoiding this branch
when writing the mesh-current equations. We express the voltages around
the supermesh in terms of the original mesh currents. Figure 4.26 illus-
trates the supermesh concept. When we sum the voltages around the
supermesh (denoted by the dashed line), we obtain the equation

=100 + 3(i, — ip) + 2(ic — i) + 50 + 4i. + 6i, = 0, (4.41)
which reduces to
50 = 9i, — 5i, + 6i. (4.42)

Note that Egs. 4.42 and 4.38 are identical. Thus the supermesh has elimi-
nated the need for introducing the unknown voltage across the current
source. Once again, taking time to look carefully at a circuit to identify a
shortcut such as this provides a big payoff in simplifying the analysis.
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Mesh-Current Analysis of the Amplifier Circuit

We can use the circuit first introduced in Section 2.5 (Fig. 2.24) to illustrate
how the mesh-current method works when a branch contains a dependent
current source. Figure 4.27 shows that circuit, with the three mesh currents
denoted iy, iy, and i.. This circuit has four essential nodes and five essential
branches where the current is unknown. Therefore we know that the cir-
cuit can be analyzed in terms of two [5 — (4 — 1)] mesh-current equa-
tions. Although we defined three mesh currents in Fig. 4.27, the dependent
current source forces a constraint between mesh currents i, and i, so we
have only two unknown mesh currents. Using the concept of the super-
mesh, we redraw the circuit as shown in Fig. 4.28.

We now sum the voltages around the supermesh in terms of the mesh
currents i,, i, and i, to obtain

Ryiy + vee + Rilic — iy) — Vo = 0. (4.43)
The mesh b equation is
Roiy, + Vg + Rg(ip, — i) = 0. (4.44)
The constraint imposed by the dependent current source is
Big = iy — i (4.45)

The branch current controlling the dependent current source, expressed
as a function of the mesh currents, is

ig = iy — I (4.46)
From Eqgs. 4.45 and 4.46,
i. =1+ B, — Bip,. (4.47)
We now use Eq. 4.47 to eliminate i, from Egs. 4.43 and 4.44:
[Ri + (1 + B)Rglia — (1 + B)Reipy = Vo — Ve, (4.48)

—(1 + B)Rgiy + [R, + (1 + B)Rgiy,

—Vo. (4.49)
You should verify that the solution of Eqgs. 4.48 and 4.49 for i, and i, gives

- VoR, = VeeRy — Vee(l + B)Rg (4.50)
‘ RiR, + (1 + B)RE(Ry + Ry)

. VR = (1 + B)RVc
lb = . (4.51)
RiRy + (1 + B)Re(Ry + Ry)

We also leave you to verify that, when Egs. 4.50 and 4.51 are used to find
i, the result is the same as that given by Eq. 2.25.
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Figure 4.27 A The circuit shown in Fig. 2.24 with the
mesh currents