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The first edition of Electric Circuits, an introductory circuits text, was pub-
lished in 1983. It included 100 worked examples and about 600 problems. It
did not include a student workbook, supplements for PSpice or MultiSim,
or any web support. Support for instructors was limited to a solution man-
ual for the problems and enlarged copies of many text figures, suitable for
making transparencies.

Much has changed in the 31 years since Electric Circuits first appeared,
and during that time this text has evolved to better meet the needs of both
students and their instructors. As an example, the text now includes about
150 worked examples, about 1850 problems, and extensive supplements
and web content. The tenth edition is designed to revise and improve the
material presented in the text, in its supplements, and on the web. Yet the
fundamental goals of the text are unchanged. These goals are:

• To build an understanding of concepts and ideas explicitly in terms of
previous learning. Students are constantly challenged by the need to
layer new concepts on top of previous concepts they may still be
struggling to master.This text provides an important focus on helping
students understand how new concepts are related to and rely upon
concepts previously presented.

• To emphasize the relationship between conceptual understanding
and problem-solving approaches. Developing problem-solving skills
continues to be the central challenge in a first-year circuits course. In
this text we include numerous Examples that present problem-
solving techniques followed by Assessment Problems that enable
students to test their mastery of the material and techniques intro-
duced. The problem-solving process we illustrate is based on con-
cepts rather than the use of rote procedures. This encourages
students to think about a problem before attempting to solve it.

• To provide students with a strong foundation of engineering prac-
tices. There are limited opportunities in a first-year circuit analysis
course to introduce students to realistic engineering experiences. We
continue to take advantage of the opportunities that do exist by
including problems and examples that use realistic component values
and represent realizable circuits. We include many problems related
to the Practical Perspective problems that begin each chapter. We
also include problems intended to stimulate the students’ interest in
engineering, where the problems require the type of insight typical of
a practicing engineer.

WHY THIS EDITION?
The tenth edition revision of Electric Circuits began with a thorough
review of the text. This review provided a clear picture of what matters
most to instructors and their students and led to the following changes:

• Problem solving is fundamental to the study of circuit analysis.
Having a wealth of new problems to assign and work is a key to suc-
cess in any circuits course. Therefore, existing end-of-chapter prob-
lems were revised, and new end-of-chapter problems were added. As
a result, more than 40% of the problems in the tenth edition have
never appeared in any previous edition of the text.

xvii
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xviii Preface

• Both students and instructors want to know how the generalized
techniques presented in a first-year circuit analysis course relate to
problems faced by practicing engineers. The Practical Perspective
problems provide this connection between circuit analysis and the
real world. We have created new Practical Perspective problems for
Chapters 2, 3, 6, 7, 8, and 10. Many of the new problems represent the
world of the 21st century. Each Practical Perspective problem is
solved, at least in part, at the end of the chapter, and additional end-
of-chapter problems can be assigned to allow students to explore the
Practical Perspective topic further.

• The PSpice and Multisim manuals have been revised to include
screenshots from the most recent versions of these software simula-
tion applications. Each manual presents the simulation material in
the same order as the material is presented in the text. These manu-
als continue to include examples of circuits to be simulated that are
drawn directly from the text. The text continues to indicate end-of-
chapter problems that are good candidates for simulation using
either PSpice or Multisim.

• Students who could benefit from additional examples and practice
problems can use the Student Workbook, which has been revised to
reflect changes to the tenth edition of the text. This workbook has
examples and problems covering the following material: balancing
power, simple resistive circuits, node voltage method, mesh current
method, Thévenin and Norton equivalents, op amp circuits, first-
order circuits, second-order circuits, AC steady-state analysis, and
Laplace transform circuit analysis.

• The Student Workbook now includes access to Video Solutions,
complete, step-by-step solution walkthroughs to representative
homework problems.

• Learning Catalytics, a “bring your own device” student engagement,
assessment, and classroom intelligence system is now available with
the tenth edition. With Learning Catalytics you can:
• Use open-ended questions to get into the minds of students to

understand what they do or don’t know and adjust lectures
accordingly.

• Use a wide variety of question types to sketch a graph, annotate a
circuit diagram, compose numeric or algebraic answers, and more.

• Access rich analytics to understand student performance.
• Use pre-built questions or add your own to make Learning

Catalytics fit your course exactly.

• MasteringEngineering is an online tutorial and assessment program
that provides students with personalized feedback and hints and
instructors with diagnostics to track students’ progress. With the tenth
edition, MasteringEngineering will offer new tutorial homework prob-
lems, Coaching Activities, and Adaptive Follow-Up assignments. Visit
www.masteringengineering.com for more information.

HALLMARK FEATURES
Chapter Problems
Users of Electric Circuits have consistently rated the Chapter Problems
as one of the book’s most attractive features. In the tenth edition, there
are over 1650 end-of-chapter problems with approximately 40% that
have never appeared in a previous edition. Problems are organized at
the end of each chapter by section.

www.masteringengineering.com
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Practical Perspectives
The tenth edition continues the use of Practical Perspectives introduced
with the chapter openers.They offer examples of real-world circuits, taken
from real-world devices. The Practical Perspectives for six of the chapters
are brand new to this edition. Every chapter begins with a brief descrip-
tion of a practical application of the material that follows. Once the chap-
ter material is presented, the chapter concludes with a quantitative
analysis of the Practical Perspective application. A group of end-of-chap-
ter problems directly relates to the Practical Perspective application.
Solving some of these problems enables you to understand how to apply
the chapter contents to the solution of a real-world problem.

Assessment Problems
Each chapter begins with a set of chapter objectives. At key points in the
chapter, you are asked to stop and assess your mastery of a particular
objective by solving one or more assessment problems. The answers to all
of the assessment problems are given at the conclusion of each problem, so
you can check your work. If you are able to solve the assessment problems
for a given objective, you have mastered that objective. If you need more
practice, several end-of-chapter problems that relate to the objective are
suggested at the conclusion of the assessment problems.

Examples
Every chapter includes many examples that illustrate the concepts
presented in the text in the form of a numeric example. There are
nearly 150 examples in this text. The examples are intended to illus-
trate the application of a particular concept, and also to encourage
good problem-solving skills.

Fundamental Equations and Concepts
Throughout the text, you will see fundamental equations and concepts
set apart from the main text.This is done to help you focus on some of the
key principles in electric circuits and to help you navigate through the
important topics.

Integration of Computer Tools
Computer tools can assist students in the learning process by providing a
visual representation of a circuit’s behavior, validating a calculated solu-
tion, reducing the computational burden of more complex circuits, and
iterating toward a desired solution using parameter variation.This compu-
tational support is often invaluable in the design process.The tenth edition
includes the support of PSpice® and Multisim®, both popular computer
tools for circuit simulation and analysis. Chapter problems suited for
exploration with PSpice and Multisim are marked accordingly.

Design Emphasis
The tenth edition continues to support the emphasis on the design of cir-
cuits in many ways. First, many of the Practical Perspective discussions
focus on the design aspects of the circuits. The accompanying Chapter
Problems continue the discussion of the design issues in these practical
examples. Second, design-oriented Chapter Problems have been labeled
explicitly, enabling students and instructors to identify those problems
with a design focus. Third, the identification of problems suited to explo-
ration with PSpice or Multisim suggests design opportunities using these
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software tools. Fourth, some problems in nearly every chapter focus on the
use of realistic component values in achieving a desired circuit design.
Once such a problem has been analyzed, the student can proceed to a lab-
oratory to build and test the circuit, comparing the analysis with the meas-
ured performance of the actual circuit.

Accuracy
All text and problems in the tenth edition have undergone our strict 
hallmark accuracy checking process, to ensure the most error-free book
possible.

RESOURCES FOR STUDENTS
MasteringEngineering. MasteringEngineering provides tutorial home-
work problems designed to emulate the instructor’s office hour environ-
ment, guiding students through engineering concepts with self-paced
individualized coaching. These in-depth tutorial homework problems pro-
vide students with feedback specific to their errors and optional hints that
break problems down into simpler steps. Visit www.masteringengineering
.com for more information.

Student Workbook. This resource teaches students techniques for solving
problems presented in the text. Organized by concepts, this is a valuable
problem-solving resource for all levels of students.

The Student Workbook now includes access to Video Solutions, com-
plete, step-by-step solution walkthroughs to representative homework
problems.

Introduction to Multisim and Introduction to PSpice Manuals—Updated
for the tenth edition, these manuals are excellent resources for those wish-
ing to integrate PSpice or Multisim into their classes.

RESOURCES FOR INSTRUCTORS
All instructor resources are available for download at www.pearson
highered.com. If you are in need of a login and password for this site,
please contact your local Pearson representative.

Instructor Solutions Manual—Fully worked-out solutions to Assessment
Problems and end-of-chapter problems.

PowerPoint lecture images—All figures from the text are available in
PowerPoint for your lecture needs. An additional set of full lecture slides
with embedded assessment questions are available upon request.

MasteringEngineering. This online tutorial and assessment program
allows you to integrate dynamic homework with automated grading and
personalized feedback. MasteringEngineering allows you to easily track
the performance of your entire class on an assignment-by-assignment
basis, or the detailed work of an individual student. For more information
visit www.masteringengineeing.com.

Learning Catalytics—This “bring your own device” student engagement,
assessment and classroom intelligence system enables you to measure 
student learning during class, and adjust your lectures accordingly. A wide
variety of question and answer types allows you to author your own 
questions, or you can use questions already authored into the system. For
more information visit www.learningcatalytics.com.

www.masteringengineering.com
www.masteringengineering.com
www.pearsonhighered.com
www.pearsonhighered.com
www.masteringengineeing.com
www.learningcatalytics.com
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PREREQUISITES
In writing the first 12 chapters of the text, we have assumed that the
reader has taken a course in elementary differential and integral calculus.
We have also assumed that the reader has had an introductory physics
course, at either the high school or university level, that introduces the
concepts of energy, power, electric charge, electric current, electric poten-
tial, and electromagnetic fields. In writing the final six chapters, we have
assumed the student has had, or is enrolled in, an introductory course in
differential equations.

COURSE OPTIONS
The text has been designed for use in a one-semester, two-semester, or a
three-quarter sequence.

• Single-semester course: After covering Chapters 1–4 and Chapters 6–10
(omitting Sections 7.7 and 8.5) the instructor can choose from 
Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits),
Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port
Circuits) to develop the desired emphasis.

• Two-semester sequence: Assuming three lectures per week, the first
nine chapters can be covered during the first semester, leaving
Chapters 10–18 for the second semester.

• Academic quarter schedule: The book can be subdivided into three
parts: Chapters 1–6, Chapters 7–12, and Chapters 13–18.

The introduction to operational amplifier circuits in Chapter 5 can be
omitted without interfering with the reading of subsequent chapters. For
example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7,
Section 8.5, Chapter 15, and those assessment problems and end-of-
chapter problems in the chapters following Chapter 5 that pertain to oper-
ational amplifiers.

There are several appendixes at the end of the book to help readers
make effective use of their mathematical background. Appendix A reviews
Cramer’s method of solving simultaneous linear equations and simple
matrix algebra; complex numbers are reviewed in Appendix B;Appendix C
contains additional material on magnetically coupled coils and ideal trans-
formers;Appendix D contains a brief discussion of the decibel;Appendix E
is dedicated to Bode diagrams; Appendix F is devoted to an abbreviated
table of trigonometric identities that are useful in circuit analysis; and an
abbreviated table of useful integrals is given in Appendix G. Appendix H
provides tables of common standard component values for resistors, induc-
tors, and capacitors, to be used in solving many end-of-chapter problems.
Selected Answers provides answers to selected end-of-chapter problems.

ACKNOWLEDGMENTS
There were many hard-working people behind the scenes at our pub-
lisher who deserve our thanks and gratitude for their efforts on behalf of
the tenth edition. At Pearson, we would like to thank Andrew Gilfillan,
Rose Kernan, Gregory Dulles, Tim Galligan, and Scott Disanno for their
continued support and encouragement, their professional demeanor,
their willingness to lend an ear, and their months of long hours and no
weekends. The authors would also like to acknowledge the staff at
Integra Software Solutions for their dedication and hard work in typeset-
ting this text. The authors would also like to thank Kurt Norlin for his
help in accuracy checking the text and problems.
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We are very grateful for the many instructors and students who
have done formal reviews of the text or offered positive feedback 
and suggestions for improvement more informally. We are pleased to
receive email from instructors and students who use the book, even
when they are pointing out an error we failed to catch in the review
process. We have been contacted by people who use our text from all
over the world, and we thank all of you for taking the time to do so. We
use as many of your suggestions as possible to continue to improve the
content, the pedagogy, and the presentation in this text. We are privi-
leged to have the opportunity to impact the educational experience of
the many thousands of future engineers who will use this text.

JAMES W. NILSSON
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Electrical engineering is an exciting and challenging profession
for anyone who has a genuine interest in, and aptitude for,
applied science and mathematics. Over the past century and a
half, electrical engineers have played a dominant role in the
development of systems that have changed the way people live
and work. Satellite communication links, telephones, digital com-
puters, televisions, diagnostic and surgical medical equipment,
assembly-line robots, and electrical power tools are representa-
tive components of systems that define a modern technological
society.As an electrical engineer, you can participate in this ongo-
ing technological revolution by improving and refining these
existing systems and by discovering and developing new systems
to meet the needs of our ever-changing society.

As you embark on the study of circuit analysis, you need to
gain a feel for where this study fits into the hierarchy of topics
that comprise an introduction to electrical engineering. Hence we
begin by presenting an overview of electrical engineering, some
ideas about an engineering point of view as it relates to circuit
analysis, and a review of the international system of units.

We then describe generally what circuit analysis entails. Next,
we introduce the concepts of voltage and current.We follow these
concepts with discussion of an ideal basic element and the need
for a polarity reference system. We conclude the chapter by
describing how current and voltage relate to power and energy.

C H A P T E R  C O N T E N T S

1.1 Electrical Engineering: An Overview p. 4

1.2 The International System of Units p. 8

1.3 Circuit Analysis: An Overview p. 10

1.4 Voltage and Current p. 11

1.5 The Ideal Basic Circuit Element p. 12

1.6 Power and Energy p. 14

C H A P T E R  O B J E C T I V E S

1 Understand and be able to use SI units and the
standard prefixes for powers of 10.

2 Know and be able to use the definitions of
voltage and current.

3 Know and be able to use the definitions of
power and energy.

4 Be able to use the passive sign convention to
calculate the power for an ideal basic circuit
element given its voltage and current.

Circuit Variables11
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One of the most important skills you will develop is the
ability to check your answers for the circuits you design
and analyze using the tools developed in this text. A com-
mon method used to check for valid answers is to balance
the power in the circuit. The linear circuits we study have
no net power, so the sum of the power associated with each
circuit component must be zero. If the total power for 
the circuit is zero, we say that the power balances, but if
the total power is not zero, we need to find the errors in
our calculation.

As an example, we will consider a very simple model for
the distribution of electricity to a typical home, as shown

below. (Note that a more realistic model will be investigated
in the Practical Perspective for Chapter 9.) The components
labeled a and b represent the electrical source to the home.
The components labeled c, d, and e represent the wires that
carry the electrical current from the source to the devices in
the home requiring electrical power. The components labeled
f, g, and h represent lamps, televisions, hair dryers, refriger-
ators, and other devices that require power.

Once we have introduced the concepts of voltage, current,
power, and energy, we will examine this circuit model in detail,
and use a power balance to determine whether the results of
analyzing this circuit are correct.

a

b

c

e

hd

f

g

3

Practical Perspective
Balancing Power

romakoma / Shutterstock 
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1.1 Electrical Engineering: An Overview
Electrical engineering is the profession concerned with systems that
produce, transmit, and measure electric signals. Electrical engineering
combines the physicist’s models of natural phenomena with the mathe-
matician’s tools for manipulating those models to produce systems that
meet practical needs. Electrical systems pervade our lives; they are found
in homes, schools, workplaces, and transportation vehicles everywhere.
We begin by presenting a few examples from each of the five major class-
ifications of electrical systems:

• communication systems
• computer systems
• control systems
• power systems
• signal-processing systems

Then we describe how electrical engineers analyze and design such systems.
Communication systems are electrical systems that generate, trans-

mit, and distribute information. Well-known examples include television
equipment, such as cameras, transmitters, receivers, and VCRs; radio tele-
scopes, used to explore the universe; satellite systems, which return images
of other planets and our own; radar systems, used to coordinate plane
flights; and telephone systems.

Figure 1.1 depicts the major components of a modern telephone sys-
tem. Starting at the left of the figure, inside a telephone, a microphone turns
sound waves into electric signals. These signals are carried to a switching
center where they are combined with the signals from tens, hundreds, or
thousands of other telephones. The combined signals leave the switching
center; their form depends on the distance they must travel. In our example,
they are sent through wires in underground coaxial cables to a microwave
transmission station. Here, the signals are transformed into microwave fre-
quencies and broadcast from a transmission antenna through air and space,
via a communications satellite, to a receiving antenna. The microwave
receiving station translates the microwave signals into a form suitable for
further transmission, perhaps as pulses of light to be sent through fiber-optic
cable. On arrival at the second switching center, the combined signals are
separated, and each is routed to the appropriate telephone, where an ear-
phone acts as a speaker to convert the received electric signals back into
sound waves. At each stage of the process, electric circuits operate on the
signals. Imagine the challenge involved in designing, building, and operating
each circuit in a way that guarantees that all of the hundreds of thousands of
simultaneous calls have high-quality connections.

Computer systems use electric signals to process information rang-
ing from word processing to mathematical computations. Systems range
in size and power from pocket calculators to personal computers to
supercomputers that perform such complex tasks as processing weather
data and modeling chemical interactions of complex organic molecules.
These systems include networks of microcircuits, or integrated circuits—
postage-stampsized assemblies of hundreds, thousands, or millions of
electrical components that often operate at speeds and power levels close
to fundamental physical limits, including the speed of light and the thermo-
dynamic laws.

Control systems use electric signals to regulate processes. Examples
include the control of temperatures, pressures, and flow rates in an oil
refinery; the fuel-air mixture in a fuel-injected automobile engine; mecha-
nisms such as the motors, doors, and lights in elevators; and the locks in the

Microphone

Switching
center

Wire Cable

Fiber-optic
cable

Microwave
station

Transmission
antenna

Receiving
antenna

Communications
satellite

Telephone Telephone

Coaxial
cable

Figure 1.1 � A telephone system.
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Panama Canal. The autopilot and autolanding systems that help to fly and
land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power,
which is the foundation of our technology-based society, usually is gener-
ated in large quantities by nuclear, hydroelectric, and thermal (coal-, oil-,
or gas-fired) generators. Power is distributed by a grid of conductors that
crisscross the country. A major challenge in designing and operating such
a system is to provide sufficient redundancy and control so that failure of
any piece of equipment does not leave a city, state, or region completely
without power.

Signal-processing systems act on electric signals that represent infor-
mation. They transform the signals and the information contained in them
into a more suitable form. There are many different ways to process the
signals and their information. For example, image-processing systems
gather massive quantities of data from orbiting weather satellites, reduce
the amount of data to a manageable level, and transform the remaining
data into a video image for the evening news broadcast. A computerized
tomography (CT) scan is another example of an image-processing system.
It takes signals generated by a special X-ray machine and transforms them
into an image such as the one in Fig. 1.2. Although the original X-ray sig-
nals are of little use to a physician, once they are processed into a recog-
nizable image the information they contain can be used in the diagnosis of
disease and injury.

Considerable interaction takes place among the engineering disci-
plines involved in designing and operating these five classes of systems.
Thus communications engineers use digital computers to control the flow
of information. Computers contain control systems, and control systems
contain computers. Power systems require extensive communications sys-
tems to coordinate safely and reliably the operation of components, which
may be spread across a continent. A signal-processing system may involve
a communications link, a computer, and a control system.

A good example of the interaction among systems is a commercial
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor the
plane’s location, permitting the air traffic controller to design a safe flight
path for all of the nearby aircraft and enabling the pilot to keep the plane
on its designated path. On the newest commercial airplanes, an onboard
computer system is used for managing engine functions, implementing
the navigation and flight control systems, and generating video informa-
tion screens in the cockpit. A complex control system uses cockpit com-
mands to adjust the position and speed of the airplane, producing the
appropriate signals to the engines and the control surfaces (such as the
wing flaps, ailerons, and rudder) to ensure the plane remains safely air-
borne and on the desired flight path. The plane must have its own power
system to stay aloft and to provide and distribute the electric power
needed to keep the cabin lights on, make the coffee, and show the movie.
Signal-processing systems reduce the noise in air traffic communications
and transform information about the plane’s location into the more
meaningful form of a video display in the cockpit. Engineering challenges
abound in the design of each of these systems and their integration into a
coherent whole. For example, these systems must operate in widely vary-
ing and unpredictable environmental conditions. Perhaps the most
important engineering challenge is to guarantee that sufficient redun-
dancy is incorporated in the designs to ensure that passengers arrive
safely and on time at their desired destinations.

Although electrical engineers may be interested primarily in one
area, they must also be knowledgeable in other areas that interact with
this area of interest. This interaction is part of what makes electrical

Figure 1.2 � A CT scan of an adult head.

Figure 1.3 � An airplane.
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engineering a challenging and exciting profession. The emphasis in engi-
neering is on making things work, so an engineer is free to acquire and
use any technique, from any field, that helps to get the job done.

Circuit Theory
In a field as diverse as electrical engineering, you might well ask whether
all of its branches have anything in common. The answer is yes—electric
circuits. An electric circuit is a mathematical model that approximates
the behavior of an actual electrical system.As such, it provides an impor-
tant foundation for learning—in your later courses and as a practicing
engineer—the details of how to design and operate systems such as those
just described.The models, the mathematical techniques, and the language
of circuit theory will form the intellectual framework for your future engi-
neering endeavors.

Note that the term electric circuit is commonly used to refer to an
actual electrical system as well as to the model that represents it. In this
text, when we talk about an electric circuit, we always mean a model,
unless otherwise stated. It is the modeling aspect of circuit theory that has
broad applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the study
of static and moving electric charges. Although generalized field theory
might seem to be an appropriate starting point for investigating electric sig-
nals, its application is not only cumbersome but also requires the use of
advanced mathematics. Consequently, a course in electromagnetic field 
theory is not a prerequisite to understanding the material in this book. We
do, however, assume that you have had an introductory physics course in
which electrical and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than
electromagnetic field theory, to study a physical system represented by an
electric circuit. These assumptions are as follows:

1. Electrical effects happen instantaneously throughout a system. We
can make this assumption because we know that electric signals
travel at or near the speed of light. Thus, if the system is physically
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously.A sys-
tem that is small enough so that we can make this assumption is
called a lumped-parameter system.

2. The net charge on every component in the system is always zero.
Thus no component can collect a net excess of charge, although
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system.
As we demonstrate later, magnetic coupling can occur within a
component.

That’s it; there are no other assumptions. Using circuit theory provides
simple solutions (of sufficient accuracy) to problems that would become
hopelessly complicated if we were to use electromagnetic field theory.
These benefits are so great that engineers sometimes specifically design
electrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the
basic circuit elements and the rules for analyzing interconnected elements.

However, we need to take a closer look at assumption 1. The question
is, “How small does a physical system have to be to qualify as a lumped-
parameter system?” We can get a quantitative handle on the question by
noting that electric signals propagate by wave phenomena. If the wave-
length of the signal is large compared to the physical dimensions of the
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system, we have a lumped-parameter system. The wavelength is the
velocity divided by the repetition rate, or frequency, of the signal; that is,

. The frequency f is measured in hertz (Hz). For example, power
systems in the United States operate at 60 Hz. If we use the speed of light
( ) as the velocity of propagation, the wavelength is

m. If the power system of interest is physically smaller than this
wavelength, we can represent it as a lumped-parameter system and use cir-
cuit theory to analyze its behavior. How do we define smaller? A good rule
is the : If the dimension of the system is (or smaller)
of the dimension of the wavelength, you have a lumped-parameter system.
Thus, as long as the physical dimension of the power system is less than

m, we can treat it as a lumped-parameter system.
On the other hand, the propagation frequency of radio signals is on the

order of Hz. Thus the wavelength is 0.3 m. Using the rule of , the
relevant dimensions of a communication system that sends or receives radio
signals must be less than 3 cm to qualify as a lumped-parameter system.
Whenever any of the pertinent physical dimensions of a system under study
approaches the wavelength of its signals, we must use electromagnetic field
theory to analyze that system. Throughout this book we study circuits
derived from lumped-parameter systems.

Problem Solving
As a practicing engineer, you will not be asked to solve problems that
have already been solved. Whether you are trying to improve the per-
formance of an existing system or creating a new system, you will be work-
ing on unsolved problems. As a student, however, you will devote much of
your attention to the discussion of problems already solved. By reading
about and discussing how these problems were solved in the past, and by
solving related homework and exam problems on your own, you will
begin to develop the skills to successfully attack the unsolved problems
you’ll face as a practicing engineer.

Some general problem-solving procedures are presented here. Many
of them pertain to thinking about and organizing your solution strategy
before proceeding with calculations.

1. Identify what’s given and what’s to be found. In problem solving, you
need to know your destination before you can select a route for get-
ting there. What is the problem asking you to solve or find?
Sometimes the goal of the problem is obvious; other times you may
need to paraphrase or make lists or tables of known and unknown
information to see your objective.

The problem statement may contain extraneous information
that you need to weed out before proceeding. On the other hand, it
may offer incomplete information or more complexities than can be
handled given the solution methods at your disposal. In that case,
you’ll need to make assumptions to fill in the missing information or
simplify the problem context. Be prepared to circle back and recon-
sider supposedly extraneous information and/or your assumptions if
your calculations get bogged down or produce an answer that doesn’t
seem to make sense.

2. Sketch a circuit diagram or other visual model. Translating a verbal
problem description into a visual model is often a useful step in the
solution process. If a circuit diagram is already provided, you may
need to add information to it, such as labels, values, or reference
directions. You may also want to redraw the circuit in a simpler, but
equivalent, form. Later in this text you will learn the methods for
developing such simplified equivalent circuits.

1>10th109
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3. Think of several solution methods and decide on a way of choosing
among them. This course will help you build a collection of analyt-
ical tools, several of which may work on a given problem. But one
method may produce fewer equations to be solved than another,
or it may require only algebra instead of calculus to reach a solu-
tion. Such efficiencies, if you can anticipate them, can streamline
your calculations considerably. Having an alternative method in
mind also gives you a path to pursue if your first solution attempt
bogs down.

4. Calculate a solution. Your planning up to this point should have
helped you identify a good analytical method and the correct equa-
tions for the problem. Now comes the solution of those equations.
Paper-and-pencil, calculator, and computer methods are all avail-
able for performing the actual calculations of circuit analysis.
Efficiency and your instructor’s preferences will dictate which tools
you should use.

5. Use your creativity. If you suspect that your answer is off base or if the
calculations seem to go on and on without moving you toward a solu-
tion, you should pause and consider alternatives. You may need to
revisit your assumptions or select a different solution method. Or, you
may need to take a less-conventional problem-solving approach, such
as working backward from a solution.This text provides answers to all
of the Assessment Problems and many of the Chapter Problems so
that you may work backward when you get stuck. In the real world,
you won’t be given answers in advance, but you may have a desired
problem outcome in mind from which you can work backward. Other
creative approaches include allowing yourself to see parallels with
other types of problems you’ve successfully solved, following your
intuition or hunches about how to proceed, and simply setting the
problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve
obtained makes sense. Does the magnitude of the answer seem rea-
sonable? Is the solution physically realizable? You may want to go
further and rework the problem via an alternative method. Doing
so will not only test the validity of your original answer, but will also
help you develop your intuition about the most efficient solution
methods for various kinds of problems. In the real world, safety-
critical designs are always checked by several independent means.
Getting into the habit of checking your answers will benefit you as
a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of,
or elaborate on certain steps to solve a particular problem. Use these steps
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units
Engineers compare theoretical results to experimental results and com-
pare competing engineering designs using quantitative measures. Modern
engineering is a multidisciplinary profession in which teams of engineers
work together on projects, and they can communicate their results in a
meaningful way only if they all use the same units of measure. The
International System of Units (abbreviated SI) is used by all the major
engineering societies and most engineers throughout the world; hence we
use it in this book.
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The SI units are based on seven defined quantities:

• length
• mass
• time
• electric current
• thermodynamic temperature
• amount of substance
• luminous intensity

These quantities, along with the basic unit and symbol for each, are listed
in Table 1.1. Although not strictly SI units, the familiar time units of minute
(60 s), hour (3600 s), and so on are often used in engineering calculations. In
addition, defined quantities are combined to form derived units. Some, such
as force, energy, power, and electric charge, you already know through previ-
ous physics courses. Table 1.2 lists the derived units used in this book.

In many cases, the SI unit is either too small or too large to use conve-
niently. Standard prefixes corresponding to powers of 10, as listed in
Table 1.3, are then applied to the basic unit. All of these prefixes are cor-
rect, but engineers often use only the ones for powers divisible by 3; thus
centi, deci, deka, and hecto are used rarely.Also, engineers often select the
prefix that places the base number in the range between 1 and 1000.
Suppose that a time calculation yields a result of s, that is, 0.00001 s.
Most engineers would describe this quantity as , that is,

, rather than as 0.01 ms or 10,000,000 ps.10-5
= 10 * 10-6 s

10 ms
10-5

TABLE 1.1 The International System of Units (SI)

Quantity Basic Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature degree kelvin K

Amount of substance mole mol

Luminous intensity candela cd

TABLE 1.2 Derived Units in SI

Quantity Unit Name (Symbol) Formula

Frequency hertz (Hz) s

Force newton (N)

Energy or work joule (J) N m

Power watt (W)

Electric charge coulomb (C) A s

Electric potential volt (V)

Electric resistance ohm ( )

Electric conductance siemens (S)

Electric capacitance farad (F)

Magnetic flux weber (Wb) V s

Inductance henry (H) Wb>A
#

C>V
A>V
V>AÆ

J>C
#

J>s
#

kg # m>s2

-1

TABLE 1.3 Standardized Prefixes to Signify
Powers of 10

Prefix Symbol Power

atto a

femto f

pico p

nano n

micro

milli m

centi c

deci d

deka da

hecto h

kilo k

mega M

giga G

tera T 1012

109

106

103

102

10

10-1

10-2

10-3

10-6m

10-9

10-12

10-15

10-18

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand.
Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008) 

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. Inst. Stand.
Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)  

National Institute of Standards and Technology Special
Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec.
Pub. 330, 2008 Ed., 96 pages (March 2008)   
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A S S E S S M E N T  P R O B L E M S

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10

1.1 Assume a telephone signal travels through a
cable at two-thirds the speed of light. How long
does it take the signal to get from New York
City to Miami if the distance is approximately
1100 miles?

Answer:

NOTE: Also try Chapter Problems 1.1, 1.3, and 1.5.

8.85 ms.

1.2 How many dollars per millisecond would the
federal government have to collect to retire a
deficit of $100 billion in one year?

Answer: $ .3.17>ms

Example 1.1 illustrates a method for converting from one set of units
to another and also uses power-of-ten prefixes.

Example 1.1 Using SI Units and Prefixes for Powers of 10

If a signal can travel in a cable at 80% of the speed of
light, what length of cable, in inches, represents 1 ns?

Solution
First, note that . Also, recall that the
speed of light . Then, 80% of the
speed of light is 

Using a product of ratios, we can
convert 80% of the speed of light from meters-per-
second to inches-per-nanosecond. The result is the
distance in inches traveled in 1 ns:

2.4 * 108 m>s.
0.8c = (0.8)(3 * 108) =

c = 3 * 108 m>s
1 ns = 10-9 s

Therefore, a signal traveling at 80% of the speed of
light will cover 9.45 inches of cable in 1 nanosecond.

=

(2.4 * 108)(100)

(109)(2.54)
= 9.45 inches>nanosecond

2.4 * 108 meters
1 second

#
1 second

109 nanoseconds
#
100 centimeters

1 meter
#

1 inch
2.54 centimeters

1.3 Circuit Analysis: An Overview
Before becoming involved in the details of circuit analysis, we need to
take a broad look at engineering design, specifically the design of electric
circuits. The purpose of this overview is to provide you with a perspective
on where circuit analysis fits within the whole of circuit design. Even
though this book focuses on circuit analysis, we try to provide opportuni-
ties for circuit design where appropriate.

All engineering designs begin with a need, as shown in Fig. 1.4. This
need may come from the desire to improve on an existing design, or it may
be something brand-new. A careful assessment of the need results in
design specifications, which are measurable characteristics of a proposed
design. Once a design is proposed, the design specifications allow us to
assess whether or not the design actually meets the need.

A concept for the design comes next. The concept derives from a com-
plete understanding of the design specifications coupled with an insight into
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Physical

insight
Concept

Circuit which

meets design

specifications

Circuit

analysis

Refinement based

on analysis

Refinement based

on measurements

Laboratory

measurements

Circuit

model
Physical

prototype

Design specifications

Need

Figure 1.4 � A conceptual model for electrical engi-
neering design.

the need, which comes from education and experience.The concept may be
realized as a sketch, as a written description, or in some other form. Often
the next step is to translate the concept into a mathematical model. A com-
monly used mathematical model for electrical systems is a circuit model.

The elements that comprise the circuit model are called ideal circuit
components. An ideal circuit component is a mathematical model of an
actual electrical component, like a battery or a light bulb. It is important
for the ideal circuit component used in a circuit model to represent the
behavior of the actual electrical component to an acceptable degree of
accuracy. The tools of circuit analysis, the focus of this book, are then
applied to the circuit. Circuit analysis is based on mathematical techniques
and is used to predict the behavior of the circuit model and its ideal circuit
components.A comparison between the desired behavior, from the design
specifications, and the predicted behavior, from circuit analysis, may lead
to refinements in the circuit model and its ideal circuit elements. Once the
desired and predicted behavior are in agreement, a physical prototype can
be constructed.

The physical prototype is an actual electrical system, constructed from
actual electrical components. Measurement techniques are used to deter-
mine the actual, quantitative behavior of the physical system. This actual
behavior is compared with the desired behavior from the design specifica-
tions and the predicted behavior from circuit analysis. The comparisons
may result in refinements to the physical prototype, the circuit model, or
both. Eventually, this iterative process, in which models, components, and
systems are continually refined, may produce a design that accurately
matches the design specifications and thus meets the need.

From this description, it is clear that circuit analysis plays a very
important role in the design process. Because circuit analysis is applied to
circuit models, practicing engineers try to use mature circuit models so
that the resulting designs will meet the design specifications in the first
iteration. In this book, we use models that have been tested for between
20 and 100 years; you can assume that they are mature. The ability to
model actual electrical systems with ideal circuit elements makes circuit
theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be used
to quantitatively predict the behavior of a system implies that we can
describe the interconnection with mathematical equations. For the mathe-
matical equations to be useful, we must write them in terms of measurable
quantities. In the case of circuits, these quantities are voltage and current,
which we discuss in Section 1.4. The study of circuit analysis involves
understanding the behavior of each ideal circuit element in terms of its
voltage and current and understanding the constraints imposed on the
voltage and current as a result of interconnecting the ideal elements.

1.4 Voltage and Current
The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

• The charge is bipolar, meaning that electrical effects are described in
terms of positive and negative charges.

• The electric charge exists in discrete quantities, which are integral
multiples of the electronic charge,

• Electrical effects are attributed to both the separation of charge and
charges in motion.

In circuit theory, the separation of charge creates an electric force (volt-
age), and the motion of charge creates an electric fluid (current).

1.6022 * 10-19 C.



12 Circuit Variables

The concepts of voltage and current are useful from an engineering
point of view because they can be expressed quantitatively. Whenever
positive and negative charges are separated, energy is expended. Voltage
is the energy per unit charge created by the separation. We express this
ratio in differential form as

(1.1)

where

The electrical effects caused by charges in motion depend on the rate
of charge flow. The rate of charge flow is known as the electric current,
which is expressed as

(1.2)

where

Equations 1.1 and 1.2 are definitions for the magnitude of voltage and
current, respectively.The bipolar nature of electric charge requires that we
assign polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete, moving electrons, we do not
need to consider them individually because of the enormous number of
them. Rather, we can think of electrons and their corresponding charge as
one smoothly flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a compo-
nent strictly in terms of the voltage and current at its terminals. Thus two
physically different components could have the same relationship
between the terminal voltage and terminal current. If they do, for pur-
poses of circuit analysis, they are identical. Once we know how a compo-
nent behaves at its terminals, we can analyze its behavior in a circuit.
However, when developing circuit models, we are interested in a compo-
nent’s internal behavior. We might want to know, for example, whether
charge conduction is taking place because of free electrons moving
through the crystal lattice structure of a metal or whether it is because of
electrons moving within the covalent bonds of a semiconductor material.
However, these concerns are beyond the realm of circuit theory. In this
book we use circuit models that have already been developed; we do not
discuss how component models are developed.

1.5 The Ideal Basic Circuit Element
An ideal basic circuit element has three attributes: (1) it has only two ter-
minals, which are points of connection to other circuit components; (2) it is
described mathematically in terms of current and/or voltage; and (3) it
cannot be subdivided into other elements. We use the word ideal to imply

t = the time in seconds.

q = the charge in coulombs,

i = the current in amperes,

 i =

dq

dt
 ,

q  = the charge in coulombs.

w = the energy in joules,
v  = the voltage in volts,

 v =

dw

dq
 ,Definition of voltage �

Definition of current �
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that a basic circuit element does not exist as a realizable physical compo-
nent. However, as we discussed in Section 1.3, ideal elements can be con-
nected in order to model actual devices and systems. We use the word
basic to imply that the circuit element cannot be further reduced or sub-
divided into other elements.Thus the basic circuit elements form the build-
ing blocks for constructing circuit models, but they themselves cannot be
modeled with any other type of element.

Figure 1.5 is a representation of an ideal basic circuit element.The box
is blank because we are making no commitment at this time as to the type
of circuit element it is. In Fig. 1.5, the voltage across the terminals of the
box is denoted by , and the current in the circuit element is denoted by i.
The polarity reference for the voltage is indicated by the plus and minus
signs, and the reference direction for the current is shown by the arrow
placed alongside the current. The interpretation of these references given
positive or negative numerical values of and i is summarized in
Table 1.4. Note that algebraically the notion of positive charge flowing in
one direction is equivalent to the notion of negative charge flowing in the
opposite direction.

The assignments of the reference polarity for voltage and the refer-
ence direction for current are entirely arbitrary. However, once you have
assigned the references, you must write all subsequent equations to
agree with the chosen references. The most widely used sign convention
applied to these references is called the passive sign convention, which
we use throughout this book. The passive sign convention can be stated
as follows:

Whenever the reference direction for the current in an element is in
the direction of the reference voltage drop across the element (as in
Fig. 1.5), use a positive sign in any expression that relates the voltage
to the current. Otherwise, use a negative sign.

We apply this sign convention in all the analyses that follow. Our pur-
pose for introducing it even before we have introduced the different
types of basic circuit elements is to impress on you the fact that the selec-
tion of polarity references along with the adoption of the passive sign
convention is not a function of the basic elements nor the type of inter-
connections made with the basic elements. We present the application
and interpretation of the passive sign convention in power calculations in
Section 1.6.

Example 1.2 illustrates one use of the equation defining current.

v

v

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5

Positive Value Negative Value

voltage drop from terminal 1 to terminal 2 voltage rise from terminal 1 to terminal 2

or or

voltage rise from terminal 2 to terminal 1 voltage drop from terminal 2 to terminal 1

i positive charge flowing from terminal 1 to terminal 2 positive charge flowing from terminal 2 to terminal 1

or or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2

v

Figure 1.5 � An ideal basic circuit element.

� Passive sign convention
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1.6 Power and Energy
Power and energy calculations also are important in circuit analysis. One
reason is that although voltage and current are useful variables in the analy-
sis and design of electrically based systems, the useful output of the system
often is nonelectrical, and this output is conveniently expressed in terms of
power or energy. Another reason is that all practical devices have limita-
tions on the amount of power that they can handle. In the design process,
therefore, voltage and current calculations by themselves are not sufficient.

We now relate power and energy to voltage and current and at the
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or

A S S E S S M E N T  P R O B L E M S

Objective 2—Know and be able to use the definitions of voltage and current

1.3 The current at the terminals of the element in
Fig. 1.5 is

Calculate the total charge (in microcoulombs)
entering the element at its upper terminal.

Answer:

NOTE: Also try Chapter Problem 1.8.

4000 mC.

 i = 20e-5000t A, t Ú 0.

  i = 0,     t 6 0;

1.4 The expression for the charge entering the
upper terminal of Fig. 1.5 is

Find the maximum value of the current enter-
ing the terminal if 

Answer: 10 A.

a = 0.03679 s-1.

q =

1

a2 - a t
a

+

1

a2 be-at C.

Example 1.2 Relating Current and Charge

No charge exists at the upper terminal of the ele-
ment in Fig. 1.5 for At a 5 A current
begins to flow into the upper terminal.

a) Derive the expression for the charge accumulat-
ing at the upper terminal of the element for 

b) If the current is stopped after 10 seconds, how
much charge has accumulated at the upper 
terminal?

t 7 0.

t = 0,t 6 0.
Solution

a) From the definition of current given in Eq. 1.2,
the expression for charge accumulation due to
current flow is

q(t) =

L

t

0
i(x)dx.

b) The total charge that accumulates at the upper
terminal in 10 seconds due to a 5 A current is
q(10) = 5(10) = 50 C.

Therefore,

q(t) =

L

t

0
5dx = 5x ` t

0
= 5t - 5(0) = 5t C for t 7 0.
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(a) p � vi (b) p � �vi

(c) p � �vi (d) p � vi

absorbing energy. (A water pump rated 75 kW can deliver more liters per
second than one rated 7.5 kW.) Mathematically, energy per unit time is
expressed in the form of a derivative, or

(1.3)

where

Thus 1 W is equivalent to .
The power associated with the flow of charge follows directly from

the definition of voltage and current in Eqs. 1.1 and 1.2, or

so

(1.4)

where

Equation 1.4 shows that the power associated with a basic circuit element
is simply the product of the current in the element and the voltage across
the element. Therefore, power is a quantity associated with a pair of ter-
minals, and we have to be able to tell from our calculation whether power
is being delivered to the pair of terminals or extracted from it. This infor-
mation comes from the correct application and interpretation of the pas-
sive sign convention.

If we use the passive sign convention, Eq. 1.4 is correct if the reference
direction for the current is in the direction of the reference voltage drop
across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign.
In other words, if the current reference is in the direction of a reference
voltage rise across the terminals, the expression for the power is

(1.5)

The algebraic sign of power is based on charge movement through
voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through a rise in voltage, they gain
energy. Figure 1.6 summarizes the relationship between the polarity refer-
ences for voltage and current and the expression for power.

p = -vi

i = the current in amperes.

v = the voltage in volts,

p = the power in watts,

p = vi

p =

dw

dt
= adw

dq
b adq

dt
b ,

1 J>s
i = the time in seconds.

w = the energy in joules,

p = the power in watts,

p =

dw

dt
, � Definition of power

� Power equation

Figure 1.6 � Polarity references and the expression 
for power.
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We can now state the rule for interpreting the algebraic sign of power:

If the power is positive (that is, if ), power is being delivered to
the circuit inside the box. If the power is negative (that is, if ),
power is being extracted from the circuit inside the box.

For example, suppose that we have selected the polarity references
shown in Fig. 1.6(b). Assume further that our calculations for the current
and voltage yield the following numerical results:

Then the power associated with the terminal pair 1,2 is

Thus the circuit inside the box is absorbing 40 W.
To take this analysis one step further, assume that a colleague is solv-

ing the same problem but has chosen the reference polarities shown in
Fig. 1.6(c). The resulting numerical values are

Note that interpreting these results in terms of this reference system gives
the same conclusions that we previously obtained—namely, that the cir-
cuit inside the box is absorbing 40 W. In fact, any of the reference systems
in Fig. 1.6 yields this same result.

Example 1.3 illustrates the relationship between voltage, current,
power, and energy for an ideal basic circuit element and the use of the pas-
sive sign convention.

i = -4 A,  v = 10 V,  and  p = 40 W.

p = -(-10)(4) = 40 W.

i = 4 A and v = -10 V.

p 6 0
p 7 0

Example 1.3 Relating Voltage, Current, Power, and Energy

Assume that the voltage at the terminals of the ele-
ment in Fig. 1.5, whose current was defined in
Assessment Problem 1.3, is

a) Calculate the power supplied to the element 
at 1 ms.

b) Calculate the total energy (in joules) delivered
to the circuit element.

Solution

a) Since the current is entering the terminal of the
voltage drop defined for the element in Fig. 1.5,
we use a sign in the power equation.“+”

+

t Ú 0.v = 10e- 5000t kV,

t 6 0;v = 0

b) From the definition of power given in Eq. 1.3,
the expression for energy is

To find the total energy delivered, integrate the
expresssion for power from zero to infinity.
Therefore,

w(t) =

L

t

0
p(x)dx

Thus, the total energy supplied to the circuit ele-
ment is 20 J.

 = 200,000(45.4 * 10-6) = 0.908 W.

 p(0.001) = 200,000e-10,000t(0.001)
= 200,000e-10

p = vi = (10,000e-5000t)(20e-5000t) = 200,000e-10,000t W.

 = -20e- q

- (-20e-0 ) = 0 + 20 = 20 J.

 wtotal =

L

q

0
200,000e-10,000x dx =

200,000e-10,000x

-10,000
` q
0
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A S S E S S M E N T  P R O B L E M S

Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign
convention

1.5 Assume that a 20 V voltage drop occurs across
an element from terminal 2 to terminal 1 and
that a current of 4 A enters terminal 2.

a) Specify the values of and i for the polarity
references shown in Fig. 1.6(a)–(d).

b) State whether the circuit inside the box is
absorbing or delivering power.

c) How much power is the circuit absorbing?

Answer: (a) Circuit 1.6(a):
circuit 1.6(b):
circuit 1.6(c):
circuit 1.6(d):

(b) absorbing;

(c) 80 W.

1.6 The voltage and current at the terminals of the
circuit element in Fig 1.5 are zero for For

, they are

 i = 15te-500t A,       t Ú 0.

 v = 80,000te-500t V,   t Ú 0;

t Ú 0
t 6 0.

i = 4 A;v = 20 V,
i = -4 A;v = 20 V,

i = 4 A;v = -20 V,
i = -4 A;v = -20 V,

v

a) Find the time when the power delivered to
the circuit element is maximum.

b) Find the maximum value of power.

c) Find the total energy delivered to the cir-
cuit element.

Answer: (a) 2 ms; (b) 649.6 mW; (c) 2.4 mJ.

1.7 A high-voltage direct-current (dc) transmission
line between Celilo, Oregon and Sylmar,
California is operating at 800 kV and carrying
1800 A, as shown. Calculate the power (in
megawatts) at the Oregon end of the line and
state the direction of power flow.

Answer: 1440 MW, Celilo to Sylmar

�

�

Celilo,
Oregon

Sylmar,
California

1.8 kA

800 kV

NOTE: Also try Chapter Problems 1.12, 1.19, and 1.24.

Practical Perspective
Balancing Power
A model of the circuitry that distributes power to a typical home is shown in
Fig. 1.7 with voltage polarities and current directions defined for all of the
circuit components. The results of circuit analysis give the values for all of
these voltages and currents, which are summarized in Table 1.4. To deter-
mine whether or not the values given are correct, calculate the power asso-
ciated with each component. Use the passive sign convention in the power
calculations, as shown below.

The power calculations show that components a, b, and d are supplying
power, since the power values are negative, while components c, e, f, g, and
h are absorbing power. Now check to see if the power balances by finding
the total power supplied and the total power absorbed.

ph = vhih = (-220)(-5) = 1100 Wpg = vgig = (120)(4) = 480 W

pf = -vfif = -(-100)(5) = 500 Wpe = veie = (-10)(-9) = 90 W

pd = -vdid = -(10)(1) = -10 Wpc = vcic = (10)(10) = 100 W

pb = -vbib = -(120)(9) = -1080 Wpa = vaia = (120)(-10) = -1200 W
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• The International System of Units (SI) enables engineers
to communicate in a meaningful way about quantitative
results. Table 1.1 summarizes the base SI units; Table 1.2
presents some useful derived SI units. (See pages 8 and 9.)

• Circuit analysis is based on the variables of voltage and
current. (See page 11.)

• Voltage is the energy per unit charge created by charge
separation and has the SI unit of volt ( ).
(See page 12.)

• Current is the rate of charge flow and has the SI unit of
ampere ( ). (See page 12.)

• The ideal basic circuit element is a two-terminal compo-
nent that cannot be subdivided; it can be described
mathematically in terms of its terminal voltage and cur-
rent. (See page 12.)

i = dq>dt

v = dw>dq

• The passive sign convention uses a positive sign in the
expression that relates the voltage and current at the
terminals of an element when the reference direction
for the current through the element is in the direction of
the reference voltage drop across the element. (See
page 13.)

• Power is energy per unit of time and is equal to the
product of the terminal voltage and current; it has the SI
unit of watt ( ). (See page 15.)

• The algebraic sign of power is interpreted as follows:
• If power is being delivered to the circuit or

circuit component.
• If power is being extracted from the circuit or

circuit component. (See page 16.)
p 6 0,

p 7 0,

p = dw>dt = vi

Summary

Something is wrong—if the values for voltage and current in this circuit are
correct, the total power should be zero! There is an error in the data and we
can find it from the calculated powers if the error exists in the sign of a sin-
gle component. Note that if we divide the total power by 2, we get ,
which is the power calculated for component d. If the power for component
d was , the total power would be 0. Circuit analysis techniques from
upcoming chapters can be used to show that the current through component
d should be , not given in Table 1.4.+1 A-1 A

+10 W

-10 W

psupplied + pabsorbed = -2290 + 2270 = -20 W

 = 100 + 90 + 500 + 480 + 1100 = 2270 W

 pabsorbed = pc + pe + pf + pg + ph

 psupplied = pa + pb + pd = -1200 - 1080 - 10 = -2290 W

va
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�
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TABLE 1.4 Volatage and current
values for the circuit in Fig. 1.7.

Component

a 120 10

b 120 9

c 10 10

d 10 1

e 10 9

f 100 5

g 120 4

h 220 5--

-

--

-

i(A)y(V)

Figure 1.7 � Circuit model for power 
distribution in a home, with voltages and
currents defined.

Note: Assess your understanding of the Practical Perspective by trying Chapter
Problems 1.34 and 1.35.



Problems 19

Problems

Section 1.2

1.1 There are approximately 260 million passenger
vehicles registered in the United States. Assume
that the battery in the average vehicle stores
540 watt-hours (Wh) of energy. Estimate (in
gigawatt-hours) the total energy stored in U.S. pas-
senger vehicles.

1.2 A hand-held video player displays 480 × 320 pic-
ture elements (pixels) in each frame of the video.
Each pixel requires 2 bytes of memory. Videos are
displayed at a rate of 30 frames per second. How
many hours of video will fit in a 32 gigabyte 
memory?

1.3 The 16 giga-byte ( ) flash memory
chip for an MP3 player is 11 mm by 15 mm by 1 mm.
This memory chip holds 20,000 photos.

a) How many photos fit into a cube whose sides
are 1 mm?

b) How many bytes of memory are stored in a cube
whose sides are 200 m?

1.4 The line described in Assessment Problem 1.7 is
845 mi in length. The line contains four conductors,
each weighing 2526 lb per 1000 ft. How many kilo-
grams of conductor are in the line?

1.5 One liter (L) of paint covers approximately 
of wall. How thick is the layer before it dries? (Hint:

)

1.6 Some species of bamboo can grow .
Assume individual cells in the plant are 10 m long.

a) How long, on average, does it take a bamboo
stalk to grow 1 cell length?

b) How many cell lengths are added in one week,
on average?

Section 1.4

1.7 There is no charge at the upper terminal of the ele-
ment in Fig. 1.5 for At a current of

mA enters the upper terminal.

a) Derive the expression for the charge that accu-
mulates at the upper terminal for 

b) Find the total charge that accumulates at the
upper terminal.

c) If the current is stopped at ms, how
much charge has accumulated at the upper 
terminal?

t = 0.5

t 7 0.

125e-2500t
t = 0t 6 0.

 m
250 mm>day

1 L = 1 * 106 mm3.

10 m2

m

GB = 230 bytes

1.8 The current entering the upper terminal of Fig. 1.5 is

Assume the charge at the upper terminal is zero at
the instant the current is passing through its maxi-
mum value. Find the expression for 

1.9 The current at the terminals of the element in 
Fig. 1.5 is

a) Find the expression for the charge accumulating
at the upper terminal.

b) Find the charge that has accumulated at ms.

1.10 In electronic circuits it is not unusual to encounter
currents in the microampere range. Assume a

current, due to the flow of electrons. What is
the average number of electrons per second that
flow past a fixed reference cross section that is per-
pendicular to the direction of flow?

1.11 How much energy is imparted to an electron as it
flows through a 6 V battery from the positive to the
negative terminal? Express your answer in attojoules.

Sections 1.5–1.6

1.12 The references for the voltage and current at the
terminal of a circuit element are as shown in
Fig. 1.6(d).The numerical values for and i are 40 V
and 10 A.

a) Calculate the power at the terminals and state
whether the power is being absorbed or deliv-
ered by the element in the box.

b) Given that the current is due to electron flow,
state whether the electrons are entering or leav-
ing terminal 2.

c) Do the electrons gain or lose energy as they pass
through the element in the box?

1.13 Repeat Problem 1.12 with a voltage of 

1.14 Two electric circuits, represented by boxes A and B,
are connected as shown in Fig. P1.14. The reference
direction for the current i in the interconnection and
the reference polarity for the voltage across the
interconnection are as shown in the figure. For each
of the following sets of numerical values, calculate
the power in the interconnection and state whether
the power is flowing from A to B or vice versa.

v

-60 V.

-

v

35 mA

t = 1

 i = 40te- 500t A,    t Ú 0.

 i = 0,                     t 6 0;

q(t).

i = 20 cos 5000t A.
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a)

b)

c)

d)

Figure P1.14

1.15 When a car has a dead battery, it can often be started
by connecting the battery from another car across its
terminals. The positive terminals are connected
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.15. Assume the current i
in Fig. P1.15 is measured and found to be 30 A.

a) Which car has the dead battery?

b) If this connection is maintained for 1 min, how
much energy is transferred to the dead battery?

Figure P1.15

1.16 The manufacturer of a 1.5 V D flashlight battery
says that the battery will deliver 9 mA for 40 con-
tinuous hours. During that time the voltage will
drop from 1.5 V to 1.0 V. Assume the drop in volt-
age is linear with time. How much energy does the
battery deliver in this 40 h interval?

1.17 One 12 V battery supplies 100 mA to a boom box.
How much energy does the battery supply in 4 h?

1.18 The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for For

they are

a) Calculate the power supplied to the element at
10 ms.

b) Calculate the total energy delivered to the circuit
element.

1.19 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for For 
they are

 i = 50e-1000t mA.

 v = 75 - 75e-1000t V,

t Ú 0t 6 0.

 i = 40e-250t mA.

 v = 15e-250t V,

t Ú 0
t 6 0.

12V12V 12V12V

�

A B

�� �

i

v
�

�

i

BA

v = 40 V i = -9 A,

v = -60 V i = 4 A,

v = -20 V i = -8 A,

v = 30 V i = 6 A, a) Find the maximum value of the power delivered
to the circuit.

b) Find the total energy delivered to the element.

1.20 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for For 
they are

a) Find the power at .

b) How much energy is delivered to the circuit ele-
ment between 0 and ?

c) Find the total energy delivered to the element.

1.21 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for For 
they are

a) Find the time when the power delivered to the
circuit element is maximum.

b) Find the maximum value of p in milliwatts.

c) Find the total energy delivered to the circuit ele-
ment in microjoules.

1.22 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for For 
they are

a) At what instant of time is maximum power
delivered to the element?

b) Find the maximum power in watts.

c) Find the total energy delivered to the element in
microjoules.

1.23 The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for and

s. In the interval between 0 and 40 s the expres-
sions are

a) At what instant of time is the power being deliv-
ered to the circuit element maximum?

b) What is the power at the time found in part (a)?

c) At what instant of time is the power being
extracted from the circuit element maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit
at 0, 10, 20, 30 and 40 s.

 i = 4 - 0.2t A, 0 6 t 6 40 s.

 v = t(1 - 0.025t) V,  0 6 t 6 40 s;

t 7 40
t 6 0

 i = (128t + 0.16)e-1000t A.

 v = (3200t + 4)e-1000t V,

t Ú 0t 6 0.

 i = 40e-750t mA,              t Ú 0.

 v = (1500t + 1)e-750t V,    t Ú 0;

t Ú 0t 6 0.

625 ms

t = 625 ms

 i = 5e-1600t
- 5e-400t mA.

 v = 50e-1600t
- 50e-400t V,

t Ú 0t 6 0.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM
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1.24 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for For 
they are

a) Find the power absorbed by the element at

b) Find the total energy absorbed by the element.

1.25 The voltage and current at the terminals of the ele-
ment in Fig. 1.5 are

a) Find the maximum value of the power being
delivered to the element.

b) Find the maximum value of the power being
extracted from the element.

c) Find the average value of p in the interval

d) Find the average value of p in the interval

1.26 The voltage and current at the terminals of an auto-
mobile battery during a charge cycle are shown in
Fig. P1.26.
a) Calculate the total charge transferred to the

battery.
b) Calculate the total energy transferred to the

battery.
c) Find the total energy delivered to the element.

Figure P1.26
v (V)

12

4

4 t (ks)

8

i (A)
8 12 16 20

8

16

24

4 8 12 16 20 t (ks)

0 … t … 15.625 ms.

0 … t … 2.5 ms.

v = 250 cos 800pt V, i = 8 sin 800pt A.

t = 10 ms.

 i = 5e-100t sin 200t A.

 v = 400e-100t sin 200t V,

t Ú 0t 6 0.
1.27 The voltage and current at the terminals of the cir-

cuit element in Fig. 1.5 are shown in Fig. P1.27.

a) Sketch the power versus t plot for 

b) Calculate the energy delivered to the circuit ele-
ment at and 80 ms.

Figure P1.27

1.28 An industrial battery is charged over a period of
several hours at a constant voltage of 120 V.
Initially, the current is 10 mA and increases linearly
to 15 mA in 10 ks. From 10 ks to 20 ks, the current is
constant at 15 mA. From 20 ks to 30 ks the current
decreases linearly to 10 mA. At 30 ks the power is
disconnected from the battery.

a) Sketch the current from to ks.

b) Sketch the power delivered to the battery from 
to ks.

c) Using the sketch of the power, find the total
energy delivered to the battery.

1.29 The numerical values for the currents and 
voltages in the circuit in Fig. P1.29 are given in
Table P1.29. Find the total power developed in the
circuit.

Figure P1.29
ie
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if
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b e

c

ib

ic

ia

vb�

�

�

�

vc� �

ve

va

�

�

vd

�

�

vf
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t = 30t = 0
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10 20 30 40 50 60 70

8

�8

� (V)

t (ms)

t = 10, 30,

0 … t … 80 ms.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM



22 Circuit Variables

TABLE P1.29

Element Voltage (V) Current (mA)

a 40 4

b 24 4

c 16 4

d 80 1.5

e 40 2.5

f 120 2.5

1.30 The numerical values of the voltages and currents
in the interconnection seen in Fig. P1.30 are given in
Table P1.30. Does the interconnection satisfy the
power check?

Figure P1.30

TABLE P1.30

Element Voltage (kV) Current (�A)

a 3 250

b 4 400

c 1 400

d 1 150

e 4 200

f 4 50

1.31 Assume you are an engineer in charge of a project
and one of your subordinate engineers reports that
the interconnection in Fig. P1.31 does not pass the
power check. The data for the interconnection are
given in Table P1.31.

a) Is the subordinate correct? Explain your answer.

b) If the subordinate is correct, can you find the
error in the data?

-

-

--
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Figure P1.31
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TABLE P1.31

Element Voltage (V) Current (A)

a 46.16 6.0

b 14.16 4.72

c 32.0 6.4

d 22.0 1.28

e 33.6 1.68

f 66.0 0.4

g 2.56 1.28

h 0.4 0.4-

--

--

1.32 The voltage and power values for each of the ele-
ments shown in Fig. P1.32 are given in Table P1.32.

a) Show that the interconnection of the elements
satisfies the power check.

b) Find the value of the current through each of the
elements using the values of power and voltage
and the current directions shown in the figure.

Figure P1.32
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TABLE P1.32

Element Power (kW) Voltage (V)

a 0.6 supplied 400

b 0.05 supplied 100

c 0.4 absorbed 200

d 0.6 supplied 300

e 0.1 absorbed 200

f 2.0 absorbed 500

g 1.25 supplied 500

1.33 The current and power for each of the intercon-
nected elements in Fig. P1.33 is measured.The values
are listed in Table P1.33.

a) Show that the interconnection satisfies the
power check.

b) Identify the elements that absorb power.

c) Find the voltage for each of the elements in the
interconnection, using the values of power and cur-
rent and the voltage polarities shown in the figure.

Figure P1.33

ig

� � ie

ic

ia

id

b d

a

c
ib

e

f

g

va

vf

vg

� �

�

�

�
vb

vc

�

�
ve
�

�

vd
�

�

�if

-

-

-

TABLE P1.33

Element Power (mW) Current (mA)

a 175 25

b 375 75

c 150 50

d 320 40

e 160 20

f 120 30

g 660 55

1.34 Show that the power balances for the circuit shown
in Fig. 1.7, using the voltage and current values
given in Table 1.4, with the value of the current for
component d changed to .

1.35 Suppose there is no power lost in the wires used to
distribute power in a typical home.

a) Create a new model for the power distribution
circuit by modifying the circuit shown in Fig 1.7.
Use the same names, voltage polarities, and cur-
rent directions for the components that remain
in this modified model.

b) The following voltages and currents are calcu-
lated for the components:

If the power in this modified model balances,
what is the value of the current in component g?

ih = -7 A vh = -240 V

 vg = 120 V

if = 3 A vf = -120 V

ib = 10 A vb = 120 V

ia = -10 A va = 120 V

-1 A

-

-

-

-



There are five ideal basic circuit elements: voltage sources,
current sources, resistors, inductors, and capacitors. In this chap-
ter we discuss the characteristics of voltage sources, current
sources, and resistors. Although this may seem like a small num-
ber of elements with which to begin analyzing circuits, many prac-
tical systems can be modeled with just sources and resistors. They
are also a useful starting point because of their relative simplicity;
the mathematical relationships between voltage and current in
sources and resistors are algebraic. Thus you will be able to begin
learning the basic techniques of circuit analysis with only alge-
braic manipulations.

We will postpone introducing inductors and capacitors until
Chapter 6, because their use requires that you solve integral and
differential equations. However, the basic analytical techniques
for solving circuits with inductors and capacitors are the same as
those introduced in this chapter. So, by the time you need to
begin manipulating more difficult equations, you should be very
familiar with the methods of writing them.

C H A P T E R  C O N T E N T S

2.1 Voltage and Current Sources p. 26

2.2 Electrical Resistance (Ohm’s Law) p. 30

2.3 Construction of a Circuit Model p. 34

2.4 Kirchhoff’s Laws p. 37

2.5 Analysis of a Circuit Containing Dependent
Sources p. 42

C H A P T E R  O B J E C T I V E S

1 Understand the symbols for and the behavior of
the following ideal basic circuit elements:
independent voltage and current sources,
dependent voltage and current sources, and
resistors.

2 Be able to state Ohm’s law, Kirchhoff’s current
law, and Kirchhoff’s voltage law, and be able to
use these laws to analyze simple circuits.

3 Know how to calculate the power for each
element in a simple circuit and be able to
determine whether or not the power balances
for the whole circuit.

Circuit Elements22

24

C H A P T E R



You want to heat your small garage using a couple of electric
radiators. The power and voltage requirements for each radia-
tor are 1200 W, 240 V. But you are not sure how to wire the
radiators to the power supplied to the garage. Should you use
the wiring diagram on the left, or the one on the right? Does
it make any difference?

Once you have studied the material in this chapter, you
will be able to answer these questions and determine how to
heat the garage. The Practical Perspective at the end of this
chapter guides you through the analysis of two circuits based
on the two wiring diagrams shown below.

25

Practical Perspective
Heating with Electric Radiators

radiator

radiator

�

�
240 V

radiator

radiator

�

�
240 V

style-photography.de/fotolia  



26 Circuit Elements

2.1 Voltage and Current Sources
Before discussing ideal voltage and current sources, we need to consider
the general nature of electrical sources. An electrical source is a device
that is capable of converting nonelectric energy to electric energy and
vice versa. A discharging battery converts chemical energy to electric
energy, whereas a battery being charged converts electric energy to
chemical energy.A dynamo is a machine that converts mechanical energy
to electric energy and vice versa. If operating in the mechanical-to-elec-
tric mode, it is called a generator. If transforming from electric to
mechanical energy, it is referred to as a motor. The important thing to
remember about these sources is that they can either deliver or absorb
electric power, generally maintaining either voltage or current. This
behavior is of particular interest for circuit analysis and led to the cre-
ation of the ideal voltage source and the ideal current source as basic cir-
cuit elements. The challenge is to model practical sources in terms of the
ideal basic circuit elements.

An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing in
those terminals. Similarly, an ideal current source is a circuit element that
maintains a prescribed current through its terminals regardless of the
voltage across those terminals. These circuit elements do not exist as
practical devices—they are idealized models of actual voltage and cur-
rent sources.

Using an ideal model for current and voltage sources places an
important restriction on how we may describe them mathematically.
Because an ideal voltage source provides a steady voltage, even if the
current in the element changes, it is impossible to specify the current in
an ideal voltage source as a function of its voltage. Likewise, if the only
information you have about an ideal current source is the value of cur-
rent supplied, it is impossible to determine the voltage across that cur-
rent source. We have sacrificed our ability to relate voltage and current
in a practical source for the simplicity of using ideal sources in circuit
analysis.

Ideal voltage and current sources can be further described as either
independent sources or dependent sources. An independent source estab-
lishes a voltage or current in a circuit without relying on voltages or cur-
rents elsewhere in the circuit. The value of the voltage or current supplied
is specified by the value of the independent source alone. In contrast, a
dependent source establishes a voltage or current whose value depends on
the value of a voltage or current elsewhere in the circuit.You cannot spec-
ify the value of a dependent source unless you know the value of the volt-
age or current on which it depends.

The circuit symbols for the ideal independent sources are shown in
Fig. 2.1. Note that a circle is used to represent an independent source. To
completely specify an ideal independent voltage source in a circuit, you
must include the value of the supplied voltage and the reference polarity,
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal independ-
ent current source, you must include the value of the supplied current and
its reference direction, as shown in Fig. 2.1(b).

The circuit symbols for the ideal dependent sources are shown in
Fig. 2.2. A diamond is used to represent a dependent source. Both the

�

�

(a) (b)

vs is

Figure 2.1 � The circuit symbols for (a) an ideal inde-
pendent voltage source and (b) an ideal independent
current source.
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dependent current source and the dependent voltage source may be con-
trolled by either a voltage or a current elsewhere in the circuit, so there
are a total of four variations, as indicated by the symbols in Fig. 2.2.
Dependent sources are sometimes called controlled sources.

To completely specify an ideal dependent voltage-controlled voltage
source, you must identify the controlling voltage, the equation that per-
mits you to compute the supplied voltage from the controlling voltage,
and the reference polarity for the supplied voltage. In Fig. 2.2(a), the con-
trolling voltage is named , the equation that determines the supplied
voltage is

and the reference polarity for is as indicated. Note that is a multiply-
ing constant that is dimensionless.

Similar requirements exist for completely specifying the other ideal
dependent sources. In Fig. 2.2(b), the controlling current is , the equation
for the supplied voltage is

the reference polarity is as shown, and the multiplying constant has the
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is ,
the equation for the supplied current is

the reference direction is as shown, and the multiplying constant has the
dimension amperes per volt. In Fig. 2.2(d), the controlling current is , the
equation for the supplied current is

the reference direction is as shown, and the multiplying constant is
dimensionless.

Finally, in our discussion of ideal sources, we note that they are
examples of active circuit elements.An active element is one that models
a device capable of generating electric energy. Passive elements model
physical devices that cannot generate electric energy. Resistors, induc-
tors, and capacitors are examples of passive circuit elements.
Examples 2.1 and 2.2 illustrate how the characteristics of ideal inde-
pendent and dependent sources limit the types of permissible intercon-
nections of the sources.

b

 is = bix ,

is

ix

a

 is = avx ,

is

vx

r

 vs = rix ,

vs

ix

mvs

 vs = mvx ,

vs

vx (a)

(b) (d)

(c)

vs � mvx is � avx

vs � rix is � bix
�

�

�

�

Figure 2.2 � The circuit symbols for (a) an ideal
dependent voltage-controlled voltage source, (b) an
ideal dependent current-controlled voltage source, (c) an
ideal dependent voltage-controlled current source, and
(d) an ideal dependent current-controlled current source.
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Using the definitions of the ideal independent volt-
age and current sources, state which interconnec-
tions in Fig. 2.3 are permissible and which violate
the constraints imposed by the ideal sources.

Solution

Connection (a) is valid. Each source supplies volt-
age across the same pair of terminals, marked a,b.
This requires that each source supply the same volt-
age with the same polarity, which they do.

Connection (b) is valid. Each source supplies
current through the same pair of terminals, marked
a,b. This requires that each source supply the same
current in the same direction, which they do.

Connection (c) is not permissible. Each source
supplies voltage across the same pair of terminals,
marked a,b. This requires that each source supply
the same voltage with the same polarity, which they
do not.

Connection (d) is not permissible. Each source
supplies current through the same pair of terminals,
marked a,b. This requires that each source supply
the same current in the same direction, which they
do not.

Connection (e) is valid.The voltage source sup-
plies voltage across the pair of terminals marked
a,b.The current source supplies current through the
same pair of terminals. Because an ideal voltage
source supplies the same voltage regardless of the
current, and an ideal current source supplies the
same current regardless of the voltage, this is a per-
missible connection. Figure 2.3 � The circuits for Example 2.1.

(a) (b)

2 A

(c)

10 V

a

b
(d)

5 A

(e)

a b

a b

a

b

�

�
10 V 5 V

�

�

�

�

a

b

�

�
10 V 10 V

�

�
5 A

5 A

5 A

Example 2.1 Testing Interconnections of Ideal Sources
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Example 2.2 Testing Interconnections of Ideal Independent and Dependent Sources

Using the definitions of the ideal independent and
dependent sources, state which interconnections in
Fig. 2.4 are valid and which violate the constraints
imposed by the ideal sources.

Solution

Connection (a) is invalid. Both the independent
source and the dependent source supply voltage
across the same pair of terminals, labeled a,b. This
requires that each source supply the same voltage
with the same polarity. The independent source sup-
plies 5 V, but the dependent source supplies 15 V.

Connection (b) is valid. The independent volt-
age source supplies voltage across the pair of termi-
nals marked a,b. The dependent current source
supplies current through the same pair of terminals.
Because an ideal voltage source supplies the same
voltage regardless of current, and an ideal current
source supplies the same current regardless of volt-
age, this is an allowable connection.

Connection (c) is valid. The independent cur-
rent source supplies current through the pair of ter-
minals marked a,b. The dependent voltage source
supplies voltage across the same pair of terminals.
Because an ideal current source supplies the same
current regardless of voltage, and an ideal voltage
source supplies the same voltage regardless of cur-
rent, this is an allowable connection.

Connection (d) is invalid. Both the independ-
ent source and the dependent source supply current
through the same pair of terminals, labeled a,b. This
requires that each source supply the same current
in the same reference direction. The independent
source supplies 2 A, but the dependent source sup-
plies 6 A in the opposite direction. Figure 2.4 � The circuits for Example 2.2.

ix � 2 A

is � 3 ix

(d)

a

b

ix � 2 A

vs � 4 ix

(c)
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b

�

�

vx � 5 V

is � 3 vx

(b)

a

b

�

�

vx � 5 V
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R

�

�

�

�

RRvi

v � iR

vi

v � �iR

2.2 Electrical Resistance (Ohm’s Law)
Resistance is the capacity of materials to impede the flow of current or,
more specifically, the flow of electric charge. The circuit element used to
model this behavior is the resistor. Figure 2.5 shows the circuit symbol for
the resistor, with R denoting the resistance value of the resistor.

Conceptually, we can understand resistance if we think about the
moving electrons that make up electric current interacting with and being
resisted by the atomic structure of the material through which they are
moving. In the course of these interactions, some amount of electric
energy is converted to thermal energy and dissipated in the form of heat.
This effect may be undesirable. However, many useful electrical devices
take advantage of resistance heating, including stoves, toasters, irons, and
space heaters.

Most materials exhibit measurable resistance to current. The amount
of resistance depends on the material. Metals such as copper and alu-
minum have small values of resistance, making them good choices for
wiring used to conduct electric current. In fact, when represented in a cir-
cuit diagram, copper or aluminum wiring isn’t usually modeled as a resis-
tor; the resistance of the wire is so small compared to the resistance of
other elements in the circuit that we can neglect the wiring resistance to
simplify the diagram.

For purposes of circuit analysis, we must reference the current in
the resistor to the terminal voltage. We can do so in two ways: either in
the direction of the voltage drop across the resistor or in the direction
of the voltage rise across the resistor, as shown in Fig. 2.6. If we choose
the former, the relationship between the voltage and current is

(2.1)v = iR,Ohm’s law �

Objective 1—Understand ideal basic circuit elements

2.1 For the circuit shown,

a) What value of is required in order for the
interconnection to be valid?

b) For this value of , find the power associ-
ated with the 8 A source.

Answer: (a)

(b) (16 W delivered).

8 A
ib
4

vg
�

�

�

�

ib

-16 W

-2 V;

vg

vg

2.2 For the circuit shown,

a) What value of is required in order for the
interconnection to be valid?

a

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 2.6 and 2.7.

Figure 2.5 � The circuit symbol for a resistor having a
resistance R.

Figure 2.6 � Two possible reference choices for the
current and voltage at the terminals of a resistor, and
the resulting equations.

b)  For the value of calculated in part (a), find 
the power associated with the 25 V source.

a

Answer: (a) 0.6 ;

(b) 375 W (375 W absorbed).

�

�
25 V15 A vx

�

�

avx

A>V
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where

If we choose the second method, we must write

(2.2)

where , i, and R are, as before, measured in volts, amperes, and ohms,
respectively.The algebraic signs used in Eqs. 2.1 and 2.2 are a direct conse-
quence of the passive sign convention, which we introduced in Chapter 1.

Equations 2.1 and 2.2 are known as Ohm’s law after Georg Simon
Ohm, a German physicist who established its validity early in the nine-
teenth century. Ohm’s law is the algebraic relationship between voltage
and current for a resistor. In SI units, resistance is measured in ohms. The
Greek letter omega ( ) is the standard symbol for an ohm. The circuit
diagram symbol for an resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. However,
expressing the current as a function of the voltage also is convenient. Thus,
from Eq. 2.1,

(2.3)

or, from Eq. 2.2,

(2.4)

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus,

(2.5)

An resistor has a conductance value of 0.125 S. In much of the profes-
sional literature, the unit used for conductance is the mho (ohm spelled back-
ward), which is symbolized by an inverted omega ( ). Therefore we may
also describe an resistor as having a conductance of 0.125 mho, ( ).

We use ideal resistors in circuit analysis to model the behavior of
physical devices. Using the qualifier ideal reminds us that the resistor
model makes several simplifying assumptions about the behavior of
actual resistive devices. The most important of these simplifying assump-
tions is that the resistance of the ideal resistor is constant and its value
does not vary over time. Most actual resistive devices do not have constant
resistance, and their resistance does vary over time. The ideal resistor
model can be used to represent a physical device whose resistance doesn’t
vary much from some constant value over the time period of interest in
the circuit analysis. In this book we assume that the simplifying assump-
tions about resistance devices are valid, and we thus use ideal resistors in
circuit analysis.

We may calculate the power at the terminals of a resistor in several
ways.The first approach is to use the defining equation and simply calculate

Æ

8 Æ

Æ

8 Æ

G =

1
R

 S.

i = -

v

R
 .

i =

v

R
 ,

8 Æ
Æ

v

v = - iR,

R = the resistance in ohms.

i = the current in amperes,

v = the voltage in volts,

8 �

Figure 2.7 � The circuit symbol for an resistor.8 Æ



32 Circuit Elements

Power in a resistor in terms of current �

the product of the terminal voltage and current. For the reference systems
shown in Fig. 2.6, we write

(2.6)

when and

(2.7)

when .
A second method of expressing the power at the terminals of a resis-

tor expresses power in terms of the current and the resistance.
Substituting Eq. 2.1 into Eq. 2.6, we obtain

so

(2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have

(2.9)

Equations 2.8 and 2.9 are identical and demonstrate clearly that, regard-
less of voltage polarity and current direction, the power at the terminals of
a resistor is positive. Therefore, a resistor absorbs power from the circuit.

A third method of expressing the power at the terminals of a resistor
is in terms of the voltage and resistance. The expression is independent of
the polarity references, so

(2.10)

Sometimes a resistor’s value will be expressed as a conductance rather
than as a resistance. Using the relationship between resistance and con-
ductance given in Eq. 2.5, we may also write Eqs. 2.9 and 2.10 in terms of
the conductance, or

(2.11)

(2.12)

Equations 2.6–2.12 provide a variety of methods for calculating the power
absorbed by a resistor. Each yields the same answer. In analyzing a circuit,
look at the information provided and choose the power equation that uses
that information directly.

Example 2.3 illustrates the application of Ohm’s law in conjunction
with an ideal source and a resistor. Power calculations at the terminals of a
resistor also are illustrated.

 p = v2G.

 p =

i2

G
 ,

p =

v2

R
 .

p = -vi = -(- i R)i = i 2R.

p = i 2 R.

p = vi = (i R)i

v = - i R

p = -vi

v = i R

p = vi

Power in a resistor in terms of voltage �
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Example 2.3 Calculating Voltage, Current, and Power for a Simple Resistive Circuit

In each circuit in Fig. 2.8, either the value of or i is
not known.

Figure 2.8 � The circuits for Example 2.3.

a) Calculate the values of and i.

b) Determine the power dissipated in each resistor.

Solution

a) The voltage in Fig. 2.8(a) is a drop in the direc-
tion of the current in the resistor. Therefore,

va = (1)(8) = 8 V.

va

v

1 A

(a) (b)

�

�

1 A

8 � 50 V 0.2 Sva

�

�

ib

(c) (d)

�

�
20 � 50 V 25 �vc

�

� id

v The current in the resistor with a conductance
of 0.2 S in Fig. 2.8(b) is in the direction of the
voltage drop across the resistor. Thus

The voltage in Fig. 2.8(c) is a rise in the direc-
tion of the current in the resistor. Hence

The current in the resistor in Fig. 2.8(d)
is in the direction of the voltage rise across the
resistor. Therefore

b) The power dissipated in each of the four resistors is

 p25Æ
=

(50)2

25
= (-2)2(25) = 100 W.

 p20Æ
=

(-20)2

20
= (1)2(20) = 20 W,

 p0.2S = (50)2(0.2) = 500 W,

 p8Æ
=

(8)2

8
= (1)2(8) = 8 W,

id =

-50
25

= -2 A.

25 Æid

vc = -(1)(20) = -20 V.

vc

ib = (50)(0.2) = 10 A.

ib

Objective 2—Be able to state and use Ohm’s Law . . .

A S S E S S M E N T  P R O B L E M S

2.3 For the circuit shown,

a) If kV and mA, find the value
of R and the power absorbed by the resistor.

b) If mA and the power delivered by
the voltage source is 3 W, find , R, and the
power absorbed by the resistor.

c) If and the power absorbed by R
is 480 mW, find and .

Answer: (a) , 5 W;

(b) 40 V, , 3 W;

(c) 40 mA, 12 V.

533.33 Æ

200 kÆ

�

�
R

ig

vg

vgig

R = 300 Æ

vg

ig = 75

ig = 5vg = 1

2.4 For the circuit shown,

a) If A and , find and
the power delivered by the current source.

b) If and the power delivered to the
conductor is 9 W, find the conductance G
and the source current .

c) If and the power delivered to
the conductance is 8 W, find and .

Answer: (a) 10 V, 5 W;

(b) 40 mS, 0.6 A;

(c) 40 mA, 200 V.

Gig vg

�

�

vgig

G = 200 mS

ig

vg = 15 V

vgG = 50 mSig = 0.5

NOTE: Also try Chapter Problems 2.11 and 2.12.
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Having introduced the general characteristics of ideal sources and resis-
tors, we next show how to use these elements to build the circuit model of
a practical system.

2.3 Construction of a Circuit Model
We have already stated that one reason for an interest in the basic circuit
elements is that they can be used to construct circuit models of practical
systems.The skill required to develop a circuit model of a device or system
is as complex as the skill required to solve the derived circuit. Although
this text emphasizes the skills required to solve circuits, you also will need
other skills in the practice of electrical engineering, and one of the most
important is modeling.

We develop circuit models in the next two examples. In Example 2.4
we construct a circuit model based on a knowledge of the behavior of the
system’s components and how the components are interconnected. In
Example 2.5 we create a circuit model by measuring the terminal behavior
of a device.

Example 2.4 Constructing a Circuit Model of a Flashlight

Construct a circuit model of a flashlight.

Solution
We chose the flashlight to illustrate a practical system
because its components are so familiar. Figure 2.9
shows a photograph of a widely available flashlight.

When a flashlight is regarded as an electrical
system, the components of primary interest are the
batteries, the lamp, the connector, the case, and the
switch. We now consider the circuit model for each
component.

A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is not
excessive. Thus if the dry-cell battery is operating
within its intended limits, we can model it with an
ideal voltage source. The prescribed voltage then is
constant and equal to the sum of two dry-cell values.

The ultimate output of the lamp is light energy,
which is achieved by heating the filament in the
lamp to a temperature high enough to cause radia-
tion in the visible range. We can model the lamp
with an ideal resistor. Note in this case that although
the resistor accounts for the amount of electric
energy converted to thermal energy, it does not pre-
dict how much of the thermal energy is converted to
light energy. The resistor used to represent the lamp
does predict the steady current drain on the batter-
ies, a characteristic of the system that also is of inter-
est. In this model, symbolizes the lamp resistance.

The connector used in the flashlight serves a
dual role. First, it provides an electrical conductive
path between the dry cells and the case. Second, it is

Rl

formed into a springy coil so that it also can apply
mechanical pressure to the contact between the
batteries and the lamp.The purpose of this mechan-
ical pressure is to maintain contact between the two
dry cells and between the dry cells and the lamp.
Hence, in choosing the wire for the connector, we
may find that its mechanical properties are more

Figure 2.9 � A flashlight can be viewed as an electrical system.
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important than its electrical properties for the
flashlight design. Electrically, we can model the
connector with an ideal resistor, labeled .

The case also serves both a mechanical and an
electrical purpose. Mechanically, it contains all the
other components and provides a grip for the person
using it. Electrically, it provides a connection between
other elements in the flashlight. If the case is metal, it
conducts current between the batteries and the lamp.
If it is plastic, a metal strip inside the case connects
the coiled connector to the switch. Either way, an
ideal resistor, which we denote , models the electri-
cal connection provided by the case.

The final component is the switch. Electrically,
the switch is a two-state device. It is either ON or
OFF. An ideal switch offers no resistance to the cur-
rent when it is in the ON state, but it offers infinite
resistance to current when it is in the OFF state.
These two states represent the limiting values of a
resistor; that is, the ON state corresponds to a resis-
tor with a numerical value of zero, and the OFF state
corresponds to a resistor with a numerical value of
infinity. The two extreme values have the descrip-
tive names short circuit ( ) and open circuit
( ). Figure 2.10(a) and (b) show the graphical
representation of a short circuit and an open circuit,
respectively. The symbol shown in Fig. 2.10(c) rep-
resents the fact that a switch can be either a short
circuit or an open circuit, depending on the position
of its contacts.

We now construct the circuit model of the
flashlight. Starting with the dry-cell batteries, the
positive terminal of the first cell is connected to
the negative terminal of the second cell, as shown in
Fig. 2.11. The positive terminal of the second cell is
connected to one terminal of the lamp. The other
terminal of the lamp makes contact with one side of
the switch, and the other side of the switch is con-
nected to the metal case.The metal case is then con-
nected to the negative terminal of the first dry cell
by means of the metal spring. Note that the ele-
ments form a closed path or circuit. You can see the
closed path formed by the connected elements in
Fig. 2.11. Figure 2.12 shows a circuit model for the
flashlight.

R = q

R = 0

Rc

R1

OFF

ON

(a)

(b)

(c)

Lamp

Filament
terminal

Dry cell # 1

Case

Sliding switch

Dry cell # 2

Rc

Rl

R1

vs
�

�

Figure 2.10 � Circuit symbols. (a) Short circuit. (b) Open circuit.
(c) Switch.

Figure 2.11 � The arrangement of flashlight components. 

Figure 2.12 � A circuit model for a flashlight.

We can make some general observations about modeling from our
flashlight example: First, in developing a circuit model, the electrical behav-
ior of each physical component is of primary interest. In the flashlight
model, three very different physical components—a lamp, a coiled wire,
and a metal case—are all represented by the same circuit element (a resis-
tor), because the electrical phenomenon taking place in each is the same.
Each is presenting resistance to the current flowing through the circuit.

Second, circuit models may need to account for undesired as well as
desired electrical effects. For example, the heat resulting from the resist-
ance in the lamp produces the light, a desired effect. However, the heat



36 Circuit Elements

Example 2.5 Constructing a Circuit Model Based on Terminal Measurements

Solution
Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.14(a). The equation
of the line in this figure illustrates that the terminal
voltage is directly proportional to the terminal cur-
rent, . In terms of Ohm’s law, the device
inside the box behaves like a resistor.Therefore,
the circuit model for the device inside the box is a

resistor, as seen in Fig. 2.14(b).
We come back to this technique of using termi-

nal characteristics to construct a circuit model after
introducing Kirchhoff’s laws and circuit analysis.

4 Æ

4 Æ
vt = 4it

�10 5 10

(a)

�20
�40

vt(V)
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20
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4 �

(b)

vt
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�

it

The voltage and current are measured at the termi-
nals of the device illustrated in Fig. 2.13(a), and the
values of and are tabulated in Fig. 2.13(b).
Construct a circuit model of the device inside the box.

Figure 2.13 � The (a) device and (b) data for Example 2.5.
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resulting from the resistance in the case and coil represents an unwanted
or parasitic effect. It drains the dry cells and produces no useful output.
Such parasitic effects must be considered or the resulting model may not
adequately represent the system.

And finally, modeling requires approximation. Even for the basic sys-
tem represented by the flashlight, we made simplifying assumptions in
developing the circuit model. For example, we assumed an ideal switch,
but in practical switches, contact resistance may be high enough to inter-
fere with proper operation of the system. Our model does not predict this
behavior. We also assumed that the coiled connector exerts enough pres-
sure to eliminate any contact resistance between the dry cells. Our model
does not predict the effect of inadequate pressure. Our use of an ideal
voltage source ignores any internal dissipation of energy in the dry cells,
which might be due to the parasitic heating just mentioned. We could
account for this by adding an ideal resistor between the source and the
lamp resistor. Our model assumes the internal loss to be negligible.

In modeling the flashlight as a circuit, we had a basic understanding of
and access to the internal components of the system. However, sometimes
we know only the terminal behavior of a device and must use this infor-
mation in constructing the model. Example 2.5 explores such a modeling
problem.

NOTE: Assess your understanding of this example by trying Chapter Problems 2.14 and 2.15.

Figure 2.14 � (a) The values of versus for the device in Fig. 2.13. (b) The circuit model
for the device in Fig. 2.13.

itvt
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2.4 Kirchhoff’s Laws
A circuit is said to be solved when the voltage across and the current in
every element have been determined. Ohm’s law is an important equation
for deriving such solutions. However, Ohm’s law may not be enough to
provide a complete solution. As we shall see in trying to solve the flash-
light circuit from Example 2.4, we need to use two more important alge-
braic relationships, known as Kirchhoff’s laws, to solve most circuits.

We begin by redrawing the circuit as shown in Fig. 2.15, with the
switch in the ON state. Note that we have also labeled the current and volt-
age variables associated with each resistor and the current associated with
the voltage source. Labeling includes reference polarities, as always. For
convenience, we attach the same subscript to the voltage and current
labels as we do to the resistor labels. In Fig. 2.15, we also removed some of
the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots are
the start and end points of an individual circuit element. A node is a point
where two or more circuit elements meet. It is necessary to identify nodes
in order to use Kirchhoff’s current law, as we will see in a moment. In
Fig. 2.15, the nodes are labeled a, b, c, and d. Node d connects the battery
and the lamp and in essence stretches all the way across the top of the dia-
gram, though we label a single point for convenience. The dots on either
side of the switch indicate its terminals, but only one is needed to repre-
sent a node, so only one is labeled node c.

For the circuit shown in Fig. 2.15, we can identify seven unknowns:
, , , , , , and . Recall that is a known voltage, as it represents

the sum of the terminal voltages of the two dry cells, a constant voltage
of 3 V. The problem is to find the seven unknown variables. From alge-
bra, you know that to find n unknown quantities you must solve n simul-
taneous independent equations. From our discussion of Ohm’s law in
Section 2.2, you know that three of the necessary equations are

(2.13)

(2.14)

(2.15)

What about the other four equations?
The interconnection of circuit elements imposes constraints on the

relationship between the terminal voltages and currents.These constraints
are referred to as Kirchhoff’s laws, after Gustav Kirchhoff, who first stated
them in a paper published in 1848. The two laws that state the constraints
in mathematical form are known as Kirchhoff’s current law and
Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law:

The algebraic sum of all the currents at any node in a circuit
equals zero.

To use Kirchhoff’s current law, an algebraic sign corresponding to a
reference direction must be assigned to every current at the node.
Assigning a positive sign to a current leaving a node requires assigning a
negative sign to a current entering a node. Conversely, giving a negative
sign to a current leaving a node requires giving a positive sign to a current
entering a node.

 vl = ilRl.

 vc = icRc,

 v1 = i1R1,

vsvlvcv1ilici1is

� Kirchhoff’s current law (KCL)

a b c

d

vl

�

�

vs
�

�

v1� �

i1
vc� �

ic
is il Rl

RcR1

Figure 2.15 � Circuit model of the flashlight with
assigned voltage and current variables.
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Kirchhoff’s voltage law (KVL) �

Applying Kirchhoff’s current law to the four nodes in the circuit
shown in Fig. 2.15, using the convention that currents leaving a node are
considered positive, yields four equations:

(2.16)

(2.17)

(2.18)

(2.19)

Note that Eqs. 2.16–2.19 are not an independent set, because any one
of the four can be derived from the other three. In any circuit with n nodes,

independent current equations can be derived from Kirchhoff’s
current law.1 Let’s disregard Eq. 2.19 so that we have six independent
equations, namely, Eqs. 2.13–2.18. We need one more, which we can derive
from Kirchhoff’s voltage law.

Before we can state Kirchhoff’s voltage law, we must define a closed
path or loop. Starting at an arbitrarily selected node, we trace a closed
path in a circuit through selected basic circuit elements and return to the
original node without passing through any intermediate node more than
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For
example, choosing node a as the starting point and tracing the circuit
clockwise, we form the closed path by moving through nodes d, c, b, and
back to node a. We can now state Kirchhoff’s voltage law:

The algebraic sum of all the voltages around any closed path in a circuit
equals zero.

To use Kirchhoff’s voltage law, we must assign an algebraic sign (refer-
ence direction) to each voltage in the loop.As we trace a closed path, a volt-
age will appear either as a rise or a drop in the tracing direction.Assigning a
positive sign to a voltage rise requires assigning a negative sign to a voltage
drop. Conversely, giving a negative sign to a voltage rise requires giving a
positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 2.15.
We elect to trace the closed path clockwise, assigning a positive algebraic
sign to voltage drops. Starting at node d leads to the expression

(2.20)

which represents the seventh independent equation needed to find the
seven unknown circuit variables mentioned earlier.

The thought of having to solve seven simultaneous equations to find
the current delivered by a pair of dry cells to a flashlight lamp is not very
appealing. Thus in the coming chapters we introduce you to analytical
techniques that will enable you to solve a simple one-loop circuit by writ-
ing a single equation. However, before moving on to a discussion of these
circuit techniques, we need to make several observations about the
detailed analysis of the flashlight circuit. In general, these observations are
true and therefore are important to the discussions in subsequent chap-
ters. They also support the contention that the flashlight circuit can be
solved by defining a single unknown.

vl - vc + v1 - vs = 0,

n - 1

il - is = 0.node d

- ic - il = 0,node c

i1 + ic = 0,node b

is - i1 = 0,node a

1 We say more about this observation in Chapter 4.
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First, note that if you know the current in a resistor, you also know the
voltage across the resistor, because current and voltage are directly
related through Ohm’s law. Thus you can associate one unknown variable
with each resistor, either the current or the voltage. Choose, say, the cur-
rent as the unknown variable. Then, once you solve for the unknown cur-
rent in the resistor, you can find the voltage across the resistor. In general,
if you know the current in a passive element, you can find the voltage
across it, greatly reducing the number of simultaneous equations to be
solved. For example, in the flashlight circuit, we eliminate the voltages ,

, and as unknowns. Thus at the outset we reduce the analytical task to
solving four simultaneous equations rather than seven.

The second general observation relates to the consequences of con-
necting only two elements to form a node. According to Kirchhoff’s cur-
rent law, when only two elements connect to a node, if you know the
current in one of the elements, you also know it in the second element.
In other words, you need define only one unknown current for the two
elements. When just two elements connect at a single node, the elements
are said to be in series. The importance of this second observation is
obvious when you note that each node in the circuit shown in Fig. 2.15
involves only two elements. Thus you need to define only one unknown
current. The reason is that Eqs. 2.16–2.18 lead directly to

(2.21)

which states that if you know any one of the element currents, you
know them all. For example, choosing to use as the unknown elimi-
nates , , and . The problem is reduced to determining one unknown,
namely, .

Examples 2.6 and 2.7 illustrate how to write circuit equations based
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws
and Ohm’s law to find an unknown current. Example 2.9 expands on the
technique presented in Example 2.5 for constructing a circuit model for a
device whose terminal characteristics are known.

is

ilici1

is

is = i1 = - ic = il,

v1vl

vc

Example 2.6 Using Kirchhoff’s Current Law

Sum the currents at each node in the circuit shown
in Fig. 2.16. Note that there is no connection dot (•)
in the center of the diagram, where the branch
crosses the branch containing the ideal current
source .

Solution
In writing the equations, we use a positive sign for a
current leaving a node. The four equations are

i5 + ia + ic = 0.node d

ib - i3 - i4 - ic = 0,node c

i2 + i3 - i1 - ib - ia = 0,node b

i1 + i4 - i2 - i5 = 0,node a

ia

4 Æ

Figure 2.16 � The circuit for Example 2.6.

5 �

i5

a c

1 �

i1

d

b

ic

ibia 3 �

i3
2 �

i2

4 �

i4



40 Circuit Elements

Example 2.7 Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in
the circuit shown in Fig. 2.17.

Solution
In writing the equations, we use a positive sign for a
voltage drop. The four equations are

-va - v1 + v2 - vc + v7 - vd = 0. path d

vb - v4 - vc - v6 - v5 = 0, path c

-va + v3 + v5 = 0, path b

-v1 + v2 + v4 - vb - v3 = 0, path a

Figure 2.17 � The circuit for Example 2.7.
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Example 2.8 Applying Ohm’s Law and Kirchhoff’s Laws to Find an Unknown Current

a) Use Kirchhoff’s laws and Ohm’s law to find in
the circuit shown in Fig. 2.18.

io therefore must derive two simultaneous equa-
tions involving and . We obtain one of the
equations by applying Kirchhoff’s current law to
either node b or c. Summing the currents at node
b and assigning a positive sign to the currents
leaving the node gives

We obtain the second equation from Kirchhoff’s
voltage law in combination with Ohm’s law.
Noting from Ohm’s law that is and is

, we sum the voltages around the closed path
cabc to obtain

In writing this equation, we assigned a positive
sign to voltage drops in the clockwise direc-
tion. Solving these two equations for and 

yields

b) The power dissipated in the resistor is

The power dissipated in the resistor is

p10Æ
= (-3)2(10) = 90 W.

10 Æ

p50Æ
= (3)2(50) = 450 W.

50 Æ

io = -3 A  and  i1 = 3 A.

i1

io

-120 + 10io + 50i1 = 0.

50i1

v110iovo

i1 - io - 6 = 0.

i1io

b) Test the solution for by verifying that the total 
power generated equals the total power dissipated.

Solution

a) We begin by redrawing the circuit and assigning
an unknown current to the resistor and
unknown voltages across the and 
resistors. Figure 2.19 shows the circuit.The nodes
are labeled a, b, and c to aid the discussion.

50 Æ10 Æ
50 Æ

io

io

Because also is the current in the 120 V
source, we have two unknown currents and

io

Figure 2.18 � The circuit for Example 2.8.

Figure 2.19 � The circuit shown in Fig. 2.18, with the
unknowns , , and defined.v1voi1
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Therefore

The 6 A source is delivering 900 W, and the
120 V source is absorbing 360 W. The total
power absorbed is 
Therefore, the solution verifies that the power
delivered equals the power absorbed.

360 + 450 + 90 = 900 W.

p6A = -150(6) = -900 W.

The power delivered to the 120 V source is

The power delivered to the 6 A source is

p6A = -v1(6),  but  v1 = 50i1 = 150 V.

p120V = -120io = -120(-3) = 360 W.

Example 2.9 Constructing a Circuit Model Based on Terminal Measurements

The terminal voltage and terminal current were
measured on the device shown in Fig. 2.20(a), and
the values of and are tabulated in Fig. 2.20(b).

Figure 2.20 � (a) Device and (b) data for Example 2.9.

a) Construct a circuit model of the device inside
the box.

b) Using this circuit model, predict the power this
device will deliver to a resistor.

Solution

a) Plotting the voltage as a function of the current
yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

Now we need to identify the components of a cir-
cuit model that will produce the same relation-
ship between voltage and current. Kirchhoff’s
voltage law tells us that the voltage drops across
two components in series. From the equation,
one of those components produces a 30 V drop
regardless of the current. This component can be
modeled as an ideal independent voltage source.
The other component produces a positive volt-
age drop in the direction of the current .
Because the voltage drop is proportional to the
current, Ohm’s law tells us that this component
can be modeled as an ideal resistor with a value
of . The resulting circuit model is depicted in
the dashed box in Fig. 2.21(b).

5 Æ

it

vt = 30 - 5it .

10 Æ

it (A)

0

3

6

vt (V)

30

15

0

(b)(a)

�

�

vtDevice

it

itvt

b) Now we attach a resistor to the device in
Fig. 2.21(b) to complete the circuit. Kirchhoff’s
current law tells us that the current in the 
resistor is the same as the current in the resis-
tor. Using Kirchhoff’s voltage law and Ohm’s law,
we can write the equation for the voltage drops
around the circuit, starting at the voltage source
and proceeding clockwise:

Solving for i, we get

.

Because this is the value of current flowing in
the resistor, we can use the power equation

to compute the power delivered to this
resistor:

p10Æ
= (2)2(10) = 40 W.

p = i2R
10 Æ

i = 2 A

-30 + 5i + 10i = 0.

5 Æ
10 Æ

10 Æ

(b)

(a)

vt (V)

30

15

3 6
it (A)

�

�
30 V

b

10 �

5 � a

i
vt

�

�

Figure 2.21 � (a) The graph of versus for the device in
Fig. 2.20(a). (b) The resulting circuit model for the device in
Fig. 2.20(a), connected to a resistor.10 Æ

itvt
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2.5 Analysis of a Circuit Containing
Dependent Sources

We conclude this introduction to elementary circuit analysis with a discus-
sion of a circuit that contains a dependent source, as depicted in Fig. 2.22.

We want to use Kirchhoff’s laws and Ohm’s law to find in this cir-
cuit. Before writing equations, it is good practice to examine the circuit
diagram closely. This will help us identify the information that is known
and the information we must calculate. It may also help us devise a strat-
egy for solving the circuit using only a few calculations.

vo
�

�
500 V 20 �

io

5 �

i�

a b

c

5i�vo

�

�

Objective 2—Be able to state and use Ohm’s law and Kirchhoff’s current and voltage laws

2.5 For the circuit shown, calculate (a) (b) 
(c) (d) and (e) the power delivered by
the 24 V source.

Answer: (a) 2 A;

(b) –4 V;

(c) 6 V;

(d) 14 V;

(e) 48 W.

2.6 Use Ohm’s law and Kirchhoff’s laws to find the
value of R in the circuit shown.

Answer:

�

�
200 V

R

24 � 8 �120 V
�

�

R = 4 Æ.

7 �24 V i5
�

�

3 �

v2� �

v1� �

2 �

v5

�

�

v5;v2;
v1;i5; 2.7 a) The terminal voltage and terminal current

were measured on the device shown. The
values of and are provided in the table.
Using these values, create the straight line
plot of versus . Compute the equation of
the line and use the equation to construct a
circuit model for the device using an ideal
voltage source and a resistor.

b) Use the model constructed in (a) to predict
the power that the device will deliver to a

resistor.

Answer: (a) A 25 V source in series with a 
resistor;

(b) 1 W.

2.8 Repeat Assessment Problem 2.7 but use the
equation of the graphed line to construct a cir-
cuit model containing an ideal current source
and a resistor.

Answer: (a) A 0.25 A current source connected
between the terminals of a resistor;

(b) 1 W.

100 Æ

�

�

vt

it (A)vt (V)

Device

0

0.1

0.2

0.25

25

15

5

0

(b)(a)

it

100 Æ

25 Æ

itvt

itvt

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 2.18, 2.19, 2.29, and 2.31.

Figure 2.22 � A circuit with a dependent source.
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A look at the circuit in Fig. 2.22 reveals that

• Once we know , we can calculate using Ohm’s law.
• Once we know , we also know the current supplied by the dependent

source .
• The current in the 500 V source is .

There are thus two unknown currents, and . We need to construct and
solve two independent equations involving these two currents to produce
a value for .

From the circuit, notice the closed path containing the voltage source,
the resistor, and the resistor. We can apply Kirchhoff’s voltage
law around this closed path. The resulting equation contains the two
unknown currents:

(2.22)

Now we need to generate a second equation containing these two
currents. Consider the closed path formed by the resistor and the
dependent current source. If we attempt to apply Kirchhoff’s voltage
law to this loop, we fail to develop a useful equation, because we don’t
know the value of the voltage across the dependent current source. In
fact, the voltage across the dependent source is , which is the voltage
we are trying to compute. Writing an equation for this loop does not
advance us toward a solution. For this same reason, we do not use the
closed path containing the voltage source, the resistor, and the
dependent source.

There are three nodes in the circuit, so we turn to Kirchhoff’s current
law to generate the second equation. Node a connects the voltage source
and the resistor; as we have already observed, the current in these two
elements is the same. Either node b or node c can be used to construct the
second equation from Kirchhoff’s current law. We select node b and pro-
duce the following equation:

(2.23)

Solving Eqs. 2.22 and 2.23 for the currents, we get

(2.24)

Using Eq. 2.24 and Ohm’s law for the resistor, we can solve for the
voltage :

Think about a circuit analysis strategy before beginning to write equa-
tions. As we have demonstrated, not every closed path provides an oppor-
tunity to write a useful equation based on Kirchhoff’s voltage law. Not
every node provides for a useful application of Kirchhoff’s current law.
Some preliminary thinking about the problem can help in selecting the
most fruitful approach and the most useful analysis tools for a particular

vo = 20io = 480 V.

vo

20 Æ

 io = 24 A.

 i
¢

= 4 A,

io = i
¢

+ 5i
¢

= 6i
¢
.

5 Æ

5 Æ

vo

20 Æ

500 = 5i
¢

+ 20io .

20 Æ5 Æ

vo

ioi
¢

i
¢

5i
¢

i
¢

voio
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a) Use Kirchhoff’s laws and Ohm’s law to find the
voltage as shown in Fig. 2.23.

b) Show that your solution is consistent with the
constraint that the total power developed in the
circuit equals the total power dissipated.

vo

Applying Ohm’s law to the resistor gives
the desired voltage:

b) To compute the power delivered to the voltage
sources, we use the power equation in the form

. The power delivered to the independent
voltage source is

The power delivered to the dependent voltage
source is

Both sources are developing power, and the
total developed power is 21.7 W.

To compute the power delivered to the resis-
tors, we use the power equation in the form

.The power delivered to the resistor is

The power delivered to the resistor is

The power delivered to the resistor is

The resistors all dissipate power, and the total
power dissipated is 21.7 W, equal to the total
power developed in the sources.

p = (1)2(3) = 3 W.

3 Æ

p = (1)2(2) = 2 W.

2 Æ

p = (1.67)2(6) = 16.7 W.

6 Æp = i2R

p = (3is)(- io) = (5)(-1) = -5 W.

p = (10)(-1.67) = -16.7 W.

p = vi

vo = 3io = 3 V.

3 Æ

6 � 3 �3 is10 V vo

�

�

�

�

�

�

is

2 �

io

Figure 2.23 � The circuit for Example 2.10.

Example 2.10 Applying Ohm’s Law and Kirchhoff’s Laws to Find an Unknown Voltage

problem. Choosing a good approach and the appropriate tools will usually
reduce the number and complexity of equations to be solved. Example 2.10
illustrates another application of Ohm’s law and Kirchhoff’s laws to a cir-
cuit with a dependent source. Example 2.11 involves a much more compli-
cated circuit, but with a careful choice of analysis tools, the analysis is
relatively uncomplicated.

Solution

a) A close look at the circuit in Fig. 2.23 reveals that:
• There are two closed paths, the one on the

left with the current and the one on the
right with the current .

• Once is known, we can compute .
We need two equations for the two currents.
Because there are two closed paths and both have
voltage sources, we can apply Kirchhoff’s voltage
law to each to give the following equations:

Solving for the currents yields

 io = 1 A.

 is = 1.67 A,

 3is = 2io + 3io .

 10 = 6is,

voio

io

is
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Example 2.11 Applying Ohm’s Law and Kirchhoff’s Law in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common config-
uration encountered in the analysis and design of
transistor amplifiers. Assume that the values of all
the circuit elements— , , , , , and —
are known.

a) Develop the equations needed to determine the
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting in terms of the circuit element values.

Figure 2.24 � The circuit for Example 2.11.

Solution
A careful examination of the circuit reveals a total
of six unknown currents, designated , , , , ,
and . In defining these six unknown currents, we
used the observation that the resistor is in series
with the dependent current source . We now
must derive six independent equations involving
these six unknowns.

a) We can derive three equations by applying
Kirchhoff’s current law to any three of the nodes
a, b, c, and d. Let’s use nodes a, b, and c and label
the currents away from the nodes as positive:

(3) iE - iB - iC = 0.

(2) iB + i2 - i1 = 0,

(1) i1 + iC - iCC = 0,

biB

RC

iCC

iEiCiBi2i1

a

d

2
b

1

3

c� �

VCC
�

�

iCC

iB

RC
iC

RE
iE

R2
i2

R1
i1

V0
biB

iB

V0VCCRERCR2R1

A fourth equation results from imposing the
constraint presented by the series connection of

and the dependent source:

We turn to Kirchhoff’s voltage law in deriv-
ing the remaining two equations. We need to
select two closed paths in order to use
Kirchhoff’s voltage law. Note that the voltage
across the dependent current source is unknown,
and that it cannot be determined from the source
current . Therefore, we must select two
closed paths that do not contain this dependent
current source.

We choose the paths bcdb and badb and
specify voltage drops as positive to yield

b) To get a single equation for in terms of 
the known circuit variables, you can follow
these steps:

• Solve Eq. (6) for , and substitute this solu-
tion for into Eq. (2).

• Solve the transformed Eq. (2) for , and sub-
stitute this solution for into Eq. (5).

• Solve the transformed Eq. (5) for , and sub-
stitute this solution for into Eq. (3). Use
Eq. (4) to eliminate in Eq. (3).

• Solve the transformed Eq. (3) for , and
rearrange the terms to yield

(2.25)

Problem 2.31 asks you to verify these steps. Note
that once we know , we can easily obtain the
remaining currents.

iB

iB =

(VCCR2)>(R1 + R2) - V0

(R1R2)>(R1 + R2) + (1 + b)RE
 .

iB

iC

iE

iE

i2

i2

i1

i1

iB

(6) -  i1R1 + VCC - i2R2 = 0.

(5) V0 + iERE - i2R2 = 0,

biB

(4) iC = biB .

RC
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2.9 For the circuit shown find (a) the current in
microamperes, (b) the voltage in volts, (c) the
total power generated, and (d) the total power
absorbed.

Answer: (a)

(b) –2 V;

(c)

(d)

2.10 The current in the circuit shown is 2 A.
Calculate

a) ,

b) the power absorbed by the independent
voltage source,

vs

if

5 V
�

�
8 V

�

�

i1

54 k�

6 k�

1.8 k�
� �

1 V v� �

30 i1

6150 mW.

6150 mW;

25 mA;

v
i1 c) the power delivered by the independent cur-

rent source,

d) the power delivered by the controlled cur-
rent source,

e) the total power dissipated in the two resistors.

Answer: (a) 70 V;

(b) 210 W;

(c) 300 W;

(d) 40 W;

(e) 130 W.

10 �

5 A vs
�

�
30 �

if

2if

NOTE: Also try Chapter Problems 2.32 and 2.33.

Objective 3—Know how to calculate power for each element in a simple circuit

A S S E S S M E N T  P R O B L E M S

Practical Perspective
Heating with Electric Radiators
Let’s determine which of the two wiring diagrams introduced at the begin-
ning of this chapter should be used to wire the electric radiators to the
power supplied to the garage. We begin with the diagram shown in Fig. 2.25.
We can turn this into a circuit by modeling the radiators as resistors. The
resulting circuit is shown in Fig. 2.26. Note that each radiator has the same
resistance, R, and is labeled with a voltage and current value.

radiator

radiator

�

�
240 V

�

�
v1

�

�
v2R R

�

�

i1

240 V

is

To find the unknown voltages and currents for the circuit in Fig. 2.26,
begin by writing a KVL equation for the left side of the circuit:

-240 + v1 = 0    Q     v1 = 240 V.

Figure 2.25 A wiring diagram for two
radiators. Figure 2.26 A circuit based on Fig. 2.25.
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Now write a KVL equation for the right side of this circuit:

Remember that the power and voltage specifications for each radiator are 1200 W,
240 V. Therefore the configuration shown in Fig. 2.25 satisfies the voltage
specification, since each radiator would have a supplied voltage of 240 V.

Next, calculate the value of resistance R that will correctly model
each radiator. We want the power associated with each radiator to be 
1200 W. Use the equation for resistor power that involves the resistance
and the voltage:

Each radiator can be modeled as a resistor with a voltage drop of 240 V
and power of 1200 W. The total power for two radiators is thus 2400 W.

Finally, calculate the power supplied by the 240 V source. To do this,
calculate the current in the voltage source, is, by writing a KCL equation at
the top node in Fig. 2.26, and use that current to calculate the power for
the voltage source.

48 Æ

Q       R =

v1
2

P1
=

2402

1200
= 48 Æ.=

v2
2

R
= P2P1 =

v1
2

R

-v1 + v2 = 0      Q       v2 = v1 = 240 V.

Figure 2.27 Another way to wire two radiators.

radiator

radiator

�

�
240 V

240 V 48 �

a

�

��

�

�

�

48 �

vy

vx iy

ix

Figure 2.28 A circuit based on Fig. 2.27. 

Ps = -(240)(is) = -(240)(10) = -2400 W.

v1

R
+

v2

R
=

240
48

+

240
48

= 10 A.- is + i1 + i2 = 0    Q    is = i1 + i2 =

Thus, the total power in the circuit is 2400 2400 0, so the power 
balances.

Now look at the other wiring diagram for the radiators, shown in 
Fig. 2.27. We know that the radiators can be modeled using resistors,
which are used to turn the wiring diagram into the circuit in Fig. 2.28.

Start analyzing the circuit in Fig. 2.28 by writing a KVL equation:

.

Next, write a KCL equation at the node labeled a:

.

The current in the two resistors is the same, and we can use that current
in Ohm’s Law equations to replace the two unknown voltages in the KVL
equation:

Use the current in the two resistors to calculate the power for the two
radiators.

Thus, if the radiators are wired as shown in Fig. 2.27, their total power will
be only 600 W. This is insufficient to heat the garage.

Therefore, the way the radiators are wired has a big impact on the
amount of heat that will be supplied. When they are wired using the dia-
gram in Fig. 2.25, 2400 W of power will be available, but when they are
wired using the diagram in Fig. 2.27, only 600 W of power will be available.

NOTE: Assess your understanding of the Practical Perspective by solving Chapter
Problems 2.41–2.43.

Px = Py = Ri2
= (48)(2.5)2

= 300 W.

48i = 48i = 240 = 96i     Q      i =

240
96

= 2.5 A.

- ix + iy = 0      Q       ix = iy = i

-240 + vx + vy = 0    Q     vx + vy = 240

48 Æ

=+-
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Problems

Section 2.1

2.1 a) Is the interconnection of ideal sources in the cir-
cuit in Fig. P2.1 valid? Explain.

b) Identify which sources are developing power
and which sources are absorbing power.

c) Verify that the total power developed in the cir-
cuit equals the total power absorbed.

d) Repeat (a)–(c), reversing the polarity of the
20 V source.

Figure P2.1

5 A20 V

15 V

�

�

� �

2.2 If the interconnection in Fig. P2.2 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.2

2.3 If the interconnection in Fig. P2.3 is valid, find the
power developed by the current sources. If the
interconnection is not valid, explain why.

50 V

10 V

��

�

�
40 V

�

�5 A

Summary

• The circuit elements introduced in this chapter are volt-
age sources, current sources, and resistors:
• An ideal voltage source maintains a prescribed 

voltage regardless of the current in the device. An
ideal current source maintains a prescribed current
regardless of the voltage across the device. Voltage
and current sources are either independent, that is,
not influenced by any other current or voltage in the
circuit; or dependent, that is, determined by some
other current or voltage in the circuit. (See pages 26
and 27.)

• A resistor constrains its voltage and current to be
proportional to each other. The value of the propor-
tional constant relating voltage and current in a
resistor is called its resistance and is measured in
ohms. (See page 30.)

• Ohm’s law establishes the proportionality of voltage
and current in a resistor. Specifically,

if the current flow in the resistor is in the direction of
the voltage drop across it, or

if the current flow in the resistor is in the direction of
the voltage rise across it. (See page 31.)

v = - iR

v = iR

• By combining the equation for power, , with
Ohm’s law, we can determine the power absorbed by a
resistor:

(See page 32.)

• Circuits are described by nodes and closed paths. A
node is a point where two or more circuit elements join.
When just two elements connect to form a node, they
are said to be in series. A closed path is a loop traced
through connecting elements, starting and ending at the
same node and encountering intermediate nodes only
once each. (See pages 37–39.)

• The voltages and currents of interconnected circuit ele-
ments obey Kirchhoff’s laws:

• Kirchhoff’s current law states that the algebraic sum
of all the currents at any node in a circuit equals zero.
(See page 37.)

• Kirchhoff’s voltage law states that the algebraic sum
of all the voltages around any closed path in a circuit
equals zero. (See page 38.)

• A circuit is solved when the voltage across and the cur-
rent in every element have been determined. By com-
bining an understanding of independent and dependent
sources, Ohm’s law, and Kirchhoff’s laws, we can solve
many simple circuits.

p = i2R = v2>R.

p = vi
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Figure P2.3

2.4 If the interconnection in Fig. P2.4 is valid, find the
total power developed by the voltage sources. If the
interconnection is not valid, explain why.

Figure P2.4

2.5 The interconnection of ideal sources can lead to an
indeterminate solution. With this thought in mind,
explain why the solutions for and in the circuit
in Fig. P2.5 are not unique.

Figure P2.5

2.6 Consider the interconnection shown in Fig. P2.6.

a) What value of is required to make this a valid
interconnection?

b) For this value of , find the power associated
with the voltage source.

Figure P2.6

� �

400 mA v1/50
v1

v1

v1

2 A 5 A 3 A

12 V

8 V

�

v2

�

�

v1

�

� �

� �

v2v1

25 V
�

�

3 A

8 A 15 V

4 A

�

�

10 A 5 A
�

�

40 V

��

100 V

2.7 Consider the interconnection shown in Fig. P2.7.

a) What value of is required to make this a valid
interconnection?

b) For this value of , find the power associated
with the current source.

c) Is the current source supplying or absorbing
power?

Figure P2.7

2.8 a) Is the interconnection in Fig. P2.8 valid? Explain.

b) Can you find the total energy developed in the
circuit? Explain.

Figure P2.8

2.9 If the interconnection in Fig. P2.9 is valid, find the
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

Figure P2.9

2.10 Find the total power developed in the circuit in
Fig. P2.10 if .vo = 5 V

�
�

�
��

�

�
�

30 V

40 V

50 mA

1800 ix
ix

60 V

�

30 V

50 mA

100 mA

20 V
�

�
�

3i1

i1

�6 V 15 mA
�

�
�

i�

�i�

a

a
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Figure P2.10

Sections 2.2–2.3

2.11 For the circuit shown in Fig. P2.11

a) Find .

b) Find the power absorbed by the resistor.

c) Reverse the direction of the current source and
repeat parts (a) and (b).

Figure P2.11

2.12 For the circuit shown in Fig. P2.12

a) Find .

b) Find the power supplied by the voltage source.

c) Reverse the polarity of the voltage source and
repeat parts (a) and (b).

Figure P2.12

2.13 A pair of automotive headlamps is connected to a
12 V battery via the arrangement shown in
Fig. P2.13. In the figure, the triangular symbol � is
used to indicate that the terminal is connected
directly to the metal frame of the car.

40 V 2.5 k�

i

�
�

i

15 mA 3 k�v

�

�

v

9 A

�

�
20 V 6 A

�

�
vg

10 va
�

�

�

�

vo

�

�

va

a) Construct a circuit model using resistors and an
independent voltage source.

b) Identify the correspondence between the ideal
circuit element and the symbol component that
it represents.

Figure P2.13

2.14 The terminal voltage and terminal current were
measured on the device shown in Fig. P2.14(a). The
values of and i are given in the table of
Fig. P2.14(b). Use the values in the table to con-
struct a circuit model for the device consisting of a
single resistor from Appendix H.

Figure P2.14

2.15 A variety of voltage source values were applied to
the device shown in Fig. P2.15(a). The power
absorbed by the device for each value of voltage is
recorded in the table given in Fig. P2.15(b). Use the
values in the table to construct a circuit model for
the device consisting of a single resistor from
Appendix H.

�7.2

�3.6

3.6

7.2

10.8

v (kV)i (A)

�6

�3

3

6

9

(b)(a)

i

�

�

vDevice

v

�

12 V battery

Switch

Lamp A

Lamp B

�
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Figure P2.15

2.16 A variety of current source values were applied to the
device shown in Fig. P2.16(a).The power absorbed by
the device for each value of current is recorded in the
table given in Fig. P2.16(b). Use the values in the
table to construct a circuit model for the device con-
sisting of a single resistor from Appendix H.

Figure P2.16

Section 2.4

2.17 Consider the circuit shown in Fig. P2.17.

a) Find using Kirchoff’s laws and Ohm’s law.

b) Test the solution for by verifying that the total
power supplied equals the total power absorbed.

Figure P2.17

2.18 Given the circuit shown in Fig. P2.18, find

a) the value of ,
b) the value of ,
c) the value of ,
d) the power dissipated in each resistor,
e) the power delivered by the 50 V source.

vo

ib

ia

�

�
20 mA

2 k�

5 V5 k�

�

�
vo

vo

vo

i (mA)

0.5

1.0

1.5

2.0

2.5

3.0

8.25

33.00

74.25

132.00

206.25

297.00

(b)

�

�

v

p (mW)

(a)

Device i

v (V) p (mW)

�8

�4

4

8

12

16

640

160

160

640

1440

2560

(b)(a)

Device v
�

�

i

Figure P2.18

2.19 a) Find the currents and in the circuit in
Fig. P2.19.

b) Find the voltage .

c) Verify that the total power developed equals the
total power dissipated.

Figure P2.19

2.20 The current in the circuit shown in Fig. P2.20 is
50 mA and the voltage is 3.5 V. Find (a) ;
(b) ; (c) ; and (d) the power supplied by the
voltage source.

Figure P2.20

2.21 The current in the circuit shown in Fig. P2.21 is
2 mA. Find (a) (b) and (c) the power delivered
by the independent current source.

Figure P2.21

2.22 The current in the circuit in Fig. P2.22 is 1 A.

a) Find .

b) Find the power dissipated in each resistor.
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io

4 k�2 k�ioig

3 k�

1 k�

ia

ig;io;
ia

200 �50 �

250 �
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i1ix
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80 �vo
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c) Verify that the total power dissipated in the cir-
cuit equals the power developed by the 150 V
source.

Figure P2.22

2.23 The variable resistor R in the circuit in Fig. P2.23 is
adjusted until equals 10 mA. Find the value of R.

Figure P2.23

2.24 For the circuit shown in Fig. P2.24, find (a) R and
(b) the power supplied by the 240 V source.

Figure P2.24

2.25 The voltage across the resistor in the circuit in
Fig. P2.25 is 80 V, positive at the upper terminal.

a) Find the power dissipated in each resistor.

b) Find the power supplied by the 125 V ideal volt-
age source.

c) Verify that the power supplied equals the total
power dissipated.
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Figure P2.25

2.26 The currents and in the circuit in Fig. P2.26 are
4 A and respectively.

a) Find 

b) Find the power dissipated in each resistor.

c) Find 

d) Show that the power delivered by the current
source is equal to the power absorbed by all the
other elements.

Figure P2.26

2.27 The currents and in the circuit in Fig. P2.27 are
21 A and 14 A, respectively.

a) Find the power supplied by each voltage source.

b) Show that the total power supplied equals the
total power dissipated in the resistors.

Figure P2.27
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Problems 53

2.28 The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.28(a). The
results are tabulated in Fig. P2.28(b).

a) Construct a circuit model for this device using
an ideal voltage source in series with a resistor.

b) Use the model to predict the value of when 
is zero.

Figure P2.28

2.29 The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.29(a). The
results are tabulated in Fig. P2.29(b).

a) Construct a circuit model for this device using an
ideal current source in parallel with a resistor.

b) Use the model to predict the amount of power
the device will deliver to a resistor.

Figure P2.29

2.30 The table in Fig. P2.30(a) gives the relationship
between the terminal current and voltage of 
the practical constant current source shown in
Fig. P2.30(b).

a) Plot versus .

b) Construct a circuit model of this current source
that is valid for , based on the
equation of the line plotted in (a).

c) Use your circuit model to predict the current
delivered to a resistor.

d) Use your circuit model to predict the open-circuit
voltage of the current source.
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�
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e) What is the actual open-circuit voltage?

f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.30

2.31 The table in Fig. P2.31(a) gives the relationship
between the terminal voltage and current of 
the practical constant voltage source shown in
Fig. P2.31(b).

a) Plot versus .

b) Construct a circuit model of the practical
source that is valid for , based
on the equation of the line plotted in (a). (Use
an ideal voltage source in series with an ideal
resistor.)

c) Use your circuit model to predict the current
delivered to a resistor connected to the
terminals of the practical source.

d) Use your circuit model to predict the current
delivered to a short circuit connected to the ter-
minals of the practical source.

e) What is the actual short-circuit current?

f) Explain why the answers to (d) and (e) are not
the same.

Figure P2.31
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2.32 For the circuit shown in Fig. P2.32, find and the
total power supplied in the circuit.

Figure P2.32

2.33 For the circuit shown in Fig. P2.33, find and the
total power absorbed in the circuit.

Figure P2.33

2.34 Consider the circuit shown in Fig. P2.34.

a) Find .

b) Verify the value of by showing that the power
generated in the circuit equals the power
absorbed in the circuit.

Figure P2.34

2.35 Find (a) , (b) , and (c) in the circuit in Fig. P2.35.

Figure P2.35

2.36 For the circuit shown in Fig. P2.36, calculate (a) and
and (b) show that the power developed equals the

power absorbed.
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2.37 Find and in the circuit shown in Fig. P2.37
when equals 5 V. (Hint: Start at the right end of
the circuit and work back toward )

Figure P2.37

2.38 Derive Eq. 2.25. Hint: Use Eqs. (3) and (4) from
Example 2.11 to express as a function of Solve
Eq. (2) for and substitute the result into both
Eqs. (5) and (6). Solve the “new” Eq. (6) for and
substitute this result into the “new” Eq. (5). Replace

in the “new” Eq. (5) and solve for Note that
because appears only in Eq. (1), the solution for

involves the manipulation of only five equations.

2.39 For the circuit shown in Fig. 2.24, ,
, , , ,

mV, and Calculate , , , ,
, , , , , and (Note: In the double sub-

script notation on voltage variables, the first sub-
script is positive with respect to the second
subscript. See Fig. P2.39.)

Figure P2.39

Sections 2.1–2.5

2.40 It is often desirable in designing an electric wiring
system to be able to control a single appliance from
two or more locations, for example, to control a
lighting fixture from both the top and bottom of a
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Problems 55

stairwell. In home wiring systems, this type of con-
trol is implemented with three-way and four-way
switches. A three-way switch is a three-terminal,
two-position switch, and a four-way switch is a four-
terminal, two-position switch.The switches are shown
schematically in Fig. P2.40(a), which illustrates a
three-way switch, and P2.40(b), which illustrates a
four-way switch.

a) Show how two three-way switches can be con-
nected between a and b in the circuit in
Fig. P2.40(c) so that the lamp l can be turned ON

or OFF from two locations.

b) If the lamp (appliance) is to be controlled from
more than two locations, four-way switches are
used in conjunction with two three-way
switches. One four-way switch is required for
each location in excess of two. Show how one
four-way switch plus two three-way switches can
be connected between a and b in Fig. P2.40(c) to
control the lamp from three locations. (Hint:
The four-way switch is placed between the
three-way switches.)

Figure P2.40

(a)

1

2 3
Position 1

1

2 3
Position 2

(b)

1 2

3 4
Position 1

1 2

3 4
Position 2

(c)

a
b

vg
�

� l

2.41 Suppose you want to add a third radiator to your
garage that is identical to the two radiators you have
already installed. All three radiators can be modeled
by resistors. Using the wiring diagram shown
in Fig. P2.41, calculate the total power for the three
radiators.

Figure P2.41

2.42 Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.42. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.42

2.43 Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.43. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.43

2.44 Repeat Problem 2.41 using the wiring diagram
shown in Fig. P2.44. Compare the total radiator
power in this configuration with the total radiator
power in the configuration shown in Fig. P2.41.

Figure P2.44
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Our analytical toolbox now contains Ohm’s law and Kirchhoff’s
laws. In Chapter 2 we used these tools in solving simple circuits.
In this chapter we continue applying these tools, but on more-
complex circuits. The greater complexity lies in a greater number
of elements with more complicated interconnections. This chap-
ter focuses on reducing such circuits into simpler, equivalent cir-
cuits. We continue to focus on relatively simple circuits for two
reasons: (1) It gives us a chance to acquaint ourselves thoroughly
with the laws underlying more sophisticated methods, and (2) it
allows us to be introduced to some circuits that have important
engineering applications.

The sources in the circuits discussed in this chapter are lim-
ited to voltage and current sources that generate either constant
voltages or currents; that is, voltages and currents that are invari-
ant with time. Constant sources are often called dc sources. The
dc stands for direct current, a description that has a historical basis
but can seem misleading now. Historically, a direct current was
defined as a current produced by a constant voltage. Therefore, a
constant voltage became known as a direct current, or dc, voltage.
The use of dc for constant stuck, and the terms dc current and 
dc voltage are now universally accepted in science and engineering
to mean constant current and constant voltage.

C H A P T E R  C O N T E N T S

3.1 Resistors in Series p. 58

3.2 Resistors in Parallel p. 59

3.3 The Voltage-Divider and Current-Divider
Circuits p. 61

3.4 Voltage Division and Current Division p. 64

3.5 Measuring Voltage and Current p. 66

3.6 Measuring Resistance—The Wheatstone
Bridge p. 69

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent 
Circuits p. 71

C H A P T E R  O B J E C T I V E S

1 Be able to recognize resistors connected in
series and in parallel and use the rules for
combining series-connected resistors and
parallel-connected resistors to yield equivalent
resistance.

2 Know how to design simple voltage-divider and
current-divider circuits.

3 Be able to use voltage division and current
division appropriately to solve simple circuits.

4 Be able to determine the reading of an ammeter
when added to a circuit to measure current; be
able to determine the reading of a voltmeter
when added to a circuit to measure voltage.

5 Understand how a Wheatstone bridge is used to
measure resistance.

6 Know when and how to use delta-to-wye
equivalent circuits to solve simple circuits.

Simple Resistive Circuits

C H A P T E R

33

56



Some mobile phones and tablet computers use resistive touch
screens, created by applying a transparent resistive material
to the glass or acrylic screens.  Two screens are typically used,
separated by a transparent insulating layer. The resulting
touch screen can be modeled by a grid of resistors in the 
x-direction and a grid of resistors in the y-direction, as shown
in the figure on the right.

A separate electronic circuit applies a voltage drop across
the grid in the x-direction, between the points a and b in the
circuit, then removes that voltage and applies a voltage drop
across the grid in the y-direction (between points c and d),

and continues to repeat this process. When the screen is
touched, the two resistive layers are pressed together, creating
a voltage that is sensed in the x-grid and another voltage that
is sensed in the y-grid. These two voltages precisely locate the
point where the screen was touched.

How is the voltage created by touching the screen related
to the position where the screen was touched? How are the
properties of the grids used to calculate the touch position? We
will answer these questions in the Practical Perspective at the
end of this chapter. The circuit analysis required to answer these
questions uses some circuit analysis tools developed next.

57

a
c

b
d

Practical Perspective
Resistive Touch Screens

Denis Semenchenko / Shutterstock
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3.1 Resistors in Series
In Chapter 2, we said that when just two elements connect at a single
node, they are said to be in series. Series-connected circuit elements carry
the same current. The resistors in the circuit shown in Fig. 3.1 are con-
nected in series. We can show that these resistors carry the same current
by applying Kirchhoff’s current law to each node in the circuit. The series
interconnection in Fig. 3.1 requires that

(3.1)

which states that if we know any one of the seven currents, we know them
all. Thus we can redraw Fig. 3.1 as shown in Fig. 3.2, retaining the identity
of the single current 

To find we apply Kirchhoff’s voltage law around the single closed
loop. Defining the voltage across each resistor as a drop in the direction of

gives

(3.2)

or

(3.3)

The significance of Eq. 3.3 for calculating is that the seven resistors can
be replaced by a single resistor whose numerical value is the sum of the
individual resistors, that is,

(3.4)

and

(3.5)

Thus we can redraw Fig. 3.2 as shown in Fig. 3.3.
In general, if k resistors are connected in series, the equivalent single

resistor has a resistance equal to the sum of the k resistances, or

(3.6)

Note that the resistance of the equivalent resistor is always larger than
that of the largest resistor in the series connection.

Another way to think about this concept of an equivalent resistance is
to visualize the string of resistors as being inside a black box. (An electri-
cal engineer uses the term black box to imply an opaque container; that is,
the contents are hidden from view. The engineer is then challenged to
model the contents of the box by studying the relationship between the
voltage and current at its terminals.) Determining whether the box con-
tains k resistors or a single equivalent resistor is impossible. Figure 3.4
illustrates this method of studying the circuit shown in Fig. 3.2.

Req = a
k

i =1
Ri = R1 + R2 +

Á
+ Rk.

vs = isReq.

Req = R1 + R2 + R3 + R4 + R5 + R6 + R7

is

vs = is(R1 + R2 + R3 + R4 + R5 + R6 + R7).

-vs + isR1 + isR2 + isR3 + isR4 + isR5 + isR6 + isR7 = 0,

is

is,
is.

is = i1 = - i2 = i3 = i4 = - i5 = - i6 = i7,

Combining resistors in series �

�

�
vs Req

a

h

is

R4 Req

R1 R2a R3

R7 R6 R5h

a

h

is

vs

�

�

is

vs

�

�

Figure 3.1 � Resistors connected in series.

Figure 3.2 � Series resistors with a single unknown 
current is.

Figure 3.3 � A simplified version of the circuit shown
in Fig. 3.2.

Figure 3.4 � The black box equivalent of the circuit
shown in Fig. 3.2.



3.2 Resistors in Parallel 59

3.2 Resistors in Parallel
When two elements connect at a single node pair, they are said to be in
parallel. Parallel-connected circuit elements have the same voltage across
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected
in parallel. Don’t make the mistake of assuming that two elements are
parallel connected merely because they are lined up in parallel in a circuit
diagram.The defining characteristic of parallel-connected elements is that
they have the same voltage across their terminals. In Fig. 3.6, you can see
that and are not parallel connected because, between their respec-
tive terminals, another resistor dissipates some of the voltage.

Resistors in parallel can be reduced to a single equivalent resistor
using Kirchhoff’s current law and Ohm’s law, as we now demonstrate. In
the circuit shown in Fig. 3.5, we let the currents and be the cur-
rents in the resistors through respectively. We also let the positive
reference direction for each resistor current be down through the resistor,
that is, from node a to node b. From Kirchhoff’s current law,

(3.7)

The parallel connection of the resistors means that the voltage across each
resistor must be the same. Hence, from Ohm’s law,

(3.8)

Therefore,

(3.9)

Substituting Eq. 3.9 into Eq. 3.7 yields

(3.10)

from which

(3.11)

Equation 3.11 is what we set out to show: that the four resistors in the cir-
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con-
nected in parallel, Eq. 3.11 becomes

(3.12)

Note that the resistance of the equivalent resistor is always smaller than the
resistance of the smallest resistor in the parallel connection. Sometimes,
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Figure 3.5 � Resistors in parallel.

Figure 3.6 � Nonparallel resistors.
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� Combining resistors in parallel

Figure 3.7 � Replacing the four parallel resistors shown
in Fig. 3.5 with a single equivalent resistor.
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using conductance when dealing with resistors connected in parallel is more
convenient. In that case, Eq. 3.12 becomes

(3.13)

Many times only two resistors are connected in parallel. Figure 3.8
illustrates this special case. We calculate the equivalent resistance from
Eq. 3.12:

(3.14)

or

(3.15)

Thus for just two resistors in parallel the equivalent resistance equals
the product of the resistances divided by the sum of the resistances.
Remember that you can only use this result in the special case of just two
resistors in parallel. Example 3.1 illustrates the usefulness of these results.

Req =

R1R2

R1 + R2
.

1
Req

=

1
R1

+

1
R2

=

R2 + R1

R1R2
,

Geq = a
k

i =1
 Gi = G1 + G2 +

Á
+ Gk.

R2R1

a

b

Example 3.1 Applying Series-Parallel Simplification

Find and in the circuit shown in Fig. 3.9.

Solution
We begin by noting that the resistor is in series
with the resistor.We therefore replace this series
combination with a resistor, reducing the circuit
to the one shown in Fig. 3.10(a). We now can replace
the parallel combination of the and resis-
tors with a single resistance of or

Figure 3.10(b) shows this further reduction of
the circuit.The nodes x and y marked on all diagrams
facilitate tracing through the reduction of the circuit.

From Fig. 3.10(b) you can verify that equals
or 12 A. Figure 3.11 shows the result at this

point in the analysis. We added the voltage to
help clarify the subsequent discussion. Using Ohm’s
law we compute the value of :

(3.16)

But is the voltage drop from node x to node y, so
we can return to the circuit shown in Fig. 3.10(a)
and again use Ohm’s law to calculate and Thus,

(3.17)

(3.18)

We have found the three specified currents by using
series-parallel reductions in combination with
Ohm’s law.
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Figure 3.11 � The circuit of Fig. 3.10(b) showing the numerical
value of is .

Figure 3.9 � The circuit for Example 3.1.
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Figure 3.8 � Two resistors connected in parallel.

Figure 3.10 � A simplification of the circuit shown in Fig. 3.9.
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Before leaving Example 3.1, we suggest that you take the time to
show that the solution satisfies Kirchhoff’s current law at every node and
Kirchhoff’s voltage law around every closed path. (Note that there are
three closed paths that can be tested.) Showing that the power delivered
by the voltage source equals the total power dissipated in the resistors also
is informative. (See Problems 3.1 and 3.2.)

Objective 1—Be able to recognize resistors connected in series and in parallel

A S S E S S M E N T  P R O B L E M

3.1 For the circuit shown, find (a) the voltage ,
(b) the power delivered to the circuit by the
current source, and (c) the power dissipated in
the resistor.

Answer: (a) 60 V;

(b) 300 W;

(c) 57.6 W.

10 Æ

v

64 �30 � 10 �

6 �7.2 �

5 A v

�

�

NOTE: Also try Chapter Problems 3.3–3.6.

3.3 The Voltage-Divider 
and Current-Divider Circuits

At times—especially in electronic circuits—developing more than one
voltage level from a single voltage supply is necessary. One way of doing
this is by using a voltage-divider circuit, such as the one in Fig. 3.12.

We analyze this circuit by directly applying Ohm’s law and
Kirchhoff’s laws.To aid the analysis, we introduce the current i as shown in
Fig. 3.12(b). From Kirchhoff’s current law, and carry the same cur-
rent. Applying Kirchhoff’s voltage law around the closed loop yields

(3.19)

or

(3.20)

Now we can use Ohm’s law to calculate and :

(3.21)

(3.22)

Equations 3.21 and 3.22 show that and are fractions of Each frac-
tion is the ratio of the resistance across which the divided voltage is
defined to the sum of the two resistances. Because this ratio is always less
than 1.0, the divided voltages and are always less than the source
voltage vs.

v2v1

vs.v2v1
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.
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v2v1

i =

vs

R1 + R2
.

vs = iR1 + iR2,

R2R1

R1

R2

vs

v1

v2

(a)

R1

R2

vs

v1

v2

(b)

�

��

� �

�

�

��

� �

�

i

Figure 3.12 � (a) A voltage-divider circuit and (b) the
voltage-divider circuit with current indicated.i
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If you desire a particular value of and is specified, an infinite
number of combinations of and yield the proper ratio. For example,
suppose that equals 15 V and is to be 5 V. Then and, from 
Eq. 3.22, we find that this ratio is  satisfied whenever Other fac-
tors that may enter into the selection of and hence include the
power losses that occur in dividing the source voltage and the effects of
connecting the voltage-divider circuit to other circuit components.

Consider connecting a resistor in parallel with as shown in
Fig. 3.13. The resistor acts as a load on the voltage-divider circuit. A
load on any circuit consists of one or more circuit elements that draw
power from the circuit.With the load connected, the expression for the
output voltage becomes

(3.23)

where

(3.24)

Substituting Eq. 3.24 into Eq. 3.23 yields

(3.25)

Note that Eq. 3.25 reduces to Eq. 3.22 as as it should.
Equation 3.25 shows that, as long as the voltage ratio is
essentially undisturbed by the addition of the load on the divider.

Another characteristic of the voltage-divider circuit of interest is the
sensitivity of the divider to the tolerances of the resistors. By tolerance we
mean a range of possible values. The resistances of commercially avail-
able resistors always vary within some percentage of their stated value.
Example 3.2 illustrates the effect of resistor tolerances in a voltage-
divider circuit.

vo >vsRL W R2,
RL : q ,

vo =

R2

R1[1 + (R2>RL)] + R2
 vs.

Req =

R2RL

R2 + RL
 .

vo =

Req

R1 + Req
 vs,

RL

RL

R2,RL

R2,R1,
R2 =

1
2R1.

v2>vs =
1
3v2vs

R2R1

vsv2,

vo

�

�

R1

RLR2

vs
�

�

Example 3.2 Analyzing the Voltage-Divider Circuit

The resistors used in the voltage-divider circuit
shown in Fig. 3.14 have a tolerance of Find
the maximum and minimum value of 

Figure 3.14 � The circuit for Example 3.2.

R1

R2

�

�

25 k�

100 k�

100 V

vo

�

�

vo.
;10%.

Solution
From Eq. 3.22, the maximum value of occurs when

is 10% high and is 10% low, and the minimum
value of occurs when is 10% low and is
10% high.Therefore

Thus, in making the decision to use 10% resistors in
this voltage divider, we recognize that the no-load
output voltage will lie between 76.60 and 83.02 V.

 vo(min) =

(100)(90)
90 + 27.5

= 76.60 V.

 vo(max) =

(100)(110)
110 + 22.5

= 83.02 V,

R1R2vo

R1R2

vo

Figure 3.13 � A voltage divider connected to a load RL.
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The Current-Divider Circuit
The current-divider circuit shown in Fig. 3.15 consists of two resistors con-
nected in parallel across a current source. The current divider is designed
to divide the current between and We find the relationship
between the current and the current in each resistor (that is, and ) by
directly applying Ohm’s law and Kirchhoff’s current law. The voltage
across the parallel resistors is

(3.26)

From Eq. 3.26,

(3.27)

(3.28)

Equations 3.27 and 3.28 show that the current divides between two resis-
tors in parallel such that the current in one resistor equals the current
entering the parallel pair multiplied by the other resistance and divided by
the sum of the resistors. Example 3.3 illustrates the use of the current-
divider equation.

 i2 =

R1

R1 + R2
 is.

 i1 =

R2

R1 + R2
 is,

v = i1R1 = i2R2 =

R1R2

R1 + R2
 is.

i2i1is

R2.R1is is i2i1R1 R2v

�

�

Example 3.3 Analyzing a Current-Divider Circuit

Find the power dissipated in the resistor shown
in Fig. 3.16.

Solution

First, we must find the current in the resistor by sim-
plifying the circuit with series-parallel reductions.
Thus, the circuit shown in Fig. 3.16 reduces to the
one shown in Fig. 3.17. We find the current by
using the formula for current division:

Note that is the current in the resistor in
Fig. 3.16. We now can further divide between the

and resistors.The current in the resistor is

and the power dissipated in the resistor is
p = (3.2)2(6) = 61.44 W.

6 Æ

 i6 =

4
6 + 4

(8) = 3.2 A,

6 Æ4 Æ6 Æ

io

1.6 Æio

 io =

16
16 + 4

(10) = 8 A.

io

6 Æ

Figure 3.16 � The circuit for Example 3.3.

Figure 3.17 � A simplification of the circuit shown in Fig. 3.16.

16 � 4 �10 A io

4 �16 � 6 �

1.6 �

10 A

Figure 3.15 � The current-divider circuit.
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Objective 2—Know how to design simple voltage-divider and current-divider circuits

3.2 a) Find the no-load value of in the 
circuit shown.

b) Find when is 

c) How much power is dissipated in the 
resistor if the load terminals are accidentally
short-circuited?

d) What is the maximum power dissipated in
the resistor?

Answer: (a) 150 V;

(b) 133.33 V;

(c) 1.6 W;

(d) 0.3 W.

�

�

25 k�

75 k�

200 V

vo

�

�

RL

75 kÆ

25 kÆ

150 kÆ.RLvo

vo 3.3 a) Find the value of R that will cause 4 A of
current to flow through the resistor in
the circuit shown.

b) How much power will the resistor R from
part (a) need to dissipate?

c) How much power will the current source
generate for the value of R from part (a)?

Answer: (a)

(b) 7680 W;

(c) 33,600 W.

30 Æ;

R

40 �

80 �

60 �

20 A

80 Æ

NOTE: Also try Chapter Problems 3.12, 3.14, and 3.16.

A S S E S S M E N T  P R O B L E M S

3.4 Voltage Division 
and Current Division

We can now generalize the results from analyzing the voltage divider cir-
cuit in Fig. 3.12 and the current-divider circuit in Fig. 3.15. The generaliza-
tions will yield two additional and very useful circuit analysis techniques
known as voltage division and current division. Consider the circuit shown
in Fig. 3.18.

The box on the left can contain a single voltage source or any other
combination of basic circuit elements that results in the voltage shown in
the figure. To the right of the box are n resistors connected in series. We
are interested in finding the voltage drop across an arbitrary resistor 
in terms of the voltage . We start by using Ohm’s law to calculate i, the
current through all of the resistors in series, in terms of the current and
the n resistors:

(3.29)

The equivalent resistance, is the sum of the n resistor values
because the resistors are in series, as shown in Eq. 3.6. We apply Ohm’s

Req,

i =

v

R1 + R2 +
Á

+ Rn
=

v

Req
 .

v
v

Rjvj

v

Rj

R1 R2

Rn Rn�1

v

�

�

vj

�

�

i
Circuit

Figure 3.18 � Circuit used to illustrate voltage division.
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� Voltage-division equation

law a second time to calculate the voltage drop across the resistor 
using the current i calculated in Eq. 3.29:

(3.30)

Note that we used Eq. 3.29 to obtain the right-hand side of Eq. 3.30.
Equation 3.30 is the voltage division equation. It says that the voltage
drop across a single resistor from a collection of series-connected
resistors is proportional to the total voltage drop across the set of series-
connected resistors. The constant of proportionality is the ratio of the sin-
gle resistance to the equivalent resistance of the series connected set of
resistors, or 

Now consider the circuit shown in Fig. 3.19. The box on the left can
contain a single current source or any other combination of basic circuit
elements that results in the current i shown in the figure. To the right of
the box are n resistors connected in parallel. We are interested in finding
the current through an arbitrary resistor in terms of the current i. We
start by using Ohm’s law to calculate , the voltage drop across each of the
resistors in parallel, in terms of the current i and the n resistors:

(3.31)

The equivalent resistance of n resistors in parallel, can be calculated
using Eq. 3.12. We apply Ohm’s law a second time to calculate the 
current through the resistor using the voltage calculated in 
Eq. 3.31:

(3.32)

Note that we used Eq. 3.31 to obtain the right-hand side of Eq. 3.32.
Equation 3.32 is the current division equation. It says that the current i
through a single resistor from a collection of parallel-connected resis-
tors is proportional to the total current i supplied to the set of parallel-
connected resistors. The constant of proportionality is the ratio of the
equivalent resistance of the parallel-connected set of resistors to the single
resistance, or Note that the constant of proportionality in the cur-
rent division equation is the inverse of the constant of proportionality in
the voltage division equation!

Example 3.4 uses voltage division and current division to solve for
voltages and currents in a circuit.

Req >Rj.

Rj

ij =

v

Rj
=

Req

Rj
 i.

vRj,ij

Req,

v = i(R1 7R2 7  . . . 7Rn) = iReq.

v
Rjij

Rj>Req.

v
Rjvj

vj = iRj =

Rj

Req
v.

Rj,vj

� Current-division equation

Rn�1 Rn v

�

�

Circuit R1 R2 Rj ij

i

Figure 3.19 � Circuit used to illustrate current division.
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Example 3.4 Using Voltage Division and Current Division to Solve a Circuit

Use current division to find the current and use
voltage division to find the voltage for the circuit
in Fig. 3.20.

Solution
We can use Eq. 3.32 if we can find the equivalent
resistance of the four parallel branches containing
resistors. Symbolically,

Applying Eq. 3.32,

We can use Ohm’s law to find the voltage drop
across the resistor:

v = (24)(2) = 48 V.

24 Æ

io =

6
24

(8 A) = 2 A.

 = 80 710 780 724 =

1
1
80

+

1
10

+

1
80

+

1
24

= 6 Æ.

 Req = (36 + 44) 710 7(40 + 10 + 30) 724

vo

io

Figure 3.20 � The circuit for Example 3.4.

This is also the voltage drop across the branch con-
taining the , the , and the resistors in
series.We can then use voltage division to determine
the voltage drop across the resistor given
that we know the voltage drop across the series-
connected resistors, using Eq. 3.30. To do this, we
recognize that the equivalent resistance of the
series-connected resistors is 

vo =

30
80

(48 V) = 18 V.

40 + 10 + 30 = 80 Æ:

30 Ævo

30 Æ10 Æ40 Æ

36 �

44 �

24 �8 A 10 �

40 �

10 �

30 �

v
�

�

vo

�

�

io

Objective 3—Be able to use voltage and current division to solve simple circuits

3.4 a) Use voltage division to determine the
voltage across the resistor in the
circuit shown.

b) Use from part (a) to determine the cur-
rent through the resistor, and use this
current and current division to calculate the
current in the resistor.

c) How much power is absorbed by the 
resistor?

50 Æ

30 Æ

40 Æ
vo

40 Ævo

Answer: (a) 20 V;

(b) 166.67 mA;

(c) 347.22 mW.

40 �

70 �

50 �

60 V
�

�
10 �20 � 30 �

vo� �

NOTE: Also try Chapter Problems 3.25 and 3.26.

A S S E S S M E N T  P R O B L E M

3.5 Measuring Voltage and Current
When working with actual circuits, you will often need to measure volt-
ages and currents. We will spend some time discussing several measuring
devices here and in the next section, because they are relatively simple to
analyze and offer practical examples of the current- and voltage-divider
configurations we have just studied.

An ammeter is an instrument designed to measure current; it is placed
in series with the circuit element whose current is being measured. A
voltmeter is an instrument designed to measure voltage; it is placed in par-
allel with the element whose voltage is being measured.An ideal ammeter
or voltmeter has no effect on the circuit variable it is designed to measure.
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Rv

Voltmeter
terminals

d
movement

Arsonval

�

�
vs R2

R1

V

A

�

�
vs R2

R1

V

A

Scale

Moveable
coil

Permanent
magnet

Restoring spring

Magnetic steel core

Pointer

RA
Ammeter
terminals

d’Arsonval
movement

Figure 3.21 � An ammeter connected to measure the
current in and a voltmeter connected to measure the
voltage across R2.

R1,

Figure 3.22 � A short-circuit model for the ideal amme-
ter, and an open-circuit model for the ideal voltmeter.

Figure 3.23 � A schematic diagram of a d’Arsonval
meter movement.

Figure 3.24 � A dc ammeter circuit.

Figure 3.25 � A dc voltmeter circuit.

That is, an ideal ammeter has an equivalent resistance of and func-
tions as a short circuit in series with the element whose current is being
measured. An ideal voltmeter has an infinite equivalent resistance and
thus functions as an open circuit in parallel with the element whose volt-
age is being measured. The configurations for an ammeter used to meas-
ure the current in and for a voltmeter used to measure the voltage in 
are depicted in Fig. 3.21.The ideal models for these meters in the same cir-
cuit are shown in Fig. 3.22.

There are two broad categories of meters used to measure continuous
voltages and currents: digital meters and analog meters. Digital meters meas-
ure the continuous voltage or current signal at discrete points in time, called
the sampling times.The signal is thus converted from an analog signal, which
is continuous in time, to a digital signal, which exists only at discrete instants
in time. A more detailed explanation of the workings of digital meters is
beyond the scope of this text and course. However, you are likely to see and
use digital meters in lab settings because they offer several advantages over
analog meters. They introduce less resistance into the circuit to which they
are connected, they are easier to connect, and the precision of the measure-
ment is greater due to the nature of the readout mechanism.

Analog meters are based on the d’Arsonval meter movement which
implements the readout mechanism. A d’Arsonval meter movement con-
sists of a movable coil placed in the field of a permanent magnet.When cur-
rent flows in the coil, it creates a torque on the coil, causing it to rotate and
move a pointer across a calibrated scale. By design, the deflection of the
pointer is directly proportional to the current in the movable coil.The coil is
characterized by both a voltage rating and a current rating. For example,
one commercially available meter movement is rated at 50 mV and 1 mA.
This means that when the coil is carrying 1 mA, the voltage drop across the
coil is 50 mV and the pointer is deflected to its full-scale position. A
schematic illustration of a d’Arsonval meter movement is shown in Fig. 3.23.

An analog ammeter consists of a d’Arsonval movement in parallel
with a resistor, as shown in Fig. 3.24. The purpose of the parallel resistor is
to limit the amount of current in the movement’s coil by shunting some of
it through An analog voltmeter consists of a d’Arsonval movement in
series with a resistor, as shown in Fig. 3.25. Here, the resistor is used to
limit the voltage drop across the meter’s coil. In both meters, the added
resistor determines the full-scale reading of the meter movement.

From these descriptions we see that an actual meter is nonideal; both the
added resistor and the meter movement introduce resistance in the circuit to
which the meter is attached. In fact, any instrument used to make physical
measurements extracts energy from the system while making measurements.
The more energy extracted by the instruments, the more severely the meas-
urement is disturbed.A real ammeter has an equivalent resistance that is not
zero, and it thus effectively adds resistance to the circuit in series with the ele-
ment whose current the ammeter is reading.A real voltmeter has an equiva-
lent resistance that is not infinite, so it effectively adds resistance to the
circuit in parallel with the element whose voltage is being read.

How much these meters disturb the circuit being measured depends
on the effective resistance of the meters compared with the resistance in
the circuit. For example, using the rule of , the effective resistance of
an ammeter should be no more than  of the value of the smallest
resistance in the circuit to be sure that the current being measured is
nearly the same with or without the ammeter. But in an analog meter, the
value of resistance is determined by the desired full-scale reading we wish
to make, and it cannot be arbitrarily selected. The following examples
illustrate the calculations involved in determining the resistance needed in
an analog ammeter or voltmeter. The examples also consider the resulting
effective resistance of the meter when it is inserted in a circuit.

1>10th
1>10th

RA.

R2R1

0 Æ
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Example 3.5 Using a d’Arsonval Ammeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in an ammeter with a full-scale reading of
10 mA. Determine 

b) Repeat (a) for a full-scale reading of 1 A.

c) How much resistance is added to the circuit
when the 10 mA ammeter is inserted to measure
current?

d) Repeat (c) for the 1 A ammeter.

Solution

a) From the statement of the problem, we know
that when the current at the terminals of the
ammeter is 10 mA, 1 mA is flowing through the
meter coil, which means that 9 mA must be
diverted through We also know that when
the movement carries 1 mA, the drop across its
terminals is 50 mV. Ohm’s law requires that

or

 RA = 50>9 = 5.555 Æ.

 9 * 10-3RA = 50 * 10-3,

RA.

RA.

b) When the full-scale deflection of the ammeter is
1 A, must carry 999 mA when the movement
carries 1 mA. In this case, then,

or

c) Let represent the equivalent resistance of the
ammeter. For the 10 mA ammeter,

or, alternatively,

d) For the 1 A ammeter

or, alternatively,

Rm =

(50)(50>999)

50 + (50>999)
= 0.050 Æ.

Rm =

50 mV
1 A

= 0.050 Æ,

Rm =

(50)(50>9)

50 + (50>9)
= 5 Æ.

Rm =

50 mV
10 mA

= 5 Æ,

Rm

RA = 50>999 L 50.05 mÆ.

999 * 10-3RA = 50 * 10-3,

RA

Example 3.6 Using a d’Arsonval Voltmeter

a) A 50 mV, 1 mA d’Arsonval movement is to be
used in a voltmeter in which the full-scale read-
ing is 150 V. Determine 

b) Repeat (a) for a full-scale reading of 5 V.

c) How much resistance does the 150 V meter
insert into the circuit?

d) Repeat (c) for the 5 V meter.

Solution

a) Full-scale deflection requires 50 mV across the
meter movement, and the movement has a resist-
ance of Therefore we apply Eq. 3.22 with

, , , and 

Solving for gives

Rv = 149,950 Æ.

Rv

50 * 10-3
=

50
Rv + 50

(150).

v2 = 50 mV:vs = 150R2 = 50R1 = Rv

50 Æ.

Rv.

b) For a full-scale reading of 5 V,

or

c) If we let represent the equivalent resistance
of the meter,

or, alternatively,

d) Then,

or, alternatively,

Rm = 4950 + 50 = 5000 Æ.

Rm =

5 V

10-3 A
= 5000 Æ,

Rm = 149,950 + 50 = 150,000 Æ.

Rm =

150 V

10-3 A
= 150,000 Æ,

Rm

Rv = 4950 Æ.

50 * 10-3
=

50
Rv + 50

(5),
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Objective 4—Be able to determine the reading of ammeters and voltmeters

3.6 a) Find the voltage across the resistor
in the circuit shown.

b) If the 150 V voltmeter of Example 3.6(a) is
used to measure the voltage, what will be
the reading?

Answer: (a) 50 V;

(b) 46.15 V.

v 75 k�

15 k�

60 V
�

�

�

�

75 kÆv3.5 a) Find the current in the circuit shown.

b) If the ammeter in Example 3.5(a) is used to
measure the current, what will it read?

Answer: (a) 10 mA;

(b) 9.524 mA.

100 �1 V

i
�

�

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 3.34 and 3.37.

3.6 Measuring Resistance—
The Wheatstone Bridge

Many different circuit configurations are used to measure resistance. Here
we will focus on just one, the Wheatstone bridge. The Wheatstone bridge
circuit is used to precisely measure resistances of medium values, that is, in
the range of to In commercial models of the Wheatstone
bridge, accuracies on the order of are possible. The bridge circuit
consists of four resistors, a dc voltage source, and a detector.The resistance
of one of the four resistors can be varied, which is indicated in Fig. 3.26 by
the arrow through The dc voltage source is usually a battery, which is
indicated by the battery symbol for the voltage source in Fig. 3.26. The
detector is generally a d’Arsonval movement in the microamp range and is
called a galvanometer. Figure 3.26 shows the circuit arrangement of the
resistances, battery, and detector where and are known resistors
and is the unknown resistor.

To find the value of we adjust the variable resistor until there is
no current in the galvanometer. We then calculate the unknown resistor
from the simple expression

(3.33)

The derivation of Eq. 3.33 follows directly from the application of
Kirchhoff’s laws to the bridge circuit. We redraw the bridge circuit as
Fig. 3.27 to show the currents appropriate to the derivation of Eq. 3.33.
When is zero, that is, when the bridge is balanced, Kirchhoff’s current
law requires that

(3.34)

(3.35) i2 = ix.

 i1 = i3,

ig

Rx =

R2

R1
R3.

R3Rx,
Rx

R3R1, R2,

v
R3.

;0.1%
1 MÆ.1 Æ

Rx

R1

R3

R2

v
�

�

ix

Rx

a b
ig

i1

R1

i3

R3

i2

R2

v
�

�

Figure 3.26 � The Wheatstone bridge circuit.

Figure 3.27 � A balanced Wheatstone bridge ( ).ig = 0
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Objective 5—Understand how a Wheatstone bridge is used to measure resistance

3.7 The bridge circuit shown is balanced when
, and 

The bridge is energized from a 5 V dc source.

a) What is the value of 

b) Suppose each bridge resistor is capable of
dissipating 250 mW. Can the bridge be left
in the balanced state without exceeding the
power-dissipating capacity of the resistors,
thereby damaging the bridge?

Rx?

R3 = 150 Æ.R1 = 100 Æ, R2 = 1000 Æ

Answer: (a)

(b) yes.

1500 Æ;

Rx

R1

R3

R2

v
�

�

NOTE: Also try Chapter Problem 3.51.

Now, because is zero, there is no voltage drop across the detector, and
therefore points a and b are at the same potential.Thus when the bridge is
balanced, Kirchhoff’s voltage law requires that

(3.36)
(3.37)

Combining Eqs. 3.34 and 3.35 with Eq. 3.36 gives

(3.38)

We obtain Eq. 3.33 by first dividing Eq. 3.38 by Eq. 3.37 and then solving
the resulting expression for :

(3.39)

from which

(3.40)

Now that we have verified the validity of Eq. 3.33, several comments
about the result are in order. First, note that if the ratio is unity, the
unknown resistor equals In this case, the bridge resistor must
vary over a range that includes the value For example, if the unknown
resistance were and could be varied from , the bridge
could never be balanced.Thus to cover a wide range of unknown resistors,
we must be able to vary the ratio In a commercial Wheatstone
bridge, and consist of decimal values of resistances that can be
switched into the bridge circuit. Normally, the decimal values are

so that the ratio can be varied from 0.001 to
1000 in decimal steps.The variable resistor is usually adjustable in inte-
gral values of resistance from 

Although Eq. 3.33 implies that can vary from zero to infinity, the
practical range of is approximately to Lower resistances are
difficult to measure on a standard Wheatstone bridge because of thermo-
electric voltages generated at the junctions of dissimilar metals and
because of thermal heating effects—that is, effects. Higher resistances
are difficult to measure accurately because of leakage currents. In other
words, if is large, the current leakage in the electrical insulation may be
comparable to the current in the branches of the bridge circuit.

Rx

i2R

1 MÆ.1 ÆRx

Rx

1 to 11,000 Æ.
R3

R2>R11, 10, 100, and 1000 Æ

R2R1

R2>R1.

0 to 100 ÆR31000 Æ
Rx.

R3R3.Rx

R2>R1

Rx =

R2

R1
R3.

R3

R1
=

Rx

R2
,

Rx

i1R3 = i2Rx.

 i1R1 = i2R2.
 i3R3 = ixRx,

ig
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Rm

Rx

R1

R3

R2

v
�

�

Rc

Rb Ra

a
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b
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R1 R2

c

R3

a b

c

R1 R2

R3

a b

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent
Circuits

The bridge configuration in Fig. 3.26 introduces an interconnection of
resistances that warrants further discussion. If we replace the galvano-
meter with its equivalent resistance , we can draw the circuit shown in
Fig. 3.28. We cannot reduce the interconnected resistors of this circuit to a
single equivalent resistance across the terminals of the battery if restricted
to the simple series or parallel equivalent circuits introduced earlier in this
chapter. The interconnected resistors can be reduced to a single equiva-
lent resistor by means of a delta-to-wye ( -to-Y) or pi-to-tee ( -to-T)
equivalent circuit.1

The resistors , and (or and ) in the circuit shown
in Fig. 3.28 are referred to as a delta ( ) interconnection because the
interconnection looks like the Greek letter It also is referred to as a
pi interconnection because the can be shaped into a without dis-
turbing the electrical equivalence of the two configurations. The electri-
cal equivalence between the and interconnections is apparent in
Fig. 3.29.

The resistors , and (or and ) in the circuit shown in
Fig. 3.28 are referred to as a wye (Y) interconnection because the inter-
connection can be shaped to look like the letter Y. It is easier to see the Y
shape when the interconnection is drawn as in Fig. 3.30.The Y configuration
also is referred to as a tee (T) interconnection because the Y structure can
be shaped into a T structure without disturbing the electrical equivalence of
the two structures. The electrical equivalence of the Y and the T configura-
tions is apparent from Fig. 3.30.

Figure 3.31 illustrates the -to-Y (or -to-T) equivalent circuit trans-
formation. Note that we cannot transform the interconnection into the
Y interconnection simply by changing the shape of the interconnections.
Saying the -connected circuit is equivalent to the Y-connected circuit
means that the configuration can be replaced with a Y configuration to
make the terminal behavior of the two configurations identical. Thus if
each circuit is placed in a black box, we can’t tell by external measure-
ments whether the box contains a set of -connected resistors or a set of
Y-connected resistors. This condition is true only if the resistance between
corresponding terminal pairs is the same for each box. For example, the
resistance between terminals a and b must be the same whether we use
the -connected set or the Y-connected set. For each pair of terminals in
the -connected circuit, the equivalent resistance can be computed using
series and parallel simplifications to yield

(3.41)

(3.42)

(3.43) Rca =

Rb(Rc + Ra)
Ra + Rb + Rc

= R1 + R3.

 Rbc =

Ra(Rb + Rc)
Ra + Rb + Rc

= R2 + R3,

 Rab =

Rc(Ra + Rb)
Ra + Rb + Rc

= R1 + R2,

¢

¢

¢

¢

¢

¢

p¢

RxR2, RmR3R1, Rm

p¢

p¢

¢.
¢

RxR3, RmRmR1, R2

p¢

Rm

1 and Y structures are present in a variety of useful circuits, not just resistive networks.
Hence the -to-Y transformation is a helpful tool in circuit analysis.¢

¢

Rc

Rb

a

c

b

Ra

a

c

b

R1 R2

R3

Figure 3.28 � A resistive network generated by a
Wheatstone bridge circuit.

Figure 3.29 � A configuration viewed as a 
configuration.p

¢

Figure 3.31 � The -to-Y transformation.¢

Figure 3.30 � A Y structure viewed as a T structure.
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Example 3.7 Applying a Delta-to-Wye Transform

Find the current and power supplied by the 40 V
source in the circuit shown in Fig. 3.32.

Figure 3.32 � The circuit for Example 3.7.

Solution
We are interested only in the current and power
drain on the 40 V source, so the problem has been
solved once we obtain the equivalent resistance
across the terminals of the source. We can find this
equivalent resistance easily after replacing either
the upper (100, 125, ) or the lower (40,
25, ) with its equivalent Y. We choose to
replace the upper We then compute the three ¢.

37.5 Æ
¢25 Æ¢

40 V
�

�

100 � 125 �

25 �

5 �

40 � 37.5 �

Y resistances, defined in Fig. 3.33, from Eqs. 3.44 to
3.46. Thus,

Substituting the Y-resistors into the circuit
shown in Fig. 3.32 produces the circuit shown in
Fig. 3.34. From Fig. 3.34, we can easily calculate the
resistance across the terminals of the 40 V source by
series-parallel simplifications:

The final step is to note that the circuit reduces to
an resistor across a 40 V source, as shown in
Fig. 3.35, from which it is apparent that the 40 V
source delivers 0.5 A and 20 W to the circuit.

Figure 3.33 � The equivalent Y resistors.

R1100 � 125 �

25 �

R3
R2

80 Æ

Req = 55 +

(50)(50)
100

= 80 Æ.

 R3 =

100 * 25
250

= 10 Æ.

 R2 =

125 * 25
250

= 12.5 Æ,

 R1 =

100 * 125
250

= 50 Æ,

Straightforward algebraic manipulation of Eqs. 3.41–3.43 gives values
for the Y-connected resistors in terms of the -connected resistors
required for the -to-Y equivalent circuit:

(3.44)

(3.45)

(3.46)

Reversing the -to-Y transformation also is possible. That is, we can start
with the Y structure and replace it with an equivalent structure. The
expressions for the three -connected resistors as functions of the three
Y-connected resistors are

(3.47)

(3.48)

(3.49)

Example 3.7 illustrates the use of a -to-Y transformation to simplify
the analysis of a circuit.

¢

 Rc =

R1R2 + R2R3 + R3R1

R3
 .

 Rb =

R1R2 + R2R3 + R3R1

R2
 ,

 Ra =

R1R2 + R2R3 + R3R1

R1
 ,

¢

¢

¢

 R3 =

Ra Rb

Ra + Rb + Rc
 .

 R2 =

Rc Ra

Ra + Rb + Rc
 ,

 R1 =

Rb Rc

Ra + Rb + Rc
 ,

¢

¢
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Figure 3.34 � A transformed version of the circuit shown in
Fig. 3.32.

40 V
�

�

5 �

10 � 12.5 �

50 �

40 � 37.5 �

Figure 3.35 � The final step in the simplification of the circuit
shown in Fig. 3.32.

80 �i40 V
�

�

Practical Perspective
Resistive Touch Screens
Begin by analyzing the resistive grid in the x-direction. We model the
resistance of the grid in the x-direction with the resistance Rx, as shown in
Fig. 3.34. The x-location where the screen is touched is indicated by the
arrow. The resulting voltage drop across the resistance Rx is Vx. Touching
the screen effectively divides the total resistance, Rx, into two separate
resistances Rx and (1 )Rx .

From the figure you can see that when the touch is on the far right side
of the screen, 0, and Vx 0. Similarly, when the touch is on the far
left side of the screen, 1, and Vx Vs . If the touch is in between the
two edges of the screen, the value of is between 0 and 1 and the two
parts of the resistance Rx form a voltage divider. We can calculate the volt-
age Vx using the equation for voltage division:

.

We can find the value of , which represents the location of the touch
point with respect the far right side of the screen, by dividing the voltage

a

Vx =

aRx

aRx + (1 - a)Rx
Vs =

aRx

Rx
 Vs = aVs

a

==a

==a

- aa

a

Objective 6—Know when and how to use delta-to-wye equivalent circuits

3.8 Use a Y-to- transformation to find the voltage 
in the circuit shown.

Answer: 35 V.

v¢ 28 �

20 � 10 �

5 � 105 �2 A v

�

�

NOTE: Also try Chapter Problems 3.60, 3.62, and 3.63.

A S S E S S M E N T  P R O B L E M



74 Simple Resistive Circuits

across the grid resistance starting at the touch point, Vx, by the voltage
applied across the entire resistive grid in the x-direction, Vs : 

Now we want to use the value of to determine the x-coordinate of the touch
location on the screen. Typically the screen coordinates are specified in terms
of pixels (short for “picture elements”). For example, the screen of a mobile
phone would be divided into a grid of pixels with px pixels in the x-direction,
and py pixels in the y-direction. Each pixel is identified by its x-location (a
number between 0 and px 1) and its y-location (a number between 0 and
py 1). The pixel with the location (0, 0) is in the upper left hand corner of
the screen, as shown in Fig. 3.37.

-

-

a

a =

Vx

Vs
.

(0, 0) (px� 1, 0)

(0, py� 1) (px� 1, py� 1)

Figure 3.37 � The pixel coordinates of a screen
with px pixels in the x-direction and py pixels in the
y-direction.

�

�

�

�

(1 – α)Rx
αRx

Rx

Vs

Vx

Figure 3.36 � The resistive touch screen grid
in the x-direction.

Since represents the location of the touch point with respect to the
right side of the screen, (1 ) represents the location of the touch point
with respect to the left side of the screen. Therefore, the x-coordinate of the
pixel corresponding to the touch point is

Note that the value of x is capped at (px 1).
Using the model of the resistive screen grid in the y-direction shown in

Fig. 3.38, it is easy to show that the voltage created by a touch at the arrow
is given by

Vy = bVs.

-

x = (1 - a)px.

a-

a
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�

�

(1 – β)Ry

βRy

Ry
Vs

Vy

�

�

Figure 3.38 � The resistive touch screen grid in the y-direction.

Summary

• Series resistors can be combined to obtain a single
equivalent resistance according to the equation

(See page 58.)

• Parallel resistors can be combined to obtain a single
equivalent resistance according to the equation

When just two resistors are in parallel, the equation for
equivalent resistance can be simplified to give

(See pages 59–60.)

• When voltage is divided between series resistors, as
shown in the figure, the voltage across each resistor can
be found according to the equations

(See page 61.)

 v2 =

R2

R1 + R2
vs.

 v1 =

R1

R1 + R2
vs,

Req =

R1R2

R1 + R2
 .

1
Req

= a
k

i= 1
 

1
Ri

=

1
R1

+

1
R2

+
Á

+

1
Rk

 .

Req = a
k

i=1
Ri = R1 + R2 +

Á
+ Rk.

• When current is divided between parallel resistors, as
shown in the figure, the current through each resistor
can be found according to the equations

(See page 63.)

• Voltage division is a circuit analysis tool that is used to
find the voltage drop across a single resistance from a
collection of series-connected resistances when the volt-
age drop across the collection is known:

where is the voltage drop across the resistance 
and is the voltage drop across the series-connected
resistances whose equivalent resistance is (See
page 65.)

• Current division is a circuit analysis tool that is used to
find the current through a single resistance from a col-
lection of parallel-connected resistances when the cur-
rent into the collection is known:

Ij =

Req

Rj
i,

Req.
v

Rjvj

vj =

Rj

Req
v,

 i2 =

R1

R1 + R2
is.

 i1 =

R2

R1 + R2
is.

R1

R2

vs

v1

v2

�

��

� �

�

is i2i1 R1 R2

Therefore, the y-coordinate of the pixel corresponding to the touch point is

where the value of y is capped at (py 1). (See Problem 3.72.)

NOTE: Assess your understanding of the Practical Perspective by solving Chapter
Problems 3.72–3.75.

-

y = (1 - b)py,
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Problems

Sections 3.1–3.2

3.1 a) Show that the solution of the circuit in Fig. 3.9
(see Example 3.1) satisfies Kirchhoff’s current
law at junctions x and y.

b) Show that the solution of the circuit in Fig. 3.9
satisfies Kirchhoff’s voltage law around every
closed loop.

3.2 a) Find the power dissipated in each resistor in the
circuit shown in Fig. 3.9.

b) Find the power delivered by the 120 V source.

c) Show that the power delivered equals the power
dissipated.

Figure P3.3

6 k� 7 k�18 V

5 k�8 k�

(a)

�

�

90 V 30 mA40 �
25 �

300 �15 �
35 � 10 �

(c)

�

�
100 � 70 �

90 � 80 �50 �

(d)

300 �
200 �

500 �

27 V
1200 �800 �

(b)

�

�

3.3 For each of the circuits shown in Fig. P3.3,
a) identify the resistors connected in series,

b) simplify the circuit by replacing the series-
connected resistors with equivalent resistors.

3.4 For each of the circuits shown in Fig. P3.4,
a) identify the resistors connected in parallel,
b) simplify the circuit by replacing the parallel-

connected resistors with equivalent resistors.

3.5 For each of the circuits shown in Fig. P3.3,
a) find the equivalent resistance seen by the

source,

b) find the power developed by the source.

PSPICE

MULTISIM

PSPICE

MULTISIM

where is the current through the resistance and i is
the current into the parallel-connected resistances
whose equivalent resistance is (See page 65.)

• A voltmeter measures voltage and must be placed in par-
allel with the voltage being measured.An ideal voltmeter
has infinite internal resistance and thus does not alter the
voltage being measured. (See page 66.)

• An ammeter measures current and must be placed in
series with the current being measured.An ideal amme-
ter has zero internal resistance and thus does not alter
the current being measured. (See page 66.)

• Digital meters and analog meters have internal resist-
ance, which influences the value of the circuit variable
being measured. Meters based on the d’Arsonval meter

Req.

Rjij movement deliberately include internal resistance as a
way to limit the current in the movement’s coil. (See
page 67.)

• The Wheatstone bridge circuit is used to make precise
measurements of a resistor’s value using four resistors,
a dc voltage source, and a galvanometer. A Wheatstone
bridge is balanced when the resistors obey Eq. 3.33,
resulting in a galvanometer reading of 0 A. (See 
page 69.)

• A circuit with three resistors connected in a configu-
ration (or a configuration) can be transformed into an
equivalent circuit in which the three resistors are Y con-
nected (or T connected). The -to-Y transformation is
given by Eqs. 3.44–3.46; the Y-to- transformation is
given by Eqs. 3.47–3.49. (See page 72.)

¢

¢

p

¢
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Figure P3.8

24 �

12 �

(a) (b) (c)

60 �

90 �

a

b

a
a

b
b

6 k� 8 k�

4 k� 1200 � 320 �

480 �720 �
2 k�

5.2 k�

Figure P3.4

�

�
36 � 18 �18 V

24 �

(a) (b)

(c) (d)

�

�
100 k� 150 k� 750 �

600 �

900 � 500 � 1.5 k� 3 k�

2 k�
65 V

60 k�60 V

90 k�

50 k�

75 k�

200 � 180 �120 �30 mA

280 �

210 �

��

3.6 For each of the circuits shown in Fig. P3.4,
a) find the equivalent resistance seen by 

the source,

b) find the power developed by the source.

3.7 a) In the circuits in Fig. P3.7(a)–(d), find the equiv-
alent resistance seen by the source.

b) For each circuit find the power delivered by the
source.

PSPICE

MULTISIM

Figure P3.7

50 �30 V

20 �

(a)

30 �

45 �

15 � 60 �
�

�

�

�

25 �

10 �

50 �
40 �

100 �

50 mA

150 �

500 �
600 �

300 �250 �

750 �500 �1.8 k�

250 �

300 � 750 �

2 k� 1 k�

20 V

1.2 k� 2.5 k�

1 k�

80 mA

20 �

(b)

(d)(c)

60 �

20 �

75 �
60 �

12 �

30 �

18 �

3 k�

3.8 Find the equivalent resistance for each of the
circuits in Fig. P3.8.

Rab 3.9 Find the equivalent resistance for each of the
circuits in Fig. P3.9.

Rab
PSPICE

MULTISIM

PSPICE

MULTISIM
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3.10 a) Find an expression for the equivalent resistance
of two resistors of value R in series.

b) Find an expression for the equivalent resistance
of n resistors of value R in series.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 
using two resistors with the same value from
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 
using a minimum number of identical resistors
from Appendix H.

3.11 a) Find an expression for the equivalent resistance
of two resistors of value R in parallel.

b) Find an expression for the equivalent resistance
of n resistors of value R in parallel.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 
using two resistors with the same value from
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 
using a minimum number of identical resistors
from Appendix H.

Section 3.3

3.12 a) Calculate the no-load voltage for the voltage-
divider circuit shown in Fig. P3.12.

b) Calculate the power dissipated in and 
c) Assume that only 0.5 W resistors are available.

The no-load voltage is to be the same as in (a).
Specify the smallest ohmic values of and R2.R1

R2.R1

vo

4 kÆ

5 kÆ

4 kÆ

3 kÆ

Figure P3.12

3.13 In the voltage-divider circuit shown in Fig. P3.13,
the no-load value of is 4 V. When the load resist-
ance is attached across the terminals a and b,
drops to 3 V. Find 

Figure P3.13

3.14 The no-load voltage in the voltage-divider circuit
shown in Fig. P3.14 is 8 V. The smallest load resistor
that is ever connected to the divider is When
the divider is loaded, is not to drop below 7.5 V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical values
of and 

b) Assume the power ratings of commercially
available resistors are , , , 1, and 2 W.
What power rating would you specify?

1>41>81>16

R2.R1

vo

3.6 kÆ.

R2 RL

40 �

20 V
�

�
vo

�

�

a

b

RL.
voRL

vo

vo

�

�

4.7 k�R1

3.3 k�R2

160 V
�

�

DESIGN
PROBLEM

PSPICE

MULTISIM

DESIGN
PROBLEM

PSPICE

MULTISIM

PSPICE

MULTISIM

Figure P3.9

26 �

1 k� 250 � 25 �

10 �

28 �

20 �

30 �

18 �

500 �

36 �

2 k� 50 � 24 � 16 � 60 �
40 �

750 �
1.5 k�

30 � 15 � 18 �
20 � 10 �18 �

10 �

6 �

4 � 16 � 12 �

14 �

a

b

a

b

a

b

a

b

(a)

(c)
(d)

(b)
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Figure P3.14

3.15 Assume the voltage divider in Fig. P3.14 has been
constructed from resistors.What is the smallest
resistor from Appendix H that can be used as 
before one of the resistors in the divider is operat-
ing at its dissipation limit?

3.16 Find the power dissipated in the resistor in the
current divider circuit in Fig. P3.16.

Figure P3.16

3.17 For the current divider circuit in Fig. P3.17 calculate

a) and .

b) the power dissipated in the resistor.

c) the power developed by the current source.

Figure P3.17

3.18 Specify the resistors in the current divider circuit in
Fig. P3.18 to meet the following design criteria:

Figure P3.18

3.19 There is often a need to produce more than one
voltage using a voltage divider. For example, the
memory components of many personal computers
require voltages of , 5 V, and all with
respect to a common reference terminal. Select the
values of , , and in the circuit in Fig. P3.19 to
meet the following design requirements:

R3R2R1

+12 V,-12 V

ig vg

�

�

i1 R1 i 2 R2 i 3 R3 i4 R4

 i3 = 2i2; and i4 =  4i1.

 ig = 50 mA; vg = 25 V; i1 = 0.6i2;

90 �

6 �

10 �

10 �2.4 A20 � vo

�

�

io

6 Æ

voio

10 � 5 � 12 �10 A

8 �6 �

5 Æ

RL

1 W

R2 RL

R1

40 V
�

�
vo

�

�

a) The total power supplied to the divider circuit
by the 24 V source is 80 W when the divider is
unloaded.

b) The three voltages, all measured with respect to
the common reference terminal, are ,

, and 

Figure P3.19

3.20 a) The voltage divider in Fig. P3.20(a) is loaded
with the voltage divider shown in Fig. P3.20(b);
that is, a is connected to , and b is connected to

Find 

b) Now assume the voltage divider in Fig. P3.20(b)
is connected to the voltage divider in
Fig. P3.20(a) by means of a current-controlled
voltage source as shown in Fig. P3.20(c). Find 

c) What effect does adding the dependent-voltage
source have on the operation of the voltage
divider that is connected to the 380 V source?

Figure P3.20

3.21 A voltage divider like that in Fig. 3.13 is to be
designed so that at no load ( ) and

at full load ( ). Note that by defini-
tion 

a) Show that

 R1 =

k - a

ak
Ro

a 6 k 6 1.
RL =  Rovo = avs

RL = qvo = kvs

40 k�

20 k�

30,000 i30 k�180 V
�

�

10 k�

i
vo

�

�

�

�

(c)

30 k�180 V
�

�

a

b

10 k�

i

(a)

40 k�

a�

b�

20 k�

vo

�

�

(b)

vo.

vo.b¿.
a¿

24 V

Common

R1

v1

v2

v3

R2

R3

�

�

v3 = -12 V.v2 = 5 V
v1 = 12 V

PSPICE

MULTISIM

DESIGN
PROBLEM

PSPICE

MULTISIM

DESIGN
PROBLEM

PSPICE

MULTISIM

DESIGN
PROBLEM
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and

b) Specify the numerical values of and if
, , and 

c) If , specify the maximum power that
will be dissipated in and 

d) Assume the load resistor is accidentally short
circuited. How much power is dissipated in 
and ?

3.22 a) Show that the current in the kth branch of the
circuit in Fig. P3.22(a) is equal to the source 
current times the conductance of the kth branch
divided by the sum of the conductances, that is,

b) Use the result derived in (a) to calculate the cur-
rent in the resistor in the circuit in
Fig. P3.22(b).

Figure P3.22

Section 3.4

3.23 Look at the circuit in Fig. P3.3(a).

a) Use voltage division to find the voltage across
the resistor, positive at the top.

b) Use the result from part (a) and voltage division
to find the voltage across the resistor, posi-
tive on the left.

3.24 Look at the circuit in Fig. P3.3(d).

a) Use current division to find the current in the
resistor from left to right.

b) Use the result from part (a) and current division
to find the current in the resistor from top
to bottom.

70 Æ

50 Æ

5 kÆ

6 kÆ

(b)

0.5 �40 A 5 � 20 � 40 �10 �8 �

(a)

ig R1 RNR3R2 Rkik

io

5 Æ

ik =

igGk

G1 + G2 + G3 +
Á

+ Gk +
Á

+ GN
 .

ig

R2

R1

R2.R1

vs = 60 V

Ro = 34 kÆ.a = 0.80k = 0.85
R2R1

 R2 =

k - a

a(1 - k)
Ro.

3.25 Look at the circuit in Fig. P3.7(a).

a) Use voltage division to find the voltage drop
across the resistor, positive at the left.

b) Using your result from (a), find the current flow-
ing in the resistor from left to right.

c) Starting with your result from (b), use current
division to find the current in the resistor
from top to bottom.

d) Using your result from part (c), find the voltage
drop across the resistor, positive at the top.

e) Starting with your result from (d), use voltage
division to find the voltage drop across the  
resistor, positive at the top.

3.26 Attach a 450 mA current source between the termi-
nals a–b in Fig. P3.9(a), with the current arrow
pointing up.

a) Use current division to find the current in the 
36 resistor from top to bottom.

b) Use the result from part (a) to find the voltage
across the 36 resistor, positive at the top.

c) Use the result from part (b) and voltage division
to find the voltage across the 18 resistor,
positive at the top.

d) Use the result from part (c) and voltage division
to find the voltage across the 10 resistor,
positive at the top.

3.27 Attach a 6 V voltage source between the terminals
a–b in Fig. P3.9(b), with the positive terminal at 
the top.

a) Use voltage division to find the voltage across
the 4 resistor, positive at the top.

b) Use the result from part (a) to find the current
in the 4 resistor from left to right.

c) Use the result from part (b) and current division
to find the current in the 16 resistor from left
to right.

d) Use the result from part (c) and current division
to find the current in the 10 resistor from top
to bottom.

e) Use the result from part (d) to find the voltage
across the 10 resistor, positive at the top.

f) Use the result from part (e) and voltage division
to find the voltage across the 18 resistor, posi-
tive at the top.

3.28 a) Find the voltage in the circuit in Fig. P3.28
using voltage and/or current division.

vx

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

60 Æ

50 Æ

50 Æ

25 Æ

25 Æ

PSPICE

MULTISIM

PSPICE

MULTISIM
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b) Replace the 18 V source with a general voltage
source equal to Assume is positive at the
upper terminal. Find as a function of 

Figure P3.28

3.29 Find in the circuit in Fig. P3.29 using voltage
and/or current division.

Figure P3.29

3.30 Find and in the circuit in Fig. P3.30 using volt-
age and/or current division.

Figure P3.30

3.31 For the circuit in Fig. P3.31, find and then use cur-
rent division to find .

Figure P3.31

3.32 For the circuit in Fig. P3.32, calculate and 
using current division.i2

i1

io

ig

v1

�

�3 V

90 � 60 �

30 �
75 �

40 �

150 �
v2

�

�

�

�

v2v1

2 k�

10 k�

vo� �
18 mA

15 k�

3 k�

12 k�

4 k�

vo

vx� �

2 k�

6 k�

9 k�

3 k�

18 V
�

�

Vs.vx

VsVs.
Figure P3.32

3.33 A d’Arsonval ammeter is shown in Fig. P3.33.

a) Calculate the value of the shunt resistor, RA, to
give a full-scale current reading of 5 A.

b) How much resistance is added to a circuit when
the 5 A ammeter in part (a) is inserted to meas-
ure current?

c) Calculate the value of the shunt resistor, RA, to
give a full-scale current reading of 100 mA.

d) How much resistance is added to a circuit when
the 100 mA ammeter in part (c) is inserted to
measure current?

Figure P3.33

3.34 A shunt resistor and a 50 mV, 1 mA d’Arsonval
movement are used to build a 5 A ammeter. A
resistance of is placed across the terminals
of the ammeter. What is the new full-scale range of
the ammeter?

3.35 A d’Arsonval movement is rated at 2 mA and
200 mV. Assume 1 W precision resistors are avail-
able to use as shunts. What is the largest full-scale-
reading ammeter that can be designed using a
single resistor? Explain.

3.36 a) Show for the ammeter circuit in Fig. P3.36 that
the current in the d’Arsonval movement is
always of the current being measured.

b) What would the fraction be if the 100 mV, 2 mA
movement were used in a 5 A ammeter?

c) Would you expect a uniform scale on a dc
d’Arsonval ammeter?

1>25th
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Figure P3.36

3.37 A d’Arsonval voltmeter is shown in Fig. P3.37. Find
the value of for each of the following full-scale
readings: (a) 50 V, (b) 5 V, (c) 250 mV, and (d) 25 mV.

Figure P3.37

3.38 Suppose the d’Arsonval voltmeter described in
Problem 3.37 is used to measure the voltage across
the resistor in Fig. P3.38.

a) What will the voltmeter read?

b) Find the percentage of error in the voltmeter
reading if

Figure P3.38

3.39 The ammeter in the circuit in Fig. P3.39 has a resist-
ance of Using the definition of the percent-
age error in a meter reading found in Problem 3.38,
what is the percentage of error in the reading of
this ammeter?

Figure P3.39

60 �

20 �

10 �

Ammeter

50 V
�

�

0.1 Æ.

15 � 45 �

io

50 mA

% error = ¢measured value
true value

 -1≤ * 100.

45 Æ

20 mV
1 mA

Voltmeter

Rv

Rv

100 mV, 2 mA

(25/12) �

imeas

im

3.40 The ammeter described in Problem 3.39 is used to
measure the current in the circuit in Fig. P3.38.What
is the percentage of error in the measured value?

3.41 The elements in the circuit in Fig.2.24 have the follow-
ing values: , , ,

, , , and 

a) Calculate the value of in microamperes.

b) Assume that a digital multimeter, when used as a
dc ammeter, has a resistance of If the
meter is inserted between terminals b and 2 to
measure the current , what will the meter read?

c) Using the calculated value of in (a) as the cor-
rect value, what is the percentage of error in the
measurement?

3.42 You have been told that the dc voltage of a power
supply is about 350 V.When you go to the instrument
room to get a dc voltmeter to measure the power
supply voltage, you find that there are only two 
dc voltmeters available. One voltmeter is rated 
300 V full scale and has a sensitivity of The
other voltmeter is rated 150 V full scale and has a
sensitivity of (Hint: you can find the
effective resistance of a voltmeter by multiplying its
rated full-scale voltage and its sensitivity.)

a) How can you use the two voltmeters to check
the power supply voltage?

b) What is the maximum voltage that can be
measured?

c) If the power supply voltage is 320 V, what will
each voltmeter read?

3.43 Assume that in addition to the two voltmeters
described in Problem 3.42, a precision resis-
tor is also available.The resistor is connected
in series with the series-connected voltmeters. This
circuit is then connected across the terminals of the
power supply. The reading on the 300 V meter is
205.2 V and the reading on the 150 V meter is 
136.8 V. What is the voltage of the power supply?

3.44 The voltmeter shown in Fig. P3.44(a) has a full-
scale reading of 500 V. The meter movement is
rated 100 mV and 0.5 mA. What is the percentage
of error in the meter reading if it is used to measure
the voltage in the circuit of Fig. P3.44(b)?

Figure P3.44
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3.45 The voltage-divider circuit shown in Fig. P3.45 is
designed so that the no-load output voltage is 
of the input voltage. A d’Arsonval voltmeter having
a sensitivity of and a full-scale rating of
200 V is used to check the operation of the circuit.

a) What will the voltmeter read if it is placed across
the 180 V source?

b) What will the voltmeter read if it is placed across
the resistor?

c) What will the voltmeter read if it is placed across
the resistor?

d) Will the voltmeter readings obtained in parts (b)
and (c) add to the reading recorded in part (a)?
Explain why or why not.

Figure P3.45

3.46 Assume in designing the multirange voltmeter
shown in Fig. P3.46 that you ignore the resistance of
the meter movement.

a) Specify the values of , , and 

b) For each of the three ranges, calculate the percent-
age of error that this design strategy produces.

Figure P3.46

3.47 The circuit model of a dc voltage source is shown in
Fig. P3.47. The following voltage measurements are
made at the terminals of the source: (1) With the
terminals of the source open, the voltage is meas-
ured at 50 mV, and (2) with a resistor con-
nected to the terminals, the voltage is measured at
48.75 mV. All measurements are made with a digi-
tal voltmeter that has a meter resistance of 10 MÆ.

15 MÆ

100 V

Common

50 mV
  2 mA

R1

1 V
R3

10 V
R2

R3.R2R1

180 V
�

�

20 k�

70 k� vo

�

�

20 kÆ

70 kÆ

100 Æ>V
7>9ths

a) What is the internal voltage of the source ( ) in
millivolts?

b) What is the internal resistance of the source ( )
in kilo-ohms?

Figure P3.47

3.48 Design a d’Arsonval voltmeter that will have the
three voltage ranges shown in Fig. P3.48.

a) Specify the values of , , and 

b) Assume that a resistor is connected
between the 150 V terminal and the common
terminal. The voltmeter is then connected to an
unknown voltage using the common terminal
and the 300 V terminal. The voltmeter reads
288 V. What is the unknown voltage?

c) What is the maximum voltage the voltmeter in (b)
can measure?

Figure P3.48

3.49 A resistor is connected from the 200 V ter-
minal to the common terminal of a dual-scale volt-
meter, as shown in Fig. P3.49(a). This modified
voltmeter is then used to measure the voltage
across the resistor in the circuit in
Fig. P3.49(b).

a) What is the reading on the 500 V scale of 
the meter?

b) What is the percentage of error in the measured
voltage?
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Figure P3.49

Section 3.6

3.50 Assume the ideal voltage source in Fig. 3.26 is
replaced by an ideal current source. Show that
Eq. 3.33 is still valid.

3.51 The bridge circuit shown in Fig. 3.26 is energized
from a 24 V dc source. The bridge is balanced when

, , and 

a) What is the value of 

b) How much current (in milliamperes) does the dc
source supply?

c) Which resistor in the circuit absorbs the most
power? How much power does it absorb?

d) Which resistor absorbs the least power? How
much power does it absorb?

3.52 Find the power dissipated in the resistor in the
circuit in Fig. P3.52.

Figure P3.52

750 �

5 k�

15 k� 25 k�

5 k�3 k�

�

�
192 V

3 kÆ

Rx?

R3 = 750 Æ.R2 = 1000 ÆR1 = 500 Æ

300 k�

500 V

200 V

199.95 k�

600 k�

Common

50 mV
1 mA

40 k�

360 k�

500 V

Common

Modified
voltmeter

600 V

(a)

(b)

�

�

3.53 Find the detector current in the unbalanced
bridge in Fig. P3.53 if the voltage drop across the
detector is negligible.

Figure P3.53

3.54 In the Wheatstone bridge circuit shown in Fig. 3.26,
the ratio can be set to the following values:
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor 
can be varied from , in increments of

An unknown resistor is known to lie between
What should be the setting of the 

ratio so that the unknown resistor can be measured
to four significant figures?

Section 3.7

3.55 Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the lower (25, 37.5, and 40 ) with its
equivalent Y.

3.56 Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the Y on the left (25, 40, and 100 ) with
its equivalent .

3.57 Find the current and power supplied by the 40 V
source in the circuit for Example 3.7 (Fig. 3.32) by
replacing the Y on the right (25, 37.5, and 125 )
with its equivalent .

3.58 a) Find the equivalent resistance in the circuit
in Fig. P3.58 by using a Y-to- transformation
involving resistors , , and 

b) Repeat (a) using a -to-Y transformation involv-
ing resistors , , and 

c) Give two additional -to-Y or Y-to- transfor-
mations that could be used to find 

Figure P3.58
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3.59 Use a -to-Y transformation to find the voltages 
and in the circuit in Fig. P3.59.

Figure P3.59

3.60 a) Find the resistance seen by the ideal voltage
source in the circuit in Fig. P3.60.

b) If equals 400 V, how much power is dissi-
pated in the resistor?

Figure P3.60

3.61 Use a Y-to- transformation to find (a) (b) 
(c) and (d) the power delivered by the ideal cur-
rent source in the circuit in Fig. P3.61.

Figure P3.61

3.62 Find and the power dissipated in the resis-
tor in the circuit in Fig. P3.62.

Figure P3.62
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31 Æ
vab

15 �
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40 � 50 �24 V v1

�

�

v2

�

�

�

�

v2

v1¢ 3.63 For the circuit shown in Fig. P3.63, find (a) (b) ,
(c) , and (d) the power supplied by the voltage
source.

Figure P3.63

3.64 Show that the expressions for conductances as
functions of the three Y conductances are

where

3.65 Derive Eqs. 3.44–3.49 from Eqs. 3.41–3.43. The fol-
lowing two hints should help you get started in the
right direction:

1) To find as a function of , , and , first
subtract Eq. 3.42 from Eq. 3.43 and then add
this result to Eq. 3.41. Use similar manipula-
tions to find and as functions of , ,
and 

2) To find as a function of , , and , take
advantage of the derivations obtained by hint
(1), namely, Eqs. 3.44–3.46. Note that these equa-
tions can be divided to obtain

and

Now use these ratios in Eq. 3.43 to eliminate 
and Use similar manipulations to find and

as functions of , , and 

Sections 3.1–3.7

3.66 Resistor networks are sometimes used as volume-
control circuits. In this application, they are
referred to as resistance attenuators or pads.

R3.R2R1Rc

RaRc.
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=
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A typical fixed-attenuator pad is shown in 
Fig. P3.66. In designing an attenuation pad, the
circuit designer will select the values of and 
so that the ratio of and the resistance seen
by the input voltage source both have a speci-
fied value.

a) Show that if , then

b) Select the values of and so that
and 

c) Choose values from Appendix H that are clos-
est to and from part (b). Calculate the
percent error in the resulting values for and

if these new resistor values are used.

Figure P3.66

3.67 a) The fixed-attenuator pad shown in Fig. P3.67 is
called a bridged tee. Use a Y-to- transforma-
tion to show that if 

b) Show that when , the voltage ratio 
equals 0.50.

Figure P3.67

3.68 The design equations for the bridged-tee attenuator
circuit in Fig. P3.68 are

 R2 =

2RR2
L

3R2
- R2

L
 ,

Fixed-attenuator pad

R

R

R

RLR

a

b

vi

�

�

c

d

vo

�

�

vo>viR = RL

R = RL.Rab = RL

¢

R1

Attenuator

R1 R1

R1

R2 RL

a

b

vi

�

�

c

d

vo

�

�

v0>v1

Rab

R2R1

vo >vi = 0.5.Rab = RL = 300 Æ
R2R1

 
vo

vi
=

R2

2R1 + R2 + RL
 .

 R2
L = 4R1(R1 + R2),

Rab = RL

Rab

vo >vi

R2R1
when has the value just given.

a) Design a fixed attenuator so that 
when 

b) Assume the voltage applied to the input of the
pad designed in (a) is 42 V. Which resistor in the
pad dissipates the most power?

c) How much power is dissipated in the resistor in
part (b)?

d) Which resistor in the pad dissipates the least
power?

e) How much power is dissipated in the resistor in
part (d)?

Figure P3.68

3.69 a) For the circuit shown in Fig. P3.69 the bridge is
balanced when Show that if 
the bridge output voltage is approximately

b) Given , , , and
, what is the approximate bridge out-

put voltage if is 3% of 

c) Find the actual value of in part (b).

Figure P3.69
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show that the percent error in the approxima-
tion of in Problem 3.69 is

b) Calculate the percent error in , using the values
in Problem 3.69(b).

3.71 Assume the error in in the bridge circuit in
Fig. P3.69 is not to exceed 0.5%. What is the largest
percent change in that can be tolerated?

3.72 a) Using Fig. 3.38 derive the expression for the
voltage Vy.

b) Assuming that there are py pixels in the 
y-direction, derive the expression for the 
y-coordinate of the touch point, using the result
from part (a).

3.73 A resistive touch screen has 5 V applied to the grid
in the x-direction and in the y-direction. The screen
has 480 pixels in the x-direction and 800 pixels in

Ro

vo

vo

% error =

-(¢R)R3

(R2 + R3)R4
* 100.

vo

the y-direction. When the screen is touched, the
voltage in the x-grid is 1 V and the voltage in the 
y-grid is 3.75 V.)

a) Calculate the values of and .

a) Calculate the x- and y-coordinates of the pixel at
the point where the screen was touched.

3.74 A resistive touch screen has 640 pixels in the 
x-direction and 1024 pixels in the y-direction.
The resistive grid has 8 V applied in both the x- and 
y-directions. The pixel coordinates at the touch
point are (480, 192). Calculate the voltages Vx
and Vy.

3.75 Suppose the resistive touch screen described in
Problem 3.74 is simultaneously touched at two
points, one with coordinates (480, 192) and the
other with coordinates (240, 384).

a) Calculate the voltage measured in the x- and 
y-grids.

b) Which touch point has your calculation in (a)
identified?

ba
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So far, we have analyzed relatively simple resistive circuits
by applying Kirchhoff’s laws in combination with Ohm’s law. We
can use this approach for all circuits, but as they become struc-
turally more complicated and involve more and more elements,
this direct method soon becomes cumbersome. In this chapter we
introduce two powerful techniques of circuit analysis that aid in
the analysis of complex circuit structures: the node-voltage
method and the mesh-current method. These techniques give us
two systematic methods of describing circuits with the minimum
number of simultaneous equations.

In addition to these two general analytical methods, in this
chapter we also discuss other techniques for simplifying circuits.
We have already demonstrated how to use series-parallel reduc-
tions and -to-Y transformations to simplify a circuit’s structure.
We now add source transformations and Thévenin and Norton
equivalent circuits to those techniques.

We also consider two other topics that play a role in circuit
analysis. One, maximum power transfer, considers the conditions
necessary to ensure that the power delivered to a resistive load by
a source is maximized. Thévenin equivalent circuits are used in
establishing the maximum power transfer conditions. The final
topic in this chapter, superposition, looks at the analysis of cir-
cuits with more than one independent source.

¢

C H A P T E R  C O N T E N T S

4.1 Terminology p. 90

4.2 Introduction to the Node-Voltage 
Method p. 93 

4.3 The Node-Voltage Method and Dependent
Sources p. 95 

4.4 The Node-Voltage Method: Some Special
Cases p. 96 

4.5 Introduction to the Mesh-Current 
Method p. 99 

4.6 The Mesh-Current Method and Dependent
Sources p. 102 

4.7 The Mesh-Current Method: Some Special
Cases p. 103 

4.8 The Node-Voltage Method Versus the 
Mesh-Current Method p. 106 

4.9 Source Transformations p. 109 

4.10 Thévenin and Norton Equivalents p. 113 

4.11 More on Deriving a Thévenin 
Equivalent p. 117 

4.12 Maximum Power Transfer p. 120 

4.13 Superposition p. 122 

C H A P T E R  O B J E C T I V E S

1 Understand and be able to use the node-voltage
method to solve a circuit.

2 Understand and be able to use the mesh-current
method to solve a circuit.

3 Be able to decide whether the node-voltage
method or the mesh-current method is the
preferred approach to solving a particular circuit.

4 Understand source transformation and be able
to use it to solve a circuit.

5 Understand the concept of the Thévenin and
Norton equivalent circuits and be able to
construct a Thévenin or Norton equivalent for a
circuit.

6 Know the condition for maximum power transfer
to a resistive load and be able to calculate the
value of the load resistor that satisfies this
condition.
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Circuit Analysis
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In the last chapter we began to explore the effect of imprecise
resistor values on the performance of a circuit; specifically, on
the performance of a voltage divider. Resistors are manufac-
tured for only a small number of discrete values, and any given
resistor from a batch of resistors will vary from its stated value
within some tolerance. Resistors with tighter tolerance, say
1%, are more expensive than resistors with greater tolerance,
say 10%. Therefore, in a circuit that uses many resistors, it
would be important to understand which resistor’s value has
the greatest impact on the expected performance of the circuit.

In other words, we would like to predict the effect of varying
each resistor’s value on the output of the circuit. If we know
that a particular resistor must be very close to its stated value
for the circuit to function correctly, we can then decide to
spend the extra money necessary to achieve a tighter tolerance
on that resistor’s value.

Exploring the effect of a circuit component’s value on the
circuit’s output is known as sensitivity analysis. Once we have
presented additional circuit analysis techniques, the topic of
sensitivity analysis will be examined.

89
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90 Techniques of Circuit Analysis

4.1 Terminology
To discuss the more involved methods of circuit analysis, we must define
a few basic terms. So far, all the circuits presented have been planar
circuits—that is, those circuits that can be drawn on a plane with no
crossing branches. A circuit that is drawn with crossing branches still is
considered planar if it can be redrawn with no crossover branches. For
example, the circuit shown in Fig. 4.1(a) can be redrawn as Fig. 4.1(b);
the circuits are equivalent because all the node connections have been
maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be
redrawn in such a way that all the node connections are maintained and
no branches overlap. The node-voltage method is applicable to both pla-
nar and nonplanar circuits, whereas the mesh-current method is limited
to planar circuits.

Describing a Circuit—The Vocabulary
In Section 1.5 we defined an ideal basic circuit element. When basic cir-
cuit elements are interconnected to form a circuit, the resulting intercon-
nection is described in terms of nodes, paths, branches, loops, and meshes.
We defined both a node and a closed path, or loop, in Section 2.4. Here
we restate those definitions and then define the terms path, branch, and
mesh. For your convenience, all of these definitions are presented in
Table 4.1. Table 4.1 also includes examples of each definition taken from
the circuit in Fig. 4.3, which are developed in Example 4.1.

vs

R5

R6 R3

R1

R4

R2

�

�

R7

R8

(a)

vs

R5

R6

R7

R3

R1

R4

R2

�

� R8

(b)

Figure 4.1 � (a) A planar circuit. (b) The same circuit
redrawn to verify that it is planar.

vs R6 R9

R7

R11

R1

R4

R3

R8

R10

R5

R2

�

�

Figure 4.2 � A nonplanar circuit.

Example 4.1 Identifying Node, Branch, Mesh and Loop in a Circuit

For the circuit in Fig. 4.3, identify

a) all nodes.

b) all essential nodes.

c) all branches.

d) all essential branches.

e) all meshes.

f) two paths that are not loops or essential branches.

g) two loops that are not meshes.

Solution

a) The nodes are a, b, c, d, e, f, and g.

b) The essential nodes are b, c, e, and g.

c) The branches are 
.

d) The essential branches are 
and I.

e) The meshes are 
and

R7 - I.
R5 - R7 - R6,v2 - R2 - R3 - R6 - R4, 

v1 - R1 - R5 - R3 - R2,

R5, R6, R7,v2 - R4,
R2 - R3,v1 - R1,

R7, and I
R6,R5,R4,R3,R2,R1,v2,v1,

Figure 4.3 � A circuit illustrating nodes, branches, meshes,
paths, and loops.

f) is a path, but it is not a loop
(because it does not have the same starting and
ending nodes), nor is it an essential branch
(because it does not connect two essential nodes).

is also a path but is neither a loop nor an
essential branch, for the same reasons.

g) is a loop but is
not a mesh, because there are two loops within it.

is also a loop but not a mesh.I - R5 - R6

v1 - R1 - R5 - R6 - R4 - v2

v2 - R2

R1 - R5 - R6

�

�

�

�

R4

R3R2

R1

R5

R6

R7 I

a
b

d
ec

f g

v2

v1

NOTE: Assess your understanding of this material by trying Chapter Problems 4.1 and 4.5.
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Simultaneous Equations—How Many?
The number of unknown currents in a circuit equals the number of
branches, b, where the current is not known. For example, the circuit
shown in Fig. 4.3 has nine branches in which the current is unknown.
Recall that we must have b independent equations to solve a circuit 
with b unknown currents. If we let n represent the number of nodes in 
the circuit, we can derive independent equations by applying
Kirchhoff’s current law to any set of nodes. (Application of the 
current law to the nth node does not generate an independent equation,
because this equation can be derived from the previous equations.
See Problem 4.5.) Because we need b equations to describe a given circuit
and because we can obtain of these equations from Kirchhoff’s 
current law, we must apply Kirchhoff’s voltage law to loops or meshes 
to obtain the remaining equations.

Thus by counting nodes, meshes, and branches where the current 
is unknown, we have established a systematic method for writing the 
necessary number of equations to solve a circuit. Specifically, we apply
Kirchhoff’s current law to nodes and Kirchhoff’s voltage law to

loops (or meshes). These observations also are valid in terms
of essential nodes and essential branches. Thus if we let represent the
number of essential nodes and the number of essential branches where
the current is unknown, we can apply Kirchhoff’s current law at 
nodes and Kirchhoff’s voltage law around loops or meshes.
In circuits, the number of essential nodes is less than or equal to the num-
ber of nodes, and the number of essential branches is less than or equal to
the number of branches. Thus it is often convenient to use essential nodes
and essential branches when analyzing a circuit, because they produce
fewer independent equations to solve.

A circuit may consist of disconnected parts. An example of such a cir-
cuit is examined in Problem 4.3. The statements pertaining to the number
of equations that can be derived from Kirchhoff’s current law, , and
voltage law, , apply to connected circuits. If a circuit has n
nodes and b branches and is made up of s parts, the current law can be

b - (n - 1)
n - 1

be - (ne - 1)
ne - 1

be

ne

b - (n - 1)
n - 1

b - (n - 1)

n - 1

n - 1

n - 1
n - 1

TABLE 4.1 Terms for Describing Circuits

Name Definition Example From Fig. 4.3

node A point where two or more circuit elements join a

essential node A node where three or more circuit elements join b

path A trace of adjoining basic elements with no 
elements included more than once

branch A path that connects two nodes

essential branch A path which connects two essential nodes without 
passing through an essential node

loop A path whose last node is the same as the starting node

mesh A loop that does not enclose any other loops

planar circuit A circuit that can be drawn on a plane with no Fig. 4.3 is a planar circuit 
crossing branches Fig. 4.2 is a nonplanar circuit

v1 - R1 - R5 - R3 - R2

v1 - R1 - R5 - R6 - R4 - v2

v1 - R1

R1

v1 - R1 - R5 - R6
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applied times, and the voltage law times. Any two sepa-
rate parts can be connected by a single conductor. This connection always
causes two nodes to form one node. Moreover, no current exists in the sin-
gle conductor, so any circuit made up of s disconnected parts can always
be reduced to a connected circuit.

The Systematic Approach—An Illustration
We now illustrate this systematic approach by using the circuit shown in
Fig. 4.4. We write the equations on the basis of essential nodes and
branches. The circuit has four essential nodes and six essential branches,
denoted , for which the current is unknown.

We derive three of the six simultaneous equations needed by applying
Kirchhoff’s current law to any three of the four essential nodes.We use the
nodes b, c, and e to get

(4.1)

We derive the remaining three equations by applying Kirchhoff’s voltage
law around three meshes. Because the circuit has four meshes, we need to
dismiss one mesh. We choose because we don’t know the voltage
across I.1

Using the other three meshes gives

(4.2)

Rearranging Eqs. 4.1 and 4.2 to facilitate their solution yields the set

(4.3)

Note that summing the current at the nth node (g in this example) gives

(4.4)i5 - i4 - i6 + I = 0.

 0i1 - R5i2 + 0i3 - R6i4 + 0i5 + R7i6 = 0.

 0i1 + 0i2 - (R2 + R3)i3 + R6i4 + R4i5 + 0i6 = v2,

 R1i1 + R5i2 + (R2 + R3)i3 + 0i4 + 0i5 + 0i6 = v1,

0i1 - i2 + i3 + i4 + 0i5 + 0i6 = 0,

 i1 + 0i2 - i3 + 0i4 - i5 + 0i6 = 0,

 - i1 + i2 + 0i3 + 0i4 + 0i5 + i6 = I,

 - i2R5 + i6R7 - i4R6 = 0.

 - i3(R2 + R3) + i4R6 + i5R4 - v2 = 0,

 R1i1 + R5i2 + i3(R2 + R3) - v1 = 0,

R7 - I,

 i3 + i4 - i2 = 0.

 i1 - i3 - i5 = 0,

 - i1 + i2 + i6 - I = 0,

i1 -  i6

b - n +  sn - s

�

�

�

�

R4

i5

R3

i3

R2

R1

i1

R5i2

R6i4

R7i6 I

a
b

d
ec

f g

v2

v1

Figure 4.4 � The circuit shown in Fig. 4.3 with six
unknown branch currents defined.

1 We say more about this decision in Section 4.7.



4.2 Introduction to the Node-Voltage Method 93

Equation 4.4 is not independent, because we can derive it by summing
Eqs. 4.1 and then multiplying the sum by Thus Eq. 4.4 is a linear com-
bination of Eqs. 4.1 and therefore is not independent of them. We now
carry the procedure one step further. By introducing new variables, we can
describe a circuit with just equations or just equations.
Therefore these new variables allow us to obtain a solution by manipulat-
ing fewer equations, a desirable goal even if a computer is to be used to
obtain a numerical solution.

The new variables are known as node voltages and mesh currents.The
node-voltage method enables us to describe a circuit in terms of 
equations; the mesh-current method enables us to describe a circuit in
terms of equations. We begin in Section 4.2 with the node-
voltage method.

NOTE: Assess your understanding of this material by trying Chapter
Problems 4.2 and 4.3.

4.2 Introduction to the 
Node-Voltage Method

We introduce the node-voltage method by using the essential nodes of the
circuit. The first step is to make a neat layout of the circuit so that no
branches cross over and to mark clearly the essential nodes on the circuit
diagram, as in Fig. 4.5. This circuit has three essential nodes there-
fore, we need two ( ) node-voltage equations to describe the circuit.
The next step is to select one of the three essential nodes as a reference node.
Although theoretically the choice is arbitrary, practically the choice for the
reference node often is obvious. For example, the node with the most
branches is usually a good choice.The optimum choice of the reference node
(if one exists) will become apparent after you have gained some experience
using this method. In the circuit shown in Fig. 4.5, the lower node connects
the most branches, so we use it as the reference node.We flag the chosen ref-
erence node with the symbol , as in Fig. 4.6.

After selecting the reference node, we define the node voltages on the
circuit diagram. A node voltage is defined as the voltage rise from the ref-
erence node to a nonreference node. For this circuit, we must define two
node voltages, which are denoted and in Fig. 4.6.

We are now ready to generate the node-voltage equations.We do so by
first writing the current leaving each branch connected to a nonreference
node as a function of the node voltages and then summing these currents to
zero in accordance with Kirchhoff’s current law. For the circuit in Fig. 4.6,
the current away from node 1 through the resistor is the voltage drop
across the resistor divided by the resistance (Ohm’s law). The voltage drop
across the resistor, in the direction of the current away from the node, is

Therefore the current in the 1 resistor is Figure 4.7
depicts these observations. It shows the branch, with the appro-
priate voltages and current.

This same reasoning yields the current in every branch where the cur-
rent is unknown. Thus the current away from node 1 through the 
resistor is and the current away from node 1 through the resistor
is The sum of the three currents leaving node 1 must equal
zero; therefore the node-voltage equation derived at node 1 is

(4.5)
v1 - 10

1
+

v1

5
+

v1 - v2

2
= 0 .

(v1 - v2)>2.
2 Æv1>5,

5 Æ

10 V-1 Æ
(v1 - 10)>1 .Æv1 - 10 .

1 Æ

v2v1

�

ne - 1
(ne = 3);

be - (ne - 1)

ne - 1

b - (n - 1)n - 1

-1.

2 �1 �

5 �10 V 10 � 2 A
�

�

Figure 4.5 � A circuit used to illustrate the node-voltage
method of circuit analysis.

v1 v2

�

��

�

2 �1 21 �

5 �10 V 10 � 2 A
�

�

Figure 4.6 � The circuit shown in Fig. 4.5 with a 
reference node and the node voltages.

10 V

i
1 �

iR� � �

�

v1
�

�

Figure 4.7 � Computation of the branch current .i
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The node-voltage equation derived at node 2 is

(4.6)

Note that the first term in Eq. 4.6 is the current away from node 2 through
the resistor, the second term is the current away from 
node 2 through the resistor, and the third term is the current away
from node 2 through the current source.

Equations 4.5 and 4.6 are the two simultaneous equations that
describe the circuit shown in Fig. 4.6 in terms of the node voltages and

Solving for and yields

Once the node voltages are known, all the branch currents can be cal-
culated. Once these are known, the branch voltages and powers can be
calculated. Example 4.2 illustrates the use of the node-voltage method.

 v2 =

120
11

= 10.91 V.

 v1 =

100
11

= 9.09 V

v2v1v2 .
v1

10 Æ
2 Æ

v2 - v1

2
+

v2

10
- 2 = 0 .

Example 4.2 Using the Node-Voltage Method

a) Use the node-voltage method of circuit analysis
to find the branch currents , , and in the cir-
cuit shown in Fig. 4.8.

b) Find the power associated with each source, and
state whether the source is delivering or absorb-
ing power.

Solution

a) We begin by noting that the circuit has two essen-
tial nodes; thus we need to write a single node-
voltage expression. We select the lower node as
the reference node and define the unknown node
voltage as . Figure 4.9 illustrates these deci-
sions. Summing the currents away from node 1
generates the node-voltage equation

Solving for gives

Hence

 ic =

40
40

= 1 A.

 ib =

40
10

= 4 A,

 ia =

50 - 40
5

= 2 A,

v1 = 40 V.

v1

v1 - 50
5

+

v1

10
+

v1

40
- 3 = 0.

v1

icibia

Figure 4.8 � The circuit for Example 4.2.

Figure 4.9 � The circuit shown in Fig. 4.8 with a reference
node and the unknown node voltage .

b) The power associated with the 50 V source is

The power associated with the 3 A source is

We check these calculations by noting that the
total delivered power is 220 W. The total power
absorbed by the three resistors is 

or , as we calculated and as it
must be.

220 W+  1(40),
4(5) + 16(10)

p3A = -3v1 = -3(40) = -120 W (delivering).

p50V = -50ia = -100 W (delivering).

v1

40 �10 �

5 � 1

50 V
�

�
3 Av1

�

�

40 �10 �

5 �

50 V
ia

icib 3 A
�

�
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Objective 1—Understand and be able to use the node-voltage method

A S S E S S M E N T  P R O B L E M S

4.1 a) For the circuit shown, use the node-voltage
method to find and 

b) How much power is delivered to the circuit
by the 15 A source?

c) Repeat (b) for the 5 A source

.

Answer: (a) 60 V, 10 V, 10 A;

(b) 900 W;

(c) -50 W.

15 � 2 �60 �

5 �

15 A 5 Av1

�

�

v2

�

�

i1

i1.v2,v1,
4.2 Use the node-voltage method to find in the

circuit shown.

Answer: 15 V.

12 �1 �

2 � 4 �6 �

30 V4.5 A v

�

�

�

�

v

NOTE: Also try Chapter Problems 4.6, 4.11, and 4.13.

4.3 The Node-Voltage Method 
and Dependent Sources

If the circuit contains dependent sources, the node-voltage equations must
be supplemented with the constraint equations imposed by the presence
of the dependent sources. Example 4.3 illustrates the application of the
node-voltage method to a circuit containing a dependent source.

Example 4.3 Using the Node-Voltage Method with Dependent Sources

Use the node-voltage method to find the power dis-
sipated in the 5 resistor in the circuit shown in
Fig. 4.10.

Figure 4.10 � The circuit for Example 4.3.

Solution
We begin by noting that the circuit has three essen-
tial nodes. Hence we need two node-voltage equa-
tions to describe the circuit. Four branches terminate

�

�
20 V

2 � 5 � 2 �

10 �
if

20 � 8 if
�

�

Æ

on the lower node, so we select it as the reference
node. The two unknown node voltages are defined
on the circuit shown in Fig. 4.11. Summing the cur-
rents away from node 1 generates the equation

Summing the currents away from node 2 yields

As written, these two node-voltage equations con-
tain three unknowns, namely, , , and . To elim-
inate we must express this controlling current in
terms of the node voltages, or

if =

v1 - v2

5
 .

if

ifv2v1

 
v2 - v1

5
+

v2

10
+

v2 - 8if
2

= 0.

 
v1 - 20

2
+

v1

20
+

v1 - v2

5
= 0.
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Substituting this relationship into the node 2 equa-
tion simplifies the two node-voltage equations to

Solving for and gives

and

Then,

 p5Æ
= (1.44)(5) = 7.2 W.

 if =

16 - 10
5

= 1.2 A,

v2 = 10 V.

v1 = 16 V

v2v1

 -v1 + 1.6v2 = 0.

 0.75v1 - 0.2v2 = 10,

A good exercise to build your problem-solving
intuition is to reconsider this example, using node 2
as the reference node. Does it make the analysis
easier or harder?

Figure 4.11 � The circuit shown in Fig. 4.10, with a reference
node and the node voltages.

�

�
20 V

2 � 5 � 2 �

10 �
if

20 � 8 if
�

�

1 2

v1

�

�

v2

�

�

Objective 1—Understand and be able to use the node-voltage method

4.3 a) Use the node-voltage method to find the
power associated with each source in the
circuit shown.

b) State whether the source is delivering power
to the circuit or extracting power from the
circuit.

Answer: (a) , ,
;

(b) all sources are delivering power to the
circuit.

p5A = -80 W
p3i1

= -144 Wp50V = -150 W

�

�
50 V

6 � 2 �

3 i1

4 �
i1i1

8 � 5 A

NOTE: Also try Chapter Problems 4.18 and 4.19.

4.4 The Node-Voltage Method: 
Some Special Cases

When a voltage source is the only element between two essential nodes,
the node-voltage method is simplified. As an example, look at the circuit
in Fig. 4.12. There are three essential nodes in this circuit, which means
that two simultaneous equations are needed. From these three essential
nodes, a reference node has been chosen and two other nodes have been
labeled. But the 100 V source constrains the voltage between node 1 and
the reference node to 100 V. This means that there is only one unknown
node voltage ( ). Solution of this circuit thus involves only a single node-
voltage equation at node 2:

(4.7)

But so Eq. 4.7 can be solved for :

(4.8)v2 = 125 V.

v2v1 = 100 V,

v2 - v1

10
+

v2

50
- 5 = 0.

v2

50 �25 �

10 �1

100 V
�

�
5 Av1

�

�

2

v2

�

�

Figure 4.12 � A circuit with a known node voltage.

A S S E S S M E N T  P R O B L E M
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50 � 100 �40 � 4 A50 V
�

�

5 �

if

� �

10 if

Figure 4.13 � A circuit with a dependent voltage
source connected between nodes.

50 � 100 �40 �

5 �1 2 3

4 A50 Vv1

�

�

v2

�

�

v3

�

�

�

�

if

� �

10 if

i

Figure 4.14 � The circuit shown in Fig. 4.13. with the
selected node voltages defined.

Knowing we can calculate the current in every branch. You should ver-
ify that the current into node 1 in the branch containing the independent
voltage source is 1.5 A.

In general, when you use the node-voltage method to solve circuits
that have voltage sources connected directly between essential nodes, the
number of unknown node voltages is reduced. The reason is that, when-
ever a voltage source connects two essential nodes, it constrains the differ-
ence between the node voltages at these nodes to equal the voltage of the
source. Taking the time to see if you can reduce the number of unknowns
in this way will simplify circuit analysis.

Suppose that the circuit shown in Fig. 4.13 is to be analyzed using the
node-voltage method. The circuit contains four essential nodes, so we
anticipate writing three node-voltage equations. However, two essential
nodes are connected by an independent voltage source, and two other
essential nodes are connected by a current-controlled dependent voltage
source. Hence, there actually is only one unknown node voltage.

Choosing which node to use as the reference node involves several
possibilities. Either node on each side of the dependent voltage source
looks attractive because, if chosen, one of the node voltages would be
known to be either (left node is the reference) or (right node
is the reference).The lower node looks even better because one node volt-
age is immediately known (50 V) and five branches terminate there. We
therefore opt for the lower node as the reference.

Figure 4.14 shows the redrawn circuit, with the reference node flagged
and the node voltages defined.Also, we introduce the current i because we
cannot express the current in the dependent voltage source branch as a
function of the node voltages and . Thus, at node 2

(4.9)

and at node 3

(4.10)

We eliminate i simply by adding Eqs. 4.9 and 4.10 to get

(4.11)

The Concept of a Supernode
Equation 4.11 may be written directly, without resorting to the interme-
diate step represented by Eqs. 4.9 and 4.10. To do so, we consider nodes 2
and 3 to be a single node and simply sum the currents away from the
node in terms of the node voltages and . Figure 4.15 illustrates 
this approach.

When a voltage source is between two essential nodes, we can com-
bine those nodes to form a supernode. Obviously, Kirchhoff’s current
law must hold for the supernode. In Fig. 4.15, starting with the 
branch and moving counterclockwise around the supernode, we gener-
ate the equation

(4.12)
v2 - v1

5
+

v2

50
+

v3

100
- 4 = 0,

5 Æ

v3v2

v2 - v1

5
+

v2

50
+

v3

100
- 4 = 0.

v3

100
- i - 4 = 0.

v2 - v1

5
+

v2

50
+ i = 0,

v3 v2

-10if+10if

v2,

50 � 100 �40 �

5 �1
2 3

4 A50 V v2

�

�

v1

�

�

v3

�

�

�

�

if

Figure 4.15 � Considering nodes 2 and 3 to be a
supernode.
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which is identical to Eq. 4.11. Creating a supernode at nodes 2 and 3 has
made the task of analyzing this circuit easier. It is therefore always worth tak-
ing the time to look for this type of shortcut before writing any equations.

After Eq. 4.12 has been derived, the next step is to reduce the expres-
sion to a single unknown node voltage. First we eliminate from the
equation because we know that Next we express as a func-
tion of :

(4.13)

We now express the current controlling the dependent voltage source as a
function of the node voltages:

(4.14)

Using Eqs. 4.13 and 4.14 and reduces Eq. 4.12 to

From Eqs. 4.13 and 4.14:

Node-Voltage Analysis of the Amplifier Circuit
Let’s use the node-voltage method to analyze the circuit first introduced
in Section 2.5 and shown again in Fig. 4.16.

When we used the branch-current method of analysis in Section 2.5,
we faced the task of writing and solving six simultaneous equations. Here
we will show how nodal analysis can simplify our task.

The circuit has four essential nodes: Nodes a and d are connected by
an independent voltage source as are nodes b and c. Therefore the prob-
lem reduces to finding a single unknown node voltage, because

Using d as the reference node, combine nodes b and c
into a supernode, label the voltage drop across as and label the volt-
age drop across as as shown in Fig. 4.17. Then,

(4.15)

We now eliminate both and from Eq. 4.15 by noting that

(4.16)

(4.17) vc = vb - V0.

 vc = (iB + biB)RE,

iBvc

vb

R2
+

vb - VCC

R1
+

vc

RE
- biB = 0.

vc,RE

vb,R2

(ne - 1) - 2 = 1.

 v3 = 60 + 20 = 80 V.

 if =

60 - 50
5

= 2 A,

 v2 = 60 V.

 v2(0.25) = 15,

 v2a 1
50

+

1
5

+

1
100

+

10
500
b = 10 + 4 + 1,

v1 = 50 V

if =

v2 - 50
5

 .

v3 = v2 + 10if.

v2

v3v1 = 50 V.
v1

VCC

R2

R1

RE

biB

RC

�

�

a

b c

d

V0

� �

iB

Figure 4.16 � The transistor amplifier circuit shown in
Fig. 2.24.

R1

Rc

R2 RE

�

�

vb

�

�

vc

biB
VCC

�

�

b c

d

a

Figure 4.17 � The circuit shown in Fig. 4.16, with 
voltages and the supernode identified.
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Substituting Eqs. 4.16 and 4.17 into Eq. 4.15 yields

(4.18)

Solving Eq. 4.18 for yields

(4.19)

Using the node-voltage method to analyze this circuit reduces the prob-
lem from manipulating six simultaneous equations (see Problem 2.27) to
manipulating three simultaneous equations. You should verify that, when
Eq. 4.19 is combined with Eqs. 4.16 and 4.17, the solution for is identical
to Eq. 2.25. (See Problem 4.30.)

iB

vb =

VCCR2(1 + b)RE + V0R1R2

R1R2 + (1 + b)RE(R1 + R2)
  .

vb

vbB 1
R1

+

1
R2

+

1
(1 + b)RE

R =

VCC

R1
+

V0

(1 + b)RE
  .

Objective 1—Understand and be able to use the node-voltage method

4.4 Use the node-voltage method to find in the
circuit shown.

Answer: 24 V.

4.5 Use the node-voltage method to find in the
circuit shown.

Answer: 8 V.

4.6 Use the node-voltage method to find in the
circuit shown.

Answer: 48 V.
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NOTE: Also try Chapter Problems 4.22, 4.23, and 4.26.

A S S E S S M E N T  P R O B L E M S

4.5 Introduction to the 
Mesh-Current Method

As stated in Section 4.1, the mesh-current method of circuit analysis enables
us to describe a circuit in terms of equations. Recall that a
mesh is a loop with no other loops inside it.The circuit in Fig. 4.1(b) is shown
again in Fig. 4.18, with current arrows inside each loop to distinguish it. Recall
also that the mesh-current method is applicable only to planar circuits. The

be - (ne - 1)

�

�
vs

R1

R5

R6

R2

R4

R3

R7R8
i4i1

i2

i3

Figure 4.18 � The circuit shown in Fig. 4.1(b), with the
mesh currents defined.
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i3
�

�
v1

�

�
v2

i1

R1

i2

R2

R3

Figure 4.19 � A circuit used to illustrate development
of the mesh-current method of circuit analysis.

circuit in Fig. 4.18 contains seven essential branches where the current is
unknown and four essential nodes.Therefore, to solve it via the mesh-current
method, we must write four mesh-current equations.

A mesh current is the current that exists only in the perimeter of a
mesh. On a circuit diagram it appears as either a closed solid line or an
almost-closed solid line that follows the perimeter of the appropriate
mesh. An arrowhead on the solid line indicates the reference direction for
the mesh current. Figure 4.18 shows the four mesh currents that describe
the circuit in Fig. 4.1(b). Note that by definition, mesh currents automati-
cally satisfy Kirchhoff’s current law. That is, at any node in the circuit, a
given mesh current both enters and leaves the node.

Figure 4.18 also shows that identifying a mesh current in terms of a
branch current is not always possible. For example, the mesh current is
not equal to any branch current, whereas mesh currents and can be
identified with branch currents. Thus measuring a mesh current is not
always possible; note that there is no place where an ammeter can be
inserted to measure the mesh current The fact that a mesh current can
be a fictitious quantity doesn’t mean that it is a useless concept. On the
contrary, the mesh-current method of circuit analysis evolves quite natu-
rally from the branch-current equations.

We can use the circuit in Fig. 4.19 to show the evolution of the mesh-
current technique. We begin by using the branch currents ( and ) to
formulate the set of independent equations. For this circuit, and

We can write only one independent current equation, so we need
two independent voltage equations. Applying Kirchhoff’s current law to
the upper node and Kirchhoff’s voltage law around the two meshes gener-
ates the following set of equations:

(4.20)

(4.21)

(4.22)

We reduce this set of three equations to a set of two equations by solving
Eq. 4.20 for and then substituting this expression into Eqs. 4.21 and 4.22:

(4.23)

(4.24)

We can solve Eqs. 4.23 and 4.24 for and to replace the solution of three
simultaneous equations with the solution of two simultaneous equations.
We derived Eqs. 4.23 and 4.24 by substituting the current equations
into the voltage equations. The value of the mesh-current
method is that, by defining mesh currents, we automatically eliminate the

current equations. Thus the mesh-current method is equivalent to a
systematic substitution of the current equations into the

voltage equations. The mesh currents in Fig. 4.19 that are
equivalent to eliminating the branch current from Eqs. 4.21 and 4.22 are
shown in Fig. 4.20. We now apply Kirchhoff’s voltage law around the two
meshes, expressing all voltages across resistors in terms of the mesh cur-
rents, to get the equations

(4.25)

(4.26)

Collecting the coefficients of and in Eqs. 4.25 and 4.26 gives

(4.27)

(4.28) -v2 = - iaR3 + ib(R2 + R3).

 v1 = ia(R1 + R3) - ibR3,

ibia

 -v2 = (ib - ia)R3 + ibR2.

 v1 = iaR1 + (ia - ib)R3,

i3

be - (ne - 1)
ne - 1

ne - 1

be - (ne - 1)
ne - 1

i2i1

 -v2 = - i1R3 + i2(R2 + R3).

 v1 = i1(R1 + R3) - i2R3,

i3

 -v2 = i2R2 - i3R3.

 v1 = i1R1 + i3R3,

 i1 = i2 + i3,

ne = 2.
be = 3

i3i2,i1,

i2.

i4i3,i1,
i2

37 - (4 - 1)4

�

�
v1

�

�
v2

R1 R2

R3ia ib

Figure 4.20 � Mesh currents and ib .ia
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Note that Eqs. 4.27 and 4.28 and Eqs. 4.23 and 4.24 are identical in form,
with the mesh currents and replacing the branch currents and 
Note also that the branch currents shown in Fig. 4.19 can be expressed in
terms of the mesh currents shown in Fig. 4.20, or

(4.29)

(4.30)

(4.31)

The ability to write Eqs. 4.29–4.31 by inspection is crucial to the mesh-
current method of circuit analysis. Once you know the mesh currents, you
also know the branch currents. And once you know the branch currents,
you can compute any voltages or powers of interest.

Example 4.4 illustrates how the mesh-current method is used to find
source powers and a branch voltage.

 i3 = ia - ib.

 i2 = ib,

 i1 = ia,

i2.i1ibia

Example 4.4 Using the Mesh-Current Method

a) Use the mesh-current method to determine the
power associated with each voltage source in the
circuit shown in Fig. 4.21.

b) Calculate the voltage across the resistor.

Solution

a) To calculate the power associated with each
source, we need to know the current in each
source.The circuit indicates that these source cur-
rents will be identical to mesh currents.Also, note
that the circuit has seven branches where 

Figure 4.21 � The circuit for Example 4.4.

the current is unknown and five nodes.Therefore
we need three 
mesh-current equations to describe the circuit.
Figure 4.22 shows the three mesh currents used
to describe the circuit in Fig. 4.21. If we assume
that the voltage drops are positive, the three mesh
equations are

(4.32) 6(ic - ib) + 4ic + 20 = 0.

 8(ib - ia) + 6ib + 6(ib - ic) = 0,

 -40 + 2ia + 8(ia - ib) = 0,

3b - (n - 1) = 7 - (5 - 1)4

�

�

�

�
40 V

2 � 6 � 4 �

6 �8 � 20 Vvo

�

�

8 Ævo

Your calculator can probably solve these equa-
tions, or you can use a computer tool. Cramer’s
method is a useful tool when solving three or
more simultaneous equations by hand. You can
review this important tool in Appendix A.
Reorganizing Eqs. 4.32 in anticipation of using
your calculator, a computer program, or Cramer’s
method gives

(4.33)

The three mesh currents are

Figure 4.22 � The three mesh currents used to analyze the 
circuit shown in Fig. 4.21.

The mesh current is identical with the branch
current in the 40 V source, so the power associ-
ated with this source is

p40V = -40ia = -224 W.

ia

�

�

�

�
40 V

2 � 6 � 4 �

6 �8 � 20 V
ia icib

 ic = -0.80 A.

 ib = 2.0 A,

 ia = 5.6 A,

 0ia - 6ib + 10ic = -20.

 -8ia + 20ib - 6ic = 0;

 10ia - 8ib + 0ic = 40;
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Objective 2—Understand and be able to use the mesh-current method

4.7 Use the mesh-current method to find (a) the
power delivered by the 80 V source to the cir-
cuit shown and (b) the power dissipated in the

resistor.

Answer: (a) 400 W;

(b) 50 W.

8 Æ

30 �

5 � 90 �

26 � 8 �80 V
�

�

NOTE: Also try Chapter Problems 4.32 and 4.36.

A S S E S S M E N T  P R O B L E M

4.6 The Mesh-Current Method 
and Dependent Sources

If the circuit contains dependent sources, the mesh-current equations must
be supplemented by the appropriate constraint equations. Example 4.5
illustrates the application of the mesh-current method when the circuit
includes a dependent source.

The minus sign means that this source is deliver-
ing power to the network. The current in the
20 V source is identical to the mesh current 
therefore

p20V = 20ic = -16 W.

ic;

The 20 V source also is delivering power to the
network.

b) The branch current in the resistor in the
direction of the voltage drop is 
Therefore

vo = 8(ia - ib) = 8(3.6) = 28.8 V.

ia - ib.vo

8 Æ

Example 4.5 Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method of circuit analysis to
determine the power dissipated in the resistor
in the circuit shown in Fig. 4.23.

Figure 4.23 � The circuit for Example 4.5.

Solution
This circuit has six branches where the current is
unknown and four nodes. Therefore we need three
mesh currents to describe the circuit. They are

1 �

5 � 4 �

�

�
15 if50 V

�

�
20 �if

4 Æ
defined on the circuit shown in Fig. 4.24. The three
mesh-current equations are

(4.34)

We now express the branch current controlling the
dependent voltage source in terms of the mesh
currents as

(4.35)if = i1 - i3,

 0 = 20(i3 - i1) + 4(i3 - i2) + 15if.

 0 = 5(i2 - i1) + 1i2 + 4(i2 - i3),

 50 = 5(i1 - i2) + 20(i1 - i3),
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which is the supplemental equation imposed by the
presence of the dependent source. Substituting
Eq. 4.35 into Eqs. 4.34 and collecting the coeffi-
cients of and in each equation generates

Figure 4.24 � The circuit shown in Fig. 4.23 with the three
mesh currents.

1 �

5 � 4 �

�

�
15 if50 V

�

�
20 �if

i2

i1 i3

 0 = -5i1 - 4i2 + 9i3.

 0 = -5i1 + 10i2 - 4i3,

 50 = 25i1 - 5i2 - 20i3,

i3i2,i1,

Because we are calculating the power dissipated in
the resistor, we compute the mesh currents 
and :

The current in the resistor oriented from left
to right is or 2 A. Therefore the power
dissipated is

What if you had not been told to use the mesh-
current method? Would you have chosen the node-
voltage method? It reduces the problem to finding
one unknown node voltage because of the presence
of two voltage sources between essential nodes. We
present more about making such choices later.

p4Æ
= (i3 - i2)

2(4) = (2)2(4) = 16 W.

i3 - i2 ,
4 Æ

 i3 = 28 A.

 i2 = 26 A,

i3

i24 Æ

Objective 2—Understand and be able to use the mesh-current method

4.8 a) Determine the number of mesh-current
equations needed to solve the circuit shown.

b) Use the mesh-current method to find how
much power is being delivered to the
dependent voltage source.

14 �

2 �

1 �25 V
�

�

5 �

10 V
�

�

�3 vf
� �

3 �

� �vf

Answer: (a) 3;

(b)

4.9 Use the mesh-current method to find in the
circuit shown.

Answer: 16 V.

2 �

6 � 8 �

�

�
5 ifif25 V

�

�
8 �vo

�

�

vo

-36 W.

NOTE: Also try Chapter Problems 4.39 and 4.40.

A S S E S S M E N T  P R O B L E M S

10 �

3 �

6 �

2 �

4 �

icia
50 V

�

�
100 V

�

�
5 Av

�

�

ib

Figure 4.25 � A circuit illustrating mesh analysis when
a branch contains an independent current source.

4.7 The Mesh-Current Method: 
Some Special Cases

When a branch includes a current source, the mesh-current method requires
some additional manipulations. The circuit shown in Fig. 4.25 depicts the
nature of the problem.

We have defined the mesh currents and as well as the voltage
across the 5 A current source, to aid the discussion. Note that the circuit
contains five essential branches where the current is unknown and four
essential nodes. Hence we need to write two mesh-current35 - (4 - 1)4

ic,ia, ib,
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equations to solve the circuit. The presence of the current source reduces
the three unknown mesh currents to two such currents, because it con-
strains the difference between and to equal 5 A. Hence, if we know 
we know and vice versa.

However, when we attempt to sum the voltages around either mesh a
or mesh c, we must introduce into the equations the unknown voltage
across the 5 A current source. Thus, for mesh a:

(4.36)

and for mesh c:

(4.37)

We now add Eqs. 4.36 and 4.37 to eliminate and obtain

(4.38)

Summing voltages around mesh b gives

(4.39)

We reduce Eqs. 4.38 and 4.39 to two equations and two unknowns by using
the constraint that

(4.40)

We leave to you the verification that, when Eq. 4.40 is combined with
Eqs. 4.38 and 4.39, the solutions for the three mesh currents are

The Concept of a Supermesh
We can derive Eq. 4.38 without introducing the unknown voltage by
using the concept of a supermesh. To create a supermesh, we mentally
remove the current source from the circuit by simply avoiding this branch
when writing the mesh-current equations. We express the voltages around
the supermesh in terms of the original mesh currents. Figure 4.26 illus-
trates the supermesh concept. When we sum the voltages around the
supermesh (denoted by the dashed line), we obtain the equation

(4.41)

which reduces to

(4.42)

Note that Eqs. 4.42 and 4.38 are identical. Thus the supermesh has elimi-
nated the need for introducing the unknown voltage across the current
source. Once again, taking time to look carefully at a circuit to identify a
shortcut such as this provides a big payoff in simplifying the analysis.

50 = 9ia - 5ib + 6ic.

-100 + 3(ia - ib) + 2(ic - ib) + 50 + 4ic + 6ia = 0,

v

ia = 1.75 A,  ib = 1.25 A,  and  ic = 6.75 A.

ic - ia = 5.

0 = 3(ib - ia) + 10ib + 2(ib - ic).

50 = 9ia - 5ib + 6ic.

v

 -50 = 4ic - v + 2(ic - ib).

 100 = 3(ia - ib) + v + 6ia,

ic,
ia,icia

10 �

3 �

6 �

2 �

4 �

Supermesh

50 V
�

�
100 V

�

�
icia

ib

Figure 4.26 � The circuit shown in Fig. 4.25, illustrat-
ing the concept of a supermesh.
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R1

Rc

RER2

biB
VCC

�

�
ic

ia

ib

V0

� �

iB

Figure 4.27 � The circuit shown in Fig. 2.24 with the
mesh currents and ic .ib ,ia ,

R1

Rc

R2 RE

VCC
�

�
ic

ia

ib

V0

� �

iB

Figure 4.28 � The circuit shown in Fig. 4.27, depicting
the supermesh created by the presence of the dependent
current source.

Mesh-Current Analysis of the Amplifier Circuit
We can use the circuit first introduced in Section 2.5 (Fig. 2.24) to illustrate
how the mesh-current method works when a branch contains a dependent
current source. Figure 4.27 shows that circuit, with the three mesh currents
denoted and This circuit has four essential nodes and five essential
branches where the current is unknown. Therefore we know that the cir-
cuit can be analyzed in terms of two mesh-current equa-
tions.Although we defined three mesh currents in Fig. 4.27, the dependent
current source forces a constraint between mesh currents and so we
have only two unknown mesh currents. Using the concept of the super-
mesh, we redraw the circuit as shown in Fig. 4.28.

We now sum the voltages around the supermesh in terms of the mesh
currents and to obtain

(4.43)

The mesh b equation is

(4.44)

The constraint imposed by the dependent current source is

(4.45)

The branch current controlling the dependent current source, expressed
as a function of the mesh currents, is

(4.46)

From Eqs. 4.45 and 4.46,

(4.47)

We now use Eq. 4.47 to eliminate from Eqs. 4.43 and 4.44:

(4.48)

(4.49)

You should verify that the solution of Eqs. 4.48 and 4.49 for and gives

(4.50)

(4.51)

We also leave you to verify that, when Eqs. 4.50 and 4.51 are used to find
the result is the same as that given by Eq. 2.25.iB,

 ib =

-V0R1 - (1 + b)REVCC

R1R2 + (1 + b)RE(R1 + R2)
 .

 ia =

V0R2 - VCCR2 - VCC(1 + b)RE

R1R2 + (1 + b)RE(R1 + R2)
 ,

ibia

 -(1 + b)REia + [R2 + (1 + b)RE]ib = -V0.

 3R1 + (1 + b)RE4ia - (1 + b)REib = V0 - VCC,

ic

ic = (1 + b)ia - bib.

iB = ib - ia.

biB = ia - ic.

R2ib + V0 + RE(ib - ic) = 0.

R1ia + vCC + RE(ic - ib) - V0 = 0.

icia, ib,

ic,ia

35 - (4 - 1)4
ic.ia, ib,
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Objective 2—Understand and be able to use the mesh-current method

4.10 Use the mesh-current method to find the power
dissipated in the resistor in the circuit shown.

Answer: 72 W.

4.11 Use the mesh-current method to find the mesh
current in the circuit shown.

Answer: 15 A.

4.12 Use the mesh-current method to find the
power dissipated in the resistor in the cir-
cuit shown.

Answer: 36 W.

1 Æ

ia

2 Æ

2 �

2 �

1 �

2 � 6 V
�

�
10 V

�

�

2 A

2 � 1 �

10 A

75 V
�

�
5 �vf

�

�

2vf
5

ia

3 �

6 �

8 �

4 �

�

�
30 V 5 �2 � 16 A

NOTE: Also try Chapter Problems 4.43, 4.47, 4.49, and 4.52.

4.8 The Node-Voltage Method Versus
the Mesh-Current Method

The greatest advantage of both the node-voltage and mesh-current meth-
ods is that they reduce the number of simultaneous equations that must be
manipulated. They also require the analyst to be quite systematic in terms
of organizing and writing these equations. It is natural to ask, then, “When
is the node-voltage method preferred to the mesh-current method and
vice versa?” As you might suspect, there is no clear-cut answer. Asking a
number of questions, however, may help you identify the more efficient
method before plunging into the solution process:

• Does one of the methods result in fewer simultaneous equations 
to solve?

• Does the circuit contain supernodes? If so, using the node-voltage
method will permit you to reduce the number of equations to 
be solved.

A S S E S S M E N T  P R O B L E M S
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• Does the circuit contain supermeshes? If so, using the mesh-current
method will permit you to reduce the number of equations to 
be solved.

• Will solving some portion of the circuit give the requested solution?
If so, which method is most efficient for solving just the pertinent
portion of the circuit?

Perhaps the most important observation is that, for any situation, some
time spent thinking about the problem in relation to the various analytical
approaches available is time well spent. Examples 4.6 and 4.7 illustrate the
process of deciding between the node-voltage and mesh-current methods.

Example 4.6 Understanding the Node-Voltage Method Versus Mesh-Current Method

Find the power dissipated in the resistor in
the circuit shown in Fig. 4.29.

Figure 4.29 � The circuit for Example 4.6.

Solution
To find the power dissipated in the resistor,
we need to find either the current in the resistor or
the voltage across it. The mesh-current method
yields the current in the resistor; this approach
requires solving five simultaneous mesh equations,
as depicted in Fig. 4.30. In writing the five equa-
tions, we must include the constraint 

Before going further, let’s also look at the circuit
in terms of the node-voltage method. Note that, once
we know the node voltages, we can calculate either
the current in the resistor or the voltage across
it. The circuit has four essential nodes, and therefore
only three node-voltage equations are required to
describe the circuit. Because of the dependent volt-
age source between two essential nodes, we have to
sum the currents at only two nodes. Hence the prob-
lem is reduced to writing two node-voltage equations
and a constraint equation. Because the node-voltage
method requires only three simultaneous equations,
it is the more attractive approach.

Once the decision to use the node-voltage
method has been made, the next step is to select a
reference node. Two essential nodes in the circuit in
Fig. 4.29 merit consideration. The first is the refer-
ence node in Fig. 4.31. If this node is selected, one of
the unknown node voltages is the voltage across the

300 Æ

i
¢

= - ib.

300 Æ

100 �150 � 250 � 500 �

i�

50 i�
200 � 400 �

�

�
256 V

�

�
128 V

�

�

300 �

300 Æ resistor, namely, in Fig. 4.31. Once we
know this voltage, we calculate the power in the

resistor by using the expression

Figure 4.30 � The circuit shown in Fig. 4.29, with the five
mesh currents.

Figure 4.31 � The circuit shown in Fig. 4.29, with a 
reference node.

Note that, in addition to selecting the reference node,
we defined the three node voltages and and
indicated that nodes 1 and 3 form a super-node,
because they are connected by a dependent voltage
source. It is understood that a node voltage is a rise
from the reference node; therefore, in Fig. 4.31, we
have not placed the node voltage polarity references
on the circuit diagram.

v3v1, v2,

100 �150 � 250 � 500 �

i�

v1 v2

v3

50 i�
200 � 400 �

�

�
256 V

�

�
128 V

�

�

300 �

1

3

2

ia ic id ie

100 �150 � 250 � 500 �

i�

200 � 400 �
�

�
256 V

�

�
50 i� 128 V

�

�

300 �

ib

p300Æ
= v2

2>300.

300 Æ

v2300 Æ
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The second node that merits consideration as
the reference node is the lower node in the circuit,
as shown in Fig. 4.32. It is attractive because it has
the most branches connected to it, and the node-
voltage equations are thus easier to write. However,
to find either the current in the resistor or
the voltage across it requires an additional calcula-
tion once we know the node voltages and For
example, the current in the resistor is

whereas the voltage across the resis-
tor is 

Figure 4.32 � The circuit shown in Fig. 4.29 with an 
alternative reference node.

We compare these two possible reference nodes
by means of the following sets of equations.The first
set pertains to the circuit shown in Fig. 4.31, and the
second set is based on the circuit shown in Fig. 4.32.

• Set 1 (Fig 4.31)
At the supernode,

v3 - (v2 + 128)
500

+

v3 - v2

400
+

v3

200
+

v1 - v2

250
+

v1

100

b

vb

a

va

c

vc100 �150 � 250 � 500 �

i�

50 i�200 � 400 �
�

�
256 V

�

�
128 V

�

�

300 �

vc - va.
(vc - va)>300,

300 Æ
vc.va

300 Æ

At 

From the supernode, the constraint equation is

• Set 2 (Fig 4.32)
At 

At 

From the supernode, the constraint equation is

You should verify that the solution of either set
leads to a power calculation of 16.57 W dissipated in
the resistor.300 Æ

vb = 50i
¢

=

50(vc - va)
300

=

vc - va

6
 .

 
vc

400
+

vc + 128
500

+

vc - vb

250
+

vc - va

300
= 0.

vc ,

 
va

200
+

va - 256
150

+

va - vb

100
+

va - vc

300
= 0.

va,

v3 = v1 - 50i
¢

= v1 -

v2

6
 .

v2

300
+

v2 - v1

250
+

v2 - v3

400
+

v2 + 128 - v3

500
= 0.

v2,

 +

v3 + 256
150

= 0.

Example 4.7 Comparing the Node-Voltage and Mesh-Current Methods

Find the voltage in the circuit shown in Fig. 4.33.

Solution
At first glance, the node-voltage method looks
appealing, because we may define the unknown
voltage as a node voltage by choosing the lower ter-
minal of the dependent current source as the refer-
ence node. The circuit has four essential nodes and
two voltage-controlled dependent sources, so the
node-voltage method requires manipulation of
three node-voltage equations and two constraint
equations.

Let’s now turn to the mesh-current method for
finding The circuit contains three meshes, and
we can use the leftmost one to calculate If wevo.

vo.

vo let denote the leftmost mesh current, then
The presence of the two current

sources reduces the problem to manipulating a sin-
gle supermesh equation and two constraint equa-
tions. Hence the mesh-current method is the more
attractive technique here.

Figure 4.33 � The circuit for Example 4.7.

4 �

6 �

�

�
193 V

�

�
0.8 vu

�

�
0.5 A0.4 v�vo

�

�

2.5 �

7.5 �

vu� �

8 �

2 �

v�� �

vo = 193 - 10ia.
ia
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ia ib ic

4 �

6 �

�

�
193 V

�

�
0.8 vu

�

�0.5 A
0.4 v�vo

�

�

2.5 �

7.5 �

vu� �

8 �

2 �

v�� �

Figure 4.35 � The circuit shown in Fig. 4.33 with node voltages.

To help you compare the two approaches, we
summarize both methods. The mesh-current equa-
tions are based on the circuit shown in Fig. 4.34,
and the node-voltage equations are based on 
the circuit shown in Fig. 4.35. The supermesh
equation is

193 = 10ia + 10ib + 10ic + 0.8vu,

4 �

6 �

�

�
193 V 0.5 A

�

�
0.8 vu

�

�
0.4 v�vo

�

�

2.5 �

7.5 �

vu� �

8 �

2 �

v�� �

vb

va

and the constraint equations are

We use the constraint equations to write the super-
mesh equation in terms of :

The node-voltage equations are

The constraint equations are

We use the constraint equations to reduce the node-
voltage equations to three simultaneous equations
involving and You should verify that the
node-voltage approach also gives vo = 173 V.

vb.vo, va,

vu = -vb, v
¢

= cva - (vb + 0.8vu)
10

d  2.

 
vb

7.5
+ 0.5 +

vb + 0.8vu - va

10
= 0.

 
va - vo

2.5
- 0.5 +

va - (vb + 0.8vu)
10

= 0,

 
vo - 193

10
- 0.4v

¢
+

vo - va

2.5
= 0,

 vo = 193 - 20 = 173 V.

 160 = 80ia, or ia = 2 A,

ia

 ic - ib = 0.5.

 vu = -7.5ib; and

 ib - ia = 0.4v
¢

= 0.8ic;

Figure 4.34 � The circuit shown in Fig. 4.33 with the three mesh currents.

Objective 3—Deciding between the node-voltage and mesh-current methods

4.13 Find the power delivered by the 2 A current
source in the circuit shown.

Answer: 70 W.

15 � 10 �

20 V
�

�
25 V

�

�
2 A

4.14 Find the power delivered by the 4 A current
source in the circuit shown.

Answer: 40 W.

3 �

5 �2 �

4 �

ix

4 A

6 �
�

�
128 V 30 ix

�

�

NOTE: Also try Chapter Problems 4.54 and 4.56.
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4.9 Source Transformations
Even though the node-voltage and mesh-current methods are powerful tech-
niques for solving circuits, we are still interested in methods that can be used
to simplify circuits. Series-parallel reductions and -to-Y transformations are¢
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�

�

R

vs

a

b
(a)

is

a

b
(b)

R

Figure 4.36 � Source transformations.

Example 4.8 Using Source Transformations to Solve a Circuit

a) For the circuit shown in Fig. 4.37, find the power
associated with the 6 V source.

b) State whether the 6 V source is absorbing or
delivering the power calculated in (a).

Solution
a) If we study the circuit shown in Fig. 4.37, know-

ing that the power associated with the 6 V
source is of interest, several approaches come
to mind. The circuit has four essential nodes
and six essential branches where the current is
unknown. Thus we can find the current in the
branch containing the 6 V source by solving
either three mesh-current equa-
tions or three node-voltage equations.
Choosing the mesh-current approach involves

[4 - 1]
36 - (4 - 1)]

solving for the mesh current that corresponds
to the branch current in the 6 V source.
Choosing the node-voltage approach involves
solving for the voltage across the resistor,
from which the branch current in the 6 V
source can be calculated. But by focusing on
just one branch current, we can first simplify
the circuit by using source transformations.

30 Æ

20 �30 �

4 � 6 �

10 �

5 �

6 V
�

�

�

�
40 V

Figure 4.37 � The circuit for Example 4.8.

already on our list of simplifying techniques. We begin expanding this list
with source transformations. A source transformation, shown in Fig. 4.36,
allows a voltage source in series with a resistor to be replaced by a current
source in parallel with the same resistor or vice versa. The double-headed
arrow emphasizes that a source transformation is bilateral; that is, we can
start with either configuration and derive the other.

We need to find the relationship between and that guarantees the
two configurations in Fig. 4.36 are equivalent with respect to nodes a,b.
Equivalence is achieved if any resistor experiences the same current
flow, and thus the same voltage drop, whether connected between nodes
a,b in Fig. 4.36(a) or Fig. 4.36(b).

Suppose is connected between nodes a,b in Fig. 4.36(a). Using
Ohm’s law, the current in is

(4.52)

Now suppose the same resistor is connected between nodes a,b in
Fig. 4.36(b). Using current division, the current in is

(4.53)

If the two circuits in Fig. 4.36 are equivalent, these resistor currents must be
the same. Equating the right-hand sides of Eqs. 4.52 and 4.53 and simplifying,

(4.54)

When Eq. 4.54 is satisfied for the circuits in Fig. 4.36, the current in is
the same for both circuits in the figure for all values of If the current
through is the same in both circuits, then the voltage drop across is
the same in both circuits, and the circuits are equivalent at nodes a,b.

If the polarity of is reversed, the orientation of must be reversed
to maintain equivalence.

Example 4.8 illustrates the usefulness of making source transforma-
tions to simplify a circuit-analysis problem.

isvs

RLRL

RL.
RL

is =

vs

R
 .

iL =

R

R + RL
 is .

RL

RL

iL =

vs

R + RL
 .

RL

RL

RL

isvs
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6 V

30 �

6 �

10 �

4 �

20 � 8 A
�

�
6 V 5 �

(a)  First step

30 �

6 �

10 �

4 � 4 �

32 V
�

�

�

�
6 V

(b)  Second step

20 �30 �

4 �

�

�
1.6 A6 V

(c)  Third step

12 �4 �

19.2 V
�

�

�

�

(d)  Fourth step

Figure 4.38 � Step-by-step simplification of the circuit shown in Fig. 4.37.

Next, we can replace the parallel combination of
the and resistors with a resistor.
This resistor is in parallel with the 8 A source
and therefore can be replaced with a 32 V source
in series with a resistor, as shown in
Fig. 4.38(b).The 32 V source is in series with 
of resistance and, hence, can be replaced by a cur-
rent source of 1.6 A in parallel with , as shown
in Fig. 4.38(c). The and parallel resis-
tors can be reduced to a single resistor. The
parallel combination of the 1.6 A current source

12 Æ
30 Æ20 Æ

20 Æ

20 Æ
4 Æ

4 Æ
4 Æ5 Æ20 Æ

and the resistor transforms into a voltage
source of 19.2 V in series with . Figure 4.38(d)
shows the result of this last transformation. The
current in the direction of the voltage drop across
the 6 V source is or 0.825 A.
Therefore the power associated with the 6 V
source is

b) The voltage source is absorbing power.

p6V = (0.825)(6) = 4.95 W.

(19.2 - 6)>16,

12 Æ
12 Æ

A question that arises from use of the source transformation depicted
in Fig. 4.38 is, “What happens if there is a resistance in parallel with the
voltage source or a resistance in series with the current source?” In
both cases, the resistance has no effect on the equivalent circuit that pre-
dicts behavior with respect to terminals a,b. Figure 4.39 summarizes this
observation.

The two circuits depicted in Fig. 4.39(a) are equivalent with respect to
terminals a,b because they produce the same voltage and current in any
resistor inserted between nodes a,b. The same can be said for the cir-
cuits in Fig. 4.39(b). Example 4.9 illustrates an application of the equiva-
lent circuits depicted in Fig. 4.39.

RL

Rs

Rp

(a)

is

Rp

R

vs
�

�

a

b

R

vs
�

�

a

b

(b)

a

b

Rs

R R

a

b

is

Figure 4.39 � Equivalent circuits containing a 
resistance in parallel with a voltage source or in series
with a current source.

We must reduce the circuit in a way that pre-
serves the identity of the branch containing the 6 V
source. We have no reason to preserve the identity of
the branch containing the 40 V source. Beginning with

this branch, we can transform the 40 V source in
series with the resistor into an 8 A current
source in parallel with a resistor, as shown
in Fig. 4.38(a).

5 Æ
5 Æ
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Example 4.9 Using Special Source Transformation Techniques

a) Use source transformations to find the voltage 
in the circuit shown in Fig. 4.40.

b) Find the power developed by the 250 V voltage
source.

c) Find the power developed by the 8 A current
source.

vo

15 �

5 �25 �

250 V 125 �
�

�
10 �

8 A
100 �vo

�

�

Figure 4.40 � The circuit for Example 4.9.

20 �

25 �

250 V
�

�
8 A 100 �vo

�

�

Figure 4.41 � A simplified version of the circuit shown in Fig. 4.40.

20 �10 A 25 � 8 A 100 �vo

�

�

Figure 4.42 � The circuit shown in Fig. 4.41 after a source
transformation.

2 A 10 �vo

�

�

Figure 4.43 � The circuit shown in Fig. 4.42 after combining
sources and resistors.

b) The current supplied by the 250 V source equals the
current in the resistor plus the current in the

resistor. Thus

Therefore the power developed by the voltage source is

c) To find the power developed by the 8 A current source,
we first find the voltage across the source. If we let 
represent the voltage across the source, positive at the
upper terminal of the source, we obtain

and the power developed by the 8 A source is 480 W.
Note that the and resistors do not affect
the value of but do affect the power calculations.vo

10 Æ125 Æ

vs + 8(10) = vo = 20, or vs = -60 V,

vs

p250V(developed) = (250)(11.2) = 2800 W.

is =

250
125

+

250 - 20
25

= 11.2 A.

25 Æ
125 Æ

We now use a source transformation to replace
the 250 V source and resistor with a 10 A
source in parallel with the resistor, as shown in
Fig. 4.42. We can now simplify the circuit shown in
Fig. 4.42 by using Kirchhoff’s current law to com-
bine the parallel current sources into a single
source. The parallel resistors combine into a single
resistor. Figure 4.43 shows the result. Hence
vo = 20 V.

25 Æ
25 Æ

Solution

a) We begin by removing the and resis-
tors, because the resistor is connected across
the 250 V voltage source and the resistor is
connected in series with the 8 A current source. We
also combine the series-connected resistors into a
single resistance of . Figure 4.41 shows the sim-
plified circuit.

20 Æ

10 Æ
125 Æ

10 Æ125 Æ
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Objective 4—Understand source transformation

4.15 a) Use a series of source transformations to
find the voltage in the circuit shown.

b) How much power does the 120 V source
deliver to the circuit?

Answer: (a) 48 V;

(b) 374.4 W.

v

6 � 8 �36 A v

�

�

1.6 �

�

�

5 �

60 V20 �

�

�
120 V

NOTE: Also try Chapter Problems 4.61 and 4.62.

4.10 Thévenin and Norton Equivalents
At times in circuit analysis, we want to concentrate on what happens at
a specific pair of terminals. For example, when we plug a toaster into an
outlet, we are interested primarily in the voltage and current at the ter-
minals of the toaster. We have little or no interest in the effect that con-
necting the toaster has on voltages or currents elsewhere in the circuit
supplying the outlet. We can expand this interest in terminal behavior
to a set of appliances, each requiring a different amount of power.
We then are interested in how the voltage and current delivered at the
outlet change as we change appliances. In other words, we want to focus
on the behavior of the circuit supplying the outlet, but only at the out-
let terminals.

Thévenin and Norton equivalents are circuit simplification techniques
that focus on terminal behavior and thus are extremely valuable aids in
analysis. Although here we discuss them as they pertain to resistive cir-
cuits, Thévenin and Norton equivalent circuits may be used to represent
any circuit made up of linear elements.

We can best describe a Thévenin equivalent circuit by reference to
Fig. 4.44, which represents any circuit made up of sources (both inde-
pendent and dependent) and resistors. The letters a and b denote the
pair of terminals of interest. Figure 4.44(b) shows the Thévenin equiva-
lent. Thus, a Thévenin equivalent circuit is an independent voltage
source in series with a resistor which replaces an interconnec-
tion of sources and resistors. This series combination of and is
equivalent to the original circuit in the sense that, if we connect the
same load across the terminals a,b of each circuit, we get the same volt-
age and current at the terminals of the load. This equivalence holds for
all possible values of load resistance.

To represent the original circuit by its Thévenin equivalent, we must
be able to determine the Thévenin voltage and the Thévenin resist-
ance First, we note that if the load resistance is infinitely large, we
have an open-circuit condition. The open-circuit voltage at the terminals
a,b in the circuit shown in Fig. 4.44(b) is By hypothesis, this must beVTh.

RTh.
VTh

RThVTh

RTh ,VTh

A S S E S S M E N T  P R O B L E M

A resistive
network containing
independent and
dependent sources

a

b

a

b

(a) (b)

�

�

RTh

VTh

Figure 4.44 � (a) A general circuit. (b) The Thévenin
equivalent circuit.
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the same as the open-circuit voltage at the terminals a,b in the original 
circuit. Therefore, to calculate the Thévenin voltage we simply calcu-
late the open-circuit voltage in the original circuit.

Reducing the load resistance to zero gives us a short-circuit condition.
If we place a short circuit across the terminals a,b of the Thévenin equiva-
lent circuit, the short-circuit current directed from a to b is

(4.55)

By hypothesis, this short-circuit current must be identical to the short-circuit
current that exists in a short circuit placed across the terminals a,b of the
original network. From Eq. 4.55,

(4.56)

Thus the Thévenin resistance is the ratio of the open-circuit voltage to the
short-circuit current.

Finding a Thévenin Equivalent
To find the Thévenin equivalent of the circuit shown in Fig. 4.45, we first
calculate the open-circuit voltage of Note that when the terminals a,b
are open, there is no current in the resistor.Therefore the open-circuit
voltage is identical to the voltage across the 3 A current source, labeled

. We find the voltage by solving a single node-voltage equation.
Choosing the lower node as the reference node, we get

(4.57)

Solving for yields

(4.58)

Hence the Thévenin voltage for the circuit is 32 V.
The next step is to place a short circuit across the terminals and calcu-

late the resulting short-circuit current. Figure 4.46 shows the circuit with
the short in place. Note that the short-circuit current is in the direction of
the open-circuit voltage drop across the terminals a,b. If the short-circuit
current is in the direction of the open-circuit voltage rise across the termi-
nals, a minus sign must be inserted in Eq. 4.56.

The short-circuit current ( ) is found easily once is known.Therefore
the problem reduces to finding with the short in place.Again, if we use the
lower node as the reference node, the equation for becomes

(4.59)
v2 - 25

5
+

v2

20
- 3 +

v2

4
= 0.

v2

v2

v2isc

v1 = 32 V.

v1

v1 - 25
5

+

v1

20
- 3 = 0.

v1

vab

4 Æ
vab.

 RTh =

VTh

isc
.

 isc =

VTh

RTh
.

VTh,

20 �

5 � 4 �

25 V
�

�

a

b

3 A v2

�

�

isc

Figure 4.46 � The circuit shown in Fig. 4.45 with 
terminals a and b short-circuited.

20 �

5 � 4 �

25 V
�

�
3 A v1

�

�

vab

�

�

a

b

Figure 4.45 � A circuit used to illustrate a Thévenin
equivalent.
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Solving Eq. 4.59 for gives

(4.60)

Hence, the short-circuit current is

(4.61)

We now find the Thévenin resistance by substituting the numerical results
from Eqs. 4.58 and 4.61 into Eq. 4.56:

(4.62)

Figure 4.47 shows the Thévenin equivalent for the circuit shown in Fig. 4.45.
You should verify that, if a resistor is connected across the ter-

minals a,b in Fig. 4.45, the voltage across the resistor will be 24 V and
the current in the resistor will be 1 A, as would be the case with the
Thévenin circuit in Fig. 4.47. This same equivalence between the circuit
in Figs. 4.45 and 4.47 holds for any resistor value connected between
nodes a,b.

The Norton Equivalent
A Norton equivalent circuit consists of an independent current source
in parallel with the Norton equivalent resistance. We can derive it from
a Thévenin equivalent circuit simply by making a source transforma-
tion. Thus the Norton current equals the short-circuit current at the 
terminals of interest, and the Norton resistance is identical to the
Thévenin resistance.

Using Source Transformations
Sometimes we can make effective use of source transformations to
derive a Thévenin or Norton equivalent circuit. For example, we can
derive the Thévenin and Norton equivalents of the circuit shown 
in Fig. 4.45 by making the series of source transformations shown in 
Fig. 4.48. This technique is most useful when the network contains only
independent sources. The presence of dependent sources requires
retaining the identity of the controlling voltages and/or currents, and
this constraint usually prohibits continued reduction of the circuit 
by source transformations. We discuss the problem of finding the
Thévenin equivalent when a circuit contains dependent sources in
Example 4.10.

24 Æ

RTh =

VTh

isc
=

32
4

= 8 Æ.

isc =

16
4

= 4 A.

v2 = 16 V.

v2

20 �

Step 1:
Source transformation

5 � 4 �

25 V 3 A
�

�

a

b

20 �5 �

Step 2:
Parallel sources and

parallel resistors combined

4 �

3 A5 A

a

b

Step 3:
Source transformation; series 

resistors combined, producing 
the Thévenin equivalent circuit

4 �
a

b

4 �8 A

a

b

8 �4 A

Step 4:
Source transformation, producing

the Norton equivalent circuit

8 �
a

b

32 V
�

�

Figure 4.48 � Step-by-step derivation of the Thévenin
and Norton equivalents of the circuit shown in Fig. 4.45.

8 �

32 V
�

�

a

b

Figure 4.47 � The Thévenin equivalent of the circuit
shown in Fig. 4.45.
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Example 4.10 Finding the Thévenin Equivalent of a Circuit with a Dependent Source

Find the Thévenin equivalent for the circuit con-
taining dependent sources shown in Fig. 4.49.

Figure 4.49 � A circuit used to illustrate a Thévenin equivalent
when the circuit contains dependent sources.

Solution
The first step in analyzing the circuit in Fig. 4.49 is
to recognize that the current labeled must be
zero. (Note the absence of a return path for to
enter the left-hand portion of the circuit.) The
open-circuit, or Thévenin, voltage will be the volt-
age across the resistor. With 

The current i is

In writing the equation for i, we recognize that the
Thévenin voltage is identical to the control voltage.
When we combine these two equations, we obtain

To calculate the short-circuit current, we place
a short circuit across a,b.When the terminals a,b are
shorted together, the control voltage is reduced to
zero. Therefore, with the short in place, the circuit
shown in Fig. 4.49 becomes the one shown in
Fig. 4.50. With the short circuit shunting the 
resistor, all the current from the dependent current
source appears in the short, so

isc = -20i.

25 Æ

v

VTh = -5 V.

i =

5 - 3v

2000
=

5 - 3VTh

2000
 .

VTh = vab = (-20i)(25) = -500i.

ix = 0,25 Æ

ix

ix

�
�

25 �

2 k�

5 V 3 v 20 i
�

�
vab

�

�

v

�

�

a

b

i

ix

Figure 4.50 � The circuit shown in Fig. 4.49 with terminals a
and b short-circuited.

As the voltage controlling the dependent volt-
age source has been reduced to zero, the current
controlling the dependent current source is

Combining these two equations yields a short-circuit
current of

From and we get

Figure 4.51 illustrates the Thévenin equivalent
for the circuit shown in Fig. 4.49. Note that the ref-
erence polarity marks on the Thévenin voltage
source in Fig. 4.51 agree with the preceding equa-
tion for 

Figure 4.51 � The Thévenin equivalent for the circuit shown in
Fig. 4.49.
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b

VTh.

RTh =

VTh

isc
=

-5
-50

* 103
= 100 Æ.

VThisc

isc = -20(2.5) = -50 mA.

i =

5
2000

= 2.5 mA.
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isc
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4.11 More on Deriving a Thévenin
Equivalent

The technique for determining that we discussed and illustrated in
Section 4.10 is not always the easiest method available. Two other meth-
ods generally are simpler to use. The first is useful if the network contains
only independent sources. To calculate for such a network, we first
deactivate all independent sources and then calculate the resistance seen
looking into the network at the designated terminal pair.A voltage source
is deactivated by replacing it with a short circuit. A current source is deac-
tivated by replacing it with an open circuit. For example, consider the cir-
cuit shown in Fig. 4.52. Deactivating the independent sources simplifies
the circuit to the one shown in Fig. 4.53. The resistance seen looking into
the terminals a,b is denoted which consists of the resistor in series
with the parallel combinations of the 5 and resistors. Thus,

(4.63)

Note that the derivation of with Eq. 4.63 is much simpler than the
same derivation with Eqs. 4.57–4.62.

RTh

Rab = RTh = 4 +

5 * 20
25

= 8 Æ.

20 Æ
4 ÆRab,

RTh

RTh

20 �

5 � 4 �

25 V 3 A vab

�

�

a

b

�

�

Figure 4.52 � A circuit used to illustrate a Thévenin
equivalent.

a

b

5 �

20 �

4 �

Rab

Figure 4.53 � The circuit shown in Fig. 4.52 after deac-
tivation of the independent sources.

Objective 5—Understand Thévenin and Norton equivalents

4.16 Find the Thévenin equivalent circuit with respect
to the terminals a,b for the circuit shown.

Answer:

4.17 Find the Norton equivalent circuit with respect
to the terminals a,b for the circuit shown.

Answer: (directed toward a), .

4.18 A voltmeter with an internal resistance of
is used to measure the voltage in the

circuit shown.What is the voltmeter reading?

Answer: 120 V.

vAB100 kÆ

RN = 7.5 ÆIN = 6 A

Vab = VTh = 64.8 V, RTh = 6 Æ.

18 mA 60 k�

12 k� 15 k�

36 V vAB

�

�

A

B

�

�

8 � 12 �

2 �

10 �

15 A

a

b

�

�

12 �

5 � 8 �

20 �72 V

a

b

NOTE: Also try Chapter Problems 4.64, 4.68, and 4.72.
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If the circuit or network contains dependent sources, an alternative
procedure for finding the Thévenin resistance is as follows. We first
deactivate all independent sources, and we then apply either a test voltage
source or a test current source to the Thévenin terminals a,b.The Thévenin
resistance equals the ratio of the voltage across the test source to the cur-
rent delivered by the test source. Example 4.11 illustrates this alternative
procedure for finding using the same circuit as Example 4.10.RTh,

RTh

Example 4.11 Finding the Thévenin Equivalent Using a Test Source

Find the Thévenin resistance for the circuit in
Fig. 4.49, using the alternative method described.

Solution
We first deactivate the independent voltage source
from the circuit and then excite the circuit from the
terminals a,b with either a test voltage source or a
test current source. If we apply a test voltage source,
we will know the voltage of the dependent voltage
source and hence the controlling current i.Therefore
we opt for the test voltage source. Figure 4.54 shows
the circuit for computing the Thévenin resistance.

Figure 4.54 � An alternative method for computing the
Thévenin resistance.

i

2 k�

25 �3 vT

�

� 20 i

iT

vT
�

�

RTh The externally applied test voltage source is
denoted and the current that it delivers to the
circuit is labeled To find the Thévenin resistance,
we simply solve the circuit shown in Fig. 4.54 for the
ratio of the voltage to the current at the test source;
that is, From Fig. 4.54,

(4.64)

(4.65)

We then substitute Eq. 4.65 into Eq. 4.64 and solve
the resulting equation for the ratio :

(4.66)

(4.67)

From Eqs. 4.66 and 4.67,

(4.68)RTh =

vT

iT
= 100 Æ.

 
iT

vT
=

1
25

-

6
200

=

50
5000

=

1
100

 .

 iT =

vT

25
-

60vT

2000
 ,

vT>iT

 i =

-3vT

2
 mA.

 iT =

vT

25
+ 20i,

RTh = vT>iT.

iT.
vT,

In general, these computations are easier than those involved in com-
puting the short-circuit current. Moreover, in a network containing only
resistors and dependent sources, you must use the alternative method,
because the ratio of the Thévenin voltage to the short-circuit current is
indeterminate. That is, it is the ratio .0>0

Using the Thévenin Equivalent in the Amplifier Circuit
At times we can use a Thévenin equivalent to reduce one portion of a cir-
cuit to greatly simplify analysis of the larger network. Let’s return to the
circuit first introduced in Section 2.5 and subsequently analyzed in
Sections 4.4 and 4.7. To aid our discussion, we redrew the circuit and iden-
tified the branch currents of interest, as shown in Fig. 4.55.

As our previous analysis has shown, is the key to finding the other
branch currents. We redraw the circuit as shown in Fig. 4.56 to prepare to
replace the subcircuit to the left of with its Thévenin equivalent. YouV0

iB

iE

VCC

R2

R1

RE

biB

RC

�

�

a

b c

d

V0

� �

iB

i1

i2

Figure 4.55 � The application of a Thévenin equivalent
in circuit analysis.
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Objective 5—Understand Thévenin and Norton equivalents

4.19 Find the Thévenin equivalent circuit with respect
to the terminals a,b for the circuit shown.

Answer: ,

�

�

3 ix

24 V 4 A

b

a
2 �

8 �ix

RTh = 1 Æ.VTh = vab = 8 V

4.20 Find the Thévenin equivalent circuit with
respect to the terminals a,b for the circuit
shown. (Hint: Define the voltage at the left-
most node as , and write two nodal equations
with as the right node voltage.)

Answer: ,

� �
20 �

a

b

160 i�

i�4 A60 � 80 � 40 �

RTh = 10 Æ.VTh = vab = 30 V

VTh

v

NOTE: Also try Chapter Problems 4.74 and 4.79.
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should be able to determine that this modification has no effect on the
branch currents and 

Now we replace the circuit made up of and with a
Thévenin equivalent, with respect to the terminals b,d. The Thévenin volt-
age and resistance are

(4.69)

(4.70)

With the Thévenin equivalent, the circuit in Fig. 4.56 becomes the one
shown in Fig. 4.57.

We now derive an equation for simply by summing the voltages
around the left mesh. In writing this mesh equation, we recognize that

Thus,

(4.71)

from which

(4.72)

When we substitute Eqs. 4.69 and 4.70 into Eq. 4.72, we get the same
expression obtained in Eq. 2.25. Note that when we have incorporated the
Thévenin equivalent into the original circuit, we can obtain the solution
for by writing a single equation.iB

iB =

VTh - V0

RTh + (1 + b)RE
 .

VTh = RThiB + V0 + RE(1 + b)iB,

iE = (1 + b)iB.

iB

 RTh =

R1R2

R1 + R2
 .

 VTh =

VCCR2

R1 + R2
 ,

R2R1,VCC,
iE.iB,i2,i1,

c

�

�
VTh

RTh

d

a

RE iE

RC

VCC
�

�
b

V0

iB

� �

biB

Figure 4.57 � The circuit shown in Fig. 4.56 modified
by a Thévenin equivalent.
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Figure 4.56 � A modified version of the circuit shown
in Fig. 4.55.
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4.12 Maximum Power Transfer
Circuit analysis plays an important role in the analysis of systems designed
to transfer power from a source to a load. We discuss power transfer in
terms of two basic types of systems. The first emphasizes the efficiency of
the power transfer. Power utility systems are a good example of this type
because they are concerned with the generation, transmission, and distri-
bution of large quantities of electric power. If a power utility system is
inefficient, a large percentage of the power generated is lost in the trans-
mission and distribution processes, and thus wasted.

The second basic type of system emphasizes the amount of power trans-
ferred. Communication and instrumentation systems are good examples
because in the transmission of information, or data, via electric signals, the
power available at the transmitter or detector is limited.Thus, transmitting as
much of this power as possible to the receiver, or load, is desirable. In such
applications the amount of power being transferred is small, so the efficiency
of transfer is not a primary concern. We now consider maximum power
transfer in systems that can be modeled by a purely resistive circuit.

Maximum power transfer can best be described with the aid of the cir-
cuit shown in Fig. 4.58. We assume a resistive network containing independ-
ent and dependent sources and a designated pair of terminals, a,b, to which a
load, is to be connected.The problem is to determine the value of that
permits maximum power delivery to The first step in this process is to
recognize that a resistive network can always be replaced by its Thévenin
equivalent. Therefore, we redraw the circuit shown in Fig. 4.58 as the one
shown in Fig. 4.59. Replacing the original network by its Thévenin equivalent
greatly simplifies the task of finding Derivation of requires express-
ing the power dissipated in as a function of the three circuit parameters

and Thus

(4.73)

Next, we recognize that for a given circuit, and will be fixed.
Therefore the power dissipated is a function of the single variable To
find the value of that maximizes the power, we use elementary calculus.
We begin by writing an equation for the derivative of p with respect to :

(4.74)

The derivative is zero and p is maximized when

(4.75)

Solving Eq. 4.75 yields

(4.76)

Thus maximum power transfer occurs when the load resistance equals
the Thévenin resistance To find the maximum power delivered to 
we simply substitute Eq. 4.76 into Eq. 4.73:

(4.77)

The analysis of a circuit when the load resistor is adjusted for maximum
power transfer is illustrated in Example 4.12.

pmax =

VTh
2 RL

(2RL)2 =

VTh
2

4RL
.

RL,RTh.
RL

RL = RTh.

(RTh + RL)2
= 2RL(RTh +  RL).

dp

dRL
= V2

ThB (RTh + RL)2
- RL

# 2(RTh + RL)

(RTh + RL)4 R .

RL

RL

RL.
RThVTh

p = i2 RL = ¢ VTh

RTh + RL
≤2

RL.

RL.RTh,VTh,
RL

RLRL.

RL.
RLRL,

Resistive network
containing
independent and
dependent sources

b

a

RL

Figure 4.58 � A circuit describing maximum power
transfer.

�

�

a

b

VTh

RTh

i RL

Figure 4.59 � A circuit used to determine the value of
for maximum power transfer.RL

Condition for maximum power transfer �
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Example 4.12 Calculating the Condition for Maximum Power Transfer

a) For the circuit shown in Fig. 4.60, find the value
of that results in maximum power being
transferred to 

Figure 4.60 � The circuit for Example 4.12.

b) Calculate the maximum power that can be deliv-
ered to 

c) When is adjusted for maximum power trans-
fer, what percentage of the power delivered by
the 360 V source reaches ?

Solution

a) The Thévenin voltage for the circuit to the left of
the terminals a,b is

The Thévenin resistance is

Replacing the circuit to the left of the termi-
nals a,b with its Thévenin equivalent gives 
us the circuit shown in Fig. 4.61, which indi-
cates that must equal for maximum
power transfer.

25 ÆRL

 RTh =

(150)(30)
180

= 25 Æ.

 VTh =

150
180

(360) = 300 V.

RL

RL

RL.

RL150 �

30 � a

b

360 V
�

�

RL.
RL

Figure 4.61 � Reduction of the circuit shown in Fig. 4.60 by
means of a Thévenin equivalent.

b) The maximum power that can be delivered to
is

c) When equals the voltage is

From Fig. 4.60, when equals 150 V, the cur-
rent in the voltage source in the direction of the
voltage rise across the source is

Therefore, the source is delivering 2520 W to the
circuit, or

The percentage of the source power delivered to
the load is

900
2520

* 100 = 35.71%.

ps = - is(360) = -2520 W.

is =

360 - 150
30

=

210
30

= 7 A.

vab

 vab = a300
50
b(25) = 150 V.

vab25 Æ,RL

 pmax = a300
50
b2

(25) = 900 W.

RL

RL

25 � a

b

300 V
�

�
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Objective 6—Know the condition for and calculate maximum power transfer to resistive load

4.21 a) Find the value of R that enables the circuit
shown to deliver maximum power to the
terminals a,b.

b) Find the maximum power delivered to R.

Answer: (a) ;

(b) 1.2 kW.

3 Æ

R

4 �

4 �

4 � a

b

20 V
�

�

100 V
�

�

4 � vf
�

�

vf

� �

4.22 Assume that the circuit in Assessment
Problem 4.21 is delivering maximum power to
the load resistor R.

a) How much power is the 100 V source deliv-
ering to the network?

b) Repeat (a) for the dependent voltage
source.

c) What percentage of the total power gener-
ated by these two sources is delivered to the
load resistor R?

Answer: (a) 3000 W;

(b) 800 W;

(c) 31.58%.

NOTE: Also try Chapter Problems 4.88 and 4.90.

4.13 Superposition
A linear system obeys the principle of superposition, which states that
whenever a linear system is excited, or driven, by more than one inde-
pendent source of energy, the total response is the sum of the individual
responses. An individual response is the result of an independent source
acting alone. Because we are dealing with circuits made up of inter-
connected linear-circuit elements, we can apply the principle of superposi-
tion directly to the analysis of such circuits when they are driven by more
than one independent energy source.At present, we restrict the discussion
to simple resistive networks; however, the principle is applicable to any
linear system.

Superposition is applied in both the analysis and the design of circuits.
In analyzing a complex circuit with multiple independent voltage and cur-
rent sources, there are often fewer, simpler equations to solve when the
effects of the independent sources are considered one at a time. Applying
superposition can thus simplify circuit analysis. Be aware, though, that
sometimes applying superposition actually complicates the analysis, produc-
ing more equations to solve than with an alternative method. Superposition
is required only if the independent sources in a circuit are fundamentally
different. In these early chapters, all independent sources are dc sources, so
superposition is not required. We introduce superposition here in anticipa-
tion of later chapters in which circuits will require it.

Superposition is applied in design to synthesize a desired circuit
response that could not be achieved in a circuit with a single source. If the
desired circuit response can be written as a sum of two or more terms, the
response can be realized by including one independent source for each
term of the response. This approach to the design of circuits with complex
responses allows a designer to consider several simple designs instead of
one complex design.

A S S E S S M E N T  P R O B L E M S
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4 �3 �

6 �

120 V
i1

2 �

i3
i4i2

�

�
12 A

Figure 4.62 � A circuit used to illustrate superposition.

4 �3 �120 V

6 �

i�1

2 �

i�3

i�4i�2
�

�

v1

Figure 4.63 � The circuit shown in Fig. 4.62 with the
current source deactivated.

We demonstrate the superposition principle by using it to find the
branch currents in the circuit shown in Fig. 4.62. We begin by finding the
branch currents resulting from the 120 V voltage source. We denote those
currents with a prime. Replacing the ideal current source with an open cir-
cuit deactivates it; Fig. 4.63 shows this. The branch currents in this circuit
are the result of only the voltage source.

We can easily find the branch currents in the circuit in Fig. 4.63 once
we know the node voltage across the resistor. Denoting this voltage

we write

(4.78)

from which

(4.79)

Now we can write the expressions for the branch currents directly:

(4.80)

(4.81)

(4.82)

To find the component of the branch currents resulting from the current
source, we deactivate the ideal voltage source and solve the circuit shown in
Fig. 4.64. The double-prime notation for the currents indicates they are the
components of the total current resulting from the ideal current source.

We determine the branch currents in the circuit shown in Fig. 4.64 by
first solving for the node voltages across the 3 and resistors, respec-
tively. Figure 4.65 shows the two node voltages. The two node-voltage
equations that describe the circuit are

(4.83)

(4.84)

Solving Eqs. 4.83 and 4.84 for and we get

(4.85)

(4.86)

Now we can write the branch currents through directly in terms of the
node voltages and :

(4.87) ifl

1 =

-v3

6
=

12
6

= 2 A,

v4v3

ifl

4ifl

1

 v4 = -24 V.

 v3 = -12 V,

v4,v3

 
v4 - v3

2
+

v4

4
+ 12 = 0.

 
v3

3
+

v3

6
+

v3 - v4

2
= 0,

4 Æ

 iœ

3 = iœ

4 =

30
6

= 5 A.

 iœ

2 =

30
3

= 10 A,

 iœ

1 =

120 - 30
6

= 15 A,

iœ

1 -  i
œ

4

v1 = 30 V.

v1 - 120
6

+

v1

3
+

v1

2 + 4
= 0,

v1,
3 Æ

4 �3 �

6 �

i1�

2 �

i3�
i4�i2� 12 A

Figure 4.64 � The circuit shown in Fig. 4.62 with the
voltage source deactivated.

4 �3 �

6 � 2 �

12 Av4

�

�

v3

�

�

Figure 4.65 � The circuit shown in Fig. 4.64 showing
the node voltages and v4 .v3
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(4.88)

(4.89)

(4.90)

To find the branch currents in the original circuit, that is, the currents
and in Fig. 4.62, we simply add the currents given by

Eqs. 4.87–4.90 to the currents given by Eqs. 4.80–4.82:

(4.91)

(4.92)

(4.93)

(4.94)

You should verify that the currents given by Eqs. 4.91–4.94 are the correct
values for the branch currents in the circuit shown in Fig. 4.62.

When applying superposition to linear circuits containing both independ-
ent and dependent sources, you must recognize that the dependent sources
are never deactivated. Example 4.13 illustrates the application of superposi-
tion when a circuit contains both dependent and independent sources.

 i4 = iœ

4 + ifl

4 = 5 - 6 = -1 A.

 i3 = iœ

3 + ifl

3 = 5 + 6 = 11 A,

 i2 = iœ

2 + ifl

2 = 10 - 4 = 6 A,

 i1 = iœ

1 + ifl

1 = 15 + 2 = 17 A,

i4i3,i2,i1,

 ifl

4 =

v4

4
=

-24
4

= -6 A.

 ifl

3 =

v3 - v4

2
=

-12 + 24
2

= 6 A,

 ifl

2 =

v3

3
=

-12
3

= -4 A,

Example 4.13 Using Superposition to Solve a Circuit

Use the principle of superposition to find in the
circuit shown in Fig. 4.66.

Figure 4.66 � The circuit for Example 4.13.

Solution
We begin by finding the component of resulting
from the 10 V source. Figure 4.67 shows the circuit.
With the 5 A source deactivated, must equalvœ

¢

vo

� �

10 �20 �

5 �

10 V
i��

�
5 A

0.4 v�

2 i�
vo

�

�

v�

�

�

vo Hence, must be zero, the branch
containing the two dependent sources is open, and

Figure 4.67 � The circuit shown in Fig. 4.66 with the 5 A
source deactivated.
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When the 10 V source is deactivated, the circuit
reduces to the one shown in Fig. 4.68. We have
added a reference node and the node designations
a, b, and c to aid the discussion. Summing the cur-
rents away from node a yields

Summing the currents away from node b gives

We now use

to find the value for Thus,

5vfl

¢
= 50, or vfl

¢
= 10 V.

vfl

¢
.

vb = 2ifl

¢
+ vfl

¢

 4vfl

¢
+ vb - 2ifl

¢
= 50.

 0.4vfl

¢
+

vb - 2ifl

¢

10
- 5 = 0,  or

vfl

o

20
+

vfl

o

5
- 0.4vfl

¢
= 0, or 5vfl

o - 8vfl

¢
= 0.

From the node a equation,

The value of is the sum of and or 24 V.

Figure 4.68 � The circuit shown in Fig. 4.66 with the 10 V
source deactivated.

NOTE: Assess your understanding of this material
by trying Chapter Problems 4.93 and 4.98.

10 �20 �

5 � a b

c

i��

5 A

0.4 v��

2 i��
vo�

�

�

v��

�

�
� �

vfl

o,vœ

ovo

5vfl

0 = 80, or vfl

0 = 16 V.

Practical Perspective
Circuits with Realistic Resistors
It is not possible to fabricate identical electrical components. For example,
resistors produced from the same manufacturing process can vary in value
by as much as . Therefore, in creating an electrical system the designer
must consider the impact that component variation will have on the per-
formance of the system. One way to evaluate this impact is by performing
sensitivity analysis. Sensitivity analysis permits the designer to calculate
the impact of variations in the component values on the output of the sys-
tem. We will see how this information enables a designer to specify an
acceptable component value tolerance for each of the system’s components.

Consider the circuit shown in Fig. 4.69. To illustrate sensitivity analysis,
we will investigate the sensitivity of the node voltages and to changes
in the resistor . Using nodal analysis we can derive the expressions for 
and as functions of the circuit resistors and source currents. The results
are given in Eqs. 4.95 and 4.96:

, (4.95)

. (4.96)

The sensitivity of with respect to is found by differentiating Eq. 4.95
with respect to , and similarly the sensitivity of with respect to is
found by differentiating Eq. 4.96 with respect to . We getR1

R1v2R1

R1v1

 v2 =

R3R43(R1 + R2)Ig2 - R1Ig14
(R1 + R2)(R3 + R4) + R3R4

 v1 =

R15R3R4Ig2 - 3R2(R3 + R4) + R3R44Ig16
(R1 + R2)(R3 + R4) + R3R4

v2

v1R1

v2v1

20%

,

(4.97)

dv1

dR1
=

3R3R4 + R2(R3 + R4)45R3R4Ig2 - 3R3R4 + R2(R3 + R4)4Ig16
3(R1 + R2)(R3 + R4) + R3R442
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v2

�

�

v1

�

�

R4R1Ig1 Ig2R3

R2

Figure 4.69 � Circuit used to introduce sensitivity
analysis.

. (4.98)
dv2

dR1
=

R3R45R3R4Ig2 - 3R2(R3 + R4) + R3R44Ig16
3(R1 + R2)(R3 + R4) + R3R442

We now consider an example with actual component values to illustrate
the use of Eqs. 4.97 and 4.98.

EXAMPLE 
Assume the nominal values of the components in the circuit in Fig. 4.69 are:

; ; ; ; and
Use sensitivity analysis to predict the values of and if

the value of is different by from its nominal value.

Solution
From Eqs. 4.95 and 4.96 we find the nominal values of and . Thus

(4.99)

and

(4.100)

Now from Eqs. 4.97 and 4.98 we can find the sensitivity of and to
changes in . Hence

, (4.101)

and

(4.102) = 0.5 V>Æ.

 
dv2

dR1
=

375053750(16) - 35(125) + 375041264
(7500)2

 =

7
12

 V>Æ

 
dv1

dR1
=

33750 + 5(125)4 - 53750(16) - 33750 + 5(125)4126
3(30)(125) + 375042

R1

v2v1

v2 =

3750330(16) - 25(12)4
30(125) + 3750

= 90 V.

v1 =

2553750(16) - 35(125) + 37504126
30(125) + 3750

= 25 V,

v2v1

10%R1

v2v1Ig2 = 16 A.
Ig1 = 12 AR4 = 75 ÆR3 = 50 ÆR2 = 5 ÆR1 = 25 Æ
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How do we use the results given by Eqs. 4.101 and 4.102? Assume that
is less than its nominal value, that is, . Then

and Eq. 4.101 predicts will be

.

Therefore, if is less than its nominal value, our analysis predicts
that will be

. (4.103)

Similarly for Eq. 4.102 we have

,

. (4.104)

We attempt to confirm the results in Eqs. 4.103 and 4.104 by substituting
the value into Eqs. 4.95 and 4.96. When we do, the results are

, (4.105)

. (4.106)

Why is there a difference between the values predicted from the sensitivity
analysis and the exact values computed by substituting for in the equa-
tions for and ? We can see from Eqs. 4.97 and 4.98 that the sensitivity
of and with respect to is a function of , because appears in
the denominator of both Eqs. 4.97 and 4.98. This means that as 
changes, the sensitivities change and hence we cannot expect Eqs. 4.97 and
4.98 to give exact results for large changes in Note that for a 
change in , the percent error between the predicted and exact values of

and is small. Specifically, the percent error in and the
percent error in .

From this example, we can see that a tremendous amount of work is
involved if we are to determine the sensitivity of and to changes in
the remaining component values, namely , , , , and .
Fortunately, PSpice has a sensitivity function that will perform sensitivity
analysis for us. The sensitivity function in PSpice calculates two types of
sensitivity. The first is known as the one-unit sensitivity, and the second
is known as the sensitivity. In the example circuit, a one-unit change
in a resistor would change its value by and a one-unit change in a
current source would change its value by . In contrast, sensitiv-
ity analysis determines the effect of changing resistors or sources by

of their nominal values.
The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 is

shown in Table 4.2. Because we are analyzing a linear circuit, we can use
superposition to predict values of and if more than one component’s
value changes. For example, let us assume decreases to and 
decreases to . From Table 4.2 we can combine the unit sensitivity of 
to changes in and to get

.
¢v1

¢R1
+

¢v1

¢R2
= 0.5833 - 5.417 = -4.8337 V>Æ

R2R1

v14 Æ
R224 ÆR1

v2v1

1%

1%1 A
1 Æ

1%

Ig2Ig1R4R3R2

v2v1

v2 = 0.0676%
v1 = 0.2713%v2v1

R1

10%R1.

R1

R1R1R1v2v1

v2v1

R1

 v2 = 88.6960 V

 v1 = 23.4780 V

R1 = 22.5 Æ

 v2 = 90 - 1.25 = 88.75 V

 ¢v2 = 0.5(-2.5) = -1.25 V

v1 = 25 - 1.4583 = 23.5417 V

v1

10%R1

¢v1 = ¢ 7
12
≤(-2.5) = -1.4583 V

¢v1¢R1 = -2.5 Æ
R1 = 22.5 Æ10%R1
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Similarly,

.

Thus if both and decreased by we would predict

,

. v2 = 90 - 7 = 83 V

 v1 = 25 + 4.8227 = 29.8337 V

1 ÆR2R1

¢v2

¢R1
+

¢v2

¢R2
= 0.5 + 6.5 = 7.0 V>Æ

TABLE 4.2 PSpice Sensitivity Analysis Results

Element Element Element Sensitivity Normalized Sensitivity
Name Value (Volts/Unit) (Volts/Percent)

(a) DC Sensitivities of Node Voltage V1

R1 25 0.5833 0.1458
R2 5 –5.417 –0.2708
R3 50 0.45 0.225
R4 75 0.2 0.15
IG1 12 –14.58 –1.75
IG2 16 12.5 2

(b) Sensitivities of Output V2

R1 25 0.5 0.125
R2 5 6.5 0.325
R3 50 0.54 0.27
R4 75 0.24 0.18
IG1 12 –12.5 –1.5
IG2 16 15 2.4

If we substitute and into Eqs. 4.95 and 4.96 we get 

,

.

In both cases our predictions are within a fraction of a volt of the actual node
voltage values.

Circuit designers use the results of sensitivity analysis to determine
which component value variation has the greatest impact on the output of
the circuit. As we can see from the PSpice sensitivity analysis in Table 4.2,
the node voltages and are much more sensitive to changes in than
to changes in . Specifically, is (5.417/0.5833) or approximately
9 times more sensitive to changes in than to changes in and is
(6.5/0.5) or 13 times more sensitive to changes in than to changes in

. Hence in the example circuit, the tolerance on must be more strin-
gent than the tolerance on if it is important to keep and close to
their nominal values.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 4.105–4.107.

v2v1R1

R2R1

R2

v2R1R2

v1R1

R2v2v1

 v2 = 82.759 V

 v1 = 29.793 V

R2 = 4 ÆR1 = 24 Æ
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Summary

• For the topics in this chapter, mastery of some basic terms,
and the concepts they represent, is necessary.Those terms
are node, essential node, path, branch, essential branch,
mesh, and planar circuit. Table 4.1 provides definitions
and examples of these terms. (See page 91.)

• Two new circuit analysis techniques were introduced in
this chapter:

• The node-voltage method works with both planar
and nonplanar circuits. A reference node is chosen
from among the essential nodes. Voltage variables
are assigned at the remaining essential nodes, and
Kirchhoff’s current law is used to write one equation
per voltage variable. The number of equations is

, where is the number of essential nodes.
(See page 93.)

• The mesh-current method works only with planar
circuits. Mesh currents are assigned to each mesh,
and Kirchhoff’s voltage law is used to write one
equation per mesh. The number of equations is

, where b is the number of branches in
which the current is unknown, and n is the number of
nodes. The mesh currents are used to find the branch
currents. (See page 99.)

• Several new circuit simplification techniques were
introduced in this chapter:

• Source transformations allow us to exchange a volt-
age source ( ) and a series resistor (R) for a current
source ( ) and a parallel resistor (R) and vice versa.
The combinations must be equivalent in terms of
their terminal voltage and current. Terminal equiva-
lence holds provided that

(See page 109.)

is =

vs

R
 .

is

vs

b - (n - 1)

nene - 1

• Thévenin equivalents and Norton equivalents allow
us to simplify a circuit comprised of sources and resis-
tors into an equivalent circuit consisting of a voltage
source and a series resistor (Thévenin) or a current
source and a parallel resistor (Norton).The simplified
circuit and the original circuit must be equivalent in
terms of their terminal voltage and current. Thus
keep in mind that (1) the Thévenin voltage ( ) is
the open-circuit voltage across the terminals of the
original circuit, (2) the Thévenin resistance ( ) is
the ratio of the Thévenin voltage to the short-circuit
current across the terminals of the original circuit;
and (3) the Norton equivalent is obtained by per-
forming a source transformation on a Thévenin
equivalent. (See page 113.)

• Maximum power transfer is a technique for calculating
the maximum value of p that can be delivered to a load,

. Maximum power transfer occurs when ,
the Thévenin resistance as seen from the resistor .
The equation for the maximum power transferred is

(See page 120.)

• In a circuit with multiple independent sources,
superposition allows us to activate one source at a time
and sum the resulting voltages and currents to deter-
mine the voltages and currents that exist when all inde-
pendent sources are active. Dependent sources are
never deactivated when applying superposition. (See
page 122.)

p =

VTh
2

4RL
 .

RL

RL = RThRL

RTh

VTh
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4.4 A current leaving a node is defined as positive.

a) Sum the currents at each node in the circuit
shown in Fig. P4.3.

b) Show that any one of the equations in (a) can be
derived from the remaining three equations.

4.5 a) How many separate parts does the circuit in
Fig. P4.5 have?

b) How many nodes?

c) How many branches are there?

d) Assume that the lower node in each part of the
circuit is joined by a single conductor. Repeat
the calculations in (a)–(c).

Figure P4.5

Section 4.2

4.6 Use the node-voltage method to find in the cir-
cuit in Fig. P4.6.

Figure P4.6

4.7 a) Find the power developed by the 40 mA current
source in the circuit in Fig. P4.6.

b) Find the power developed by the 24 V voltage
source in the circuit in Fig. P4.6.

c) Verify that the total power developed equals the
total power dissipated.

4.8 A resistor is connected in series with the 
40 mA current source in the circuit in Fig. P4.6.

a) Find 

b) Find the power developed by the 40 mA current
source.

vo.

50 Æ

25 �

80 �

vo

�

�

20 �

24 V
�

�
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R2
ibis

�
bib
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Problems

Section 4.1

4.1 For the circuit shown in Fig. P4.1, state the numerical
value of the number of (a) branches, (b) branches
where the current is unknown, (c) essential branches,
(d) essential branches where the current is unknown,
(e) nodes, (f) essential nodes, and (g) meshes.

Figure P4.1

�

�

�

�

�

�

R1

R3

R6 R7

R4 R5

R8

2 V

R2

25 mA
18v�

5i�

i�

v�

4.2 a) If only the essential nodes and branches are
identified in the circuit in Fig. P4.1, how many
simultaneous equations are needed to describe
the circuit?

b) How many of these equations can be derived
using Kirchhoff’s current law?

c) How many must be derived using Kirchhoff’s
voltage law?

d) What two meshes should be avoided in applying
the voltage law?

4.3 Assume the voltage in the circuit in Fig. P4.3 is
known. The resistors are also known.

a) How many unknown currents are there?

b) How many independent equations can be writ-
ten using Kirchhoff’s current law (KCL)?

c) Write an independent set of KCL equations.

d) How many independent equations can be
derived from Kirchhoff’s voltage law (KVL)?

e) Write a set of independent KVL equations.

Figure P4.3
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c) Find the power developed by the 24 V voltage
source.

d) Verify that the total power developed equals the
total power dissipated.

e) What effect will any finite resistance connected
in series with the 40 mA current source have on
the value of ?

4.9 Use the node-voltage method to find how much
power the source extracts from the circuit in
Fig. P4.9.

Figure P4.9

4.10 a) Use the node-voltage method to show that the
output voltage in the circuit in Fig. P4.10 is
equal to the average value of the source voltages.

b) Find if , , and
.

Figure P4.10

4.11 a) Use the node-voltage method to find the
branch currents in the circuit shown in
Fig. P4.11.

b) Find the total power developed in the circuit.

Figure P4.11

4.12 Use the node-voltage method to find and in
the circuit in Fig. P4.12.

Figure P4.12
80 �4 �
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50 �2 A 45 V
�

�

2 A

vo

4.13 Use the node-voltage method to find and in
the circuit shown in Fig. P4.13.

Figure P4.13

4.14 a) Use the node-voltage method to find and
in the circuit in Fig. P4.14.

b) How much power does the 40 V voltage source
deliver to the circuit?

Figure P4.14

4.15 The circuit shown in Fig. P4.15 is a dc model of a
residential power distribution circuit.

a) Use the node-voltage method to find the branch
currents 

b) Test your solution for the branch currents by
showing that the total power dissipated equals
the total power developed.

Figure P4.15

4.16 Use the node-voltage method to find the total power
dissipated in the circuit in Fig. P4.16.

Figure P4.16
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Section 4.3

4.17 a) Use the node-voltage method to find in the
circuit in Fig. P4.17.

b) Find the power absorbed by the dependent source.

c) Find the total power developed by the independ-
ent sources.

Figure P4.17

4.18 Use the node-voltage method to calculate the
power delivered by the dependent voltage source in
the circuit in Fig. P4.18.

Figure P4.18

4.19 a) Use the node-voltage method to find the total
power developed in the circuit in Fig. P4.19.

b) Check your answer by finding the total power
absorbed in the circuit.

Figure P4.19

4.20 a) Use the node voltage method to find for the
circuit in  Fig. P4.20.

b) Find the total power supplied in the circuit.

Figure P4.20

4.21 a) Find the node voltages , , and in the cir-
cuit in Fig. P4.21.

b) Find the total power dissipated in the circuit.

v3v2v1
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Figure P4.21

Section 4.4

4.22 a) Use the node-voltage method to find and
the power delivered by the 2 A current source
in the circuit in Fig. P4.22. Use node a as the
reference node.

b) Repeat part (a), but use node b as the refer-
ence node.

c) Compare the choice of reference node in (a)
and (b). Which is better, and why?

Figure P4.22

4.23 Use the node-voltage method to find the value of 
in the circuit in Fig. P4.23.

Figure P4.23

4.24 Use the node-voltage method to find in the cir-
cuit in Fig. P4.24.

Figure P4.24

4.25 a) Use the node-voltage method to find the power
dissipated in the resistor in the circuit in
Fig. P4.25.

b) Find the power supplied by the 230 V source.
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Figure P4.25

4.26 Use the node-voltage method to find in the cir-
cuit in Fig. P4.26.

Figure P4.26

4.27 a) Use the node-voltage method to find the
branch currents and in the circuit in
Fig. P4.27.

b) Check your solution for and by showing
that the power dissipated in the circuit equals
the power developed.

Figure P4.27

4.28 Use the node-voltage method to find the value of 
in the circuit in Fig. P4.28.

Figure P4.28
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4.29 Assume you are a project engineer and one of
your staff is assigned to analyze the circuit shown
in Fig. P4.29. The reference node and node num-
bers given on the figure were assigned by the ana-
lyst. Her solution gives the values of and as
105 V and 85 V, respectively.

a) What values did the analyst use for the left-most
and right-most node voltages when writing KCL
equations at nodes 1 and 2?

b) Use the values supplied by the analyst to cal-
culate the total power developed in the circuit
and the total power dissipated in the circuit.

c) Do you agree with the solution submitted by the
analyst?

Figure P4.29

4.30 Use the node-voltage method to find the power
developed by the 20 V source in the circuit in
Fig. P4.30.

Figure P4.30

4.31 Show that when Eqs. 4.16, 4.17, and 4.19 are solved
for the result is identical to Eq. 2.25.

4.32 a) Use the mesh-current method to find the branch
currents and in the circuit in Fig. P4.32.

b) Repeat (a) if the polarity of the 140 V source is
reversed.
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Figure P4.32

Section 4.5

4.33 Solve Problem 4.11 using the mesh-current method.

4.34 Solve Problem 4.15 using the mesh-current method.

4.35 Solve Problem 4.24 using the mesh-current method.

4.36 a) Use the mesh-current method to find the total
power developed in the circuit in Fig. P4.36.

b) Check your answer by showing that the total
power developed equals the total power 
dissipated.

Figure P4.36

4.37 Solve Problem 4.25 using the mesh-current method.

Section 4.6

4.38 Solve Problem 4.18 using the mesh-current method.

4.39 Use the mesh-current method to find the power dis-
sipated in the resistor in the circuit in
Fig. P4.39.

Figure P4.39

4.40 Use the mesh-current method to find the power
delivered by the dependent voltage source in the
circuit seen in Fig. P4.40.
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Figure P4.40

4.41 a) Use the mesh-current method to find in the
circuit in Fig. P4.41.

b) Find the power delivered by the dependent source.
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Figure P4.41
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4.42 Use the mesh-current method to find the power
developed in the dependent voltage source in the
circuit in Fig. P4.42.

Figure P4.42

Section 4.7

4.43 a) Use the mesh-current method to solve for in
the circuit in Fig. P4.43.

b) Find the power delivered by the independent
current source.

c) Find the power delivered by the dependent volt-
age source.

Figure P4.43
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4.44 Solve Problem 4.13 using the mesh-current method.

4.45 Solve Problem 4.21 using the mesh-current method.

4.46 Use the mesh-current method to find the total power
developed in the circuit in Fig. P4.46.

Figure P4.46

4.47 a) Use the mesh-current method to find how much
power the 5 A current source delivers to the cir-
cuit in Fig. P4.47.

b) Find the total power delivered to the circuit.

c) Check your calculations by showing that the
total power developed in the circuit equals the
total power dissipated

Figure P4.47

4.48 a) Use the mesh-current method to determine
which sources in the circuit in Fig. P4.48 are gen-
erating power.

b) Find the total power dissipated in the circuit.

Figure P4.48

4.49 Use the mesh-current method to find the total
power dissipated in the circuit in Fig. P4.49.
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�

�
9 i�

1.7 v�

�

�
�

�
5 V

5 A

67 V

38 � 6 �

12 � 40 �

30 �

�

�

5 �

1 �

4 �

20 �20 A 6.5 i�

i�

Figure P4.49

4.50 a) Assume the 100 V source in the circuit in 
Fig. P4.49 is changed to 67.5 V. Find the total
power dissipated in the circuit.

b) Repeat (a) with the 4 A current source replaced
by a short circuit.

c) Explain why the answers to (a) and (b) are the
same.

c) Now assume you wish to change the value of the
25 V source, instead of the 100 V source, in the
circuit in Fig. P4.49 to get the same power dissi-
pated by the current source that you found in
(a) and (b). Use the results in part (c) to calcu-
late the new value of this voltage source.

4.51 Solve Problem 4.27 using the mesh-current method.

4.52 a) Use the mesh-current method to find the branch
currents in in the circuit in Fig. P4.52.

b) Check your solution by showing that the total
power developed in the circuit equals the total
power dissipated.

Figure P4.52

4.53 a) Find the branch currents for the circuit
shown in Fig. P4.53.

b) Check your answers by showing that the total
power generated equals the total power 
dissipated.

Figure P4.53
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Section 4.8

4.54 Assume you have been asked to find the power 
dissipated in the horizontal resistor in the 
circuit in Fig. P4.54.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Use your recommended method of analysis to
find the power dissipated in the horizontal 
resistor.

c) Would you change your recommendation if the
problem had been to find the power developed
by the 10 mA current source? Explain.

d) Find the power delivered by the 10 mA cur-
rent source.

Figure P4.54

4.55 A resistor is placed in parallel with the 10 mA
current source in the circuit in Fig. P4.54. Assume
you have been asked to calculate the power devel-
oped by the current source.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Find the power developed by the current source.

4.56 a) Would you use the node-voltage or mesh-current
method to find the power absorbed by the 
20 V source in the circuit in Fig. P4.56? Explain
your choice.

b) Use the method you selected in (a) to find 
the power.

Figure P4.56

4.57 The variable dc current source in the circuit in
Fig. P4.57 is adjusted so that the power developed
by the 40 mA current source is zero. You want to
find the value of 

a) Would you use the node-voltage or mesh-current
method to find ? Explain your choice.

b) Use the method selected in (a) to find idc.

idc

idc.
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1 k�5 k�

1 kÆ

1 kÆ

Figure P4.57

4.58 The variable dc voltage source in the circuit in
Fig. P4.58 is adjusted so that is zero.
a) Would you use the node-voltage or mesh-current

method to find ? Explain your choice.
b) Find the value of using the method selected

in (a).
c) Check your solution by showing the power

developed equals the power dissipated.

Figure P4.58

Section 4.9

4.59 a) Make a series of source transformations to find
the voltage in the circuit in Fig. P4.59.

b) Verify your solution using the mesh-current
method.

Figure P4.59

4.60 a) Find the current in the circuit in Fig. P4.60
by making a succession of appropriate source
transformations.

b) Using the result obtained in (a), work back
through the circuit to find the power developed
by the 50 V source.

Figure P4.60
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4.61 a) Use source transformations to find the current 
in the circuit in Fig. P4.61.

b) Verify your solution by using the node-voltage
method to find 

Figure P4.61

4.62 a) Use a series of source transformations to find 
in the circuit in Fig. P4.62.

b) Verify your solution by using the mesh-current
method to find 

Figure P4.62

4.63 a) Use source transformations to find in the cir-
cuit in Fig. P4.63.

b) Find the power developed by the 520 V source.

c) Find the power developed by the 1 A current
source.

d) Verify that the total power developed equals the
total power dissipated.

Figure P4.63

Section 4.10

4.64 Find the Thévenin equivalent with respect to the
terminals a,b for the circuit in Fig. P4.64.
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io

io.

io Figure P4.64

4.65 Find the Norton equivalent with respect to the 
terminals a,b for the circuit in Fig. P4.65.

Figure P4.65

4.66 Find the Norton equivalent with respect to the ter-
minals a,b for the circuit in Fig. P4.66.

Figure P4.66

4.67 Find the Thévenin equivalent with respect to the
terminals a,b for the circuit in Fig. P4.67.

Figure P4.67

4.68 Find the Norton equivalent with respect to the ter-
minals a,b in the circuit in Fig. P4.68.
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Figure P4.68

4.69 A Thévenin equivalent can also be determined
from measurements made at the pair of terminals
of interest. Assume the following measurements
were made at the terminals a,b in the circuit in
Fig. P4.69.

When a resistor is connected to the termi-
nals a,b, the voltage is measured and found to
be 100 V.

When a resistor is connected to the termi-
nals a,b, the voltage is measured and found to be
200 V.

Find the Thévenin equivalent of the network
with respect to the terminals a,b.

Figure P4.69

4.70 An automobile battery, when connected to a car
radio, provides 12.5 V to the radio.When connected
to a set of headlights, it provides 11.7 V to the head-
lights.Assume the radio can be modeled as a 
resistor and the headlights can be modeled as a

resistor. What are the Thévenin and Norton
equivalents for the battery?

4.71 Determine and in the circuit shown in
Fig. P4.71 when is a resistor from Appendix H
such that .

Figure P4.71
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4.72 A voltmeter with a resistance of is used to
measure the voltage in the circuit in Fig. P4.72.

a) What is the voltmeter reading?

b) What is the percentage of error in the voltmeter
reading if the percentage of error is defined as

?

Figure P4.72

4.73 The Wheatstone bridge in the circuit shown in
Fig. P4.73 is balanced when equals . If the
galvanometer has a resistance of how much
current will the galvanometer detect, when the
bridge is unbalanced by setting to ?
(Hint: Find the Thévenin equivalent with respect to
the galvanometer terminals when .
Note that once we have found this Thévenin equiv-
alent, it is easy to find the amount of unbalanced
current in the galvanometer branch for different
galvanometer movements.)

Figure P4.73

4.74 Determine the Thévenin equivalent with respect
to the terminals a,b for the circuit shown in 
Fig. P4.74.

Figure P4.74
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Figure P4.78

4.79 Find the Thévenin equivalent with respect to the
terminals a,b in the circuit in Fig. P4.79.

Figure P4.79

4.80 Find the Thévenin equivalent with respect to the
terminals a,b in the circuit in Fig. P4.80.

Figure P4.80

4.81 Find the Norton equivalent with respect to the ter-
minals a,b for the circuit seen in Fig. P4.81.

Figure P4.81
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4.75 Find the Norton equivalent with respect to the ter-
minals a,b for the circuit seen in Fig. P4.75.

Figure P4.75

4.76 When an ammeter is used to measure the current
in the circuit shown in Fig. P4.76, it reads 6 A.

a) What is the resistance of the ammeter?

b) What is the percentage of error in the current
measurement?

Figure P4.76

Section 4.11

4.77 a) Find the Thévenin equivalent resistance with
respect to the terminals a,b in the circuit in 
Fig. P4.64 without finding either the open circuit
voltage or the short circuit current.

b) Find the Norton equivalent resistance with
respect to the terminals a,b in the circuit in 
Fig. P4.66 without finding either the open circuit
voltage or the short circuit current.

4.78 a) Find the Thévenin equivalent with respect to the
terminals a,b for the circuit in Fig. P4.78 by find-
ing the open-circuit voltage and the short-circuit
current.

b) Solve for the Thévenin resistance by removing the
independent sources. Compare your result to the
Thévenin resistance found in (a).

�

�

2.5 if

2 �

100 �

4 �

4.8 � 16 �24 V

25 �
if

if

2 k�

2 k�

0.2 i�

2 k�

280 V 5.6 k�

a

b

�
�

i�

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM



140 Techniques of Circuit Analysis

Section 4.12

4.82 The variable resistor in the circuit in Fig. P4.82 is
adjusted for maximum power transfer to .

a) Find the value of 

b) Find the maximum power that can be delivered
to 

c) Find a resistor in Appendix H closest to the
value in part (a). How much power is delivered
to this resistor?

Figure P4.82

4.83 What percentage of the total power developed in
the circuit in Fig. P4.82 is delivered to when is
set for maximum power transfer?

4.84 a) Calculate the power delivered for each value of
used in Problem 4.71.

b) Plot the power delivered to versus the resist-
ance 

c) At what value of is the power delivered to 
a maximum?

4.85 a) Find the value of the variable resistor in the
circuit in Fig. P4.85 that will result in maximum
power dissipation in the resistor. (Hint:
Hasty conclusions could be hazardous to 
your career.)

b) What is the maximum power that can be deliv-
ered to the resistor?

Figure P4.85

4.86 A variable resistor is connected across the ter-
minals a,b in the circuit in Fig. P4.75. The variable
resistor is adjusted until maximum power is trans-
ferred to 

a) Find the value of 

b) Find the maximum power delivered to 

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to Ro.

Ro.

Ro.

Ro.

Ro

�

�
30 V 6 �

Ro

6 Æ

6 Æ

Ro

RoRo

Ro.
Ro

Ro

RoRo

4.8 k�

1.6 k�

1.8 k�

Ro

2.4 k�

60 V
�
� 15 mA 5 k�

Ro.

Ro.

Ro

d) Find the resistor from Appendix H closest in
value to  the from part (a).

e) Find the percentage of the total power devel-
oped in the circuit that is delivered to the resis-
tor in part (d).

4.87 The variable resistor ( ) in the circuit in Fig. P4.87
is adjusted until it absorbs maximum power from
the circuit.

a) Find the value of 

b) Find the maximum power.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to 

Figure P4.87

4.88 The variable resistor ( ) in the circuit in Fig. P4.88
is adjusted until the power dissipated in the resistor
is 250 W. Find the values of that satisfy this 
condition.

Figure P4.88

4.89 The variable resistor in the circuit in Fig. P4.89 is
adjusted for maximum power transfer to 

a) Find the numerical value of 

b) Find the maximum power delivered to 

c) How much power does the 180 V source deliver
to the circuit when is adjusted to the value
found in (a)?

Figure P4.89
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4.90 The variable resistor ( ) in the circuit in Fig. P4.90
is adjusted for maximum power transfer to 

a) Find the numerical value of 

b) Find the maximum power transferred to 

Figure P4.90

4.91 The variable resistor in the circuit in Fig. P4.91
is adjusted for maximum power transfer to 

a) Find the value of 

b) Find the maximum power that can be delivered
to 

c) What percentage of the total power developed
in the circuit is delivered to found in part(a)? 

d) If is selected from Appendix H, which resis-
tor value will result in the greatest amount of
power delivered to ? 

Figure P4.91

Section 4.13

4.92 a) In the circuit in Fig. P4.92, before the 5 mA cur-
rent source is attached to the terminals a,b, the
current is calculated and found to be 3.5 mA.
Use superposition to find the value of after
the current source is attached.

b) Verify your solution by finding when all three
sources are acting simultaneously.

Figure P4.92

�

�
8 V

2 k�

5 mA

6 k�io5 k� 10 mA

a b

io

io

io

� �

316 i�
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� 150ib
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30 �

ib

�
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RL.

RL.

RL.
RL 4.93 a) Use the principle of superposition to find the

voltage in the circuit of Fig. P4.93.

b) Find the power dissipated in the 
resistor.

Figure P4.93

4.94 Use superposition to solve for and in the cir-
cuit in Fig. P4.94.

Figure P4.94

4.95 Use the principle of superposition to find the cur-
rent in the circuit shown in Fig. P4.95.

Figure P4.95

4.96 Use the principle of superposition to find the volt-
age in the circuit in Fig. P4.96.

Figure P4.96
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4.97 Use the principle of superposition to find in the
circuit in Fig. P4.97.

Figure P4.97

4.98 Use the principle of superposition to find the 
current in the circuit of Fig. P4.98.

Figure P4.98

Sections 4.1–4.13

4.99 Assume your supervisor has asked you to determine
the power developed by the 50 V source in the circuit
in Fig. P4.99. Before calculating the power developed
by the 50 V source, the supervisor asks you to submit
a proposal describing how you plan to attack the
problem. Furthermore, he asks you to explain why
you have chosen your proposed method of solution.

a) Describe your plan of attack, explaining your
reasoning.

b) Use the method you have outlined in (a) to find
the power developed by the 50 V source.

Figure P4.99
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vo 4.100 Find and in the circuit in Fig. P4.100.

Figure P4.100

4.101 Find and in the circuit in Fig. P4.101.

Figure P4.101

4.102 Two ideal dc voltage sources are connected by elec-
trical conductors that have a resistance of , as
shown in Fig. P4.102. A load having a resistance of

moves between the two voltage sources. Let x
equal the distance between the load and the source

and let L equal the distance between the
sources.

a) Show that

b) Show that the voltage will be minimum when

c) Find x when , ,
and 

d) What is the minimum value of for the circuit of
part (c)?

v
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Figure P4.102

4.103 Laboratory measurements on a dc voltage source
yield a terminal voltage of 75 V with no load con-
nected to the source and 60 V when loaded with a

resistor.

a) What is the Thévenin equivalent with respect to
the terminals of the dc voltage source?

b) Show that the Thévenin resistance of the source
is given by the expression

where

to the load resistance RL.
 vo =  the terminal voltage corresponding

 vTh =  the Thévenin voltage,

RTh = avTh

vo
- 1bRL,

20 Æ

v
�

�

�

�

v1
�

�
v2

R (movable
      load)

r �/m r �/m

r �/m r �/m

L

x
4.104 For the circuit in Fig. 4.69 derive the expressions for

the sensitivity of and to changes in the source
currents and 

4.105 Assume the nominal values for the components in
the circuit in Fig. 4.69 are: ; ;

; ; ; and 
Predict the values of and if decreases to
11 A and all other components stay at their nominal
values. Check your predictions using a tool like
PSpice or MATLAB.

4.106 Repeat Problem 4.105 if increases to 17 A, and
all other components stay at their nominal values.
Check  your predictions using a tool like PSpice or
MATLAB.

4.107 Repeat Problem 4.105 if decreases to 11 A and
increases to 17 A. Check your predictions using

a tool like PSpice or MATLAB.

4.108 Use the results given in Table 4.2 to predict the val-
ues of and if and increase to 10% above
their nominal values and and decrease to
10% below their nominal values. and remain
at their nominal values. Compare your predicted
values of and with their actual values.v2v1

Ig2Ig1

R4R2

R3R1v2v1

Ig2

Ig1

Ig2

Ig1v2v1

Ig2 = 16 A.Ig1 = 12 AR4 = 75 ÆR3 = 50 Æ
R2 = 5 ÆR1 = 25 Æ

Ig2.Ig1

v2v1
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The electronic circuit known as an operational amplifier has
become increasingly important. However, a detailed analysis of
this circuit requires an understanding of electronic devices such
as diodes and transistors. You may wonder, then, why we are
introducing the circuit before discussing the circuit’s electronic
components. There are several reasons. First, you can develop an
appreciation for how the operational amplifier can be used as a
circuit building block by focusing on its terminal behavior. At an
introductory level, you need not fully understand the operation
of the electronic components that govern terminal behavior.
Second, the circuit model of the operational amplifier requires
the use of a dependent source. Thus you have a chance to use this
type of source in a practical circuit rather than as an abstract cir-
cuit component. Third, you can combine the operational ampli-
fier with resistors to perform some very useful functions, such as
scaling, summing, sign changing, and subtracting. Finally, after
introducing inductors and capacitors in Chapter 6, we can show
you how to use the operational amplifier to design integrating
and differentiating circuits.

Our focus on the terminal behavior of the operational ampli-
fier implies taking a black box approach to its operation; that is,
we are not interested in the internal structure of the amplifier nor
in the currents and voltages that exist in this structure.The impor-
tant thing to remember is that the internal behavior of the ampli-
fier accounts for the voltage and current constraints imposed at
the terminals. (For now, we ask that you accept these constraints
on faith.)

The Operational Amplifier

C H A P T E R

144

C H A P T E R  C O N T E N T S

5.1 Operational Amplifier Terminals p. 146

5.2 Terminal Voltages and Currents p. 146 

5.3 The Inverting-Amplifier Circuit p. 150 

5.4 The Summing-Amplifier Circuit p. 152 

5.5 The Noninverting-Amplifier Circuit p. 153 

C H A P T E R  O B J E C T I V E S

1 Be able to name the five op amp terminals and
describe and use the voltage and current
constraints and the resulting simplifications 
they lead to in an ideal op amp.

2 Be able to analyze simple circuits containing
ideal op amps, and recognize the following op
amp circuits: inverting amplifier, summing
amplifier, noninverting amplifier, and difference
amplifier.

3 Understand the more realistic model for an op
amp and be able to use this model to analyze
simple circuits containing op amps.

5.6 The Difference-Amplifier Circuit p. 155 

5.7 A More Realistic Model for the Operational
Amplifier p. 159 

5



How could you measure the amount of bending in a metal bar
such as the one shown in the figure without physically con-
tacting the bar? One method would be to use a strain gage. A
strain gage is a type of transducer. A transducer is a device
that measures a quantity by converting it into a more con-
venient form. The quantity we wish to measure in the metal
bar is the bending angle, but measuring the angle directly is
quite difficult and could even be dangerous. Instead, we
attach a strain gage (shown in the line drawing here) to the
metal bar. A strain gage is a grid of thin wires whose resist-
ance changes when the wires are lengthened or shortened:

where is the resistance of the gage at rest, is the
fractional lengthening of the gage (which is the definition of
“strain”), the constant 2 is typical of the manufacturer’s gage
factor, and is the change in resistance due to the bending
of the bar. Typically, pairs of strain gages are attached to
opposite sides of a bar. When the bar is bent, the wires in one
pair of gages get longer and thinner, increasing the resist-
ance, while the wires in the other pair of gages get shorter
and thicker, decreasing the resistance.

But how can the change in resistance be measured? One
way would be to use an ohmmeter. However, the change in
resistance experienced by the strain gage is typically much
smaller than could be accurately measured by an ohmmeter.
Usually the pairs of strain gages are connected to form a
Wheatstone bridge, and the voltage difference between two
legs of the bridge is measured. In order to make an accurate

measurement of the voltage difference, we use an operational
amplifier circuit to amplify, or increase, the voltage differ-
ence. After we introduce the operational amplifier and some
of the important circuits that employ these devices, we will
present the circuit used together with the strain gages for
measuring the amount of bending in a metal bar.

The operational amplifier circuit first came into existence
as a basic building block in analog computers. It was referred
to as operational because it was used to implement the math-
ematical operations of integration, differentiation, addition,
sign changing, and scaling. In recent years, the range of
application has broadened beyond implementing mathemati-
cal operations; however, the original name for the circuit per-
sists. Engineers and technicians have a penchant for creating
technical jargon; hence the operational amplifier is widely
known as the op amp.

¢R

¢L>LR

¢R = 2R
¢L

L
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1Offset null

Inverting input

Noninverting input

NC

Output

Offset null

2

3

4

8

7

6

5

V
�

V
�

Figure 5.1 � The eight-lead DIP package (top view).

1 DIP is an abbreviation for dual in-line package. This means that the terminals on each side of
the package are in line, and that the terminals on opposite sides of the package also line up.

2 The common node is external to the op amp. It is the reference terminal of the circuit in which
the op amp is embedded.

5.1 Operational Amplifier Terminals
Because we are stressing the terminal behavior of the operational ampli-
fier (op amp), we begin by discussing the terminals on a commercially
available device. In 1968, Fairchild Semiconductor introduced an op amp
that has found widespread acceptance: the . (The prefix is used
by Fairchild to indicate a microcircuit fabrication of the amplifier.) This
amplifier is available in several different packages. For our discussion, we
assume an eight-lead DIP.1 Figure 5.1 shows a top view of the package,
with the terminal designations given alongside the terminals. The termi-
nals of primary interest are

• inverting input,
• noninverting input,
• output,
• positive power supply ( ),
• negative power supply ( ).

The remaining three terminals are of little or no concern.The offset null ter-
minals may be used in an auxiliary circuit to compensate for a degradation
in performance because of aging and imperfections. However, the degrada-
tion in most cases is negligible, so the offset terminals often are unused and
play a secondary role in circuit analysis. Terminal 8 is of no interest simply
because it is an unused terminal; NC stands for no connection, which means
that the terminal is not connected to the amplifier circuit.

Figure 5.2 shows a widely used circuit symbol for an op amp that con-
tains the five terminals of primary interest. Using word labels for the ter-
minals is inconvenient in circuit diagrams, so we simplify the terminal
designations in the following way. The noninverting input terminal is
labeled plus ( ), and the inverting input terminal is labeled minus ( ).
The power supply terminals, which are always drawn outside the triangle,
are marked and The terminal at the apex of the triangular box is
always understood to be the output terminal. Figure 5.3 summarizes these
simplified designations.

5.2 Terminal Voltages and Currents
We are now ready to introduce the terminal voltages and currents used to
describe the behavior of the op amp. The voltage variables are measured
from a common reference node.2 Figure 5.4 shows the voltage variables
with their reference polarities.

V-.V+

-+

V-

V+

mAmA741

Noninverting
input

Inverting
input

Positive power supply

Output

Negative power supply

�

�

Figure 5.2 � The circuit symbol for an operational
amplifier (op amp).

�

�

V�

V�

Figure 5.3 � A simplified circuit symbol for an op amp.
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Figure 5.4 � Terminal voltage variables.

All voltages are considered as voltage rises from the common node.
This convention is the same as that used in the node-voltage method of
analysis. A positive supply voltage ( ) is connected between and the
common node.A negative supply voltage ( ) is connected between 
and the common node. The voltage between the inverting input terminal
and the common node is denoted The voltage between the noninvert-
ing input terminal and the common node is designated as The voltage
between the output terminal and the common node is denoted vo .

vp .
vn .

V-

-VCC

V+VCC
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Figure 5.5 shows the current variables with their reference directions.
Note that all the current reference directions are into the terminals of the
operational amplifier: is the current into the inverting input terminal;
is the current into the noninverting input terminal; is the current into
the output terminal; is the current into the positive power supply termi-
nal; and is the current into the negative power supply terminal.

The terminal behavior of the op amp as a linear circuit element is
characterized by constraints on the input voltages and the input currents.
The voltage constraint is derived from the voltage transfer characteristic
of the op amp integrated circuit and is pictured in Fig. 5.6.

The voltage transfer characteristic describes how the output voltage
varies as a function of the input voltages; that is, how voltage is transferred
from the input to the output. Note that for the op amp, the output voltage
is a function of the difference between the input voltages, The
equation for the voltage transfer characteristic is

(5.1)

We see from Fig. 5.6 and Eq. 5.1 that the op amp has three distinct
regions of operation. When the magnitude of the input voltage difference
( ) is small, the op amp behaves as a linear device, as the output
voltage is a linear function of the input voltages. Outside this linear region,
the output of the op amp saturates, and the op amp behaves as a nonlinear
device, because the output voltage is no longer a linear function of the
input voltages.When it is operating linearly, the op amp’s output voltage is
equal to the difference in its input voltages times the multiplying constant,
or gain, A.

When we confine the op amp to its linear operating region, a con-
straint is imposed on the input voltages, and The constraint is based
on typical numerical values for and A in Eq. 5.1. For most op amps, the
recommended dc power supply voltages seldom exceed 20 V, and the gain, A,
is rarely less than or We see from both Fig. 5.6 and Eq. 5.1
that in the linear region, the magnitude of the input voltage difference
( ) must be less than or 2 mV.

Typically, node voltages in the circuits we study are much larger than
2 mV, so a voltage difference of less than 2 mV means the two voltages are
essentially equal. Thus, when an op amp is constrained to its linear operat-
ing region and the node voltages are much larger than 2 mV, the constraint
on the input voltages of the op amp is

(5.2)

Note that Eq. 5.2 characterizes the relationship between the input voltages
for an ideal op amp; that is, an op amp whose value of A is infinite.

The input voltage constraint in Eq. 5.2 is called the virtual short
condition at the input of the op amp. It is natural to ask how the virtual
short is maintained at the input of the op amp when the op amp is
embedded in a circuit, thus ensuring linear operation. The answer is that
a signal is fed back from the output terminal to the inverting input ter-
minal. This configuration is known as negative feedback because the

vp = vn.
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Figure 5.5 � Terminal current variables.
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op amp.
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signal fed back from the output subtracts from the input signal. The
negative feedback causes the input voltage difference to decrease.
Because the output voltage is proportional to the input voltage differ-
ence, the output voltage is also decreased, and the op amp operates in
its linear region.

If a circuit containing an op amp does not provide a negative feedback
path from the op amp output to the inverting input, then the op amp will
normally saturate. The difference in the input signals must be extremely
small to prevent saturation with no negative feedback. But even if the cir-
cuit provides a negative feedback path for the op amp, linear operation is
not ensured. So how do we know whether the op amp is operating in its
linear region?

The answer is, we don’t! We deal with this dilemma by assuming 
linear operation, performing the circuit analysis, and then checking our
results for contradictions. For example, suppose we assume that an 
op amp in a circuit is operating in its linear region, and we compute the
output voltage of the op amp to be 10 V. On examining the circuit, we
discover that is 6 V, resulting in a contradiction, because the 
op amp’s output voltage can be no larger than Thus our assump-
tion of linear operation was invalid, and the op amp output must be
saturated at 6 V.

We have identified a constraint on the input voltages that is based on
the voltage transfer characteristic of the op amp integrated circuit, the
assumption that the op amp is restricted to its linear operating region and
to typical values for and A. Equation 5.2 represents the voltage con-
straint for an ideal op amp, that is, with a value of A that is infinite.

We now turn our attention to the constraint on the input currents.
Analysis of the op amp integrated circuit reveals that the equivalent resist-
ance seen by the input terminals of the op amp is very large, typically 
or more. Ideally, the equivalent input resistance is infinite, resulting in the
current constraint

(5.3)

Note that the current constraint is not based on assuming the op amp is
confined to its linear operating region as was the voltage constraint.
Together, Eqs. 5.2 and 5.3 form the constraints on terminal behavior that
define our ideal op amp model.

From Kirchhoff’s current law we know that the sum of the currents
entering the operational amplifier is zero, or

(5.4)

Substituting the constraint given by Eq. 5.3 into Eq. 5.4 gives

(5.5)

The significance of Eq. 5.5 is that, even though the current at the input
terminals is negligible, there may still be appreciable current at the out-
put terminal.

Before we start analyzing circuits containing op amps, let’s further sim-
plify the circuit symbol.When we know that the amplifier is operating within
its linear region, the dc voltages do not enter into the circuit equations.;VCC

io = -(ic+ + ic-).

ip + in + io + ic+ + ic- = 0.

ip = in = 0.

1 MÆ

VCC
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VCC
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In this case, we can remove the power supply terminals from the symbol
and the dc power supplies from the circuit, as shown in Fig. 5.7. A word of
caution: Because the power supply terminals have been omitted, there is a
danger of inferring from the symbol that We have already
noted that such is not the case; that is, In other
words, the ideal op amp model constraint that does not imply
that 

Note that the positive and negative power supply voltages do not
have to be equal in magnitude. In the linear operating region, must lie
between the two supply voltages. For example, if and

, then . Be aware also that the value of A
is not constant under all operating conditions. For now, however, we
assume that it is. A discussion of how and why the value of A can change
must be delayed until after you have studied the electronic devices and
components used to fabricate an amplifier.

Example 5.1 illustrates the judicious application of Eqs. 5.2 and 5.3.
When we use these equations to predict the behavior of a circuit contain-
ing an op amp, in effect we are using an ideal model of the device.

-10 V … vo … 15 VV-

= -10 V
V+

= 15 V
vo

io = 0.
ip = in = 0

ip + in + io + ic+ + ic- = 0.
ip + in + io = 0.

�

vn

�
vp

�

�
�

�

�

vo

�

ip
io

in

Figure 5.7 � The op amp symbol with the power supply
terminals removed.

Example 5.1 Analyzing an Op Amp Circuit

The op amp in the circuit shown in Fig. 5.8 is ideal.

a) Calculate if and 

b) Repeat (a) for and 

c) If specify the range of that avoids
amplifier saturation.

Figure 5.8 � The circuit for Example 5.1.

Solution

a) Because a negative feedback path exists from the
op amp’s output to its inverting input through the

resistor, let’s assume the op amp is con-
fined to its linear operating region. We can write
a node-voltage equation at the inverting input
terminal.The voltage at the inverting input termi-
nal is 0, as from the connected volt-
age source, and from the voltage
constraint Eq. 5.2. The node-voltage equation at

is thus

i25 = i100 = in.

vn

vn = vp

vp = vb = 0

100 kÆ

25 k� 10 V

�10 V
vo

�

�

va
�

� vb
�

�

�

�

100 k�

i25

i100

vbva = 1.5 V,

vb = 2 V.va = 1 V

vb = 0 V.va = 1 Vvo

From Ohm’s law,

The current constraint requires 
Substituting the values for the three currents
into the node-voltage equation, we obtain

Hence, is . Note that because lies
between , the op amp is in its linear
region of operation.

b) Using the same process as in (a), we get

Therefore, .Again, lies within .

c) As before, and Because
,

1.5 - vb

25
= -

vo - vb

100 .

va = 1.5 V
i25 = - i100.vn = vp = vb,

;10 Vvovo = 6 V

 i25 = - i100.

 i100 =

vo - vn

100
=

vo - 2
100

 mA,

 i25 =

va - vn

25
=

1 - 2
25

= -

1
25

 mA,

 vp = vb = vn = 2 V,

; 10 V
vo-4 Vvo

1
25

+

vo

100
= 0.

in = 0.

 i100 = (vo - vn)>100 = vo >100 mA.

 i25 = (va - vn)>25 =

1
25

 mA,
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Objective 1—Use voltage and current constraints in an ideal op amp

5.1 Assume that the op amp in the circuit shown
is ideal.

a) Calculate for the following values of :
0.4, 2.0, 3.5, and 

b) Specify the range of required to avoid
amplifier saturation.

Answer: (a) 3, 8, and 10 V;

(b) -2 V … vs … 3 V.

-15,-10,-2,

vs

-2.4 V.-1.6,-0.6,
vsvo

16 k� 10 V

�15 V
vo

�

�

vs
�

�

�

�

80 k�

NOTE: Also try Chapter Problems 5.1, 5.4, and 5.5.

�VCC

�VCC

vo

�

�

�

�is

in

if

vp

�

�

vn

�

�

Rs

Rf

vs
�

�

Figure 5.9 � An inverting-amplifier circuit.

Inverting-amplifier equation �

A S S E S S M E N T  P R O B L E M

5.3 The Inverting-Amplifier Circuit
We are now ready to discuss the operation of some important op amp circuits,
using Eqs. 5.2 and 5.3 to model the behavior of the device itself. Figure 5.9
shows an inverting-amplifier circuit. We assume that the op amp is operating
in its linear region. Note that, in addition to the op amp, the circuit consists of
two resistors ( and ), a voltage signal source ( ), and a short circuit con-
nected between the noninverting input terminal and the common node.

We now analyze this circuit, assuming an ideal op amp. The goal is to
obtain an expression for the output voltage, as a function of the source
voltage, We employ a single node-voltage equation at the inverting ter-
minal of the op amp, given as

(5.6)

The voltage constraint of Eq. 5.2 sets the voltage at because the
voltage at Therefore,

(5.7)

(5.8)

Now we invoke the constraint stated in Eq. 5.3, namely,

(5.9)

Substituting Eqs. 5.7–5.9 into Eq. 5.6 yields the sought-after result:

(5.10)vo =

-Rf

Rs
 vs .

in = 0.

 if =

vo

Rf
 .

 is =

vs

Rs
 ,

vp = 0.
vn = 0,

is + if = in.

vs.
vo,

vsRsRf

Solving for as a function of gives

Now, if the amplifier is to be within the linear 
region of operation, .-10 V … vo … 10 V

vb =

1
5

(6 + vo).

vovb Substituting these limits on into the expres-
sion for we see that is limited to

-0.8 V … vb … 3.2 V.

vbvb,
vo
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�VCC

�VCC

vo

�

�

vs
�

�

�

�

vn

�

�

Rs

Figure 5.10 � An inverting amplifier operating 
open loop.

Example 5.2 Designing an Inverting Amplifier

Note that the output voltage is an inverted, scaled replica of the input. The
sign reversal from input to output is, of course, the reason for referring to the
circuit as an inverting amplifier.The scaling factor, or gain, is the ratio 

The result given by Eq. 5.10 is valid only if the op amp shown in the
circuit in Fig. 5.9 is ideal; that is, if A is infinite and the input resistance is
infinite. For a practical op amp, Eq. 5.10 is an approximation, usually a
good one. (We say more about this later.) Equation 5.10 is important
because it tells us that if the op amp gain A is large, we can specify the gain
of the inverting amplifier with the external resistors and The upper
limit on the gain, is determined by the power supply voltages and
the value of the signal voltage If we assume equal power supply voltages,
that is, we get

(5.11)

For example, if and the ratio must be less
than 1500.

In the inverting amplifier circuit shown in Fig. 5.9, the resistor pro-
vides the negative feedback connection. That is, it connects the output ter-
minal to the inverting input terminal. If is removed, the feedback path
is opened and the amplifier is said to be operating open loop. Figure 5.10
shows the open-loop operation.

Opening the feedback path drastically changes the behavior of the
circuit. First, the output voltage is now

(5.12)

assuming as before that then for linear
operation. Because the inverting input current is almost zero, the voltage
drop across is almost zero, and the inverting input voltage nearly equals
the signal voltage, that is, Hence, the op amp can operate open
loop in the linear mode only if If the op amp
simply saturates. In particular, if the op amp saturates at

and if the op amp saturates at Because the
relationship shown in Eq. 5.12 occurs when there is no feedback path, the
value of A is often called the open-loop gain of the op amp.

Example 5.2 uses the inverting-amplifier equation to design an invert-
ing amplifier using realistic resistor values.

-VCC .vs 7 VCC >A,+VCC ,
vs 6 -VCC >A,

|vs| 7 VCC >A,|vs| 6 VCC >A.
vn L vs .vs ;

Rs

|vn| 6 VCC >AV+

= -V-

= VCC ;

vo = -Avn ,

Rf

Rf

Rf >Rsvs = 10 mV,VCC = 15 V

|vo| … VCC ,  2 Rf

Rs
vs
2 … VCC,  

Rf

Rs
… 2 VCC

vs

2 .

V+

= -V-

= VCC ,
vs.

Rf >Rs,
Rs.Rf

Rf >Rs.

a) Design an inverting amplifier (see Fig. 5.9) with
a gain of 12. Use power supplies and an
ideal op amp.

b) What range of input voltages, , allows the 
op amp in this design to remain in its linear 
operating region? 

Solution
a) We need to find two resistors whose ratio is 

12 from the realistic resistor values listed in

vs

;15 V
Appendix H. There are lots of different possibili-
ties, but let’s choose and .
Use the inverting-amplifier equation (Eq. 5.10)
to verify the design:

.

Thus, we have an inverting-amplifier with a gain
of 12, as shown in Fig. 5.11.

vo = -

Rf

Rs
 vs = -

12,000
 1000  vs = -12vs

Rf = 12 kÆRs = 1 kÆ

Dell
Highlight
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�VCC

�VCC vo

�

�

vc

�

�

�

vb

�

�

va

�

�

�

in

vn

�

�

Rb

Ra

Rc

Rf

Figure 5.12 � A summing amplifier.

5.4 The Summing-Amplifier Circuit
The output voltage of a summing amplifier is an inverted, scaled sum of
the voltages applied to the input of the amplifier. Figure 5.12 shows a sum-
ming amplifier with three input voltages.

We obtain the relationship between the output voltage and the
three input voltages, and by summing the currents away from the
inverting input terminal:

(5.13)

Assuming an ideal op amp, we can use the voltage and current constraints
together with the ground imposed at by the circuit to see that

and This reduces Eq. 5.13 to

(5.14)

Equation 5.14 states that the output voltage is an inverted, scaled sum of
the three input voltages.

If then Eq. 5.14 reduces to

(5.15)vo = -

Rf

Rs
(va + vb + vc).

Ra = Rb = Rc = Rs ,

vo = - ¢Rf

Ra
va +

Rf

Rb
vb +

Rf

Rc
vc≤ .

in = 0.vn = vp = 0
vp

vn - va

Ra
+

vn - vb

Rb
+

vn - vc

Rc
+

vn - vo

Rf
+ in = 0.

vc,va, vb,
vo

Inverting-summing amplifier equation �

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.2 The source voltage in the circuit in
Assessment Problem 5.1 is The

feedback resistor is replaced by a vari-
able resistor What range of allows theRxRx .
80 kÆ

-640 mV.
vs inverting amplifier to operate in its linear

region?

Answer: 0 … Rx … 250 kÆ.

NOTE: Also try Chapter Problems 5.9 and 5.11.

A S S E S S M E N T  P R O B L E M

Figure 5.11 � Inverting amplifier for Example 5.2.

�15V

�15V
vo

�

�

vs
�

�

�

�

1 k�

12 k�

b) Solve two different versions of the inverting-
amplifier equation for —first using 

and then using :

Thus, if the input voltage is greater than or equal 
to and less than  or equal to +1.25 V, the 
op amp in the inverting-amplifier will remain in 
its linear operating region.

-1.25 V

 -15 = -12vs so vs = 1.25 V.

 15 = -12vs so vs = -1.25 V;

vo = -15 Vvo = +15 V
vs
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.3 a) Find in the circuit shown if 
and 

b) If how large can be before
the op amp saturates?

c) If how large can be before
the op amp saturates?

d) Repeat (a), (b), and (c) with the polarity of
reversed.

Answer: (a)

(b) 0.15 V;

-7.5 V;

vb

vbva = 0.10 V,

vavb = 0.25 V,

vb = 0.25 V.
va = 0.1 Vvo (c) 0.5 V;

(d) 0.25, and 2 V.

�

�

5 k�

15V

�

�

vo

va

�10V

25 k�

250 k�

�

�

vb
�

�

-2.5,

NOTE: Also try Chapter Problems 5.12–5.14.

A S S E S S M E N T  P R O B L E M

Finally, if we make the output voltage is just the inverted sum of
the input voltages. That is,

(5.16)

Although we illustrated the summing amplifier with just three input
signals, the number of input voltages can be increased as needed. For exam-
ple, you might wish to sum 16 individually recorded audio signals to form a
single audio signal. The summing amplifier configuration in Fig. 5.12 could
include 16 different input resistor values so that each of the input audio
tracks appears in the output signal with a different amplification factor.
The summing amplifier thus plays the role of an audio mixer. As with
inverting-amplifier circuits, the scaling factors in summing-amplifier cir-
cuits are determined by the external resistors Rf, Ra, Rb, Rc, . . . , Rn .

vo = -(va + vb + vc).

Rf = Rs ,

�

�

Rs �VCC

�

�

vo

�

� �

vn

�

vp

�VCCRs

Rf

vg
�

�

Figure 5.13 � A noninverting amplifier.

5.5 The Noninverting-Amplifier Circuit
Figure 5.13 depicts a noninverting-amplifier circuit. The signal source is
represented by in series with the resistor In deriving the expression
for the output voltage as a function of the source voltage, we assume an
ideal op amp operating within its linear region. Thus, as before, we use
Eqs. 5.2 and 5.3 as the basis for the derivation. Because the op amp input
current is zero, we can write and, from Eq. 5.2, as well.
Now, because the input current is zero ( ), the resistors and

form an unloaded voltage divider across Therefore,

(5.17)

Solving Eq. 5.17 for gives us the sought-after expression:

(5.18)vo =

Rs + Rf

Rs
vg .

vo

vn = vg =

voRs

Rs + Rf
 .

vo.Rs

Rfin = ip = 0
vn = vgvp = vg

Rg .vg

� Noninverting-amplifier equation
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.4 Assume that the op amp in the circuit shown
is ideal.

a) Find the output voltage when the variable
resistor is set to 

b) How large can be before the amplifier
saturates?

Answer: (a) 4.8 V;

(b) 75 kÆ.

Rx

60 kÆ.
�

�

4.5 k� 5 V

�

�

vo

�5 V15 k�

63 k�

400 mV
�

� Rx

NOTE: Also try Chapter Problems 5.19 and 5.20.

A S S E S S M E N T  P R O B L E M

Operation in the linear region requires that

Note again that, because of the ideal op amp assumption, we can
express the output voltage as a function of the input voltage and the exter-
nal resistors—in this case, and 

Example 5.3 illustrates the design of a noninverting amplifier using
realistic resistor values.

Rf .Rs

Rs + Rf

Rs
6 2 VCC

vg

2 .

Example 5.3 Designing a Noninverting Amplifier

a) Design a noninverting amplifier (see Fig. 5.13)
with a gain of 6. Assume the op amp is ideal.

b) Suppose we wish to amplify a voltage , such
that . What are the
smallest power supply voltages that could be
used with the resistors selected in part (a) and
still have the op amp in this design remain in its
linear operating region? 

Solution
a) Using the noninverting amplifier equation

(Eq. 5.18),

Therefore,

.

We want two resistors whose ratio is 5. Look at
the realistic resistor values listed in Appendix H.
Let’s choose , so . But
there is not a resistor in Appendix H.We can
create an equivalent resistor by combining
two resistors in series. We can use a third

resistor as the value of the resistor .Rg1 kÆ

1 kÆ

2 kÆ

2 kÆ

Rs = 2 kÆRf = 10 kÆ

Rs + Rf = 6Rs,   so   Rf = 5Rs

vo =

Rs + Rf

Rs
 vg = 6vg  so  

Rs + Rf

 Rs 
 = 6.

-1.5 V …  vg … +  1.5 V
vg

b) Solve two different versions of the noninvert-
ing amplifier equation for —first using

and then using :

Thus, if we use power supplies for the non-
inverting amplifier designed in part (a) and

, the op amp will remain
in its linear operating region. The circuit result-
ing from the analysis in parts (a) and (b) is
shown in Fig. 5.14.

Figure 5.14 � The noninverting amplifier design of Example 5.3.

�

�

1 k� 1 k� + 1.5 V

�

�

vovg

�1.5 V1 k�

10 k�

�

�

-1.5 V … vg … +1.5 V

;9 V

 vo = 6(-1.5) = -9 V.

 vo = 6(1.5) = 9 V;

vg = -1.5 Vvg = +1.5 V
vo
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�

�

�VCC

�

�

vo

�

�

vp

�

�

vn �VCC

Rd

Rb

Rc

Ra

vb

va
�

�

�

�

in

Figure 5.15 � A difference amplifier.

� Simplified difference-amplifier equation

Example 5.4 Designing a Difference Amplifier

a) Design a difference amplifier (see Fig. 5.15) that
amplifies the difference between two input volt-
ages by a gain of 8, using an ideal op amp and

power supplies.;8 V

b) Suppose in the difference amplifier
designed in part (a). What range of input volt-
ages for will allow the op amp to remain in its
linear operating region? 

vb

va = 1 V

5.6 The Difference-Amplifier Circuit
The output voltage of a difference amplifier is proportional to the difference
between the two input voltages. To demonstrate, we analyze the difference-
amplifier circuit shown in Fig. 5.15, assuming an ideal op amp operating in its
linear region. We derive the relationship between and the two input volt-
ages and by summing the currents away from the inverting input node:

(5.19)

Because the op amp is ideal, we use the voltage and current constraints to
see that

(5.20)

(5.21)

Combining Eqs. 5.19, 5.20, and 5.21 gives the desired relationship:

(5.22)

Equation 5.22 shows that the output voltage is proportional to the dif-
ference between a scaled replica of and a scaled replica of In general
the scaling factor applied to is not the same as that applied to 
However, the scaling factor applied to each input voltage can be made
equal by setting

(5.23)

When Eq. 5.23 is satisfied, the expression for the output voltage reduces to

(5.24)

Equation 5.24 indicates that the output voltage can be made a scaled
replica of the difference between the input voltages and As in the
previous ideal amplifier circuits, the scaling is controlled by the external
resistors. Furthermore, the relationship between the output voltage and
the input voltages is not affected by connecting a nonzero load resistance
across the output of the amplifier.

Example 5.4 describes the design of a difference amplifier using real-
istic resistor values.

va.vb

vo =

Rb

Ra
(vb - va).

Ra

Rb
=

Rc

Rd
 .

va.vb

va.vb

vo =

Rd(Ra + Rb)
Ra(Rc + Rd)

 vb -

Rb

Ra
 va.

 vn = vp =

Rd

Rc + Rd
 vb.

 in = ip = 0,

vn - va

Ra
+

vn - vo

Rb
+ in = 0.

vbva

vo
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.5 a) In the difference amplifier shown,
What range of values for will

result in linear operation?

b) Repeat (a) with the resistor
decreased to 

Answer: (a)

(b) 1.2 V … va … 5.2 V.

2 V … va … 6 V;

8 kÆ.
20 kÆ

vavb = 4.0 V.

�

�

10 V

�

�

vo

�10 V

vb

va
�

�

�

�

10 k�

50 k�

4 k�

20 k�

NOTE: Also try Chapter Problems 5.26, 5.27, and 5.30.

The Difference Amplifier—Another Perspective
We can examine the behavior of a difference amplifier more closely if we
redefine its inputs in terms of two other voltages. The first is the
differential mode input, which is the difference between the two input
voltages in Fig. 5.15:

(5.25)

The second is the common mode input, which is the average of the two
input voltages in Fig. 5.15:

(5.26)vcm = (va + vb)>2.

vdm = vb - va.

A S S E S S M E N T  P R O B L E M

Solution

a) Using the simplified difference-amplifier equa-
tion (Eq. 5.24),

We want two resistors whose ratio is 8. Look at
the realistic resistor values listed in Appendix H.
Let’s choose , so ,
although there are many other possibilities. Note
that the simplified difference-amplifier equation
requires that

.

A simple choice for and is 
and . The resulting 

circuit is shown in Fig. 5.16.
Rd = Rb = 12 kÆ1.5 kÆ

Rc = Ra =RdRc

Ra

Rb
 =

Rc

 Rd 
 

Ra = 1.5 kÆRb = 12 kÆ

vo =

Rb

Ra
 (vb - va) = 8(vb - va) so 

Rb

 Ra 
 = 8.

Figure 5.16 � The difference amplifier designed in Example 5.4.

b) Solve two different versions of the simplified
difference-amplifier equation for in terms of

—first using and then using
:

;

.

Thus, if in the difference amplifier
from part (a), the op amp will remain in its lin-
ear region of operation if .0 V … vb … +2 V

va = 1 V

 vo = 8(vb - 1) = -8 V so vb = 0 V

 vo = 8(vb - 1) = 8 V so vb = 2 V

vo = -8 V
vo = +8 Vvb

vo

�

�

+ 8 V

�

�

vo

� 8 V

vb

va
�

�

�

�

1.5 k�

12 k�

1.5 k�

12 k�
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Using Eqs. 5.25 and 5.26, we can now represent the original input voltages,
and in terms of the differential mode and common mode voltages,

and :

(5.27)

(5.28)

Substituting Eqs. 5.27 and 5.28 into Eq. 5.22 gives the output of the differ-
ence amplifier in terms of the differential mode and common mode voltages:

(5.29)

(5.30)

where is the common mode gain and is the differential mode
gain. Now, substitute and which are possible values for

and that satisfy Eq. 5.23, into Eq. 5.29:

(5.31)

Thus, an ideal difference amplifier has amplifies only the differ-
ential mode portion of the input voltage, and eliminates the common
mode portion of the input voltage. Figure 5.17 shows a difference-
amplifier circuit with differential mode and common mode input voltages
in place of and 

Equation 5.30 provides an important perspective on the function of the
difference amplifier, since in many applications it is the differential mode
signal that contains the information of interest, whereas the common mode
signal is the noise found in all electric signals. For example, an electrocardio-
graph electrode measures the voltages produced by your body to regulate
your heartbeat. These voltages have very small magnitudes compared with
the electrical noise that the electrode picks up from sources such as lights
and electrical equipment. The noise appears as the common mode portion
of the measured voltage, whereas the heart rate voltages comprise the dif-
ferential mode portion. Thus an ideal difference amplifier would amplify
only the voltage of interest and would suppress the noise.

Measuring Difference-Amplifier Performance—
The Common Mode Rejection Ratio
An ideal difference amplifier has zero common mode gain and nonzero
(and usually large) differential mode gain. Two factors have an influence
on the ideal common mode gain—resistance mismatches (that is, Eq. [5.23]
is not satisfied) or a nonideal op amp (that is, Eq. [5.20] is not satisfied).We
focus here on the effect of resistance mismatches on the performance of a
difference amplifier.

vb.va

Acm = 0,

vo = (0)vcm + ¢Rb

Ra
≤vdm.

RdRc

Rd = Rb,Rc = Ra

AdmAcm

 = Acmvcm + Admvdm,

 + BRd(Ra + Rb) + Rb(Rc + Rd)
2Ra(Rc + Rd)

Rvdm

 vo = BRaRd - RbRc

Ra(Rc + Rd)
Rvcm

 vb = vcm +

1
2

vdm.

 va = vcm -

1
2

vdm,

vcmvdm

vb,va

�

�

�VCC

�

�

vo

�VCCvcm
�

�

�

�

�

�

vdm

2

vdm

2
Rd

Rb

Rc

Ra

Figure 5.17 � A difference amplifier with common
mode and differential mode input voltages.
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Suppose that resistor values are chosen that do not precisely satisfy
Eq. 5.23. Instead, the relationship among the resistors and is

so

(5.32)

or

(5.33)

where is a very small number. We can see the effect of this resistance
mismatch on the common mode gain of the difference amplifier by substi-
tuting Eq. 5.33 into Eq. 5.29 and simplifying the expression for :

(5.34)

(5.35)

(5.36)

We can make the approximation to give Eq. 5.36 because is very small,
and therefore is approximately 1 in the denominator of Eq. 5.35.
Note that, when the resistors in the difference amplifier satisfy Eq. 5.23,

and Eq. 5.36 gives 
Now calculate the effect of the resistance mismatch on the differential

mode gain by substituting Eq. 5.33 into Eq. 5.29 and simplifying the
expression for :

(5.37)

(5.38)

(5.39)

We use the same rationale for the approximation in Eq. 5.39 as in the com-
putation of When the resistors in the difference amplifier satisfy
Eq. 5.23, and Eq. 5.39 gives 

The common mode rejection ratio (CMRR) can be used to measure
how nearly ideal a difference amplifier is. It is defined as the ratio of the
differential mode gain to the common mode gain:

(5.40)CMRR = ` Adm

Acm
` .

Adm = Rb>Ra.P = 0
Acm.

 L

Rb

Ra
B1 -

(P>2)Ra

Ra + Rb
R .

 =

Rb

Ra
B1 -

(P>2)Ra

Ra + (1 - P)Rb
R

 Adm =

(1 - P)Rb(Ra + Rb) + Rb[Ra + (1 - P)Rb]
2Ra[Ra + (1 - P)Rb]

Adm

Acm = 0.P = 0

(1 - P)
P

 L

-PRb

Ra + Rb
 .

 =

-PRb

Ra + (1 - P)Rb

 Acm =

Ra(1 - P)Rb - RaRb

Ra[Ra + (1 - P)Rb]

Acm

P

 Rd = (1 - P)Rb  and  Ra = Rc,

 Ra = (1 - P)Rc  and  Rb = Rd,

Ra

Rb
= (1 - P)

Rc

Rd
,

RdRa, Rb, Rc,
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The higher the CMRR, the more nearly ideal the difference amplifier. We
can see the effect of resistance mismatch on the CMRR by substituting
Eqs. 5.36 and 5.39 into Eq. 5.40:

(5.41)

(5.42)

(5.43)

From Eq. 5.43, if the resistors in the difference amplifier are matched,
and Even if the resistors are mismatched, we can

minimize the impact of the mismatch by making the differential mode
gain ( ) very large, thereby making the CMRR large.

We said at the outset that another reason for nonzero common mode
gain is a nonideal op amp. Note that the op amp is itself a difference
amplifier, because in the linear operating region, its output is proportional
to the difference of its inputs; that is, The output of a
nonideal op amp is not strictly proportional to the difference between the
inputs (the differential mode input) but also is comprised of a common
mode signal. Internal mismatches in the components of the integrated cir-
cuit make the behavior of the op amp nonideal, in the same way that the
resistor mismatches in the difference-amplifier circuit make its behavior
nonideal. Even though a discussion of nonideal op amps is beyond the
scope of this text, you may note that the CMRR is often used in assessing
how nearly ideal an op amp’s behavior is. In fact, it is one of the main ways
of rating op amps in practice.

NOTE: Assess your understanding of this material by trying Chapter
Problems 5.33 and 5.34.

5.7 A More Realistic Model for the
Operational Amplifier

We now consider a more realistic model that predicts the performance of
an op amp in its linear region of operation. Such a model includes three
modifications to the ideal op amp: (1) a finite input resistance, (2) a
finite open-loop gain, A; and (3) a nonzero output resistance, The cir-
cuit shown in Fig. 5.18 illustrates the more realistic model.

Whenever we use the equivalent circuit shown in Fig. 5.18, we disre-
gard the assumptions that (Eq. 5.2) and (Eq. 5.3).
Furthermore, Eq. 5.1 is no longer valid because of the presence of the
nonzero output resistance, Another way to understand the circuit
shown in Fig. 5.18 is to reverse our thought process.That is, we can see that
the circuit reduces to the ideal model when and 
For the op amp, the typical values of and are 
and respectively.

Although the presence of and makes the analysis of circuits con-
taining op amps more cumbersome, such analysis remains straightforward.

RoRi

75 Æ,
105,2 MÆ,RoRi, A,mA741
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Figure 5.18 � An equivalent circuit for an operational
amplifier.
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To illustrate, we analyze both an inverting and a noninverting amplifier,
using the equivalent circuit shown in Fig. 5.18. We begin with the invert-
ing amplifier.

Analysis of an Inverting-Amplifier Circuit Using 
the More Realistic Op Amp Model
If we use the op amp circuit shown in Fig. 5.18, the circuit for the inverting
amplifier is the one depicted in Fig. 5.19. As before, our goal is to express
the output voltage, as a function of the source voltage, We obtain
the desired expression by writing the two node-voltage equations that
describe the circuit and then solving the resulting set of equations for 
In Fig. 5.19, the two nodes are labeled a and b. Also note that by
virtue of the external short-circuit connection at the noninverting input
terminal. The two node-voltage equations are as follows:

(5.44)

(5.45)

We rearrange Eqs. 5.44 and 5.45 so that the solution for by Cramer’s
method becomes apparent:

(5.46)

(5.47)

Solving for yields

(5.48)

Note that Eq. 5.48 reduces to Eq. 5.10 as and 
If the inverting amplifier shown in Fig. 5.19 were loaded at its output

terminals with a load resistance of ohms, the relationship between 
and would become

(5.49)

Analysis of a Noninverting-Amplifier Circuit Using 
the More Realistic Op Amp Model
When we use the equivalent circuit shown in Fig. 5.18 to analyze a nonin-
verting amplifier, we obtain the circuit depicted in Fig. 5.20. Here, the volt-
age source in series with the resistance represents the signal
source. The resistor denotes the load on the amplifier. Our analysisRL

Rg ,vg ,

vo =

-A + (Ro >Rf)

Rs

Rf
¢1 + A +

Ro

Ri
+

Ro

RL
≤ + ¢1 +

Ro

RL
≤ ¢1 +

Rs

Ri
≤ +

Ro

Rf

 vs .

vs

voRL

A : q .Ri : q ,Ro : 0,

vo =

-A + (Ro >Rf)

Rs

Rf
¢1 + A +

Ro

Ri
≤ + ¢Rs

Ri
+ 1≤ +

Ro

Rf

 vs .

vo

 ¢ A

Ro
-

1
Rf
≤vn + ¢ 1

Rf
+

1
Ro
≤vo = 0.

 ¢ 1
Rs

+

1
Ri

+

1
Rf
≤vn -

1
Rf

 vo =

1
Rs

 vs ,

vo

 node b: 
vo - vn

Rf
+

vo - A(-vn)
Ro

= 0.

 node a: 
vn - vs

Rs
+

vn

Ri
+

vn - vo

Rf
= 0,

vp = 0
vo  .

vs  .vo  ,

�

�

�

�

�

�

�

�

vo

� �

�

� vn

vpvg

A(vp � vn)

b

a

Rf

Ro

RL

Ri

Rs

Rg
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consists of deriving an expression for as a function of We do so by
writing the node-voltage equations at nodes a and b. At node a,

(5.50)

and at node b,

(5.51)

Because the current in is the same as in we have

(5.52)

We use Eq. 5.52 to eliminate from Eq. 5.51, giving a pair of equations
involving the unknown voltages and This algebraic manipulation
leads to

(5.53)

(5.54)

Solving for yields

(5.55)

where

Note that Eq. 5.55 reduces to Eq. 5.18 when and
For the unloaded ( ) noninverting amplifier, Eq. 5.55

simplifies to

(5.56)

Note that, in the derivation of Eq. 5.56 from Eq. 5.55, reduces to
(Rs + Rg)>Ri.
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Objective 3—Understand the more realistic model for an op amp

5.6 The inverting amplifier in the circuit shown has
an input resistance of an output resist-
ance of and an open-loop gain of 300,000.
Assume that the amplifier is operating in its
linear region.

a) Calculate the voltage gain ( ) of the
amplifier.

b) Calculate the value of in microvolts when

c) Calculate the resistance seen by the signal
source ( ).

d) Repeat (a)–(c) using the ideal model for the
op amp.

vg

vg = 1 V.
vn

vo >vg

5 kÆ,
500 kÆ,

Answer: (a) ;

(b)

(c)

(d)

20 V

�20 V
vo

�

�

vg
�

�

�

�

5 k�

100 k�

-20, 0 mV, 5 kÆ.

5000.35 Æ;

69.995 mV;

-19.9985

NOTE: Also try Chapter Problems 5.44 and 5.48.

A S S E S S M E N T  P R O B L E M

Practical Perspective
Strain Gages
Changes in the shape of elastic solids are of great importance to engineers
who design structures that twist, stretch, or bend when subjected to exter-
nal forces. An aircraft frame is a prime example of a structure in which engi-
neers must take into consideration elastic strain. The intelligent application
of strain gages requires information about the physical structure of the
gage, methods of bonding the gage to the surface of the structure, and the
orientation of the gage relative to the forces exerted on the structure. Our
purpose here is to point out that strain gage measurements are important in
engineering applications, and a knowledge of electric circuits is germane to
their proper use.

The circuit shown in Fig. 5.21 provides one way to measure the change
in resistance experienced by strain gages in applications like the one

�

� �

�

vo

vref

�VCC

�VCC

Rf

Rf

�

�

R � �R

R � �R

R � �R

R � �R

Figure 5.21 � An op amp circuit used for measuring the change in strain gage
resistance.

described in the beginning of this chapter. As we will see, this circuit is the
familiar difference amplifier, with the strain gage bridge providing the two
voltages whose difference is amplified. The pair of strain gages that are
lengthened once the bar is bent have the values in the bridgeR + ¢R
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feeding the difference amplifier, whereas the pair of strain gages that are
shortened have the values We will analyze this circuit to discover
the relationship between the output voltage, and the change in resist-
ance, experienced by the strain gages.

To begin, assume that the op amp is ideal. Writing the KCL equations at
the inverting and noninverting input terminals of the op amp we see

(5.57)

(5.58)

Now rearrange Eq. 5.58 to get an expression for the voltage at the nonin-
verting terminal of the op amp:

(5.59)

As usual, we will assume that the op amp is operating in its linear region, so
and the expression for in Eq. 5.59 must also be the expression

for . We can thus substitute the right-hand side of Eq. 5.59 in place of 
in Eq. 5.57 and solve for . After some algebraic manipulation,

(5.60)

Because the change in resistance experienced by strain gages is very small,
so and Eq. 5.60 becomes

(5.61)

where 

NOTE: Assess your understanding of this Practical Perspective by
trying Chapter Problem 5.49.
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Summary

• The equation that defines the voltage transfer charac-
teristic of an ideal op amp is

where A is a proportionality constant known as the
open-loop gain, and represents the power supply
voltages. (See page 147.)

• A feedback path between an op amp’s output and 
its inverting input can constrain the op amp to its 
linear operating region where . (See
page 147.)

• A voltage constraint exists when the op amp is con-
fined to its linear operating region due to typical val-
ues of and A. If the ideal modeling assumptions
are made—meaning A is assumed to be infinite—the
ideal op amp model is characterized by the volt-
age constraint

(See page 147.)

• A current constraint further characterizes the ideal 
op amp model, because the ideal input resistance of 
the op amp integrated circuit is infinite. This current
constraint is given by

(See page 148.)

• We considered both a simple, ideal op amp model and a
more realistic model in this chapter. The differences
between the two models are as follows:

Simplified Model More Realistic Model

Infinite input resistance Finite input resistance

Infinite open-loop gain Finite open-loop gain

Zero output resistance Nonzero output resistance

(See page 159.)

ip = in = 0.

vp = vn.

VCC

vo = A(vp - vn)

VCC

vo = d
-VCC, A(vp - vn) 6 -VCC,
A(vp - vn), -VCC … A(vp - vn) … + VCC,
+ VCC, A(vp - vn) 7 + VCC,

• An inverting amplifier is an op amp circuit producing
an output voltage that is an inverted, scaled replica of
the input. (See page 150.)

• A summing amplifier is an op amp circuit producing an
output voltage that is a scaled sum of the input voltages.
(See page 152.)

• A noninverting amplifier is an op amp circuit producing
an output voltage that is a scaled replica of the input
voltage. (See page 153.)

• A difference amplifier is an op amp circuit producing an
output voltage that is a scaled replica of the input volt-
age difference. (See page 155.)

• The two voltage inputs to a difference amplifier can be
used to calculate the common mode and difference
mode voltage inputs, and . The output from the
difference amplifier can be written in the form

where is the common mode gain, and is the
differential mode gain. (See page 157.)

• In an ideal difference amplifier, To measure
how nearly ideal a difference amplifier is, we use the
common mode rejection ratio:

An ideal difference amplifier has an infinite CMRR.
(See page 159.)

CMRR = 2 Adm

Acm

2 .

Acm = 0.

AdmAcm

vo = Acmvcm + Admvdm,

vdmvcm
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Problems

Sections 5.1–5.2

5.1 The op amp in the circuit in Fig. P5.1 is ideal.

a) Label the five op amp terminals with their names.

b) What ideal op amp constraint determines the
value of ? What is this value?

c) What ideal op amp constraint determines the
value of ? What is this value?

d) Calculate 

Figure P5.1

5.2 a) Replace the 2 V source in the circuit in Fig. P5.1
and calculate for each of the following source
values: 6 V, 3.5 V, 1.25 V, 2.4 V, 4.5 V, 5.4 V.

b) Specify the range of voltage source values that
will not cause the op amp to saturate.

5.3 Find (in milliamperes) in the circuit in Fig. P5.3.

Figure P5.3

5.4 The op amp in the circuit in Fig. P5.4 is ideal.

a) Calculate if and 

b) Calculate if and 

c) Calculate if and 

d) Calculate if and vb = 1 V.va = 2.5 Vvo

vb = 2.5 V.va = 1 Vvo

vb = 0 V.va = -0.5 Vvo

vb = 0 V.va = 1.5 Vvo
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� iL
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vo
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2 V 6 k�

15 V

�15 V
�

�

�

�

�

�
�

���

vn
vp

in

vo

vo.

(vp - vn)

in

e) Calculate if and 

f) If , specify the range of such that 
the amplifier does not saturate.

Figure P5.4

5.5 Find in the circuit in Fig. P5.5 if the op amp is ideal.

Figure P5.5

5.6 The op amp in the circuit in Fig. P5.6 is ideal.
Calculate the following:

a)

b)

c)

d)

Figure P5.6
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5.7 A voltmeter with a full-scale reading of 10 V is used
to measure the output voltage in the circuit in
Fig. P5.7. What is the reading of the voltmeter?
Assume the op amp is ideal.

Figure P5.7

Section 5.3

5.8 a) Design an inverting amplifier with a gain of 4.
Use an ideal op amp, a resistor in the 
feedback path, and 12 V power supplies.

b) Using your design from part (a), determine 
the range of input voltages that will keep the 
op amp in its linear operating region.

c) Suppose you wish to amplify a 2 V signal, using
your design from part (a) with a variable feed-
back resistor. What is the largest value of feed-
back resistance that keeps the op amp in its
linear operation region? Using this resistor
value, what is the new gain of the inverting
amplifier?

5.9 a) Design an inverting amplifier using an ideal 
op amp that has a gain of 2.5. Use a set of 
identical resistors from Appendix H.

b) If you wish to amplify signals between 2 V and
3 V using the circuit you designed in part (a),

what are the smallest power supply voltages you
can use?

5.10 a) The op amp in the circuit shown in Fig. P5.10 is
ideal. The adjustable resistor has a maxi-
mum value of and is restricted to the
range of Calculate the range of

if 

b) If is not restricted, at what value of will the
op amp saturate?

aa

vg = 40 mV.vo

0.2 … a … 1.
a100 kÆ,

R
¢

+

-

;

30 kÆ

�

� �

vo vm

�

� �

3.5 mA

2.2 M�

10 V

�10 V

Figure P5.10

5.11 The op amp in the circuit in Fig. P5.11 is ideal.

a) Find the range of values for in which the 
op amp does not saturate.

b) Find (in microamperes) when 

Figure P5.11

Section 5.4

5.12 The op amp in Fig. P5.12 is ideal.

a) What circuit configuration is shown in this 
figure?

b) Find if and 

c) The voltages and remain at 1 V and V,
respectively. What are the limits on if the 
op amp operates within its linear region?
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b) Suppose 2 V and 1 V. What range of
values for will keep the op amp in its linear
operating region?

5.17 Design an inverting-summing amplifier so that

Start by choosing a feedback resistor ( ) from
Appendix H. Then choose single resistors from
Appendix H or construct resistor neworks 
from resistors in Appendix H to satisfy the design
values for and Draw your final 
circuit diagram.

Section 5.5

5.18 The op amp in the circuit of Fig. P5.18 is ideal.
a) What op amp circuit configuration is this?
b) Calculate 

Figure P5.18

5.19 The op amp in the circuit of Fig. P5.19 is ideal.
a) What op amp circuit configuration is this?
b) Find in terms of 
c) Find the range of values for such that does

not saturate and the op amp remains in its linear
region of operation.

Figure P5.19

5.20 The op amp in the circuit shown in Fig. P5.20 is ideal,
a) Calculate when equals 4 V.
b) Specify the range of values of so that the 

op amp operates in a linear mode.
vg

vgvo
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�
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�
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vo.
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vo = -(8va + 4vb + 10vc + 6vd).

vb

-=vc=vaFigure P5.12

5.13 Refer to the circuit in Fig. 5.12, where the op amp 
is assumed to be ideal. Given that 

and spec-
ify the range of for which the op amp operates
within its linear region.

5.14 a) The op amp in Fig. P5.14 is ideal. Find if 
and 

b) Assume , and retain their values as given 

in (a). Specify the range of such that the op amp

operates within its linear region.

Figure P5.14

5.15 The feedback resistor in the circuit in
Fig. P5.14 is replaced by a variable resistor The
voltages have the same values as given in
Problem 5.14(a).

a) What value of will cause the op amp to satu-
rate? Note that 

b) When has the value found in (a), what is the
current (in microamperes) into the output ter-
minal of the op amp?

5.16 a) Design an inverting-summing amplifier using a
120 resistor in the feedback path so that

Use 15 V power supplies.;

vo = -(8va + 5vb + 12vc).
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c) Assume that equals 2 V and that the 
resistor is replaced with a variable resistor.What
value of the variable resistor will cause the 
op amp to saturate?

Figure P5.20

5.21 a) Design a non-inverting amplifier (see Fig. 5.13)
with a gain of 6, using a 75 resistor in the feed-
back path. Draw your final circuit diagram.

b) Suppose you wish to amplify input signals in the
range What are the mini-
mum values of the power supplies that will keep
the op amp in its linear operating region?

5.22 a) Design a non-inverting amplifier (see Fig. 5.13)
with a gain of 2.5. Use resistors from
Appendix H. You might need to combine
resistors in series and in parallel to get the
desired resistance. Draw your final circuit.

b) If you use power supplies for the op amp,
what range of input values will allow the op amp
to stay in its linear operating region?

5.23 The op amp in the circuit of Fig. P5.23 is ideal.
a) What op amp circuit configuration is this?
b) Find in terms of 
c) Find the range of values for such that does

not saturate and the op amp remains in its linear
region of operation.

Figure P5.23
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vo 27 k�

63 kÆvg 5.24 The circuit in Fig. P5.24 is a noninverting summing
amplifier. Assume the op amp is ideal. Design the
circuit so that

a) Specify the numerical values of and 

b) Calculate and (in microamperes) when
and 

Figure P5.24

Section 5.6

5.25 a) Use the principle of superposition to derive
Eq. 5.22.

b) Derive Eqs. 5.23 and 5.24.

5.26 The op amp in the circuit of Fig. P5.26 is ideal.

a) What op amp circuit configuration is this?

b) Find an expression for the output voltage in
terms of the input voltage .

c) Suppose 2 V. What value of Rf will cause
the op amp to saturate?

Figure P5.26
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5.27 The resistors in the difference amplifier shown
in Fig. 5.15 are 

and The signal volt-
ages and are 8 and 5 V, respectively, and

a) Find 

b) What is the resistance seen by the signal
source ?

c) What is the resistance seen by the signal
source ?

5.28 The resistor in the circuit in Fig. P5.28 is
adjusted until the ideal op amp saturates. Specify

in kilohms.

Figure P5.28

5.29 Design a difference amplifier (Fig. 5.15) to meet
the following criteria: The resist-
ance seen by the signal source is and
the resistance seen by the signal source is

when the output voltage is zero. Specify
the values of and using single 
resistors or combinations of resistors from
Appendix H.

5.30 The op amp in the adder-subtracter circuit shown in
Fig. P5.30 is ideal.

a) Find when and

b) If and are held constant, what values of
will not saturate the op amp?

Figure P5.30

20 V

�20 V

vb �

�

vo

�

�

47 k�

20 k�

va

18 k�

20 k�

vd
20 k�

vc
30 k�

180 k�

vc

vdvb ,va ,

4 V.=vd

3 V,=vc2 V,=vb1 V,=vavo

RdRc ,Rb ,Ra ,
vo22 kÆ

va

470 kÆ,vb

vo = 3vb - 4va.

9 V

�9 V

�

�

1.6 k�

7.5 k�

1.5 k� 5.6 k�

Rf

18 V
�

�

Rf

Rf

vb

va

vo.

VCC = ;20 V.
vbva

Rd = 120 kÆ.Rc = 130 kÆ

Rb = 75 kÆ,Ra = 24 kÆ,
5.31 Select the values of and in the circuit in

Fig. P5.31 so that

Use single resistors or combinations of resistors
from Appendix H. The op amp is ideal.

Figure P5.31

5.32 The op amp in the circuit of Fig. P5.32 is ideal.

a) Plot versus when and 
Use increments of 0.1 and note by hypothesis
that 

b) Write an equation for the straight line you plot-
ted in (a). How are the slope and inter-
cept of the line related to and the ratio ?

c) Using the results from (b), choose values for 
and the ratio such that 

Figure P5.32

5.33 In the difference amplifier shown in Fig. P5.33,
compute (a) the differential mode gain, (b) the
common mode gain, and (c) the CMRR.

Figure P5.33

�

�
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5.34 In the difference amplifier shown in Fig. P5.34, what
range of values of yields a 

Figure P5.34

Sections 5.1–5.6

5.35 The voltage shown in Fig. P5.35(a) is applied to
the inverting amplifier shown in Fig. P5.35(b).
Sketch versus t, assuming the op amp is ideal.

Figure P5.35

5.36 The signal voltage in the circuit shown in Fig. P5.36
is described by the following equations:

Sketch versus t, assuming the op amp is ideal.vo

  vg = 4 cos(p>4)t V,  0 … t … q .

 vg = 0,             t … 0,

vg

8 V

�8 V
vo

�

�

vg
�

�

�

�

15 k�

15 k�

75 k�

(b)

2

�2 V

2 V

4 6 8 10 12 14 t (s)

(a)

vg

etc.

16

vo

vg

�

�

3 k� 10 V

�

�

vo

�10 VRx

6 k�

6 k�

vb
�

�

va
�

�

CMRR Ú 1500?Rx

Figure P5.36

5.37 a) Show that when the ideal op amp in Fig. P5.37 is
operating in its linear region,

b) Show that the ideal op amp will saturate when

Figure P5.37

5.38 Assume that the ideal op amp in the circuit seen in
Fig. P5.38 is operating in its linear region.

a) Show that 

b) What happens if and ?

c) Explain why this circuit is referred to as a volt-
age follower when and R2 = 0.R1 = q

R2 : 0R1 : q

vo = [(R1 + R2)>R1]vs .

�

�

�

�

VCC 

�VCC 

vg

R

R R

Raia

Ra =

R(;VCC - 2vg)

3vg
.

ia =

3vg

R
.

�

�

10 V

�10 V

vg
�

�

20 k� 60 k�

1.8 k�

5.4 k�

�

�

vo 5 k�
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5.41 The op amps in the circuit in Fig. P5.41 are ideal.

a) Find 

b) Find the value of the left source voltage for
which ia = 0.

ia.

Figure P5.38

5.39 The two op amps in the circuit in Fig. P5.39
are ideal. Calculate and 

Figure P5.39

5.40 Assume that the ideal op amp in the circuit in
Fig. P5.40 is operating in its linear region.

a) Calculate the power delivered to the 
resistor.

b) Repeat (a) with the op amp removed from the
circuit, that is, with the resistor connected
in the series with the voltage source and the

resistor.

c) Find the ratio of the power found in (a) to that
found in (b).

d) Does the insertion of the op amp between the
source and the load serve a useful purpose?
Explain.

Figure P5.40

�

�

�

�

48 k�

Source Load

16 k�320 mV

48 kÆ

16 kÆ

16 kÆ

15 V

�15 V

�

�

15 V
vo1

15 V

�15 V

�

�

500 �

400 �

2 k�

5 k�

1 k�

10 V
vo2

vo2.vo1

�

�R1

�

�
vs

Rs

R2

vo

�

�

Figure P5.41

1 V �

�

150 mV

�

�

6 V

�6 V

10 k�

47 k�

1 k�

220 k�

33 k�
�

�

6 V

�6 V
�

�

ia

5.42 The circuit inside the shaded area in Fig.P5.42 is a con-
stant current source for a limited range of values of

a) Find the value of for 

b) Find the maximum value for for which will
have the value in (a).

c) Assume that Explain the operation
of the circuit. You can assume that 
under all operating conditions.

d) Sketch versus for 

Figure P5.42

Section 5.7

5.43 Derive Eq. 5.60.

5.44 Repeat Assessment Problem 5.6, given that the
inverting amplifier is loaded with a resistor.

5.45 a) Find the Thévenin equivalent circuit with
respect to the output terminals a, b for the
inverting amplifier of Fig. P5.45. The dc signal
source has a value of 880 mV. The op amp has
an input resistance of an output
resistance of and an open-loop gain 
of 100,000.

b) What is the output resistance of the inverting
amplifier?

2 kÆ

500 kÆ,

500 Æ

20 V

�20 V

�

�

50 k�

4 k�

RLiL RLiLig
8 V

�

�

0 … RL … 16 kÆ.RLiL

ip L 0=in

16 kÆ.=RL

iLRL

RL = 4 kÆ.iL

RL.
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172 The Operational Amplifier

c) What is the resistance (in ohms) seen by the sig-
nal source when the load at the terminals a, b
is ?

Figure P5.45

5.46 Repeat Problem 5.45 assuming an ideal op amp.

5.47 Assume the input resistance of the op amp in
Fig. P5.47 is infinite and its output resistance is zero.

a) Find as a function of and the open-loop
gain A.

b) What is the value of if and ?

c) What is the value of if and ?

d) How large does A have to be so that is 99% of
its value in (c)?

Figure P5.47

5.48 The op amp in the noninverting amplifier circuit of
Fig. P5.48 has an input resistance of an out-
put resistance of and an open-loop gain of
50,000. Assume that the op amp is operating in its
linear region.

a) Calculate the voltage gain ( ).

b) Find the inverting and noninverting input volt-
ages and (in millivolts) if 

c) Calculate the difference ( ) in microvolts
when 

d) Find the current drain in picoamperes on the
signal source when 

e) Repeat (a)–(d) assuming an ideal op amp.

vg = 1 V.vg

vg = 1 V.
vp - vn

vg = 1 V.vpvn

vo >vg

8 kÆ,
560 kÆ,

2 k� 6 V

�6 V
vo

�

�

vg
�

�

�

�

10 k�

vo

A = qvg = 1 Vvo

A = 150vg = 1 Vvo

vgvo

15 V

�15 V
vo

�

�

vs
�

�

�

�
a

1.6 k�

24 k�

b

330 Æ
vs

Figure P5.48

Sections 5.1–5.7

5.49 Suppose the strain gages in the bridge in Fig. 5.21
have the value The power supplies
to the op amp are and the refer-
ence voltage, , is taken from the positive
power supply.

a) Calculate the value of so that when the strain
gage that is lengthening reaches its maximum
length, the output voltage is 5 V.

b) Suppose that we can accurately measure 
50 mV changes in the output voltage. What
change in strain gage resistance can be
detected in milliohms?

5.50 a) For the circuit shown in Fig. P5.50, show that if
the output voltage of the op amp is

approximately

b) Find if 
and 

c) Find the actual value of in (b).

Figure P5.50
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vo
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vo L
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¢R V R,

Rf

vref

; 15 V,
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5.51 a) If percent error is defined as

show that the percent error in the approxima-
tion of in Problem 5.50 is

b) Calculate the percent error in for Problem 5.50.

5.52 Assume the percent error in the approximation of
in the circuit in Fig. P5.50 is not to exceed 1%.

What is the largest percent change in R that can be
tolerated?

vo

vo

% error =

¢R

R
 

(R + Rf)
(R + 2Rf)

* 100.

vo

% error = Bapproximate value
true value

- 1R * 100,

5.53 Assume the resistor in the variable branch of the
bridge circuit in Fig. P5.50 is instead of

a) What is the expression for if ?

b) What is the expression for the percent error in
as a function of R, , and ?

c) Assume the resistance in the variable arm of
the bridge circuit in Fig. P5.50 is and the
values of R, , and are the same as in
Problem 5.50(b). What is the approximate value
of ?

d) What is the percent error in the approximation
of when the variable arm resistance is

?9810 Æ
vo

vo

vinRf

9810 Æ

¢RRfvo

¢R V Rvo

R + ¢R.
R - ¢RPRACTICAL
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We begin this chapter by introducing the last two ideal circuit
elements mentioned in Chapter 2, namely, inductors and capaci-
tors. Be assured that the circuit analysis techniques introduced in
Chapters 3 and 4 apply to circuits containing inductors and capac-
itors. Therefore, once you understand the terminal behavior of
these elements in terms of current and voltage, you can use
Kirchhoff’s laws to describe any interconnections with the other
basic elements. Like other components, inductors and capacitors
are easier to describe in terms of circuit variables rather than
electromagnetic field variables. However, before we focus on the
circuit descriptions, a brief review of the field concepts under-
lying these basic elements is in order.

An inductor is an electrical component that opposes any
change in electrical current. It is composed of a coil of wire
wound around a supporting core whose material may be mag-
netic or nonmagnetic. The behavior of inductors is based on phe-
nomena associated with magnetic fields. The source of the
magnetic field is charge in motion, or current. If the current is
varying with time, the magnetic field is varying with time. A time-
varying magnetic field induces a voltage in any conductor linked
by the field. The circuit parameter of inductance relates the
induced voltage to the current. We discuss this quantitative rela-
tionship in Section 6.1.

A capacitor is an electrical component that consists of two
conductors separated by an insulator or dielectric material. The
capacitor is the only device other than a battery that can store
electrical charge. The behavior of capacitors is based on phenom-
ena associated with electric fields. The source of the electric field
is separation of charge, or voltage. If the voltage is varying with
time, the electric field is varying with time.A time-varying electric
field produces a displacement current in the space occupied by
the field. The circuit parameter of capacitance relates the dis-
placement current to the voltage, where the displacement current
is equal to the conduction current at the terminals of the capaci-
tor. We discuss this quantitative relationship in Section 6.2.

C H A P T E R  C O N T E N T S

6.1 The Inductor p. 176

6.2 The Capacitor p. 182

6.3 Series-Parallel Combinations of Inductance
and Capacitance p. 187

6.4 Mutual Inductance p. 189

6.5 A Closer Look at Mutual Inductance p. 193

C H A P T E R  O B J E C T I V E S

1 Know and be able to use the equations for
voltage, current, power, and energy in an
inductor; understand how an inductor behaves
in the presence of constant current, and the
requirement that the current be continuous in
an inductor.

2 Know and be able to use the equations for
voltage, current, power, and energy in a
capacitor; understand how a capacitor behaves
in the presence of constant voltage, and the
requirement that the voltage be continuous in a
capacitor.

3 Be able to combine inductors with initial
conditions in series and in parallel to form a
single equivalent inductor with an initial
condition; be able to combine capacitors with
initial conditions in series and in parallel to
form a single equivalent capacitor with an
initial condition.

4 Understand the basic concept of mutual
inductance and be able to write mesh-current
equations for a circuit containing magnetically
coupled coils using the dot convention
correctly.

Inductance, Capacitance, 
and Mutual Inductance

C H A P T E R
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The Practical Perspective in Chapter 3 showed how a grid of
resistors is used to create a touch screen for a phone or com-
puter monitor. But resistive touch screens have some limita-
tions, the most important of which is that the screen can 
only process a single touch at any instant in time (see
Problem 3.75). For example, a resistive touch screen cannot
process the “pinch” gesture used by many devices to enlarge
or shrink the image on the screen.

Multi-touch screens use a different component within 
a grid below the screen – capacitors. As you are about to 

discover in this chapter, a capacitor is a circuit element whose
terminal characteristics are determined by electric fields.
When you touch a capacitive touch screen, you produce a
change in the value of a capacitor, causing a voltage change.
Once you have learned the basic behavior of capacitors and
have learned how they combine in series and in parallel, we
will present two possible designs for a multi-touch screen
using a grid of capacitors. These designs are presented in the
Practical Perspective example at the end of this chapter.

175

Practical Perspective
Capacitive Touch Screens
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6.1 The Inductor
Inductance is the circuit parameter used to describe an inductor. Inductance
is symbolized by the letter L, is measured in henrys (H), and is represented
graphically as a coiled wire—a reminder that inductance is a consequence
of a conductor linking a magnetic field. Figure 6.1(a) shows an inductor.
Assigning the reference direction of the current in the direction of the volt-
age drop across the terminals of the inductor, as shown in Fig. 6.1(b), yields

(6.1)

where is measured in volts, L in henrys, i in amperes, and t in seconds.
Equation 6.1 reflects the passive sign convention shown in Fig. 6.1(b); that
is, the current reference is in the direction of the voltage drop across the
inductor. If the current reference is in the direction of the voltage rise,
Eq. 6.1 is written with a minus sign.

Note from Eq. 6.1 that the voltage across the terminals of an inductor
is proportional to the time rate of change of the current in the inductor.
We can make two important observations here. First, if the current is con-
stant, the voltage across the ideal inductor is zero. Thus the inductor
behaves as a short circuit in the presence of a constant, or dc, current.
Second, current cannot change instantaneously in an inductor; that is, the
current cannot change by a finite amount in zero time. Equation 6.1 tells
us that this change would require an infinite voltage, and infinite voltages
are not possible. For example, when someone opens the switch on an
inductive circuit in an actual system, the current initially continues to flow
in the air across the switch, a phenomenon called arcing. The arc across
the switch prevents the current from dropping to zero instantaneously.
Switching inductive circuits is an important engineering problem, because
arcing and voltage surges must be controlled to prevent equipment dam-
age. The first step to understanding the nature of this problem is to master
the introductory material presented in this and the following two chapters.
Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit.

v

v = L  

di

dt
 ,The inductor equation �v - i

(a)

L

(b)

L

� �v

i

Figure 6.1 � (a) The graphic symbol for an inductor
with an inductance of henrys. (b) Assigning reference
voltage and current to the inductor, following the pas-
sive sign convention.

L

Section 6.3 describes techniques used to simplify circuits with series or
parallel combinations of capacitors or inductors.

Energy can be stored in both magnetic and electric fields. Hence you
should not be too surprised to learn that inductors and capacitors are
capable of storing energy. For example, energy can be stored in an induc-
tor and then released to fire a spark plug. Energy can be stored in a capac-
itor and then released to fire a flashbulb. In ideal inductors and capacitors,
only as much energy can be extracted as has been stored. Because induc-
tors and capacitors cannot generate energy, they are classified as passive
elements.

In Sections 6.4 and 6.5 we consider the situation in which two circuits
are linked by a magnetic field and thus are said to be magnetically cou-
pled. In this case, the voltage induced in the second circuit can be related
to the time-varying current in the first circuit by a parameter known as
mutual inductance. The practical significance of magnetic coupling
unfolds as we study the relationships between current, voltage, power, and
several new parameters specific to mutual inductance. We introduce these
relationships here and then describe their utility in a device called a trans-
former in Chapters 9 and 10.
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Example 6.1 Determining the Voltage, Given the Current, at the Terminals of an Inductor

The independent current source in the circuit
shown in Fig. 6.2 generates zero current for 
and a pulse , for 

Figure 6.2 � The circuit for Example 6.1.

a) Sketch the current waveform.

b) At what instant of time is the current maximum?

c) Express the voltage across the terminals of the
100 mH inductor as a function of time.

d) Sketch the voltage waveform.

e) Are the voltage and the current at a maximum at
the same time?

f) At what instant of time does the voltage change
polarity?

g) Is there ever an instantaneous change in voltage
across the inductor? If so, at what time?

Solution

a) Figure 6.3 shows the current waveform.

i

�

�

v 100 mH

i � 0, t � 0

i � 10te�5tA, t � 0

t 7 0.10te- 5tA
t 6 0

c)

d) Figure 6.4 shows the voltage waveform.

e) No; the voltage is proportional to , not i.

f) At 0.2 s, which corresponds to the moment when
is passing through zero and changing sign.

g) Yes, at . Note that the voltage can change
instantaneously across the terminals of an
inductor.

Figure 6.3 � The current waveform for Example 6.1.

Figure 6.4 � The voltage waveform for Example 6.1.

1.0

v (V)

0.20 0.6
t (s)

0.736

i (A)

0.20 t (s)

t = 0

di>dt

di>dt

t 6 0.v = 0,t 7 0;(1-5t) V,
v = Ldi>dt = (0.1)10e- 5t(1 - 5t) = e- 5t

Current in an Inductor in Terms of the Voltage
Across the Inductor
Equation 6.1 expresses the voltage across the terminals of an inductor as a
function of the current in the inductor. Also desirable is the ability to
express the current as a function of the voltage. To find i as a function of ,
we start by multiplying both sides of Eq. 6.1 by a differential time dt:

(6.2)

Multiplying the rate at which i varies with t by a differential change in time
generates a differential change in i, so we write Eq. 6.2 as

(6.3)v dt = L di.

v dt = L ¢di

dt
≤  dt.

v

b)
when (See Fig. 6.3.)t =

1
5 s.di>dt = 0(1-  5t) A>s;

di>dt = 10(-5te- 5t
+ e- 5t) = 10e-5t
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Example 6.2 Determining the Current, Given the Voltage, at the Terminals of an Inductor

The voltage pulse applied to the 100 mH inductor
shown in Fig. 6.5 is 0 for and is given by the
expression

for Also assume for 

a) Sketch the voltage as a function of time.

b) Find the inductor current as a function of time.

c) Sketch the current as a function of time.

Solution

a) The voltage as a function of time is shown in
Fig. 6.6.

t … 0.i = 0t 7 0.

v(t) = 20te-10t V

t 6 0
b) The current in the inductor is 0 at .

Therefore, the current for is

c) Figure 6.7 shows the current as a function of time.

Figure 6.5 � The circuit for Example 6.2.

v 100 mH

v � 0, t � 0

v � 20te�10t V, t � 0

i
�

�

 = 2(1 - 10te-10t
- e-10t) A,  t 7 0.

 = 200B -e-10t

100
(10t + 1)R 2 t

0 
,

 i =

1
0.1L

t

0
20te-10tdt + 0

t 7 0
t = 0

The inductor equation �i - v

We next integrate both sides of Eq. 6.3. For convenience, we interchange
the two sides of the equation and write

(6.4)

Note that we use x and as the variables of integration, whereas i and t
become limits on the integrals. Then, from Eq. 6.4,

(6.5)

where is the current corresponding to t, and is the value of the
inductor current when we initiate the integration, namely, In many
practical applications, is zero and Eq. 6.5 becomes

(6.6)

Equations 6.1 and 6.5 both give the relationship between the voltage
and current at the terminals of an inductor. Equation 6.1 expresses the
voltage as a function of current, whereas Eq. 6.5 expresses the current as a
function of voltage. In both equations the reference direction for the cur-
rent is in the direction of the voltage drop across the terminals. Note that

carries its own algebraic sign. If the initial current is in the same direc-
tion as the reference direction for i, it is a positive quantity. If the initial
current is in the opposite direction, it is a negative quantity. Example 6.2
illustrates the application of Eq. 6.5.

i(t0)

i(t) =

1
LL

t

0
v dt + i(0).

t0

t0.
i(t0)i(t)

i(t) =

1
LL

t

t0

v dt + i(t0),

t

L
L

i(t)

i(t0)
dx =

L

t

t0

v dt.
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Note in Example 6.2 that i approaches a constant value of 2 A as t
increases. We say more about this result after discussing the energy stored
in an inductor.

Power and Energy in the Inductor
The power and energy relationships for an inductor can be derived
directly from the current and voltage relationships. If the current refer-
ence is in the direction of the voltage drop across the terminals of the
inductor, the power is

(6.7)

Remember that power is in watts, voltage is in volts, and current is in
amperes. If we express the inductor voltage as a function of the inductor
current, Eq. 6.7 becomes

(6.8)

We can also express the current in terms of the voltage:

(6.9)

Equation 6.8 is useful in expressing the energy stored in the inductor.
Power is the time rate of expending energy, so

(6.10)

Multiplying both sides of Eq. 6.10 by a differential time gives the differen-
tial relationship

(6.11)

Both sides of Eq. 6.11 are integrated with the understanding that the ref-
erence for zero energy corresponds to zero current in the inductor. Thus

(6.12)w =

1
2

Li2.

L

w

0
 dx = L

L

i

0
y dy,

dw = Li di.

p =

dw

dt
= Li 

di

dt
 .

p = v B 1
LL

t

t0

v dt + i(t0)R .

p = Li 
di

dt
 .

p = vi.

Figure 6.6 � The voltage waveform for Example 6.2.
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Figure 6.7 � The current waveform for Example 6.2.
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� Power in an inductor

� Energy in an inductor
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Example 6.3 Determining the Current, Voltage, Power, and Energy for an Inductor

a) For Example 6.1, plot i, , p, and versus time.
Line up the plots vertically to allow easy assess-
ment of each variable’s behavior.

b) In what time interval is energy being stored in
the inductor?

c) In what time interval is energy being extracted
from the inductor?

d) What is the maximum energy stored in the
inductor?

e) Evaluate the integrals

,

and comment on their significance.

f) Repeat (a)–(c) for Example 6.2.

g) In Example 6.2, why is there a sustained current
in the inductor as the voltage approaches zero?

Solution

a) The plots of i, , p, and follow directly from the
expressions for i and obtained in Example 6.1
and are shown in Fig. 6.8. In particular,
and 

b) An increasing energy curve indicates that energy
is being stored.Thus energy is being stored in the
time interval 0 to 0.2 s. Note that this corre-
sponds to the interval when 

c) A decreasing energy curve indicates that energy
is being extracted.Thus energy is being extracted
in the time interval . Note that this cor-
responds to the interval when .

d) From Eq. 6.12 we see that energy is at a maximum
when current is at a maximum; glancing at the
graphs confirms this. From Example 6.1, maximum
current Therefore, .wmax = 27.07 mJ=  0.736 A.

p 6 0
0.2 s to q

p 7 0.

w = (1
2)Li2.

p = vi,
v
wv

L

0.2

0
p dt  and  

L

q

0.2
p dt

wv e) From Example 6.1,

Therefore,

Figure 6.8 � The variables , , , and versus for
Example 6.1.

twpvi

0.5

�0.5

1.0

0 0.2 1.00.80.60.4
t (s)

v (V)

0

400

800

0.2 1.00.80.60.4
t (s)

i (mA)

100

200

0 0.2 1.00.80.60.4
t (s)

p (mW)

15

30

w (mJ)

0 0.2 1.00.80.60.4
t (s)

p = vi = 10te-10t
- 50t2e-10t W.

i = 10te-5t A  and  v = e-5t(1 - 5t) V.

As before, we use different symbols of integration to avoid confusion
with the limits placed on the integrals. In Eq. 6.12, the energy is in joules,
inductance is in henrys, and current is in amperes. To illustrate the appli-
cation of Eqs. 6.7 and 6.12, we return to Examples 6.1 and 6.2 by means of
Example 6.3.
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Based on the definition of p, the area under
the plot of p versus t represents the energy
expended over the interval of integration.
Hence the integration of the power between
0 and 0.2 s represents the energy stored in the
inductor during this time interval. The integral
of p over the interval is the energy
extracted. Note that in this time interval, all
the energy originally stored is removed; that is,
after the current peak has passed, no energy is
stored in the inductor.

f) The plots of , i, p, and follow directly from
the expressions for and i given in Example 6.2
and are shown in Fig. 6.9. Note that in this case
the power is always positive, and hence energy
is always being stored during the voltage pulse.

v
wv

0.2 s -  q

g) The application of the voltage pulse stores
energy in the inductor. Because the inductor is
ideal, this energy cannot dissipate after the volt-
age subsides to zero. Therefore, a sustained cur-
rent circulates in the circuit. A lossless inductor
obviously is an ideal circuit element. Practical
inductors require a resistor in the circuit model.
(More about this later.)

Figure 6.9 � The variables , , , and versus for
Example 6.2.
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Thus

 = -0.2e-2
= -27.07 mJ.

 - 50b t2e-10t

-10
+

2
10
B e-10t

100
(-10t - 1)R rq

0.2

 
L

q

0.2
p dt = 10B e-10t

100
(-10t - 1)Rq

0.2

 = 0.2e-2
= 27.07 mJ,

 - 50b t2e-10t

-10
+

2
10
B e-10t

100
(-10t - 1)R r  0.2

0

 
L

0.2

0
p dt = 10B e-10t

100
(-10t - 1)R  0.2

 0
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Objective 1—Know and be able to use the equations for voltage, current, power, and energy in an inductor

6.1 The current source in the circuit shown gener-
ates the current pulse

Find (a) (b) the instant of time, greater
than zero, when the voltage passes through
zero; (c) the expression for the power delivered
to the inductor; (d) the instant when the power
delivered to the inductor is maximum; (e) the
maximum power; (f) the instant of time when
the stored energy is maximum; and (g) the max-
imum energy stored in the inductor.

v
v(0);

ig(t) = 8e-300t
- 8e-1200t A,  t Ú 0.

ig(t) = 0,            t 6 0,

Answer: (a) 28.8 V;

(b) 1.54 ms;

(c)

(d)

(e) 32.72 W;

(f) 1.54 ms;

(g) 28.57 mJ.

411.05 ms;

t Ú 0;-  307.2e-2400t W,
-76.8e-600t

+ 384e-1500t

�

�

v 4 mHig

NOTE: Also try Chapter Problems 6.2 and 6.8.

A S S E S S M E N T  P R O B L E M

6.2 The Capacitor
The circuit parameter of capacitance is represented by the letter C, is
measured in farads (F), and is symbolized graphically by two short paral-
lel conductive plates, as shown in Fig. 6.10(a). Because the farad is an
extremely large quantity of capacitance, practical capacitor values usually
lie in the picofarad (pF) to microfarad range.

The graphic symbol for a capacitor is a reminder that capacitance
occurs whenever electrical conductors are separated by a dielectric, or
insulating, material. This condition implies that electric charge is not
transported through the capacitor. Although applying a voltage to the
terminals of the capacitor cannot move a charge through the dielectric, it
can displace a charge within the dielectric. As the voltage varies with
time, the displacement of charge also varies with time, causing what is
known as the displacement current.

At the terminals, the displacement current is indistinguishable from a
conduction current. The current is proportional to the rate at which the
voltage across the capacitor varies with time, or, mathematically,

(6.13)

where i is measured in amperes, C in farads, in volts, and t in seconds.
Equation 6.13 reflects the passive sign convention shown in Fig. 6.10(b);

that is, the current reference is in the direction of the voltage drop across the
capacitor. If the current reference is in the direction of the voltage rise,
Eq. 6.13 is written with a minus sign.

v

i = C 
dv

dt
 ,

(mF)

(b)

C

� �v

i

(a)

C

(b)

C

� �v

i

(a)

C

Figure 6.10 � (a) The circuit symbol for a capacitor.
(b) Assigning reference voltage and current to the
capacitor, following the passive sign convention.

Capacitor equation �i - v
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� Capacitor power equation

Two important observations follow from Eq. 6.13. First, voltage cannot
change instantaneously across the terminals of a capacitor. Equation 6.13
indicates that such a change would produce infinite current, a physical
impossibility. Second, if the voltage across the terminals is constant, the
capacitor current is zero.The reason is that a conduction current cannot be
established in the dielectric material of the capacitor. Only a time-varying
voltage can produce a displacement current.Thus a capacitor behaves as an
open circuit in the presence of a constant voltage.

Equation 6.13 gives the capacitor current as a function of the capaci-
tor voltage. Expressing the voltage as a function of the current is also use-
ful. To do so, we multiply both sides of Eq. 6.13 by a differential time dt
and then integrate the resulting differentials:

Carrying out the integration of the left-hand side of the second equa-
tion gives

(6.14)

In many practical applications of Eq. 6.14, the initial time is zero; that is,
Thus Eq. 6.14 becomes

(6.15)

We can easily derive the power and energy relationships for the capacitor.
From the definition of power,

(6.16)

or

(6.17)p = i B 1
CL

t

t0

i dt + v(t0)R .

p = vi = Cv
dv

dt
 ,

v(t) =

1
CL

t

0
i dt + v(0).

t0 = 0.

v(t) =

1
CL

t

t0

i dt + v(t0).

i dt = C dv  or  
L

v(t)

v(t0)
dx =

1
CL

t

t0

i dt.

� Capacitor equationv - i
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Capacitor energy equation �

Example 6.4 Determining Current, Voltage, Power, and Energy for a Capacitor

The voltage pulse described by the following equa-
tions is impressed across the terminals of a 0.5 
capacitor:

a) Derive the expressions for the capacitor current,
power, and energy.

b) Sketch the voltage, current, power, and energy as
functions of time. Line up the plots vertically.

c) Specify the interval of time when energy is being
stored in the capacitor.

d) Specify the interval of time when energy is being
delivered by the capacitor.

e) Evaluate the integrals

and comment on their significance.

L

1

0
 p dt  and  

L

q

1
 p dt 

v(t) = c
0, t … 0 s;
4t V, 0 s … t … 1 s;
4e-(t -1) V, t Ú 1 s.

mF
Solution

a) From Eq. 6.13,

The expression for the power is derived from
Eq. 6.16:

The energy expression follows directly from
Eq. 6.18:

w = c
0, t … 0 s;
1
2(0.5)16t2

= 4t2mJ, 0 s … t … 1 s;
1
2(0.5)16e-2(t-1)

= 4e-2(t- 1) mJ, t Ú 1 s.

p = c
0, t … 0 s;
(4t)(2) = 8t mW, 0 s … t 6 1 s;
(4e-(t-1))(-2e-(t-1)) = -8e-2(t-1) mW, t 7 1 s.

i = c
(0.5 * 10-6)(0) = 0, t 6 0s;
(0.5 * 10-6)(4) = 2 mA, 0 s 6 t 6 1 s;
(0.5 * 10-6)(-4e-(t-1)) = -2e-(t-1) mA, t 7 1 s.

Combining the definition of energy with Eq. 6.16 yields

from which

or

(6.18)

In the derivation of Eq. 6.18, the reference for zero energy corresponds to
zero voltage.

Examples 6.4 and 6.5 illustrate the application of the current, voltage,
power, and energy relationships for a capacitor.

w =

1
2

 Cv2.

 
L

w

0
dx = C

L

v

0
y dy,

 dw = Cv dv,
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b) Figure 6.11 shows the voltage, current, power,
and energy as functions of time.

c) Energy is being stored in the capacitor whenever
the power is positive. Hence energy is being
stored in the interval .

d) Energy is being delivered by the capacitor when-
ever the power is negative. Thus energy is being
delivered for all t greater than 1 s.

e) The integral of p dt is the energy associated with
the time interval corresponding to the limits on
the integral. Thus the first integral represents the
energy stored in the capacitor between 0 and 1 s,
whereas the second integral represents the
energy returned, or delivered, by the capacitor in
the interval :1 s to q

0-1 s

 
L

q

1
p dt =

L

q

1
(-8e-2(t -1))dt = (-8)

e-2(t-1)

-2
` q
1

= -4 mJ.

 
L

1

0
p dt =

L

1

0
8t dt = 4t2 ` 1

0
= 4 mJ,

Figure 6.11 � The variables , , , and versus for
Example 6.4.
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The voltage applied to the capacitor returns to
zero as time increases without limit, so the energy
returned by this ideal capacitor must equal the
energy stored.

Example 6.5 Finding , , and Induced by a Triangular Current Pulse for a Capacitorwpv

An uncharged 0.2 capacitor is driven by a trian-
gular current pulse.The current pulse is described by

a) Derive the expressions for the capacitor voltage,
power, and energy for each of the four time inter-
vals needed to describe the current.

b) Plot i, , p, and versus t.Align the plots as spec-
ified in the previous examples.

c) Why does a voltage remain on the capacitor after
the current returns to zero?

wv

i(t) = d
0, t … 0;
5000t A, 0 … t … 20 ms;
0.2 - 5000t A, 20 … t … 40 ms;
0,  t Ú 40 ms.

mF Solution

a) For , , p, and all are zero.
For 

 v =  5 *  106

L

t

0
 (5000t) dt +  0 = 12.5 *  109t2 V,

0 …  t …  20 ms,
wvt …  0

For 

v = 5 * 106

L

t

20ms
(0.2 - 5000t) dt + 5.

20 ms … t … 40 ms,

 w =

1
2

Cv2
= 15.625 * 1012t4 J.

 p =  vi = 62.5 *  1012t3 
 W,
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Figure 6.12 � The variables , , , and versus for
Example 6.5.

twpvi
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t (ms)
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10

5

0

v (V)
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100
200
300
400
500

p (mW)

t (ms)

2
4
6
8

10

w (mJ)

100 20 30 40 50 60
t (ms)

-2t + 10-5) J.

 = (15.625 * 1012t4
- 2.5 * 109t3

+ 0.125 * 106t2

 w =

1
2

Cv2,

 = (62.5 * 1012t3
- 7.5 * 109t2

+ 2.5 * 105t - 2) W,

 p = vi,

 v = (106t - 12.5 * 109t2
- 10) V,

(Note that 5 V is the voltage on the capacitor at
the end of the preceding interval.) Then,

b) The excitation current and the resulting voltage,
power, and energy are plotted in Fig. 6.12.

c) Note that the power is always positive for the
duration of the current pulse, which means that
energy is continuously being stored in the capac-
itor. When the current returns to zero, the stored
energy is trapped because the ideal capacitor
offers no means for dissipating energy. Thus a
voltage remains on the capacitor after i returns
to zero.

 w =

1
2

Cv2
= 10 mJ.

 p = vi = 0,

 v = 10 V,

For t Ú 40 ms,

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor

6.2 The voltage at the terminals of the 0.6 
capacitor shown in the figure is 0 for and

for Find (a) 
(b) the power delivered to the capacitor at

and (c) the energy stored in the
capacitor at 

NOTE: Also try Chapter Problems 6.16 and 6.21.

0.6 mF

v

i

� �

t = p>80 ms.
t = p>80 ms;

i(0);t Ú 0.40e-15,000t sin 30,000t V
t 6 0
mF Answer: (a) 0.72 A;

(b)

(c)

6.3 The current in the capacitor of Assessment
Problem 6.2 is 0 for and 
for Find (a) (b) the maximum power
delivered to the capacitor at any one instant of
time; and (c) the maximum energy stored in the
capacitor at any one instant of time.

Answer: (a) 

(b) 150 W; (c) 3 mJ.

100 sin 50,000 t V, t Ú 0;

v(t);t Ú 0.
3 cos 50,000t At 6 0

126.13 mJ.

-649.2 mW;

A S S E S S M E N T  P R O B L E M S
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L2L1
v1�

� �

� v2� �
L3
v3� �

v

i

6.3 Series-Parallel Combinations 
of Inductance and Capacitance

Just as series-parallel combinations of resistors can be reduced to a single
equivalent resistor, series-parallel combinations of inductors or capacitors
can be reduced to a single inductor or capacitor. Figure 6.13 shows induc-
tors in series. Here, the inductors are forced to carry the same current; thus
we define only one current for the series combination. The voltage drops
across the individual inductors are

The voltage across the series connection is

from which it should be apparent that the equivalent inductance of series-
connected inductors is the sum of the individual inductances. For n induc-
tors in series,

(6.19)

If the original inductors carry an initial current of the equivalent
inductor carries the same initial current. Figure 6.14 shows the equivalent
circuit for series inductors carrying an initial current.

Inductors in parallel have the same terminal voltage. In the equivalent
circuit, the current in each inductor is a function of the terminal voltage
and the initial current in the inductor. For the three inductors in parallel
shown in Fig. 6.15, the currents for the individual inductors are

(6.20)

The current at the terminals of the three parallel inductors is the sum of
the inductor currents:

(6.21)

Substituting Eq. 6.20 into Eq. 6.21 yields

(6.22)i = ¢ 1
L1

+

1
L2

+

1
L3
≤
L

t

t0

v dt + i1(t0) + i2(t0) + i3(t0).

i = i1 + i2 + i3.

 i3 =

1
L3L

t

t0

v dt + i3(t0).

 i2 =

1
L2L

t

t0

v dt + i2(t0),

 i1 =

1
L1L

t

t0

v dt + i1(t0),

i(t0) ,

Leq = L1 + L2 + L3 +
Á

+ Ln.

v = v1 + v2 + v3 = (L1 + L2 + L3) 
di

dt
 ,

v1 = L1 
di

dt
 ,  v2 = L2 

di

dt
 ,  and  v3 = L3 

di

dt
 .

� Combining inductors in series

L2L1

�

�

�

�

L3

v

i(t0)

i

 Leq � L1 � L2 � L3

v

i(t0)

i

v L1

i1
L2

i2
i1(t0) i2(t0) L3

i3
i3(t0)

i

�

�

Figure 6.15 � Three inductors in parallel.

Figure 6.14 � An equivalent circuit for inductors in
series carrying an initial current i(t0).

Figure 6.13 � Inductors in series.
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Now we can interpret Eq. 6.22 in terms of a single inductor; that is,

(6.23)

Comparing Eq. 6.23 with (6.22) yields

(6.24)

(6.25)

Figure 6.16 shows the equivalent circuit for the three parallel inductors in
Fig. 6.15.

The results expressed in Eqs. 6.24 and 6.25 can be extended to
n inductors in parallel:

(6.26)

(6.27)

Capacitors connected in series can be reduced to a single equivalent
capacitor. The reciprocal of the equivalent capacitance is equal to the sum
of the reciprocals of the individual capacitances. If each capacitor carries
its own initial voltage, the initial voltage on the equivalent capacitor is the
algebraic sum of the initial voltages on the individual capacitors. Figure 6.17
and the following equations summarize these observations:

(6.28)

(6.29)

We leave the derivation of the equivalent circuit for series-connected
capacitors as an exercise. (See Problem 6.32.)

The equivalent capacitance of capacitors connected in parallel is sim-
ply the sum of the capacitances of the individual capacitors, as Fig. 6.18
and the following equation show:

(6.30)

Capacitors connected in parallel must carry the same voltage.Therefore, if
there is an initial voltage across the original parallel capacitors, this same
initial voltage appears across the equivalent capacitance The deriva-
tion of the equivalent circuit for parallel capacitors is left as an exercise.
(See Problem 6.33.)

We say more about series-parallel equivalent circuits of inductors and
capacitors in Chapter 7, where we interpret results based on their use.

Ceq.

Ceq = C1 + C2 +
Á

+ Cn.

 v(t0) = v1(t0) + v2(t0) +
Á

+ vn(t0).

 
1

Ceq
=

1
C1

+

1
C2

+
Á

+

1
Cn

 ,

 i(t0) = i1(t0) + i2(t0) +
Á

+ in(t0).

 
1

Leq
=

1
L1

+

1
L2

+
Á

+

1
Ln

 i(t0) = i1(t0) + i2(t0) + i3(t0).

 
1

Leq
=

1
L1

+

1
L2

+

1
L3

i =

1
LeqL

t

t0

v dt + i(t0).

v i(t0)

i

�

�

Leq

i(t0) � i1(t0) � i2(t0) � i3(t0)

1
Leq

1
L1

� 1
L2

� 1
L3

�

Figure 6.16 � An equivalent circuit for three inductors
in parallel.

Combining inductors in parallel �

Equivalent inductance initial current �

Equivalent capacitance initial voltage �

Combining capacitors in series �

Combining capacitors in parallel �
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Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equivalent inductor

6.4 The initial values of and in the circuit
shown are and respectively. The
voltage at the terminals of the parallel induc-
tors for is 

a) If the parallel inductors are replaced by a
single inductor, what is its inductance?

b) What is the initial current and its reference
direction in the equivalent inductor?

c) Use the equivalent inductor to find 

d) Find and Verify that the solutions
for and satisfy Kirchhoff’s
current law.

�

�

60 mH 240 mHv i1(t) i2(t)

i(t)

i(t)i2(t),i1(t),
i2(t).i1(t)

i(t).

-30e-5t mV.t Ú 0

-5 A,+  3 A
i2i1 Answer: (a) 48 mH;

(b) 2 A, up;

(c)

(d)

6.5 The current at the terminals of the two capaci-
tors shown is for The initial
values of and are and 
respectively. Calculate the total energy trapped
in the capacitors as (Hint: Don’t com-
bine the capacitors in series—find the energy
trapped in each, and then add.)

Answer: 20 mJ.

v1

v2

i

�

�

� �

2 mF
8 mF

t : q .

-5 V,-10 Vv2v1

t Ú 0.240e-10tmA

i2(t) = 0.025e-5t
- 5.025 A, t Ú 0.

i1(t) = 0.1e-5t
+ 2.9 A, t Ú 0,

0.125e-5t
- 2.125 A, t Ú 0;

NOTE: Also try Chapter Problems 6.22, 6.24, 6.27, and 6.31.

A S S E S S M E N T  P R O B L E M S

(b)

i

v

�

�

Ceq

Ceq � C1 � C2 � ... � Cn

i

v

�

�

C1 C2 Cn

...

...

(a)

Figure 6.18 � An equivalent circuit for capacitors connected in
parallel. (a) Capacitors in parallel. (b) The equivalent circuit.

i

v

�

�

v (t0)
�

�
Ceq

v(t0) � v1(t0) � v2(t0) � ... � vn(t0)

1
Ceq

1
C1

� 1
C2

� 1
Cn

� ... �

(b)

�

v

v1 (t0)

i
�

�

�

C1

v2 (t0)
�

�
C2

vn (t0)
�

�
Cn

. . .

(a)

Figure 6.17 � An equivalent circuit for capacitors connected in
series. (a) The series capacitors. (b) The equivalent circuit.

6.4 Mutual Inductance
The magnetic field we considered in our study of inductors in Section 6.1
was restricted to a single circuit. We said that inductance is the parameter
that relates a voltage to a time-varying current in the same circuit; thus,
inductance is more precisely referred to as self-inductance.

We now consider the situation in which two circuits are linked by a
magnetic field. In this case, the voltage induced in the second circuit can
be related to the time-varying current in the first circuit by a parameter
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�

�
L1vg

R1

L2 R2

M

Figure 6.19 � Two magnetically coupled coils.

�

�
vg

R1

R2L1 L2i1 i2

M

Figure 6.20 � Coil currents and used to describe
the circuit shown in Fig. 6.19.

i2i1

known as mutual inductance. The circuit shown in Fig. 6.19 represents two
magnetically coupled coils. The self-inductances of the two coils are
labeled and and the mutual inductance is labeled M. The double-
headed arrow adjacent to M indicates the pair of coils with this value of
mutual inductance.This notation is needed particularly in circuits contain-
ing more than one pair of magnetically coupled coils.

The easiest way to analyze circuits containing mutual inductance is
to use mesh currents. The problem is to write the circuit equations that
describe the circuit in terms of the coil currents. First, choose the refer-
ence direction for each coil current. Figure 6.20 shows arbitrarily
selected reference currents. After choosing the reference directions for

and sum the voltages around each closed path. Because of the
mutual inductance M, there will be two voltages across each coil,
namely, a self-induced voltage and a mutually induced voltage. The self-
induced voltage is the product of the self-inductance of the coil and the
first derivative of the current in that coil. The mutually induced voltage
is the product of the mutual inductance of the coils and the first deriva-
tive of the current in the other coil. Consider the coil on the left in 
Fig. 6.20 whose self-inductance has the value The self-induced 
voltage across this coil is and the mutually induced voltage
across this coil is . But what about the polarities of these 
two voltages?

Using the passive sign convention, the self-induced voltage is a voltage
drop in the direction of the current producing the voltage. But the polarity
of the mutually induced voltage depends on the way the coils are wound in
relation to the reference direction of coil currents. In general, showing the
details of mutually coupled windings is very cumbersome. Instead, we keep
track of the polarities by a method known as the dot convention, in which a
dot is placed on one terminal of each winding, as shown in Fig. 6.21. These
dots carry the sign information and allow us to draw the coils schematically
rather than showing how they wrap around a core structure.

The rule for using the dot convention to determine the polarity of
mutually induced voltage can be summarized as follows:

When the reference direction for a current enters the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is positive at its dotted terminal.

Or, stated alternatively,

When the reference direction for a current leaves the dotted termi-
nal of a coil, the reference polarity of the voltage that it induces in
the other coil is negative at its dotted terminal.

For the most part, dot markings will be provided for you in the circuit
diagrams in this text. The important skill is to be able to write the appro-
priate circuit equations given your understanding of mutual inductance
and the dot convention. Figuring out where to place the polarity dots if
they are not given may be possible by examining the physical configura-
tion of an actual circuit or by testing it in the laboratory. We will discuss
these procedures after we discuss the use of dot markings.

In Fig. 6.21, the dot convention rule indicates that the reference polar-
ity for the voltage induced in coil 1 by the current is negative at the dot-
ted terminal of coil 1. This voltage is a voltage rise with respect
to The voltage induced in coil 2 by the current is and its ref-
erence polarity is positive at the dotted terminal of coil 2. This voltage is a
voltage rise in the direction of Figure 6.22 shows the self- and mutually
induced voltages across coils 1 and 2 along with their polarity marks.

i2.

Mdi1>dt,i1i1.
(Mdi2>dt)

i2

M(di2>dt)
L1(di1>dt)

L1.

i2,i1

L2,L1

�

�
vg

R1

R2L1 L2 i2i1

M

Figure 6.21 � The circuit of Fig. 6.20 with dots added
to the coils indicating the polarity of the mutually
induced voltages.

Dot convention for mutually coupled coils �

Dot convention for mutually coupled coils
(alternate) �
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Now let’s look at the sum of the voltages around each closed loop. In
Eqs. 6.31 and 6.32, voltage rises in the reference direction of a current
are negative:

(6.31)

(6.32)

The Procedure for Determining Dot Markings
We shift now to two methods of determining dot markings. The first
assumes that we know the physical arrangement of the two coils and the
mode of each winding in a magnetically coupled circuit. The following six
steps, applied here to Fig. 6.23, determine a set of dot markings:

a) Arbitrarily select one terminal—say, the D terminal—of one coil and
mark it with a dot.

b) Assign a current into the dotted terminal and label it 

c) Use the right-hand rule1 to determine the direction of the magnetic
field established by inside the coupled coils and label this field .

d) Arbitrarily pick one terminal of the second coil—say, terminal A—and
assign a current into this terminal, showing the current as 

e) Use the right-hand rule to determine the direction of the flux estab-
lished by inside the coupled coils and label this flux 

f) Compare the directions of the two fluxes and If the fluxes
have the same reference direction, place a dot on the terminal of the
second coil where the test current enters. (In Fig. 6.23, the fluxes

and have the same reference direction, and therefore a dot
goes on terminal A.) If the fluxes have different reference direc-
tions, place a dot on the terminal of the second coil where the test
current leaves.

The relative polarities of magnetically coupled coils can also be deter-
mined experimentally.This capability is important because in some situations,
determining how the coils are wound on the core is impossible. One experi-
mental method is to connect a dc voltage source, a resistor, a switch, and a dc
voltmeter to the pair of coils, as shown in Fig. 6.24. The shaded box covering
the coils implies that physical inspection of the coils is not possible.The resis-
tor R limits the magnitude of the current supplied by the dc voltage source.

The coil terminal connected to the positive terminal of the dc source
via the switch and limiting resistor receives a polarity mark, as shown in
Fig. 6.24.When the switch is closed, the voltmeter deflection is observed. If
the momentary deflection is upscale, the coil terminal connected to the
positive terminal of the voltmeter receives the polarity mark. If the

fAfD

(iA)

fA.fD

fA.iA

iA.

fDiD

iD.

 i2R2 + L2 

di2

dt
- M 

di1

dt
= 0.

 -vg + i1R1 + L1 

di1

dt
- M 

di2

dt
= 0,

�

�
vg

L1

R1

M
di2
dt
�

�

di1
dt

L1

�

�

i1

L2
R2M

di1
dt
�

�

di2
dt

L2

�

�

i2
M

Figure 6.22 � The self- and mutually induced voltages appearing
across the coils shown in Fig. 6.21.

(Step 5)

(Step 4)

(Step 2)

(Step 3)

A

B

C

D

Arbitrarily
dotted
terminal
(Step 1)

iD

iA

fD

fA

Figure 6.23 � A set of coils showing a method for
determining a set of dot markings.

�

�

R

Switch

dc
voltmeter

VBB

�

�

Figure 6.24 � An experimental setup for determining
polarity marks.

1 See discussion of Faraday’s law on page 193.
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deflection is downscale, the coil terminal connected to the negative termi-
nal of the voltmeter receives the polarity mark.

Example 6.6 shows how to use the dot markings to formulate a set of
circuit equations in a circuit containing magnetically coupled coils.

Example 6.6 Finding Mesh-Current Equations for a Circuit with Magnetically Coupled Coils

a) Write a set of mesh-current equations that
describe the circuit in Fig. 6.25 in terms of the
currents and 

b) Verify that if there is no energy stored in the cir-
cuit at and if the solu-
tions for and are

Figure 6.25 � The circuit for Example 6.6.

Solution

a) Summing the voltages around the mesh yieldsi1

4 H

5 � 20 �

16 H

8 H

i1

i2igig 60 �

 i2 = 1 - 52e-5t
+ 51e-4t A.

 i1 = 4 + 64e-5t
- 68e-4t A,

i2i1

ig = 16 - 16e-5t A,t = 0

i2.i1

4 

di1

dt
+ 8 

d

dt
(ig - i2) + 20(i1 - i2) + 5(i1 - ig) = 0.

b) To check the validity of and we begin by
testing the initial and final values of and We
know by hypothesis that From
the given solutions we have

Now we observe that as t approaches infinity the
source current approaches a constant value
of 16 A, and therefore the magnetically coupled
coils behave as short circuits. Hence at 
the circuit reduces to that shown in Fig. 6.26.
From Fig. 6.26 we see that at the three
resistors are in parallel across the 16 A source.
The equivalent resistance is and thus the
voltage across the 16 A current source is 60 V. It
follows that

These values agree with the final values pre-
dicted by the solutions for and 

Finally we check the solutions by seeing if
they satisfy the differential equations derived in
(a). We will leave this final check to the reader
via Problem 6.37.

Figure 6.26 � The circuit of Example 6.6 when .t = q

5 � 20 �

60 �

i1

i216 A

i2.i1

 i2(q) =

60
60

= 1 A.

 i1(q) =

60
20

+

60
60

= 4 A,

3.75 Æ

t = q

t = q

(ig)

 i2(0) = 1 - 52 + 51 = 0.

 i1(0) = 4 + 64 - 68 = 0,

i1(0) = i2(0) = 0.
i2.i1

i2,i1

The mesh equation is

Note that the voltage across the 4 H coil due to
the current that is, is a
voltage drop in the direction of The voltage
induced in the 16 H coil by the current that is,

is a voltage rise in the direction of i2.8di1>dt,
i1,

i1.
8d(ig - i2)>dt,(ig - i2),

20(i2 - i1) + 60i2 + 16
d

dt
(i2 - ig) - 8

di1

dt
= 0.

i2
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A S S E S S M E N T  P R O B L E M

Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils

6.6 a) Write a set of mesh-current equations for
the circuit in Example 6.6 if the dot on the
4 H inductor is at the right-hand terminal,
the reference direction of is reversed, and
the resistor is increased to 

b) Verify that if there is no energy stored in the
circuit at and if 
the solutions to the differential equations
derived in (a) of this Assessment Problem are

 i2 = -0.01 - 0.99e-4t
+ e-5t A.

 i1 = -0.4 - 11.6e-4t
+ 12e-5t A,

ig = 1.96 - 1.96e-4t A,t = 0,

780 Æ.60 Æ
ig

Answer: (a)

and

(b) verification.

-16(dig>dt);=

20i1 + 16(di2>dt) + 800i2-8(di1>dt)

-5ig - 8(dig>dt)=

4(di1>dt) + 25i1 + 8(di2>dt) - 20i2

NOTE: Also try Chapter Problem 6.39.

6.5 A Closer Look at Mutual Inductance
In order to fully explain the circuit parameter mutual inductance, and to
examine the limitations and assumptions made in the qualitative discussion
presented in Section 6.4, we begin with a more quantitative description of
self-inductance than was previously provided.

A Review of Self-Inductance
The concept of inductance can be traced to Michael Faraday, who did pio-
neering work in this area in the early 1800s. Faraday postulated that a
magnetic field consists of lines of force surrounding the current-carrying
conductor. Visualize these lines of force as energy-storing elastic bands
that close on themselves. As the current increases and decreases, the elas-
tic bands (that is, the lines of force) spread and collapse about the conduc-
tor.The voltage induced in the conductor is proportional to the number of
lines that collapse into, or cut, the conductor. This image of induced volt-
age is expressed by what is called Faraday’s law; that is,

(6.33)

where is referred to as the flux linkage and is measured in weber-turns.
How do we get from Faraday’s law to the definition of inductance pre-

sented in Section 6.1? We can begin to draw this connection using Fig. 6.27
as a reference.

The lines threading the turns and labeled represent the magnetic
lines of force that make up the magnetic field. The strength of the mag-
netic field depends on the strength of the current, and the spatial orienta-
tion of the field depends on the direction of the current. The right-hand
rule relates the orientation of the field to the direction of the current:
When the fingers of the right hand are wrapped around the coil so that the
fingers point in the direction of the current, the thumb points in the direc-
tion of that portion of the magnetic field inside the coil.The flux linkage is
the product of the magnetic field , measured in webers (Wb), and the
number of turns linked by the field ( ):

(6.34)l = Nf.

N
(f)

fN

l

v =

dl

dt
 ,

N turns

ff
�

�

v

i

Figure 6.27 � Representation of a magnetic field link-
ing an -turn coil.N
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The magnitude of the flux, , is related to the magnitude of the coil
current by the relationship

(6.35)

where is the number of turns on the coil, and is the permeance of the
space occupied by the flux. Permeance is a quantity that describes the
magnetic properties of this space, and as such, a detailed discussion of per-
meance is outside the scope of this text. Here, we need only observe that,
when the space containing the flux is made up of magnetic materials (such
as iron, nickel, and cobalt), the permeance varies with the flux, giving a
nonlinear relationship between and i. But when the space containing the
flux is comprised of nonmagnetic materials, the permeance is constant,
giving a linear relationship between and . Note from Eq. 6.35 that the
flux is also proportional to the number of turns on the coil.

Here, we assume that the core material—the space containing the flux—
is nonmagnetic. Then, substituting Eqs. 6.34 and 6.35 into Eq. 6.33 yields

(6.36)

which shows that self-inductance is proportional to the square of the num-
ber of turns on the coil. We make use of this observation later.

The polarity of the induced voltage in the circuit in Fig. 6.27 reflects the
reaction of the field to the current creating the field. For example, when is
increasing, is positive and is positive. Thus energy is required to
establish the magnetic field.The product i gives the rate at which energy is
stored in the field. When the field collapses, is negative, and again the
polarity of the induced voltage is in opposition to the change. As the field
collapses about the coil, energy is returned to the circuit.

Keeping in mind this further insight into the concept of self-inductance,
we now turn back to mutual inductance.

The Concept of Mutual Inductance
Figure 6.28 shows two magnetically coupled coils. You should verify that
the dot markings on the two coils agree with the direction of the coil wind-
ings and currents shown. The number of turns on each coil are and 
respectively. Coil 1 is energized by a time-varying current source that
establishes the current in the turns. Coil 2 is not energized and is
open. The coils are wound on a nonmagnetic core. The flux produced by
the current can be divided into two components, labeled and 
The flux component is the flux produced by that links only the 
turns. The component is the flux produced by that links the turns
and the turns. The first digit in the subscript to the flux gives the coil
number, and the second digit refers to the coil current. Thus is a flux
linking coil 1 and produced by a current in coil 1, whereas is a flux link-
ing coil 2 and produced by a current in coil 1.

f21

f11

N1

N2i1f21

N1i1f11

f21.f11i1

N1i1

N2,N1

di>dt
v

vdi>dt
i

 = N2
p

di

dt
= L

di

dt
 ,

 = N
df

dt
= N

d

dt
(pNi)

 v =

dl

dt
=

d(Nf)
dt

if

f

pN

f = pNi,

f

N1

f21

f21

N2is

�

v1

�

�

v2

�

i1

f11 f11

Figure 6.28 � Two magnetically coupled coils.
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The total flux linking coil 1 is the sum of and :

(6.37)

The flux and its components and are related to the coil 
current as follows:

(6.38)

(6.39)

(6.40)

where is the permeance of the space occupied by the flux is the
permeance of the space occupied by the flux and is the permeance
of the space occupied by the flux Substituting Eqs. 6.38, 6.39, and 6.40
into Eq. 6.37 yields the relationship between the permeance of the space
occupied by the total flux and the permeances of the spaces occupied
by its components and :

(6.41)

We use Faraday’s law to derive expressions for and :

(6.42)

and

(6.43)

The coefficient of in Eq. 6.42 is the self-inductance of coil 1. The
coefficient of in Eq. 6.43 is the mutual inductance between coils 
1 and 2. Thus

(6.44)

The subscript on M specifies an inductance that relates the voltage induced
in coil 2 to the current in coil 1.

The coefficient of mutual inductance gives

(6.45)

Note that the dot convention is used to assign the polarity reference to 
in Fig. 6.28.

For the coupled coils in Fig. 6.28, exciting coil 2 from a time-varying cur-
rent source and leaving coil 1 open produces the circuit arrangement(i2)

v2

v2 = M21 

di1

dt
 .

M21 = N2N1p21.

di1>dt
di1>dt

v2 =

dl2

dt
=

d(N2f21)
dt

= N2 
d

dt
(p21N1i1)

= N2N1p21 

di1

dt
 .

v1 =

dl1

dt
=

d(N1f1)
dt

= N1 
d

dt
(f11 + f21)

= N1
2(p11 + p21)

di1

dt
= N1

2
p1 

di1

dt
= L1 

di1

dt
 ,

v2v1

p1 = p11 + p21.

f21f11

f1

f21.
p21f11,

p11f1,p1

 f21 = p21N1i1,

 f11 = p11N1i1,

 f1 = p1N1i1,

i1

f21f11f1

f1 = f11 + f21.

f21f11f1,
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shown in Fig. 6.29. Again, the polarity reference assigned to is based on
the dot convention.

The total flux linking coil 2 is

(6.46)

The flux and its components and are related to the coil 
current as follows:

(6.47)

(6.48)

(6.49)

The voltages and are

(6.50)

(6.51)

The coefficient of mutual inductance that relates the voltage induced in coil 1
to the time-varying current in coil 2 is the coefficient of in Eq. 6.51:

(6.52)

For nonmagnetic materials, the permeances and are equal,
and therefore

(6.53)

Hence for linear circuits with just two magnetically coupled coils, attach-
ing subscripts to the coefficient of mutual inductance is not necessary.

Mutual Inductance in Terms of Self-Inductance
The value of mutual inductance is a function of the self-inductances. We
derive this relationship as follows. From Eqs. 6.42 and 6.50,

(6.54)

(6.55)

respectively. From Eqs. 6.54 and 6.55,

(6.56)L1L2 = N1
2N2

2
p1p2.

 L2 = N2
2
p2,

 L1 = N1
2
p1,

M12 = M21 = M.

p21p12

M12 = N1N2p12.

di2>dt

 v1 =

dl1

dt
=

d

dt
(N1f12) = N1N2p12 

di2

dt
 .

 v2 =

dl2

dt
= N2

2
p2 

di2

dt
= L2 

di2

dt
 ,

v1v2

 f12 = p12N2i2.

 f22 = p22N2i2,

 f2 = p2N2i2,

i2

f12f22f2

f2 = f22 + f12.

v1

f22 f22

i2

f12

f12

N1 is
N2

�

v1

�

�

v2

�

Figure 6.29 � The magnetically coupled coils of
Fig. 6.28, with coil 2 excited and coil 1 open.
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We now use Eq. 6.41 and the corresponding expression for to write

(6.57)

But for a linear system, so Eq. 6.57 becomes

(6.58)

Replacing the two terms involving permeances by a single constant
expresses Eq. 6.58 in a more meaningful form:

(6.59)

Substituting Eq. 6.59 into Eq. 6.58 yields

or

(6.60)

where the constant k is called the coefficient of coupling. According to
Eq. 6.59, must be greater than 1, which means that k must be less than 1.
In fact, the coefficient of coupling must lie between 0 and 1, or

(6.61)

The coefficient of coupling is 0 when the two coils have no common
flux; that is, when This condition implies that and
Eq. 6.59 indicates that or If there is no flux linkage
between the coils, obviously M is 0.

The coefficient of coupling is equal to 1 when and are 0. This
condition implies that all the flux that links coil 1 also links coil 2. In terms
of Eq. 6.59, which obviously represents an ideal state; in
reality, winding two coils so that they share precisely the same flux is phys-
ically impossible. Magnetic materials (such as alloys of iron, cobalt, and
nickel) create a space with high permeance and are used to establish coef-
ficients of coupling that approach unity. (We say more about this impor-
tant quality of magnetic materials in Chapter 9.)

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.46 and 6.50.

Energy Calculations
We conclude our first look at mutual inductance with a discussion of the
total energy stored in magnetically coupled coils. In doing so, we will
confirm two observations made earlier: For linear magnetic coupling,
(1) and (2) where 0 … k … 1.M = k1L1L2,M12 = M21 = M,

p11 = p22 = 0,

f22f11

k = 0.1>k2
= q ,

p12 = 0,f12 = f21 = 0.

0 … k … 1.

1>k2

M = k1L1L2,

M2
= k2L1L2

1

k2 = ¢1 +

p11

p12
≤  ¢1 +

p22

p12
≤ .

 = M2¢1 +

p11

p12
≤  ¢1 +

p22

p12
≤ .

 L1L2 = (N1N2p12)
2¢1 +

p11

p12
≤ ¢1 +

p22

p12
≤

p21 = p12 ,

L1L2 = N1
2N2

2(p11 + p21)(p22 + p12).

p2

� Relating self-inductances and mutual 
inductance using coupling coefficient
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We use the circuit shown in Fig. 6.30 to derive the expression for the
total energy stored in the magnetic fields associated with a pair of linearly
coupled coils. We begin by assuming that the currents and are zero
and that this zero-current state corresponds to zero energy stored in the
coils.Then we let increase from zero to some arbitrary value and com-
pute the energy stored when Because the total power
input into the pair of coils is and the energy stored is

(6.62)

Now we hold constant at and increase from zero to some arbitrary
value During this time interval, the voltage induced in coil 2 by is
zero because is constant.The voltage induced in coil 1 by is 
Therefore, the power input to the pair of coils is

The total energy stored in the pair of coils when is

or

(6.63)

If we reverse the procedure—that is, if we first increase from zero to 
and then increase from zero to —the total energy stored is

(6.64)

Equations 6.63 and 6.64 express the total energy stored in a pair of lin-
early coupled coils as a function of the coil currents, the self-inductances,
and the mutual inductance. Note that the only difference between these
equations is the coefficient of the current product We use Eq. 6.63 if

is established first and Eq. 6.64 if is established first.i2i1

I1I2.

W =

1
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+

1
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+
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Figure 6.30 � The circuit used to derive the basic
energy relationships.
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When the coupling medium is linear, the total energy stored is the
same regardless of the order used to establish and The reason is that
in a linear coupling, the resultant magnetic flux depends only on the final
values of and not on how the currents reached their final values. If the
resultant flux is the same, the stored energy is the same. Therefore, for lin-
ear coupling, Also, because and are arbitrary values of 
and respectively, we represent the coil currents by their instantaneous
values and Thus, at any instant of time, the total energy stored in the
coupled coils is

(6.65)

We derived Eq. 6.65 by assuming that both coil currents entered
polarity-marked terminals. We leave it to you to verify that, if one current
enters a polarity-marked terminal while the other leaves such a terminal,
the algebraic sign of the term reverses. Thus, in general,

(6.66)

We use Eq. 6.66 to show that M cannot exceed The magneti-
cally coupled coils are passive elements, so the total energy stored can
never be negative. If can never be negative, Eq. 6.66 indicates that the
quantity

must be greater than or equal to zero when and are either both posi-
tive or both negative. The limiting value of M corresponds to setting the
quantity equal to zero:

(6.67)

To find the limiting value of M we add and subtract the term
to the left-hand side of Eq. 6.67. Doing so generates a term that

is a perfect square:

(6.68)

The squared term in Eq. 6.68 can never be negative, but it can be zero.
Therefore only if

(6.69)1L1L2 Ú M,

w(t) Ú 0

¢A
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2
i1 - A
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2
i2≤2
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1
2

L2i2
2
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i2i1

1
2

L1i1
2
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1
2

L2i2
2
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1L1L2.
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1
2

L1i1
2

+

1
2

L2i2
2

; Mi1i2.

Mi1i2

w(t) =

1
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L1i1
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1
2
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i2,
i1I2I1M12 = M21.

i2,i1
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� Energy stored in magnetically-coupled coils
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which is another way of saying that

We derived Eq. 6.69 by assuming that and are either both positive or
both negative. However, we get the same result if and are of opposite
sign, because in this case we obtain the limiting value of M by selecting the
plus sign in Eq. 6.66.

NOTE: Assess your understanding of this material by trying Chapter
Problems 6.47 and 6.48.

i2i1

i2i1

M = k1L1L2  (0 … k … 1).

Practical Perspective
Capacitive Touch Screens
Capacitive touch screens are often used in applications where two or more
simultaneous touch points must be detected. We will discuss two designs for
a multi-touch screen. The first design employs a grid of electrodes, as shown
in Fig. 6.31. When energized, a small parasitic capacitance, Cp, exists between
each electrode strip and ground, as shown in Fig. 6.32(a). When the screen
is touched, say at the position x, y on the screen, a second capacitance exists
due to the transfer of a small amount of charge from the screen to the human
body, which acts like a conductor. The effect is to introduce a second capaci-
tance at the point of touch with respect to ground, as shown in Fig. 6.32(b).

The touchscreen controller is continually monitoring the capacitance
between the electrodes in the grid and ground. If the screen is not being
touched, the capacitance between every electrode in the x-grid and
ground is Cp; the same is true for the capacitance between every elec-
trode in the y-grid and ground.

When the screen is touched at a single point, Ct and Cp combine in 
parallel. The equivalent capacitance between the x-grid electrode closest to
the touch point and ground is now

Ctx = Ct + Cp.

Figure 6.31 � Multi-touch screen with grid of electrodes.

Y3

Y2

Y1

Y0

X0
X1 X2 X3
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Likewise, the equivalent capacitance between the y-grid electrode closest 
to the touch point and ground is now

Thus, a screen touch increases the capacitance between the electrodes and
ground for the x- and y-grid electrodes closest to the touch point.

Now consider what happens when there are two simultaneous points
where the screen is touched. Assume that the first touch point has coor-
dinates x1, y1 and the second touch point has coordinates x2, y2. Now
there are four screen locations that correspond to an increase in capaci-
tance: x1, y1; x1, y2; x2, y1; and x2, y2. Two of those screen locations
match the two touch points, and the other two points are called “ghost”
points, because the screen was not touched at those points. Therefore,
this method for implementing a capacitive touch screen cannot accu-
rately identify more than a single touch point.

Most modern capacitive touch screens do not use the “self-capacitance”
design discussed above. Instead of measuring the capacitance between
each x-grid electrode and ground, and each y-grid electrode and ground, the
capacitance between each x-grid electrode and each y-grid electrode is
measured. This capacitance is known as “mutual” capacitance and is shown
in Fig. 6.33(a).

When the screen is touched, say at the position x, y on the screen, a
second capacitance again exists due to the transfer of a small amount of
charge from the screen to the human body. A second capacitance exists at
the point of touch with respect to ground, as shown in Fig. 6.33(b).
Therefore, whenever there is a change in the mutual capacitance, Cmxy, the
screen touch point can be uniquely identified as x, y. If the screen is
touched at the points x1, y1 and x2, y2 then there will be precisely two
mutual capacitances that change: Cmx1y1

and Cmx2y2
. There are no “ghost”

Cty = Ct + Cp.

Figure 6.32 � (a) Parasitic capacitance between electrode
and ground with no touch; (b) Additional capacitance intro-
duced by a touch.

a)

b)

Cp

Cp

Electrode

Electrode

Ct



202 Inductance, Capacitance, and Mutual Inductance

points identified, as there were in the self-capacitance design, so the
mutual capacitance design truly produces a multi-touch screen capable of
identifying two or more touch points uniquely and accurately.

NOTE: Assess your understanding of the Practical Perspective by solving Chapter
Problems 6.51–6.53.

Figure 6.33 � (a) Mutual capacitance between 
an x-grid and a y-grid electrode; (b) Additional
capacitance introduced by a touch.

x-grid electrode y-grid electrode

x-grid electrode y-grid electrode

b)

a)

Cmxy

Ct

Cmxy

Summary

• Inductance is a linear circuit parameter that relates the
voltage induced by a time-varying magnetic field to the
current producing the field. (See page 176.)

• Capacitance is a linear circuit parameter that relates the
current induced by a time-varying electric field to the
voltage producing the field. (See page 182.)

• Inductors and capacitors are passive elements; they can
store and release energy, but they cannot generate or
dissipate energy. (See page 176.)

• The instantaneous power at the terminals of an inductor
or capacitor can be positive or negative, depending on
whether energy is being delivered to or extracted from
the element.

• An inductor:

• does not permit an instantaneous change in its termi-
nal current,

• does permit an instantaneous change in its teminal
voltage, and

• behaves as a short circuit in the presence of a constant
terminal current. (See page 188.)

• A capacitor:

• does not permit an instantaneous change in its termi-
nal voltage,

• does permit an instantaneous change in its terminal
current, and

• behaves as an open circuit in the presence of a con-
stant terminal voltage. (See page 183.)
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• Equations for voltage, current, power, and energy in
ideal inductors and capacitors are given in Table 6.1.

• Inductors in series or in parallel can be replaced by an
equivalent inductor. Capacitors in series or in parallel
can be replaced by an equivalent capacitor. The equa-
tions are summarized in Table 6.2. See Section 6.3 for a
discussion on how to handle the initial conditions for
series and parallel equivalent circuits involving induc-
tors and capacitors.

• Mutual inductance, M, is the circuit parameter relating
the voltage induced in one circuit to a time-varying cur-
rent in another circuit. Specifically,

where and are the voltage and current in circuit 1,
and and are the voltage and current in circuit 2. For
coils wound on nonmagnetic cores,
(See page 190.)

• The dot convention establishes the polarity of mutually
induced voltages:

When the reference direction for a current enters
the dotted terminal of a coil, the reference polar-
ity of the voltage that it induces in the other coil
is positive at its dotted terminal.

Or, alternatively,

When the reference direction for a current leaves
the dotted terminal of a coil, the reference polar-
ity of the voltage that it induces in the other coil
is negative at its dotted terminal.

(See page 190.)
• The relationship between the self-inductance of each

winding and the mutual inductance between windings is

The coefficient of coupling, k, is a measure of the degree
of magnetic coupling. By definition, (See
page 197.)

0 … k … 1.

M = k1L1L2.

M12 = M21 = M.
i2v2

i1v1

 v2 = M21 

di1

dt
+ L2 

di2

dt
 ,

 v1 = L1 

di1

dt
+ M12 

di2

dt

TABLE 6.1 Terminal Equations for Ideal Inductors and
Capacitors

Inductors

Capacitors

(J)w =
1
2Cv2

(W)p = vi = Cv 
dv
dt

(A)i = C 
dv
dt

(V)v =
1
CL

t

t0

i dt + v(t0)

(J)w =
1
2 Li2

(W)p = vi = Li 
di
dt

(A)i =
1
LL

t

t0

v dt + i(t0)

(V)v = L 
di
dt

TABLE 6.2 Equations for Series- and Parallel-Connected
Inductors and Capacitors

Series-Connected

Parallel-Connected

Ceq = C1 + C2 +
Á

+ Cn

1
Leq

=
1

L1
+

1
L2

+
Á

+
1

Ln

1
Ceq

=
1

C1
+

1
C2

+
Á

+
1

Cn

Leq = L1 + L2 +
Á

+ Ln

• The energy stored in magnetically coupled coils in a lin-
ear medium is related to the coil currents and induc-
tances by the relationship

(See page 199.)

w =

1
2

L1i 1
2

+

1
2

L2i 2
2

; Mi1i2.
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Problems

Section 6.1

6.1 The current in a inductor is known to be

a) Find the voltage across the inductor for 
(Assume the passive sign convention.)

b) Find the power (in microwatts) at the terminals
of the inductor when 

c) Is the inductor absorbing or delivering power at
5 ms?

d) Find the energy (in microjoules) stored in the
inductor at 5 ms.

e) Find the maximum energy (in microjoules)
stored in the inductor and the time (in milli-
seconds) when it occurs.

6.2 The triangular current pulse shown in Fig. P6.2 is
applied to a 500 mH inductor.

a) Write the expressions that describe in
the four intervals 
25 ms 50 ms, and 

b) Derive the expressions for the inductor volt-
age, power, and energy. Use the passive sign
convention.

Figure P6.2

6.3 The current in a 50 mH inductor is known to be

The voltage across the inductor (passive sign con-
vention) is 3 V at 

a) Find the expression for the voltage across the
inductor for 

b) Find the time, greater than zero, when the power
at the terminals of the inductor is zero.

t 7 0.

t = 0.

  i = A1e
-500t

+ A2e
-2000tA,           t Ú 0.

 i = 120 mA,             t … 0;

100

i (mA)

250 50 t (ms)

t 7 50 ms.… t …
0 … t … 25 ms,t 6 0,

i(t)

t = 5 ms.

t 7 0.

iL = 25te-500t A for  t Ú 0.

150 mH

6.4 Assume in Problem 6.3 that the value of the voltage
across the inductor at is instead of 3 V.

a) Find the numerical expressions for i and for

b) Specify the time intervals when the inductor is
storing energy and the time intervals when the
inductor is delivering energy.

c) Show that the total energy extracted from the
inductor is equal to the total energy stored.

6.5 The current in a 200 mH inductor is

The voltage across the inductor (passive sign conven-
tion) is 4.25 V at Calculate the power at the
terminals of the inductor at State whether
the inductor is absorbing or delivering power.

6.6 Evaluate the integral

for Example 6.2. Comment on the significance of
the result.

6.7 The voltage at the terminals of the inductor
in Fig. P6.7(a) is shown in Fig. P6.7(b). The inductor
current i is known to be zero for 
a) Derive the expressions for i for 
b) Sketch i versus t for 

Figure P6.7

6.8 The current in the 50 mH inductor in Fig. P6.8 is
known to be 100 mA for The inductor volt-
age for is given by the expression

Sketch and for 0 … t 6 q .iL(t)vL(t)

vL(t) = -2e-100(t- 0.1) V,    100 ms … t 6 q

vL(t) = 2e-100t V,                0+

… t … 100 ms

t Ú 0
t 6 0.

vs (mV)

t (ms)

150

0
(b)

50
(a)

750 mHvs
�

�

i

0 … t … q .
t Ú 0.

t … 0.

750 mH

L

q

0
p dt

t = 25 ms.
t = 0.

 i = (B1  cos  200t + B2  sin  200t)e-50t A,  t Ú 0.

 i = 75 mA,                      t … 0;

t Ú 0.
v

-18 Vt = 0

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM



Figure P6.8

6.9 The current in and the voltage across a 10 H induc-
tor are known to be zero for The voltage
across the inductor is given by the graph in Fig. P6.9
for

a) Derive the expression for the current as a
function of time in the intervals 

and 

b) For what is the current in the inductor
when the voltage is zero?

c) Sketch i versus t for 

Figure P6.9

6.10 a) Find the inductor current in the circuit in
Fig. P6.10 if and

b) Sketch , i, p, and versus t. In making these
sketches, use the format used in Fig. 6.8.
Plot over one complete cycle of the voltage
waveform.

c) Describe the subintervals in the time interval
between 0 and ms when power is being
absorbed by the inductor. Repeat for the 
subintervals when power is being delivered by
the inductor.

Figure P6.10

Lv
�

�

i

8p

wv

i(0) = 0 A.
v = 20 cos 80t V, L = 100 mH,

25 50 75 125 175
t (ms)

v (V)

20

0

�20

150100

0 … t 6 q .

t 7 0,

150 ms … t 6 q .125 ms … t … 150 ms,
  75 ms … t … 125 ms,25 ms … t … 75 ms,

0 … t … 25 ms,

t Ú 0.

t … 0.

50 mHvL(t) �

�

iL(t)

6.11 The current in a 25 mH inductor is known to be 

for Assume the passive sign convention.

a) At what instant of time is the voltage across the
inductor maximum?

b) What is the maximum voltage?

6.12 Initially there was no energy stored in the 5 H
inductor in the circuit in Fig. P6.12 when it was
placed across the terminals of the voltmeter. At

the inductor was switched instantaneously to
position b where it remained for 1.6 s before returning
instantaneously to position a. The d’Arsonval volt-
meter has a full-scale reading of 20 V and a sensitivity
of What will the reading of the voltmeter
be at the instant the switch returns to position a if the
inertia of the d’Arsonval movement is negligible?

Figure P6.12

Section 6.2

6.13 The voltage across a capacitor is known to be

a) Find the current through the capacitor for 
Assume the passive sign convention.

b) Find the power at the terminals of the capacitor
when .

c) Is the capacitor absorbing or delivering power at

d) Find the energy stored in the capacitor at
.

e) Find the maximum energy stored in the capaci-
tors and the time when the maximum occurs.

6.14 The triangular voltage pulse shown in Fig. P6.14 is
applied to a 200 capacitor.

a) Write the expressions that describe in the five
time intervals

and 

b) Derive the expressions for the capacitor current,
power, and energy for the time intervals in 
part (a). Use the passive sign convention.

t 7 8 s.6 s … t … 8 s,
2 s … t … 6 s,0 … t … 2 s,t 6 0,
v(t)

mF

t = 100 ms

t = 100 ms ?

t = 100 ms

t 7 0.

vc = 500te-2500t V  for     t Ú 0.

5 mF

ab

5 H3 mV
�

� �
� Voltmeter

1000 Æ>V.

t = 0

t Ú 0.
e-200t Afor t … 0 and (-10 cos 400t - 5 sin 400t)

-10 A

PSPICE

MULTISIM

PSPICE

MULTISIM
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c) Identify the time intervals between 0 and 8 s
when power is being delivered by the capacitor.
Repeat for the time intervals when power is
being absorbed by the capacitor.

Figure P6.14

6.15 The voltage across the terminals of a capaci-
tor is

The initial current in the capacitor is 100 mA.
Assume the passive sign convention.

a) What is the initial energy stored in the capacitor?

b) Evaluate the coefficients and 

c) What is the expression for the capacitor current?

6.16 A capacitor is subjected to a voltage pulse
having a duration of 4 s. The pulse is described by
the following equations:

Sketch the current pulse that exists in the capacitor
during the 4 s interval.

6.17 The voltage at the terminals of the capacitor in 
Fig. 6.10 is known to be

v = b 60 V, t … 0;
30 + 5e-500t (6 cos 2000t + sin 2000 t ) V, t Ú 0.

vc(t) = L
5t3 V,    0 … t … 2 s;
-5(t - 4 )3 V,    2 s … t … 4 s;
0 elsewhere.

100 mF

A2.A1

v = b 60 V, t … 0;
(A1e

-1500t
+ A2te

-1500t ) V, t Ú 0.

5 mF

0

20

2 4 6 8

t (s)

v (V)

Assume 

a) Find the current in the capacitor for 

b) Find the current in the capacitor for 

c) Is there an instantaneous change in the voltage
across the capacitor at 

d) Is there an instantaneous change in the current
in the capacitor at 

e) How much energy (in millijoules) is stored in
the capacitor at 

6.18 The expressions for voltage, power, and energy
derived in Example 6.5 involved both integration
and manipulation of algebraic expressions. As an
engineer, you cannot accept such results on faith
alone. That is, you should develop the habit of ask-
ing yourself, “Do these results make sense in terms
of the known behavior of the circuit they purport to
describe?” With these thoughts in mind, test the
expressions of Example 6.5 by performing the fol-
lowing checks:

a) Check the expressions to see whether the volt-
age is continuous in passing from one time inter-
val to the next.

b) Check the power expression in each interval
by selecting a time within the interval and see-
ing whether it gives the same result as the cor-
responding product of and i. For example,
test at 10 and 

c) Check the energy expression within each inter-
val by selecting a time within the interval and
seeing whether the energy equation gives the
same result as Use 10 and as test
points.

6.19 The initial voltage on the capacitor shown in
Fig. P6.19(a) is The capacitor current has
the waveform shown in Fig. P6.19(b).

a) How much energy, in microjoules, is stored in
the capacitor at 

b) Repeat (a) for t = q .

t = 500 ms?

- 20 V.
0.5 mF

30 ms1
2 Cv2.

30 ms.
v

t = q?

t = 0?

t = 0?

t 7 0.

t 6 0.

C = 120 mF.

Figure P6.19

�20 V

0.5 mF

(a)

� �v
i

100

25

50

i (mA)

(b)

2000 300 400 500
t (ms)

50e�2000t mA, t � 0

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM



Figure P6.22

6.23 Use realistic inductor values from Appendix H to
construct series and parallel combinations of induc-
tors to yield the equivalent inductances specified
below.Try to minimize the number of inductors used.
Assume that no initial energy is stored in any of the
inductors.

a) 8 mH

b)

c)

6.24 The two parallel inductors in Fig. P6.24 are con-
nected across the terminals of a black box at 
The resulting voltage for is known to be

It is also known that and

a) Replace the original inductors with an equiva-
lent inductor and find for .

b) Find for 

c) Find for 

d) How much energy is delivered to the black box
in the time interval 

e) How much energy was initially stored in the par-
allel inductors?

f) How much energy is trapped in the ideal inductors?

g) Show that your solutions for and agree with
the answer obtained in (f).

Figure P6.24

Black
box

i(t)

i1(t) 4 H i2(t) 16 H
t � 0

v

�

�

i2i1

0 … t 6 q?

t Ú 0.i2(t)

t Ú 0.i1(t)

t Ú 0i(t)

i2(0) = 5 A.
i1(0) = - 10 A64e-4t V.

t 7 0v
t = 0.

180 mH

45 mH

25 mH
(b)

60 mH
30 mH 75 mH

18 mH

12 mH
20 mH

38 mH15 mH

a

b

12 mH
(a)

10 mH
a

b

24 mH

9 mH

20 mH 30 mH

15 mH
8 mH

6.20 The current shown in Fig. 6.20 is applied to a 
capacitor. The initial voltage on the capacitor is
zero.

a) Find the charge on the capacitor at 

b) Find the voltage on the capacitor at 

c) How much energy is stored in the capacitor by
this current?

t = 10 ms.

t = 6 ms.

2 mF

Figure P6.20

2

5

�5

4 6 8 10 12
t (ms)

i (A)

6.21 The rectangular-shaped current pulse shown in
Fig. P6.21 is applied to a capacitor. The 
initial voltage on the capacitor is a 15 V drop in
the reference direction of the current. Derive the
expression for the capacitor voltage for the time
intervals in (a)–(d).

a)

b)

c)

d)

e) Sketch over the interval 

Figure P6.21

Section 6.3

6.22 Assume that the initial energy stored in the 
inductors of Figs. P6.22(a) and (b) is zero. Find 
the equivalent inductance with respect to the 
terminals a, b.

100

�50

160

100

20 30 40

i (mA)

t (ms)

50 ms.-10 ms … t …v(t)

40 ms … t 6  q
20 ms … t … 40 ms

10 ms … t … 20 ms;

0 … t … 10 ms;

0.1 mF

PSPICE

MULTISIM
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MULTISIM

PSPICE

MULTISIM
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6.28 Use realistic capacitor values from Appendix H to
construct series and parallel combinations of capac-
itors to yield the equivalent capacitances specified
below. Try to minimize the number of capacitors
used. Assume that no initial energy is stored in any
of the capacitors.

a)

b)

c)

6.29 Derive the equivalent circuit for a series connection
of ideal capacitors. Assume that each capacitor has
its own initial voltage. Denote these initial voltages
as and so on. (Hint: Sum the voltages
across the string of capacitors, recognizing that the
series connection forces the current in each capaci-
tor to be the same.)

6.30 Derive the equivalent circuit for a parallel connec-
tion of ideal capacitors. Assume that the initial volt-
age across the paralleled capacitors is (Hint:
Sum the currents into the string of capacitors, rec-
ognizing that the parallel connection forces the
voltage across each capacitor to be the same.)

6.31 The two series-connected capacitors in Fig. P6.31
are connected to the terminals of a black box at

The resulting current for is known
to be 

a) Replace the original capacitors with an equiva-
lent capacitor and find for 

b) Find for 

c) Find for 

d) How much energy is delivered to the black box
in the time interval 

e) How much energy was initially stored in the
series capacitors?

f) How much energyis trapped inthe ideal capacitors?

g) Show that the solutions for and agree with
the answer obtained in (f).

Figure P6.31

Black
box

i(t)

�

�

5 V

25 V

2 mF

8 mF

�

�

v1

�

�

�

�

v2

�

vo

�t � 0

v2v1

0 … t 6 q?

t Ú 0.v2(t)

t Ú 0.v1(t)

t Ú 0.vo(t)

800e-25t mA.
t 7 0i(t)t = 0 .

v(t0).

v1(t0), v2(t0),

120 mF

600 nF

480 pF

6.25 The three inductors in the circuit in Fig. P6.25 are con-
nected across the terminals of a black box at 
The resulting voltage for is known to be

If and find

a)

b)

c)

d)

e) the initial energy stored in the three inductors;

f) the total energy delivered to the black box; and

g) the energy trapped in the ideal inductors.

Figure P6.25

6.26 For the circuit shown in Fig. P6.25, how many milli-
seconds after the switch is opened is the energy
delivered to the black box 80% of the total energy
delivered?

6.27 Find the equivalent capacitance with respect to the
terminals a, b for the circuits shown in Fig. P6.27.

Figure P6.27

5 V

36 mV

12 mF
18 mF24 mF

30 mF

5 mF

2 V

25 mH

8 V

10 V

20 V ++ –

+

+ –

+

–

–

–

20 nF

8 nF 4 nF

40 V

20 V

48 nF

30 V

24 nF

30 nF10 nF

5 V

10 V

�

� � �

�

�

�

�

�

�

a

b

Black
box

�

vo

�

t � 0
4 Hi21 Hi1

io

3.2 H

i2(t), t Ú 0;

i1(t), t Ú 0;

io(t), t Ú 0;

io(0);

i2(0) = 1 A,i1(0) = -6 A

vo = 2000e-100t V.

t 7 0
t = 0.PSPICE

MULTISIM



Figure P6.35

Section 6.4

6.36 a) Show that the differential equations derived in (a)
of Example 6.6 can be rearranged as follows:

b) Show that the solutions for , and given in 
(b) of Example 6.6 satisfy the differential equa-
tions given in part (a) of this problem.

6.37 Let represent the voltage across the 16 H induc-
tor in the circuit in Fig. 6.25.Assume is positive at
the dot. As in Example 6.6,

a) Can you find without having to differentiate
the expressions for the currents? Explain.

b) Derive the expression for 

c) Check your answer in (b) using the appropriate
current derivatives and inductances.

6.38 Let represent the voltage across the current
source in the circuit in Fig. 6.25. The reference for

is positive at the upper terminal of the current
source.

a) Find g as a function of time when 

b) What is the initial value of ?

c) Find the expression for the power developed by
the current source.

d) How much power is the current source develop-
ing when t is infinite?

e) Calculate the power dissipated in each resistor
when t is infinite.

6.39 There is no energy stored in the circuit in Fig. P6.39
at the time the switch is opened.

a) Derive the differential equation that governs
the behavior of if 

and Ro = 10 Æ.M = 0.5 H,
L2 = 0.2 H,L1 = 5 H,i2

vg

ig =  16 - 16e-5t A.
v

vg

vg

vo.

vo

ig = 16 - 16e-5t A.
vo

vo

i2i1

 -8 

di1

dt
- 20i1 + 16 

di2

dt
+ 80i2 = 16 

dig

dt
 .

 4 

di1

dt
+ 25i1 - 8 

di2

dt
- 20i2 = 5ig - 8 

dig

dt
 ;

25 �

50 mH100 mFv1

�

�

v2

�

�

io

6.32 The four capacitors in the circuit in Fig. P6.32 are con-
nected across the terminals of a black box at 
The resulting current for is known to be

If , and
find the following for (a) 

(b) (c) (d) (e) and (f) 

Figure P6.32

6.33 For the circuit in Fig. P6.32, calculate

a) the initial energy stored in the capacitors;

b) the final energy stored in the capacitors;

c) the total energy delivered to the black box;

d) the percentage of the initial energy stored that is
delivered to the black box; and

e) the time, in milliseconds, it takes to deliver
to the black box.

6.34 At a series-connected capacitor and inductor
are placed across the terminals of a black box, as
shown in Fig. P6.34. For it is known that

If find for 

Figure P6.34

6.35 The current in the circuit in Fig. P6.35 is known to be

for Find and v2(0+).v1(0+)t Ú 0+.

io = 2e-5000t(cos 1000t + 5 sin 1000t) A

t � 0 Black
box

�

�

vo

150 mH io

�

�

vc 10 mF

t Ú 0.vovc(0) = 5 V

io =  200e-800t -  40e-200t mA.

t 7 0,

t = 0,

7.5 mJ

Black
box

�

vb

�

ib

t � 05 mF

va� �

vc� �

800 mF

1.25 mF

i2200 mF i1

�

vd

�

i2(t).i1(t),vd(t),vc(t),va(t),
vb(t),t Ú 0:vd(0) = 250 V,

vc(0) = -30 V,va(0) = - 20 V

ib = - 5e-50t mA.

t 7 0ib

t = 0.
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b) Show that when , , the
differential equation derived in (a) is satisfied
when ,

c) Find the expression for the voltage across the
current source.

d) What is the initial value of ? Does this make
sense in terms of known circuit behavior?

Figure P6.39

6.40 a) Show that the two coupled coils in Fig. P6.40 can
be replaced by a single coil having an inductance
of (Hint: Express as a
function of )

b) Show that if the connections to the terminals
of the coil labeled are reversed,

.

Figure P6.40

6.41 a) Show that the two magnetically coupled coils in
Fig. P6.41 (see page 210) can be replaced by a
single coil having an inductance of

(Hint: Let and be clockwise mesh currents in
the left and right “windows” of Fig. P6.41, respec-
tively. Sum the voltages around the two meshes.
In mesh 1 let be the unspecified applied volt-
age. Solve for as a function of .)

b) Show that if the magnetic polarity of coil 2 is
reversed, then

Figure P6.41

6.42 The polarity markings on two coils are to be deter-
mined experimentally. The experimental setup is
shown in Fig. P6.42. Assume that the terminal con-
nected to the positive terminal of the battery has

L1 L2

a

b

M

Lab =

L1L2 - M2

L1 + L2 + 2M
 .

vabdi1>dt
vab

i2i1

Lab =

L1L2 - M2

L1 + L2 - 2M
 .

M

a b
L1 L2

Lab = L1 + L2 - 2M
L2

iab.
vabLab = L1 + L2 + 2M.

t � 0
ig

�

�

v1 L1 L2 Roi2

M

v1

v1

t Ú 0.i2 = 625e-10t
- 250e-50t mA

t Ú 0ig = e-10t
- 10 A been given a polarity mark as shown. When the

switch is opened, the dc voltmeter kicks down-
scale. Where should the polarity mark be placed
on the coil connected to the voltmeter?

Figure P6.42

6.43 The physical construction of four pairs of magneti-
cally coupled coils is shown in Fig. P6.43. (See
page 211.) Assume that the magnetic flux is con-
fined to the core material in each structure. Show
two possible locations for the dot markings on each
pair of coils.

Section 6.5

6.44 a) Starting with Eq. 6.59, show that the coefficient
of coupling can also be expressed as

b) On the basis of the fractions and 
explain why k is less than 1.0.

6.45 Two magnetically coupled coils have self-inductances
of 60 mH and 9.6 mH, respectively.The mutual induc-
tance between the coils is 22.8 mH.

a) What is the coefficient of coupling?

b) For these two coils, what is the largest value that
M can have?

c) Assume that the physical structure of these cou-
pled coils is such that What is the turns
ratio if is the number of turns on the
60 mH coil?

6.46 Two magnetically coupled coils are wound on a
nonmagnetic core. The self-inductance of coil 1 is
288 mH, the mutual inductance is 90 mH, the coeffi-
cient of coupling is 0.75, and the physical structure
of the coils is such that 

a) Find and the turns ratio 

b) If what is the value of and ?

6.47 The self-inductances of the coils in Fig. 6.30 are
and If the coefficient of

coupling is 0.85, calculate the energy stored in the
system in millijoules when (a) 
(b) (c) 
and (d) i2 = -9A.i1 = 6 A,

i2 = 9 A;i1 = -6 A,i2 = -9 A;i1 = -6 A,
i2 = 9 A;i1 = 6 A,

L2 = 32 mH.L1 = 18 mH

p2p1N1 = 1200,

N1>N2.L2

p11 = p22.

N1N1>N2

p1 = p2.

f12>f2,f21>f1

k = B¢
f21

f1
≤ ¢f12

f2
≤ .

vBB

�

�

R
t � 0

dc
voltmeter

�

�



6.48 The coefficient of coupling in Problem 6.47 is
increased to 1.0.

a) If equals 6 A, what value of results in zero
stored energy?

b) Is there any physically realizable value of that
can make the stored energy negative?

6.49 The self-inductances of two magnetically coupled
coils are 72 mH and 40.5 mH, respectively. The 
72 mH coil has 250 turns, and the coefficient of cou-
pling between the coils is 2⁄3. The coupling medium is
nonmagnetic. When coil 1 is excited with coil 
2 open, the flux linking only coil 1 is 0.2 as large as the
flux linking coil 2.

a) How many turns does coil 2 have?

b) What is the value of in nanowebers per
ampere?

c) What is the value of in nanowebers per
ampere?

d) What is the ratio ?

6.50 The self-inductances of two magnetically coupled coils
are and The coupling
medium is nonmagnetic. If coil 1 has 300 turns and
coil 2 has 500 turns, find and (in nanowebers
per ampere) when the coefficient of coupling is 0.6.

Sections 6.1–6.5

6.51 Suppose a capacitive touch screen that uses the
mutual-capacitance design, as shown in Fig. 6.33, is
touched at the point x,y.Determine the mutual capac-
itance at that point, , in terms of the mutual
capacitance at the point without a touch,Cmxy,and the
capacitance introduced by the touch, Ct.

6.52 a) Assume the parasitic capacitance in the self-
capacitance design, Cp 30 pF, and the 
capacitance introduced by a touch is 15 pF 

=

C¿mxy

p21p11

L2 = 500 mH.L1 = 180 mH

(f22>f12)

p11

p2

i2

i2i1

(see Fig. 6.32[b]). What is the capacitance at 
the touch point with respect to ground for the 
x-grid and y-grid electrodes closest to the touch
point?

b) Assume the mutual capacitance in the mutual-
capacitance design, Cmxy 30 pF, and the
capacitance introduced by a touch is 15 pF (see
Fig. 6.33[b]). What is the mutual capacitance
between the x- and y-grid electrodes closest to
the touch point?

c) Compare your results in parts (a) and (b) – does
touching the screen increase or decrease the
capacitance in these two different capacitive touch
screen designs?

6.53 a) As shown in the Practical Perspective, the self-
capacitance design does not permit a true multi-
touch screen – if the screen is touched at two
difference points, a total of four touch points are
identified, the two actual touch points and two
ghost points. If a self-capacitance touch screen is
touched at the x, y coordinates (2.1, 4.3) and
(3.2, 2.5), what are the four touch locations that
will be identified? (Assume the touch coordi-
nates are measured in inches from the upper left
corner of the screen.)

b) A self-capacitance touch screen can still func-
tion as a multi-touch screen for several common
gestures. For example, suppose at time t1 the two
touch points are those identified in part (a), and
at time t2 four touch points associated with the 
x, y coordinates (1.8, 4.9) and (3.9, 1.8) are iden-
tified. Comparing the four points at t1 with the 
four points at t2, software can recognize a pinch
gesture – should the screen be zoomed in or
zoomed out?

c) Repeat part (b),assuming that at time t2 four touch
points associated with the x, y coordinates (2.8,
3.9) and (3.0, 2.8) are identified.

=
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In Chapter 6, we noted that an important attribute of inductors
and capacitors is their ability to store energy. We are now in a
position to determine the currents and voltages that arise when
energy is either released or acquired by an inductor or capacitor
in response to an abrupt change in a dc voltage or current source.
In this chapter, we will focus on circuits that consist only of
sources, resistors, and either (but not both) inductors or capaci-
tors. For brevity, such configurations are called RL (resistor-
inductor) and RC (resistor-capacitor) circuits.

Our analysis of RL and RC circuits will be divided into three
phases. In the first phase, we consider the currents and voltages
that arise when stored energy in an inductor or capacitor is sud-
denly released to a resistive network. This happens when the
inductor or capacitor is abruptly disconnected from its dc source.
Thus we can reduce the circuit to one of the two equivalent forms
shown in Fig. 7.1 on page 214.The currents and voltages that arise
in this configuration are referred to as the natural response of the
circuit, to emphasize that the nature of the circuit itself, not exter-
nal sources of excitation, determines its behavior.

In the second phase of our analysis, we consider the currents
and voltages that arise when energy is being acquired by an induc-
tor or capacitor due to the sudden application of a dc voltage or
current source. This response is referred to as the step response.
The process for finding both the natural and step responses is the
same; thus, in the third phase of our analysis, we develop a general
method that can be used to find the response of RL and RC cir-
cuits to any abrupt change in a dc voltage or current source.

Figure 7.2 on page 214 shows the four possibilities for the gen-
eral configuration of RL and RC circuits. Note that when there
are no independent sources in the circuit, the Thévenin voltage or
Norton current is zero, and the circuit reduces to one of those
shown in Fig. 7.1; that is, we have a natural-response problem.

C H A P T E R  C O N T E N T S

7.1 The Natural Response of an RL Circuit p. 214

7.2 The Natural Response of an RC Circuit p. 220

7.3 The Step Response of RL and 
RC Circuits p. 224

7.4 A General Solution for Step and Natural
Responses p. 231

7.5 Sequential Switching p. 236

7.6 Unbounded Response p. 240

7.7 The Integrating Amplifier p. 241

C H A P T E R  O B J E C T I V E S

1 Be able to determine the natural response of
both RL and RC circuits.

2 Be able to determine the step response of both
RL and RC circuits.

3 Know how to analyze circuits with sequential
switching.

4 Be able to analyze op amp circuits containing
resistors and a single capacitor.

Response of First-Order 
RL and RC Circuits7

C H A P T E R

7



The muscle that makes up the heart contracts due to rhythmical
electrical impulses. The frequency of the impulses is controlled
by pacemaker cells. In adults, the pacemaker cells establish a
resting heart rate of about 72 beats per minutes. But sometimes
the pacemaker cells are damaged and may produce a very low
resting heart rate (a condition known as bradycardia) or a very
high resting heart rate (a condition known as tachycardia). 
A normal heart rhythm can be restored by implanting an artifi-
cial pacemaker that delivers electrical impulses to the heart,
mimicking the pacemaker cells. An example of an artificial 

pacemaker both outside and inside the body is shown in the fig-
ures below.

Artificial pacemakers are very small and lightweight.
They have a programmable microprocessor that monitors a
few parameters and adjusts the heart rate, an efficient bat-
tery with a life of up to 15 years, and circuitry that gener-
ates the pulse. The simplest circuit consists of a resistor and
a capacitor. Once we have introduced the first-order RC 
circuit, we will look at an RC circuit design for artificial
pacemakers.

213

Practical Perspective
Artificial Pacemaker

Wires Pacemaker

Electrode

Pacemaker

Electrode
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RL and RC circuits are also known as first-order circuits, because their
voltages and currents are described by first-order differential equations. No
matter how complex a circuit may appear, if it can be reduced to a Thévenin or
Norton equivalent connected to the terminals of an equivalent inductor or
capacitor, it is a first-order circuit. (Note that if multiple inductors or capacitors
exist in the original circuit, they must be interconnected so that they can be
replaced by a single equivalent element.)

After introducing the techniques for analyzing the natural and step
responses of first-order circuits, we discuss some special cases of interest.
The first is that of sequential switching, involving circuits in which switching
can take place at two or more instants in time. Next is the unbounded
response. Finally, we analyze a useful circuit called the integrating amplifier.

7.1 The Natural Response 
of an RL Circuit

The natural response of an RL circuit can best be described in terms of the
circuit shown in Fig. 7.3. We assume that the independent current source
generates a constant current of and that the switch has been in a
closed position for a long time. We define the phrase a long time more
accurately later in this section. For now it means that all currents and volt-
ages have reached a constant value.Thus only constant, or dc, currents can
exist in the circuit just prior to the switch’s being opened, and therefore
the inductor appears as a short circuit prior to the release of
the stored energy.

Because the inductor appears as a short circuit, the voltage across the
inductive branch is zero, and there can be no current in either or R.
Therefore, all the source current appears in the inductive branch.
Finding the natural response requires finding the voltage and current at
the terminals of the resistor after the switch has been opened, that is, after
the source has been disconnected and the inductor begins releasing
energy. If we let denote the instant when the switch is opened, the
problem becomes one of finding and for For the cir-
cuit shown in Fig. 7.3 reduces to the one shown in Fig. 7.4.

Deriving the Expression for the Current
To find we use Kirchhoff’s voltage law to obtain an expression involv-
ing i, R, and L. Summing the voltages around the closed loop gives

(7.1)

where we use the passive sign convention. Equation 7.1 is known as a first-
order ordinary differential equation, because it contains terms involving
the ordinary derivative of the unknown, that is, The highest order
derivative appearing in the equation is 1; hence the term first-order.

We can go one step further in describing this equation. The coeffi-
cients in the equation, R and L, are constants; that is, they are not func-
tions of either the dependent variable i or the independent variable t.Thus
the equation can also be described as an ordinary differential equation
with constant coefficients.

To solve Eq. 7.1, we divide by L, transpose the term involving i to the
right-hand side, and then multiply both sides by a differential time dt. The
result is

(7.2)
di

dt
 dt = -

R

L
i dt.

di>dt.

L 
di

dt
+ Ri = 0,

i(t),

t Ú 0,t Ú 0.i(t)v(t)
t = 0

Is

R0

(Ldi>dt = 0)

Is A,

(a)

Leq ReqI0

(b)

ReqCeq V0

�

�

Figure 7.1 � The two forms of the circuits for natural
response. (a) RL circuit. (b) RC circuit.

(d)
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(c)
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i
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LRTh v

�

�
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RTh

(a)

L
i

�

�
VTh

RTh

v

�
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Figure 7.2 � Four possible first-order circuits. 
(a) An inductor connected to a Thévenin equivalent. 
(b) An inductor connected to a Norton equivalent. 
(c) A capacitor connected to a Thévenin equivalent. 
(d) A capacitor connected to a Norton equivalent.

R0Is R

i

L v

�

�

t � 0

Figure 7.3 � An RL circuit.

i

L

�

�

vRi(0) � Is

Figure 7.4 � The circuit shown in Fig. 7.3, for 0.t Ú
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Next, we recognize the left-hand side of Eq. 7.2 as a differential change in
the current i, that is, di. We now divide through by i, getting

(7.3)

We obtain an explicit expression for i as a function of t by integrating both
sides of Eq. 7.3. Using x and y as variables of integration yields

(7.4)

in which is the current corresponding to time and is the current
corresponding to time t. Here, Therefore, carrying out the indi-
cated integration gives

(7.5)

Based on the definition of the natural logarithm,

(7.6)

Recall from Chapter 6 that an instantaneous change of current cannot
occur in an inductor. Therefore, in the first instant after the switch has
been opened, the current in the inductor remains unchanged. If we use 
to denote the time just prior to switching, and for the time immediately
following switching, then

where, as in Fig. 7.1, denotes the initial current in the inductor.The initial
current in the inductor is oriented in the same direction as the reference
direction of i. Hence Eq. 7.6 becomes

(7.7)

which shows that the current starts from an initial value and decreases
exponentially toward zero as t increases. Figure 7.5 shows this response.

We derive the voltage across the resistor in Fig. 7.4 from a direct appli-
cation of Ohm’s law:

(7.8)

Note that in contrast to the expression for the current shown in Eq. 7.7,
the voltage is defined only for not at The reason is that a step
change occurs in the voltage at zero. Note that for the derivative of
the current is zero, so the voltage is also zero. (This result follows from

) Thus

(7.9)

(7.10)

where is obtained from Eq. 7.8 with 1 With this step change at
an instant in time, the value of the voltage at is unknown. Thus we
use in defining the region of validity for these solutions.t Ú 0+

t = 0
t = 0+.v(0+)

 v(0+) = I0R,

 v(0-) = 0,

v = Ldi>dt = 0.

t 6 0,
t = 0.t 7 0,

v = iR = I0Re-(R>L)t,  t Ú 0+.

I0

i(t) = I0e
-(R>L)t,  t Ú 0,

I0

i(0-) = i(0+) = I0,

0+

0-

i(t) = i(0)e-(R>L)t.

 ln 
i(t)
i(0)

= -

R

L
t.

t0 = 0.
i(t)t0,i(t0)

L

i(t)

i(t0)

dx
x

= -

R

LL

t

t0

dy,

di

i
= -

R

L
dt.

� Initial inductor current

0

i(t)

t

I0

Figure 7.5 � The current response for the circuit shown
in Fig. 7.4.

� Natural response of an RL circuit

1 We can define the expressions and more formally. The expression refers to the
limit of the variable x as from the left, or from negative time. The expression 
refers to the limit of the variable x as from the right, or from positive time.t : 0

x(0+)t : 0
x(0-)0+0-



216 Response of First-Order RL and RC Circuits

We derive the power dissipated in the resistor from any of the follow-
ing expressions:

(7.11)

Whichever form is used, the resulting expression can be reduced to

(7.12)

The energy delivered to the resistor during any interval of time after the
switch has been opened is

(7.13)

Note from Eq. 7.13 that as t becomes infinite, the energy dissipated in the
resistor approaches the initial energy stored in the inductor.

The Significance of the Time Constant
The expressions for (Eq. 7.7) and (Eq. 7.8) include a term of the
form The coefficient of t—namely, —determines the rate at
which the current or voltage approaches zero. The reciprocal of this ratio
is the time constant of the circuit, denoted

(7.14)

Using the time-constant concept, we write the expressions for current,
voltage, power, and energy as

(7.15)

(7.16)

(7.17)

(7.18)

The time constant is an important parameter for first-order circuits, so
mentioning several of its characteristics is worthwhile. First, it is conven-
ient to think of the time elapsed after switching in terms of integral multi-
ples of Thus one time constant after the inductor has begun to release
its stored energy to the resistor, the current has been reduced to or
approximately 0.37 of its initial value.

e-1,
t.

 w =

1
2

LI0
2(1 - e-2t>t),  t Ú 0.

 p = I0
2Re-2t>t,  t Ú 0+,

 v(t) = I0Re-t>t,  t Ú 0+,

 i(t) = I0e
-t>t,  t Ú 0,

t = time constant =

L

R
.

R>Le-(R>L)t.
v(t)i(t)

 =

1
2

LI0
2(1 - e-2(R>L)t),  t Ú 0.

 =

1
2(R>L)

I2
0R(1 - e-2(R>L)t)

 w =

L

t

0
pdx =

L

t

0
I2

0Re-2(R>L)x
 dx

p = I2
0Re-2(R>L)t,  t Ú 0+.

p = vi,  p = i2R,  or  p =

v2

R
.

Time constant for RL circuit �
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Table 7.1 gives the value of for integral multiples of from 1 to
10. Note that when the elapsed time exceeds five time constants, the
current is less than 1% of its initial value. Thus we sometimes say that
five time constants after switching has occurred, the currents and volt-
ages have, for most practical purposes, reached their final values. For
single time-constant circuits (first-order circuits) with 1% accuracy, the
phrase a long time implies that five or more time constants have
elapsed. Thus the existence of current in the RL circuit shown in 
Fig. 7.1(a) is a momentary event and is referred to as the transient
response of the circuit. The response that exists a long time after the
switching has taken place is called the steady-state response. The phrase
a long time then also means the time it takes the circuit to reach its
steady-state value.

Any first-order circuit is characterized, in part, by the value of its
time constant. If we have no method for calculating the time constant of
such a circuit (perhaps because we don’t know the values of its compo-
nents), we can determine its value from a plot of the circuit’s natural
response. That’s because another important characteristic of the time
constant is that it gives the time required for the current to reach its final
value if the current continues to change at its initial rate. To illustrate, we
evaluate at and assume that the current continues to change at
this rate:

(7.19)

Now, if i starts as and decreases at a constant rate of amperes per
second, the expression for i becomes

(7.20)

Equation 7.20 indicates that i would reach its final value of zero in 
seconds. Figure 7.6 shows how this graphic interpretation is useful in

estimating the time constant of a circuit from a plot of its natural
response. Such a plot could be generated on an oscilloscope measuring
output current. Drawing the tangent to the natural response plot at 
and reading the value at which the tangent intersects the time axis gives
the value of 

Calculating the natural response of an RL circuit can be summarized
as follows:

1. Find the initial current, through the inductor.
2. Find the time constant of the circuit,
3. Use Eq. 7.15, to generate 

from and 

All other calculations of interest follow from knowing 
Examples 7.1 and 7.2 illustrate the numerical calculations associated with
the natural response of an RL circuit.

i(t).

t.I0

i(t)I0e
-t>t,

t = L>R.
I0,

t.

t = 0

t

i = I0 -

I0

t
t.

I0>tI0

di

dt
(0+) = -

R

L
I0 = -

I0

t
.

0+di>dt

te-t>t

0

i

I0

t
t

i � I0�(I0/t)t

i � I0e
�t/t

Figure 7.6 � A graphic interpretation of the time con-
stant of the RL circuit shown in Fig. 7.4.

TABLE 7.1 Value of For Equal to
Integral Multiples of 

4.5400 * 10-510t6.7379 * 10-35t

1.2341 * 10-49t1.8316 * 10-24t

3.3546 * 10-48t4.9787 * 10-23t

9.1188 * 10-47t1.3534 * 10-12t

2.4788 * 10-36t3.6788 * 10-1t

e-t>tte-t>tt

t

te-t>t

� Calculating the natural response 
of RL circuit
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Example 7.1 Determining the Natural Response of an RL Circuit

The switch in the circuit shown in Fig. 7.7 has
been closed for a long time before it is opened at

Find

a) ,

b) ,

c) ,

d) the percentage of the total energy stored in the
2 H inductor that is dissipated in the resistor.

Figure 7.7 � The circuit for Example 7.1.

Solution

a) The switch has been closed for a long time prior
to so we know the voltage across the
inductor must be zero at Therefore the
initial current in the inductor is 20 A at 
Hence, also is 20 A, because an instanta-
neous change in the current cannot occur in an
inductor. We replace the resistive circuit con-
nected to the terminals of the inductor with a
single resistor of 

The time constant of the circuit is or 
0.2 s, giving the expression for the inductor
current as

iL(t) = 20e-5t A, t Ú 0.

L>Req,

Req = 2 + (40 7  10) = 10 Æ.

10 Æ:

iL(0+)
t = 0-.

t = 0-.
t = 0,

2 �

0.1 � 10 � 40 �20 A 2 HiL

iot � 0

�

�

vo

10 Æ

vo(t) for t Ú 0+

io(t) for t Ú 0+

iL(t) for t Ú 0

t = 0.

b) We find the current in the resistor most
easily by using current division; that is,

Note that this expression is valid for 
because at The inductor behaves as
a short circuit prior to the switch being opened,
producing an instantaneous change in the current

Then,

c) We find the voltage by direct application of
Ohm’s law:

d) The power dissipated in the resistor is

The total energy dissipated in the resistor is

The initial energy stored in the 2 H inductor is

Therefore the percentage of energy dissipated in
the resistor is

256
400

(100) = 64%.

10 Æ

w(0) =

1
2

 Li2(0) =

1
2

 (2)(400) = 400 J.

w10Æ
(t) =

L

q

0
2560e-10t

 dt = 256 J.

10 Æ

p10Æ
(t) =

vo
2

10
= 2560e-10t W,  t Ú 0+.

10 Æ

vo(t) = 40io = -160e-5t V,  t Ú 0+.

vo

io(t) = -4e-5t A,  t Ú 0+.

io.

t = 0-.io = 0
t Ú 0+

io = - iL
10

10 + 40
.

40 Æ



7.1 The Natural Response of an RL Circuit 219

Example 7.2 Determining the Natural Response of an RL Circuit with Parallel Inductors

In the circuit shown in Fig. 7.8, the initial currents in
inductors and have been established by
sources not shown. The switch is opened at 

a) Find and for 

b) Calculate the initial energy stored in the parallel
inductors.

c) Determine how much energy is stored in the
inductors as 

d) Show that the total energy delivered to the resis-
tive network equals the difference between the
results obtained in (b) and (c).

Solution

a) The key to finding currents and lies in
knowing the voltage We can easily find 
if we reduce the circuit shown in Fig. 7.8 to the
equivalent form shown in Fig. 7.9. The parallel
inductors simplify to an equivalent inductance of
4 H, carrying an initial current of 12 A. The resis-
tive network reduces to a single resistance of

Hence the initial value of is 12 A and
the time constant is or 0.5 s. Therefore

Now is simply the product so

The circuit shows that at so the
expression for is valid for After
obtaining we can calculate and :

 i2 =

1
20L

t

0
96e-2x

 dx - 4

 = 1.6 - 9.6e-2t A, t Ú 0,

 i1 =

1
5L

t

0
96e-2x

 dx - 8

i3i1, i2,v(t),
t Ú 0+.v(t)
t = 0-,v(t) = 0

v(t) = 96e-2t V,  t Ú 0+.

8i,v(t)

i(t) = 12e-2t A,  t Ú 0.

4>8,
i(t)8 Æ.

v(t)v(t).
i3i1, i2,

t : q .

t Ú 0.i3i1, i2,

t = 0.
L2L1

Note that the expressions for the inductor currents
and are valid for whereas the expres-

sion for the resistor current is valid for 

Figure 7.9 � A simplification of the circuit shown in Fig. 7.8.

b) The initial energy stored in the inductors is

c) As and 
Therefore, a long time after the switch has been
opened, the energy stored in the two inductors is

d) We obtain the total energy delivered to the resis-
tive network by integrating the expression for
the instantaneous power from zero to infinity:

This result is the difference between the initially
stored energy (320 J) and the energy trapped in
the parallel inductors (32 J). The equivalent
inductor for the parallel inductors (which pre-
dicts the terminal behavior of the parallel com-
bination) has an initial energy of 288 J; that is,
the energy stored in the equivalent inductor rep-
resents the amount of energy that will be deliv-
ered to the resistive network at the terminals of
the original inductors.

 = 1152
e-4t

-4
2
q

0
= 288 J.

 w =

L

q

0
pdt =

L

q

0
1152e-4tdt

w =

1
2

(5)(1.6)2
+

1
2

(20)(-1.6)2
= 32 J.

i2 :  -1.6 A.i1 :  1.6 At :  q ,

w =

1
2

(5)(64) +

1
2

(20)(16) = 320 J.

i

v(t)

�

�

4 H12 A 8 �

t Ú 0+.i3

t Ú 0,i2i1

 i3 =

v(t)
10

  
15
25

= 5.76e-2t A, t Ú 0+.

 = -1.6 - 2.4e-2t A, t Ú 0,

i1

L1 (5 H)
40 � 15 � 10 �

4 �

8 A
i2 i3

L2 (20 H)
4 A

t � 0
v(t)

�

�

Figure 7.8 � The circuit for Example 7.2.
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Objective 1—Be able to determine the natural response of both RL and RC circuits

A S S E S S M E N T  P R O B L E M S

7.1 The switch in the circuit shown has been closed
for a long time and is opened at 

a) Calculate the initial value of i.

b) Calculate the initial energy stored in the
inductor.

c) What is the time constant of the circuit for

d) What is the numerical expression for for

e) What percentage of the initial energy stored
has been dissipated in the resistor 5 ms
after the switch has been opened?

�

�
120 V 30 � 2 �8 mH

6 �
t � 0

i

3 �

2 Æ

t Ú 0?
i(t)

t 7 0?

t = 0.
Answer: (a)

(b) 625 mJ;

(c) 4 ms;

(d)

(e) 91.8%.

7.2 At the switch in the circuit shown moves
instantaneously from position a to position b.

a) Calculate for 

b) What percentage of the initial energy stored
in the inductor is eventually dissipated in
the resistor?

Answer: (a)

(b) 80%.

-8e-10t V, t Ú 0;

6.4 A
t � 0

a

b

vo 10 � 0.32 H 4 �

6 �
�

�

4 Æ

t Ú 0+.vo

t = 0,

-12.5e-250tA, t Ú 0;

-12.5 A;

NOTE: Also try Chapter Problems 7.3, 7.8, and 7.9.

7.2 The Natural Response
of an RC Circuit

As mentioned in Section 7.1, the natural response of an RC circuit is anal-
ogous to that of an RL circuit. Consequently, we don’t treat the RC circuit
in the same detail as we did the RL circuit.

The natural response of an RC circuit is developed from the circuit
shown in Fig. 7.10. We begin by assuming that the switch has been in 
position a for a long time, allowing the loop made up of the dc voltage
source the resistor and the capacitor C to reach a steady-state 
condition. Recall from Chapter 6 that a capacitor behaves as an open cir-
cuit in the presence of a constant voltage. Thus the voltage source cannot
sustain a current, and so the source voltage appears across the capacitor
terminals. In Section 7.3, we will discuss how the capacitor voltage actually
builds to the steady-state value of the dc voltage source, but for now the
important point is that when the switch is moved from position a to posi-
tion b (at ), the voltage on the capacitor is Because there can be
no instantaneous change in the voltage at the terminals of a capacitor, the
problem reduces to solving the circuit shown in Fig. 7.11.

Vg.t = 0

R1,Vg,

�

� C

a b

t � 0
Vg R

R1

Figure 7.10 � An RC circuit.

C iv RVg

�

�

�

�

Figure 7.11 � The circuit shown in Fig. 7.10, after
switching.
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Deriving the Expression for the Voltage
We can easily find the voltage by thinking in terms of node voltages.
Using the lower junction between R and C as the reference node and sum-
ming the currents away from the upper junction between R and C gives

(7.21)

Comparing Eq. 7.21 with Eq. 7.1 shows that the same mathematical tech-
niques can be used to obtain the solution for We leave it to you to
show that

(7.22)

As we have already noted, the initial voltage on the capacitor equals the
voltage source voltage or

(7.23)

where denotes the initial voltage on the capacitor.The time constant for
the RC circuit equals the product of the resistance and capacitance,
namely,

(7.24)

Substituting Eqs. 7.23 and 7.24 into Eq. 7.22 yields

(7.25)

which indicates that the natural response of an RC circuit is an exponen-
tial decay of the initial voltage. The time constant RC governs the rate of
decay. Figure 7.12 shows the plot of Eq. 7.25 and the graphic interpreta-
tion of the time constant.

After determining we can easily derive the expressions for i, p,
and :

(7.26)

(7.27)

(7.28) =

1
2

CV0
2(1 - e-2t>t), t Ú 0.

 w =

L

t

0
p dx =

L

t

0

V0
2

R
e-2x>t

 dx

 p = vi =

V0
2

R
e-2t>t, t Ú 0+,

 i(t) =

v(t)
R

=

V0

R
e-t>t, t Ú 0+,

w
v(t),

v(t) = V0e
-t>t, t Ú 0,

t = RC.

V0

v(0-) = v(0) = v(0+) = Vg = V0,

Vg,

v(t) = v(0)e-t>RC, t Ú 0.

v(t).

C 
dv

dt
+

v

R
= 0.

v(t)

� Natural response of an RC circuit

0 �

V0

v(t)

t

v(t) �V0 � tV0
t

v(t) = V0e
�t/t

Figure 7.12 � The natural response of an RC circuit.

� Initial capacitor voltage

� Time constant for RC circuit



Calculating the natural response of an RC circuit can be summarized
as follows:

1. Find the initial voltage, across the capacitor.
2. Find the time constant of the circuit,
3. Use Eq. 7.25, to generate from and 

All other calculations of interest follow from knowing 
Examples 7.3 and 7.4 illustrate the numerical calculations associated with
the natural response of an RC circuit.

v(t).

t.V0v(t)v(t) = V0e
-t>t,

t = RC.
V0,

222 Response of First-Order RL and RC Circuits

Calculating the natural response of an 
RC circuit �

Example 7.3 Determining the Natural Response of an RC Circuit

The switch in the circuit shown in Fig. 7.13 has been
in position x for a long time. At the switch
moves instantaneously to position y. Find

a)

b)

c) and

d) the total energy dissipated in the resistor.

Figure 7.13 � The circuit for Example 7.3.

Solution

a) Because the switch has been in position x for a
long time, the capacitor will charge to
100 V and be positive at the upper terminal. We
can replace the resistive network connected to
the capacitor at with an equivalent resist-
ance of . Hence the time constant of the
circuit is or 40 ms. Then,

vC(t) = 100e-25t V,  t Ú 0.

(0.5 * 10-6)(80 * 103)
80 kÆ

t = 0+

0.5 mF

�

�

�

�

�

�
100 V vo

vC0.5 mF

io
x y

t � 0

240 k� 60 k�

10 k� 32 k�

60 kÆ

io(t) for t Ú 0+ ,

vo(t) for t Ú 0+ ,

vC(t) for t Ú 0,

t = 0,
b) The easiest way to find is to note that the

resistive circuit forms a voltage divider across
the terminals of the capacitor. Thus

This expression for is valid for 
because is zero.Thus we have an instanta-
neous change in the voltage across the 
resistor.

c) We find the current from Ohm’s law:

d) The power dissipated in the resistor is60 kÆ

io(t) =

vo(t)

60 * 103 = e-25t mA,  t Ú 0+.

io(t)

240 kÆ

vo(0-)
t Ú 0+vo(t)

vo(t) =

48
80

vC(t) = 60e-25t V,  t Ú 0+.

vo(t)

p60kÆ
(t) = io

2(t)(60 * 103) = 60e-50t
 mW,  t Ú 0+.

The total energy dissipated is

w60kÆ
=

L

q

0
io
2(t)(60 * 103) dt = 1.2 mJ.
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Example 7.4 Determining the Natural Response of an RC Circuit with Series Capacitors

The initial voltages on capacitors and in the
circuit shown in Fig. 7.14 have been established by
sources not shown. The switch is closed at 

a) Find and for and for

b) Calculate the initial energy stored in the capaci-
tors and 

c) Determine how much energy is stored in the
capacitors as 

d) Show that the total energy delivered to the
resistor is the difference between the

results obtained in (b) and (c).

Solution
a) Once we know we can obtain the current 

from Ohm’s law. After determining we can
calculate and because the voltage across
a capacitor is a function of the capacitor current.
To find we replace the series-connected
capacitors with an equivalent capacitor. It has a
capacitance of and is charged to a voltage of
20 V. Therefore, the circuit shown in Fig. 7.14
reduces to the one shown in Fig. 7.15, which
reveals that the initial value of is 20 V, and that
the time constant of the circuit is 
or 1 s.Thus the expression for is

The current is

Knowing we calculate the expressions for
and 

b) The initial energy stored in is

The initial energy stored in is

w2 =

1
2

(20 * 10-6)(576) = 5760 mJ.

C2

w1 =

1
2

(5 * 10-6)(16) = 40 mJ.

C1

 = (4e-t
+ 20) V, t Ú 0.

 v2(t) = -

106

20 L

t

0
80 * 10-6e-x

 dx + 24

 = (16e-t
- 20) V, t Ú 0,

 v1(t) = -

106

5 L

t

0
80 * 10-6e-x

 dx - 4

v2(t):v1(t)
i(t),

i(t) =

v(t)
250,000

= 80e-t mA,  t Ú 0+.

i(t)

v(t) = 20e-t V,  t Ú 0.

v(t)
(4)(250) * 10-3,

v(t)

4 mF

v(t),

v2(t)v1(t)
i(t),

i(t)v(t),

250 kÆ

t : q .

C2.C1

t Ú 0+.
i(t)t Ú 0v(t)v1(t), v2(t),

t = 0.

C2C1

Figure 7.14 � The circuit for Example 7.4.

Figure 7.15 � A simplification of the circuit shown in Fig. 7.14.

The total energy stored in the two capacitors is

c) As 

Therefore the energy stored in the two capaci-
tors is

d) The total energy delivered to the resistor is

Comparing the results obtained in (b) and (c)
shows that

The energy stored in the equivalent capacitor in
Fig. 7.15 is or Because
this capacitor predicts the terminal behavior of
the original series-connected capacitors, the
energy stored in the equivalent capacitor is the
energy delivered to the resistor.250 kÆ

800 mJ.1
2(4 * 10-6)(400),

800 mJ = (5800 - 5000) mJ.

w =

L

q

0
pdt =

L

q

0

400e-2t

250,000
 dt = 800 mJ.

250 kÆ

wq =

1
2

(5 + 20) * 10-6(400) = 5000 mJ.

v1 : -20 V and v2 : +20 V.

t : q ,

wo = 40 + 5760 = 5800 mJ.

�

�

4 mF
i(t)

t � 0

v(t)
250 k�

20 V

�

�

t � 0
C1 (5 mF) v1(t)

v(t)

v2(t)

i(t)

4 V

�

�

C2 (20 mF)24 V

250 k�

�

�

�

�

�

�

�

�
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Objective 1—Be able to determine the natural response of both RL and RC circuits

7.3 The switch in the circuit shown has been closed
for a long time and is opened at Find

a) the initial value of ,

b) the time constant for ,

c) the numerical expression for after the
switch has been opened,

d) the initial energy stored in the capacitor, and

e) the length of time required to dissipate 75%
of the initially stored energy.

Answer: (a) 200 V;

(b) 20 ms;

(c)

(d) 8 mJ;

(e) 13.86 ms.

200e-50t 
 V,  t Ú 0;

�

�

7.5 mA v(t)0.4 mF80 k� 50 k�

20 k� t � 0

v(t)

t 7 0

v(t)

t = 0.
7.4 The switch in the circuit shown has been closed

for a long time before being opened at 

a) Find for 

b) What percentage of the initial energy stored
in the circuit has been dissipated after the
switch has been open for 60 ms?

Answer: (a)

(b) 81.05%.

8e-25t
+ 4e-10t 

 V,  t Ú 0;

40 k�vo(t)

t � 0

�

�

15 V

15 k� 20 k�

�

�
1 mF

5 mF

t Ú 0.vo(t)

t = 0.

NOTE: Also try Chapter Problems 7.23 and 7.25.

7.3 The Step Response of RL
and RC Circuits

We are now ready to discuss the problem of finding the currents and volt-
ages generated in first-order RL or RC circuits when either dc voltage or
current sources are suddenly applied. The response of a circuit to the sud-
den application of a constant voltage or current source is referred to as the
step response of the circuit. In presenting the step response, we show how
the circuit responds when energy is being stored in the inductor or capac-
itor. We begin with the step response of an RL circuit.

The Step Response of an RL Circuit
To begin, we modify the first-order circuit shown in Fig. 7.2(a) by adding a
switch. We use the resulting circuit, shown in Fig. 7.16, in developing the
step response of an RL circuit. Energy stored in the inductor at the time
the switch is closed is given in terms of a nonzero initial current The
task is to find the expressions for the current in the circuit and for the volt-
age across the inductor after the switch has been closed. The procedure is
the same as that used in Section 7.1; we use circuit analysis to derive the

i(0).

A S S E S S M E N T  P R O B L E M S

�

�

Vs

�

�

R

t � 0
i L v(t)

Figure 7.16 � A circuit used to illustrate the step
response of a first-order RL circuit.
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differential equation that describes the circuit in terms of the variable of
interest, and then we use elementary calculus to solve the equation.

After the switch in Fig. 7.16 has been closed, Kirchhoff’s voltage law
requires that

(7.29)

which can be solved for the current by separating the variables i and t and
then integrating. The first step in this approach is to solve Eq. 7.29 for the
derivative 

(7.30)

Next, we multiply both sides of Eq. 7.30 by a differential time dt. This step
reduces the left-hand side of the equation to a differential change in the
current. Thus

(7.31)

or

We now separate the variables in Eq. 7.31 to get

(7.32)

and then integrate both sides of Eq. 7.32. Using x and y as variables for the
integration, we obtain

(7.33)

where is the current at and is the current at any 
Performing the integration called for in Eq. 7.33 generates the expression

(7.34)

from which

or

(7.35)

When the initial energy in the inductor is zero, is zero. Thus Eq. 7.35
reduces to

(7.36)

Equation 7.36 indicates that after the switch has been closed, the cur-
rent increases exponentially from zero to a final value of The time
constant of the circuit, determines the rate of increase. One timeL>R,

Vs>R.

i(t) =

Vs

R
-

Vs

R
e-(R>L)t.

I0

i(t) =

Vs

R
+ aI0 -

Vs

R
be-(R>L)t.

i(t) - (Vs>R)

I0 - (Vs>R)
= e-(R>L)t,

ln 
i(t) - (Vs>R)

I0 - (Vs>R)
=

-R

L
 t,

t 7 0.i(t)t = 0I0

L

i(t)

I0

dx

x - (Vs>R)
=

-R

L L

t

0
dy,

di

i - (Vs>R)
=

-R

L
 dt,

di =

-R

L
a i -

Vs

R
b  dt.

di

dt
dt =

-R

L
a i -

Vs

R
b  dt,

di

dt
=

-Ri + Vs

L
=

-R

L
a i -

Vs

R
b .

di>dt:

Vs = Ri + L 
di

dt
 ,

� Step response of RL circuit
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constant after the switch has been closed, the current will have reached
approximately 63% of its final value, or

(7.37)

If the current were to continue to increase at its initial rate, it would reach
its final value at that is, because

(7.38)

the initial rate at which increases is

(7.39)

If the current were to continue to increase at this rate, the expression for i
would be

(7.40)

from which, at 

(7.41)

Equations 7.36 and 7.40 are plotted in Fig. 7.17. The values given by
Eqs. 7.37 and 7.41 are also shown in this figure.

The voltage across an inductor is so from Eq. 7.35, for 

(7.42)

The voltage across the inductor is zero before the switch is closed.
Equation 7.42 indicates that the inductor voltage jumps to at
the instant the switch is closed and then decays exponentially to zero.

Does the value of at make sense? Because the initial current
is and the inductor prevents an instantaneous change in current, the
current is in the instant after the switch has been closed. The voltage
drop across the resistor is and the voltage impressed across the induc-
tor is the source voltage minus the voltage drop, that is,

When the initial inductor current is zero, Eq. 7.42 simplifies to

(7.43)

If the initial current is zero, the voltage across the inductor jumps to We
also expect the inductor voltage to approach zero as t increases, because the
current in the circuit is approaching the constant value of Figure 7.18
shows the plot of Eq. 7.43 and the relationship between the time constant
and the initial rate at which the inductor voltage is decreasing.

Vs>R.

Vs.

v = Vs e
-(R>L)t.

Vs - I0R.
I0R,

I0

I0

t = 0+v

Vs - I0R

v = La -R

L
b aI0 -

Vs

R
be-(R>L)t

= (Vs - I0R)e-(R>L)t.

t Ú 0+,Ldi>dt,

i =

Vs

L
 
L

R
=

Vs

R
.

t = t,

i =

Vs

L
 t,

di

dt
(0) =

Vs

L
.

i(t)

di

dt
=

-Vs

R
a -1
t
be-t>t

=

Vs

L
e-t>t,

t = t;

i(t) =

Vs

R
-

Vs

R
e-1

L 0.6321
Vs

R
 .

t
0

i(t)

0.632

5432

i(t) � t
Vs

L

i(t) �
Vs

R
Vs

R

Vs
R

Vs

R

� e�t/

Figure 7.17 � The step response of the RL circuit
shown in Fig. 7.16 when I0 = 0.

R
L

t
0

v � Vs �

v � Vse
�(R/L)t

Vs

v

0.368 Vs

5432

Vs t

Figure 7.18 � Inductor voltage versus time.
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Example 7.5 Determining the Step Response of an RL Circuit

The switch in the circuit shown in Fig. 7.19 has been
in position a for a long time. At the switch
moves from position a to position b. The switch is a
make-before-break type; that is, the connection at
position b is established before the connection at
position a is broken, so there is no interruption of
current through the inductor.

a) Find the expression for for 

b) What is the initial voltage across the inductor just
after the switch has been moved to position b?

c) How many milliseconds after the switch has been
moved does the inductor voltage equal 24 V?

d) Does this initial voltage make sense in terms of
circuit behavior?

e) Plot both and versus t.

Figure 7.19 � The circuit for Example 7.5.

Solution

a) The switch has been in position a for a long time,
so the 200 mH inductor is a short circuit across
the 8 A current source. Therefore, the inductor
carries an initial current of 8 A. This current is
oriented opposite to the reference direction for i;
thus is When the switch is in position b,
the final value of i will be , or 12 A. The time
constant of the circuit is , or 100 ms.
Substituting these values into Eq. 7.35 gives

 = 12 - 20e-10t A, t Ú 0.

 i = 12 + (-8 - 12)e-t>0.1

200>224>2-8 A.I0

2 �

10 �
200 mH

ab

8 A
i

�

�

v

t � 0

24 V
�

�

v(t)i(t)

t Ú 0.i(t)

t = 0,
b) The voltage across the inductor is

The initial inductor voltage is

c) Yes; in the instant after the switch has been
moved to position b, the inductor sustains a cur-
rent of 8 A counterclockwise around the newly
formed closed path. This current causes a 16 V
drop across the resistor. This voltage drop
adds to the drop across the source, producing a
40 V drop across the inductor.

d) We find the time at which the inductor voltage
equals 24 V by solving the expression

for t:

e) Figure 7.20 shows the graphs of and versus
t. Note that the instant of time when the current
equals zero corresponds to the instant of time
when the inductor voltage equals the source volt-
age of 24 V, as predicted by Kirchhoff’s voltage law.

Figure 7.20 � The current and voltage waveforms for
Example 7.5.

�8

i(A)v(V)

v i

100 200 300 400 500
t (ms)

8
16
24
32
40

�4

4
8

12

v(t)i(t)

 = 51.08 ms.

 = 51.08 * 10-3

 t =

1
10

 ln 
40
24

24 = 40e-10t

2 Æ

v(0+) = 40 V.

 = 40e-10t V, t Ú 0+.

 = 0.2(200e-10t)

 v = L 
di

dt

If there is an initial current in the inductor, Eq. 7.35 gives the solution
for it. The algebraic sign of is positive if the initial current is in the same
direction as i; otherwise, carries a negative sign. Example 7.5 illustrates
the application of Eq. 7.35 to a specific circuit.

I0

I0
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Objective 2—Be able to determine the step response of both RL and RC circuits

7.5 Assume that the switch in the circuit shown in
Fig. 7.19 has been in position b for a long time,
and at it moves to position a. Find
(a) (b) (c) (d) 
and (e) t Ú 0+.v(t),

t Ú 0;i(t),t 7 0;t,v(0+);i(0+);
t = 0

Answer: (a) 12 A;
(b)
(c) 20 ms;
(d)
(e) t Ú 0+.-200e-50t V,

t Ú 0;-8 + 20e-50t A,

-200 V;

NOTE: Also try Chapter Problems 7.35–7.37.

We can also describe the voltage across the inductor in Fig. 7.16
directly, not just in terms of the circuit current.We begin by noting that the
voltage across the resistor is the difference between the source voltage
and the inductor voltage. We write

(7.44)

where is a constant. Differentiating both sides with respect to time yields

(7.45)

Then, if we multiply each side of Eq. 7.45 by the inductance L, we get an
expression for the voltage across the inductor on the left-hand side, or

(7.46)

Putting Eq. 7.46 into standard form yields

(7.47)

You should verify (in Problem 7.38) that the solution to Eq. 7.47 is identi-
cal to that given in Eq. 7.42.

At this point, a general observation about the step response of an
RL circuit is pertinent. (This observation will prove helpful later.) When
we derived the differential equation for the inductor current, we obtained
Eq. 7.29. We now rewrite Eq. 7.29 as

(7.48)

Observe that Eqs. 7.47 and 7.48 have the same form. Specifically, each
equates the sum of the first derivative of the variable and a constant times
the variable to a constant value. In Eq. 7.47, the constant on the right-hand
side happens to be zero; hence this equation takes on the same form as the
natural response equations in Section 7.1. In both Eq. 7.47 and Eq. 7.48,
the constant multiplying the dependent variable is the reciprocal of the
time constant, that is, We encounter a similar situation in the
derivations for the step response of an RC circuit. In Section 7.4, we will
use these observations to develop a general approach to finding the natu-
ral and step responses of RL and RC circuits.

R>L = 1>t.

di

dt
+

R

L
 i =

Vs

L
.

dv

dt
+

R

L
 v = 0.

v = -  
L

R
 
dv

dt
.

 
di

dt
= -

1
R

 
dv

dt
.

Vs

 i(t) =

Vs

R
-

v(t)
R

 ,

v(t)
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RIs

i
C vC

�

�

t � 0

Figure 7.21 � A circuit used to illustrate the step
response of a first-order RC circuit.

The Step Response of an RC Circuit
We can find the step response of a first-order RC circuit by analyzing the
circuit shown in Fig. 7.21. For mathematical convenience, we choose the
Norton equivalent of the network connected to the equivalent capacitor.
Summing the currents away from the top node in Fig. 7.21 generates the
differential equation

(7.49)

Division of Eq. 7.49 by C gives

(7.50)

Comparing Eq. 7.50 with Eq. 7.48 reveals that the form of the solution for
is the same as that for the current in the inductive circuit, namely,

Eq. 7.35. Therefore, by simply substituting the appropriate variables and
coefficients, we can write the solution for directly. The translation
requires that replace C replace L, replace R, and replace 
We get

(7.51)

A similar derivation for the current in the capacitor yields the differential
equation

(7.52)

Equation 7.52 has the same form as Eq. 7.47, hence the solution for i is
obtained by using the same translations used for the solution of
Eq. 7.50. Thus

(7.53)

where is the initial value of the voltage across the capacitor.
We obtained Eqs. 7.51 and 7.53 by using a mathematical analogy to

the solution for the step response of the inductive circuit. Let’s see
whether these solutions for the RC circuit make sense in terms of
known circuit behavior. From Eq. 7.51, note that the initial voltage
across the capacitor is the final voltage across the capacitor is 
and the time constant of the circuit is RC. Also note that the solution
for is valid for These observations are consistent with the
behavior of a capacitor in parallel with a resistor when driven by a con-
stant current source.

Equation 7.53 predicts that the current in the capacitor at is
This prediction makes sense because the capacitor voltage can-

not change instantaneously, and therefore the initial current in the resistor
is The capacitor branch current changes instantaneously from zero
at to at The capacitor current is zero at 
Also note that the final value of 

Example 7.6 illustrates how to use Eqs. 7.51 and 7.53 to find the step
response of a first-order RC circuit.

v = IsR.
t = q .t = 0+.Is - V0>Rt = 0-

V0>R.

Is - V0>R.
t = 0+

t Ú 0.vC

IsR,V0,

vC,V0

i = aIs -

V0

R
be-t>RC,  t Ú 0+,

di

dt
+

1
RC

i = 0.

vC = IsR + (V0 - IsR)e-t>RC, t Ú 0.

I0.V01>RVs,Is

vC

vC

dvC

dt
+

vC

RC
=

Is

C
.

C
dvC

dt
+

vC

R
= Is.

� Step response of an RC circuit
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Example 7.6 Determining the Step Response of an RC Circuit

The switch in the circuit shown in Fig. 7.22 has been
in position 1 for a long time. At the switch
moves to position 2. Find

a) for and

b) for .

Solution

a) The switch has been in position 1 for a long time,
so the initial value of is or 30 V. To
take advantage of Eqs. 7.51 and 7.53, we find the
Norton equivalent with respect to the terminals
of the capacitor for To do this, we begin by
computing the open-circuit voltage, which is
given by the source divided across the

and resistors:

Next, we calculate the Thévenin resistance, as
seen to the right of the capacitor, by shorting the

source and making series and parallel
combinations of the resistors:

RTh = 8000 + 40,000 7  160,000 = 40 kÆ

-75 V

Voc =

160 * 103

(40 + 160) * 103 (-75) = -60 V.

160 kÆ40 kÆ

-75 V

t Ú 0.

40(60>80),vo

t Ú 0+io(t)

t Ú 0vo(t)

t = 0,
The value of the Norton current source is the
ratio of the open-circuit voltage to the Thévenin
resistance, or The
resulting Norton equivalent circuit is shown in
Fig. 7.23. From Fig. 7.23, and

We have already noted that
so the solution for is

b) We write the solution for directly from
Eq. 7.53 by noting that and

or 0.75 mA:

We check the consistency of the solutions for 
and by noting that

Because the expression for 
clearly is valid only for 

Figure 7.23 � The equivalent circuit for 0 for the circuit
shown in Fig. 7.22.

t 7

1.5 mA0.25 mF 40 k�30 V
�

�

t Ú 0+.
iodvo(0-)>dt = 0,

 = -2.25e-100t mA.

 io = C 

dvo

dt
= (0.25 * 10-6)(-9000e-100t)

io

vo

io = -2.25e-100t mA, t Ú 0+.

Vo>R = (30>40) * 10-3,
Is = -1.5 mA

io

 = -60 + 90e-100t 
 V, t Ú 0.

 vo = -60 + [30 - (-60)]e-100t

vovo(0) = 30 V,
RC = 10 ms.

IsR = -60 V

-60>(40 * 103) = -1.5 mA.

40 V 60 k� 160 k� 75 V
io

�

�
0.25 mF vo

t � 0
20 k� 8 k� 40 k�

�

�

�

�

1 2

Figure 7.22 � The circuit for Example 7.6.
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Objective 2—Be able to determine the step response of both RL and RC circuits

7.6 a) Find the expression for the voltage across
the resistor in the circuit shown in
Fig. 7.22. Let this voltage be denoted and
assume that the reference polarity for the
voltage is positive at the upper terminal of
the resistor.160 kÆ

vA,
160 kÆ

b) Specify the interval of time for which the
expression obtained in (a) is valid.

Answer: (a)

(b) t Ú 0+.

-60 + 72e-100t V;

NOTE: Also try Chapter Problems 7.53 and 7.54.

A S S E S S M E N T  P R O B L E M

7.4 A General Solution for Step 
and Natural Responses

The general approach to finding either the natural response or the step
response of the first-order RL and RC circuits shown in Fig. 7.24 is based
on their differential equations having the same form (compare Eq. 7.48
and Eq. 7.50). To generalize the solution of these four possible circuits, we
let represent the unknown quantity, giving four possible values. It
can represent the current or voltage at the terminals of an inductor or the
current or voltage at the terminals of a capacitor. From Eqs. 7.47, 7.48,
7.50, and 7.52, we know that the differential equation describing any one
of the four circuits in Fig. 7.24 takes the form

(7.54)

where the value of the constant K can be zero. Because the sources in the
circuit are constant voltages and/or currents, the final value of x will be
constant; that is, the final value must satisfy Eq. 7.54, and, when x reaches
its final value, the derivative must be zero. Hence

(7.55)

where represents the final value of the variable.
We solve Eq. 7.54 by separating the variables, beginning by solving for

the first derivative:

(7.56)
dx

dt
=

-x
t

+ K =

-(x - Kt)
t

=

-(x - xf)

t
.

xf

xf = Kt,

dx>dt

dx

dt
+

x
t

= K,

x(t)x(t)

(d)

RTh

i
VTh

RTh
C v

�

�

(b)

LRTh v

�

�

i
VTh

RTh

(c)

RTh

i
C v

�

�

�

�
VTh

(a)

L
i

�

�
VTh

RTh

v

�

�

Figure 7.24 � Four possible first-order circuits. 
(a) An inductor connected to a Thévenin equivalent. 
(b) An inductor connected to a Norton equivalent. 
(c) A capacitor connected to a Thévenin equivalent. 
(d) A capacitor connected to a Norton equivalent.
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Calculating the natural or step response of
RL or RC circuits �

2 The expressions and are analogous to and Thus is the limit of as 
from the left, and is the limit of as from the right.t : t0x(t)x(t0

+)
t : t0x(t)x(t0

-)0+.0-t0
+t0

-

General solution for natural and step
responses of RL and RC circuits �

In writing Eq. 7.56, we used Eq. 7.55 to substitute for We now mul-
tiply both sides of Eq. 7.56 by dt and divide by to obtain

(7.57)

Next, we integrate Eq. 7.57. To obtain as general a solution as possible, we
use time as the lower limit and t as the upper limit. Time corresponds
to the time of the switching or other change. Previously we assumed that

but this change allows the switching to take place at any time.
Using u and as symbols of integration, we get

(7.58)

Carrying out the integration called for in Eq. 7.58 gives

(7.59)

The importance of Eq. 7.59 becomes apparent if we write it out in words:

(7.60)

In many cases, the time of switching—that is, —is zero.
When computing the step and natural responses of circuits, it may

help to follow these steps:

1. Identify the variable of interest for the circuit. For RC circuits, it is
most convenient to choose the capacitive voltage; for RL circuits,
it is best to choose the inductive current.

2. Determine the initial value of the variable, which is its value at .
Note that if you choose capacitive voltage or inductive current as
your variable of interest, it is not necessary to distinguish between

and 2 This is because they both are continuous vari-
ables. If you choose another variable, you need to remember that
its initial value is defined at 

3. Calculate the final value of the variable, which is its value as 
4. Calculate the time constant for the circuit.

With these quantities, you can use Eq. 7.60 to produce an equation
describing the variable of interest as a function of time. You can then find
equations for other circuit variables using the circuit analysis techniques
introduced in Chapters 3 and 4 or by repeating the preceding steps for the
other variables.

Examples 7.7–7.9 illustrate how to use Eq. 7.60 to find the step
response of an RC or RL circuit.

t : q .
t = t0

+.

t = t0
+.t = t0

-

t0

t0

- [t - (time of switching)]
(time constant) + C

the initial
value of the

variable
-

the final
value of the

variable
S * e

 
the unknown
variable as a

function of time
=

the final
value of the

variable

x(t) = xf + [x(t0) - xf ]e
-(t - t0)>t.

L

x(t)

x(t0)

du
u - xf

= -

1
tL

t

t0

dv.

v
t0 = 0,

t0t0

dx
x - xf

=

-1
t

 dt.

x - xf

Kt.xf
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Example 7.7 Using the General Solution Method to Find an RC Circuit’s Step Response

The switch in the circuit shown in Fig. 7.25 has been
in position a for a long time. At the switch is
moved to position b.

a) What is the initial value of ?

b) What is the final value of ?

c) What is the time constant of the circuit when the
switch is in position b?

d) What is the expression for when 

e) What is the expression for when 

f) How long after the switch is in position b does
the capacitor voltage equal zero?

g) Plot and versus t.

Solution

a) The switch has been in position a for a long time,
so the capacitor looks like an open circuit.
Therefore the voltage across the capacitor is the
voltage across the resistor. From the voltage-
divider rule, the voltage across the resistor
is , or 30 V. As the refer-
ence for is positive at the upper terminal of
the capacitor, we have 

b) After the switch has been in position b for a long
time, the capacitor will look like an open circuit
in terms of the 90 V source. Thus the final value
of the capacitor voltage is 

c) The time constant is

d) Substituting the appropriate values for 
and t into Eq. 7.60 yields

e) Here the value for doesn’t change. Thus we
need to find only the initial and final values for
the current in the capacitor. When obtaining the
initial value, we must get the value of 
because the current in the capacitor can change
instantaneously. This current is equal to the cur-
rent in the resistor, which from Ohm’s law is

Note that
when applying Ohm’s law we recognized that the
[90 - (-30)]>(400 * 103) = 300 mA.

i(0+),

t

 = 90 - 120e-5t V, t Ú 0.

 vC(t) = 90 + (-30 - 90)e-5t

vf, v(0),

 = 0.2 s.

 = (400 * 103)(0.5 * 10-6)

 t = RC

+ 90 V.

vC(0) =  -30 V.
vC

40 * [60>(60 +  20)]
60 Æ

60 Æ

i(t)vC(t)

t Ú 0+?i(t)

t Ú 0?vC(t)

vC

vC

t = 0

Figure 7.25 � The circuit for Example 7.7.

capacitor voltage cannot change instantaneously.
The final value of so

We could have obtained this solution by dif-
ferentiating the solution in (d) and multiplying by
the capacitance. You may want to do so for your-
self. Note that this alternative approach to finding

also predicts the discontinuity at 

f) To find how long the switch must be in position b
before the capacitor voltage becomes zero, we
solve the equation derived in (d) for the time
when :

so

Note that when and the
voltage drop across the resistor is 90 V.

g) Figure 7.26 shows the graphs of and 
versus t.

Figure 7.26 � The current and voltage waveforms for
Example 7.7.

20

�20
0

40
60
80

100
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50
100
150
200
250
300

�30

vC

vC (V)i (mA)

i

200 400 600 800
t (ms)

i(t)vC(t)

400 kÆ

i = 225 mAvC = 0,

 = 57.54 ms.

 t =

1
5

 ln a4
3
b

120e-5t
= 90 or e5t

=

120
90

,

vC(t) = 0

t = 0.i(t)

 = 300e-5t mA, t Ú 0+.

 i(t) = 0 + (300 - 0)e-5t

i(t) = 0,

60 �
0.5 mF

t � 0

400 k� 20 �

i
�

�

vC

b a

90 V

�

�

40 V

�

�
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Example 7.8 Using the General Solution Method with Zero Initial Conditions

The switch in the circuit shown in Fig. 7.27 has been
open for a long time. The initial charge on the
capacitor is zero. At the switch is closed. Find
the expression for

a) and

b) .

Figure 7.27 � The circuit for Example 7.8.

Solution

a) Because the initial voltage on the capacitor is
zero, at the instant when the switch is closed the
current in the branch will be

The final value of the capacitor current will be
zero because the capacitor eventually will 
appear as an open circuit in terms of dc current.
Thus The time constant of the circuit will
equal the product of the Thévenin resistance (as
seen from the capacitor) and the capacitance.

if = 0.

 = 3 mA.

 i(0+) =

(7.5)(20)
50

30 kÆ

20 k�7.5 mA 30 k�
i(t)

v(t)

�

�

t � 0
0.1 mF

v(t) when t Ú 0+

i(t) for t Ú 0+

t = 0,

Therefore 
Substituting these values into Eq. 7.60 generates
the expression

b) To find , we note from the circuit that it
equals the sum of the voltage across the capaci-
tor and the voltage across the resistor. To
find the capacitor voltage (which is a drop in the
direction of the current), we note that its initial
value is zero and its final value is (7.5)(20), or
150 V. The time constant is the same as before, or
5 ms. Therefore we use Eq. 7.60 to write

Hence the expression for the voltage is

As one check on this expression, note that it pre-
dicts the initial value of the voltage across the

resistor as or 90 V. The instant
the switch is closed, the current in the 
resistor is (7.5)( ), or 4.5 mA. This current
produces a 90 V drop across the resistor,
confirming the value predicted by the solution.

20 kÆ

30>50
20 kÆ

150 - 60,20 Æ

 = (150 - 60e-200t) V, t Ú 0+.

 v(t) = 150 - 150e-200t
+ (30)(3)e-200t

v(t)

 = (150 - 150e-200t) V, t Ú 0.

 vC(t) = 150 + (0 - 150)e-200t

30 kÆ

v(t)

 = 3e-200t mA, t Ú 0+.

 i(t) = 0 + (3 - 0)e-t>5 *10-3

*  10-6
= 5 ms.(20 + 30)103(0.1)t =

Example 7.9 Using the General Solution Method to Find an RL Circuit’s Step Response

The switch in the circuit shown in Fig. 7.28 has been
open for a long time. At the switch is closed.
Find the expression for

a) and

b) .

Figure 7.28 � The circuit for Example 7.9.

i(t)

�

�
20 V 80 mH

1 �

3 �

v(t)

�

�

t � 0

i(t) when t Ú 0

v(t) when t Ú 0+

t = 0
Solution
a) The switch has been open for a long time, so the

initial current in the inductor is 5 A, oriented
from top to bottom. Immediately after the switch
closes, the current still is 5 A, and therefore the
initial voltage across the inductor becomes

or 15 V. The final value of the induc-
tor voltage is 0 V.With the switch closed, the time
constant is , or 80 ms. We use Eq. 7.60 to
write the expression for :

b) We have already noted that the initial value of
the inductor current is 5 A. After the switch has

 = 15e-12.5t V, t Ú 0+.

 v(t) = 0 + (15 - 0)e-t>80 *10-3

v(t)
80>1

20 - 5(1),
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been closed for a long time, the inductor current
reaches , or 20 A.The circuit time constant is
80 ms, so the expression for is

 = (20 - 15e-12.5t) A, t Ú 0.

 i(t) = 20 + (5 - 20)e-12.5t

i(t)
20>1 We determine that the solutions for and 

agree by noting that

 = 15e-12.5t V, t Ú 0+.

 = 80 * 10-3[15(12.5)e-12.5t]

 v(t) = L 
di

dt

i(t)v(t)

NOTE: Assess your understanding of the general solution method by trying Chapter Problems 7.51 and 7.53.

Example 7.10 shows that Eq. 7.60 can even be used to find the step
response of some circuits containing magnetically coupled coils.

Example 7.10 Determining Step Response of a Circuit with Magnetically Coupled Coils

There is no energy stored in the circuit in Fig. 7.29
at the time the switch is closed.

a) Find the solutions for and 

b) Show that the solutions obtained in (a) make
sense in terms of known circuit behavior.

Solution

a) For the circuit in Fig. 7.29, the magnetically cou-
pled coils can be replaced by a single inductor
having an inductance of

(See Problem 6.41.) It follows that the circuit in
Fig. 7.29 can be simplified as shown in Fig. 7.30.

By hypothesis the initial value of is zero.
From Fig. 7.30 we see that the final value of 
will be or 16 A. The time constant of the
circuit is or 0.2 s. It follows directly from
Eq. 7.60 that

The voltage follows from Kirchhoff’s
voltage law. Thus,

To find and we first note from
Fig. 7.29 that

or

 
di1

dt
= -3 

di2

dt
 .

 3 

di1

dt
+ 6 

di2

dt
= 6 

di1

dt
+ 15 

di2

dt

i2i1

 = 120e-5t V, t Ú 0+.

 vo = 120 - 7.5io

vo

io = 16 - 16e-5t A, t Ú 0.

1.5>7.5
120>7.5

io

io

Leq =

L1L2 - M2

L1 + L2 - 2M
=

45 - 36
18 - 12

= 1.5 H.

i2.i1,vo,io,

It also follows from Fig. 7.29 that because

Therefore

Because is zero we have

Using Kirchhoff’s current law we get

b) First we observe that and are all
zero, which is consistent with the statement that

i2(0)i1(0),io(0),

i1 = 24 - 24e-5t A,  t Ú 0.

 = -8 + 8e-5t A,  t Ú 0.

 i2 =

L

t

0
-40e-5x

 dx

i2(0)

80e-5t
= -2 

di2

dt
 .

dio

dt
=

di1

dt
+

di2

dt
 .

io = i1 + i2,

Figure 7.29 � The circuit for Example 7.10.
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3 H

6 H

120 V

t � 0

i1
15 H

i2

�

�

vo

io

Figure 7.30 � The circuit in Fig. 7.29 with the magnetically
coupled coils replaced by an equivalent coil.
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�
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no energy is stored in the circuit at the instant
the switch is closed.

Next we observe which is
consistent with the fact that 

Now we observe the solutions for and 
are consistent with the solution for by

observing

or

The final values of and can be checked
using flux linkages. The flux linking the 3 H coil

must be equal to the flux linking the 15 H
coil , because

Now

and

l2 = 6i1 + 15i2 Wb-turns.

l1 = 3i1 + 6i2 Wb-turns

 =

dl2

dt
.

 vo =

dl1

dt

(l2)
(l1)

i2i1

 = 120e-5t V,  t Ú 0+.

 = 720e-5t
- 600e-5t

 vo = 6 

di1

dt
+ 15 

di2

dt

 = 120e-5t V,  t Ú 0+,

 = 360e-5t
- 240e-5t

 vo = 3 

di1

dt
+ 6 

di2

dt

voi2

i1

io(0) = 0.
vo(0+) = 120 V,
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Regardless of which expression we use, we
obtain

Note the solution for or is consistent with
the solution for 

The final value of the flux linking either
coil 1 or coil 2 is 24 Wb-turns, that is,

The final value of is

and the final value of is

The consistency between these final values
for and and the final value of the flux link-
age can be seen from the expressions:

It is worth noting that the final values of 
and can only be checked via flux linkage
because at the two coils are ideal short
circuits. The division of current between ideal
short circuits cannot be found from Ohm’s law.

t = q

i2

i1

 = 6(24) + 15(-8) = 24 Wb-turns.

 l2(q) = 6i1(q) + 15i2(q)

 = 3(24) + 6(-8) = 24 Wb-turns,

 l1(q) = 3i1(q) + 6i2(q)

i2i1

i2(q) = -8 A.

i2

i1(q) = 24 A 

i1

l1(q) = l2(q) = 24 Wb-turns.

vo.
l2l1

l1 = l2 = 24 - 24e-5t  Wb-turns.

NOTE: Assess your understanding of this material by using the general solution method to solve Chapter
Problems 7.68 and 7.71.

7.5 Sequential Switching
Whenever switching occurs more than once in a circuit, we have sequential
switching. For example, a single, two-position switch may be switched back
and forth, or multiple switches may be opened or closed in sequence. The
time reference for all switchings cannot be We determine the volt-
ages and currents generated by a switching sequence by using the tech-
niques described previously in this chapter. We derive the expressions for

and for a given position of the switch or switches and then use
these solutions to determine the initial conditions for the next position of
the switch or switches.

With sequential switching problems, a premium is placed on obtaining
the initial value Recall that anything but inductive currents and
capacitive voltages can change instantaneously at the time of switching.
Thus solving first for inductive currents and capacitive voltages is even
more pertinent in sequential switching problems. Drawing the circuit that
pertains to each time interval in such a problem is often helpful in the
solution process.

x(t0).

i(t)v(t)

t = 0.
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The two switches in the circuit shown in Fig. 7.31
have been closed for a long time. At switch 1
is opened. Then, 35 ms later, switch 2 is opened.

a) Find 

b) Find 

c) What percentage of the initial energy stored in
the 150 mH inductor is dissipated in the 
resistor?

d) Repeat (c) for the resistor.

e) Repeat (c) for the resistor.

Figure 7.31 � The circuit for Example 7.11.

Solution

a) For both switches are closed, causing the
150 mH inductor to short-circuit the resis-
tor.The equivalent circuit is shown in Fig. 7.32.We
determine the initial current in the inductor by
solving for in the circuit shown in Fig. 7.32.
After making several source transformations, we
find to be 6 A. For switch 1
is open (switch 2 is closed), which disconnects the
60 V voltage source and the and resis-
tors from the circuit. The inductor is no longer
behaving as a short circuit (because the dc source
is no longer in the circuit), so the resistor is
no longer short-circuited.The equivalent circuit is
shown in Fig. 7.33. Note that the equivalent resist-
ance across the terminals of the inductor is the
parallel combination of and or 
The time constant of the circuit is 
or 25 ms.Therefore the expression for is

iL = 6e-40t A,  0 … t … 35 ms.

iL

(150>6) * 10-3,
6 Æ.18 Æ,9 Æ

18 Æ

12 Æ4 Æ

0 … t … 35 ms,iL(0-)

iL(0-)

18 Æ
t 6 0

18 �60 V

t � 0

6 �12 �

1 2

4 �
t � 35 ms

3 �

150 mH
�

�

iL
vL

�

�

6 Æ

3 Æ

18 Æ

iL for t Ú 35 ms.

iL(t) for 0 … t … 35 ms.

t = 0,

Figure 7.32 � The circuit shown in Fig. 7.31, for 0.

Figure 7.33 � The circuit shown in Fig. 7.31, for 0 35 ms.

b) When the value of the inductor
current is

Thus, when switch 2 is opened, the circuit
reduces to the one shown in Fig. 7.34, and the
time constant changes to or
16.67 ms. The expression for becomes

Note that the exponential function is shifted in
time by 35 ms.

Figure 7.34 � The circuit shown in Fig. 7.31, for 35 ms.

c) The resistor is in the circuit only during the
first 35 ms of the switching sequence. During this
interval, the voltage across the resistor is

 = -36e-40t 
 V,  0 6 t 6 35 ms.

 vL = 0.15 
d

dt
(6e-40t)

18 Æ

t Ú

3 �

6 � 150 mH

iL
vL

�

�
iL(0.035) � 1.48A

iL = 1.48e-60(t-0.035) A,  t Ú 35 ms.

iL

(150>9) * 10-3,

iL = 6e-1.4
= 1.48 A.

t = 35 ms,

…  t …

18 �6 �

1
3 �

150 mH

2

iL

iL(0�) � 6A

vL

�

�

t 6

60 V 6 �12 �

4 � 3 �

�

�
iL(0�)

Example 7.11 Analyzing an RL Circuit that has Sequential Switching

Examples 7.11 and 7.12 illustrate the analysis techniques for circuits
with sequential switching. The first is a natural response problem with two
switching times, and the second is a step response problem.
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The power dissipated in the resistor is

Hence the energy dissipated is

The initial energy stored in the 150 mH inductor is

Therefore or 31.31% of
the initial energy stored in the 150 mH inductor
is dissipated in the resistor.

d) For the voltage across the 
resistor is

Therefore the energy dissipated in the resis-
tor in the first 35 ms is

For the current in the resistor is

i3Æ
= iL = (6e-1.4)e-60(t -0.035) A.

3 Æt 7 35 ms,

 = 563.51 mJ.

 = 0.6(1 - e-2.8)

 w3Æ
=

L

0.035

0

144e-80t

3
 dt

3 Æ

 = -12e-40t 
 V.

 =

1
3

vL

 v3Æ
= ¢vL

9
≤(3)

3 Æ0 6 t 6 35 ms,

18 Æ

(845.27>2700) * 100,

wi =

1
2

(0.15)(36) = 2.7 J = 2700 mJ.

 = 845.27 mJ.

 = 0.9(1 - e-2.8)

 =

72
-80

e-80t 2 0.035

0

 w =

L

0.035

0
72e-80t

 dt

p =

vL
2

18
= 72e-80t W,  0 6 t 6 35 ms.

18 Æ Hence the energy dissipated in the resistor for
is

The total energy dissipated in the resistor is

The percentage of the initial energy stored is

e) Because the resistor is in series with the 
resistor, the energy dissipated and the percent-
age of the initial energy stored will be twice that
of the resistor:

and the percentage of the initial energy stored is
45.80%. We check these calculations by observ-
ing that

and

The small discrepancies in the summations are
the result of roundoff errors.

31.31 + 22.90 + 45.80 = 100.01%.

1236.48 + 618.24 + 845.27 = 2699.99 mJ

w6Æ
(total) = 1236.48 mJ,

3 Æ

3 Æ6 Æ

618.24
2700

* 100 = 22.90%.

 = 618.24 mJ.

 w3Æ
(total) = 563.51 + 54.73

3 Æ

 =

108
120

e-2.8
= 54.73 mJ.

 = 108e-2.8
*

e-120(t -0.035)

-120
2 q
0.035

 =

L

q

0.035
3(36)e-2.8e-120(t -0.035)

 dt

 w3Æ
=

L

q

0.035
i3Æ

2
* 3 dt

t 7 35 ms
3 Æ
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Example 7.12 Analyzing an RC Circuit that has Sequential Switching

The uncharged capacitor in the circuit shown in
Fig. 7.35 is initially switched to terminal a of the
three-position switch. At the switch is moved
to position b, where it remains for 15 ms. After the
15 ms delay, the switch is moved to position c, where
it remains indefinitely.

a) Derive the numerical expression for the voltage
across the capacitor.

b) Plot the capacitor voltage versus time.

c) When will the voltage on the capacitor equal
200 V?

Solution

a) At the instant the switch is moved to position b,
the initial voltage on the capacitor is zero. If the
switch were to remain in position b, the capacitor
would eventually charge to 400 V. The time con-
stant of the circuit when the switch is in position b
is 10 ms. Therefore we can use Eq. 7.59 with

to write the expression for the capacitor
voltage:

Note that, because the switch remains in posi-
tion b for only 15 ms, this expression is valid only
for the time interval from 0 to 15 ms. After the
switch has been in this position for 15 ms, the
voltage on the capacitor will be

Therefore, when the switch is moved to position c,
the initial voltage on the capacitor is 310.75 V.
With the switch in position c, the final value of
the capacitor voltage is zero, and the time con-
stant is 5 ms. Again, we use Eq. 7.59 to write the
expression for the capacitor voltage:

 = 310.75e-200(t- 0.015) V,  15 ms … t.

 v = 0 + (310.75 - 0)e-200(t-0.015)

v(15 ms) = 400 - 400e-1.5
= 310.75 V.

 = (400 - 400e-100t) V,  0 … t … 15 ms.

 v = 400 + (0 - 400)e-100t

t0 = 0

t = 0,

Figure 7.35 � The circuit for Example 7.12.

In writing the expression for , we recognized
that and that this expression is valid
only for 

b) Figure 7.36 shows the plot of versus t.

c) The plot in Fig. 7.36 reveals that the capacitor
voltage will equal 200 V at two different times:
once in the interval between 0 and 15 ms and
once after 15 ms.We find the first time by solving
the expression

which yields We find the second
time by solving the expression

In this case, t2 = 17.20 ms.

200 = 310.75e-200(t2 - 0.015).

t1 = 6.93 ms.

200 = 400 - 400e-100t1,

v

t Ú 15 ms.
t0 = 15 ms

v

400 V
50 k�

100 k�

a

b

c
�

�

v(t) 0.1mF
�

�

Figure 7.36 � The capacitor voltage for Example 7.12.

50

100

200

300
v � 400 � 400e�100t

v � 310.75e�200(t � 0.015)

v (V)

10 15 20 25
t (ms)
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Objective 3—Know how to analyze circuits with sequential switching

7.7 In the circuit shown, switch 1 has been closed
and switch 2 has been open for a long time. At

switch 1 is opened. Then 10 ms later,
switch 2 is closed. Find

a) ,

b) ,

c) the total energy dissipated in the 
resistor, and

d) the total energy dissipated in the 
resistor.

Answer: (a)

(b)

(c) 2.91 mJ;

(d) 0.29 mJ.

53.63e-50(t-0.01) V;

80e-40t V;

40 k� 25 k� 100 k�

60 k�
t � 0 t � 10 ms

�

�

vc(t)10 mA 1mF

1 2

100 kÆ

25 kÆ

vc(t) for t Ú 0.01 s

vc(t) for 0 … t … 0.01 s

t = 0,

7.8 Switch a in the circuit shown has been open for
a long time, and switch b has been closed for a
long time. Switch a is closed at and, after
remaining closed for 1 s, is opened again.
Switch b is opened simultaneously, and both
switches remain open indefinitely. Determine
the expression for the inductor current i that is
valid when (a) and (b) 

Answer: (a)

(b) t Ú 1 s.(-4.8 + 5.98e-1.25(t- 1)) A,

0 … t … 1 s;(3 - 3e-0.5t) A,

�

�

2 � 9 �0.8 � a

b

8 A

10 V

t � 1

t � 0

t � 1

3 � 3 � 6 �2 H i

t Ú 1 s.0 … t … 1 s

t = 0

NOTE: Also try Chapter Problems 7.72 and 7.80.

7.6 Unbounded Response
A circuit response may grow, rather than decay, exponentially with time.
This type of response, called an unbounded response, is possible if the cir-
cuit contains dependent sources. In that case, the Thévenin equivalent
resistance with respect to the terminals of either an inductor or a capacitor
may be negative. This negative resistance generates a negative time con-
stant, and the resulting currents and voltages increase without limit. In an
actual circuit, the response eventually reaches a limiting value when a
component breaks down or goes into a saturation state, prohibiting fur-
ther increases in voltage or current.

When we consider unbounded responses, the concept of a final value
is confusing. Hence, rather than using the step response solution given in
Eq. 7.59, we derive the differential equation that describes the circuit con-
taining the negative resistance and then solve it using the separation of
variables technique. Example 7.13 presents an exponentially growing
response in terms of the voltage across a capacitor.

A S S E S S M E N T  P R O B L E M S



7.7 The Integrating Amplifier 241

Example 7.13 Finding the Unbounded Response in an RC Circuit

a) When the switch is closed in the circuit shown in
Fig. 7.37, the voltage on the capacitor is 10 V.
Find the expression for for 

b) Assume that the capacitor short-circuits when
its terminal voltage reaches 150 V. How many
milliseconds elapse before the capacitor short-
circuits?

Figure 7.37 � The circuit for Example 7.13.

Solution

a) To find the Thévenin equivalent resistance with
respect to the capacitor terminals, we use the test-
source method described in Chapter 4. Figure 7.38
shows the resulting circuit, where is the test
voltage and is the test current. For expressed
in volts, we obtain

Solving for the ratio yields the Thévenin
resistance:

With this Thévenin resistance, we can simplify
the circuit shown in Fig. 7.37 to the one shown in
Fig. 7.39.

RTh =

vT

iT
= -5 kÆ.

vT>iT

iT =

vT

10
- 7(

vT

20
) +

vT

20
 mA.

vTiT

vT

t � 0
10 k� 20 k�7i�vo i�10 V 5 mF

�

�

�

�

t Ú 0.vo

Figure 7.38 � The test-source method used to find .

Figure 7.39 � A simplification of the circuit shown in
Fig. 7.37.

For the differential equation describing
the circuit shown in Fig. 7.39 is

Dividing by the coefficient of the first derivative
yields

We now use the separation of variables technique
to find 

b) when Therefore,
and 67.70 ms.=t

ln 15,=40t15.=e40t150 V=vo

vo(t) = 10e40t V,  t Ú 0.

vo(t):

dvo

dt
- 40vo = 0.

(5 * 10- 6)
dvo

dt
-

vo

5
* 10- 3

= 0.

t Ú 0,

�5 k�10 V
t � 0

vo5 mF
�

�

�

�

RTh

10 k� 20 k�7i� i�

iT

vT

�

�

The fact that interconnected circuit elements may lead to ever-
increasing currents and voltages is important to engineers. If such inter-
connections are unintended, the resulting circuit may experience
unexpected, and potentially dangerous, component failures.

7.7 The Integrating Amplifier
Recall from the introduction to Chapter 5 that one reason for our interest in
the operational amplifier is its use as an integrating amplifier. We are now
ready to analyze an integrating-amplifier circuit, which is shown in Fig. 7.40.
The purpose of such a circuit is to generate an output voltage proportional
to the integral of the input voltage. In Fig. 7.40, we added the branch cur-
rents and along with the node voltages and to aid our analysis.vp,vnis,if

NOTE: Assess your understanding of this material by trying Chapter Problems 7.86 and 7.88.

�

�

�

�

if

Cf

Rs VCC

�VCC
vs vovp

vn

is �

�

�

�

�

�

Figure 7.40 � An integrating amplifier.
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We assume that the operational amplifier is ideal. Thus we take
advantage of the constraints

(7.61)
(7.62)

Because 

(7.63)

(7.64)

Hence, from Eqs. 7.61, 7.63, and 7.64,

(7.65)

Multiplying both sides of Eq. 7.65 by a differential time dt and then inte-
grating from to t generates the equation

(7.66)

In Eq. 7.66, represents the instant in time when we begin the integration.
Thus is the value of the output voltage at that time. Also, because

is identical to the initial voltage on the feedback
capacitor 

Equation 7.66 states that the output voltage of an integrating ampli-
fier equals the initial value of the voltage on the capacitor plus an inverted
(minus sign), scaled replica of the integral of the input voltage. If
no energy is stored in the capacitor when integration commences, Eq. 7.66
reduces to

(7.67)

If is a step change in a dc voltage level, the output voltage will vary lin-
early with time. For example, assume that the input voltage is the rectan-
gular voltage pulse shown in Fig. 7.41.Assume also that the initial value of

is zero at the instant steps from 0 to A direct application of
Eq. 7.66 yields

(7.68)

When t lies between and 

(7.69)

Figure 7.42 shows a sketch of versus t. Clearly, the output voltage is
an inverted, scaled replica of the integral of the input voltage.

The output voltage is proportional to the integral of the input voltage
only if the op amp operates within its linear range, that is, if it doesn’t sat-
urate. Examples 7.14 and 7.15 further illustrate the analysis of the inte-
grating amplifier.

vo(t)

 =

Vm

RsCf
 t -

2Vm

RsCf
 t1,   t1 … t … 2t1.

 vo = -  
1

RsCfL

t

t1

(-Vm) dy -

1
RsCf

 Vmt1

2t1,t1

vo = -  
1

RsCf
 Vmt + 0,  0 … t … t1.

Vm.vsvo(t)

vs

vo(t) = -  
1

RsCfL

t

t0

vs dy.

(1>RsCf)

Cf.
vo(t0)vn = vp = 0,

vo(t0)
t0

vo(t) = -  
1

RsCfL

t

t0

vs dy + vo(t0).

t0

dvo

dt
= -  

1
RsCf

 vs.

 if = Cf 
dvo

dt
.

 is =

vs

Rs
 ,

vp = 0,

 vn = vp.
 if + is = 0,

t1 2t1 t

Vm

vs

�Vm

0

Figure 7.41 � An input voltage signal.

t1 t2t10

vo(t)

Vmt1
RsCf

Figure 7.42 � The output voltage of an integrating
amplifier.
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Example 7.14 Analyzing an Integrating Amplifier

Assume that the numerical values for the signal
voltage shown in Fig. 7.41 are and

This signal voltage is applied to the
integrating-amplifier circuit shown in Fig. 7.40. The
circuit parameters of the amplifier are 

and The initial voltage on
the capacitor is zero.

a) Calculate 

b) Plot versus t.

Solution

a) For 

 = -5t V,  0 … t … 1 s.

 vo =

-1

(100 * 103)(0.1 * 10-6)
 50 * 10-3t + 0

0 … t … 1 s,

vo(t)

vo(t).

VCC = 6 V.Cf = 0.1 mF,
Rs = 100 kÆ,

t1 = 1 s.
Vm = 50 mV

For 

b) Figure 7.43 shows a plot of versus t.

Figure 7.43 � The output voltage for Example 7.14.

10

�5

2 t (s)

vo(t) (V)

vo(t)

vo = (5t - 10) V.

1 … t … 2 s,

Example 7.15 Analyzing an Integrating Amplifier that has Sequential Switching

At the instant the switch makes contact with termi-
nal a in the circuit shown in Fig. 7.44, the voltage on
the capacitor is 5 V. The switch remains at
terminal a for 9 ms and then moves instantaneously
to terminal b. How many milliseconds after making
contact with terminal b does the operational ampli-
fier saturate?

Figure 7.44 � The circuit for Example 7.15.

Solution
The expression for the output voltage during the
time the switch is at terminal a is

 = (-5 + 1000t) V.

 vo = -5 -

1

10-2L

t

0
(-10) dy

�

�

�

�

�

�

100 k� 6 V

�6 V
8 V

10 V

a

5 V

b

0.1 mF

��

�

�

vo

t � 9 ms

0.1 mF

Thus, 9 ms after the switch makes contact with ter-
minal a, the output voltage is or 4 V.

The expression for the output voltage after the
switch moves to terminal b is

During this time interval, the voltage is decreas-
ing, and the operational amplifier eventually satu-
rates at Therefore we set the expression for 
equal to to obtain the saturation time 

or

Thus the integrating amplifier saturates 21.5 ms
after making contact with terminal b.

ts = 21.5 ms.

11.2 - 800ts = -6,

ts:-6 V
vo-6 V.

 = (11.2 - 800t) V.

 = 4 - 800(t - 9 * 10-3)

 vo = 4 -

1

10-2L

t

9 *10-3
8 dy

-5 + 9,
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From the examples, we see that the integrating amplifier can perform
the integration function very well, but only within specified limits that
avoid saturating the op amp. The op amp saturates due to the accumula-
tion of charge on the feedback capacitor. We can prevent it from saturat-
ing by placing a resistor in parallel with the feedback capacitor. We
examine such a circuit in Chapter 8.

Note that we can convert the integrating amplifier to a differentiating
amplifier by interchanging the input resistance and the feedback capac-
itor Then

(7.70)

We leave the derivation of Eq. 7.70 as an exercise for you.The differentiat-
ing amplifier is seldom used because in practice it is a source of unwanted
or noisy signals.

Finally, we can design both integrating- and differentiating-amplifier
circuits by using an inductor instead of a capacitor. However, fabricating
capacitors for integrated-circuit devices is much easier, so inductors are
rarely used in integrating amplifiers.

vo = -RsCf 
dvs

dt
.

Cf.
Rs

Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor

7.9 There is no energy stored in the capacitor at
the time the switch in the circuit makes contact
with terminal a. The switch remains at position
a for 32 ms and then moves instantaneously to
position b. How many milliseconds after mak-
ing contact with terminal a does the op amp
saturate?

Answer: 262 ms.

�

�

10 V

�

�

vo

�15 V

40 k�

90 k�

160 k�

�

�
5 V

�

�
10 V

0.2 mF

a

b t � 32 ms

7.10 a) When the switch closes in the circuit
shown, there is no energy stored in the
capacitor. How long does it take to saturate
the op amp?

b) Repeat (a) with an initial voltage on the
capacitor of 1 V, positive at the upper
terminal.

Answer: (a) 1.11 ms;

(b) 1.76 ms.

t � 0

5 V

�5 V
vo

�

�

2 V
�

�
0.01 mF

160 k�

40 k�10 k�

�

�

6.8 k�

NOTE: Also try Chapter Problems 7.94 and 7.95.

A S S E S S M E N T  P R O B L E M S
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Practical Perspective
Artificial Pacemaker
We are now ready to analyze a simple RC circuit, shown in Fig. 7.45,
which can generate periodic electrical impulses. This RC circuit can be
used in an artificial pacemaker to establish a normal heart rhythm. The
box labeled “controller” behaves as an open circuit until the voltage drop
across the capacitor reaches a pre-set limit. Once that limit is reached,
the capacitor discharges its stored energy in the form of an electrical
impulse to the heart and starts to recharge and the process repeats.

Before we develop the analytical expressions that describe the behav-
ior of the circuit, let us develop a feel for how that circuit works. First,
when the controller behaves as an open circuit, the dc voltage source will
charge the capacitor via the resistor R, toward a value of Vs volts. But
once the capacitor voltage reaches , the controller behaves like a
short circuit, enabling the capacitor to discharge. Once the capacitor dis-
charge is complete, the controller once again acts as an open circuit and
the capacitor starts to recharge. This cycle of charging and discharging
the capacitor establishes the desired heart rhythm, as shown in Fig. 7.46.

Vmax

Controller

R

Vs C vC

� �

�
�

Figure 7.45 � An artificial pacemaker circuit.

Vmax

etc.

tc t

vC(t)

Figure 7.46 � Capacitor voltage versus time for
the circuit in Fig. 7.45.

In drawing Fig. 7.46 we have chosen at the instant the capacitor
starts to charge. This figure also assumes that the circuit has reached the
repetitive stage of its operation, and that the time to discharge the capaci-
tor is negligible when compared to the recharge time. The design of this
artificial pacemaker circuit requires an equation for as a function of

, R, and C.
To begin the analysis, we assume that the circuit has been in operation

for a long time. Let at the instant when the capacitor has completely
discharged and the controller is acting as an open circuit. From the circuit
we find 

,

,

. t = RC

 vC(0) = 0

 vC(q) = Vs

t = 0

Vmax

vC(t)

t = 0
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Thus, while the capacitor is charging,

Suppose the controller has been programmed to fire an electrical pulse to
stimulate the heart when 0.75Vs . Given values of R and C we can
determine the resulting heart rate in beats per minute as follows:

[beats per minute]

A more realistic design problem requires you to calculate the value of resist-
ance, R, given Vmax as a percentage of Vs , C, and the desired heart rate in
beats per minute. We leave you to develop an equation for resistance in
Problem 7.106.

NOTE: Assess your understanding of the Practical Perspective by solving Chapter
Problems 7.104–7.107.

H =

60
-RC ln 0.25

 

vC =

vC(t) = Vs (1 - e-t>RC).

Summary

• A first-order circuit may be reduced to a Thévenin (or
Norton) equivalent connected to either a single equiva-
lent inductor or capacitor. (See page 214.)

• The natural response is the currents and voltages that
exist when stored energy is released to a circuit that
contains no independent sources. (See page 212.)

• The time constant of an RL circuit equals the equiva-
lent inductance divided by the Thévenin resistance as
viewed from the terminals of the equivalent inductor.
(See page 216.)

• The time constant of an RC circuit equals the equiva-
lent capacitance times the Thévenin resistance as
viewed from the terminals of the equivalent capacitor.
(See page 221.)

• The step response is the currents and voltages that
result from abrupt changes in dc sources connected 
to a circuit. Stored energy may or may not be present
at the time the abrupt changes take place. (See 
page 224.)

• The solution for either the natural or step response of
both RL and RC circuits involves finding the initial and
final value of the current or voltage of interest and the
time constant of the circuit. Equations 7.59 and 7.60
summarize this approach. (See page 232.)

• Sequential switching in first-order circuits is analyzed
by dividing the analysis into time intervals correspon-
ding to specific switch positions. Initial values for a par-
ticular interval are determined from the solution
corresponding to the immediately preceding interval.
(See page 236.)

• An unbounded response occurs when the Thévenin
resistance is negative, which is possible when the
first-order circuit contains dependent sources. (See
page 240.)

• An integrating amplifier consists of an ideal op amp, a
capacitor in the negative feedback branch, and a resis-
tor in series with the signal source. It outputs the inte-
gral of the signal source, within specified limits that
avoid saturating the op amp. (See page 241.)

R

Vs C vC
�

�

�

�

Figure 7.47 � The artificial pacemaker circuit at
, when the capacitor is charging.t = 0



Problems

Section 7.1

7.1 The switch in the circuit in Fig. P7.1 has been open
for a long time. At the switch is closed.

a) Determine and 

b) Determine for 

c) How many milliseconds after the switch has been
closed will equal 100 mA?

Figure P7.1

7.2 The switch in the circuit in Fig. P7.2 has been closed
for a long time.At it is opened.

a) Write the expression for for

b) Write the expression for for 

Figure P7.2

7.3 In the circuit shown in Fig. P7.3, the switch makes
contact with position b just before breaking contact
with position a. As already mentioned, this is
known as a make-before-break switch and is
designed so that the switch does not interrupt the
current in an inductive circuit. The interval of time
between “making” and “breaking” is assumed to be
negligible. The switch has been in the a position for
a long time.At the switch is thrown from posi-
tion a to position b.

a) Determine the initial current in the inductor.

b) Determine the time constant of the circuit 
for 

c) Find and for 

d) What percentage of the initial energy stored in
the inductor is dissipated in the resistor
1 ms after the switch is thrown from position a to
position b?

90 Æ

t Ú 0.v2i, v1,

t 7 0.

t = 0

20 �

50 V

50 �
t = 0

io
75 � 60 � 15 �0.02 H vo

3 �

�
�

�

�

t Ú 0+.vo(t)

t Ú 0.io(t)

t = 0

16 � 12 �

8 �4 �

80 mH20 V

io
t = 0�

�

io

t Ú 0.io(t)

io(q).io(0)

t = 0

Figure P7.3

7.4 The switch in the circuit in Fig. P7.4 has been in posi-
tion 1 for a long time. At the switch moves
instantaneously to position 2. Find for 

Figure P7.4

7.5 For the circuit of Fig. P7.4, what percentage of the
initial energy stored in the inductor is eventually
dissipated in the resistor?

7.6 The two switches in the circuit seen in Fig. P7.6 are
synchronized. The switches have been closed for a
long time before opening at 
a) How many microseconds after the switches are

open is the energy dissipated in the resis-
tor 10% of the initial energy stored in the 6 H
inductor?

b) At the time calculated in (a), what percentage of
the total energy stored in the inductor has been
dissipated?

Figure P7.6

7.7 In the circuit in Fig. P7.7, the switch has been closed
for a long time before opening at 
a) Find the value of L so that equals 

when 
b) Find the percentage of the stored energy that

has been dissipated in the resistor when
t = 1 ms.

10 Æ

t = 1 ms.
0.5 vo(0+)vo(t)

t = 0.

6 H

80 k�105 mA

t � 0

4 k�1 k�

t � 0

20 k�

4 kÆ

t = 0.

6 Æ

13 �

8 �
30 � 6 �90 V

12 �

2

36 mH

vo

1

t = 0

�
�

�
�

t Ú 0+.vo(t)
t = 0,

�

�
60 V

70 �

30 �

i

90 �

0.32 H

�

�

v1
�

�

v2

t � 0

a

b
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Figure P7.7

7.8 The switch in the circuit in Fig. P7.8 has been closed
for a long time before opening at 

a) Find and 

b) Find and 

c) Find for 

d) Find for 

e) Explain why 

Figure P7.8

7.9 The switch shown in Fig. P7.9 has been open for a
long time before closing at 

a) Find and 

b) Find and 

c) Find and 

d) Write the expression for for 

e) Write the expression for for 

f) Write the expression for  for 

Figure P7.9

7.10 The switch in the circuit seen in Fig. P7.10 has been
in position 1 for a long time. At the switch
moves instantaneously to position 2. Find the value
of R so that of the initial energy stored in the
10 mH inductor is dissipated in R in 

Figure P7.10

100 � R

t � 0

10 mH

21

5 A

10 ms.
10%

t = 0,

50 �

25 V

200 �

50 mH

io

iL
i = 0 

vL
�

�

�

�

t Ú 0+.vL(t)

t Ú 0+.io(t)

t Ú 0.iL(t)

vL( q ).iL(q),io(q),

vL(0+).iL(0+),io(0+),

vL(0-).iL(0-),io(0-),

t = 0.

�

�
80 V

t � 0

4 k�i2 640 mH

2 k� 12 k�

i1

i2(0-) Z i2(0+).

t Ú 0+.i2(t)

t Ú 0.i1(t)

i2(0+).i1(0+)

i2(0-).i1(0-)

t = 0.

1 k� 10 �

t � 0

9 k�

30 mA L

�

�

vo

7.11 In the circuit in Fig. P7.10, let represent the dc
current source, represent the fraction of initial
energy stored in the inductor that is dissipated in 

seconds, and L represent the inductance.

a) Show that

b) Test the expression derived in (a) by using it to
find the value of R in Problem 7.10.

7.12 In the circuit in Fig. P7.12, the voltage and current
expressions are

Find

a) R.

b) (in milliseconds).

c) L.

d) the initial energy stored in the inductor.

e) the time (in milliseconds) it takes to dissipate
60% of the initial stored energy.

Figure P7.12

7.13 a) Use component values from Appendix H to cre-
ate a first-order RL circuit (see Fig. 7.4) with a
time constant of 1 ms. Use a single inductor and 
a network of resistors, if necessary. Draw your
circuit.

b) Suppose the inductor you chose in part (a) has
an initial current of 10 mA. Write an expression
for the current through the inductor for .

c) Using your result from part (b), calculate the
time at which half of the initial energy stored in
the inductor has been dissipated by the resistor.

7.14 The switch in the circuit in Fig. P7.14 has been
closed for a long time before opening at Find

for 

Figure P7.14

5 �

60 V 20 mH2.5 vo vo

t = 0

�

�

�

�

t Ú 0+.vo(t)
t = 0.

t Ú 0

L Rv

�

�

i

t

 i = 6.4e-10t A,      t Ú 0.

 v = 160e-10t V,  t Ú 0+;

R =

L ln [1>(1 - s)]
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7.15 The switch in Fig. P7.15 has been closed for a long
time before opening at Find

a)

b)

c)

Figure P7.15

7.16 What percentage of the initial energy stored in the
inductor in the circuit in Fig. P7.15 is dissipated by
the resistor?

7.17 The two switches shown in the circuit in Fig. P7.17
operate simultaneously. Prior to each switch
has been in its indicated position for a long time. At

the two switches move instantaneously to
their new positions. Find

a)

b)

Figure P7.17

7.18 For the circuit seen in Fig. P7.17, find

a) the total energy dissipated in the resistor.

b) the energy trapped in the ideal inductors.

7.19 In the circuit shown in Fig. P7.19, the switch has
been in position a for a long time.At it moves
instantaneously from a to b.

a) Find for 

b) What is the total energy delivered to the 
resistor?

c) How many time constants does it take to deliver
95% of the energy found in (b)?

8 Æ

t Ú 0.io(t)

t = 0,

7.5 kÆ

2 A

7.5 k�

10 �

t � 0

t � 0

10 H io 6 H

1.25 H

�

�

vo

io(t), t Ú 0.

vo(t), t Ú 0+.

t = 0

t = 0

60 Æ

�

�
120 V 60 � 100 � 60 �

t � 0

iL i�

250 mH

40 � 6 �
�

�

vL

� �

20 i�

i
¢
(t), t Ú 0+.

vL(t), t Ú 0+.

iL(t), t Ú 0.

t = 0.
Figure P7.19

7.20 The 240 V, source in the circuit in Fig. P7.20 is
inadvertently short-circuited at its terminals a, b. At
the time the fault occurs, the circuit has been in
operation for a long time.

a) What is the initial value of the current in the
short-circuit connection between terminals a, b?

b) What is the final value of the current ?

c) How many microseconds after the short circuit
has occurred is the current in the short equal
to 114 A?

Figure P7.20

Section 7.2

7.21 The switch in the circuit in Fig. P7.21 has been in the
left position for a long time.At it moves to the
right position and stays there.

a) Find the initial voltage drop across the capacitor.

b) Find the initial energy stored by the capacitor.

c) Find the time constant of this circuit for  

d) Write the expression for the capacitor voltage
for .

Figure P7.21

10 k�

10 mA 20 k� 50 k� 75 k�

t = 0

400 nFv

10 k�

�

�

t Ú 0.v(t)

t 7 0.

t = 0

�

�
240 V

10 �

2 mH

15 �

6 mH

2 � a

b

iab

iab

2 Æ

12 A 150 � 8 �

t � 0

8 mH
2 mH

30 � ba
io
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7.22 The switch shown in Fig. P7.22 has been open for a
long time before closing at . Write the expres-
sion for the capacitor voltage, , for 

Figure P7.22

7.23 The switch in the circuit in Fig. P7.23 has been in the
left position for a long time.At it moves to the
right position and stays there.

a) Write the expression for the capacitor voltage,
, for 

b) Write the expression for the current through the
40 k resistor, , for 

Figure P7.23

7.24 What percentage of the initial energy stored in the
capacitor in Fig. P7.23 is dissipated by the 40 k
resistor?

7.25 The switch in the circuit in Fig. P7.25 has been in
position a for a long time and . At 
the switch is thrown to position b. Calculate

a) i, and for 

b) the energy stored in the capacitor at

c) the energy trapped in the circuit and the total
energy dissipated in the resistor if the
switch remains in position b indefinitely.

Figure P7.25

a

6 mA

b 2.5 k�

5 k�
30 mF

t = 0
v1

v2

i
60 mF

��

� �

2.5 kÆ

t = 0, and
30 mF

t Ú 0+,v2v1,

t = 0,v2 = 0 V

Æ

t Ú 0+ .i(t)Æ

t Ú 0.v(t)

t = 0

20 mA 20 k� 60 k� 40 nF v

10 k�

t = 0
�

�

t Ú 0.v(t)
t = 0

7.26 In the circuit shown in Fig. P7.26, both switches
operate together; that is, they either open or close at
the same time. The switches are closed a long time
before opening at 

a) How many microjoules of energy have been
dissipated in the resistor 12 ms after the
switches open?

b) How long does it take to dissipate 75% of the
initially stored energy?

Figure P7.26

7.27 The switch in the circuit in Fig. P7.27 is closed at
after being open for a long time.

a) Find and 

b) Find and 

c) Explain why 

d) Explain why 

e) Find 

f) Find 

Figure P7.27

7.28 The switch in the circuit in Fig. P7.28 has been in
position 1 for a long time before moving to posi-
tion 2 at Find for 

Figure P7.28

�

�

��

15 �

5 io

15 V

t � 0

1

2

4.7 k�

io 2 mF

t Ú 0+.io(t)t = 0.

t � 0

20 � 5 � 2 �

100 mA 2 mF

1 V
�

�

i2 i1
3 �

i2(t) for t Ú 0+ .

i1(t) for t Ú 0.

i2(0-) Z i2(0+).

i1(0-) = i1(0+).

i2(0+).i1(0+)

i2(0-).i1(0-)

t = 0

�
�

mFmF120 V

t � 0t � 0

12 k�
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68 k�
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12 kÆ
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7.29 In the circuit in Fig. P7.29 the voltage and current
expressions are

Find

a) R.

b) C.

c) (in milliseconds).

d) the initial energy stored in the capacitor.

e) how many microseconds it takes to dissipate
68% of the initial energy stored in the capacitor.

Figure P7.29

7.30 a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.11) with a
time constant of 50 ms. Use a single capacitor
and a network of resistors, if necessary. Draw
your circuit.

b) Suppose the capacitor you chose in part (a) has an
initial voltage drop of 50 V.Write an expression for
the voltage drop across the capacitor for .

c) Using you result from part (b), calculate the
time at which the voltage drop across the capac-
itor has reached 10 V.

7.31 The switch in the circuit seen in Fig. P7.31 has been
in position x for a long time. At the switch
moves instantaneously to position y.

a) Find so that the time constant for is
40 ms.

b) For the found in (a), find 

Figure P7.31

5 mA 5 k�

20 k�

av�

0.8 mF
3.6 k�

x y

t � 0

�

�

v�

v
¢
.a

t 7 0a

t = 0,

t Ú 0

�

�

v RC

i

t

 i = 9e-500t mA,  t Ú 0+.

 v = 72e-500t V, t Ú 0;

7.32 a) In Problem 7.31, how many microjoules of
energy are generated by the dependent current
source during the time the capacitor discharges
to 0 V?

b) Show that for the total energy stored and
generated in the capacitive circuit equals the
total energy dissipated.

7.33 After the circuit in Fig. P7.33 has been in operation
for a long time, a screwdriver is inadvertently con-
nected across the terminals a, b. Assume the resist-
ance of the screwdriver is negligible.

a) Find the current in the screwdriver at and

b) Derive the expression for the current in the
screwdriver for 

Figure P7.33

7.34 At the time the switch is closed in the circuit in
Fig. P7.34, the voltage across the parallel capacitors is
50 V and the voltage on the capacitor is 40 V.

a) What percentage of the initial energy stored in
the three capacitors is dissipated in the 
resistor?

b) Repeat (a) for the and resistors.

c) What percentage of the initial energy is trapped
in the capacitors?

Figure P7.34

Section 7.3

7.35 After the switch in the circuit of Fig. P7.35 has been
open for a long time, it is closed at Calculate
(a) the initial value of i; (b) the final value of i;
(c) the time constant for and (d) the numeri-
cal expression for when t Ú 0.i(t)

t Ú 0;

t = 0.

800 nF

250 nF

16 k�

400 �

t � 0
�

�
50 V

� �40 V

200 nF
24 k�

16 kÆ400 Æ

24 kÆ

250 nF

75 mA 80 �

a

b

200 �

400 �

50 mF

25 mF

t Ú 0+.

t = q .
t = 0+

t Ú 0

PSPICE

MULTISIM

PSPICE

MULTISIM

Problems 251



252 Response of First-Order RL and RC Circuits

Figure P7.35

7.36 The switch in the circuit shown in Fig. P7.36 has
been in position a for a long time before moving to
position b at 

a) Find the numerical expressions for and
for 

b) Find the numerical values of and 

Figure P7.36

7.37 The switch in the circuit shown in Fig. P7.37 has
been in position a for a long time. At the
switch moves instantaneously to position b.

a) Find the numerical expression for when

b) Find the numerical expression for for

Figure P7.37

7.38 Repeat Problem 7.37 assuming that the switch in
the circuit in Fig. P7.37 has been in position b for a
long time and then moves to position a at and
stays there.

7.39 The current and voltage at the terminals of the
inductor in the circuit in Fig. 7.16 are

a) Specify the numerical values of and L.

b) How many milliseconds after the switch has
been closed does the energy stored in the induc-
tor reach 9 J?

Vs, R, Io,

 v(t) = -80e-40t V,     t Ú 0+ .

 i(t) = (4 + 4e-40t) A,  t Ú 0;

t = 0

45 A

b a

io

t = 0

5 �

60 �

20 �

5 �

240 V

vo 10 mH

�

�

�

�

t Ú 0+.
vo(t)

t Ú 0.
io(t)

t = 0,

12 � 5 mH b a

32 V 8 � 6 A

t = 0

iL

vL

vo
�

�

�

�

� �

vo(0+).vL(0+)

t Ú 0.vo(t)
iL(t)

t = 0.

50 mA 5 k�

20 k�

t = 0

i

200 mH 75 k�

50 k� 75 V
�

�

7.40 a) Use component values from Appendix H to
create a first-order RL circuit (see Fig. 7.16)
with a time constant of . Use a single induc-
tor and a network of resistors, if necessary.
Draw your circuit.

b) Suppose the inductor you chose in part (a) has
no initial stored energy. At , a switch con-
nects a voltage source with a value of 25 V in
series with the inductor and equivalent resist-
ance. Write an expression for the current
through the inductor for .

c) Using your result from part (b), calculate the
time at which the current through the inductor
reaches 75% of its final value.

7.41 The switch in the circuit shown in Fig. P7.41 has
been closed for a long time. The switch opens at

For 

a) Find as a function of and L.

b) Explain what happens to as gets larger
and larger.

c) Find as a function of and L.

d) Explain what happens to as gets larger
and larger.

Figure P7.41

7.42 The switch in the circuit in Fig. P7.42 has been
closed for a long time.A student abruptly opens the
switch and reports to her instructor that when the
switch opened, an electric arc with noticeable per-
sistence was established across the switch, and at
the same time the voltmeter placed across the coil
was damaged. On the basis of your analysis of the
circuit in Problem 7.41, can you explain to the stu-
dent why this happened?

Figure P7.42

7.43 a) Derive Eq. 7.47 by first converting the Thévenin
equivalent in Fig. 7.16 to a Norton equivalent

�

�

R

Vbb Ld'Arsonval
voltmeter

t � 0

�

�

R2

vo(t)R1 LIg

� �vsw

t � 0

R2vSW

R2,R1,Ig,vSW

R2vo(t)

R2,R1,Ig,vo(t)

t Ú 0+:t = 0.

t Ú 0

t = 0
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and then summing the currents away from the
upper node, using the inductor voltage as the
variable of interest.

b) Use the separation of variables technique to find
the solution to Eq. 7.47. Verify that your solution
agrees with the solution given in Eq. 7.42.

7.44 The switch in the circuit in Fig. P7.44 has been open
a long time before closing at Find 
for 

Figure P7.44

7.45 The switch in the circuit in Fig. P7.45 has been
open a long time before closing at Find 
for 

7.46 The switch in the circuit in Fig. P7.46 has been
open a long time before closing at Find 
for 

Figure P7.46

15 mH

45 mH 2 k�

3 k�

80 V

10 mA

vo

t = 0

�

�
�

�

t Ú 0+.
vo(t)t = 0.

t Ú 0+.
vo(t)t = 0.

50 �

20 �

0.1vf

40 �40 mH

15 �10 �

140 V

10 A

io(t)
t = 0

�  vf  �

�

�

t Ú 0.
io(t)t = 0.

v
7.47 The switch in the circuit in Fig. P7.47 has been in

position 1 for a long time. At it moves instan-
taneously to position 2. How many milliseconds
after the switch operates does equal ?

Figure P7.47

7.48 For the circuit in Fig. P7.47, find (in joules):

a) the total energy dissipated in the resistor;

b) the energy trapped in the inductors, and

c) the initial energy stored in the inductors.

7.49 The make-before-break switch in the circuit of
Fig. P7.49 has been in position a for a long time. At

the switch moves instantaneously to posi-
tion b. Find

a)

b)

c)

7.50 There is no energy stored in the inductors and 
at the time the switch is opened in the circuit shown
in Fig. P7.50.

a) Derive the expressions for the currents and
for 

b) Use the expressions derived in (a) to find 
and i2(q).

i1(q)

t Ú 0.i2(t)
i1(t)

L2L1

i2(t), t Ú 0.

i1(t), t Ú 0.

vo(t), t Ú 0+.

t = 0,

40 Æ

�

�

10 �

40 �1.5 H3 H

2
1

vo

t � 0

50 V �
�

100 Vvo

t = 0
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Figure P7.45
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ba

60 mH25 mA
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vo 50 mA

t � 0
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Figure P7.49
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Figure P7.50

7.51 Assume that the switch in the circuit of Fig. P7.51
has been in position a for a long time and that at

it is moved to position b. Find (a) 
(b) (c) (d) (e) 
and (f) 

Figure P7.51

7.52 a) The switch in the circuit in Fig. P7.52 has been in
position a for a long time. At , the switch
moves instantaneously to position b and stays
there. Find the initial and final values of the
capacitor voltage, the time constant for ,
and the expression for the capacitor voltage for

.

b) Now suppose the switch in the circuit in 
Fig. P7.52 has been in position b for a long time.
At the switch moves instantaneously to
position a and stays there. Find the initial and
final values of the capacitor voltage, the time
constant for , and the expression for the
capacitor voltage for .

Figure P7.52

7.53 The switch in the circuit of Fig. P7.53 has been in
position a for a long time. At the switch is
moved to position b. Calculate (a) the initial voltage
on the capacitor; (b) the final voltage on the capaci-
tor; (c) the time constant (in microseconds) for

and (d) the length of time (in microseconds)
required for the capacitor voltage to reach zero
after the switch is moved to position b.

t 7 0;

t = 0

250 �

25 mF

ab
t = 0

10 V

100 �

400 � 15 mAvC

�
�

��

t Ú 0
t Ú 0

t = 0,

t Ú 0

t Ú 0

t = 0

40 k� 2.5 k� 50 k�

150 k�
25 nF

200 V

a b

120 V
vCi

t = 0�

�

� �

�
�

i, t Ú 0+.
vC, t Ú 0;i(0+);t for t 7 0;vC(q);

vC(0+);t = 0

Ig L1 L2Rg i1(t) i2(t)
t � 0

Figure P7.53

7.54 The switch in the circuit seen in Fig. P7.54 has been in
position a for a long time.At the switch moves
instantaneously to position b. For find

a)

b)

Figure P7.54

7.55 The switch in the circuit seen in Fig. P7.55 has been
in position a for a long time. At the switch
moves instantaneously to position b. Find and

for 

Figure P7.55

7.56 The circuit in Fig. P7.56 has been in operation for a
long time. At the voltage source reverses
polarity and the current source drops from 3 mA to
2 mA. Find for 

Figure P7.56
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7.57 The switch in the circuit in Fig. P7.57 has been in
position a for a long time. At the switch
moves instantaneously to position b. At the instant
the switch makes contact with terminal b, switch 2
opens. Find for 

Figure P7.57

7.58 The current and voltage at the terminals of the
capacitor in the circuit in Fig. 7.21 are

a) Specify the numerical values of R, C,
and 

b) How many microseconds after the switch has
been closed does the energy stored in the capac-
itor reach 81% of its final value?

7.59 a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.21) with a
time constant of 250 ms. Use a single capacitor
and a network of resistors, if necessary. Draw
your circuit.

b) Suppose the capacitor you chose in part (a) has an
initial voltage drop of 100 V.At ,a switch con-
nects a current source with a value of 1 mA in par-
allel with the capacitor and equivalent resistance.
Write an expression for the voltage drop across
the capacitor for .

c) Using your result from part (b), calculate the
time at which the voltage drop across the capici-
tor reaches 50 V.

7.60 The switch in the circuit shown in Fig. P7.60 opens at
after being closed for a long time. How many

milliseconds after the switch opens is the energy
stored in the capacitor 36% of its final value?

t = 0

t Ú 0

t = 0

t.
Vo,Is,

 v(t) = (40 - 24e-2500t) V,    t Ú 0.

 i(t) = 3e-2500t mA,    t Ú 0+ ;

�

�
50 V

250 nF

1

25 mA

a b

vo

�

�

60 k� 20 k�

t � 0

t � 0

40 k�

t Ú 0.vo(t)

t = 0,
7.61 The switch in the circuit shown in Fig. P7.61 has

been in the OFF position for a long time. At 
the switch moves instantaneously to the ON posi-
tion. Find for 

Figure P7.61

7.62 Assume that the switch in the circuit of Fig. P7.61
has been in the ON position for a long time before
switching instantaneously to the OFF position at

Find for 

7.63 a) Derive Eq. 7.52 by first converting the Norton
equivalent circuit shown in Fig. 7.21 to a Thévenin
equivalent and then summing the voltages around
the closed loop, using the capacitor current i as the
relevant variable.

b) Use the separation of variables technique to find
the solution to Eq. 7.52. Verify that your solution
agrees with that of Eq. 7.53.

7.64 The switch in the circuit in Fig. P7.64 has been in
position x for a long time. The initial charge on the
60 nF capacitor is zero. At the switch moves
instantaneously to position y.

a) Find 

b) Find 

Figure P7.64

7.65 The switch in the circuit of Fig. P7.65 has been in
position a for a long time. At it moves instan-
taneously to position b. For find

a)

b)

c) v1(t).

io(t).

vo(t).

t Ú 0+,
t = 0,

15 k�
x y

4 mA 30 k�
30 nF

60 nF 120 k�

60 k� 90 V
v1

v0
t = 0

�

�
�
�

� �

v1(t) for t Ú 0.

vo(t) for t Ú 0+.

t = 0,

t Ú 0.vo(t)t = 0.

25 k� 90 k�

30 k� 300 V15 k�
25 nF

OFF ON

10� 103iΔ

iΔ

t = 0

6 mA
vo

�

�

�

�

�

�

t Ú 0.vo(t)

t = 0,PSPICE
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Figure P7.60

33 k� 47 k� 16 k�25ib

ib

t � 0
0.25 mF120 mA
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d)

e) the energy trapped in the capacitors as 

Figure P7.65

7.66 There is no energy stored in the capacitors and 
at the time the switch is closed in the circuit seen in
Fig. P7.66.

a) Derive the expressions for and for

b) Use the expressions derived in (a) to find 
and 

Figure P7.66

Section 7.4

7.67 Repeat (a) and (b) in Example 7.10 if the mutual
inductance is reduced to zero.

7.68 There is no energy stored in the circuit in Fig. P7.68
at the time the switch is closed.

a) Find 

b) Find 

c) Find 

d) Find 

e) Do your answers make sense in terms of known
circuit behavior?

i2(t) for t Ú 0.

i1(t) for t Ú 0.

vo(t) for t Ú 0+.

io(t) for t Ú 0.

Vg

Rg t � 0

�

�
v2(t)

C1
�

�

C2

�

�
v1(t)

v2(q).
v1(q)

t Ú 0.
v2(t)v1(t)

C2C1

�

�

�

�

ba2.2 k� 6.25 k�

40 V

vo

v1 80 V

iot � 0

v2

0.2 mF

0.8 mF

�

�

�

�
�

�

t : q .

v2(t).

PSPICE

MULTISIM

Figure P7.68

7.69 There is no energy stored in the circuit in Fig. P7.69
at the time the switch is closed.

a) Find 

b) Find 

c) Find 

d) Do your answers make sense in terms of known
circuit behavior?

Figure P7.69

7.70 Repeat Problem 7.69 if the dot on the 40 mH coil is
at the bottom of the coil.

7.71 There is no energy stored in the circuit of Fig. P7.71
at the time the switch is closed.

a) Find 

b) Find 

c) Find 

d) Find 

e) Do your answers make sense in terms of known
circuit behavior?

Figure P7.71

�

�

20 �

5 H

5 H

80 V

t � 0

i1
10 H

�

�

vo

io

i2

i2(t) for t Ú 0.

i1(t) for t Ú 0.

vo(t) for t Ú 0+ .

io(t) for t Ú 0.

4.5 k�

90 V
15 mH

20 mH

40 mH

t = 0

i (t)

v1(t)

v2(t)
�

�

�

�

�

�

v2(t) for t Ú 0.

v1(t) for t Ú 0+.

i(t) for t Ú 0.

�

�

�

�

250 �

0.5 H
0.25 H

10 V

t � 0

i1

0.25 H
i2

vo

io
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Section 7.5

7.72 The action of the two switches in the circuit seen in
Fig. P7.72 is as follows. For switch 1 is in posi-
tion a and switch 2 is open.This state has existed for
a long time. At switch 1 moves instanta-
neously from position a to position b, while switch 2
remains open. Ten milliseconds after switch 1 oper-
ates, switch 2 closes, remains closed for 10 ms and
then opens. Find 25 ms after switch 1 moves to
position b.

Figure P7.72

7.73 For the circuit in Fig. P7.72, how many milliseconds
after switch 1 moves to position b is the energy
stored in the inductor 4% of its initial value?

7.74 In the circuit in Fig. P7.74, switch A has been open
and switch B has been closed for a long time. At

switch A closes.Twenty-five milliseconds after
switch A closes, switch B opens. Find for t Ú 0.iL(t)
t = 0,

10 � 20 �

5 �

50 mH15 A

�

�

vo

t � 0

0 � 10 ms
a

b

1 2

vo(t)

t = 0,

t 6 0,

c)

d)

e)

Figure P7.75

7.76 The capacitor in the circuit seen in Fig. P7.76 has
been charged to 300 V. At switch 1 closes,
causing the capacitor to discharge into the resistive
network. Switch 2 closes after switch 1
closes. Find the magnitude and direction of the cur-
rent in the second switch after switch 1
closes.

Figure P7.76

7.77 There is no energy stored in the capacitor in the cir-
cuit in Fig. P7.77 when switch 1 closes at 
Switch 2 closes 2.5 milliseconds later. Find for
t Ú 0.

vo(t)
t = 0.

30 k�

120 k�

60 k�

40 k�

300 V
�

�

10
3 nF

t � 0

1

t � 0 � 200 ms

2

300 ms

200 ms

t = 0,

i
60 �

120 �

40 �

80 mH20 A v

�

�

cb

a

40 �

v(1+ ms).

v(1- ms).

i(6 ms).

Figure P7.74

75 mA 200 � 500 � 10 mHA

B

t = 25 ms iL(t)

t = 0

Figure P7.77

500 � 21

20 V 2 k� 25 mA8 mFvo
t = 0 t = 2.5 ms

�

�

�

�

7.75 The switch in the circuit shown in Fig. P7.75 has
been in position a for a long time. At the
switch is moved to position b, where it remains for
1 ms. The switch is then moved to position c, where
it remains indefinitely. Find

a)

b) i(200 ms).

i(0+).

t = 0,
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7.78 In the circuit in Fig. P7.78, switch 1 has been in posi-
tion a and switch 2 has been closed for a long time.At

switch 1 moves instantaneously to position b.
Two hundred microseconds later, switch 2 opens,
remains open for , and then recloses. Find 
1 ms after switch 1 makes contact with terminal b.

Figure P7.78

7.79 For the circuit in Fig. P7.78, what percentage of the
initial energy stored in the capacitor is dissi-
pated in the resistor?

7.80 The switch in the circuit in Fig. P7.80 has been in
position a for a long time. At it moves instan-
taneously to position b, where it remains for five sec-
onds before moving instantaneously to position c.
Find for 

Figure P7.80

7.81 The current source in the circuit in Fig. P7.81(a) 
generates the current pulse shown in Fig. P7.81(b).
There is no energy stored at 

a) Derive the numerical expressions for for
the time intervals and

b) Calculate and 

c) Calculate and 

Figure P7.81

is

io

is (mA)

vo3 k�

(a) (b)

75 mH

25 t (ms)

50

0�

�

io (25+ ms).io (25- ms)

vo (25+ ms).vo (25- ms)

25 ms … t 6 q .
0 … t … 25 ms,t 6 0,

vo(t)

t = 0.

5 mA 1 k�

3.3 k�

vo 100 mF

a c

b
t � 0

t � 5 s

100 k��

�

t Ú 0.vo

t = 0,

30 kÆ

25 nF

5 k� 5 k� 2

10 k�

10 V 30 k�25 nF

a 1

b
vo

t = 0

 0 + 0.2ms

 0 + 0.8 ms

�
�

�

�

vo600 ms

t = 0,

7.82 The voltage waveform shown in Fig. P7.82(a) is
applied to the circuit of Fig. P7.82(b). The initial
current in the inductor is zero.

a) Calculate 

b) Make a sketch of versus t.

c) Find at 

Figure P7.82

7.83 The voltage signal source in the circuit in Fig. P7.83(a)
is generating the signal shown in Fig.P7.83(b).There is
no stored energy at 

a) Derive the expressions for that apply 
in the intervals 

and 

b) Sketch and on the same coordinate axes.

c) Repeat (a) and (b) with R reduced to 

Figure P7.83

7.84 The voltage waveform shown in Fig. P7.84(a) is
applied to the circuit of Fig. P7.84(b). The initial
voltage on the capacitor is zero.

a) Calculate 

b) Make a sketch of versus t.vo(t)

vo(t).

R = 4 k�

50 nF

(a)

10

0 25

(b)

50 t (ms)

−10

+
vovs

vs (V)

−
�
�

800 Æ.

vsvo

50 ms … t 6  q.50 ms;25 ms … t …
 0 … t … 25 ms;t 6 0;

vo(t)

t = 0.

20 �

40 mHio

�

�

vo

�

�

vs

(b)
0

(a)
2.5

80

vs (V)

t (ms)

t = 5 ms.io

vo(t)

vo(t).
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Figure P7.84

Section 7.6

7.85 The inductor current in the circuit in Fig. P7.85 is
25 mA at the instant the switch is opened. The
inductor will malfunction whenever the magnitude
of the inductor current equals or exceeds 5 A. How
long after the switch is opened does the inductor
malfunction?

Figure P7.85

7.86 The gap in the circuit seen in Fig. P7.86 will arc over
whenever the voltage across the gap reaches 30 kV.
The initial current in the inductor is zero. The value
of is adjusted so the Thévenin resistance with
respect to the terminals of the inductor is 

a) What is the value of ?

b) How many microseconds after the switch has
been closed will the gap arc over?

Figure P7.86

7.87 The capacitor in the circuit shown in Fig. P7.87 is
charged to 20 V at the time the switch is closed. If
the capacitor ruptures when its terminal voltage

12 k� 80 mH

4 k�

bis40 V
t = 0 is

Gap
�

�

b

-4 kÆ.
b

10 H 25 mA

2 k�

t � 0
2 � 10�3 vf

� vf �

4 k�

400 k�

10 nF

vs

(a) (b)

vs (V)

t (ms)10

50
�

�

vo

�

�

equals or exceeds 20 kV, how long does it take to
rupture the capacitor?

Figure P7.87

7.88 The switch in the circuit in Fig. P7.88 has been
closed for a long time. The maximum voltage rating
of the capacitor is 14.4 kV. How long after
the switch is opened does the voltage across the
capacitor reach the maximum voltage rating?

Figure P7.88

7.89 The circuit shown in Fig. P7.89 is used to close the
switch between a and b for a predetermined length
of time. The electric relay holds its contact arms
down as long as the voltage across the relay coil
exceeds 5 V. When the coil voltage equals 5 V, the
relay contacts return to their initial position by a
mechanical spring action. The switch between a and
b is initially closed by momentarily pressing the
push button. Assume that the capacitor is fully
charged when the push button is first pushed down.
The resistance of the relay coil is and the
inductance of the coil is negligible.

a) How long will the switch between a and b
remain closed?

b) Write the numerical expression for i from the
time the relay contacts first open to the time the
capacitor is completely charged.

c) How many milliseconds (after the circuit
between a and b is interrupted) does it take the
capacitor to reach 85% of its final value?

25 kÆ,

5 mA2 k�
t � 0

1 k�

4 k�i�1.6 mF4 i�

1.6 mF

20 k�

80 k�

i�
20 V

�

�

2.5 mF
t � 0

� �

12 � 104 i�
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Figure P7.89

Section 7.7

7.90 The energy stored in the capacitor in the circuit
shown in Fig. P7.90 is zero at the instant the switch
is closed. The ideal operational amplifier reaches
saturation in 15 ms. What is the numerical value of
R in kilo-ohms?

Figure P7.90

7.91 At the instant the switch is closed in the circuit of
Fig. P7.90, the capacitor is charged to 6 V, positive
at the right-hand terminal. If the ideal opera-
tional amplifier saturates in 40 ms, what is the
value of R?

7.92 The voltage pulse shown in Fig. P7.92(a) is
applied to the ideal integrating amplifier shown
in Fig. P7.92(b). Derive the numerical expres-
sions for when for the time 
intervals

a)

b)

c)

d) 4 s … t

2 s … t … 4 s.

0 … t … 2 s.

t 6 0.

vo(0) = 0vo(t)

R 10 V

�10 V
4 V

�

�

�

�

vo

�

�

5.1 k�

500 nF

t � 0

2 mF

4 k�

80 V
�

�

i

Electric
relay

Push button
a

b

25 k�

Figure P7.92

7.93 Repeat Problem 7.92 with a resistor placed
across the feedback capacitor.

7.94 There is no energy stored in the capacitors in the
circuit shown in Fig. P7.94 at the instant the two
switches close. Assume the op amp is ideal.

a) Find as a function of R, and C.

b) On the basis of the result obtained in (a),
describe the operation of the circuit.

c) How long will it take to saturate the amplifier
if 

and 

Figure P7.94

t � 0

VCC

�VCC

vo

�

�

t � 0

vb
�

�

va

C

CR

�

�

R

�

�

6 V?=VCC10 nF;=C
50 kÆ;=R15 mV;=vb40 mV;=va

vb,va,vo

250 nF
4 MÆ

vg (mV)

vg

75

−75

0 2

(a)

(b)

250 nF

10 V

−10 V

80 k�

t = 0

4
t (s)

vo�

�

�

�
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7.95 At the instant the switch of Fig. P7.95 is closed, the
voltage on the capacitor is 56 V. Assume an ideal
operational amplifier. How many milliseconds
after the switch is closed will the output voltage 
equal zero?

Figure P7.95

7.96 The voltage source in the circuit in Fig. P7.96(a) is
generating the triangular waveform shown in
Fig. P7.96(b). Assume the energy stored in the
capacitor is zero at and the op amp is ideal.

a) Derive the numerical expressions for for
the following time intervals:

and 

b) Sketch the output waveform between 0 and 

c) If the triangular input voltage continues to repeat
itself for what would you expect the
output voltage to be? Explain.

Figure P7.96

(a)

(b)

t � 0

1 k�

vg

vg (V)

0 1 2 3 4 t (ms)

2

�2

15 V

�15 V
vo

�

�

�

�

800 pF

�

�

t 7 4 ms,

4 ms.

3 ms … t … 4 ms.1 ms … t … 3 ms;
0 … t … 1 ms;

vo(t)

t = 0

25 V

�25 V
14 V

�

� 45 V
�

�

�

�

33 k� 47 k�

20 k�

vo

�

�

t � 0

80 k�

56 V� �

2.5 mF

vo

Sections 7.1–7.7

7.97 The circuit shown in Fig. P7.97 is known as a
monostable multivibrator.The adjective monostable
is used to describe the fact that the circuit has one
stable state. That is, if left alone, the electronic
switch will be ON, and will be OFF. (The opera-
tion of the ideal transistor switch is described in
detail in Problem 7.99.) can be turned OFF by
momentarily closing the switch S. After S returns to
its open position, will return to its ON state.

a) Show that if is ON, is OFF and will stay OFF.

b) Explain why is turned OFF when S is momen-
tarily closed.

c) Show that will stay OFF for 

Figure P7.97

7.98 The parameter values in the circuit in Fig. P7.97
are 

and 

a) Sketch versus t, assuming that after S is
momentarily closed, it remains open until the
circuit has reached its stable state. Assume S is
closed at Make your sketch for the inter-
val 

b) Repeat (a) for versus t.

7.99 The circuit shown in Fig. P7.99 is known as an
astable multivibrator and finds wide application in
pulse circuits. The purpose of this problem is to
relate the charging and discharging of the capaci-
tors to the operation of the circuit. The key to ana-
lyzing the circuit is to understand the behavior of
the ideal transistor switches and The circuit is
designed so that the switches automatically alter-
nate between ON and OFF. When is OFF, is ON

and vice versa.Thus in the analysis of this circuit, we
assume a switch is either ON or OFF. We also assume
that the ideal transistor switch can change its state
instantaneously. In other words, it can snap from
OFF to ON and vice versa.When a transistor switch is

T2T1

T2.T1

ib2

-5 … t … 10 ms.
t = 0.

vce2

R = 23,083 Æ.C = 250 pF;
RL = 20 kÆ;R1 = 5.0 kÆ;VCC = 6 V;

RLRL R
C R1

S

vbe1

�

�
vbe2

�

�

vce2

�

�

VCC
ib1 ib2

T1 T2

c1

e2e1

c2b1 b2

�

�

RC ln 2 s.T2

T2

T1T2

T2

T2

T1T2
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ON, (1) the base current is greater than zero,
(2) the terminal voltage is zero, and (3) the ter-
minal voltage is zero. Thus, when a transistor
switch is ON, it presents a short circuit between the
terminals b,e and c,e. When a transistor switch is
OFF, (1) the terminal voltage is negative, (2) the
base current is zero, and (3) there is an open circuit
between the terminals c,e. Thus when a transistor
switch is OFF, it presents an open circuit between
the terminals b,e and c,e. Assume that T has been
ON and has just snapped OFF, while has been OFF

and has just snapped ON. You may assume that at
this instance, is charged to the supply voltage

and the charge on is zero. Also assume
and 

a) Derive the expression for during the inter-
val that is OFF.

b) Derive the expression for during the inter-
val that is OFF.

c) Find the length of time is OFF.

d) Find the value of at the end of the interval
that is OFF.

e) Derive the expression for during the interval
that is OFF.

f) Find the value of at the end of the interval
that is OFF.

g) Sketch versus t during the interval that 
is OFF.

h) Sketch versus t during the interval that 
is OFF.

Figure P7.99

T1 T2

b1 b2

ib1 ib2

C2
RL R2

VCC

C1
RLR1

�

�

vce1

�

�

vce2
�

�
vbe1

�

�
vbe2

c1 c2

e1 e2

�

�

T2ib1

T2vce2

T2

ib1

T2

ib1

T2

vce2

T2

T2

vce2

T2

vbe2

R1 = R2 = 10RL.C1 = C2

C1VCC,
C2

T1

2

vbe

vce

vbe

ib 7.100 The component values in the circuit of Fig. P7.99
are and

a) How long is in the OFF state during one cycle
of operation?

b) How long is in the ON state during one cycle
of operation?

c) Repeat (a) for 

d) Repeat (b) for 

e) At the first instant after turns ON, what is the
value of 

f) At the instant just before turns OFF, what is
the value of 

g) What is the value of at the instant just
before turns ON?

7.101 Repeat Problem 7.100 with and
All other component values are

unchanged.

7.102 The astable multivibrator circuit in Fig. P7.99 is to
satisfy the following criteria: (1) One transistor
switch is to be ON for and OFF for for
each cycle; (2) (3) 
(4) and (5) What are
the limiting values for the capacitors and 

7.103 The relay shown in Fig. P7.103 connects the 30 V
dc generator to the dc bus as long as the relay cur-
rent is greater than 0.4 A. If the relay current
drops to 0.4 A or less, the spring-loaded relay
immediately connects the dc bus to the 30 V
standby battery. The resistance of the relay wind-
ing is The inductance of the relay winding is
to be determined.

a) Assume the prime motor driving the 30 V dc
generator abruptly slows down, causing the
generated voltage to drop suddenly to 21 V.
What value of L will assure that the standby
battery will be connected to the dc bus in 
0.5 seconds?

b) Using the value of L determined in (a), state
how long it will take the relay to operate if the
generated voltage suddenly drops to zero.

60 Æ.

C2?C1

6RL … R1 … 50RL.R1 = R2;
VCC = 5 V;RL = 2 kÆ;

36 ms48 ms

C2 = 2.8 nF.
C1 = 3 nF

T2

vce2

ib1?
T1

ib1?
T1

T1.

T1.

T2

T2

R1 = R2 = 18 kÆ.
C1 = C2 = 2 nF;RL = 3 kÆ;VCC = 9 V;

PRACTICAL
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Figure P7.103

7.104 Derive the expression for heart rate in beats per
minute given the values of R and C and assuming
that the capacitor discharges when its voltage
reaches 75% of the source voltage The expres-
sion, given in the Practical Perspective, is repeated
here for convenience:

[beats per minute]. H =

60
-RC ln 0.25

 

Vs.

30 V
�

�

DC BUS

DC loads
Compressed

springs
relay
coil

(R, L)

30 V
dc

gen

�

�

7.105 Use an expression similar to the one derived in
Problem 7.104 to calculate the heart rate in beats
per minute for R 150 k , C 6 F, if the capac-
itor discharges when its voltage reaches 60% of the
source voltage 

7.106 Show that the resistance required to achieve a heart
rate H, in beats per minute, is given by the equation 

,

where C is the capacitance, is the source volt-
age, and is the capacitor voltage at which 
discharge occurs .

7.107 Use the expression derived in Problem 7.106 to
calculate the resistance required to achieve a
heart rate of 70 beats per minute using a capaci-
tance of 2.5 F and assuming that the capacitor
discharges when its voltage reaches 68% of the
source voltage.

m

Vmax

Vs.

 R =

-60

HC lna1 -

Vmax

Vs
b

 

Vs.

m=Æ=
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Natural and Step
Responses of RLC Circuits

C H A P T E R

88
In this chapter, discussion of the natural response and step
response of circuits containing both inductors and capacitors is
limited to two simple structures: the parallel RLC circuit and the
series RLC circuit. Finding the natural response of a parallel RLC

circuit consists of finding the voltage created across the parallel
branches by the release of energy stored in the inductor or capac-
itor or both. The task is defined in terms of the circuit shown in
Fig. 8.1 on page 266. The initial voltage on the capacitor, , repre-
sents the initial energy stored in the capacitor. The initial current
through the inductor, , represents the initial energy stored in the
inductor. If the individual branch currents are of interest, you can
find them after determining the terminal voltage.

We derive the step response of a parallel RLC circuit by using
Fig. 8.2 on page 266. We are interested in the voltage that appears
across the parallel branches as a result of the sudden application
of a dc current source. Energy may or may not be stored in the
circuit when the current source is applied.

Finding the natural response of a series RLC circuit consists
of finding the current generated in the series-connected elements
by the release of initially stored energy in the inductor, capacitor,
or both. The task is defined by the circuit shown in Fig. 8.3 on
page 266. As before, the initial inductor current, , and the initial
capacitor voltage, , represent the initially stored energy. If any
of the individual element voltages are of interest, you can find
them after determining the current.

We describe the step response of a series RLC circuit in terms
of the circuit shown in Fig. 8.4 on page 266. We are interested in
the current resulting from the sudden application of the dc volt-
age source. Energy may or may not be stored in the circuit when
the switch is closed.

If you have not studied ordinary differential equations, deri-
vation of the natural and step responses of parallel and series
RLC circuits may be a bit difficult to follow. However, the results
are important enough to warrant presentation at this time. We
begin with the natural response of a parallel RLC circuit and
cover this material over two sections: one to discuss the solution
of the differential equation that describes the circuit and one to
present the three distinct forms that the solution can take.

V0

I0

I0

V0

C H A P T E R  C O N T E N T S

8.1 Introduction to the Natural Response of a
Parallel RLC Circuit p. 266

8.2 The Forms of the Natural Response of a
Parallel RLC Circuit p. 270

8.3 The Step Response of a Parallel 
RLC Circuit p. 280

8.4 The Natural and Step Response of a Series
RLC Circuit p. 285

8.5 A Circuit with Two Integrating 
Amplifiers p. 289

C H A P T E R  O B J E C T I V E S

1 Be able to determine the natural response and
the step response of parallel RLC circuits.

2 Be able to determine the natural response and
the step response of series RLC circuits.



The digital circuits found in most computers require a timing
signal that synchronizes the operation of the circuits. Consider
a laptop computer whose processor speed is 2 GHz. This means
that the central processing unit for this computer can perform
about 2 109 simple operations every second.

The timing signal, produced by a clock generator chip, is
typically a square wave with the required clock frequency. The
square wave is obtained from a sinusoidal wave with the
required clock frequency. Typically, the sinusoidal wave is

generated by precisely-cut quartz crystal with an applied volt-
age. The crystal produces a very stable frequency suitable for
synchronizing digital circuits.

But we can also generate a sinusoidal wave using a cir-
cuit with an inductor and a capacitor. By choosing the values
of inductance and capacitance, we can create a sinusoid with
a specific frequency. We will examine such a design once we
have presented the fundamental concepts of second-order
circuits. 

*

265

Practical Perspective
Clock for Computer Timing

analog to digital
conversion

quartz crystal

Scanrail / fotolia 

David J. Green /Alamy 
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8.1 Introduction to the Natural
Response of a Parallel RLC Circuit

The first step in finding the natural response of the circuit shown in Fig. 8.1
is to derive the differential equation that the voltage must satisfy. We
choose to find the voltage first, because it is the same for each component.
After that, a branch current can be found by using the current-voltage
relationship for the branch component. We easily obtain the differential
equation for the voltage by summing the currents away from the top node,
where each current is expressed as a function of the unknown voltage :

(8.1)

We eliminate the integral in Eq. 8.1 by differentiating once with respect to t,
and, because is a constant, we get

(8.2)

We now divide through Eq. 8.2 by the capacitance C and arrange the
derivatives in descending order:

(8.3)

Comparing Eq. 8.3 with the differential equations derived in Chapter 7
reveals that they differ by the presence of the term involving the second
derivative. Equation 8.3 is an ordinary, second-order differential equation
with constant coefficients. Circuits in this chapter contain both inductors and
capacitors, so the differential equation describing these circuits is of the sec-
ond order.Therefore, we sometimes call such circuits second-order circuits.

The General Solution of the Second-Order Differential
Equation
We can’t solve Eq. 8.3 by separating the variables and integrating as we
were able to do with the first-order equations in Chapter 7. The classical
approach to solving Eq. 8.3 is to assume that the solution is of exponential
form, that is, to assume that the voltage is of the form

(8.4)

where A and s are unknown constants.
Before showing how this assumption leads to the solution of Eq. 8.3,

we need to show that it is rational.The strongest argument we can make in
favor of Eq. 8.4 is to note from Eq. 8.3 that the second derivative of the

v = Aest,

d2v

dt2 +

1
RC

 dv

dt
+

v

LC
= 0.

1
R

 dv

dt
+

v

L
+ C

d2v

dt2 = 0.

I0

v

R
+

1
LL

t

0
v dt + I0 + C 

dv

dt
= 0.

v

v

R

iL iRiC
LC V0 vI0

�

�

�

�

Figure 8.1 � A circuit used to illustrate the natural
response of a parallel RLC circuit.

RLC
t � 0

vI

�

�

Figure 8.2 � A circuit used to illustrate the step
response of a parallel RLC circuit.

R

i

L

V0C

I0 �

�

Figure 8.3 � A circuit used to illustrate the natural
response of a series RLC circuit.

�

�

R

i
t � 0

L

CV

Figure 8.4 � A circuit used to illustrate the step
response of a series RLC circuit.

After introducing these three forms, we show that the same forms
apply to the step response of a parallel RLC circuit as well as to
the natural and step responses of series RLC circuits.
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solution, plus a constant times the first derivative, plus a constant times the
solution itself, must sum to zero for all values of t. This can occur only if
higher order derivatives of the solution have the same form as the solu-
tion. The exponential function satisfies this criterion. A second argument
in favor of Eq. 8.4 is that the solutions of all the first-order equations we
derived in Chapter 7 were exponential. It seems reasonable to assume that
the solution of the second-order equation also involves the exponential
function.

If Eq. 8.4 is a solution of Eq. 8.3, it must satisfy Eq. 8.3 for all values of t.
Substituting Eq. 8.4 into Eq. 8.3 generates the expression

or

(8.5)

which can be satisfied for all values of t only if A is zero or the parentheti-
cal term is zero, because for any finite values of st. We cannot use

as a general solution because to do so implies that the voltage is
zero for all time—a physical impossibility if energy is stored in either the
inductor or capacitor. Therefore, in order for Eq. 8.4 to be a solution of
Eq. 8.3, the parenthetical term in Eq. 8.5 must be zero, or

(8.6)

Equation 8.6 is called the characteristic equation of the differential equa-
tion because the roots of this quadratic equation determine the mathe-
matical character of 

The two roots of Eq. 8.6 are

(8.7)

(8.8)

If either root is substituted into Eq. 8.4, the assumed solution satisfies the
given differential equation, that is, Eq. 8.3. Note from Eq. 8.5 that this
result holds regardless of the value of A. Therefore, both

 v = A2e
s2t

 v = A1e
s1t and

 s2 = -

1
2RC

- D¢ 1
2RC

≤ 2

-

1
LC

 .

 s1 = -

1
2RC

+ D¢ 1
2RC

≤ 2

-

1
LC

 ,

v(t).

s2
+

s

RC
+

1
LC

= 0.

A = 0
est

Z 0

 Aest¢s2
+

s

RC
+

1
LC
≤ = 0,

 As2est
+

As

RC
est

+

Aest

LC
= 0,

� Characteristic equation, parallel 
RLC circuit
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Neper frequency, parallel RLC circuit �

satisfy Eq. 8.3. Denoting these two solutions and respectively, we can
show that their sum also is a solution. Specifically, if we let

(8.9)

then

(8.10)

(8.11)

Substituting Eqs. 8.9–8.11 into Eq. 8.3 gives

(8.12)

But each parenthetical term is zero because by definition and are
roots of the characteristic equation. Hence the natural response of the
parallel RLC circuit shown in Fig. 8.1 is of the form

(8.13)

Equation 8.13 is a repeat of the assumption made in Eq. 8.9. We have
shown that is a solution, is a solution, and is a solution.
Therefore, the general solution of Eq. 8.3 has the form given in Eq. 8.13.
The roots of the characteristic equation ( and ) are determined by the
circuit parameters R, L, and C. The initial conditions determine the values
of the constants and Note that the form of Eq. 8.13 must be modi-
fied if the two roots and are equal. We discuss this modification when
we turn to the critically damped voltage response in Section 8.2.

The behavior of depends on the values of and Therefore the
first step in finding the natural response is to determine the roots of the
characteristic equation. We return to Eqs. 8.7 and 8.8 and rewrite them
using a notation widely used in the literature:

(8.14)

(8.15)

where

(8.16)

(8.17)

These results are summarized in Table 8.1.
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1
1LC
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- v2

0 ,
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s1t

+ A2e
s2t,

v2,v1

Resonant radian frequency, parallel 
RLC circuit �
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The exponent of e must be dimensionless, so both and (and
hence and ) must have the dimension of the reciprocal of time, or fre-
quency. To distinguish among the frequencies and we use the
following terminology: and are referred to as complex frequencies,
is called the neper frequency, and is the resonant radian frequency. The
full significance of this terminology unfolds as we move through the
remaining chapters of this book. All these frequencies have the dimen-
sion of angular frequency per time. For complex frequencies, the neper
frequency, and the resonant radian frequency, we specify values using the
unit radians per second ( ). The nature of the roots and depends
on the values of and There are three possible outcomes. First, if

both roots will be real and distinct. For reasons to be discussed
later, the voltage response is said to be overdamped in this case. Second,
if both and will be complex and, in addition, will be conju-
gates of each other. In this situation, the voltage response is said to be
underdamped. The third possible outcome is that In this case,
and will be real and equal. Here the voltage response is said to be
critically damped. As we shall see, damping affects the way the voltage
response reaches its final (or steady-state) value. We discuss each case
separately in Section 8.2.

Example 8.1 illustrates how the numerical values of and are
determined by the values of R, L, and C.

s2s1

s2

s1v0
2

= a2.

s2s1v0
2

7 a2,

v0
2

6 a2,
v0.a

s2s1rad>s

v0

as2s1

v0,a,s2,s1,
v0a

s2s1

TABLE 8.1 Natural Response Parameters of the Parallel RLC Circuit

Value In
Parameter Terminology Natural Response

Characteristic roots

Neper frequency

Resonant radian frequency v0 =

1
1LC

v0

a =

1
2RC

a

s2 = -a - 2a2
- v0

2

s1 = -a + 2a2
- v0

2s1, s2

Example 8.1 Finding the Roots of the Characteristic Equation of a Parallel RLC Circuit

a) Find the roots of the characteristic equation that
governs the transient behavior of the voltage
shown in Fig. 8.5 if and

b) Will the response be overdamped, underdamped,
or critically damped?

c) Repeat (a) and (b) for 

d) What value of R causes the response to be criti-
cally damped?

Figure 8.5 � A circuit used to illustrate the natural response of
a parallel RLC circuit.

R

iL iRiC
LC V0 vI0

�

�

�

�

R = 312.5 Æ.

C = 0.2 mF.
R = 200 Æ, L = 50 mH,

Solution

a) For the given values of R, L, and C,

From Eqs. 8.14 and 8.15,

 s2 = -1.25 * 104
- 21.5625 * 108

- 108

 = -12,500 + 7500 = -5000 rad>s,

 s1 = -1.25 * 104
+ 21.5625 * 108

- 108

 v0
2

=

1
LC

=

(103)(106)
(50)(0.2)

= 108 rad2>s2.

 a =

1
2RC

=

106

(400)(0.2)
= 1.25 * 104 rad>s,
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Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.1 The resistance and inductance of the circuit in
Fig. 8.5 are and 20 mH, respectively.

a) Find the value of C that makes the voltage
response critically damped.

b) If C is adjusted to give a neper frequency of
, find the value of C and the roots of

the characteristic equation.
c) If C is adjusted to give a resonant frequency

of , find the value of C and the
roots of the characteristic equation.

20 krad>s

5 krad>s

100 Æ
Answer: (a)

(b)

(c)

s2 = -74,641 rad>s.
s1 = -5359 rad>s,
C = 125 nF,

s2 = -5000 - j5000 rad>s;
s1 = -5000 + j5000 rad>s,
C = 1 mF,

500 nF;

NOTE: Also try Chapter Problem 8.4.

8.2 The Forms of the Natural Response
of a Parallel RLC Circuit

So far we have seen that the behavior of a second-order RLC circuit depends
on the values of and which in turn depend on the circuit parameters R,
L, and C. Therefore, the first step in finding the natural response is to calcu-
late these values and, relatedly, determine whether the response is over-,
under-, or critically damped.

Completing the description of the natural response requires finding two
unknown coefficients, such as and in Eq. 8.13. The method used to do
this is based on matching the solution for the natural response to the initial
conditions imposed by the circuit, which are the initial value of the current (or
voltage) and the initial value of the first derivative of the current (or voltage).
Note that these same initial conditions, plus the final value of the variable, will
also be needed when finding the step response of a second-order circuit.

In this section, we analyze the natural response form for each of the
three types of damping, beginning with the overdamped response.As we will
see, the response equations, as well as the equations for evaluating the
unknown coefficients, are slightly different for each of the three damping
configurations.This is why we want to determine at the outset of the problem
whether the response is over-, under-, or critically damped.

A2A1

s2,s1

A S S E S S M E N T  P R O B L E M

b) The voltage response is overdamped because 

c) For 

As remains at 

(In electrical engineering, the imaginary number
is represented by the letter j, because the

letter i represents current.)
1-1

 s2 = -8000 - j6000 rad>s.

 s1 = -8000 + j6000 rad>s,

108 rad2>s2,v0
2

 a2
= 64 * 106

= 0.64 * 108 rad2>s2.

 a =

106

(625)(0.2)
= 8000 rad>s,

R = 312.5 Æ,

v0
2

6 a2.
In this case, the voltage response is under-

damped since 

d) For critical damping, so

or

and

R =

106

(2 * 104)(0.2)
= 250 Æ.

1
2RC

= 104,

¢ 1
2RC

≤2

=

1
LC

= 108,

a2
= v0

2,

v0
2

7 a2.
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� Voltage natural response—overdamped
parallel RLC circuit

The Overdamped Voltage Response
When the roots of the characteristic equation are real and distinct, the volt-
age response of a parallel RLC circuit is said to be overdamped. The solu-
tion for the voltage is of the form

(8.18)

where and are the roots of the characteristic equation. The constants
and are determined by the initial conditions, specifically from the

values of and which in turn are determined from the ini-
tial voltage on the capacitor, and the initial current in the inductor,

Next, we show how to use the initial voltage on the capacitor and the
initial current in the inductor to find and First we note from Eq. 8.18
that and First we note from Eq. 8.18 that

(8.19)

(8.20)

With and known, the task of finding and reduces to finding
and The value of is the initial voltage on the capac-

itor We get the initial value of by first finding the current in the
capacitor branch at Then,

(8.21)

We use Kirchhoff’s current law to find the initial current in the capac-
itor branch. We know that the sum of the three branch currents at 
must be zero. The current in the resistive branch at is the initial
voltage divided by the resistance, and the current in the inductive
branch is Using the reference system depicted in Fig. 8.5, we obtain

(8.22)

After finding the numerical value of we use Eq. 8.21 to find the ini-
tial value of 

We can summarize the process for finding the overdamped response,
as follows:

1. Find the roots of the characteristic equation, and using the val-
ues of R, L, and C.

2. Find and using circuit analysis.

3. Find the values of and by solving Eqs. 8.23 and 8.24
simultaneously:

(8.23)

(8.24)

4. Substitute the values for and into Eq. 8.18 to deter-
mine the expression for for 

Examples 8.2 and 8.3 illustrate how to find the overdamped response of a
parallel RLC circuit.

t Ú 0.v(t)
A2A1,s2,s1,

 
dv(0+)

dt
=

iC(0+)
C

= s1A1 + s2A2.

 v(0+) = A1 + A2,

A2A1

dv(0+)>dtv(0+)

s2,s1

v(t),

dv>dt.
iC(0+),

iC(0+) =

-V0

R
- I0.

I0.
V0

t = 0+

t = 0+

dv(0+)
dt

=

iC(0+)
C

 .

t = 0+.
dv>dtV0.
v(0+)dv(0+)>dt.v(0+)

A2A1s2s1

 
dv(0+)

dt
= s1A1 + s2A2.

 v(0+) = A1 + A2,

A2.A1

A2.A1

I0.V0,
dv(0+)>dt,v(0+)

A2A1

s2s1

v = A1e
s1t

+ A2e
s2t,
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Example 8.2 Finding the Overdamped Natural Response of a Parallel RLC Circuit

For the circuit in Fig. 8.6, and

a) Find the initial current in each branch of the
circuit.

b) Find the initial value of 

c) Find the expression for 

d) Sketch in the interval 

Solution

a) The inductor prevents an instantaneous change
in its current, so the initial value of the inductor
current is 30 mA:

The capacitor holds the initial voltage across the
parallel elements to 12 V. Thus the initial current
in the resistive branch, is or
60 mA. Kirchhoff’s current law requires the sum
of the currents leaving the top node to equal
zero at every instant. Hence

Note that if we assumed the inductor current and
capacitor voltage had reached their dc values at
the instant that energy begins to be released,

In other words, there is an instanta-
neous change in the capacitor current at 

b) Because 

c) The roots of the characteristic equation come
from the values of R, L, and C. For the values
specified and from Eqs. 8.14 and 8.15 along with
8.16 and 8.17,

 = -12,500 - 7500 = -20,000 rad>s.

 s2 = -1.25 * 104
- 2 1.5625 * 108

- 108

 = -12,500 + 7500 = -5000 rad>s,

 s1 = -1.25 * 104
+ 21.5625 * 108

- 108

dv(0+)
dt

=

-90 * 10-3

0.2 * 10-6 = -450 kV>s.

iC = C(dv>dt),

t = 0.
iC(0-) = 0.

 = -90 mA.

 iC(0+) = - iL(0+) - iR(0+)

12>200,iR(0+),

iL(0-) = iL(0) = iL(0+) = 30 mA.

0 … t … 250 ms.v(t)

v(t).

dv>dt.

iL(0+) = 30 mA.
v(0+) = 12 V,

Figure 8.6 � The circuit for Example 8.2.

Because the roots are real and distinct, we know
that the response is overdamped and hence has
the form of Eq. 8.18.We find the co-efficients 
and from Eqs. 8.23 and 8.24. We’ve already
determined and so

We solve two equations for and to obtain
and Substituting these

values into Eq. 8.18 yields the overdamped volt-
age response:

As a check on these calculations, we note that
the solution yields and 

d) Figure 8.7 shows a plot of versus t over the
interval 

Figure 8.7 � The voltage response for Example 8.2.
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v(t) = (-14e-5000t
+ 26e-20,000t ) V, t Ú 0.

A2 = 26 V.A1 = -14 V
A2A1

 -450 * 103
= -5000A1 - 20,000A2.
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There are two ways to find the current in the induc-
tive branch. One way is to use the integral relation-
ship that exists between the current and the voltage
at the terminals of an inductor:

iL(t) =

1
LL

t

0
vL(x) dx + I0.

A second approach is to find the current in the
capacitive branch first and then use the fact that

Let’s use this approach. The cur-
rent in the capacitive branch is

Note that which agrees with the
result in Example 8.2.

Now we obtain the inductive branch current
from the relationship

We leave it to you, in Assessment Problem 8.2, to
show that the integral relation alluded to leads to
the same result. Note that the expression for 
agrees with the initial inductor current, as it must.

iL

 = (56e-5000t
- 26e-20,000t ) mA, t Ú 0.

 iL(t) = - iR(t) - iC(t)

iC(0+) = -90 mA,

 = (14e-5000t
- 104e-20,000t ) mA, t Ú 0+.

 = 0.2 * 10-6(70,000e-5000t
- 520,000e-20,000t )

 iC(t) = C 
dv

dt

iR + iL + iC = 0.

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.2 Use the integral relationship between and 
to find the expression for in Fig. 8.6.

Answer:

8.3 The element values in the circuit shown are
and The

initial current in the inductor is and
the initial voltage on the capacitor is 0 V. The
output signal is the voltage . Find (a) 
(b) (c) (d) (e) and
(f) when t Ú 0.v(t)

A2;A1;dv(0+)>dt;iC(0+);
iR(0+);v

-4 A,I0

C = 10 nF.L = 250 mH,R = 2 kÆ,

t Ú 0.iL(t) = (56e-5000t
- 26e-20,000t) mA,

iL

viL

Answer: (a) 0;

(b) 4 A;

(c)

(d) 13,333 V;

(e)

(f) 13,333(e-10,000t
- e-40,000t ) V.

-13,333 V;

4 * 108 V>s;

R

iL iRiC
LC V0 vI0

�

�

�

�

NOTE: Also try Chapter Problems 8.5 and 8.13.

A S S E S S M E N T  P R O B L E M S

Example 8.3 Calculating Branch Currents in the Natural Response of a Parallel RLC Circuit

Derive the expressions that describe the three
branch currents and in Example 8.2
(Fig. 8.6) during the time the stored energy is being
released.

Solution
We know the voltage across the three branches
from the solution in Example 8.2, namely,

The current in the resistive branch is then

v(t) = (-14e-5000t
+ 26e-20,000t ) V, t Ú 0.

iCiL,iR,

iR(t) =

v(t)
200

= (-70e-5000t
+ 130e-20,000t ) mA, t Ú 0.
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Damped radian frequency �

The Underdamped Voltage Response
When the roots of the characteristic equation are complex, and
the response is underdamped. For convenience, we express the roots 
and as

(8.25)

(8.26)

where

(8.27)

The term is called the damped radian frequency. We explain later the
reason for this terminology.

The underdamped voltage response of a parallel RLC circuit is

(8.28)

which follows from Eq. 8.18. In making the transition from Eq. 8.18 to
Eq. 8.28, we use the Euler identity:

(8.29)

Thus,

At this point in the transition from Eq. 8.18 to 8.28, replace the arbitrary
constants and with new arbitrary constants denoted

and to get

The constants and are real, not complex, because the voltage is a
real function. Don’t be misled by the fact that In this
underdamped case, and are complex conjugates, and thus and 
are real. (See Problems 8.12 and 8.13.) The reason for defining the under-
damped response in terms of the coefficients and is that it yields a B2B1

B2B1A2A1

B2 = j(A1 - A2).
B2B1

 = B1e
-at cos vdt + B2e

-at sin vdt.

 v = e-at(B1 cos vdt + B2 sin vdt)

B2B1

j(A1 - A2)A1 + A2

 = e-at[(A1 + A2) cos vdt + j(A1 - A2) sin vdt].

 = e-at(A1 cos vdt + jA1 sin vdt + A2 cos vdt - jA2 sin vdt)

 = A1e
-atejvdt

+ A2e
-ate-jvdt

 v(t) = A1e
(-a+ jvd)t

+ A2e
-(a+ jvd)t

e;ju
=  cos u ; j sin u.

v(t) = B1e
-at cos vdt + B2e

-at sin vdt,

vd

vd = 2v0
2

- a2.

 s2 = -a - jvd,

 = -a + jvd

 = -a + j2v0
2

- a2

 s1 = -a + 2-(v0
2

- a2)

s2

s1

v0
2

7 a2,

Voltage natural response—underdamped
parallel RLC circuits �
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simpler expression for the voltage, . We determine and by the initial
energy stored in the circuit, in the same way that we found and for the
overdamped response: by evaluating at and its derivative at 
As with and and are fixed by the circuit parameters R, L, and C.

For the underdamped response, the two simultaneous equations that
determine and are

(8.30)

(8.31)

Let’s look at the general nature of the underdamped response. First,
the trigonometric functions indicate that this response is oscillatory; that
is, the voltage alternates between positive and negative values. The rate at
which the voltage oscillates is fixed by Second, the amplitude of the
oscillation decreases exponentially. The rate at which the amplitude falls
off is determined by Because determines how quickly the oscillations
subside, it is also referred to as the damping factor or damping coefficient.
That explains why is called the damped radian frequency. If there is no
damping, and the frequency of oscillation is Whenever there is a
dissipative element, R, in the circuit, is not zero and the frequency of
oscillation, is less than Thus when is not zero, the frequency of
oscillation is said to be damped.

The oscillatory behavior is possible because of the two types of energy-
storage elements in the circuit: the inductor and the capacitor. (A mechan-
ical analogy of this electric circuit is that of a mass suspended on a spring,
where oscillation is possible because energy can be stored in both the
spring and the moving mass.) We say more about the characteristics of the
underdamped response following Example 8.4, which examines a circuit
whose response is underdamped. In summary, note that the overall
process for finding the underdamped response is the same as that for the
overdamped response, although the response equations and the simulta-
neous equations used to find the constants are slightly different.

av0.vd,
a

v0.a = 0
vd

aa.

vd.

 
dv(0+)

dt
=

ic(0+)
C

= -aB1 + vdB2.

 v(0+) = V0 = B1,

B2B1

vdas2,s1

t = 0+.t = 0+v
A2A1

B2B1v

Example 8.4 Finding the Underdamped Natural Response of a Parallel RLC Circuit

In the circuit shown in Fig. 8.8, and

a) Calculate the roots of the characteristic equation.

b) Calculate and at 

c) Calculate the voltage response for 

d) Plot versus t for the time interval

Figure 8.8 � The circuit for Example 8.4.

20 k�

iL iRiC

8 H0.125 mF V0 vI0

�

�

�

�

0 … t … 11 ms.
v(t)

t Ú 0.

t = 0+.dv>dtv

I0 = -12.25 mA.
V0 = 0, Solution

a) Because

we have

v0
2

7 a2.

 v0 =

1
1LC

= C
106

(8)(0.125)
= 103 rad>s,

 a =

1
2RC

=

106

2(20)103(0.125)
= 200 rad>s,
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Therefore, the response is underdamped. Now,

For the underdamped case, we do not ordinarily
solve for and because we do not use them
explicitly. However, this example emphasizes
why and are known as complex frequencies.

b) Because is the voltage across the terminals of a
capacitor, we have

Because the current in the resistive
branch is zero at Hence the current in
the capacitor at is the negative of the
inductor current:

Therefore the initial value of the derivative is

dv(0+)
dt

=

(12.25)(10-3)

(0.125)(10-6)
= 98,000 V>s.

iC(0+) = -(-12.25) = 12.25 mA.

t = 0+

t = 0+.
v(0+) = 0,

v(0) = v(0+) = V0 = 0.

v

s2s1

s2s1

 s2 = -a - jvd = -200 - j979.80 rad>s.

 s1 = -a + jvd = -200 + j979.80 rad>s,

 = 979.80 rad>s,

 vd = 2v0
2

- a2
= 2106

- 4 * 104
= 100196

c) From Eqs. 8.30 and 8.31, and

Substituting the numerical values of 
and into the expression for gives

d) Figure 8.9 shows the plot of versus t for the
first 11 ms after the stored energy is released. It
clearly indicates the damped oscillatory nature
of the underdamped response. The voltage 
approaches its final value, alternating between
values that are greater than and less than the
final value. Furthermore, these swings about the
final value decrease exponentially with time.

Figure 8.9 � The voltage response for Example 8.4.

1 2 3 4 5 6 7 8 9 11
0

�20
�40

20
40
60
80

v (V)

t(ms)

v(t)

v(t)

v(t) = 100e-200t sin 979.80t V, t Ú 0.

v(t)B2

B1,vd,a,

B2 =

98,000
vd

L 100 V.

B1 = 0

Characteristics of the Underdamped Response
The underdamped response has several important characteristics. First, as
the dissipative losses in the circuit decrease, the persistence of the oscilla-
tions increases, and the frequency of the oscillations approaches In
other words, as the dissipation in the circuit in Fig. 8.8 approaches
zero because As which tells us that 
When the maximum amplitude of the voltage remains constant;
thus the oscillation at is sustained. In Example 8.4, if R were increased
to infinity, the solution for would become

Thus, in this case the oscillation is sustained, the maximum amplitude of
the voltage is 98 V, and the frequency of oscillation is .

We may now describe qualitatively the difference between an under-
damped and an overdamped response. In an underdamped system, the
response oscillates, or “bounces,” about its final value. This oscillation is
also referred to as ringing. In an overdamped system, the response
approaches its final value without ringing or in what is sometimes
described as a “sluggish” manner.When specifying the desired response of
a second order system, you may want to reach the final value in the short-
est time possible, and you may not be concerned with small oscillations
about that final value. If so, you would design the system components to
achieve an underdamped response. On the other hand, you may be con-
cerned that the response not exceed its final value, perhaps to ensure that
components are not damaged. In such a case, you would design the system
components to achieve an overdamped response, and you would have to
accept a relatively slow rise to the final value.

1000 rad>s

v(t) = 98 sin 1000t V, t Ú 0.

v(t)
v0

a = 0,
vd : v0.R : q , a: 0,p = v2>R.

R : q ,
v0.
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Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.4 A 10 mH inductor, a capacitor, and a vari-
able resistor are connected in parallel in the
circuit shown. The resistor is adjusted so that
the roots of the characteristic equation are

The initial voltage on the
capacitor is 10 V, and the initial current in the
inductor is 80 mA. Find 

a) R;

b)

c) and in the solution for ; and 

d) iL(t).

vB2B1

dv(0+)>dt;

-8000 ; j6000  rad>s.

1 mF

Answer: (a)

(b)

(c)

(d)
when t Ú 0.+  (82>3) sin 6000t] mA

iL(t) = 10e-8000t[8 cos 6000t

B2 = -80>3 V;B1 = 10 V,

-240,000 V>s;

62.5 Æ;

iL iRiC
L RC I0V0

�

�

v

�

�

NOTE: Also try Chapter Problems 8.6 and 8.11.

A S S E S S M E N T  P R O B L E M

The Critically Damped Voltage Response
The second-order circuit in Fig. 8.8 is critically damped when or

When a circuit is critically damped, the response is on the verge of
oscillating. In addition, the two roots of the characteristic equation are
real and equal; that is,

(8.32)

When this occurs, the solution for the voltage no longer takes the form
of Eq. 8.18. This equation breaks down because if it pre-
dicts that

(8.33)

where is an arbitrary constant. Equation 8.33 cannot satisfy two inde-
pendent initial conditions ( ) with only one arbitrary constant,
Recall that the circuit parameters R and C fix 

We can trace this dilemma back to the assumption that the solution
takes the form of Eq. 8.18. When the roots of the characteristic equation
are equal, the solution for the differential equation takes a different
form, namely

(8.34)

Thus in the case of a repeated root, the solution involves a simple expo-
nential term plus the product of a linear and an exponential term. The jus-
tification of Eq. 8.34 is left for an introductory course in differential
equations. Finding the solution involves obtaining and by following
the same pattern set in the overdamped and underdamped cases: We use
the initial values of the voltage and the derivative of the voltage with
respect to time to write two equations containing and/or D2.D1

D2D1

v(t) = D1te
-at

+ D2e
-at.

a.
A0.V0, I0

A0

v = (A1 + A2)e-at
= A0e

-at,

s1 = s2 = -a,

s1 = s2 = -a = -

1
2RC

 .

v0 = a.
v0

2
= a2,

� Voltage natural response—critically
damped parallel RLC circuit
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Example 8.5 Finding the Critically Damped Natural Response of a Parallel RLC Circuit

a) For the circuit in Example 8.4 (Fig. 8.8), find the
value of R that results in a critically damped volt-
age response.

b) Calculate for 

c) Plot versus t for 

Solution
a) From Example 8.4, we know that 

Therefore for critical damping,

or

b) From the solution of Example 8.4, we know that
and From

Eqs. 8.35 and 8.36, and D1 = 98,000 V>s.D2 = 0
dv(0+)>dt = 98,000 V>s.v(0+) = 0

R =

106

(2000)(0.125)
= 4000 Æ.

a = 103
=

1
2RC

 ,

v0
2

= 106.

0 … t … 7 ms.v(t)

t Ú 0.v(t)

Substituting these values for and into
Eq. 8.34 gives

c) Figure 8.10 shows a plot of versus t in the
interval 

Figure 8.10 � The voltage response for Example 8.5.

0

8

16

24

32

40

v(V)

1 2 3 4 5 6 7
t (ms)

0 … t … 7 ms.
v(t)

v(t) = 98,000te-1000t V, t Ú 0.

D2D1,a,

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.5 The resistor in the circuit in Assessment
Problem 8.4 is adjusted for critical damping.
The inductance and capacitance values are
0.4 H and respectively. The initial energy
stored in the circuit is 25 mJ and is distributed
equally between the inductor and capacitor.
Find (a) R; (b) (c) (d) and in the
solution for ; and (e) t Ú 0+.iR,v

D2D1I0;V0;

10 mF,

Answer: (a)

(b) 50 V;

(c) 250 mA;

(d) 50 V;

(e)
t Ú 0+.
iR(t) = (-500te-500t

+ 0.50e-500t) A,

-50,000 V>s,

100 Æ;

NOTE: Also try Chapter Problems 8.7 and 8.12.

A S S E S S M E N T  P R O B L E M

From Eq. 8.34, the two simultaneous equations needed to determine
and are

(8.35)

(8.36)

As we can see, in the case of a critically damped response, both the
equation for and the simultaneous equations for the constants and

differ from those for over- and underdamped responses, but the general
approach is the same. You will rarely encounter critically damped systems
in practice, largely because must equal exactly. Both of these quanti-
ties depend on circuit parameters, and in a real circuit it is very difficult to
choose component values that satisfy an exact equality relationship.

Example 8.5 illustrates the approach for finding the critically damped
response of a parallel RLC circuit.

av0

D2

D1v(t)

 
dv(0+)

dt
=

iC(0+)
C

= D1 - aD2.

 v(0+) = V0 = D2,

D2D1
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A Summary of the Results
We conclude our discussion of the parallel RLC circuit’s natural response
with a brief summary of the results. The first step in finding the natural
response is to calculate the roots of the characteristic equation. You then
know immediately whether the response is overdamped, underdamped, or
critically damped.

If the roots are real and distinct ( ), the response is over-
damped and the voltage is

where

The values of and are determined by solving the following simulta-
neous equations:

If the roots are complex the response is underdamped and
the voltage is

where

The values of and are found by solving the following simultaneous
equations:

If the roots of the characteristic equation are real and equal ( ),
the voltage response is

where is as in the other solution forms. To determine values for the con-
stants and solve the following simultaneous equations:

 
dv(0+)

dt
=

iC(0+)
C

= D1 - aD2.

 v(0+) = V0 = D2,

D2,D1

a

v(t) = D1te
-at

+ D2e
-at,

v0
2

= a2

 
dv(0+)

dt
=

iC(0+)
C

= -aB1 + vdB2.

 v(0+) = V0 = B1,

B2B1

vd = 2v0
2

- a2.

v(t) = B1e
-at cos vdt + B2e

-at sin vdt,

v0
2

7 a2

 
dv(0+)

dt
=

iC(0+)
C

= s1A1 + s2A2.

 v(0+) = A1 + A2,

A2A1

 v0
2

=

1
LC

 .

 a =

1
2RC

 ,

 s2 = -a - 2a2
- v0

2 ,

 s1 = -a + 2a2
- v0

2 ,

v(t) = A1e
s1t

+ A2e
s2t,

v0
2

6 a2
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8.3 The Step Response of a Parallel 
RLC Circuit

Finding the step response of a parallel RLC circuit involves finding the
voltage across the parallel branches or the current in the individual
branches as a result of the sudden application of a dc current source.
There may or may not be energy stored in the circuit when the current
source is applied. The task is represented by the circuit shown in Fig. 8.11.
To develop a general approach to finding the step response of a second-
order circuit, we focus on finding the current in the inductive branch ( ).
This current is of particular interest because it does not approach zero as
t increases. Rather, after the switch has been open for a long time, the
inductor current equals the dc source current I. Because we want to focus
on the technique for finding the step response, we assume that the initial
energy stored in the circuit is zero. This assumption simplifies the calcula-
tions and doesn’t alter the basic process involved. In Example 8.10
we will see how the presence of initially stored energy enters into the
general procedure.

To find the inductor current we must solve a second-order differ-
ential equation equated to the forcing function I, which we derive as fol-
lows. From Kirchhoff’s current law, we have

or

(8.37)

Because

(8.38)

we get

(8.39)

Substituting Eqs. 8.38 and 8.39 into Eq. 8.37 gives

(8.40)

For convenience, we divide through by LC and rearrange terms:

(8.41)

Comparing Eq. 8.41 with Eq. 8.3 reveals that the presence of a nonzero
term on the right-hand side of the equation alters the task. Before show-
ing how to solve Eq. 8.41 directly, we obtain the solution indirectly.
When we know the solution of Eq. 8.41, explaining the direct approach
will be easier.

d2iL

dt2 +

1
RC

 diL

dt
+

iL

LC
=

I

LC
 .

iL +

L

R
 
diL

dt
+ LC 

d2iL

dt2 = I.

 
dv

dt
= L 

d2iL

dt2  .

 v = L 

diL

dt
 ,

 iL +

v

R
+ C 

dv

dt
= I.

 iL + iR + iC = I,

iL,

iL

RLC
t � 0

vI

�

�

iC iL iR

Figure 8.11 � A circuit used to describe the step
response of a parallel RLC circuit.
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The Indirect Approach
We can solve for indirectly by first finding the voltage .We do this with
the techniques introduced in Section 8.2, because the differential equation
that must satisfy is identical to Eq. 8.3. To see this, we simply return to
Eq. 8.37 and express as a function of ; thus

(8.42)

Differentiating Eq. 8.42 once with respect to t reduces the right-hand side
to zero because I is a constant. Thus

or

(8.43)

As discussed in Section 8.2, the solution for depends on the roots of the
characteristic equation. Thus the three possible solutions are

(8.44)

(8.45)

(8.46)

A word of caution: Because there is a source in the circuit for you
must take into account the value of the source current at when you
evaluate the coefficients in Eqs. 8.44–8.46.

To find the three possible solutions for we substitute Eqs. 8.44–8.46
into Eq. 8.37. You should be able to verify, when this has been done, that
the three solutions for will be

(8.47)

(8.48)

(8.49)

where and are arbitrary constants.
In each case, the primed constants can be found indirectly in terms of

the arbitrary constants associated with the voltage solution. However, this
approach is cumbersome.

The Direct Approach
It is much easier to find the primed constants directly in terms of the ini-
tial values of the response function. For the circuit being discussed, we
would find the primed constants from and 

The solution for a second-order differential equation with a constant
forcing function equals the forced response plus a response function

diL(0)>dt.iL(0)

Dœ

2,Dœ

1,Bœ

2,Bœ

1,Aœ

2,Aœ

1,

 iL = I + Dœ

1te
-at

+ Dœ

2e
-at,

 iL = I + Bœ

1e
-at cos vdt + Bœ

2e
-at sin vdt,

 iL = I + Aœ

1e
s1t

+ Aœ

2e
s2t,

iL

iL,

t = 0+

t 7 0,

 v = D1te
-at

+ D2e
-at.

 v = B1e
-at cos vdt + B2e

-at sin vdt,

 v = A1e
s1t

+ A2e
s2t,

v

 
d2v

dt2 +

1
RC

 dv

dt
+

v

LC
= 0.

 
v

L
+

1
R

 dv

dt
+ C

d2v

dt2 = 0,

1
LL

t

0
v dt +

v

R
+ C 

dv

dt
= I.

viL

v

viL
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The initial energy stored in the circuit in Fig. 8.12 is
zero. At a dc current source of 24 mA is
applied to the circuit. The value of the resistor is

a) What is the initial value of ?

b) What is the initial value of ?

c) What are the roots of the characteristic equation?

d) What is the numerical expression for when
?

Figure 8.12 � The circuit for Example 8.6.

Solution

a) No energy is stored in the circuit prior to the
application of the dc current source, so the initial
current in the inductor is zero. The inductor pro-
hibits an instantaneous change in inductor cur-
rent; therefore immediately after the
switch has been opened.

b) The initial voltage on the capacitor is zero
before the switch has been opened; therefore it
will be zero immediately after. Now, because

diL

dt
(0+) = 0.

v = LdiL>dt,

iL(0) = 0

R25 mH25 nFt � 0
I v

�

�

iC iL iR

t Ú 0
iL(t)

diL>dt

iL

400 Æ.

t = 0,
c) From the circuit elements, we obtain

or

Because the roots of the characteristic
equation are real and distinct. Thus

d) Because the roots of the characteristic equation
are real and distinct, the inductor current response
will be overdamped. Thus takes the form of
Eq. 8.47, namely,

� Inductor current in overdamped parallel 
RLC circuit step response

Hence, from this solution, the two simultaneous
equations that determine and are

Solving for and gives

The numerical solution for is

iL(t) = (24 - 32e-20,000t
+ 8e-80,000t ) mA, t Ú 0.

iL(t)

Aœ

1 = -32 mA and Aœ

2 = 8 mA.

Aœ

2Aœ

1

 
diL

dt
(0) = s1A

œ

1 + s2A
œ

2 = 0.

 iL(0) = If + Aœ

1 + Aœ

2 = 0,

Aœ

2Aœ

1

iL = If + Aœ

1e
s1t

+ Aœ

2e
s2t.

iL(t)

 s2 = -5 * 104
- 3 * 104

= -80,000 rad>s.

 s1 = -5 * 104
+ 3 * 104

= -20,000 rad>s,

v0
2

6 a2,

a2
= 25 * 108.

 a =

1
2RC

=

109

(2)(400)(25)
= 5 * 104 rad>s,

 v0
2

=

1
LC

=

1012

(25)(25)
= 16 * 108,

identical in form to the natural response. Thus we can always write the
solution for the step response in the form

(8.50)

or

(8.51)

where and represent the final value of the response function. The
final value may be zero, as was, for example, the case with the voltage in
the circuit in Fig. 8.8.

Examples 8.6–8.10 illustrate the technique of finding the step
response of a parallel RLC circuit using the direct approach.

v
VfIf

 v = Vf + b function of the same form
as the natural response

r ,

 i = If + b function of the same form
as the natural response

r ,

Example 8.6 Finding the Overdamped Step Response of a Parallel RLC Circuit
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iL(t) = (24 - 960,000te-40,000t
- 24e-40,000t) mA, t Ú 0.

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is increased to Find for 

Solution
Because L and C remain fixed, has the same
value as in Example 8.6; that is,
Increasing R to decreases to

With the roots of the
characteristic equation are complex. Hence

The current response is now underdamped and
given by Eq. 8.48:

� Inductor current in underdamped parallel 
RLC circuit step response

iL(t) = If + Bœ

1e
-at cos vdt + Bœ

2e
-at sin vdt.

 s2 = -3.2 * 104
- j 2.4 * 104 rad>s.

 s1 = -3.2 * 104
+ j 2.4 * 104 rad>s,

v0
2

7 a2,3.2 * 104 rad>s.
a625 Æ

v0
2

= 16 *  108.
v0

2

t Ú 0.iL(t)625 Æ.
Here, is is and 

is 24 mA.
As in Example 8.6, and are determined

from the initial conditions. Thus the two simultane-
ous equations are

Then,

and

The numerical solution for is

 -  32e-32,000t sin 24,000t) mA, t Ú 0.

 iL(t) = (24 - 24e-32,000t cos 24,000t

iL(t)

Bœ

2 = -32 mA.

Bœ

1 = -24 mA

 
diL

dt
 (0) = vdBœ

2 - aBœ

1 = 0.

 iL(0) = If + Bœ

1 = 0,

Bœ

2Bœ

1

If

24,000 rad>s,vd32,000 rad>s,a

Example 8.8 Finding the Critically Damped Step Response of a Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.12)
is set at Find for 

Solution
We know that remains at With R set at

becomes which corresponds
to critical damping. Therefore the solution for 
takes the form of Eq. 8.49:

� Inductor current in critically damped parallel
RLC circuit step response

iL(t) = If + Dœ

1te
-at

+ Dœ

2e
-at.

iL(t)
4 * 104 s-1,a500 Æ,

16 * 108.v0
2

t Ú 0.iL500 Æ.
Again, and are computed from initial
conditions, or

Thus

The numerical expression for isiL(t)

Dœ

1 = -960,000 mA>s and Dœ

2 = -24 mA.

 
diL

dt
(0) = Dœ

1 - aDœ

2 = 0.

 iL(0) = If + Dœ

2 = 0,

Dœ

2Dœ

1

Example 8.7 Finding the Underdamped Step Response of a Parallel RLC Circuit
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Example 8.9 Comparing the Three-Step Response Forms

a) Plot on a single graph, over a range from 0 to
the overdamped, underdamped, and

critically damped responses derived in
Examples 8.6–8.8.

b) Use the plots of (a) to find the time required for
to reach 90% of its final value.

c) On the basis of the results obtained in (b), which
response would you specify in a design that puts
a premium on reaching 90% of the final value of
the output in the shortest time?

d) Which response would you specify in a design
that must ensure that the final value of the cur-
rent is never exceeded?

Solution

a) See Fig. 8.13.

b) The final value of is 24 mA, so we can read the
times off the plots corresponding to 
Thus and 

c) The underdamped response reaches 90% of the
final value in the fastest time, so it is the desired
response type when speed is the most important
design specification.

tud = 74 ms.tcd = 97 ms,tod = 130 ms,
iL = 21.6 mA.

iL

iL

220 ms,

Figure 8.13 � The current plots for Example 8.9.

d) From the plot, you can see that the under-
damped response overshoots the final value of
current, whereas neither the critically damped
nor the overdamped response produces currents
in excess of 24 mA.Although specifying either of
the latter two responses would meet the design
specification, it is best to use the overdamped
response. It would be impractical to require a
design to achieve the exact component values
that ensure a critically damped response.

Underdamped (R � 625 �)

Overdamped (R � 400 �)
Critically damped (R � 500 �)

2
0

6

10

14

18

22

26

iL (mA)

20 60 100 140 180
t (ms)

Example 8.10 Finding Step Response of a Parallel RLC Circuit with Initial Stored Energy

Energy is stored in the circuit in Example 8.8
(Fig. 8.12, with ) at the instant the dc cur-
rent source is applied. The initial current in the
inductor is 29 mA, and the initial voltage across the
capacitor is 50 V. Find (a) (b) 
(c) for (d) for 

Solution

a) There cannot be an instantaneous change of cur-
rent in an inductor, so the initial value of in the
first instant after the dc current source has been
applied must be 29 mA.

b) The capacitor holds the initial voltage across the
inductor to 50 V. Therefore

 
diL

dt
(0+) =

50
25

* 103
= 2000 A>s.

 L 

diL

dt
 (0+) = 50,

iL

t Ú 0.v(t)t Ú 0;iL(t)
diL(0)>dt;iL(0);

R = 500 Æ
c) From the solution of Example 8.8, we know that

the current response is critically damped. Thus

where

Notice that the effect of the nonzero initial
stored energy is on the calculations for the con-
stants and which we obtain from the ini-
tial conditions. First we use the initial value of
the inductor current:

from which we get

Dœ

2 = 29 - 24 = 5 mA.

iL(0) = If + Dœ

2 = 29 mA,

Dœ

2,Dœ

1

a =

1
2RC

= 40,000 rad>s and If = 24 mA.

iL(t) = If + Dœ

1te
-at

+ Dœ

2e
-at,
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The solution for is

or

Thus the numerical expression for is

 + 5e-40,000t) mA, t Ú 0.

 iL(t) = (24 + 2.2 * 106te-40,000t

iL(t)

 = 2200 A>s = 2.2 * 106 mA>s.

 = 2000 + (40,000)(5 * 10-3)

 Dœ

1 = 2000 + aDœ

2

diL

dt
(0+) = Dœ

1 - aDœ

2 = 2000,

Dœ

1 d) We can get the expression for by
using the relationship between the voltage and
current in an inductor:

To check this result, let’s verify that the initial
voltage across the inductor is 50 V:

v(0) = -2.2 * 106(0)(1) + 50(1) = 50 V.

 = -2.2 * 106te-40,000t
+ 50e-40,000t V, t Ú 0.

 + (5)(-40,000)e-40,000t ] * 10-3

 + 2.2 * 106e-40,000t

 = (25 * 10-3)[(2.2 * 106)(-40,000)te-40,000t

 v(t) = L 

diL

dt

v(t), t Ú 0

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.6 In the circuit shown,
and The initial voltage

drop across the capacitor is 40 V and the initial
inductor current is 0.5 A. Find (a) 
(b) (c) (d) (e) for

and (f) for 

RLC
t � 0

vI

�

�

iC iL iR

t Ú 0+.v(t)t Ú 0;
iL(t)s2;s1,diL(0+)>dt;iC(0+);

iR(0+);

I = -1 A.C = 1 mF,
L = 0.64 H,R = 500 Æ, Answer: (a) 80 mA;

(b)

(c) ;

(d)

(e)
for 

(f)
for t Ú 0+.
e-1000t(40 cos 750t - 2053.33 sin 750t) V,

t Ú 0;+  2.0833 sin 750t] A,
[-1 + e-1000t[1.5 cos 750t

(-1000 - j 750) rad>s;
(-1000 + j 750) rad>s,

62.5 A>s
-1.58 A;

A S S E S S M E N T  P R O B L E M

NOTE: Also try Chapter Problems 8.27–8.29.

8.4 The Natural and Step Response 
of a Series RLC Circuit

The procedures for finding the natural or step responses of a series RLC
circuit are the same as those used to find the natural or step responses of a
parallel RLC circuit, because both circuits are described by differential
equations that have the same form. We begin by summing the voltages
around the closed path in the circuit shown in Fig. 8.14. Thus

(8.52)

We now differentiate Eq. 8.52 once with respect to t to get

(8.53) R 
di

dt
+ L 

d2i

dt2 +

i

C
= 0,

Ri + L 
di

dt
+

1
CL

t

0
idt + V0 = 0.

R

i

L

C

I0

V0

�

�

Figure 8.14 � A circuit used to illustrate the natural
response of a series RLC circuit.
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Characteristic equation—series 
RLC circuit �

Neper frequency—series RLC circuit �

Resonant radian frequency—series 
RLC circuit �

Current natural response forms in series
RLC circuits F �

�

�

R

i

t � 0

L

CV

vR� � vL� �

vC

�

�

Figure 8.15 � A circuit used to illustrate the step
response of a series RLC circuit.

which we can rearrange as

(8.54)

Comparing Eq. 8.54 with Eq. 8.3 reveals that they have the same form.
Therefore, to find the solution of Eq. 8.54, we follow the same process that
led us to the solution of Eq. 8.3.

From Eq. 8.54, the characteristic equation for the series RLC circuit is

(8.55)

The roots of the characteristic equation are

(8.56)

or

(8.57)

The neper frequency ( ) for the series RLC circuit is

(8.58)

and the expression for the resonant radian frequency is

(8.59)

Note that the equation for neper frequency of the series RLC circuit differs
from that of the parallel RLC circuit, but the equations for resonant and
damped radian frequencies are the same.

The current response will be overdamped, underdamped, or critically
damped according to whether , , or , respectively.
Thus the three possible solutions for the current are as follows:

(8.60)

(8.61)

(8.62)

When you have obtained the natural current response, you can find the
natural voltage response across any circuit element.

To verify that the procedure for finding the step response of a series
RLC circuit is the same as that for a parallel RLC circuit, we show that the
differential equation that describes the capacitor voltage in Fig. 8.15 has
the same form as the differential equation that describes the inductor cur-
rent in Fig. 8.11. For convenience, we assume that zero energy is stored in
the circuit at the instant the switch is closed.

Applying Kirchhoff’s voltage law to the circuit shown in Fig. 8.15 gives

(8.63)V = Ri + L 
di

dt
+ vC.

 i(t) = D1te
-at

+ D2e
-at (critically damped).

 i(t) = B1e
-at cos vdt + B2e

-at sin vdt (underdamped),

 i(t) = A1e
s1t

+ A2e
s2t (overdamped),

v2
0 = a2v2

0 7 a2v2
0 6 a2

v0 =

1

2LC
  rad>s.

a =

R

2L
  rad>s,

a

s1,2 = -a; 2a2 -  v0
2.

s1,2 = -

R

2L
 ;  D¢ R

2L
≤2

-  
1

LC
 ,

s2
+

R

L
s +

1
LC

= 0.

 
d2i

dt2 +

R

L
 
di

dt
+

i

LC
= 0.
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The current (i) is related to the capacitor voltage ( ) by the expression

(8.64)

from which

(8.65)

Substitute Eqs. 8.64 and 8.65 into Eq. 8.63 and write the resulting
expression as

(8.66)

Equation 8.66 has the same form as Eq. 8.41; therefore the procedure for
finding parallels that for finding The three possible solutions for 
are as follows:

(8.67)

(8.68)

(8.69)

where is the final value of Hence, from the circuit shown in Fig. 8.15,
the final value of is the dc source voltage V.

Example 8.11 and 8.12 illustrate the mechanics of finding the natural
and step responses of a series RLC circuit.

vC

vC.Vf

 vC = Vf + Dœ

1te
-at

+ D2
œ e-at (critically damped),

 vC = Vf + B1
œ e-at cos vdt + Bœ

2e
-at sin vdt (underdamped),

 vC = Vf + A1
œ es1t

+ Aœ

2e
s2t (overdamped),

vCiL.vC

d2vC

dt2 +

R

L
 
dvC

dt
+

vC

LC
=

V

LC
 .

di

dt
= C 

d2vC

dt2  .

i = C 

dvC

dt
 ,

vC

� Capacitor voltage step response forms in
series RLC circuits

Example 8.11 Finding the Underdamped Natural Response of a Series RLC Circuit

The capacitor in the circuit shown in
Fig. 8.16 is charged to 100 V. At the capacitor
is discharged through a series combination of a
100 mH inductor and a resistor.

a) Find for 

b) Find for 

Figure 8.16 � The circuit for Example 8.11.

t � 0

560 �i

100 mH

0.1 mF100 V

�

�

vC

�

�

t Ú 0.vC(t)

t Ú 0.i(t)

560 Æ

t = 0
0.1 mF Solution

a) The first step to finding is to calculate the
roots of the characteristic equation. For the given
element values,

 = 2800 rad>s.

 =

560
2(100)

* 103

 a =

R

2L

 =

(103)(106)
(100)(0.1)

= 108,

 v0
2

=

1
LC

i(t)
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vC(t) = (100 cos 9600t + 29.17 sin 9600t)e-2800t V, t Ú 0.

Example 8.12 Finding the Underdamped Step Response of a Series RLC Circuit

No energy is stored in the 100 mH inductor or the
capacitor when the switch in the circuit

shown in Fig. 8.17 is closed. Find for 

Figure 8.17 � The circuit for Example 8.12.

Solution
The roots of the characteristic equation are

 s2 = (-1400 - j4800) rad>s.

 = (-1400 + j4800) rad>s,

 s1 = -

280
0.2

+ D¢280
0.2
≤2

-

106

(0.1)(0.4)

�

�

0.1 H
t � 0

280 �

0.4 mF48 V vC

�

�

t Ú 0.vC(t)
0.4 mF

The roots are complex, so the voltage response is
underdamped. Thus

No energy is stored in the circuit initially, so both
and are zero. Then,

Solving for and yields

Therefore, the solution for is

 - 14e-1400t sin 4800t) V, t Ú 0.

 vC(t) = (48 - 48e-1400t cos 4800t

vC(t)

 Bœ

2 = -14 V.

 Bœ

1 = -48 V,

Bœ

2Bœ

1

  
dvC(0+)

dt
= 0 = 4800Bœ

2 - 1400Bœ

1.

 vC(0) = 0 = 48 + Bœ

1,

dvC(0+)>dtvC(0)

 + Bœ

2e
-1400t sin 4800t, t Ú 0.

 vC(t) = 48 + Bœ

1e
-1400t cos 4800t

Next, we compare to and note that 
because

At this point, we know that the response is under-
damped and that the solution for is of the form

where and The
numerical values of and come from the initial
conditions. The inductor current is zero before the
switch has been closed, and hence it is zero immedi-
ately after. Therefore

To find we evaluate From the circuit, we
note that, because immediately after the
switch has been closed, there will be no voltage drop
across the resistor. Thus the initial voltage on the
capacitor appears across the terminals of the inductor,
which leads to the expression,

L
di(0+)

dt
= V0,

i(0) = 0
di(0+)>dt.B2,

i(0) = 0 = B1.

B2B1

vd = 9600 rad>s.a = 2800 rad>s
i(t) = B1e

-at cos vdt + B2e
-at sin vdt,

i(t)

 = 0.0784 * 108.

 a2
= 7.84 * 106

v0
2

7 a2,a2v0
2 or

Because 

Thus

The solution for is

b) To find we can use either of the following rela-
tionships:

Whichever expression is used (the second is recom-
mended), the result is

 vC = iR + L 
di

dt
 .

 vC = -

1
CL

t

0
i dt + 100 or

vC(t),

i(t) = 0.1042e-2800t sin 9600t A, t Ú 0.

i(t)

 B2 =

1000
9600

L 0.1042 A.

 
di(0+)

dt
= 9600B2,

di

dt
= 400B2e

-2800t(24 cos 9600t - 7 sin 9600t).

B1 = 0,

 = 1000 A>s.

 
di(0+)

dt
=

V0

L
=

100
100

* 103
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Objective 2—Be able to determine the natural response and the step response of series RLC circuits

8.7 The switch in the circuit shown has been in
position a for a long time. At it moves to
position b. Find (a) (b) 
(c) (d) and (e) for 

Answer: (a) 0;

(b) 50 V;

(c)

(d)

(e) A for t Ú 0.(1.67e-8000t sin 6000t)

(-8000 - j6000) rad>s;
(-8000 + j6000) rad>s,

10,000 A>s;

t Ú 0.i(t)s2;s1,di(0+)>dt;
vC(0+);i(0+);
t = 0,

8.8 Find for for the circuit in
Assessment Problem 8.7.

Answer:
for t Ú 0.+  66.67 sin 6000t)] V

[100 - e-8000t(50 cos 6000t

t Ú 0vC(t)

�

�
15 k�

2 mF

�

�
80 V

t � 0

80 �9 k� 5 mHa b

vc

� 100 V

i

NOTE: Also try Chapter Problems 8.49–8.51.

A S S E S S M E N T  P R O B L E M S

8.5 A Circuit with Two Integrating
Amplifiers

A circuit containing two integrating amplifiers connected in cascade1 is
also a second-order circuit; that is, the output voltage of the second inte-
grator is related to the input voltage of the first by a second-order differ-
ential equation.We begin our analysis of a circuit containing two cascaded
amplifiers with the circuit shown in Fig. 8.18.

1 In a cascade connection, the output signal of the first amplifier ( in Fig. 8.18) is the input
signal for the second amplifier.

vo1

VCC

�VCC vo1

�

�

vg

�

�

�

�

R1
R2

C1

VCC

�VCC vo

�

�

�

�

C2

Figure 8.18 � Two integrating amplifiers connected in cascade.

We assume that the op amps are ideal. The task is to derive the differ-
ential equation that establishes the relationship between and We
begin the derivation by summing the currents at the inverting input termi-
nal of the first integrator. Because the op amp is ideal,

(8.70)

From Eq. 8.70,

(8.71)
dvo1

dt
= -

1
R1C1

vg.

0 - vg

R1
+ C1

d

dt
(0 - vo1) = 0.

vg.vo
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No energy is stored in the circuit shown in Fig. 8.19
when the input voltage jumps instantaneously
from 0 to 25 mV.

a) Derive the expression for for 

b) How long is it before the circuit saturates?

Solution

a) Figure 8.19 indicates that the amplifier scaling
factors are

Now, because for Eq. 8.75
becomes

To solve for we let

then,

dg(t)
dt

= 2, and dg(t) = 2dt.

g(t) =

dvo

dt
 ,

vo,

d2vo

dt2 = (40)(2)(25 * 10-3) = 2.

t 7 0,vg = 25 mV

 
1

R2C2
=

1000
(500)(1)

= 2.

 
1

R1C1
=

1000
(250)(0.1)

= 40,

0 …  t …  tsat.vo(t)

vg

Hence

from which

However,

because the energy stored in the circuit ini-
tially is zero, and the op amps are ideal. (See
Problem 8.57.) Then,

But so the experssion for becomes

vo = t2, 0 … t … tsat.

vovo(0) = 0,

dvo

dt
= 2t, and vo = t2

+ vo(0).

g(0) =

dvo(0)
dt

= 0,

g(t) - g(0) = 2t.

L

g(t)

g(0)
dy = 2

L

t

0
dx,

5 V

�5 V vo1

�

�

vg

�

�

�

�

9 V

�9 V

250 k�
500 k�

0.1 mF
1 mF

vo

�

�

�

�

Figure 8.19 � The circuit for Example 8.13.

Example 8.13 Analyzing Two Cascaded Integrating Amplifiers

Now we sum the currents away from the inverting input terminal of the
second integrating amplifier:

(8.72)

or

(8.73)

Differentiating Eq. 8.73 gives

(8.74)

We find the differential equation that governs the relationship between 
and by substituting Eq. 8.71 into Eq. 8.74:

(8.75)

Example 8.13 illustrates the step response of a circuit containing two cas-
caded integrating amplifiers.

d2vo

dt2 =

1
R1C1

 
1

R2C2
vg.

vg

vo

d2vo

dt2 = -

1
R2C2

 
dvo1

dt
 .

dvo

dt
= -

1
R2C2

vo1.

0 - vo1

R2
+ C2

d

dt
(0 - vo) = 0,
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b) The second integrating amplifier saturates when
reaches 9 V or But it is possible that

the first integrating amplifier saturates before
To explore this possibility, use Eq. 8.71 to

find :

dvo1

dt
= -40(25) * 10-3

= -1.

dvo1>dt
t = 3 s.

t = 3 s.vo

Solving for yields

Thus, at and, because the power
supply voltage on the first integrating amplifier is

the circuit reaches saturation when the second
amplifier saturates. When one of the op amps satu-
rates, we no longer can use the linear model to predict
the behavior of the circuit.

;5 V,

vo1 = -3 V,t = 3 s,

vo1 = - t.

vo1

NOTE: Assess your understanding of this material by trying Chapter Problem 8.63.

Two Integrating Amplifiers with Feedback Resistors
Figure 8.20 depicts a variation of the circuit shown in Fig. 8.18. Recall from
Section 7.7 that the reason the op amp in the integrating amplifier satu-
rates is the feedback capacitor’s accumulation of charge. Here, a resistor is
placed in parallel with each feedback capacitor ( and ) to overcome
this problem. We rederive the equation for the output voltage, and
determine the impact of these feedback resistors on the integrating ampli-
fiers from Example 8.13.

We begin the derivation of the second-order differential equation that
relates to by summing the currents at the inverting input node of the
first integrator:

(8.76)

We simplify Eq. 8.76 to read

(8.77)

For convenience, we let and write Eq. 8.77 as

(8.78)

The next step is to sum the currents at the inverting input terminal of the
second integrator:

(8.79)
0 - vo1

Rb
+

0 - vo

R2
+ C2

d

dt
(0 - vo) = 0.

dvo1

dt
+

vo1

t1
=

-vg

RaC1
 .

t1 = R1C1

dvo1

dt
+

1
R1C1

vo1 =

-vg

RaC1
 .

0 - vg

Ra
+

0 - vo1

R1
+ C1

d

dt
(0 - vo1) = 0.

vgvo1

vo,
C2C1

VCC1

�VCC1 vo1

�

�

vg

�

�

�

�

Ra

R1

Rb VCC 2

�VCC 2 vo

�

�

�

�

C1

R2

C2

Figure 8.20 � Cascaded integrating amplifiers with feedback resistors.
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We rewrite Eq. 8.79 as

(8.80)

where Differentiating Eq. 8.80 yields

(8.81)

From Eq. 8.78,

(8.82)

and from Eq. 8.80,

(8.83)

We use Eqs. 8.82 and 8.83 to eliminate from Eq. 8.81 and obtain
the desired relationship:

(8.84)

From Eq. 8.84, the characteristic equation is

(8.85)

The roots of the characteristic equation are real, namely,

(8.86)

(8.87)

Example 8.14 illustrates the analysis of the step response of two cascaded
integrating amplifiers when the feedback capacitors are shunted with
feedback resistors.

 s2 =

-1
t2

 .

 s1 =

-1
t1

 ,

s2
+ a 1
t1

+

1
t2
bs +

1
t1t2

= 0.

d2vo

dt2 + a 1
t1

+

1
t2
bdvo

dt
+ a 1
t1t2
bvo =

vg

RaC1RbC2
 .

dvo1>dt

vo1 = -RbC2
dvo

dt
-

RbC2

t2
vo.

dvo1

dt
=

-vo1

t1
-

vg

RaC1
 ,

d2vo

dt2 +

1
t2

 
dvo

dt
= -

1
RbC2

 
dvo1

dt
 .

t2 = R2C2.

dvo

dt
+

vo

t2
=

-vo1

RbC2
 ,



8.5 A Circuit with Two Integrating Amplifiers 293

Example 8.14 Analyzing Two Cascaded Integrating Amplifiers with Feedback Resistors

The parameters for the circuit shown in Fig. 8.20
are 

and The
power supply voltage for each op amp is The
signal voltage ( ) for the cascaded integrating
amplifiers jumps from 0 to 250 mV at No
energy is stored in the feedback capacitors at the
instant the signal is applied.

a) Find the numerical expression of the differential
equation for 

b) Find for 

c) Find the numerical expression of the differential
equation for 

d) Find for 

Solution

a) From the numerical values of the circuit parame-
ters, we have 

and Substi-
tuting these values into Eq. 8.84 gives

b) The roots of the characteristic equation are
and The final

value of is the input voltage times the gain of
each stage, because the capacitors behave as
open circuits as Thus,

vo(q) = (250 * 10-3)
(-500)

100
 
(-100)

25
= 5 V.

t : q .

vo

s2 = -10 rad>s.s1 = -20 rad>s

d2vo

dt2 + 30
dvo

dt
+ 200vo = 1000.

1000 V>s2.=vg>RaC1RbC2=  0.10 s,
R2C2=t20.05 s;=R1C1=t1

t Ú 0.vo1(t)

vo1.

t Ú 0.vo(t)

vo.

t = 0.
vg

;6 V.
C2 = 1 mF.R2 = 100 kÆ,Rb = 25 kÆ,

C1 = 0.1 mF,R1 = 500 kÆ,Ra = 100 kÆ,
The solution for thus takes the form:

With and the numeri-
cal values of and are and

Therefore, the solution for is

The solution assumes that neither op amp
saturates. We have already noted that the final
value of is 5 V, which is less than 6 V; hence the
second op amp does not saturate. The final value
of is or 
Therefore, the first op amp does not saturate, and
our assumption and solution are correct.

c) Substituting the numerical values of the parame-
ters into Eq. 8.78 generates the desired differen-
tial equation:

d) We have already noted the initial and final val-
ues of along with the time constant Thus
we write the solution in accordance with the
technique developed in Section 7.4:

 = -1.25 + 1.25e-20t V, t Ú 0.

 vo1 = -1.25 + [0 - (-1.25)]e-20t

t1.vo1,

dvo1

dt
+ 20vo1 = -25.

-1.25 V.(250 * 10-3)(-500>100),vo1

vo

vo(t) = (5 - 10e-10t
+ 5e-20t) V, t Ú 0.

voA2
œ

= 5 V.
A1

œ

= -10 VA2
œA1

œ

dvo(0)>dt = 0,vo(0) = 0

vo = 5 + A1
œ e-10t

+ A2
œ e-20t.

vo

NOTE: Assess your understanding of this material by trying Chapter Problem 8.64.

Practical Perspective
Clock for Computer Timing
Consider the circuit in Fig. 8.21, where the output is the voltage drop across
the capacitor. For this circuit looks like a series RLC natural-response
circuit of Fig. 8.3 without its resistor. When we analyze this LC circuit, we
will discover that its output is an undamped sinusoid, which could be used
by a computer’s clock generator instead of the typical quartz crystal oscilla-
tor. We will be able to specify the frequency of the clock by selecting appro-
priate values for the inductor and capacitor.

t Ú 0
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aR

C
LV

b

vo(t)

t = 0

i
�

�

�

�

Figure 8.21 � An LC natural response circuit.

Begin by writing the KVL equation for the circuit in Fig. 8.21, using the 
current , for :

To get rid of the integral term, integral both sides with respect to to get

The describing differential equation is thus

What mathematical function can be added to its second derivative to get
zero? A sinusoid in the form will work:

.

This equation is satisfied when

or when   

The frequency is the familiar resonant radian frequency of both the series
and parallel RLC circuits, whose units are radians/second. Note that the LC
circuit does not have a neper frequency, 

We choose the value of A to satisfy the initial condition for the current
in the inductor:

so   

Therefore, the current for the circuit in Fig. 8.21 is

where .

We can now use the expression for the current in the circuit to find the volt-
age output by the capacitor:

By choosing values for L and C we can use the circuit in Fig. 8.21 to gener-
ate an undamped sinusoid for for a computer’s clock generator.

So why is a quartz crystal used to generate the sinusoid for the clock
generator instead of the LC circuit of Fig. 8.21? Remember that our analysis
of the LC circuit assumed that the inductor and capacitor are ideal. But ideal
inductors and capacitors do not exist – real inductors and capacitors have a
small amount of resistance. We leave it to you to examine the effect of this
small amount of resistance on the performance of an LC oscillator in the
Chapter Problems.

NOTE: Assess your understanding of the Practical Perspective by solving Chapter
Problems 8.66–8.68.

t Ú 0

vC(t) =

1
CL

t

0
i(x)dx =

1
CL

t

0

V

R
 cosv0xdx =

V

v0RC
 sinv0t.

 v0 = C
1

LC
i(t) =

V

R
 cosv0(t), 

 A =

V

R
.i(0) = A cosv0(0) =

V

R
 

a.

v0

 v0 = C
1

LC
. v0

2
=

1
LC

d2

dt2Acosv0t +

1
LC

Acosv0t = -v0
2Acosv0t +

1
LC

Acosv0t = 0

i(t) = A cosv0t

d2i(t)

dt2  +

1
LC

 i(t) = 0.

L 

d2i(t)

dt2  +

1
C

 i(t) = 0.

t

L 

di(t)
dt

 +

1
CL

t

0
i(x)dx = 0.

t Ú 0i
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Summary

• The characteristic equation for both the parallel and
series RLC circuits has the form

where for the parallel circuit, for
the series circuit, and for both the parallel
and series circuits. (See pages 267 and 286.)

• The roots of the characteristic equation are

(See page 268.)
• The form of the natural and step responses of series

and parallel RLC circuits depends on the values of 
and such responses can be overdamped,
underdamped, or critically damped. These terms
describe the impact of the dissipative element (R) on
the response. The neper frequency, reflects the effect
of R. (See pages 268 and 269.)

• The response of a second-order circuit is overdamped,
underdamped, or critically damped as shown in Table 8.2.

• In determining the natural response of a second-order
circuit, we first determine whether it is over-, under-, or

a,

v2
0;

a2

s1,2 = -a ; 2a2
- v2

0.

v2
0 = 1>LC

a = R>2La = 1>2RC

s2
+ 2as + v2

0 = 0,

critically damped, and then we solve the appropriate
equations as shown in Table 8.3.

• In determining the step response of a second-order cir-
cuit, we apply the appropriate equations depending on
the damping, as shown in Table 8.4.

• For each of the three forms of response, the unknown
coefficients (i.e., the As, B s, and Ds) are obtained by
evaluating the circuit to find the initial value of the
response, and the initial value of the first deriva-
tive of the response,

• When two integrating amplifiers with ideal op amps are
connected in cascade, the output voltage of the second
integrator is related to the input voltage of the first by an
ordinary, second-order differential equation. Therefore,
the techniques developed in this chapter may be used to
analyze the behavior of a cascaded integrator. (See
pages 289 and 290.)

• We can overcome the limitation of a simple integrating
amplifier—the saturation of the op amp due to charge
accumulating in the feedback capacitor—by placing a
resistor in parallel with the capacitor in the feedback
path. (See page 291.)

dx(0)>dt.
x(0),

TABLE 8.2 The Response of a Second-Order Circuit is Overdamped, Underdamped, or Critically Damped

The Circuit is When Qualitative Nature of the Response

Overdamped The voltage or current approaches its final value without oscillation

Underdamped The voltage or current oscillates about its final value

Critically damped The voltage or current is on the verge of oscillating about its final value

TABLE 8.3 In Determining the Natural Response of a Second-Order Circuit, We First Determine Whether it is Over-, Under-, 
or Critically Damped, and Then We Solve the Appropriate Equations

Damping Natural Response Equations Coefficient Equations

Overdamped ;

Underdamped ;

,

where 

Critically damped ,

dx>dt(0) = D1 - a D2

x(0) = D2x(t) = (D1t + D2)e-a t

vd = 2v0
2

- a2

dx>dt(0) = -aB1 + vdB2

x(0) = B1x(t) = (B1 cos vdt + B2 sin vdt)e-a t

dx>dt(0) = A1s1 + A2s2

x(0) = A1 + A2x(t) = A1e
s1t

+ A2e
s2t

a2
= v0

2

a2
6 v0

2

a2
7 v0

2
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TABLE 8.4 In Determining the Step Response of a Second-Order Circuit, We Apply the Appropriate Equations Depending 
on the Damping

Damping Step Response Equations Coefficient Equations

Overdamped ;

Underdamped ;

Critically damped ;

where is the final value of .x(t)Xf
a

dx>dt(0) = D1
œ  - aD2

œ  

x(0) = Xf + D2
œ  x(t) = Xf + D1

œ  te-a t
+ D2

œ  e-a t

dx>dt(0) = -aB1
œ

+ vdB2
œ  

x(0) = Xf + B1
œ  x(t) = Xf + (B1

œ  cos vdt + B2
œ   sin vdt)e-a t

dx>dt(0) = A1
œ  s1 + A2

œ  s2

x(0) = Xf + A1
œ  + A2

œ  x(t) = Xf + A1
œ  es1t

+ A2
œ  es2t

a

Sections 8.1–8.2

8.1 The circuit elements in the circuit in Fig. 8.1 are
and The 

initial inductor current is and the initial
capacitor voltage is 25 V.

a) Calculate the initial current in each branch of
the circuit.

b) Find for 

c) Find for 

8.2 The resistance in Problem 8.1 is decreased to
Find the expression for for 

8.3 The resistance in Problem 8.1 is decreased to 
Find the expression for for 

8.4 The resistance, inductance, and capacitance in a
parallel RLC circuit are 250 mH, and

respectively.

a) Calculate the roots of the characteristic equa-
tion that describe the voltage response of the
circuit.

b) Will the response be over-, under-, or critically
damped?

c) What value of R will yield a damped frequency
of ?

d) What are the roots of the characteristic equation
for the value of R found in (c)?

e) What value of R will result in a critically damped
response?

12 krad>s

10 nF,
2000 Æ,

t Ú 0.v(t)
80 Æ.

t Ú 0.v(t)100 Æ.

t Ú 0.iL(t)

t Ú 0.v(t)

-0.3 A
C = 5 mF.L = 200 mH,R = 125 Æ,

8.5 Suppose the inductor in the circuit shown in Fig. 8.1
has a value of . The voltage response for

is

a) Determine the numerical values of C,
and R.

b) Calculate and for 

8.6 The natural voltage response of the circuit in
Fig. 8.1 is

when the capacitor is 250 F. Find (a) L; (b) R;
(c) (d) and (e) 

8.7 The voltage response for the circuit in Fig. 8.1 is
known to be

The initial current in the inductor ( ) is mA,
and the initial voltage on the capacitor ( ) is 5 V.
The resistor has a value of .

a) Find the values of , L, and 

b) Find for 

8.8 In the circuit shown in Fig. 8.1, a 20 mH inductor is
shunted by a 500 nF capacitor, the resistor R is
adjusted for critical damping, and I0 = 120 mA.

t Ú 0+.iC(t)

D2.D1,C

50 Æ
V0

-25I0

v(t) = D1te
-80t

+ D2e
-80t, t Ú 0.

iL(t).I0 ;V0 ;
m

v(t) = 120e-400t cos 300t + 80e-400t sin 300t V,

t Ú 0+.iC(t)iL(t),iR(t),

a,v0, 

v(t) = 40e-1000t
- 90e-4000t V.

t Ú 0
10 mH
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8.12 The resistor in the circuit of Fig. P8.11 is decreased
from to . Find for 

8.13 The resistor in the circuit of Fig. P8.11 is decreased
from to . Find for 

8.14 The switch in the circuit of Fig. P8.14 has been in
position a for a long time.At the switch moves
instantaneously to position b. Find for t Ú 0.vo(t)

t = 0

t Ú 0.vo(t)32 Æ50 Æ

t Ú 0.vo(t)40 Æ50 Æ

a) Calculate the numerical value of R.

b) Calculate for 

c) Find when 

d) What percentage of the initially stored energy
remains stored in the circuit at the instant 
is 0?

8.9 The natural response for the circuit shown in Fig. 8.1
is known to be

If in milli-
amperes.

8.10 The resistor in the circuit in Example 8.4 is changed
to 

a) Find the numerical expression for when 

b) Plot versus t for the time interval
Compare this response with 

the one in Example 8.4 ( ) and
Example 8.5 ( ). In particular, compare
peak values of and the times when these
peak values occur.

8.11 The two switches in the circuit seen in Fig. P8.11 oper-
ate synchronously. When switch 1 is in position a,
switch 2 is in position d.When switch 1 moves to posi-
tion b, switch 2 moves to position c. Switch 1 has been
in position a for a long time. At the switches
move to their alternate positions. Find for t Ú 0.vo(t)

t = 0,

v(t)
R = 4 kÆ

R = 20 kÆ

0 … t … 7 ms.
v(t)

t Ú 0.v(t)

3200 Æ.

iL(0+)C = 2 mF and L = 12.5 H, find 

v(t) = -11e-100t
+ 20e-400t V, t Ú 0.

iC(t)

iC(t) = 0.v(t)

t Ú 0.v(t)

8.15 The inductor in the circuit of Fig. P8.14 is increased
to 80 mH. Find for 

8.16 The inductor in the circuit of Fig. P8.14 is increased
to 125 mH. Find for 

8.17 a) Design a parallel RLC circuit (see Fig. 8.1) using
component values from Appendix H, with a 
resonant radian frequency of 5000 .
Choose a resistor or create a resistor network so
that the response is critically damped. Draw
your circuit.

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

8.18 a) Change the resistance for the circuit you
designed in Problem 8.5(a) so that the response
is underdamped. Continue to use components
from Appendix H. Calculate the roots of the
characteristic equation for this new resistance.

b) Change the resistance for the circuit you designed
in Problem 8.5(a) so that the response is over-
damped. Continue to use components from
Appendix H. Calculate the roots of the character-
istic equation for this new resistance.

8.19 In the circuit in Fig. 8.1,
and 

a) Find for 

b) Find the first three values of t for which is
zero. Let these values of t be denoted 
and 

c) Show that 

d) Show that 

e) Calculate and 

f) Sketch versus t for 

8.20 a) Find for in the circuit in Problem 8.19
if the resistor is removed from the 
circuit.

b) Calculate the frequency of in hertz.

c) Calculate the maximum amplitude of in 
volts.

8.21 Assume the underdamped voltage response of the
circuit in Fig. 8.1 is written as

The initial value of the inductor current is and
the initial value of the capacitor voltage is 
Show that is the conjugate of (Hint: Use
the same process as outlined in the text to find 
and )A2.

A1

A1.A2

V0.
I0,

v(t) = (A1 + A2)e-at cos vdt + j(A1 - A2)e-at sin vdt

v(t)

v(t)

5 kÆ

t Ú 0v(t)

0 … t … t2.v(t)

v(t3).v(t2),v(t1),

t2 - t1 = Td>2.

t3 - t1 = Td.

t3.
t2,t1,

dv>dt

t Ú 0.v(t)

I0 = 6 mA.V0 = 30 V,C = 125 nF,
L = 8 H,R = 5 kÆ,

rad>s

t Ú 0.vo(t)

t Ú 0.vo(t)
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Figure P8.11

5 A
250 �

a b
c d

50 �

�

�

75 �
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100V
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�

Figure P8.14

50 V 51.2 mH

6 k�
10if if

t = 0

4 k� 150 � 60 �
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8.22 Show that the results obtained from Problem 8.21—
that is, the expressions for and —are consistent
with Eqs. 8.30 and 8.31 in the text.

8.23 The initial value of the voltage in the circuit in
Fig. 8.1 is zero, and the initial value of the capacitor
current, is 45 mA. The expression for the
capacitor current is known to be

when R is Find

a) the values of L, C, and A2A1,v0,a,

250 Æ.

ic(t) = A1e
-200t

+ A2e
-800t, t Ú 0+,

ic(0+),

v

A2A1

Figure P8.30

8.31 The switch in the circuit in Fig. P8.31 has been open
for a long time before closing at Find for

Figure P8.31

8.32 a) For the circuit in Fig. P8.31, find for 

b) Show that your solution for is consistent with
the solution for in Problem 8.31.

8.33 There is no energy stored in the circuit in Fig. P8.33
when the switch is closed at Find 
for 

Figure P8.33

8.34 a) For the circuit in Fig. P8.33, find for 

b) Show that your solution for is consistent with
the solution for in Problem 8.33.

8.35 The switch in the circuit in Fig. P8.35 has been in the
left position for a long time before moving to the
right position at Find

a) for 

b) for t Ú 0.vC(t)

t Ú 0,iL(t)

t = 0.

io

vo

t Ú 0.vo

vo

�

�

6.25 mF 250 mH

125 �

t � 0

25 V
�

�

io

t Ú  0.
io(t)t = 0.

io

vo

t Ú 0.vo

vo

�

�

31.25 mF 50 mH

20 �

t � 0

60 V
�

�

io

t Ú 0.
io(t)t = 0.

vo

�

�

312.5 mF0.5 H

16 �

t � 0

4 V
�

�
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¢Hint: 
diC(0+)

dt
= -

diL(0+)
dt

-

diR(0+)
dt

=

-v(0)
L

-

1
R

 
iC(0+)

C
≤

b) the expression for 

c) the expression for 

d) the expression for 

Section 8.3

8.24 For the circuit in Example 8.6, find, for 
(a) (b) and (c) 

8.25 For the circuit in Example 8.7, find, for 
(a) and (b) 

8.26 For the circuit in Example 8.8, find for 

8.27 Assume that at the instant the 2A dc current source
is applied to the circuit in Fig. P8.27, the initial cur-
rent in the 25 mH inductor is and the initial
voltage on the capacitor is 50 V (positive at the
upper terminal). Find the expression for for

if R equals 

Figure P8.27

8.28 The resistance in the circuit in Fig. P8.27 is changed
to Find for 

8.29 The resistance in the circuit in Fig. P8.27 is changed
to Find for 

8.30 The switch in the circuit in Fig. P8.30 has been
open a long time before closing at At the
time the switch closes, the capacitor has no stored
energy. Find for t Ú 0.vo

t = 0.

t Ú 0.iL(t)10 Æ.

t Ú 0.iL(t)8 Æ.

RiL(t) 62.5 mF25 mH2 A

12.5 Æ.t Ú 0
iL(t)

1 A,

t Ú 0.v(t)

iC(t).v(t)
t Ú 0,

iC(t).iR(t);v(t);
t Ú 0,

iL(t) Ú 0.

iR(t) Ú 0,

v(t), t Ú 0,

Figure P8.35

40 �
25mF

3 k�

1 k�

100 mA
250 mH100 V

vC(t)
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�

�

�
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8.36 Use the circuit in Fig. P8.35

a) Find the total energy delivered to the inductor.

b) Find the total energy delivered to the 
resistor.

c) Find the total energy delivered to the capacitor.

d) Find the total energy delivered by the current
source.

e) Check the results of parts (a) through (d)
against the conservation of energy principle.

8.37 The switch in the circuit in Fig. P8.37 has been
open a long time before closing at Find 
for 

Figure P8.37

8.38 Switches 1 and 2 in the circuit in Fig. P8.38 are syn-
chronized. When switch 1 is opened, switch 2 closes
and vice versa. Switch 1 has been open a long time
before closing at Find for 

Section 8.4

8.39 The current in the circuit in Fig. 8.3 is known to be

The capacitor has a value of 80 nF; the initial value
of the current is 7.5 mA; and the initial voltage on
the capacitor is –30 V. Find the values of R, L,
and 

8.40 Find the voltage across the 80 nF capacitor for the
circuit described in Problem 8.39.Assume the refer-
ence polarity for the capacitor voltage is positive at
the upper terminal.

8.41 The initial energy stored in the 31.25 nF capacitor
in the circuit in Fig. P8.41 is . The initial energy
stored in the inductor is zero. The roots of the
characteristic equation that describes the natural

9 mJ

B2.
B1,

i = B1e
-2000t cos 1500t + B2e

-2000t sin 1500t, t Ú 0.

t Ú 0.iL(t)t = 0.

300 �

36 V 20 mH 500 nF 150 � 20 mA
�

�

t = 0

iL

t Ú 0.
iL(t)t = 0.

40 Æ

behavior of the current i are and

a) Find the numerical values of R and L.

b) Find the numerical values of and 
immediately after the switch has been closed.

c) Find for 

d) How many microseconds after the switch closes
does the current reach its maximum value?

e) What is the maximum value of i in milliamperes?

f) Find for 

Figure P8.41

8.42 In the circuit in Fig. P8.42, the resistor is adjusted
for critical damping. The initial capacitor voltage is
15 V, and the initial inductor current is 6 mA.

a) Find the numerical value of R.

b) Find the numerical values of i and immedi-
ately after the switch is closed.

c) Find for 

Figure P8.42

8.43 a) Design a series RLC circuit (see Fig. 8.3) using
component values from Appendix H, with a res-
onant radian frequency of 20 . Choose a
resistor or create a resistor network so that the
response is critically damped. Draw your circuit.

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

8.44 a) Change the resistance for the circuit you
designed in Problem 8.43(a) so that the response
is underdamped. Continue to use components
from Appendix H. Calculate the roots of the
characteristic equation for this new resistance.

b) Change the resistance for the circuit you
designed in Problem 8.43(a) so that the response
is overdamped. Continue to use components
from Appendix H. Calculate the roots of the
characteristic equation for this new resistance.

krad>s

R

125 mH320 nFvC

�

�

t � 0 i

t Ú 0.vC(t)

di>dt

31.25 nF L

R

i(t)t � 0
vL(t)

�

�

t Ú 0.vL(t)

t Ú 0.i(t)

di(0)>dti(0)

-16,000 s-1
-4000 s-1

10 �

10 �

Switch 1

250mF
Switch 2
16 mH 1 k� 10 A80 V�

�

t = 0

t = 0

iL

Figure P8.38
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8.45 The circuit shown in Fig. P8.45 has been in 
operation for a long time. At the two
switches move to the new positions shown in the
figure. Find 

a) for 

b) for 

Figure P8.45

8.46 The switch in the circuit shown in Fig. P8.46 has
been in position a for a long time. At the
switch is moved instantaneously to position b. Find

for 

Figure P8.46

8.47 The switch in the circuit shown in Fig. P8.47 has
been closed for a long time. The switch opens at

Find for 

Figure P8.47

8.48 The switch in the circuit in Fig. P8.48 has been in
position a for a long time.At the switch moves
instantaneously to position b.

a) What is the initial value of ?

b) What is the initial value of ?

c) What is the numerical expression for 
for ?t Ú 0

va(t)

dva>dt

va

t = 0,

300 �

100 � 100 �

200 mH

80 �

100 V

20 �

t = 0

31.25 mF vo�

�

�

�

t Ú 0+ .vo(t)t = 0.

t = 0

i
a b

40 �

200 mF
80 mH

50 �75 mA

t Ú 0.i(t)

t = 0,

t = 0 500 �

100 � 400 mH
io(t)

4 A 10 mFvo(t)
�

�

50 �

100 V

t = 0

�

�

t Ú 0.vo(t)

t Ú 0,io(t)

t = 0,
Figure P8.48

8.49 The initial energy stored in the circuit in Fig. P8.49
is zero. Find for 

Figure P8.49

8.50 The resistor in the circuit shown in Fig. P8.49 is
changed to . The initial energy stored is still
zero. Find for 

8.51 The resistor in the circuit shown in Fig. P8.49 is
changed to . The initial energy stored is still
zero. Find for .

8.52 The switch in the circuit of Fig. P8.52 has been in
position a for a long time. At the switch
moves instantaneously to position b. Find for

Figure P8.52

8.53 The circuit shown in Fig. P8.53 has been in operation
for a long time.At the source voltage suddenly
drops to 150 V. Find for 

Figure P8.53

25 � 250 mH

vo(t)2.5 mF200 V
�

�

�

�

t Ú 0.vo(t)
t = 0,

b

a

960 �

480 � 0.5 mH

20 V12.5 nF28 V

160 �
t = 0

vo(t)�
�

�
�

�

�

t Ú 0.
vo(t)

t = 0

t Ú 0vo(t)
312.5 Æ

t Ú 0.vo(t)
250 Æ

250 mH

16 mF
+

−

t = 0

80 mA 200 � vo(t)

t Ú 0.vo(t)

100 �

t = 0
va300 V

a b

5 mF

20 � 12 �

2 mH

�

�

�

�
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8.54 The two switches in the circuit seen in Fig. P8.55
operate synchronously. When switch 1 is in posi-
tion a, switch 2 is closed. When switch 1 is in posi-
tion b, switch 2 is open. Switch 1 has been in
position a for a long time.At it moves instan-
taneously to position b. Find for 

Figure P8.54

8.55 The switch in the circuit shown in Fig. P8.55 has
been closed for a long time before it is opened at

Assume that the circuit parameters are such
that the response is underdamped.

a) Derive the expression for as a function of
C, and R for 

b) Derive the expression for the value of t when
the magnitude of is maximum.

Figure P8.55

8.56 The circuit parameters in the circuit of Fig. P8.55
are and

a) Express numerically for 

b) How many microseconds after the switch opens
is the inductor voltage maximum?

c) What is the maximum value of the inductor
voltage?

d) Repeat (a)–(c) with R reduced to 

8.57 Assume that the capacitor voltage in the circuit of
Fig. 8.15 is underdamped. Also assume that no
energy is stored in the circuit elements when the
switch is closed.

a) Show that 

b) Show that when where
n = 0, 1, 2, . . . .

t = np>vd,dvC>dt = 0

dvC>dt = (v2
0>vd)Ve-at sin vdt.

96 Æ.

t Ú 0.vo(t)

vg = -24 V.
C = 50 nF,L = 8 mH,R = 480 Æ,

�

�

R

Vg L

t � 0

vo(t)

�

�

C

vo

t Ú 0.vd,a,Vg,
vo(t)

t = 0.

�

�

�

�

4 � a

b

1
2

2 �

60 V

150 V

8 � 100 mH

t � 0

t � 0

2 mF 18 �vc(t)

�

�

t Ú 0.vc(t)
t = 0,

PSPICE
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c) Let and show that 

d) Show that

where 

8.58 The voltage across a capacitor in the circuit
of Fig. 8.15 is described as follows: After the switch
has been closed for several seconds, the voltage is
constant at 100 V. The first time the voltage exceeds
100 V, it reaches a peak of 163.84 V. This occurs

after the switch has been closed.The second
time the voltage exceeds 100 V, it reaches a peak of
126.02 V. This second peak occurs after the
switch has been closed.At the time when the switch
is closed, there is no energy stored in either the
capacitor or the inductor. Find the numerical values
of R and L. (Hint: Work Problem 8.57 first.)

Section 8.5

8.59 Show that, if no energy is stored in the circuit
shown in Fig. 8.19 at the instant jumps in value,
then equals zero at 

8.60 a) Find the equation for for in
the circuit shown in Fig. 8.19 if and

b) How long does the circuit take to reach
saturation?

8.61 a) Rework Example 8.14 with feedback resistors
and removed.

b) Rework Example 8.14 with and

8.62 a) Derive the differential equation that relates the
output voltage to the input voltage for the cir-
cuit shown in Fig. P8.62.

b) Compare the result with Eq. 8.75 when
in Fig. 8.18.

c) What is the advantage of the circuit shown in
Fig. P8.62?

Figure P8.62
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t = 0.dvo>dt
vg
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Td

 ln 
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=  V -  V(-1)ne-anp>vd.
vC(tn) tn = np>vd,
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8.63 The voltage signal of Fig. P8.63(a) is applied to
the cascaded integrating amplifiers shown in
Fig. P8.63(b). There is no energy stored in the
capacitors at the instant the signal is applied.

a) Derive the numerical expressions for and
for the time intervals and

b) Compute the value of tsat.

0.5 s … t … tsat.
0 … t … 0.5 svo1(t)

vo(t)

proportional to the spring displacement, that
the mass is constant, and that the frictional
force is directly proportional to the velocity of
the moving mass.

b) Rewrite the differential equation derived in (a)
so that the highest order derivative is expressed
as a function of all the other terms in the equa-
tion. Now assume that a voltage equal to

is available and by successive integra-
tions generates and x. We can synthesize
the coefficients in the equations by scaling
amplifiers, and we can combine the terms
required to generate by using a sum-
ming amplifier. With these ideas in mind, ana-
lyze the interconnection shown in Fig. P8.65(b).
In particular, describe the purpose of each
shaded area in the circuit and describe the sig-
nal at the points labeled B, C, D, E, and F,
assuming the signal at A represents 
Also discuss the parameters R;

and in terms of the coef-
ficients in the differential equation.

Sections 8.1–8.5

8.66 a) Suppose the circuit in Fig. 8.21 has a 5 nH induc-
tor and a 2 pF capacitor. Calculate the fre-
quency, in GHz, of the sinusoidal output for

.

b) The dc voltage source and series-connected
resistor in Fig. 8.21 are used to establish the ini-
tial energy in the inductor. If and

, calculate the initial energy stored in
the inductor.

c) What is the total energy stored in the LC circuit
for any time ? 

8.67 Consider the LC oscillator circuit in Fig. 8.21.
Assume that , , and L = 1 nH.

a) Calculate the value of capacitance, C, that will
produce a sinusoidal output with a frequency of
2 GHz for .

b) Write the expression for the output voltage,
for .t Ú 0vo(t),

t Ú 0

R = 10 ÆV = 4 V

t Ú 0

R = 25 Æ
V = 10 V

t Ú 0

R8R7 ,R6 ;R5 ,R4 ;R3 ,
C2 ;R2 ,C1 ;R1 ,

d2x>dt2.

d2x>dt2

dx>dt
d2x>dt2

PSPICE

MULTISIM
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(b)
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Figure P8.63

8.64 The circuit in Fig. P8.63(b) is modified by adding a
resistor in parallel with the capacitor

and a resistor in parallel with the 
capacitor. As in Problem 8.63, there is no energy
stored in the capacitors at the time the signal is
applied. Derive the numerical expressions for 
and for the time intervals and

8.65 We now wish to illustrate how several op amp cir-
cuits can be interconnected to solve a differential
equation.

a) Derive the differential equation for the spring-
mass system shown in Fig. P8.65(a). Assume
that the force exerted by the spring is directly

t Ú 0.5 s.
0 … t … 0.5 svo1(t)

vo(t)

200 nF5 MÆ

500 nF1 MÆPSPICE

MULTISIM



8.68 Suppose the inductor and capacitor in the LC oscil-
lator circuit in Fig. 8.21 are not ideal, but instead have
some small resistance that can be lumped together.
Assume that V 10 V, R 25 , L 5 nH, and
C 2 pF, just as in Problem 8.66. Suppose the resist-
ance associated with the inductor and capacitor is 
10 m .

a) Calculate the values of the neper frequency,
and the resonant radian frequency, .v0

a,

Æ

=

=Æ==

b) Is the response of this circuit over-, under-, or
critically damped? 

c) What is the actual frequency of oscillation, in
GHz?

d) Approximately how long will the circuit oscillate?

�

�

�

�
�

�

�

�

�

�

�

�
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f(t)

f(t)
R7
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R
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A
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C

R

R

R1

R3

R4

R5

R6

R2

C1
C2

M
K

(a)

(b)

1

2
3

5

6

4

D

x(t)

Figure P8.65
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Thus far, we have focused on circuits with constant sources; in
this chapter we are now ready to consider circuits energized by
time-varying voltage or current sources. In particular, we are inter-
ested in sources in which the value of the voltage or current varies
sinusoidally. Sinusoidal sources and their effect on circuit behavior
form an important area of study for several reasons. First, the gen-
eration, transmission, distribution, and consumption of electric
energy occur under essentially sinusoidal steady-state conditions.
Second, an understanding of sinusoidal behavior makes it possible
to predict the behavior of circuits with nonsinusoidal sources.
Third, steady-state sinusoidal behavior often simplifies the design
of electrical systems.Thus a designer can spell out specifications in
terms of a desired steady-state sinusoidal response and design the
circuit or system to meet those characteristics. If the device satis-
fies the specifications, the designer knows that the circuit will
respond satisfactorily to nonsinusoidal inputs.

The subsequent chapters of this book are largely based on a
thorough understanding of the techniques needed to analyze cir-
cuits driven by sinusoidal sources. Fortunately, the circuit analysis
and simplification techniques first introduced in Chapters 1–4
work for circuits with sinusoidal as well as dc sources, so some of
the material in this chapter will be very familiar to you. The chal-
lenges in first approaching sinusoidal analysis include developing
the appropriate modeling equations and working in the mathe-
matical realm of complex numbers.

C H A P T E R  C O N T E N T S

9.1 The Sinusoidal Source p. 306

9.2 The Sinusoidal Response p. 309

9.3 The Phasor p. 310

9.4 The Passive Circuit Elements in the
Frequency Domain p. 315

9.5 Kirchhoff’s Laws in the Frequency
Domain p. 319

9.6 Series, Parallel, and Delta-to-Wye
Simplifications p. 320

9.7 Source Transformations and 
Thévenin-Norton Equivalent Circuits p. 327

9.8 The Node-Voltage Method p. 330

9.9 The Mesh-Current Method p. 331

9.10 The Transformer p. 332

9.11 The Ideal Transformer p. 336

9.12 Phasor Diagrams p. 342

C H A P T E R  O B J E C T I V E S

1 Understand phasor concepts and be able to
perform a phasor transform and an inverse
phasor transform.

2 Be able to transform a circuit with a sinusoidal
source into the frequency domain using phasor
concepts.

3 Know how to use the following circuit analysis
techniques to solve a circuit in the frequency
domain:

• Kirchhoff’s laws;

• Series, parallel, and delta-to-wye
simplifications;

• Voltage and current division;

• Thévenin and Norton equivalents;

• Node-voltage method; and

• Mesh-current method.

4 Be able to analyze circuits containing linear
transformers using phasor methods.

5 Understand the ideal transformer constraints
and be able to analyze circuits containing ideal
transformers using phasor methods.

Sinusoidal 
Steady-State Analysis

C H A P T E R

99

304



Power systems that generate, transmit, and distribute electri-
cal power are designed to operate in the sinusoidal steady
state. The standard household distribution circuit used in the
United States is the three-wire, 240/120 V circuit shown in
the accompanying figure.

The transformer is used to reduce the utility distribution
voltage from 13.2 kV to 240 V. The center tap on the second-
ary winding provides the 120 V service. The operating fre-
quency of power systems in the United States is 60 Hz. Both
50 and 60 Hz systems are found outside the United States.

The voltage ratings alluded to above are rms values. The rea-
son for defining an rms value of a time-varying signal is
explained in Chapter 10.

305

Practical Perspective
A Household Distribution Circuit

120V loads
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240V loads
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9.1 The Sinusoidal Source
A sinusoidal voltage source (independent or dependent) produces a volt-
age that varies sinusoidally with time. A sinusoidal current source (inde-
pendent or dependent) produces a current that varies sinusoidally with
time. In reviewing the sinusoidal function, we use a voltage source, but our
observations also apply to current sources.

We can express a sinusoidally varying function with either the sine
function or the cosine function. Although either works equally well, we
cannot use both functional forms simultaneously. We will use the cosine
function throughout our discussion. Hence, we write a sinusoidally varying
voltage as

(9.1)

To aid discussion of the parameters in Eq. 9.1, we show the voltage
versus time plot in Fig. 9.1.

Note that the sinusoidal function repeats at regular intervals. Such a
function is called periodic. One parameter of interest is the length of time
required for the sinusoidal function to pass through all its possible values.
This time is referred to as the period of the function and is denoted T. It is
measured in seconds. The reciprocal of T gives the number of cycles per
second, or the frequency, of the sine function and is denoted f, or

(9.2)

A cycle per second is referred to as a hertz, abbreviated Hz. (The term
cycles per second rarely is used in contemporary technical literature.) The
coefficient of t in Eq. 9.1 contains the numerical value of T or f. Omega ( )
represents the angular frequency of the sinusoidal function, or

(9.3)

Equation 9.3 is based on the fact that the cosine (or sine) function passes
through a complete set of values each time its argument, passes
through rad ( ). From Eq. 9.3, note that, whenever t is an integral
multiple of T, the argument increases by an integral multiple of rad.

The coefficient gives the maximum amplitude of the sinusoidal
voltage. Because bounds the cosine function, bounds the ampli-
tude. Figure 9.1 shows these characteristics.

The angle in Eq. 9.1 is known as the phase angle of the sinusoidal
voltage. It determines the value of the sinusoidal function at there-
fore, it fixes the point on the periodic wave at which we start measuring
time. Changing the phase angle shifts the sinusoidal function along the
time axis but has no effect on either the amplitude ( ) or the angular fre-
quency ( ). Note, for example, that reducing to zero shifts the sinusoidal
function shown in Fig. 9.1 time units to the right, as shown in Fig. 9.2.
Note also that if is positive, the sinusoidal function shifts to the left,
whereas if is negative, the function shifts to the right. (See Problem 9.5.)

A comment with regard to the phase angle is in order: and must
carry the same units, because they are added together in the argument of
the sinusoidal function. With expressed in radians, you would expect 
to be also. However, normally is given in degrees, and is converted
from radians to degrees before the two quantities are added. We continue

vtf

fvt

fvt
f

f

f>v fv

Vm

f

t = 0;
f

;Vm;1
Vm

2pvt
360 �2p

vt,

v = 2pf = 2p>T (radians>second).

v

f =

1
T

 .

v = Vm cos (vt + f).

0

�Vm
T

v
Vm

t

Vm

Figure 9.1 � A sinusoidal voltage.

t0

�Vm

v
Vm

f/v

Figure 9.2 � The sinusoidal voltage from Fig. 9.1
shifted to the right when f = 0.
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this bias toward degrees by expressing the phase angle in degrees. Recall
from your studies of trigonometry that the conversion from radians to
degrees is given by

(9.4)

Another important characteristic of the sinusoidal voltage (or cur-
rent) is its rms value.The rms value of a periodic function is defined as the
square root of the mean value of the squared function. Hence, if

the rms value of is

(9.5)

Note from Eq. 9.5 that we obtain the mean value of the squared voltage by
integrating over one period (that is, from to ) and then dividing
by the range of integration, T. Note further that the starting point for the
integration is arbitrary.

The quantity under the radical sign in Eq. 9.5 reduces to (See
Problem 9.6.) Hence the rms value of is

(9.6)

The rms value of the sinusoidal voltage depends only on the maximum
amplitude of , namely, The rms value is not a function of either the
frequency or the phase angle.We stress the importance of the rms value as
it relates to power calculations in Chapter 10 (see Section 10.3).

Thus, we can completely describe a specific sinusoidal signal if we know
its frequency, phase angle, and amplitude (either the maximum or the rms
value). Examples 9.1, 9.2, and 9.3 illustrate these basic properties of the
sinusoidal function. In Example 9.4, we calculate the rms value of a periodic
function, and in so doing we clarify the meaning of root mean square.

Vm.v

Vrms =

Vm

12
 .

v
Vm

2 >2.
t0

t0 + Tt0v2

Vrms = D
1
TL

t0 + T

t0

Vm
2  cos 2(vt + f) dt.

vv = Vm cos (vt + f),

(number of degrees) =

180 �

p
 (number of radians).

� rms value of a sinusoidal voltage source

Example 9.1 Finding the Characteristics of a Sinusoidal Current

A sinusoidal current has a maximum amplitude of
20 A.The current passes through one complete cycle
in 1 ms. The magnitude of the current at zero time 
is 10 A.

a) What is the frequency of the current in hertz?

b) What is the frequency in radians per second?

c) Write the expression for using the cosine
function. Express in degrees.

d) What is the rms value of the current?

f

i(t)

Solution
a) From the statement of the problem,

hence 

b)

c) We have 
but Therefore 

and Thus the expression for becomes

d) From the derivation of Eq. 9.6, the rms value of a
sinusoidal current is Therefore the rms
value is or 14.14 A.20>12,

Im>12.

i(t) = 20 cos (2000pt + 60 �).

i(t)60 � .=f

10 = 20 cos fi(0) = 10 A.+  f),
20 cos(2000pt=Im cos (vt + f)=i(t)

v = 2pf = 2000p rad>s.

f = 1>T = 1000 Hz.
T = 1 ms;
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Example 9.2 Finding the Characteristics of a Sinusoidal Voltage

A sinusoidal voltage is given by the expression

a) What is the period of the voltage in milliseconds?

b) What is the frequency in hertz?

c) What is the magnitude of at 

d) What is the rms value of ?v

t = 2.778 ms?v

v = 300 cos (120pt + 30 �).
Solution
a) From the expression for ,

Because 
or 16.667 ms.

b) The frequency is or 60 Hz.

c) From (a), thus, at ms,
is nearly 1.047 rad, or Therefore,

d) Vrms = 300>12 = 212.13 V.

=  300 cos (60 �
+ 30 �) = 0 V.v(2.778 ms)

60 � .vt
t = 2.778v = 2p>16.667;

1>T,

1
60 s,=2p>v=T2p>T,=v

120p rad>s.=vv

Example 9.3 Translating a Sine Expression to a Cosine Expression

We can translate the sine function to the cosine
function by subtracting ( ) from the argu-
ment of the sine function.

a) Verify this translation by showing that

b) Use the result in (a) to express as
a cosine function.

 sin (vt + 30 �)

 sin (vt + u) =  cos (vt + u - 90 �).

p>2 rad90 �
Solution
a) Verification involves direct application of the

trigonometric identity

Example 9.4 Calculating the rms Value of a Triangular Waveform

Calculate the rms value of the periodic triangular
current shown in Fig. 9.3. Express your answer in
terms of the peak current 

Figure 9.3 � Periodic triangular current.

�T/4

Ip

�Ip

i

�T/2 T/4 T/2 3T/4 T
t

etc.

Ip.

Solution
From Eq. 9.5, the rms value of i is

Interpreting the integral under the radical sign as
the area under the squared function for an interval
of one period is helpful in finding the rms value.
The squared function with the area between 0 and
T shaded is shown in Fig. 9.4, which also indicates
that for this particular function, the area under the

Irms = D
1
TL

t0 + T

t0

i2dt .

We let and As and
we have sin 90 �

= 1,
 cos 90 �

= 0b = 90 � .a = vt + u

 cos(a - b) =  sin a =  sin(vt + u) =  cos(vt + u - 90 �).

b) From (a) we have

sin(vt + 30 �) = cos(vt + 30 �
- 90 �) = cos(vt - 60 �).

cos(a -  b) = cos a cos b +  sin a sin b.
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9.2 The Sinusoidal Response
Before focusing on the steady-state response to sinusoidal sources, let’s
consider the problem in broader terms, that is, in terms of the total
response. Such an overview will help you keep the steady-state solution in
perspective. The circuit shown in Fig. 9.5 describes the general nature of
the problem. There, is a sinusoidal voltage, or

(9.7)

For convenience, we assume the initial current in the circuit to be zero and
measure time from the moment the switch is closed. The task is to derive
the expression for when It is similar to finding the step response
of an RL circuit, as in Chapter 7. The only difference is that the voltage
source is now a time-varying sinusoidal voltage rather than a constant, or
dc, voltage. Direct application of Kirchhoff’s voltage law to the circuit
shown in Fig. 9.5 leads to the ordinary differential equation

(9.8)

the formal solution of which is discussed in an introductory course in dif-
ferential equations. We ask those of you who have not yet studied differ-
ential equations to accept that the solution for i is

(9.9)

i =

-Vm

2R2
+ v2L2

 cos (f - u)e-(R>L)t 
+  

Vm

2R2
+ v2L2

 cos (vt + f - u),

L
di

dt
+ Ri = Vm cos (vt + f),

t Ú 0.i(t)

vs = Vm cos (vt + f).

vs

i(t)
vs

R

�

�
L

t � 0

Figure 9.5 � An RL circuit excited by a sinusoidal 
voltage source.

squared current for an interval of one period is
equal to four times the area under the squared cur-
rent for the interval 0 to seconds; that is,

Figure 9.4 � versus .

The analytical expression for i in the interval 0 to
is

i =

4Ip

T
t, 0 6 t 6 T>4.

T>4

ti2

T/4 T/2 3T/4 T
t

etc.

�T/2 �T/4 0

Ip
2

i2

L

t0 +T

t0

i2dt = 4
L

T>4

0
i2dt.

T>4
The area under the squared function for one
period is

The mean, or average, value of the function is 
simply the area for one period divided by the
period. Thus

The rms value of the current is the square root of
this mean value. Hence

Irms =

Ip

13
 .

imean =

1
T

 
Ip

2T

3
=

1
3

Ip
2

 .

L

t0 + T

t0

i2dt = 4
L

T>4

0
 
16Ip

2

T2 t2dt =

Ip
2T

3
 .

NOTE: Assess your understanding of this material by trying Chapter Problems 9.1, 9.3 and 9.7.



1 If you feel a bit uneasy about complex numbers, peruse Appendix B.

where is defined as the angle whose tangent is Thus we can easily
determine for a circuit driven by a sinusoidal source of known frequency.

We can check the validity of Eq. 9.9 by determining that it satisfies
Eq. 9.8 for all values of ; this exercise is left for your exploration in
Problem 9.10.

The first term on the right-hand side of Eq. 9.9 is referred to as the
transient component of the current because it becomes infinitesimal as
time elapses. The second term on the right-hand side is known as the
steady-state component of the solution. It exists as long as the switch
remains closed and the source continues to supply the sinusoidal voltage.
In this chapter, we develop a technique for calculating the steady-state
response directly, thus avoiding the problem of solving the differential
equation. However, in using this technique we forfeit obtaining either the
transient component or the total response, which is the sum of the tran-
sient and steady-state components.

We now focus on the steady-state portion of Eq. 9.9. It is important to
remember the following characteristics of the steady-state solution:

1. The steady-state solution is a sinusoidal function.

2. The frequency of the response signal is identical to the frequency of
the source signal. This condition is always true in a linear circuit
when the circuit parameters, R, L, and C, are constant. (If frequen-
cies in the response signals are not present in the source signals,
there is a nonlinear element in the circuit.)

3. The maximum amplitude of the steady-state response, in general,
differs from the maximum amplitude of the source. For the circuit
being discussed, the maximum amplitude of the response signal is

and the maximum amplitude of the signal source
is 

4. The phase angle of the response signal, in general, differs from the
phase angle of the source. For the circuit being discussed, the phase
angle of the current is and that of the voltage source is 

These characteristics are worth remembering because they help you
understand the motivation for the phasor method, which we introduce in
Section 9.3. In particular, note that once the decision has been made to
find only the steady-state response, the task is reduced to finding the max-
imum amplitude and phase angle of the response signal. The waveform
and frequency of the response are already known.

NOTE: Assess your understanding of this material by trying Chapter
Problem 9.9.

9.3 The Phasor
The phasor is a complex number that carries the amplitude and phase
angle information of a sinusoidal function.1 The phasor concept is rooted
in Euler’s identity, which relates the exponential function to the trigono-
metric function:

(9.10)

Equation 9.10 is important here because it gives us another way of express-
ing the cosine and sine functions.We can think of the cosine function as the

e;ju
=  cos u ; j sin u.

f.f - u

Vm.
Vm>2R2

+ v2L2,

t Ú 0

u

vL>R.u
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real part of the exponential function and the sine function as the imaginary
part of the exponential function; that is,

(9.11)

and

(9.12)

where means “the real part of” and means “the imaginary part of.”
Because we have already chosen to use the cosine function in analyz-

ing the sinusoidal steady state (see Section 9.1), we can apply Eq. 9.11
directly. In particular, we write the sinusoidal voltage function given by
Eq. 9.1 in the form suggested by Eq. 9.11:

(9.13)

We can move the coefficient inside the argument of the real part of the
function without altering the result. We can also reverse the order of the
two exponential functions inside the argument and write Eq. 9.13 as

(9.14)

In Eq. 9.14, note that the quantity is a complex number that carries
the amplitude and phase angle of the given sinusoidal function. This
complex number is by definition the phasor representation, or phasor
transform, of the given sinusoidal function. Thus

(9.15)

where the notation is read “the phasor transform of
”Thus the phasor transform transfers the sinusoidal func-

tion from the time domain to the complex-number domain, which is also
called the frequency domain, since the response depends, in general, on 
As in Eq. 9.15, throughout this book we represent a phasor quantity by
using a boldface letter.

Equation 9.15 is the polar form of a phasor, but we also can express a
phasor in rectangular form. Thus we rewrite Eq. 9.15 as

(9.16)

Both polar and rectangular forms are useful in circuit applications of the
phasor concept.

One additional comment regarding Eq. 9.15 is in order. The frequent
occurrence of the exponential function has led to an abbreviation that
lends itself to text material. This abbreviation is the angle notation

We use this notation extensively in the material that follows.

1lf �
K 1ejf.

ejf

V = Vm cos f + jVm sin f.

v.

Vm cos (vt + f).
P5Vm cos (vt + f)6

V = Vmejf
= P5Vm cos (vt + f)6,

Vmejf

v = t5Vmejfejvt6.

Vm

 = Vmt5ejvtejf6.
 = Vmt5ej(vt+f)6

 v = Vm cos (vt + f)

st

  sin u = s5eju6,

  cos u = t5eju6,

� Phasor transform
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Inverse Phasor Transform
So far we have emphasized moving from the sinusoidal function to its pha-
sor transform. However, we may also reverse the process. That is, for a
phasor we may write the expression for the sinusoidal function. Thus for

the expression for is because we
have decided to use the cosine function for all sinusoids. Observe that we
cannot deduce the value of from the phasor. The phasor carries only
amplitude and phase information. The step of going from the phasor
transform to the time-domain expression is referred to as finding the
inverse phasor transform and is formalized by the equation

(9.17)

where the notation is read as “the inverse phasor transform of
” Equation 9.17 indicates that to find the inverse phasor transform, we

multiply the phasor by and then extract the real part of the product.
The phasor transform is useful in circuit analysis because it reduces

the task of finding the maximum amplitude and phase angle of the steady-
state sinusoidal response to the algebra of complex numbers. The follow-
ing observations verify this conclusion:

1. The transient component vanishes as time elapses, so the steady-
state component of the solution must also satisfy the differential
equation. (See Problem 9.10[b].)

2. In a linear circuit driven by sinusoidal sources, the steady-state
response also is sinusoidal, and the frequency of the sinusoidal
response is the same as the frequency of the sinusoidal source.

3. Using the notation introduced in Eq. 9.11, we can postulate that the
steady-state solution is of the form where A is the
maximum amplitude of the response and is the phase angle of the
response.

4. When we substitute the postulated steady-state solution into the
differential equation, the exponential term cancels out, leaving
the solution for A and in the domain of
complex numbers.

We illustrate these observations with the circuit shown in Fig. 9.5 (see
p. 309).We know that the steady-state solution for the current i is of the form

(9.18)

where the subscript “ss” emphasizes that we are dealing with the steady-
state solution. When we substitute Eq. 9.18 into Eq. 9.8, we generate the
expression

(9.19)

In deriving Eq. 9.19 we recognized that both differentiation and multiplica-
tion by a constant can be taken inside the real part of an operation. We also
rewrote the right-hand side of Eq. 9.8, using the notation of Eq. 9.11. From

t5jvLImejbejvt6 + t5RImejbejvt6 = t5Vmejfejvt6.

iss(t) = t5Imejbejvt6,

b

ejvt

b

t5Aejbejvt6,

ejvt
Vmejf.

P
-15Vmejf6

P
-15Vmejf6 = t5Vmejfejvt6,

v

100 cos (vt - 26 �)vV = 100l -26 � ,
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the algebra of complex numbers, we know that the sum of the real parts is the
same as the real part of the sum.Therefore we may reduce the left-hand side
of Eq. 9.19 to a single term:

(9.20)

Recall that our decision to use the cosine function in analyzing the
response of a circuit in the sinusoidal steady state results in the use of
the operator in deriving Eq. 9.20. If instead we had chosen to use the
sine function in our sinusoidal steady-state analysis, we would have
applied Eq. 9.12 directly, in place of Eq. 9.11, and the result would be
Eq. 9.21:

(9.21)

Note that the complex quantities on either side of Eq. 9.21 are identical to
those on either side of Eq. 9.20.When both the real and imaginary parts of
two complex quantities are equal, then the complex quantities are them-
selves equal. Therefore, from Eqs. 9.20 and 9.21,

or

(9.22)

Note that has been eliminated from the determination of the ampli-
tude ( ) and phase angle ( ) of the response. Thus, for this circuit, the
task of finding and involves the algebraic manipulation of the com-
plex quantities and Note that we encountered both polar
and rectangular forms.

An important warning is in order: The phasor transform, along with
the inverse phasor transform, allows you to go back and forth between
the time domain and the frequency domain. Therefore, when you obtain
a solution, you are either in the time domain or the frequency domain.
You cannot be in both domains simultaneously. Any solution that con-
tains a mixture of time domain and phasor domain nomenclature is
nonsensical.

The phasor transform is also useful in circuit analysis because it applies
directly to the sum of sinusoidal functions. Circuit analysis involves sum-
ming currents and voltages, so the importance of this observation is obvi-
ous. We can formalize this property as follows: If

(9.23)

where all the voltages on the right-hand side are sinusoidal voltages of the
same frequency, then

(9.24)V = V1 + V2 +
Á

+ Vn.

v = v1 + v2 +
Á

+ vn

R + jvL.Vmejf
bIm

bIm

ejvt

Imejb
=

Vmejf

R + jvL
.

(jvL + R)Imejb
= Vmejf,

s5(jvL + R)Imejbejvt6 = s5Vmejfejvt6.

t

t5(jvL + R)Imejbejvt6 = t5Vmejfejvt6.
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Thus the phasor representation is the sum of the phasors of the individual
terms. We discuss the development of Eq. 9.24 in Section 9.5.

Before applying the phasor transform to circuit analysis, we illus-
trate its usefulness in solving a problem with which you are already
familiar: adding sinusoidal functions via trigonometric identities.
Example 9.5 shows how the phasor transform greatly simplifies this
type of problem.

Example 9.5 Adding Cosines Using Phasors

If and 
express as a single sinusoidal function.

a) Solve by using trigonometric identities.

b) Solve by using the phasor concept.

Solution

a) First we expand both and using the cosine
of the sum of two angles, to get

Adding and we obtain

To combine these two terms we treat the 
co-efficients of the cosine and sine as sides of a right
triangle (Fig. 9.6) and then multiply and divide the
right-hand side by the hypotenuse. Our expression
for becomes

Again, we invoke the identity involving the
cosine of the sum of two angles and write

y = 44.72 cos (vt + 33.43 �).

 = 44.72( cos 33.43 �  cos vt - sin 33.43 �  sin vt).

 y = 44.72a 37.32
44.72

 cos vt -

24.64
44.72

 sin vtb

y

 = 37.32 cos vt - 24.64 sin vt.

 +  (20 sin 30 - 40 sin 60) sin vt

 y = (20 cos 30 + 40 cos 60) cos vt

y2,y1

 y2 = 40 cos vt cos 60 �
- 40 sin vt  sin 60 � .

 y1 = 20 cos vt cos 30 �
+ 20 sin vt  sin 30 � ;

y2,y1

y = y1 + y2

60 �),+40 cos (vt=y230 �)-20 cos (vt=y1

Figure 9.6 � A right triangle used in the solution for .

b) We can solve the problem by using phasors as
follows: Because

then, from Eq. 9.24,

Once we know the phasor Y, we can write the
corresponding trigonometric function for y by
taking the inverse phasor transform:

The superiority of the phasor approach for
adding sinusoidal functions should be apparent.
Note that it requires the ability to move back
and forth between the polar and rectangular
forms of complex numbers.

 = 44.72 cos (vt + 33.43 �).

 y = p
-1544.72ej33.436 = t544.72ej33.43ejvt6

 = 44.72l33.43 � .

 = 37.32 + j24.64

 = (17.32 - j10) + (20 + j34.64)

 = 20l -30 �
+ 40l60 �

 Y = Y1 + Y2

y = y1 + y2,

y

33.43�

24.6444.72

37.32



� �

R

v

i

Figure 9.7 � A resistive element carrying a sinusoidal
current.

Objective 1—Understand phasor concepts and be able to perform a phasor transform and an inverse phasor transform

9.1 Find the phasor transform of each trigonomet-
ric function:

a)

b)

c)

d)

Answer: (a)

(b) 10l -70 �  A;

170l -40 �  V;

-  100 sin(20,000pt + 30°)] mV.
v = [300 cos (20,000pt + 45 �)

-  53.13°)] A.
i = [5 cos (vt + 36.87 �) + 10 cos(vt

i = 10 sin (1000t + 20 �) A.

v = 170 cos (377t - 40 �) V.

(c)

(d)

9.2 Find the time-domain expression correspon-
ding to each phasor:

a)

b)

c)

Answer: (a)

(b)

(c) 72.79 cos (vt + 97.08 �) V.

48.81 cos (vt + 126.68 �) mA;

18.6 cos (vt - 54 �) V;

V = (20 + j80 - 30 l15 �) V.

I = (20 l45° - 50 l -30 �) mA.

V = 18.6l -54 �  V.

339.90l61.51 �  mV.

11.18l -26.57 �  A;

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problem 9.11.

9.4 The Passive Circuit Elements 
in the Frequency Domain

The systematic application of the phasor transform in circuit analysis
requires two steps. First, we must establish the relationship between the
phasor current and the phasor voltage at the terminals of the passive cir-
cuit elements. Second, we must develop the phasor-domain version of
Kirchhoff’s laws, which we discuss in Section 9.5. In this section, we estab-
lish the relationship between the phasor current and voltage at the termi-
nals of the resistor, inductor, and capacitor. We begin with the resistor and
use the passive sign convention in all the derivations.

The V-I Relationship for a Resistor
From Ohm’s law, if the current in a resistor varies sinusoidally with time—
that is, if —the voltage at the terminals of the resistor,
as shown in Fig. 9.7, is

(9.25)

where is the maximum amplitude of the current in amperes and is
the phase angle of the current.

The phasor transform of this voltage is

(9.26)

But is the phasor representation of the sinusoidal current, so we can
write Eq. 9.26 as

(9.27)V = RI,

Imlui

V = RImejui
= RImlui.

uiIm

 = RIm[ cos (vt + ui)],

 v = R[Im cos (vt + ui)]

i = Im cos (vt +  ui)

� Relationship between phasor voltage and
phasor current for a resistor

9.4 The Passive Circuit Elements in the Frequency Domain 315
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which states that the phasor voltage at the terminals of a resistor is simply
the resistance times the phasor current. Figure 9.8 shows the circuit dia-
gram for a resistor in the frequency domain.

Equations 9.25 and 9.27 both contain another important piece of
information—namely, that at the terminals of a resistor, there is no phase
shift between the current and voltage. Figure 9.9 depicts this phase rela-
tionship, where the phase angle of both the voltage and the current wave-
forms is The signals are said to be in phase because they both reach
corresponding values on their respective curves at the same time (for
example, they are at their positive maxima at the same instant).

The V-I Relationship for an Inductor
We derive the relationship between the phasor current and phasor voltage
at the terminals of an inductor by assuming a sinusoidal current and using

to establish the corresponding voltage. Thus, for 
the expression for the voltage is

(9.28)

We now rewrite Eq. 9.28 using the cosine function:

(9.29)

The phasor representation of the voltage given by Eq. 9.29 is

(9.30)

Note that in deriving Eq. 9.30 we used the identity

Equation 9.30 states that the phasor voltage at the terminals of an inductor
equals times the phasor current. Figure 9.10 shows the frequency-
domain equivalent circuit for the inductor. It is important to note that the
relationship between phasor voltage and phasor current for an inductor
applies as well for the mutual inductance in one coil due to current flowing
in another mutually coupled coil. That is, the phasor voltage at the termi-
nals of one coil in a mutually coupled pair of coils equals times the
phasor current in the other coil.

jvM

jvL

e-j90 �

=  cos 90 �
- j sin 90 �

= -j.

 = jvLI.

 = jvLImejui

 = -vLImejuie-j90 �

 V = -vLImej(ui -90 � )

v = -vLIm cos (vt + ui - 90 �).

v = L
di

dt
= -vLIm sin (vt + ui).

+  ui),
i = Im cos (vtLdi>dt

60 � .

�T/4 0

v, i
v v v

i

i
v

i
v

i i

T/2 T 3T/2 2T
t

Figure 9.9 � A plot showing that the voltage and cur-
rent at the terminals of a resistor are in phase.

� �

R

V
I

Figure 9.8 � The frequency-domain equivalent circuit of
a resistor.

Relationship between phasor voltage and �
phasor current for an inductor

� �

jvL

V
I

Figure 9.10 � The frequency-domain equivalent circuit
for an inductor.
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We can rewrite Eq. 9.30 as

(9.31)

which indicates that the voltage and current are out of phase by exactly
In particular, the voltage leads the current by or, equivalently, the

current lags behind the voltage by . Figure 9.11 illustrates this concept
of voltage leading current or current lagging voltage. For example, the volt-
age reaches its negative peak exactly before the current reaches its
negative peak. The same observation can be made with respect to the
zero-going-positive crossing or the positive peak.

We can also express the phase shift in seconds. A phase shift of 
corresponds to one-fourth of a period; hence the voltage leads the current
by or second.

The V-I Relationship for a Capacitor
We obtain the relationship between the phasor current and phasor voltage
at the terminals of a capacitor from the derivation of Eq. 9.30. In other
words, if we note that for a capacitor that

and assume that

then

(9.32)

Now if we solve Eq. 9.32 for the voltage as a function of the current, we get

(9.33)

Equation 9.33 demonstrates that the equivalent circuit for the capacitor in
the phasor domain is as shown in Fig. 9.12.

The voltage across the terminals of a capacitor lags behind the current
by exactly We can easily show this relationship by rewriting Eq. 9.33 as

(9.34) =

Im

vC
 l(ui - 90) � .

 V =

1
vC

 l -90 �Im lui
�

90 � .

V =

1
jvC

I.

I = jvCV.

v = Vm cos (vt + uv),

i = C
dv

dt
,

1
4fT>4,

90 �

90 �

90 �
90 � ,90 � .

 = vLIm l(ui + 90) � ,

 V = (vL l90 �)Imlui

t

v, i

0

90�

�T/4 T/2 T 3T/2

v
i

Figure 9.11 � A plot showing the phase relationship
between the current and voltage at the terminals of an
inductor ( ).ui = 60 �

� �

1/jvC

V
I

Figure 9.12 � The frequency domain equivalent circuit
of a capacitor.

� Relationship between phasor voltage and
phasor current for a capacitor
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t

v i
v, i

0�T/4 T/2 T 3T/2 2T

v vi i

i iv
v

Figure 9.13 � A plot showing the phase relationship
between the current and voltage at the terminals of a
capacitor ( ).ui = 60 �

The alternative way to express the phase relationship contained in
Eq. 9.34 is to say that the current leads the voltage by . Figure 9.13
shows the phase relationship between the current and voltage at the ter-
minals of a capacitor.

Impedance and Reactance
We conclude this discussion of passive circuit elements in the frequency
domain with an important observation. When we compare Eqs. 9.27, 9.30,
and 9.33, we note that they are all of the form

(9.35)

where Z represents the impedance of the circuit element. Solving for Z in
Eq. 9.35, you can see that impedance is the ratio of a circuit element’s volt-
age phasor to its current phasor. Thus the impedance of a resistor is R, the
impedance of an inductor is the impedance of mutual inductance is

and the impedance of a capacitor is In all cases, impedance
is measured in ohms. Note that, although impedance is a complex number,
it is not a phasor. Remember, a phasor is a complex number that shows up
as the coefficient of Thus, although all phasors are complex numbers,
not all complex numbers are phasors.

Impedance in the frequency domain is the quantity analogous to
resistance, inductance, and capacitance in the time domain. The imaginary
part of the impedance is called reactance. The values of impedance and
reactance for each of the component values are summarized in Table 9.1.

And finally, a reminder. If the reference direction for the current in a
passive circuit element is in the direction of the voltage rise across the ele-
ment, you must insert a minus sign into the equation that relates the volt-
age to the current.

ejvt.

1>jvC.jvM,
jvL,

V = ZI,

90 �

Definition of impedance �

TABLE 9.1 Impedance and Reactance Values

Circuit 
Element Impedance Reactance

Resistor —

Inductor

Capacitor -1>vCj(-1>vC)

vLjvL

R

Objective 2—Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor concepts

9.3 The current in the 20 mH inductor is
Calculate (a) the

inductive reactance; (b) the impedance of the
inductor; (c) the phasor voltage V; and 
(d) the steady-state expression for 

Answer: (a)

(b)

(c)

(d) 2 cos (10,000t + 120 �) V.

2 l120 �  V;

j200 Æ;

200 Æ;

� �

20 mH

v

i

v(t).

10 cos (10,000t + 30 �) mA.
9.4 The voltage across the terminals of the 

capacitor is Calculate
(a) the capacitive reactance; (b) the impedance
of the capacitor; (c) the phasor current I; and
(d) the steady-state expression for 

Answer: (a)

(b)

(c)

(d) 0.6 cos (4000t + 115 �) A.

0.6l115 �  A;

-j50 Æ;

-50 Æ;

� �

5 mF

v

i

i(t).

30 cos (4000t + 25 �) V.
5 mF

NOTE: Also try Chapter Problems 9.12 and 9.13.

A S S E S S M E N T  P R O B L E M S



9.5 Kirchhoff’s Laws in the Frequency Domain 319

9.5 Kirchhoff’s Laws 
in the Frequency Domain

We pointed out in Section 9.3, with reference to Eqs. 9.23 and 9.24, that the
phasor transform is useful in circuit analysis because it applies to the sum
of sinusoidal functions. We illustrated this usefulness in Example 9.5. We
now formalize this observation by developing Kirchhoff’s laws in the fre-
quency domain.

Kirchhoff’s Voltage Law in the Frequency Domain
We begin by assuming that represent voltages around a closed
path in a circuit.We also assume that the circuit is operating in a sinusoidal
steady state. Thus Kirchhoff’s voltage law requires that

(9.36)

which in the sinusoidal steady state becomes complex

(9.37)

We now use Euler’s identity to write Eq. 9.37 as

(9.38)

which we rewrite as

(9.39)

Factoring the term from each term yields

or

(9.40)

But so

(9.41)

which is the statement of Kirchhoff’s voltage law as it applies to phasor
voltages. In other words, Eq. 9.36 applies to a set of sinusoidal voltages in
the time domain, and Eq. 9.41 is the equivalent statement in the fre-
quency domain.

Kirchhoff’s Current Law in the Frequency Domain
A similar derivation applies to a set of sinusoidal currents. Thus if

(9.42) i1 + i2 +
Á

+ in = 0,

V1 + V2 +
Á

+ Vn = 0,

ejvt
Z 0,

t5(V1 + V2 +
Á

+ Vn)ejvt6 = 0.

t5(Vm1
eju1

+ Vm2
eju2

+
Á

+ Vmn
ejun)ejvt6 = 0,

ejvt

t5Vm1
eju1ejvt

+ Vm2
eju2ejvt

+
Á

+ Vmn
ejunejvt6 = 0.

t5Vm1
eju1ejvt6 + t5Vm2

eju2ejvt6 +
Á

+ t5Vmn
ejunejvt6

Vm1
 cos (vt + u1) + Vm2

 cos (vt + u2) +
Á

+ Vmn
 cos (vt + un) = 0.

v1 + v2 +
Á

+ vn = 0,

v1 - vn

� KVL in the frequency domain
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KCL in the frequency domain �

then

(9.43)

where are the phasor representations of the individual cur-
rents 

Equations 9.35, 9.41, and 9.43 form the basis for circuit analysis in the
frequency domain. Note that Eq. 9.35 has the same algebraic form as Ohm’s
law, and that Eqs. 9.41 and 9.43 state Kirchhoff’s laws for phasor quantities.
Therefore you may use all the techniques developed for analyzing resistive
circuits to find phasor currents and voltages.You need learn no new analytic
techniques; the basic circuit analysis and simplification tools covered in
Chapters 2–4 can all be used to analyze circuits in the frequency domain.
Phasor circuit analysis consists of two fundamental tasks: (1) You must be
able to construct the frequency-domain model of a circuit; and (2) you must
be able to manipulate complex numbers and/or quantities algebraically. We
illustrate these aspects of phasor analysis in the discussion that follows,
beginning with series, parallel, and delta-to-wye simplifications.

i1, i2, Á , in.
I1, I2, Á , In

 I1 + I2 +
Á

+ In = 0,

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.5 Four branches terminate at a common node.
The reference direction of each branch current
( and ) is toward the node. Ifi4i3,i2,i1,

and
find 

Answer: i4 = 0.

i4. i3 = 100 cos (vt - 95 �) A,
 i2 = 100 cos (vt + 145 �) A,
 i1 = 100 cos (vt + 25 �) A,

NOTE: Also try Chapter Problem 9.15.

A S S E S S M E N T  P R O B L E M

9.6 Series, Parallel, and Delta-to-Wye
Simplifications

The rules for combining impedances in series or parallel and for making
delta-to-wye transformations are the same as those for resistors. The only
difference is that combining impedances involves the algebraic manipula-
tion of complex numbers.

Combining Impedances in Series and Parallel
Impedances in series can be combined into a single impedance by simply
adding the individual impedances.The circuit shown in Fig. 9.14 defines the
problem in general terms. The impedances are connected in
series between terminals a,b.When impedances are in series, they carry the
same phasor current I. From Eq. 9.35, the voltage drop across each imped-
ance is and from Kirchhoff’s voltage law,

(9.44)

The equivalent impedance between terminals a,b is

(9.45)

Example 9.6 illustrates a numerical application of Eq. 9.45.

Zab =

Vab

I
= Z1 + Z2 +

Á
+ Zn.

 = (Z1 + Z2 +
Á

+ Zn)I.

 Vab = Z1I + Z2I +
Á

+ ZnI

Z1I, Z2I, Á , ZnI,

Z1, Z2, Á , Zn

�

�

a

b

Vab
I

Z1 Z2 Zn

Figure 9.14 � Impedances in series.
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Example 9.6 Combining Impedances in Series

A resistor, a 32 mH inductor, and a 
capacitor are connected in series across the termi-
nals of a sinusoidal voltage source, as shown in
Fig. 9.15. The steady-state expression for the source
voltage is 

a) Construct the frequency-domain equivalent
circuit.

b) Calculate the steady-state current i by the phasor
method.

Figure 9.15 � The circuit for Example 9.6.

Solution

a) From the expression for , we have
Therefore the impedance of the

32 mH inductor is

and the impedance of the capacitor is

ZC = j 
-1
vC

= -j 
106

(5000)(5)
= -j40 Æ.

ZL = jvL = j(5000)(32 * 10-3) = j160 Æ,

v = 5000 rad>s.
vs

vs

90 �

i

32 mH

�

�
5 mF

750 cos (5000t + 30 �) V.vs

5 mF90 Æ The phasor transform of is

Figure 9.16 illustrates the frequency-domain
equivalent circuit of the circuit shown in Fig. 9.15.

b) We compute the phasor current simply by divid-
ing the voltage of the voltage source by the equiv-
alent impedance between the terminals a,b. From
Eq. 9.45,

Thus

We may now write the steady-state expression
for i directly:

Figure 9.16 � The frequency-domain equivalent circuit of the
circuit shown in Fig. 9.15.

90 � j160 �

�

�

I
�j40 �

a

b

30�750
V

i = 5 cos (5000t - 23.13 �) A.

I =

750 l30 �

150 l53.13 � = 5 l -23.13 �  A.

 = 90 + j120 = 150l53.13 �  Æ.

 Zab = 90 + j160 - j40

Vs = 750 l30 �  V.

vs

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.6 Using the values of resistance and inductance in
the circuit of Fig. 9.15, let 
and Find

a) the value of capacitance that yields a
steady-state output current i with a phase
angle of -105 � .

v = 5000 rad>s.
Vs = 125 l -60° V

b) the magnitude of the steady-state output
current i.

Answer: (a)

(b) 0.982 A.

2.86 mF;

NOTE: Also try Chapter Problem 9.17.

A S S E S S M E N T  P R O B L E M
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a

�

�

VZab

b

Z1I1 Z2I2 ZnIn

I

Figure 9.17 � Impedances in parallel.

TABLE 9.2 Admittance and Susceptance Values

Circuit Element Admittance ( ) Susceptance

Resistor G (conductance) —

Inductor

Capacitor v Cjv C

-1>vLj(-1>vL)

Y

Impedances connected in parallel may be reduced to a single equiva-
lent impedance by the reciprocal relationship

(9.46)

Figure 9.17 depicts the parallel connection of impedances. Note that when
impedances are in parallel, they have the same voltage across their termi-
nals. We derive Eq. 9.46 directly from Fig. 9.17 by simply combining
Kirchhoff’s current law with the phasor-domain version of Ohm’s law, that
is, Eq. 9.35. From Fig. 9.17,

or

(9.47)

Canceling the common voltage term out of Eq. 9.47 reveals Eq. 9.46.
From Eq. 9.46, for the special case of just two impedances in parallel,

(9.48)

We can also express Eq. 9.46 in terms of admittance, defined as the recip-
rocal of impedance and denoted Y. Thus

(9.49)

Admittance is, of course, a complex number, whose real part, G, is called
conductance and whose imaginary part, B, is called susceptance. Like
admittance, conductance and susceptance are measured in siemens (S).
Using Eq. 9.49 in Eq. 9.46, we get

(9.50)

The admittance of each of the ideal passive circuit elements also is
worth noting and is summarized in Table 9.2.

Example 9.7 illustrates the application of Eqs. 9.49 and 9.50 to a spe-
cific circuit.

Yab = Y1 + Y2 +
Á

+ Yn.

Y =

1
Z

= G + jB (siemens).

Zab =

Z1Z2

Z1 + Z2
.

 
V

Zab
=

V
Z1

+

V
Z2

+
Á

+

V
Zn

.

 I = I1 + I2 +
Á

+ In,

1
Zab

=

1
Z1

+

1
Z2

+
Á

+

1
Zn

.
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Example 9.7 Combining Impedances in Series and in Parallel

The sinusoidal current source in the circuit shown in
Fig. 9.18 produces the current 

a) Construct the frequency-domain equivalent
circuit.

b) Find the steady-state expressions for ,
and 

Solution

a) The phasor transform of the current source is
the resistors transform directly to the fre-

quency domain as 10 and the 
inductor has an impedance of at the given
frequency of and at this fre-
quency the capacitor has an impedance of

Figure 9.19 shows the frequency-domain
equivalent circuit and symbols representing the
phasor transforms of the unknowns.

b) The circuit shown in Fig. 9.19 indicates that we
can easily obtain the voltage across the current
source once we know the equivalent impedance
of the three parallel branches. Moreover, once
we know V, we can calculate the three phasor
currents and by using Eq. 9.35. To find
the equivalent impedance of the three branches,
we first find the equivalent admittance simply
by adding the admittances of each branch. The
admittance of the first branch is

the admittance of the second branch is

and the admittance of the third branch is

The admittance of the three branches is

The impedance at the current source is

Z =

1
Y

= 5 l -36.87 �  Æ.

 = 0.2l36.87 �  S.

 = 0.16 + j0.12

 Y = Y1 + Y2 + Y3

Y3 =

1
-j5

= j0.2 S.

Y2 =

1
6 + j8

=

6 - j8
100

= 0.06 - j0.08 S,

Y1 =

1
10

= 0.1 S,

I3I2,I1,

-j5 Æ.
1 mF

200,000 rad>s;
j8 Æ

40 mH6 Æ;
8 l0 � ;

i3.
i2,i1,v

is = 8 cos 200,000t A.

Figure 9.18 � The circuit for Example 9.7.

Figure 9.19 � The frequency-domain equivalent circuit.

The Voltage V is

Hence

and

We check the computations at this point by veri-
fying that

Specifically,

The corresponding steady-state time-domain
expressions are

 i3 = 8 cos (200,000t + 53.13 �) A.

 i2 = 4 cos (200,000t - 90 �) A,

 i1 = 4 cos (200,000t - 36.87 �) A,

 v = 40 cos (200,000t - 36.87 �) V,

3.2 - j2.4 - j4 + 4.8 + j6.4 = 8 + j0.

I1 + I2 + I3 = I.

 I3 =

40 l -36.87 �

5 l -90 � = 8 l53.13 �
= 4.8 + j6.4 A.

 I2 =

40l -36.87 �

6 + j8
= 4 l -90 �

= -j4 A,

 I1 =

40 l -36.87 �

10
= 4 l -36.87 �

= 3.2 - j2.4 A,

V = ZI = 40 l -36.87 �  V.

10 �

6 �

j8 �
�j5 �

�

�

V I1 I2

I3

0�8
A

10 �

6 �

40 mH
1 mF

�

�

vis i1 i2

i3
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Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

Delta-to-Wye Transformations
The -to-Y transformation that we discussed in Section 3.7 with regard
to resistive circuits also applies to impedances. Figure 9.20 defines the 

-connected impedances along with the Y-equivalent circuit. The 
Y impedances as functions of the impedances are

(9.51)

(9.52)

(9.53)

The -to-Y transformation also may be reversed; that is, we can start
with the Y structure and replace it with an equivalent structure. The 
impedances as functions of the Y impedances are

(9.54)

(9.55)

(9.56)

The process used to derive Eqs. 9.51–9.53 or Eqs. 9.54–9.56 is the same
as that used to derive the corresponding equations for pure resistive cir-
cuits. In fact, comparing Eqs. 3.44–3.46 with Eqs. 9.51–9.53, and
Eqs. 3.47–3.49 with Eqs. 9.54–9.56, reveals that the symbol Z has replaced

 Zc =

Z1Z2 + Z2Z3 + Z3Z1

Z3
 .

 Zb =

Z1Z2 + Z2Z3 + Z3Z1

Z2
 ,

 Za =

Z1Z2 + Z2Z3 + Z3Z1

Z1
 ,

¢¢

¢

 Z3 =

ZaZb

Za + Zb + Zc
 .

 Z2 =

ZcZa

Za + Zb + Zc
 ,

 Z1 =

ZbZc

Za + Zb + Zc
 ,

¢

¢

¢a b

n

c

Zc

Z3

Zb Za

Z1 Z2

Figure 9.20 � The delta-to-wye transformation.

Answer: (a)

(b)

(c)

(d)

9.8 The interconnection described in Assessment
Problem 9.7 is connected across the terminals
of a voltage source that is generating

What is the maximum
amplitude of the current in the 5 mH inductor?

Answer: 7.07 A.

v = 150 cos 4000t V.

15 Æ.

4 krad>s;

21 + j3 Æ;

9 - j12 Æ;9.7 A resistor is connected in parallel with a
5 mH inductor. This parallel combination is
connected in series with a resistor and a

capacitor.

a) Calculate the impedance of this inter-
connection if the frequency is .

b) Repeat (a) for a frequency of .

c) At what finite frequency does the imped-
ance of the interconnection become purely
resistive?

d) What is the impedance at the frequency
found in (c)?

8 krad>s
2 krad>s

25 mF
5 Æ

20 Æ

NOTE: Also try Chapter Problems 9.29, 9.34, and 9.35.

A S S E S S M E N T  P R O B L E M S
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the symbol R. You may want to review Problem 3.62 concerning the deri-
vation of the -to-Y transformation.

Example 9.8 illustrates the usefulness of the -to-Y transformation in
phasor circuit analysis.

¢

¢

Example 9.8 Using a Delta-to-Wye Transform in the Frequency Domain

Use a -to-Y impedance transformation to find 
and in the circuit in Fig. 9.21.

Figure 9.21 � The circuit for Example 9.8.

Solution
First note that the circuit is not amenable to series
or parallel simplification as it now stands. A -to-Y
impedance transformation allows us to solve for all
the branch currents without resorting to either the
node-voltage or the mesh-current method. If we
replace either the upper delta (abc) or the lower
delta (bcd) with its Y equivalent, we can further
simplify the resulting circuit by series-parallel com-
binations. In deciding which delta to replace, the
sum of the impedances around each delta is worth
checking because this quantity forms the denomi-
nator for the equivalent Y impedances. The sum
around the lower delta is so we choose to
eliminate it from the circuit. The Y impedance con-
necting to terminal b is

the Y impedance connecting to terminal c is

and the Y impedance connecting to terminal d is

Z3 =

(20 + j60)(-j  20)
30 + j40

= 8 - j  24 Æ.

Z2 =

10(-j  20)
30 + j40

= -3.2 - j  2.4 Æ,

Z1 =

(20 + j60)(10)
30 + j40

= 12 + j4Æ,

30 + j40,

¢

20 �

j60 � �j20 �

j2.4 �

63.2 �

a

�j4 �

cb

d
�

�

V1

�

�

V2

10 �

I0

I3
I2I1

I5I4

�

�
120  0� V

V2V1,I5,I4,I3,I2,I1,
I0,¢ Inserting the Y-equivalent impedances into the cir-

cuit, we get the circuit shown in Fig 9.22, which we
can now simplify by series-parallel reductions. The
impedence of the abn branch is

and the impedance of the acn branch is

Figure 9.22 � The circuit shown in Fig. 9.21, with the lower
delta replaced by its equivalent wye.

Note that the abn branch is in parallel with the acn
branch.Therefore we may replace these two branches
with a single branch having an impedance of

Combining this resistor with the impedance
between n and d reduces the circuit shown in Fig. 9.22
to the one shown in Fig. 9.23. From the latter circuit,

Once we know we can work back through the
equivalent circuits to find the branch currents in
the original circuit. We begin by noting that is
the current in the branch nd of Fig. 9.22. Therefore

Vnd = (8 - j  24)I0 = 96 - j  32 V.

I0

I0,

I0 =

120 l0°

18 - j  24
= 4 l53.13 �

= 2.4 + j  3.2 A.

10 Æ

Zan =

(60)(12)
72

= 10 Æ.

12 �

j4 �

�j2.4 �

�j 2.4 �

�3.2 �

j 2.4 �

63.2 �

a

�j4 �

cb

I0

d

n

�

�

8 �

120  0� V

Zacn = 63.2 + j  2.4 - j  2.4 - 3.2 = 60 Æ.

Zabn = 12 + j4 - j4 = 12 Æ,
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We may now calculate the voltage because

and both V and are known. Thus

We now compute the branch currents and 

In terms of the branch currents defined in Fig. 9.21,

We check the calculations of and by noting that

Figure 9.23 � A simplified version of the circuit shown in
Fig. 9.22.

�j24 ��

�
18 �

I0 a

V
120  0� 

I1 + I2 = 2.4 + j  3.2 = I0.

I2I1

 I2 = Iacn =

4
10

+ j 
8
15

 A.

 I1 = Iabn = 2 + j 
8
3

 A,

 Iacn =

24 + j  32
60

=

4
10

+ j 
8
15

 A.

 Iabn =

24 + j  32
12

= 2 + j 
8
3

 A,

Iacn :Iabn

Van = 120 - 96 + j  32 = 24 + j  32 V.

Vnd

V = Van + Vnd

Van To find the branch currents and we must
first calculate the voltages and Refering to
Fig. 9.21, we note that

We now calculate the branch currents and :

We check the calculations by noting that

 I5 =

V2

-j  20
=

26
15

+ j4.8 A.

 I4 =

V1

20 + j60
=

2
3

- j1.6 A,

 I3 =

V1 - V2

10
=

4
3

+ j 
12.8

3
 A,

I5I4,I3,

 V2 = 120 l0 �
- (63.2 + j  2.4)I2 = 96 - j 

104
3

 V.

 V1 = 120 l0 �
- (-j4)I1 =

328
3

+ j8 V,

V2.V1

I5,I4,I3,

 I3 + I2 =

4
3

+

4
10

+ j 
12.8

3
+ j 

8
15

=

26
15

+ j4.8 = I5.

 I3 + I4 =

4
3

+

2
3

+ j 
12.8

3
- j1.6 = 2 + j 

8
3

= I1,

 I4 + I5 =

2
3

+

26
15

- j1.6 + j4.8 = 2.4 + j  3.2 = I0,

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.9 Use a -to-Y transformation to find the
current I in the circuit shown.

Answer: I = 4 l28.07°  A.

¢

j40 �

40 �

50 �

10 �

�j15 �

�

�

14 �

I

136 0�
V

NOTE: Also try Chapter Problem 9.42.

A S S E S S M E N T  P R O B L E M
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9.7 Source Transformations and
Thévenin-Norton Equivalent Circuits

The source transformations introduced in Section 4.9 and the Thévenin-
Norton equivalent circuits discussed in Section 4.10 are analytical tech-
niques that also can be applied to frequency-domain circuits. We prove
the validity of these techniques by following the same process used in
Sections 4.9 and 4.10, except that we substitute impedance (Z) for resist-
ance (R). Figure 9.24 shows a source-transformation equivalent circuit
with the nomenclature of the frequency domain.

Figure 9.25 illustrates the frequency-domain version of a Thévenin
equivalent circuit. Figure 9.26 shows the frequency-domain equivalent of
a Norton equivalent circuit. The techniques for finding the Thévenin
equivalent voltage and impedance are identical to those used for resistive
circuits, except that the frequency-domain equivalent circuit involves the
manipulation of complex quantities. The same holds for finding the
Norton equivalent current and impedance.

Example 9.9 demonstrates the application of the source-transformation
equivalent circuit to frequency-domain analysis. Example 9.10 illustrates
the details of finding a Thévenin equivalent circuit in the frequency domain.

�

�
Vs

a

b
Vs � ZsIs

Is

a

b
Is � Vs/Zs

Zs

Zs

Figure 9.24 � A source transformation in the 
frequency domain.

ZTh

�

�

Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources.

a

b

VTh

a

b

Figure 9.25 � The frequency-domain version of a
Thévenin equivalent circuit.

ZNIN

a

b

a
Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources. b

Figure 9.26 � The frequency-domain version of a Norton
equivalent circuit.

Example 9.9 Performing Source Transformations in the Frequency Domain

Use the concept of source transformation to find the
phasor voltage in the circuit shown in Fig. 9.27.

Figure 9.27 � The circuit for Example 9.9.

Solution
We can replace the series combination of the
voltage source ( ) and the impedance of

with the parallel combination of a 1 + j  3 Æ
40 l0 �

j3 �

10 �9 �

�j19 ��j3 �

�

�

j0.6 �1 � 0.2 �

40 0�
V

�

�

V0

V0

current source and the impedance. The
source current is

Thus we can modify the circuit shown in Fig. 9.27 to
the one shown in Fig. 9.28. Note that the polarity
reference of the 40 V source determines the refer-
ence direction for I.

Next, we combine the two parallel branches
into a single impedance,

Z =

(1 + j  3)(9 - j  3)
10

= 1.8 + j  2.4 Æ,

I =

40
1 + j  3

=

40
10

  (1 - j  3) = 4 - j12 A.

1 + j  3 Æ



328 Sinusoidal Steady-State Analysis

Example 9.10 Finding a Thévenin Equivalent in the Frequency Domain

Find the Thévenin equivalent circuit with respect to
terminals a,b for the circuit shown in Fig. 9.30.

Figure 9.30 � The circuit for Example 9.10.

�

�

�

�

12 �

60 �

�

�

Vx

�j40 �

10 Vx

120 �

V
120  0� 

Solution
We first determine the Thévenin equivalent voltage.
This voltage is the open-circuit voltage appearing at
terminals a,b. We choose the reference for the
Thévenin voltage as positive at terminal a. We can
make two source transformations relative to the 
120 V, and circuit elements to simplify this
portion of the circuit.At the same time, these transfor-
mations must preserve the identity of the controlling
voltage Vx because of the dependent voltage source.

We determine the two source transformations by
first replacing the series combination of the 120 V
source and resistor with a 10 A current source
in parallel with Next, we replace the parallel
combination of the 12 and resistors with a single

resistor. Finally, we replace the 10 A source in
parallel with with a 100 V source in series with

. Figure 9.31 shows the resulting circuit.
We added the current I to Fig. 9.31 to aid fur-

ther discussion. Note that once we know the current

10 Æ
10 Æ

10 Æ
60 Æ

12 Æ.
12 Æ

60 Æ12 Æ,

which is in parallel with the current source of
Another source transformation con-

verts this parallel combination to a series combina-
tion consisting of a voltage source in series with the
impedance of The voltage of the volt-
age source is

Using this source transformation, we redraw the
circuit as Fig. 9.29. Note the polarity of the voltage
source. We added the current to the circuit to
expedite the solution for 

Figure 9.28 � The first step in reducing the circuit shown 
in Fig. 9.27.

10 �9 �

�j19 ��j3 �

1 �

j3 �

j0.6 �0.2 �

4 � j12
A

�

�

V0

V0.
I0

V = (4 - j  12)(1.8 + j  2.4) = 36 - j  12 V.

1.8 + j  2.4 Æ.

4 - j  12 A.

Figure 9.29 � The second step in reducing the circuit shown 
in Fig. 9.27.

Also note that we have reduced the circuit to a
simple series circuit. We calculate the current by
dividing the voltage of the source by the total series
impedance:

We now obtain the value of by multiplying by
the impedance :10 - j19

I0V0

 =

39 + j27
25

= 1.56 + j1.08 A.

 I0 =

36 - j12
12 - j16

=

12(3 - j1)
4(3 - j4)

I0

10 �

�j19 �

�

�

j2.4 �1.8 � j0.6 �0.2 �

�

�

V0

36 � j12
V

I0

V0 = (1.56 + j1.08)(10 - j19) = 36.12 - j18.84 V.
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100 = 10I - j40I + 120I + 10Vx = (130 - j40)I + 10Vx.

Figure 9.31 � A simplified version of the circuit shown 
in Fig. 9.30.

We relate the controlling voltage to the current I
by noting from Fig. 9.31 that

Then,

we now calculate :

Finally, we note from Fig. 9.31 that

To obtain the Thévenin impedance, we may
use any of the techniques previously used to find
the Thévenin resistance. We illustrate the test-
source method in this example. Recall that in
using this method, we deactivate all independent
sources from the circuit and then apply either a
test voltage source or a test current source to the
terminals of interest. The ratio of the voltage to
the current at the source is the Thévenin imped-
ance. Figure 9.32 shows the result of applying this
technique to the circuit shown in Fig. 9.30. Note
that we chose a test voltage source Also note
that we deactivated the independent voltage
source with an appropriate short-circuit and pre-
served the identity of Vx.

VT.

 = 784 - j288 = 835.22 l -20.17° V.

 = 2080 + j1440 + 120(18) l -126.87°

 VTh = 10Vx + 120I

Vx = 100 - 180 l -126.87 �
= 208 + j144 V.

Vx

I =

-900
30 - j40

= 18 l -126.87 �  A.

Vx = 100 - 10I.

Vx

�

�

�

�

10 �

�

�

Vx

�

�

VTh

�j40 �

10 Vx

a

b

I

120 �

V
100  0� Figure 9.32 � A circuit for calculating the Thévenin equivalent

impedance.

The branch currents and have been added to
the circuit to simplify the calculation of By
straightforward applications of Kirchhoff’s circuit
laws, you should be able to verify the following
relationships:

Figure 9.33 depicts the Thévenin equivalent circuit.

Figure 9.33 � The Thévenin equivalent for the circuit shown 
in Fig. 9.30.

�

�

91.2 �
a

b

784 � j288
V

�j38.4 �

 ZTh =

VT

IT
= 91.2 - j  38.4 Æ.

 =

VT(3 - j4)
12(10 - j40)

 ,

 =

VT

10 - j40
 a1 -

9 + j4
12

b
 IT = Ia + Ib

 =

-VT(9 + j4)
120(1 - j4)

 ,

 Ib =

VT - 10Vx

120

 Ia =

VT

10 - j40
, Vx = 10Ia ,

IT.
IbIa

�

�

�

�

12 �

60 �

�

�

Vx

�j40 �

10 Vx

a

b

120 �

VT

IT

Ia

Ib

I, we can compute the Thévenin voltage. We find I
by summing the voltages around the closed path in
the circuit shown in Fig. 9.31. Hence



9.8 The Node-Voltage Method
In Sections 4.2–4.4, we introduced the basic concepts of the node-voltage
method of circuit analysis. The same concepts apply when we use the
node-voltage method to analyze frequency-domain circuits. Example 9.11
illustrates the solution of such a circuit by the node-voltage technique.
Assessment Problem 9.12 and many of the Chapter Problems give you an
opportunity to use the node-voltage method to solve for steady-state sinu-
soidal responses.

Example 9.11 Using the Node-Voltage Method in the Frequency Domain

Use the node-voltage method to find the branch
currents and in the circuit shown in Fig. 9.34.

Figure 9.34 � The circuit for Example 9.11.

Solution
We can describe the circuit in terms of two node volt-
ages because it contains three essential nodes. Four
branches terminate at the essential node that stretches
across the bottom of Fig. 9.34, so we use it as the refer-
ence node. The remaining two essential nodes are
labeled 1 and 2, and the appropriate node voltages are
designated and Figure 9.35 reflects the choice
of reference node and the terminal labels.

V2.V1

10 � �j5 �

j2 �1 �

Ia Ic

Ix

20 Ix

10.6  0�
A �

�

5 �

Ib

IcIb,Ia,

Figure 9.35 � The circuit shown in Fig. 9.34, with the node
voltages defined.

Summing the currents away from node 1 yields

Multiplying by and collecting the coeffi-
cients of and generates the expression

V1(1.1 + j0.2) - V2 = 10.6 + j  21.2.

V2V1

1 + j  2

-10.6 +

V1

10
+

V1 - V2

1 + j  2
= 0.

10 � �j5 �

j2 �1 �

Ix

20 Ix

10.6  0�
A �

�

5 �1 2

V2

�

�

V1

�

�

330 Sinusoidal Steady-State Analysis

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.10 Find the steady-state expression for in
the circuit shown by using the technique of
source transformations. The sinusoidal voltage
sources are

Answer: 48 cos (4000t + 36.87 �) V

30 � 25/6 mF v2v1 vo(t)

�

�

15 mH 20 �

�

�
�

�

 v2 = 96 sin 4000t V.

 v1 = 240 cos (4000t + 53.13 �) V,

vo(t) 9.11 Find the Thévenin equivalent with respect to
terminals a,b in the circuit shown.

Answer:
ZTh = 5 - j  5 Æ.
VTh = Vab = 10 l45° V;

20 � �j10 �

j10 � 10 �

Ix 10 Ix
2 45�

A
�

�

a

b

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 9.44, 9.45, and 9.48.
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Summing the currents away from node 2 gives

The controlling current is

Substituting this expression for into the node 2
equation, multiplying by and collecting
coefficients of and produces the equation

The solutions for and are

 V2 = 68 - j  26 V.
 V1 = 68.40 - j16.80 V,

V2V1

-5V1 + (4.8 + j0.6)V2 = 0.

V2V1

1 + j  2,
Ix

Ix =

V1 - V2

1 + j  2
.

Ix

V2 - V1

1 + j  2
+

V2

-j5
+

V2 - 20Ix

5
= 0.

Hence the branch currents are

To check our work, we note that

 = 3.76 + j1.68 A.
 Ix = Ib + Ic = -1.44 - j11.92 + 5.2 + j13.6

 = 10.6 A, 
 Ia + Ix = 6.84 - j1.68 + 3.76 + j1.68

 Ic =

V2

-j5
= 5.2 + j13.6 A.

 Ib =

V2 - 20Ix

5
= -1.44 - j11.92 A,

 Ix =

V1 - V2

1 + j  2
= 3.76 + j1.68 A,

 Ia =

V1

10
= 6.84 - j1.68 A,

9.9 The Mesh-Current Method
We can also use the mesh-current method to analyze frequency-domain cir-
cuits. The procedures used in frequency-domain applications are the same
as those used in analyzing resistive circuits. In Sections 4.5–4.7, we intro-
duced the basic techniques of the mesh-current method; we demonstrate
the extension of this method to frequency-domain circuits in Example 9.12.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.12 Use the node-voltage method to find the steady-
state expression for in the circuit shown.The
sinusoidal sources are and

where 

Answer: v(t) = 31.62 cos(50,000t - 71.57 �) V.

v = 50 krad>s.vs = 100 sin vt V,
is = 10 cos vt A

v(t)

�

�
5 � 9 mFis 100 mH vs

20 �
�

�

v(t)

NOTE: Also try Chapter Problems 9.54 and 9.58.

A S S E S S M E N T  P R O B L E M

Example 9.12 Using the Mesh-Current Method in the Frequency Domain

Use the mesh-current method to find the voltages
and in the circuit shown in Fig. 9.36 on the

next page.

Solution
The circuit has two meshes and a dependent volt-
age source, so we must write two mesh-current
equations and a constraint equation. The reference
direction for the mesh currents and is clock-
wise, as shown in Fig. 9.37. Once we know and 
we can easily find the unknown voltages. Summing
the voltages around mesh 1 gives

150 = (1 + j  2)I1 + (12 - j16)(I1 - I2),

I2,I1

I2I1

V3V2,V1,
or

Summing the voltages around mesh 2 generates the
equation

Figure 9.37 reveals that the controlling current is
the difference between and that is, the con-
straint is

Ix = I1 - I2.

I2;I1

Ix

0 = (12 - j16)(I2 - I1) + (1 + j  3)I2 + 39Ix.

150 = (13 - j14)I1 - (12 - j16)I2.



332 Sinusoidal Steady-State Analysis

Figure 9.36 � The circuit for Example 9.12.

Figure 9.37 � Mesh currents used to solve the circuit shown 
in Fig. 9.36.

Substituting this constraint into the mesh 2 equa-
tion and simplifying the resulting expression gives

0 = (27 + j16)I1 - (26 + j13)I2.

j2 �

12 �

�j16 �

�

�

j3 �1 � 1 �

39 Ix
�

�

Ix

I1 I2

150  0�
V

j2 �

12 �

�j16 �

�

�

j3 �1 � 1 �

150  0�
V

� �V1 � �V3

�

�

V2 Ix
39 Ix

�

�

Solving for and yields

The three voltages are

Also

We check these calculations by summing the volt-
ages around closed paths:

 39Ix = -78 + j  234 V.

 V3 = (1 + j3)I2 = 150 - j130 V.

 V2 = (12 - j16)Ix = 72 + j104 V,

 V1 = (1 + j  2)I1 = 78 - j104 V,

 Ix = -2 + j6 A.

 I2 = -24 - j58 A,

 I1 = -26 - j52 A,

I2I1

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.13 Use the mesh-current method to find the pha-
sor current I in the circuit shown.

Answer: I = 29 + j  2 = 29.07 l3.95° A.

j2 �

3 �

2 �

�j5 �

�

�

1 �

33.8  0�
V �

�

Vx

I

0.75 Vx

A S S E S S M E N T  P R O B L E M

NOTE: Also try Chapter Problems 9.60 and 9.64.

 - j130 - 78 + j  234 = 0.

 -150 + V1 + V3 + 39Ix = -150 + 78 - j104 + 150

 - 78 + j  234 = 0,

 -V2 + V3 + 39Ix = -72 - j104 + 150 - j130

 + j104 = 0,

 -150 + V1 + V2 = -150 + 78 - j104 + 72

9.10 The Transformer
A transformer is a device that is based on magnetic coupling. Transformers
are used in both communication and power circuits. In communication cir-
cuits, the transformer is used to match impedances and eliminate dc signals
from portions of the system. In power circuits, transformers are used to estab-
lish ac voltage levels that facilitate the transmission, distribution, and con-
sumption of electrical power. A knowledge of the sinusoidal steady-state
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behavior of the transformer is required in the analysis of both communication
and power systems. In this section, we will discuss the sinusoidal steady-state
behavior of the linear transformer, which is found primarily in communica-
tion circuits. In Section 9.11, we will deal with the ideal transformer, which is
used to model the ferromagnetic transformer found in power systems.

Before starting we make a useful observation. When analyzing circuits
containing mutual inductance use the meshor loop-current method for writ-
ing circuit equations. The node-voltage method is cumbersome to use when
mutual inductance in involved. This is because the currents in the various
coils cannot be written by inspection as functions of the node voltages.

The Analysis of a Linear Transformer Circuit
A simple transformer is formed when two coils are wound on a single core
to ensure magnetic coupling. Figure 9.38 shows the frequency-domain cir-
cuit model of a system that uses a transformer to connect a load to a
source. In discussing this circuit, we refer to the transformer winding con-
nected to the source as the primary winding and the winding connected to
the load as the secondary winding. Based on this terminology, the trans-
former circuit parameters are

The internal voltage of the sinusoidal source is and the internal
impedance of the source is The impedance represents the load con-
nected to the secondary winding of the transformer. The phasor currents

and represent the primary and secondary currents of the transformer,
respectively.

Analysis of the circuit in Fig. 9.38 consists of finding and as func-
tions of the circuit parameters M, and We are
also interested in finding the impedance seen looking into the transformer
from the terminals a,b. To find and we first write the two mesh-cur-
rent equations that describe the circuit:

(9.57)

(9.58)

To facilitate the algebraic manipulation of Eqs. 9.57 and 9.58, we let

(9.59)

(9.60)

where is the total self-impedance of the mesh containing the primary
winding of the transformer, and is the total self-impedance of the
mesh containing the secondary winding. Based on the notation introduced
in Eqs. 9.59 and 9.60, the solutions for and from Eqs. 9.57 and 9.58 are

(9.61)

(9.62) I2 =

jvM

Z11Z22 + v2M2Vs =

jvM

Z22
I1.

 I1 =

Z22

Z11Z22 + v2M2Vs,

I2I1

Z22

Z11

 Z22 = R2 + jvL2 + ZL,

 Z11 = Zs + R1 + jvL1,

 0 = -jvMI1 + (R2 + jvL2 + ZL)I2.

 Vs = (Zs + R1 + jvL1)I1 - jvMI2,

I2,I1

v.ZL,R2,L2,L1,R1,Zs,Vs,
I2I1

I2I1

ZLZs.
Vs,

 M = the mutual inductance.

 L2 = the self-inductance of the secondary winding,

 L1 = the self-inductance of the primary winding,

 R2 = the resistance of the secondary winding,

 R1 = the resistance of the primary winding,

ZS

ZL
�

�

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

Figure 9.38 � The frequency domain circuit model for a
transformer used to connect a load to a source.
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To the internal source voltage the impedance appears as or

(9.63)

The impedance at the terminals of the source is so

(9.64)

Note that the impedance is independent of the magnetic polarity
of the transformer. The reason is that the mutual inductance appears in
Eq. 9.64 as a squared quantity. This impedance is of particular interest
because it shows how the transformer affects the impedance of the load as
seen from the source. Without the transformer, the load would be con-
nected directly to the source, and the source would see a load impedance
of with the transformer, the load is connected to the source through
the transformer, and the source sees a load impedance that is a modified
version of as seen in the third term of Eq. 9.64.

Reflected Impedance
The third term in Eq. 9.64 is called the reflected impedance ( ), because
it is the equivalent impedance of the secondary coil and load impedance
transmitted, or reflected, to the primary side of the transformer. Note that
the reflected impedance is due solely to the existence of mutual induc-
tance; that is, if the two coils are decoupled, M becomes zero, becomes
zero, and reduces to the self-impedance of the primary coil.

To consider reflected impedance in more detail, we first express the
load impedance in rectangular form:

(9.65)

where the load reactance carries its own algebraic sign. In other words,
is a positive number if the load is inductive and a negative number if

the load is capacitive. We now use Eq. 9.65 to write the reflected imped-
ance in rectangular form:

(9.66)

The derivation of Eq. 9.66 takes advantage of the fact that, when is
written in rectangular form, the self-impedance of the mesh containing the
secondary winding is

(9.67)

Now observe from Eq. 9.66 that the self-impedance of the secondary
circuit is reflected into the primary circuit by a scaling factor of

and that the sign of the reactive component is
reversed. Thus the linear transformer reflects the conjugate of the self-
impedance of the secondary circuit into the primary winding by a
scalar multiplier. Example 9.13 illustrates mesh current analysis for a cir-
cuit containing a linear transformer.

(Z22
* )

(vL2 + XL)(vM>|Z22|)
2,

Z22 = R2 + RL + j(vL2 + XL).

ZL

 =

v2M2

|Z22|
2  [(R2 + RL) - j(vL2 + XL)].

 =

v2M2[(R2 + RL) - j(vL2 + XL)]

(R2 + RL)2
+ (vL2 + XL)2

 Zr =

v2M2

R2 + RL + j(vL2 + XL)

XL

XL

ZL = RL + jXL,

Zab

Zr

Zr

ZL,

ZL;

Zab

Zab = Z11 +

v2M2

Z22
- Zs = R1 + jvL1 +

v2M2

(R2 + jvL2 + ZL)
 .

Zint - Zs,

Vs

I1
= Zint =

Z11Z22 + v2M2

Z22
= Z11 +

v2M2

Z22
 .

Vs>I1,Vs,
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 Z22 = 100 + j1600 + 800 - j  2500 = 900 - j  900 Æ.

Example 9.13 Analyzing a Linear Transformer in the Frequency Domain

The parameters of a certain linear transformer are
and

The transformer couples an impedance
consisting of an resistor in series with a 
capacitor to a sinusoidal voltage source. The 300 V
(rms) source has an internal impedance of

and a frequency of .

a) Construct a frequency-domain equivalent circuit
of the system.

b) Calculate the self-impedance of the primary
circuit.

c) Calculate the self-impedance of the secondary
circuit.

d) Calculate the impedance reflected into the pri-
mary winding.

e) Calculate the scaling factor for the reflected
impedance.

f) Calculate the impedance seen looking into the
primary terminals of the transformer.

g) Calculate the Thévenin equivalent with respect
to the terminals c,d.

Solution

a) Figure 9.39 shows the frequency-domain equiva-
lent circuit. Note that the internal voltage of the
source serves as the reference phasor, and that

and represent the terminal voltages of the
transformer. In constructing the circuit in
Fig. 9.39, we made the following calculations:

 
1

jvC
=

106

j400
= -j  2500 Æ.

 jvM = j(400)(3) = j1200 Æ,

 M = 0.52(9)(4) = 3 H,

 jvL2 = j(400)(4) = j1600 Æ,

 jvL1 = j(400)(9) = j  3600 Æ,

V2V1

400 rad>s500 + j100 Æ

1 mF800 Æ
k = 0.5.

L2 = 4 H,L1 = 9 H,R2 = 100 Æ,R1 = 200 Æ,

c) The self-impedance of the secondary circuit is

�

�

a

b

j3600 � j1600 � �j2500 �

j1200200 � 100 � 800 �j100 �500 �

�

�

V1

�

�

V2300  0� V
I1

I2

Figure 9.39 � The frequency-domain equivalent circuit for Example 9.13.

 Z11 = 500 + j100 + 200 + j  3600 = 700 + j  3700 Æ.

Zab = 200 + j  3600 + 800 +  j800 = 1000 + j4400 Æ.

d) The impedance reflected into the primary
winding is

e) The scaling factor by which is reflected is 

f) The impedance seen looking into the primary ter-
minals of the transformer is the impedance of the
primary winding plus the reflected impedance; thus

8>9.Z22
*

 =

8
9

 (900 + j  900) = 800 + j800 Æ.

 Zr = a 1200
|900 - j  900|

b2 

(900 + j  900)

g) The Thévenin voltage will equal the open circuit
value of The open circuit value of will
equal times the open circuit value of 
The open circuit value of is

Therefore

 = 95.60 l10.71 �  V.

 VTh = j1200(79.67 l -79.29 �
 ) * 10-3

 = 79.67 l -79.29 �  mA.

 I1 =

300 l0 �

700 + j  3700

I1

I1.j1200
VcdVcd.

b) The self-impedance of the primary circuit is
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Objective 4—Be able to analyze circuits containing linear transformers using phasor methods

9.14 A linear transformer couples a load consisting
of a resistor in series with a 0.25 H
inductor to a sinusoidal voltage source, as
shown. The voltage source has an internal
impedance of and a maximum volt-
age of 245.20 V, and it is operating at .
The transformer parameters are 

and
Calculate (a) the reflected impedance;

(b) the primary current; and (c) the secondary
current.

k = 0.4.
L2 = 0.125 H,R2 = 40 Æ,L1 = 0.5 H,

R1 = 100 Æ,
800 rad>s184 + j0 Æ

360 Æ

Answer: (a)

(b)

(c) 0.08 cos 800t A.

0.5 cos(800t - 53.13 �) A;

10.24 - j   7.68 Æ;

ZS

ZL
�

�

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

A S S E S S M E N T  P R O B L E M

NOTE: Also try Chapter Problems 9.76 and 9.77.

9.11 The Ideal Transformer
An ideal transformer consists of two magnetically coupled coils having 
and turns, respectively, and exhibiting these three properties:

1. The coefficient of coupling is unity 

2. The self-inductance of each coil is infinite 

3. The coil losses, due to parasitic resistance, are negligible.

Understanding the behavior of ideal transformers begins with Eq. 9.64
which describes the impedance at the terminals of a source connected to a
linear transformer. We repeat this equation below and examine it further.

Exploring Limiting Values
A useful relationship between the input impedance and load impedance,
as given by in Eq. 9.68, emerges as and each become infinitely
large and, at the same time, the coefficient of coupling approaches unity:

(9.68) = R1 + jvL1 +

v2M2

(R2 + jvL2 + ZL)
 .

 Zab = Z11 +

v2M2

Z22
- Zs

L2L1Zab

(L1 = L2 = q).

(k = 1).

N2

N1

The Thévenin impedance will be equal to the imped-
ance of the secondary winding plus the impedance
reflected from the primary when the voltage source is
replaced by a short-circuit.Thus

 = 171.09 + j1224.26 Æ.

 ZTh = 100 + j1600 + a 1200
|700 + j  3700|

b2 

(700 - j  3700)

The Thévenin equivalent is shown in Fig. 9.40.

Figure 9.40 � The Thévenin equivalent circuit for Example 9.13.

�

�

171.09 � j1224.26 �
c

d

95.60  10.71�

V



9.11 The Ideal Transformer 337

Transformers wound on ferromagnetic cores can approach this condition.
Even though such transformers are nonlinear, we can obtain some useful
information by constructing an ideal model that ignores the nonlinearities.

To show how changes when and and approach infin-
ity, we first introduce the notation

and then rearrange Eq. 9.68:

(9.69)

At this point, we must be careful with the coefficient of j in Eq. 9.69
because, as and approach infinity, this coefficient is the difference
between two large quantities. Thus, before letting and increase, we
write the coefficient as

(9.70)

where we recognize that, when Putting the term mul-
tiplying over a common denominator gives

(9.71)

Factoring out of the numerator and denominator of Eq. 9.71 yields

(9.72)

As k approaches 1.0, the ratio approaches the constant value of
which follows from Eqs. 6.54 and 6.55. The reason is that, as the

coupling becomes extremely tight, the two permeances and become
equal. Equation 9.72 then reduces to

(9.73)

as and 
The same reasoning leads to simplification of the reflected resistance

in Eq. 9.69:

(9.74)

Applying the results given by Eqs. 9.73 and 9.74 to Eq. 9.69 yields

(9.75)

Compare this result with the result in Eq. 9.68. Here we see that when the
coefficient of coupling approaches unity and the self-inductances of the
coupled coils approach infinity, the transformer reflects the secondary
winding resistance and the load impedance to the primary side by a scaling

Zab = R1 + aN1

N2
b2 

R2 + aN1

N2
b2 

(RL + jXL).

v2M2R22

R22
2

+ X22
2 =

L1

L2
R22 = aN1

N2
b 2

R22.

k : 1.0.L2 : q ,L1 : q ,

Xab = aN1

N2
b 2 

XL,

p2p1

(N1>N2)
2,

L1>L2

Xab =

L1

L2
 

XL + (R22
2

+ XL
2 )>vL2

(R22>vL2)
2

+ [1 + (XL>vL2)]2.

vL2

Xab = vL1 aR22
2

+ vL2XL + XL
2

R22
2

+ X22
2 b .

vL1

M2
= L1L2.k = 1,

Xab = vL1 -

(vL1)(vL2)X22

R22
2

+ X22
2 = vL1 a1 -

vL2X22

R22
2

+ X22
2 b ,

L2L1

L2L1

 = Rab + jXab.

 Zab = R1 +

v2M2R22

R22
2

+ X22
2  +  j avL1 -

v2M2X22

R22
2

+ X22
2 b

Z22 = R2 + RL + j(vL2 + XL) = R22 + jX22

L2L1k = 1Zab



338 Sinusoidal Steady-State Analysis

factor equal to the turns ratio squared. Hence we may describe the
terminal behavior of the ideal transformer in terms of two characteristics.
First, the magnitude of the volts per turn is the same for each coil, or

(9.76)

Second, the magnitude of the ampere-turns is the same for each coil, or

(9.77)

We are forced to use magnitude signs in Eqs. 9.76 and 9.77, because we
have not yet established reference polarities for the currents and voltages;
we discuss the removal of the magnitude signs shortly.

Figure 9.41 shows two lossless magnetically coupled
coils.We use Fig. 9.41 to validate Eqs. 9.76 and 9.77. In Fig. 9.41(a), coil 2 is
open; in Fig. 9.41(b), coil 2 is shorted. Although we carry out the following
analysis in terms of sinusoidal steady-state operation, the results also
apply to instantaneous values of and i.

Determining the Voltage and Current Ratios
Note in Fig. 9.41(a) that the voltage at the terminals of the open-circuit
coil is entirely the result of the current in coil 1; therefore

(9.78)

The current in coil 1 is

(9.79)

From Eqs. 9.78 and 9.79,

(9.80)

For unity coupling, the mutual inductance equals so Eq. 9.80
becomes

(9.81)

For unity coupling, the flux linking coil 1 is the same as the flux linking
coil 2, so we need only one permeance to describe the self-inductance of
each coil. Thus Eq. 9.81 becomes

(9.82)

or

(9.83)

Summing the voltages around the shorted coil of Fig. 9.41(b) yields

(9.84)0 = -jvMI1 + jvL2I2,

V1

N1
=

V2

N2
 .

V2 = C
N2

2
p

N1
2
p

V1 =

N2

N1
 V1

V2 = A
L2

L1
 V1.

1L1L2,

 V2 =

M

L1
V1.

 I1 =

V1

jvL1
.

 V2 = jvMI1.

v

(R1 = R2 = 0)

 |I1N1| = |I2N2|.

 2 V1

N1

2 = 2 V2

N2

2 .

(N1>N2)

�

�

�

�

(a)

V1

N1 N2

jvL1

jvM

jvL2 V2

�

�

I1

(b)

V1

N1 N2

jvL1

jvM

jvL2

I1 I2

Figure 9.41 � The circuits used to verify the volts-
per-turn and ampere-turn relationships for an ideal
transformer.

Voltage relationship for an ideal
transformer �



� Dot convention for ideal transformers

9.11 The Ideal Transformer 339

from which, for 

(9.85)

Equation 9.85 is equivalent to

(9.86)

Figure 9.42 shows the graphic symbol for an ideal transformer. The
vertical lines in the symbol represent the layers of magnetic material from
which ferromagnetic cores are often made. Thus, the symbol reminds us
that coils wound on a ferromagnetic core behave very much like an ideal
transformer.

There are several reasons for this. The ferromagnetic material creates
a space with high permeance. Thus most of the magnetic flux is trapped
inside the core material, establishing tight magnetic coupling between
coils that share the same core. High permeance also means high self-
inductance, because Finally, ferromagnetically coupled coils
efficiently transfer power from one coil to the other. Efficiencies in excess
of 95% are common, so neglecting losses is not a crippling approximation
for many applications.

Determining the Polarity of the Voltage 
and Current Ratios
We now turn to the removal of the magnitude signs from Eqs. 9.76 and
9.77. Note that magnitude signs did not show up in the derivations of
Eqs. 9.83 and 9.86.We did not need them there because we had established
reference polarities for voltages and reference directions for currents. In
addition, we knew the magnetic polarity dots of the two coupled coils.

The rules for assigning the proper algebraic sign to Eqs. 9.76 and 9.77
are as follows:

If the coil voltages and are both positive or negative at the dot-
marked terminal, use a plus sign in Eq. 9.76. Otherwise, use a nega-
tive sign.

If the coil currents and are both directed into or out of the dot-
marked terminal, use a minus sign in Eq. 9.77. Otherwise, use a 
plus sign.

The four circuits shown in Fig. 9.43 illustrate these rules.

I2I1

V2V1

L = N2 P.

I1N1 = I2N2.

I1

I2
=

L2

M
=

L2

2L1L2

= A
L2

L1
=

N2

N1
.

k = 1,

� Current relationship for an ideal
transformer

Ideal

N1 N2

Figure 9.42 � The graphic symbol for an ideal 
transformer.

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2V1

�

�

V2

�

�

(a)

N1I1 � �N2I2

V1

N1

V2

N2
� ,

V1

�

�

V2

�

�

(b)

N1I1 � N2I2

V1

N1

V2

N2
��

V1

�

�

V2

�

�

(c)

N1I1 � N2I2

V1

N1

V2

N2
�

V1

�

�

V2

�

�

(d)

N1I1 � �N2I2

V1

N1

V2

N2
��, , ,

Figure 9.43 � Circuits that show the proper algebraic signs for relating the terminal voltages and currents of an ideal transformer.
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Ideal

(a)

N1 � 500 N2 � 2500

Ideal

1 : 5

(b)

Ideal

1/5 : 1

(c)

V2

�

�

V1

�

�

V2

�

�

V1

�

�

V2

�

�

V1

�

�

Figure 9.44 � Three ways to show that the turns ratio
of an ideal transformer is 5.

The ratio of the turns on the two windings is an important parameter
of the ideal transformer. The turns ratio is defined as either or

both ratios appear in various writings. In this text, we use a to
denote the ratio or

(9.87)

Figure 9.44 shows three ways to represent the turns ratio of an ideal
transformer. Figure 9.44(a) shows the number of turns in each coil explic-
itly. Figure 9.44(b) shows that the ratio is 5 to 1, and Fig. 9.44(c)
shows that the ratio is 1 to 

Example 9.14 illustrates the analysis of a circuit containing an ideal
transformer.

1
5.N2>N1

N2>N1

a =

N2

N1
 .

N2>N1,
N2>N1;

N1>N2

Example 9.14 Analyzing an Ideal Transformer Circuit in the Frequency Domain

The load impedance connected to the secondary
winding of the ideal transformer in Fig. 9.45 consists of
a resistor in series with a inductor.

If the sinusoidal voltage source ( ) is generat-
ing the voltage find the steady-
state expressions for: (a) (b) (c) and (d) v2.i2;v1;i1;

2500 cos 400t V,
vg

125 mH237.5 mÆ

Solution

a) We begin by constructing the phasor domain
equivalent circuit. The voltage source becomes

the 5 mH inductor converts to an
impedance of and the inductor
converts to an impedance of The phasor
domain equivalent circuit is shown in Fig. 9.46.

It follows directly from Fig. 9.46 that

and

Because

we have

 = (23.75 + j5)I1.

 V1 = 10(0.2375 + j0.05)10I1

I2 = 10I1

 V1 = 10V2 = 10[(0.2375 + j0.05)I2].

 2500l0 �
= (0.25 + j  2)I1 + V1,

j0.05 Æ.
125 mHj  2 Æ;

2500l0 �  V;

Figure 9.46 � Phasor domain circuit for Example 9.14.

Therefore

or

Thus the steady-state expression for i1 is

b)

Hence

c)

Therefore

d)

giving

v2 = 242.71 cos (400t - 4.37 �) V.

V2 = 0.1V1 = 242.71 l -4.37 �  V,

i2 = 1000 cos (400t - 16.26 �) A.

 I2 = 10I1 = 1000 l -16.26° A.

 v1 = 2427.06 cos (400t - 4.37 �) V.

 = 2420 - j185 = 2427.06 l -4.37° V.

 = 2500 - 80 - j185

 V1 = 2500l0° - (100 l -16.26° )(0.25 + j  2)

i1 = 100 cos (400t - 16.26 �) A.

I1 = 100 l -16.26 �  A.

2500 l0° = (24 + j7)I1,

�

�

10 : 1
0.25 � 0.2375 �

I1

j2 �

j0.05 �V1

�

�

V2

�

�Ideal

I2

2500  0�
V

�

�

10 : 1

vg

0.25 � 237.5 m�

i1

5 mH

125 mHv2

�

�

v1

�

� Ideal

i2

Figure 9.45 � The circuit for Example 9.14.
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The Use of an Ideal Transformer for Impedance Matching
Ideal transformers can also be used to raise or lower the impedance level
of a load.The circuit shown in Fig. 9.47 illustrates this.The impedance seen
by the practical voltage source ( in series with ) is The voltage
and current at the terminals of the load impedance ( and ) are related
to and by the transformer turns ratio; thus

(9.88)

and

(9.89)

Therefore the impedance seen by the practical source is

(9.90)

but the ratio is the load impedance so Eq. 9.90 becomes

(9.91)

Thus, the ideal transformer’s secondary coil reflects the load impedance
back to the primary coil, with the scaling factor 

Note that the ideal transformer changes the magnitude of but does
not affect its phase angle. Whether is greater or less than depends
on the turns ratio a.

The ideal transformer—or its practical counterpart, the ferromag-
netic core transformer—can be used to match the magnitude of to
the magnitude of We will discuss why this may be desirable in
Chapter 10.

Zs.
ZL

ZLZIN

ZL

1>a2.

ZIN =

1

a2 ZL .

ZL,V2>I2

ZIN =

V1

I1
=

1

a2 
V2

I2
,

 I1 = aI2.

 V1 =

V2

a
 ,

I1V1

I2V2

V1>I1.ZsVs
�

�

�

�

V1

�

�

V2

I1

VS

1 : a

Ideal

ZL

Zs

I2

Figure 9.47 � Using an ideal transformer to couple a
load to a source.

Objective 5—Be able to analyze circuits with ideal transformers

9.15 The source voltage in the phasor domain circuit
in the accompanying figure is Find
the amplitude and phase angle of and 

Answer:

I2 = 125  l216.87 �   A.

V2 = 1868.15  l142.39 �   V;

I2.V2

25  l0 �   kV.

NOTE: Also try Chapter Problem 9.82.

A S S E S S M E N T  P R O B L E M

25 : 1

Ideal

Vs
�

�

1.5 k�

I1

4 �j6 k�

V1

�

�

V2

�

�

I2

�j14.4 �

As we shall see, ideal transformers are used to increase or decrease
voltages from a source to a load. Thus, ideal transformers are used widely
in the electric utility industry, where it is desirable to decrease, or step
down, the voltage level at the power line to safer residential voltage levels.
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150�

12  150�
10  30�

8  �170�

5  �45�

�170�
�45�

30�

Figure 9.48 � A graphic representation of phasors.

225��7

�j3

135�

Figure 9.49 � The complex number
.-7 - j  3 = 7.62 l -156.80°

Example 9.15 Using Phasor Diagrams to Analyze a Circuit

For the circuit in Fig. 9.50, use a phasor diagram to
find the value of R that will cause the current
through that resistor, to lag the source current,
by when 

Figure 9.50 � The circuit for Example 9.15.

Solution
By Kirchhoff’s current law, the sum of the currents

and must equal the source current If we
assume that the phase angle of the voltage is
zero, we can draw the current phasors for each of
the components. The current phasor for the induc-
tor is given by

whereas the current phasor for the capacitor is
given by

IL =

Vm  l0 �

j (5000)(0.2 * 10-3)
= Vm  l -90 � ,

Vm

Is.ICIL,IR,

is R

�

�

vm 0.2 mH

iL

800 mF

iC iR

v = 5 krad>s.45 �
is,iR,

and the current phasor for the resistor is given by

These phasors are shown in Fig. 9.51. The phasor
diagram also shows the source current phasor,
sketched as a dotted line, which must be the sum of
the current phasors of the three circuit components
and must be at an angle that is more positive than
the current phasor for the resistor. As you can see,
summing the phasors makes an isosceles triangle, so
the length of the current phasor for the resistor must
equal Therefore, the value of the resistor is 

Figure 9.51 � The phasor diagram for the currents in Fig. 9.50.

45�

Is
IC � j4Vm

IL � �j1Vm
IR � Vm/R

1
3 Æ.3Vm.

45 �

IR =

Vm  l0 �

R
=

Vm

R
 l0 � .

IC =

Vm  l0 �

-j>(5000)(800 * 10-6)
= 4Vm  l90 � ,

9.12 Phasor Diagrams
When we are using the phasor method to analyze the steady-state sinu-
soidal operation of a circuit, a diagram of the phasor currents and voltages
may give further insight into the behavior of the circuit. A phasor diagram
shows the magnitude and phase angle of each phasor quantity in the
complex-number plane. Phase angles are measured counterclockwise from
the positive real axis, and magnitudes are measured from the origin of the
axes. For example, Fig. 9.48 shows the phasor quantities 

and 
Constructing phasor diagrams of circuit quantities generally involves

both currents and voltages. As a result, two different magnitude scales are
necessary, one for currents and one for voltages.The ability to visualize a pha-
sor quantity on the complex-number plane can be useful when you are check-
ing pocket calculator calculations. The typical pocket calculator doesn’t offer
a printout of the data entered. But when the calculated angle is displayed, you
can compare it to your mental image as a check on whether you keyed in the
appropriate values. For example, suppose that you are to compute the polar
form of Without making any calculations, you should anticipate a
magnitude greater than 7 and an angle in the third quadrant that is more neg-
ative than or less positive than as illustrated in Fig. 9.49.

Examples 9.15 and 9.16 illustrate the construction and use of phasor
diagrams. We use such diagrams in subsequent chapters whenever they
give additional insight into the steady-state sinusoidal operation of the cir-
cuit under investigation. Problem 9.84 shows how a phasor diagram can
help explain the operation of a phase-shifting circuit.

225 � ,-135 �

-7 - j  3.

8 l -170 � .5 l -45 � ,
12 l150 � ,10 l30 � ,
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The circuit in Fig. 9.52 has a load consisting of the
parallel combination of the resistor and inductor.
Use phasor diagrams to explore the effect of
adding a capacitor across the terminals of the load
on the amplitude of if we adjust so that the
amplitude of remains constant. Utility compa-
nies use this technique to control the voltage drop
on their lines.

Figure 9.52 � The circuit for Example 9.16.

Solution
We begin by assuming zero capacitance across the
load. After constructing the phasor diagram for the
zero-capacitance case, we can add the capacitor and
study its effect on the amplitude of holding the
amplitude of constant. Figure 9.53 shows the fre-
quency-domain equivalent of the circuit shown in
Fig. 9.52. We added the phasor branch currents I,
and to Fig. 9.53 to aid discussion.

Figure 9.53 � The frequency-domain equivalent of the circuit
in Fig. 9.52.

Figure 9.54 shows the stepwise evolution of
the phasor diagram. Keep in mind that we are not
interested in specific phasor values and positions
in this example, but rather in the general effect of
adding a capacitor across the terminals of the
load. Thus, we want to develop the relative posi-
tions of the phasors before and after the capacitor
has been added.

Relating the phasor diagram to the circuit
shown in Fig. 9.53 reveals the following points:

a) Because we are holding the amplitude of the load
voltage constant, we choose as our reference.VL

VL

�

�

Vs
�

�

jvL1R1

R2 jvL2Ia Ib

I

Ib

Ia,

VL

Vs,

vL

�

�

vs
�

�

L1R1

R2 L2

VL

VsVs

Example 9.16 Using Phasor Diagrams to Analyze Capacitive Loading Effects

For convenience, we place this phasor on the pos-
itive real axis.

b) We know that is in phase with and that its
magnitude is (On the phasor diagram,
the magnitude scale for the current phasors is
independent of the magnitude scale for the volt-
age phasors.)

c) We know that lags behind by and that
its magnitude is 

d) The line current I is equal to the sum of and .

e) The voltage drop across is in phase with the
line current, and the voltage drop across 
leads the line current by .

f) The source voltage is the sum of the load voltage
and the drop along the line; that is,
+  (R1 +  jvL1)I.

Vs = VL

90 �
jvL1

R1

IbIa

|VL|>vL2.
90 �VLIb

|VL|>R2.
VLIa

Figure 9.54 � The step-by-step evolution of the phasor 
diagram for the circuit in Fig. 9.53.

Note that the completed phasor diagram shown in 
step 6 of Fig. 9.54 clearly shows the amplitude and phase
angle relationships among all the currents and voltages
in Fig. 9.53.

Now add the capacitor branch shown in Fig. 9.55. We
are holding constant, so we construct the phasor dia-
gram for the circuit in Fig. 9.55 following the same steps
as those in Fig. 9.54, except that, in step 4, we add the
capacitor current to the diagram. In so doing, leads

by with its magnitude being Figure 9.56
shows the effect of on the line current: Both the magni-
tude and phase angle of the line current I change with
changes in the magnitude of As I changes, so do the
magnitude and phase angle of the voltage drop along the
line. As the drop along the line changes, the magnitude
and phase angle of change. The phasor diagram shownVs

Ic.

Ic

|VLvC|.90 � ,VL

IcIc

VL

VL

(1) (2)

VL

Ia

(3)

VL

Ib

Ia
VL

Ib I

Ia

(4)

(5)

jvL1I

R1I

VL

Ib

Ia90�

I
(6)

jvL1I

jvL1I

R1I R1I
VL

Ib

Ia

I

Vs
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in Fig. 9.57 depicts these observations. The dotted
phasors represent the pertinent currents and volt-
ages before the addition of the capacitor.

Thus, comparing the dotted phasors of I,
and with their solid counterparts clearly

shows the effect of adding C to the circuit. In par-
ticular, note that this reduces the amplitude of the
source voltage and still maintains the amplitude of
the load voltage. Practically, this result means that,
as the load increases (i.e., as and increase), we
can add capacitors to the system (i.e., increase )
so that under heavy load conditions we can main-
tain without increasing the amplitude of the
source voltage.

Figure 9.55 � The addition of a capacitor to the circuit shown
in Fig. 9.53.

VL

�

�

Vs
�

�

jvL1R1

R2 jvL2

I

jvC
1 IcIbIa

VL

Ic

IbIa

VsjvL1I,
R1I,

Figure 9.56 � The effect of the capacitor current on the line
current .

Figure 9.57 � The effect of adding a load-shunting capacitor to
the circuit shown in Fig. 9.53 if is held constant.VL

Vs

Vs

Ib

Ic

VLIa

I

I

I
Ic

VL

Ib

Ic

Ia

I

NOTE: Assess your understanding of this material by trying Chapter Problems 9.83 and 9.84.

Ip

�

�

�
�

�

�

�

1 �

I1

2 �

I2

1 �

I3

20 �
I5

40 �
I6

I410 �

120  0�
V

13.2  0�
kV

120  0�
V

Figure 9.58 � Distribution circuit.

Practical Perspective

A Household Distribution Circuit
Let us return to the household distribution circuit introduced at the begin-
ning of the chapter. We will modify the circuit slightly by adding resistance
to each conductor on the secondary side of the transformer to simulate more
accurately the residential wiring conductors. The modified circuit is shown
in Fig. 9.58. In Problem 9.88 you will calculate the six branch currents on
the secondary side of the distribution transformer and then show how to
calculate the current in the primary winding.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 9.87 and 9.88.
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Summary

• The general equation for a sinusoidal source is

or

where (or ) is the maximum amplitude, is the
frequency, and is the phase angle. (See page 306.)

• The frequency, , of a sinusoidal response is the same as
the frequency of the sinusoidal source driving the circuit.
The amplitude and phase angle of the response are usu-
ally different from those of the source. (See page 309.)

• The best way to find the steady-state voltages and cur-
rents in a circuit driven by sinusoidal sources is to per-
form the analysis in the frequency domain.The following
mathematical transforms allow us to move between the
time and frequency domains.

• The phasor transform (from the time domain to the
frequency domain):

• The inverse phasor transform (from the frequency
domain to the time domain):

(See pages 310–311.)

• When working with sinusoidally varying signals,
remember that voltage leads current by 90° at the ter-
minals of an inductor, and current leads voltage by 90°
at the terminals of a capacitor. (See pages 315–318.)

• Impedance (Z) plays the same role in the frequency
domain as resistance, inductance, and capacitance play
in the time domain. Specifically, the relationship
between phasor current and phasor voltage for resis-
tors, inductors, and capacitors is

V = ZI,

p
-15Vmejf

= t5Vmejfejvt6.

V = Vmejf
= p5Vm cos(vt + f)6.

v

f

vImVm

 i = Im cos(vt + f) (current source),

 v = Vm cos(vt + f) (voltage source),

where the reference direction for I obeys the passive
sign convention. The reciprocal of impedance is
admittance (Y), so another way to express the current-
voltage relationship for resistors, inductors, and capaci-
tors in the frequency domain is

(See pages 318 and 322.)

• All of the circuit analysis techniques developed in
Chapters 2–4 for resistive circuits also apply to sinu-
soidal steady-state circuits in the frequency domain.
These techniques include KVL, KCL, series, and paral-
lel combinations of impedances, voltage and current
division, node voltage and mesh current methods,
source transformations and Thévenin and Norton
equivalents.

• The two-winding linear transformer is a coupling device
made up of two coils wound on the same nonmagnetic
core. Reflected impedance is the impedance of the sec-
ondary circuit as seen from the terminals of the primary
circuit or vice versa.The reflected impedance of a linear
transformer seen from the primary side is the conjugate
of the self-impedance of the secondary circuit scaled by
the factor . (See pages 333 and 334.)

• The two-winding ideal transformer is a linear trans-
former with the following special properties: perfect
coupling ( ), infinite self-inductance in each coil
( ), and lossless coils ( ). The
circuit behavior is governed by the turns ratio 
In particular, the volts per turn is the same for each
winding, or

and the ampere turns are the same for each winding, or

(See page 338.)

N1I1 = ; N2I2.

V1

N1
= ;

V2

N2
 ,

a = N2>N1.
R1 = R2 = 0L1 = L2 = q

k = 1

(vM>| Z22|)
2

V = I>Y.

TABLE 9.3 Impedance and Related Values

Element Impedance ( ) Reactance Admittance ( ) Susceptance

Resistor R (resistance) — G (conductance) —

Capacitor

Inductor -1>vLj(-1>vL)vLjvL

v  Cjv   C-1>v   Cj(-1>v  C)

YZ
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Section 9.1

9.1 A sinusoidal current is given by the expression

Find (a) f in hertz; (b) T in milliseconds; (c) 
(d) (e) in degrees and radians; (f) the smallest
positive value of t at which and (g) the small-
est positive value of t at which 

9.2 In a single graph, sketch ver-
sus for and 

a) State whether the voltage function is shifting
to the right or left as becomes more 
negative.

b) What is the direction of shift if changes from
0 to ?

9.3 Consider the sinusoidal voltage

a) What is the maximum amplitude of the voltage?

b) What is the frequency in hertz?

c) What is the frequency in radians per second?

d) What is the phase angle in radians?

e) What is the phase angle in degrees?

f) What is the period in milliseconds?

g) What is the first time after that ?

h) The sinusoidal function is shifted to the
right along the time axis. What is the expression
for ?

i) What is the minimum number of milliseconds
that the function must be shifted to the left if the
expression for is ?

9.4 A sinusoidal voltage is zero at ms and
increasing at a rate of 750 V s. The maximum
amplitude of the voltage is 50 V.

a) What is the frequency of in radians per second?

b) What is the expression for ?

9.5 At ms, a sinusoidal current is known to be
zero and going negative. The current is next zero at

ms. It is also known that the current is 50 mA
at .

a) What is the frequency of in hertz?

b) What is the expression for ?

9.6 The rms value of the sinusoidal voltage supplied to
the convenience outlet of a home in Scotland is
240 V. What is the maximum value of the voltage
at the outlet?

i

i

t = 0
t = 25

t = 5

v

v

>p

t = (40>3)

25 sin 400pt Vv(t)

v(t)

5>6 ms

v = 0 Vt = 0

v(t) = 25 cos (400pt + 60 �) V.

45 �
f

f

-90 � .-45 � ,0 � ,45 � ,f = 90 � ,vt
v = 100 cos (vt + f)

di>dt = 0.
i = 0;

fi(0);
Im;

i = 125 cos (800 t + 36.87°) mA.

9.7 Find the rms value of the half-wave rectified sinu-
soidal voltage shown in Fig. P9.7.

Figure P9.7

9.8 Show that

Section 9.2

9.9 The voltage applied to the circuit shown in Fig. 9.5
at is The circuit resist-
ance is and the initial current in the 75 mH
inductor is zero.

a) Find for 
b) Write the expressions for the transient and

steady-state components of 
c) Find the numerical value of i after the switch has

been closed for 750 .
d) What are the maximum amplitude, frequency

(in radians per second), and phase angle of the
steady-state current?

e) By how many degrees are the voltage and the
steady-state current out of phase?

9.10 a) Verify that Eq. 9.9 is the solution of Eq. 9.8. This
can be done by substituting Eq. 9.9 into the left-
hand side of Eq. 9.8 and then noting that it
equals the right-hand side for all values of 
At Eq. 9.9 should reduce to the initial
value of the current.

b) Because the transient component vanishes as
time elapses and because our solution must sat-
isfy the differential equation for all values of t,
the steady-state component, by itself, must also
satisfy the differential equation. Verify this
observation by showing that the steady-state
component of Eq. 9.9 satisfies Eq. 9.8.

Sections 9.3–9.4

9.11 Use the concept of the phasor to combine the fol-
lowing sinusoidal functions into a single trigono-
metric expression:

a)

b) y = 90 sin(50t - 20°) + 60 cos(200t - 70°),

y = 30 cos(200t - 160°) + 15 cos(200t + 70°),

t = 0,
t 7 0.

ms

i(t).

t Ú 0.i(t)

400 Æ
75 cos (4000t - 60 �) V.t = 0

L

t0 + T

t0

V2
m cos2(vt + f)dt =

V2
mT

2

Vm

v

T/20 T 3T/2 2T
t

v � Vm sin       t, 0 � t � T/2
2p
T

Problems



c)  

d)  

9.12 A 400 Hz sinusoidal voltage with a maximum
amplitude of 100 V at is applied across the
terminals of an inductor. The maximum amplitude
of the steady-state current in the inductor is 20 A.

a) What is the frequency of the inductor current?

b) If the phase angle of the voltage is zero, what is
the phase angle of the current?

c) What is the inductive reactance of the inductor?

d) What is the inductance of the inductor in
millihenrys?

e) What is the impedance of the inductor?

9.13 A 80 kHz sinusoidal voltage has zero phase angle
and a maximum amplitude of 25 mV. When this
voltage is applied across the terminals of a capaci-
tor, the resulting steady-state current has a maxi-
mum amplitude of 

a) What is the frequency of the current in radians
per second?

b) What is the phase angle of the current?

c) What is the capacitive reactance of the capacitor?

d) What is the capacitance of the capacitor in
microfarads?

e) What is the impedance of the capacitor?

9.14 The expressions for the steady-state voltage and
current at the terminals of the circuit seen in
Fig. P9.14 are

a) What is the impedance seen by the source?

b) By how many microseconds is the current out of
phase with the voltage?

Figure P9.14

Sections 9.5 and 9.6

9.15 A resistor, a 50 mH inductor, and a 
capacitor are connected in series.The series-connected

32 mF25 Æ

vg
�

�
Circuit

ig

 ig = 6 sin (5000pt + 123 �) A

 vg = 300 cos (5000pt + 78 �) V,

628.32 mA.

t = 0

+  10 cos(vt + 150°).
y = 10 cos (vt + 30°) + 10 sin vt

-  75 cos(5000t - 30°),
y = 50 cos(5000t - 60°) + 25 sin(5000t + 110°) elements are energized by a sinusoidal voltage source

whose voltage is 

a) Draw the frequency-domain equivalent circuit.

b) Reference the current in the direction of the
voltage rise across the source, and find the pha-
sor current.

c) Find the steady-state expression for 

9.16 A resistor and a inductor are con-
nected in parallel. This parallel combination is also
in parallel with the series combination of a 
resistor and a capacitor. These three parallel
branches are driven by a sinusoidal current source
whose current is 

a) Draw the frequency-domain equivalent circuit.

b) Reference the voltage across the current source
as a rise in the direction of the source current,
and find the phasor voltage.

c) Find the steady-state expression for 

9.17 Three branches having impedances of 
and respectively, are connected

in parallel. What are the equivalent (a) admittance,
(b) conductance, and (c) susceptance of the parallel
connection in millisiemens? (d) If the parallel
branches are excited from a sinusoidal current source
where what is the maximum ampli-
tude of the current in the purely capacitive branch?

9.18 a) Show that, at a given frequency the circuits in
Fig. P9.18(a) and (b) will have the same imped-
ance between the terminals a,b if

b) Find the values of resistance and inductance that
when connected in series will have the same
impedance at 4 krad/s as that of a resistor
connected in parallel with a 1.25 H inductor.

Figure P9.18

9.19 a) Show that at a given frequency the circuits in
Fig. P9.19(a) and (b) will have the same imped-
ance between the terminals a,b if

R2 =

R2
1 + v2L2

1

R1
 ,  L2 =

R2
1 + v2L2

1

v2L1
 .

v,

R1

a

b

L1

(a) (b)

a

b

R2 L2

5 kÆ

R1 =

v2L2
2R2

R2
2 + v2L2

2
 ,  L1 =

R2
2L2

R2
2 + v2L2

2
 .

v,

i = 8 cos vt A,

-j4 Æ,16 - j12 Æ,
3 + j  4 Æ,

v(t).

125 sin(2500t + 60 �) A.

10 mF
30 Æ

10 mH25 Æ

i(t).

25 cos (500t - 60 �)V.

PSPICE

MULTISIM

PSPICE

MULTISIM
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(Hint: The two circuits will have the same
impedance if they have the same admittance.)

b) Find the values of resistance and inductance that
when connected in parallel will have the same
impedance at 1 krad/s as an resistor con-
nected in series with a 4 H inductor.

9.20 a) Show that at a given frequency the circuits in
Fig. P9.20(a) and (b) will have the same imped-
ance between the terminals a,b if

b) Find the values of resistance and capacitance
that when connected in series will have the
same impedance at as that of a

resistor connected in parallel with a
50 nF capacitor.

Figure P9.20

9.21 a) Show that at a given frequency the circuits in
Fig 9.20(a) and (b) will have the same imped-
ance between the terminals a,b if

(Hint: The two circuits will have the same
impedance if they have the same admittance.)

b) Find the values of resistance and capacitance
that when connected in parallel will give the
same impedance at 50 krad/s as that of a 
resistor connected in series with a capacitance of
40 nF.

9.22 Find the impedance in the circuit seen in
Fig. P9.22. Express in both polar and rectangular
form.

Zab

Zab

1 kÆ

 C2 =

C1

1 + v2R2
1C

2
1

 .

 R2 =

1 + v2R2
1C

2
1

v2R1C
2
1

 ,

v,

R1

a

b
(a) (b)

a

b

R2

C1

C2

1000 Æ
40 krad>s

 C1 =

1 + v2R2
2C

2
2

v2R2
2C2

 .

 R1 =

R2

1 + v2R2
2C

2
2

 ,

v,

8 kÆ

Figure P9.22

9.23 Find the admittance in the circuit seen in
Fig. P9.23. Express in both polar and rectangu-
lar form. Give the value of in millisiemens.

Figure P9.23

9.24 a) For the circuit shown in Fig. P9.24, find the fre-
quency (in radians per second) at which the
impedance is purely resistive.

b) Find the value of at the frequency of (a).

Figure P9.24

9.25 a) Using component values from Appendix H,
combine at least one resistor, inductor, and
capacitor in series to create an impedance of

at a frequency of 10,000 rad s.

b) At what frequency does the circuit from part (a)
have an impedance that is purely resistive?

9.26 a) Using component values from Appendix H,
combine at least one resistor and one inductor
in parallel to create an impedance of

at a frequency of 5000 rad s. (Hint:
Use the results of Problem 9.19.)

b) Using component values from Appendix H,
combine at least one resistor and one capacitor
in parallel to create an impedance of

at a frequency of 5000 rad s. (Hint:
Use the result of Problem 9.21.)

>40 - j20 Æ

>40 + j20 Æ

>300 - j400 Æ

200 � 400 mH

20 mF

a

b

Zab

Zab

�j12.8 �

Yab

j12 �
j10 �

4 �

5 �
6 �

13.6 �

�j2 �

a

b

Yab

Yab

Yab

�j20 �

j16 �

j8 �

8 �

5 �

10 �

a

b

Zab

�j80 �

40 �

PSPICE

MULTISIM



9.27 a) Using component values from Appendix H, find 
a single capacitor or a network of capacitors 
that, when combined in parallel with the RL cir-
cuit from Problem 9.26(a), gives an equivalent
impedance that is purely resistive at a frequency
of 5000 rad/s.

b) Using component values from Appendix H, find 
a single inductor or a network of inductors 
that, when combined in parallel with the RC cir-
cuit from Problem 9.26(b), gives an equivalent
impedance that is purely resistive at a frequency
of 5000 rad/s.

9.28 Find the steady-state expression for in the circuit
in Fig. P9.28 if 

Figure P9.28

9.29 The circuit in Fig. P9.29 is operating in the sinusoidal
steady state. Find the steady-state expression for 
if 

Figure P9.29

9.30 The circuit in Fig. P9.30 is operating in the sinusoidal
steady state. Find if 

Figure P9.30

10 �5 �

20 � 12.5 mF2.5 mH

io

vs

=  25 sin 4000t V.vs(t)io(t)

50 � 5mF

3.125 mH

�

�

�
vg vo

�

�

vg = 60 sin 8000t V.
vo(t)

3 k�

�

�

100 nF

500 mH

io(t)

vs

vs = 80 cos 2000t V.
io(t)

9.31 a) For the circuit shown in Fig. P9.31, find the steady-
state expression for if 

b) By how many microseconds does lead ?

Figure P9.31

9.32 Find and Z in the circuit shown in Fig. P9.32 if
and 

Figure P9.32

9.33 Find the value of Z in the circuit seen in Fig. P9.33
if and

Figure P9.33

9.34 Find the steady-state expression for in the circuit
of Fig. P9.34 if 

Figure P9.34
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350 Sinusoidal Steady-State Analysis

9.35 The circuit shown in Fig. P9.35 is operating in the
sinusoidal steady state. Find the value of if

Figure P9.35

9.36 The phasor current in the circuit shown in
Fig. P9.36 is 

a) Find , and 

b) If write expressions for 
and ig(t).ic(t),

ia(t),v = 1500 rad>s,

Ig.Ic,Ia

25l0 �  mA.
Ib

3.2 H600 �

io
2.5 mFvg

�

�

 vg = 40 cos (vt - 15 �) V.

 io = 40 sin (vt + 21.87 �) mA,

v

Figure P9.38

9.39 The frequency of the sinusoidal voltage source in
the circuit in Fig. P9.39 is adjusted until is in 
phase with 

a) What is the value of in radians per second?

b) If (where is the frequency
found in [a]), what is the steady-state expression
for ?

Figure P9.39

9.40 a) The source voltage in the circuit in Fig. P9.40 is
Find the values of L such

that is in phase with when the circuit is
operating in the steady state.

b) For the values of L found in (a), find the steady-
state expressions for 

Figure P9.40

9.41 The circuit shown in Fig. P9.41 is operating in the
sinusoidal steady state. The capacitor is adjusted
until the current is in phase with the sinusoidal
voltage 

a) Specify the capacitance in microfarads if

b) Give the steady-state expression for when C
has the value found in (a).

ig

vg = 80 cos 5000t V.

vg.
ig

ig

L

500 �
1 mF

2500 �vg

ig.

vgig

vg = 40 cos 1000t V.

10 mH

62.5 nF

240 �

1 k�

ig

vg

ig

vvg = 15 cos vt V

v

vg.
ig

100 mH

3.125 mF480 � 200 �vg(t)

�

�

ig
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Figure P9.36

j 250 �

j50 V

�j 1000 �

1000 �

500 � 2000 �

Ιg Ιa Ιb

Ιc

�

�

9.37 The frequency of the sinusoidal voltage source in
the circuit in Fig. P9.37 is adjusted until the current

is in phase with 

a) Find the frequency in hertz.

b) Find the steady-state expression for (at the
frequency found in [a]) if 

Figure P9.37

9.38 a) The frequency of the source voltage in the circuit
in Fig. P9.38 is adjusted until is in phase with

What is the value of in radians per second?

b) If (where is the frequency
found in [a]), what is the steady-state expression
for ?vg

vig = 60 cos vt mA

vig.
vg

500 � 200 �

200 mH 1 mF
io

vg

vg = 90 cos vt V.
ig

vg.io
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Figure P9.41

9.42 Find for the circuit shown in Fig P9.42.

Figure P9.42

Section 9.7

9.43 The sinusoidal voltage source in the circuit 
in Fig. P9.43 is developing a voltage equal to

a) Find the Thévenin voltage with respect to the
terminals a,b.

b) Find the Thévenin impedance with respect to
the terminals a,b.

c) Draw the Thévenin equivalent.

Figure P9.43

9.44 Use source transformations to find the Norton
equivalent circuit with respect to the terminals a,b
for the circuit shown in Fig. P9.44.

Figure P9.44

320 �

�

�
31.25 mF 400 mH

a

b

vg

50 sin 400t V.

1 �

1 �

1 �
�j1 �

�j1 �
j1 �

�j1 �j1 �

j1 �

1 �

a b

Zab

10 k�

vg
�

�

800 mH

C

ig

9.45 Use source transformations to find the Thévenin
equivalent circuit with respect to the terminals a,b
for the circuit shown in Fig. P9.45.

Figure P9.45

9.46 Find the Norton equivalent circuit with respect to
the terminals a,b for the circuit shown in Fig. P9.46.

Figure P9.46

9.47 The device in Fig.P9.47 is represented in the frequency
domain by a Thévenin equivalent.When a resistor hav-
ing an impedance of is connected across the
device, the value of is When an
inductor having an impedance of is connected
across the device, the value of is 
Find the Thévenin volatge and the Thévenin
impedance .

Figure P9.47

9.48 Find the Norton equivalent with respect to termi-
nals a,b in the circuit of Fig. P9.48.

Figure P9.48
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b
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352 Sinusoidal Steady-State Analysis

9.49 Find the Thévenin equivalent circuit with respect to
the terminals a,b of the circuit shown in Fig. P9.49.

Figure P9.49

9.50 Find the Norton equivalent circuit with respect to
the terminals a,b for the circuit shown in Fig. P9.50
when 

Figure P9.50

9.51 The circuit shown in Fig. P9.51 is operating at a fre-
quency of 10 rad/s. Assume is real and lies
between and , that is,

a) Find the value of so that the Thévenin imped-
ance looking into the terminals a,b is purely
resistive.

b) What is the value of the Thévenin impedance for
the found in (a)?

c) Can be adjusted so that the Thévenin
impedance equals ? If so, what is
the value of ?

d) For what values of will the Thévenin imped-
ance be inductive?

Figure P9.51

9.52 Find in the circuit shown in Fig. P9.52 when the
circuit is operating at a frequency of .100 krad>sZab

�

�1 k� av�

a

b

100 mF

�

�

v�

a

a

500 - j500 Æ
a

a

a

-10 … a … 10.+ 10-10
a

10 �
If

88If
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�j50 �
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b
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�

�

�
V2

5

Vs = 5l0 �  V.

�

�

20 � j10 �

�j100 �

a

b

Vo250 0� V

�

�

50 �

0.03Vo

Figure P9.52

9.53 Find the Thévenin impedance seen looking into the
terminals a,b of the circuit in Fig. P9.53 if the fre-
quency of operation is 

Figure P9.53

Section 9.8

9.54 Use the node-voltage method to find in the cir-
cuit in Fig. P9.54.

Figure P9.54

9.55 Use the node-voltage method to find the phasor
voltage in the circuit shown in Fig. P9.55.

Figure P9.55
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5 i�

30 �i�
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Section 9.9

9.60 Use the mesh-current method to find the phasor
current in the circuit in Fig. P9.55.

9.61 Use the mesh-current method to find the steady-
state expression for in the circuit in Fig. P9.57.

9.62 Use the mesh-current method to find the branch
currents and in the circuit shown in
Fig. P9.62.

Figure P9.62

9.63 Use the mesh-current method to find the 
steady-state expression for in the circuit in 
Fig. P9.63 if

Figure P9.63

9.64 Use the mesh-current method to find the steady-
state expression for in the circuit seen in
Fig. P9.64 if equals 

Figure P9.64

110 mH
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 vb = 12 cos 4000t V.

 va = 18 sin 4000t V,

vo(t)
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Id
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0� V510

IdIc,Ib,Ia,
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Ig
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j25 �

20 Io

�

�

Vo �j25 �

Vo

10
Io

�

�
50 �6�j13 mA

Figure P9.59

9.56 Use the node voltage method to find the steady-state
expression for , in the circuit seen in Fig. P9.56 if

and 

Figure P9.56

9.57 Use the node-voltage method to find the steady-
state expression for in the circuit in Fig. P9.57 if

Figure P9.57

9.58 Use the node-voltage method to find the phasor
voltage in the circuit shown in Fig. P9.58.
Express the voltage in both polar and rectangular
form.

Figure P9.58

9.59 Use the node-voltage method to find and in
the circuit seen in Fig. P9.59.

IoVo
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354 Sinusoidal Steady-State Analysis

Sections 9.5–9.9

9.65 Use the concept of voltage division to find the
steady-state expression for in the circuit in
Fig. P9.65 if 

Figure P9.65

9.66 Use the concept of current division to find the
steady-state expression for in the circuit in
Fig. P9.66 if 

Figure P9.66

9.67 For the circuit in Fig. P9.67. Suppose

a) What circuit analysis technique must be used to
find the steady-state expression for ?

b) Find the steady-state expression for .

Figure P9.67

9.68 For the circuit in Fig. P9.63, suppose

vb = 20 cos 4000t V.

va = 10 cos 16,000t V

10 ��

�
v1

�

�
v2vo

1 mH
100 	F 

�

�

vo(t)

vo(t)

v2 = 10 cos(5000t + 16.26°) V

v1 = 20 cos(2000t - 36.87°) V

io
100 mF

800 mH

100 �

20 �

ig

ig = 60 cos 250t mA.
io

80 mH3.125 nF

vo 2.4 k�

1.2 k�

vg
�

�

�

�

vg = 120 cos 100,000t V.
vo(t)

a) What circuit analysis technique must be used to
find the steady-state expression for ?

b) Find the steady-state expression for .

9.69 The sinusoidal voltage source in the circuit shown
in Fig. P9.69 is generating the voltage

If the op amp is ideal, what is
the steady-state expression for ?vo(t)
vg = 20 cos 5000t V.

io(t)

io(t)
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Figure P9.69
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200 �
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vo

�

�

�

�

�

�

9.70 The capacitor in the circuit seen in Fig. P9.69
is replaced with a variable capacitor. The capacitor
is adjusted until the output voltage leads the input
voltage by 

a) Find the value of C in microfarads.

b) Write the steady-state expression for when
C has the value found in (a).

9.71 The op amp in the circuit in Fig. P9.71 is ideal.

a) Find the steady-state expression for 

b) How large can the amplitude of be before the
amplifier saturates?

Figure P9.71

9.72 The op amp in the circuit seen in Fig. P9.72 is ideal.
Find the steady-state expression for when
vg = 2 cos 106t V.

vo(t)
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Figure P9.72

9.73 The operational amplifier in the circuit shown in
Fig. P9.73 is ideal. The voltage of the ideal sinu-
soidal source is 

a) How small can be before the steady-state
output voltage no longer has a pure sinusoidal
waveform?

b) For the value of found in (a), write the
steady-state expression for 

Figure P9.73

Section 9.10

9.74 The value of k in the circuit in Fig. P9.74 is adjusted
so that is purely resistive when 
Find 

Figure P9.74

9.75 For the circuit in Fig. P9.75, find the Thévenin
equivalent with respect to the terminals c,d.
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Zab.
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vo
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vg = 30 cos 106t V.
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�
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40 k�
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100 k�
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5 V

100 pF
�5 V

vg vo

�

�

Figure P9.75

9.76 a) Find the steady-state expressions for the cur-
rents and in the circuit in Fig. P9.76 when

b) Find the coefficient of coupling.

c) Find the energy stored in the magnetically cou-
pled coils at and 

Figure P9.76

9.77 The sinusoidal voltage source in the circuit seen in
Fig. P9.77 is operating at a frequency of 200 krad/s.
The coefficient of coupling is adjusted until the
peak amplitude of is maximum.

a) What is the value of k?

b) What is the peak amplitude of if
?

Figure P9.77

9.78 A series combination of a resistor and a
inductor is connected to a sinusoidal voltage

source by a linear transformer. The source is oper-
ating at a frequency of 400 . At this frequency,
the internal impedance of the source is

The rms voltage at the terminals of
the source is 75 V when it is not loaded. The param-
eters of the linear transformer are 

and

a) What is the value of the impedance reflected
into the primary?

b) What is the value of the impedance seen from
the terminals of the practical source?

M = 135 mH.
L2 = 250 mH,R2 = 100 Æ,L1 = 90 mH,

R1 = 8.34 Æ,

(10 + j12.75) Æ.
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356 Sinusoidal Steady-State Analysis

Section 9.11

9.79 At first glance, it may appear from Eq. 9.69 that an
inductive load could make the reactance seen looking
into the primary terminals (i.e., ) look capacitive.
Intuitively, we know this is impossible. Show that 
can never be negative if is an inductive reactance.

9.80 a) Show that the impedance seen looking into the
terminals a,b in the circuit in Fig. P9.80 is given
by the expression

b) Show that if the polarity terminals of either one
of the coils is reversed,

Figure P9.80

9.81 a) Show that the impedance seen looking into the
terminals a,b in the circuit in Fig. P9.81 is given
by the expression

b) Show that if the polarity terminal of either one
of the coils is reversed that

Figure P9.81

9.82 Find the impedance in the circuit in Fig. P9.82 if
ZL = 200 l -45 �  Æ.

Zab

I
d
e
a
l

N1

N2

a

b

Zab

ZL

Zab =

ZL

a1 -

N1

N2
b2 .

Zab =

ZL

a1 +

N1

N2
b2 .

I
d
e
a
l

N2

N1

a

b

Zab

ZL

Zab = a1 -

N1

N2
b2 

ZL.

Zab = a1 +

N1

N2
b2 

ZL.

XL

Xab

Xab

Figure P9.82

Section 9.12

9.83 Show by using a phasor diagram what happens to
the magnitude and phase angle of the voltage in
the circuit in Fig. P9.83 as is varied from zero to
infinity. The amplitude and phase angle of the
source voltage are held constant as varies.

Figure P9.83

9.84 The parameters in the circuit shown in Fig. 9.53 are

and 

a) Calculate the phasor voltage 

b) Connect a capacitor in parallel with the inductor,
hold constant, and adjust the capacitor until
the magnitude of I is a minimum. What is the
capacitive reactance? What is the value of ?

c) Find the value of the capacitive reactance that
keeps the magnitude of I as small as possible
and that at the same time makes

9.85 a) For the circuit shown in Fig. P9.85, compute 
and 

b) Construct a phasor diagram showing the rela-
tionship between and the load voltage of

c) Repeat parts (a) and (b), given that the load
voltage remains constant at when a
capacitive reactance of is connected
across the load terminals.

Figure P9.85
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Sections 9.1–9.12

9.86 You may have the opportunity as an engineering
graduate to serve as an expert witness in lawsuits
involving either personal injury or property damage.
As an example of the type of problem on which you
may be asked to give an opinion, consider the follow-
ing event. At the end of a day of fieldwork, a farmer
returns to his farmstead, checks his hog confinement
building, and finds to his dismay that the hogs are
dead. The problem is traced to a blown fuse that
caused a 240 V fan motor to stop. The loss of ventila-
tion led to the suffocation of the livestock. The inter-
rupted fuse is located in the main switch that
connects the farmstead to the electrical service.
Before the insurance company settles the claim, it
wants to know if the electric circuit supplying the
farmstead functioned properly. The lawyers for the
insurance company are puzzled because the farmer’s
wife, who was in the house on the day of the accident
convalescing from minor surgery, was able to watch
TV during the afternoon. Furthermore, when she
went to the kitchen to start preparing the evening
meal, the electric clock indicated the correct time.The
lawyers have hired you to explain (1) why the electric
clock in the kitchen and the television set in the living
room continued to operate after the fuse in the main
switch blew and (2) why the second fuse in the main
switch didn’t blow after the fan motor stalled.After
ascertaining the loads on the three-wire distribu-
tion circuit prior to the interruption of fuse A, you
are able to construct the circuit model shown in
Fig. P9.86. The impedances of the line conductors
and the neutral conductor are assumed negligible.

a) Calculate the branch currents 
and prior to the interruption of fuse A.

b) Calculate the branch currents after the interrup-
tion of fuse A. Assume the stalled fan motor
behaves as a short circuit.

c) Explain why the clock and television set were
not affected by the momentary short circuit that
interrupted fuse A.

d) Assume the fan motor is equipped with a ther-
mal cutout designed to interrupt the motor 

I6

I5,I4,I3,I2,I1,

circuit if the motor current becomes excessive.
Would you expect the thermal cutout to oper-
ate? Explain.

e) Explain why fuse B is not interrupted when the
fan motor stalls.

9.87 a) Calculate the branch currents in the cir-
cuit in Fig. 9.58.

b) Find the primary current 

9.88 Suppose the resistance in the distribution cir-
cuit in Fig. 9.58 is replaced by a resistance.

a) Recalculate the branch current in the 
resistor,

b) Recalculate the primary current,

c) On the basis of your answers, is it desirable 
to have the resistance of the two 120 V loads 
be equal?

9.89 A residential wiring circuit is shown in Fig. P9.89. In
this model, the resistor is used to model a 250 V
appliance (such as an electric range), and the resis-
tors and are used to model 125 V appliances
(such as a lamp, toaster, and iron). The branches
carrying and are modeling what electricians
refer to as the hot conductors in the circuit, and the
branch carrying is modeling the neutral conduc-
tor. Our purpose in analyzing the circuit is to show
the importance of the neutral conductor in the sat-
isfactory operation of the circuit. You are to choose
the method for analyzing the circuit.

a) Show that is zero if 

b) Show that if 

c) Open the neutral branch and calculate and 
if and 

d) Close the neutral branch and repeat (c).

e) On the basis of your calculations, explain why
the neutral conductor is never fused in such a
manner that it could open while the hot conduc-
tors are energized.

R3 = 8 Æ.R2 = 400 Æ,R1 = 40 Æ,
V2V1

R1 = R2.V1 = V2

R1 = R2.In
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R2R1
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Figure P9.86
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9.90 a) Find the primary current for (c) and (d) in
Problem 9.89.

b) Do your answers make sense in terms of known
circuit behavior?

Ip
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PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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Power engineering has evolved into one of the important sub-
disciplines within electrical engineering. The range of problems
dealing with the delivery of energy to do work is considerable,
from determining the power rating within which an appliance
operates safely and efficiently, to designing the vast array of gen-
erators, transformers, and wires that provide electric energy to
household and industrial consumers.

Nearly all electric energy is supplied in the form of sinusoidal
voltages and currents. Thus, after our Chapter 9 discussion of
sinusoidal circuits, this is the logical place to consider sinusoidal
steady-state power calculations. We are primarily interested in
the average power delivered to or supplied from a pair of termi-
nals as a result of sinusoidal voltages and currents. Other meas-
ures, such as reactive power, complex power, and apparent
power, will also be presented. The concept of the rms value of a
sinusoid, briefly introduced in Chapter 9, is particularly pertinent
to power calculations.

We begin and end this chapter with two concepts that should
be very familiar to you from previous chapters: the basic equa-
tion for power (Section 10.1) and maximum power transfer
(Section 10.6). In between, we discuss the general processes for
analyzing power, which will be familiar from your studies in
Chapters 1 and 4, although some additional mathematical tech-
niques are required here to deal with sinusoidal, rather than dc,
signals.

C H A P T E R  C O N T E N T S

10.1 Instantaneous Power p. 360

10.2 Average and Reactive Power p. 361

10.3 The rms Value and Power 
Calculations p. 366

10.4 Complex Power p. 368

10.5 Power Calculations p. 369

10.6 Maximum Power Transfer p. 376

C H A P T E R  O B J E C T I V E S

1 Understand the following ac power concepts,
their relationships to one another, and how to
calculate them in a circuit:

• Instantaneous power;

• Average (real) power;

• Reactive power;

• Complex power; and

• Power factor.

2 Understand the condition for maximum real
power delivered to a load in an ac circuit and be
able to calculate the load impedance required to
deliver maximum real power to the load.

3 Be able to calculate all forms of ac power in
ac circuits with linear transformers and in
ac circuits with ideal transformers.

Sinusoidal Steady-State
Power Calculations

C H A P T E R

1010

358



In Chapter 9 we calculated the steady-state voltages and cur-
rents in electric circuits driven by sinusoidal sources. In this
chapter we consider power in these circuits. The techniques
we develop are useful for analyzing many of the electrical
devices we encounter daily, because sinusoidal sources are
the predominant means of providing electric power.

Even when we are not using many of the common electri-
cal devices found in our homes, schools, and businesses, they
may still be consuming power. This “standby power” may be
used to run an internal clock, charge batteries, display time or
other quantities, monitor temperature or other environmental
measures, or search for signals to receive. Devices such as
microwave ovens, DVRs, televisions, remote controls, and com-
puters all consume power when not in use.

The ac adapters used to charge many portable devices are
a common source of standby power. Even when the device is
unplugged from the adapter, the adapter may continue to
consume power if it is plugged into the wall outlet. The plug
on the adapter looks like vampire fangs, so this standby
power became known as “vampire power.” It is power that is
used even while we sleep.

How much vampire power is used by the electrical devices
in our home over the course of a year? Is there a way to
reduce or eliminate vampire power? These questions will be
explored in the Practical Perspective example at the end of
the chapter, and in the chapter problems.

359
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Vampire Power

katalinks / fotolia

magraphics.eu / fotolia 

borissos / fotolia 



360 Sinusoidal Steady-State Power Calculations

�

�
v

i

Figure 10.1 � The black box representation of a circuit
used for calculating power.

10.1 Instantaneous Power
We begin our investigation of sinusoidal power calculations with the
familiar circuit in Fig. 10.1. Here, and i are steady-state sinusoidal signals.
Using the passive sign convention, the power at any instant of time is

(10.1)

This is instantaneous power. Remember that if the reference direction of
the current is in the direction of the voltage rise, Eq. 10.1 must be written
with a minus sign. Instantaneous power is measured in watts when the
voltage is in volts and the current is in amperes. First, we write expressions
for and i:

(10.2)

(10.3)

where is the voltage phase angle, and is the current phase angle.
We are operating in the sinusoidal steady state, so we may choose any

convenient reference for zero time. Engineers designing systems that
transfer large blocks of power have found it convenient to use a zero time
corresponding to the instant the current is passing through a positive max-
imum. This reference system requires a shift of both the voltage and cur-
rent by Thus Eqs. 10.2 and 10.3 become

(10.4)

(10.5)

When we substitute Eqs. 10.4 and 10.5 into Eq. 10.1, the expression for the
instantaneous power becomes

(10.6)

We could use Eq. 10.6 directly to find the average power; however, by sim-
ply applying a couple of trigonometric identities, we can put Eq. 10.6 into
a much more informative form.

We begin with the trigonometric identity1

to expand Eq. 10.6; letting and gives

(10.7)

Now use the trigonometric identity

 cos (a + b) =  cos a cos b -  sin a sin b

p =

VmIm

2
 cos (uv - ui) +

VmIm

2
 cos (2vt + uv - ui).

b = vta = vt + uv - ui

 cos a cos b =

1
2

 cos (a - b) +

1
2

 cos (a + b)

p = VmIm cos (vt + uv - ui) cos vt.

 i = Im cos vt.

 v = Vm cos (vt + uv - ui),

ui.

uiuv

 i = Im cos (vt + ui),

 v = Vm cos (vt + uv),

v

p = vi.

v

1 See entry 8 in Appendix F.
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to expand the second term on the right-hand side of Eq. 10.7, which gives

(10.8)

Figure 10.2 depicts a representative relationship among , i, and p,
based on the assumptions and You can see that the fre-
quency of the instantaneous power is twice the frequency of the voltage or
current. This observation also follows directly from the second two terms
on the right-hand side of Eq. 10.8. Therefore, the instantaneous power
goes through two complete cycles for every cycle of either the voltage or
the current. Also note that the instantaneous power may be negative for a
portion of each cycle, even if the network between the terminals is passive.
In a completely passive network, negative power implies that energy
stored in the inductors or capacitors is now being extracted. The fact that
the instantaneous power varies with time in the sinusoidal steady-state
operation of a circuit explains why some motor-driven appliances (such as
refrigerators) experience vibration and require resilient motor mountings
to prevent excessive vibration.

We are now ready to use Eq. 10.8 to find the average power at the ter-
minals of the circuit represented by Fig. 10.1 and, at the same time, intro-
duce the concept of reactive power.

ui = 0 � .uv = 60 �
v

 -

VmIm

2
 sin (uv - ui) sin 2vt.

 p =

VmIm

2
 cos (uv - ui) +

VmIm

2
 cos (uv - ui) cos 2vt

2p 3p 4p
vt

(radians)p

�Vm

�Im

Im

Vm

0

v, i, p

v v

v v

i i

i i

p p

p p

�
VmIm

4

VmIm

2

3VmIm

4

Figure 10.2 � Instantaneous power, voltage, and current versus for
steady-state sinusoidal operation.

vt

10.2 Average and Reactive Power
We begin by noting that Eq. 10.8 has three terms, which we can rewrite as
follows:

(10.9)p = P + P cos 2vt - Q sin 2vt,
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Average (real) power �

where

(10.10)

(10.11)

P is called the average power, and Q is called the reactive power. Average
power is sometimes called real power, because it describes the power in a
circuit that is transformed from electric to nonelectric energy. Although
the two terms are interchangeable, we primarily use the term average
power in this text.

It is easy to see why P is called the average power. The average power
associated with sinusoidal signals is the average of the instantaneous
power over one period, or, in equation form,

(10.12)

where T is the period of the sinusoidal function. The limits on Eq. 10.12
imply that we can initiate the integration process at any convenient time 
but that we must terminate the integration exactly one period later. (We
could integrate over nT periods, where n is an integer, provided we multi-
ply the integral by )

We could find the average power by substituting Eq. 10.9 directly into
Eq. 10.12 and then performing the integration. But note that the average
value of p is given by the first term on the right-hand side of Eq. 10.9,
because the integral of both and over one period is zero.
Thus the average power is given in Eq. 10.10.

We can develop a better understanding of all the terms in Eq. 10.9 and
the relationships among them by examining the power in circuits that are
purely resistive, purely inductive, or purely capacitive.

Power for Purely Resistive Circuits
If the circuit between the terminals is purely resistive, the voltage and cur-
rent are in phase, which means that Equation 10.9 then reduces to

(10.13)

The instantaneous power expressed in Eq. 10.13 is referred to as the
instantaneous real power. Figure 10.3 shows a graph of Eq. 10.13 for a
representative purely resistive circuit, assuming By defini-
tion, the average power, P, is the average of p over one period. Thus it is
easy to see just by looking at the graph that for this circuit. Note
from Eq. 10.13 that the instantaneous real power can never be negative,
which is also shown in Fig. 10.3. In other words, power cannot be extracted
from a purely resistive network. Rather, all the electric energy is dissi-
pated in the form of thermal energy.

Power for Purely Inductive Circuits
If the circuit between the terminals is purely inductive, the voltage and
current are out of phase by precisely . In particular, the current lags the
voltage by (that is, therefore The
expression for the instantaneous power then reduces to

(10.14)p = -Q sin 2vt.

uv - ui = +90 � .ui = uv - 90 �);90 �
90 �

P = 1

v = 377 rad>s.

p = P + P cos 2vt.

uv = ui.

 sin 2vt cos 2vt

1>nT.

t0

P =

1
TL

t0 +T

t0

p dt ,

 Q =

Vm Im

2
 sin (uv - ui).

 P =

Vm Im

2
 cos (uv - ui),
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Figure 10.3 � Instantaneous real power and average
power for a purely resistive circuit.
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In a purely inductive circuit, the average power is zero. Therefore no
transformation of energy from electric to nonelectric form takes place.
The instantaneous power at the terminals in a purely inductive circuit is
continually exchanged between the circuit and the source driving the cir-
cuit, at a frequency of In other words, when p is positive, energy is
being stored in the magnetic fields associated with the inductive elements,
and when p is negative, energy is being extracted from the magnetic fields.

A measure of the power associated with purely inductive circuits is
the reactive power Q. The name reactive power comes from the character-
ization of an inductor as a reactive element; its impedance is purely reac-
tive. Note that average power P and reactive power Q carry the same
dimension.To distinguish between average and reactive power, we use the
units watt (W) for average power and var (volt-amp reactive, or VAR) for
reactive power. Figure 10.4 plots the instantaneous power for a represen-
tative purely inductive circuit, assuming and 

Power for Purely Capacitive Circuits
If the circuit between the terminals is purely capacitive, the voltage and
current are precisely out of phase. In this case, the current leads the
voltage by (that is, ); thus, The expres-
sion for the instantaneous power then becomes

(10.15)

Again, the average power is zero, so there is no transformation of energy
from electric to nonelectric form. In a purely capacitive circuit, the power
is continually exchanged between the source driving the circuit and the
electric field associated with the capacitive elements. Figure 10.5 plots the
instantaneous power for a representative purely capacitive circuit, assum-
ing and 

Note that the decision to use the current as the reference leads to Q
being positive for inductors (that is, and negative for capac-
itors (that is, . Power engineers recognize this difference in
the algebraic sign of Q by saying that inductors demand (or absorb) mag-
netizing vars, and capacitors furnish (or deliver) magnetizing vars. We say
more about this convention later.

The Power Factor
The angle plays a role in the computation of both average and
reactive power and is referred to as the power factor angle. The cosine of
this angle is called the power factor, abbreviated pf, and the sine of this
angle is called the reactive factor, abbreviated rf. Thus

(10.16)

(10.17)

Knowing the value of the power factor does not tell you the value of the
power factor angle, because To completely
describe this angle, we use the descriptive phrases lagging power factor and
leading power factor. Lagging power factor implies that current lags volt-
age—hence an inductive load. Leading power factor implies that current
leads voltage—hence a capacitive load. Both the power factor and the reac-
tive factor are convenient quantities to use in describing electrical loads.

Example 10.1 illustrates the interpretation of P and Q on the basis of
a numerical calculation.

 cos (uv - ui) =  cos (ui - uv).

 rf =  sin (uv - ui).

 pf =  cos (uv - ui),

uv - ui

uv - ui = -90 �
uv - ui = 90 �

Q = -1 VAR.v = 377 rad>s

p = -Q sin 2vt.

uv - ui = -90 � .ui = uv + 90 �90 �
90 �

Q = 1 VAR.v = 377 rad>s

2v.

P (W)

Q (VAR)

p (W)

Time (s)
0 0.005 0.01 0.015 0.02 0.025

In
st

an
ta

ne
ou

s, 
av

er
ag

e 
an

d 
re

ac
ti

ve
 p

ow
er

0

0.5

1.0

�0.5

�1.0

Figure 10.4 � Instantaneous real power, average power,
and reactive power for a purely inductive circuit.
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Example 10.1 Calculating Average and Reactive Power

a) Calculate the average power and the reactive
power at the terminals of the network shown in
Fig. 10.6 if

b) State whether the network inside the box is
absorbing or delivering average power.

c) State whether the network inside the box is
absorbing or supplying magnetizing vars.

Figure 10.6 � A pair of terminals used for calculating power.

�

�
v

i

 i = 4 sin (vt - 15 �) A.

 v = 100 cos (vt + 15 �) V,

Solution

a) Because i is expressed in terms of the sine func-
tion, the first step in the calculation for P and Q
is to rewrite i as a cosine function:

We now calculate P and Q directly from
Eqs. 10.10 and 10.11. Thus

b) Note from Fig. 10.6 the use of the passive sign
convention. Because of this, the negative value
of means that the network inside the
box is delivering average power to the terminals.

c) The passive sign convention means that, because
Q is positive, the network inside the box is
absorbing magnetizing vars at its terminals.

-100 W

 Q =

1
2

100(4) sin [15 - (-105)] = 173.21 VAR.

 P =

1
2

(100)(4) cos [15 - (-105)] = -100 W,

i = 4 cos (vt - 105 �) A.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calcuate them in a circuit

10.1 For each of the following sets of voltage and
current, calculate the real and reactive power
in the line between networks A and B in the
circuit shown. In each case, state whether the
power flow is from A to B or vice versa. Also
state whether magnetizing vars are being trans-
ferred from A to B or vice versa.

a)

b)

c)

d)

BA �

�
v

i

 i = 20 cos (vt + 120 �) A.
 v = 100 cos vt V;

 i = 20 cos (vt - 105 �) A.
 v = 100 cos (vt - 45 �) V;

 i = 20 cos (vt + 165 �) A.
 v = 100 cos (vt - 45 �) V;

 i = 20 cos (vt + 15°) A.
 v = 100 cos (vt - 45 �) V;

Answer: (a) (A to B),
(B to A);

(b) (B to A),
(A to B);

(c) (A to B),
(A to B);

(d) (B to A),
(B to A).

10.2 Compute the power factor and the reactive fac-
tor for the network inside the box in Fig. 10.6,
whose voltage and current are described in
Example 10.1.

Hint: Use to calculate the power and reac-
tive factors.

Answer: leading; rf = -0.866.pf = 0.5

- i

 Q = -866.03 VAR
 P = -500 W

 Q = 866.03 VAR
 P = 500 W

 Q = 500 VAR
 P = -866.03 W

 Q = -866.03 VAR
 P = 500 W

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problem 10.1.
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Appliance Ratings
Average power is used to quantify the power needs of household appliances.
The average power rating and estimated annual kilowatt-hour consumption
of some common appliances are presented in Table 10.1. The energy con-
sumption values are obtained by estimating the number of hours annually
that the appliances are in use. For example, a coffeemaker has an estimated
annual consumption of 140 kWh and an average power consumption during
operation of 1.2 kW. Therefore a coffeemaker is assumed to be in operation

or 116.67, hours per year, or approximately 19 minutes per day.
Example 10.2 uses Table 10.1 to determine whether four common

appliances can all be in operation without exceeding the current-carrying
capacity of the household.

140>1.2,

TABLE 10.1 Annual Energy Requirements of Electric Household Appliances

NOTE: Assess your understanding of this material by trying Chapter Problem 10.2.

Est. kWh
Average Consumed

Appliance Wattage Annuallya

Food preparation

Coffeemaker 1200 140

Dishwasher 1201 165

Egg cooker 516 14

Frying pan 1196 100

Mixer 127 2

Oven, microwave (only) 1450 190

Range, with oven 12,200 596

Toaster 1146 39

Laundry

Clothes dryer 4856 993

Washing machine, automatic 512 103

Water heater 2475 4219

Quick recovery type 4474 4811

Comfort conditioning

Air conditioner (room) 860 860b

Dehumidifier 257 377

Fan (circulating) 88 43

Heater (portable) 1322 176

Est. kWh
Average Consumed

Appliance Wattage Annuallya

Health and beauty

Hair dryer 600 25

Shaver 15 0.5

Sunlamp 279 16

Home entertainment

Radio 71 86

Television, color, tube type 240 528

Solid-state type 145 320

Housewares

Clock 2 17

Vacuum cleaner 630 46

a) Based on normal usage. When using these figures for projections,
such factors as the size of the specific appliance, the geographical
area of use, and individual usage should be taken into considera-
tion. Note that the wattages are not additive, since all units are
normally not in operation at the same time.

b) Based on 1000 hours of operation per year. This figure will vary
widely depending on the area and the specific size of the unit. See
EEI-Pub #76-2, “Air Conditioning Usage Study,’’ for an estimate
for your location.

Source: Edison Electric Institute.

Example 10.2 Making Power Calculations Involving Household Appliances

The branch circuit supplying the outlets in a typical
home kitchen is wired with #12 conductor and is
protected by either a 20 A fuse or a 20 A circuit
breaker. Assume that the following 120 V appli-
ances are in operation at the same time: a cof-
feemaker, egg cooker, frying pan, and toaster. Will
the circuit be interrupted by the protective device?

Solution
From Table 10.1, the total average power demanded
by the four appliances is

The total current in the protective device is

Yes, the protective device will interrupt the circuit.

Ieff =

4058
120

L 33.82 A.

P = 1200 + 516 + 1196 + 1146 = 4058 W.

Printed with permission from Edison Electric Institute.
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�

�

Vmcos (vt � uv) R

Figure 10.7 � A sinusoidal voltage applied to the 
terminals of a resistor.

�
�

�
Vs � 100 V (dc) RR

�

�
vs � 100 V (rms)

Figure 10.8 � The effective value of (100 V rms) delivers the
same power to as the dc voltage (100 V dc).VsR

vs

10.3 The rms Value and Power
Calculations

In introducing the rms value of a sinusoidal voltage (or current) in
Section 9.1, we mentioned that it would play an important role in power
calculations. We can now discuss this role.

Assume that a sinusoidal voltage is applied to the terminals of a resis-
tor, as shown in Fig. 10.7, and that we want to determine the average
power delivered to the resistor. From Eq. 10.12,

(10.18)

Comparing Eq. 10.18 with Eq. 9.5 reveals that the average power deliv-
ered to R is simply the rms value of the voltage squared divided by R, or

(10.19)

If the resistor is carrying a sinusoidal current, say, the
average power delivered to the resistor is

(10.20)

The rms value is also referred to as the effective value of the sinu-
soidal voltage (or current). The rms value has an interesting property:
Given an equivalent resistive load, R, and an equivalent time period, T,
the rms value of a sinusoidal source delivers the same energy to R as does
a dc source of the same value. For example, a dc source of 100 V delivers
the same energy in T seconds that a sinusoidal source of 100 delivers,
assuming equivalent load resistances (see Problem 10.12). Figure 10.8
demonstrates this equivalence. Energywise, the effect of the two sources
is identical. This has led to the term effective value being used inter-
changeably with rms value.

The average power given by Eq. 10.10 and the reactive power given
by Eq. 10.11 can be written in terms of effective values:

(10.21) = VeffIeff cos (uv - ui);

 =

Vm

12
 

Im

12
 cos (uv - ui)

 P =

VmIm

2
 cos (uv - ui)

Vrms

P = Irms
2 R.

Im cos (vt + fi),

P =

Vrms
2

R
 .

 =

1
R
B 1

TL

t0 +T

t0

Vm
2  cos 2(vt +  fv)dtR  .

 P =

1
TL

t0 +T

t0

Vm
2  cos 2(vt + fv)

R
dt
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and, by similar manipulation,

(10.22)

The effective value of the sinusoidal signal in power calculations is so
widely used that voltage and current ratings of circuits and equipment
involved in power utilization are given in terms of rms values. For exam-
ple, the voltage rating of residential electric wiring is often 
service. These voltage levels are the rms values of the sinusoidal voltages
supplied by the utility company, which provides power at two voltage lev-
els to accommodate low-voltage appliances (such as televisions) and
higher voltage appliances (such as electric ranges). Appliances such as
electric lamps, irons, and toasters all carry rms ratings on their nameplates.
For example, a 120 V, 100 W lamp has a resistance of or 
and draws an rms current of or 0.833 A. The peak value of the
lamp current is or 1.18 A.

The phasor transform of a sinusoidal function may also be expressed
in terms of the rms value. The magnitude of the rms phasor is equal to the
rms value of the sinusoidal function. If a phasor is based on the rms value,
we indicate this by either an explicit statement, a parenthetical “rms” adja-
cent to the phasor quantity, or the subscript “eff,” as in Eq. 10.21.

In Example 10.3, we illustrate the use of rms values for calculating power.

0.83312,
120>144,

144 Æ,1202>100,

240 V>120 V

Q = VeffIeff sin (uv - ui).

Example 10.3 Determining Average Power Delivered to a Resistor by Sinusoidal Voltage

a) A sinusoidal voltage having a maximum ampli-
tude of 625 V is applied to the terminals of a

resistor. Find the average power delivered
to the resistor.

b) Repeat (a) by first finding the current in the
resistor.

Solution

a) The rms value of the sinusoidal voltage is
or approximately 441.94 V. From625>12,

50 Æ

Eq. 10.19, the average power delivered to the
resistor is

b) The maximum amplitude of the current in the
resistor is or 12.5 A. The rms value of
the current is or approximately
8.84 A. Hence the average power delivered to
the resistor is

P = (8.84)250 = 3906.25 W.

12.5>12,
625>50,

P =

(441.94)2

50
= 3906.25 W.

50 Æ

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them in a circuit

10.3 The periodic triangular current in Example 9.4,
repeated here, has a peak value of 180 mA.
Find the average power that this current deliv-
ers to a resistor.

Answer: 54 W.

5 kÆ

NOTE: Also try Chapter Problem 10.15.

A S S E S S M E N T  P R O B L E M
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Complex power �

Q � reactive power

P � average power

�S� � apparent power

u

Figure 10.9 � A power triangle.

TABLE 10.2 Three Power Quantities and 
Their Units

Quantity Units

Complex power volt-amps

Average power watts

Reactive power var

Apparent power �

10.4 Complex Power
Before proceeding to the various methods of calculating real and reactive
power in circuits operating in the sinusoidal steady state, we need to intro-
duce and define complex power. Complex power is the complex sum of
real power and reactive power, or

(10.23)

As you will see, we can compute the complex power directly from the volt-
age and current phasors for a circuit. Equation 10.23 can then be used to
compute the average power and the reactive power, because 
and 

Dimensionally, complex power is the same as average or reactive
power. However, to distinguish complex power from either average or
reactive power, we use the units volt-amps (VA).Thus we use volt-amps for
complex power, watts for average power, and vars for reactive power, as
summarized in Table 10.2.

Another advantage of using complex power is the geometric interpre-
tation it provides. When working with Eq. 10.23, think of P, Q, and as
the sides of a right triangle, as shown in Fig. 10.9. It is easy to show that the
angle in the power triangle is the power factor angle For the
right triangle shown in Fig. 10.9,

(10.24)

But from the definitions of P and Q (Eqs. [10.10] and [10.11], respectively),

(10.25)

Therefore, The geometric relations for a right triangle mean
also that the four power triangle dimensions (the three sides and the
power factor angle) can be determined if any two of the four are known.

The magnitude of complex power is referred to as apparent power.
Specifically,

(10.26)

Apparent power, like complex power, is measured in volt-amps. The
apparent power, or volt-amp, requirement of a device designed to convert
electric energy to a nonelectric form is more important than the average
power requirement. Although the average power represents the useful
output of the energy-converting device, the apparent power represents the
volt-amp capacity required to supply the average power. As you can see
from the power triangle in Fig. 10.9, unless the power factor angle is 
(that is, the device is purely resistive, and ), the volt-amp
capacity required by the device is larger than the average power used by
the device. As we will see in Example 10.6, it makes sense to operate
devices at a power factor close to 1.

Many useful appliances (such as refrigerators, fans, air conditioners,
fluorescent lighting fixtures, and washing machines) and most industrial
loads operate at a lagging power factor. The power factor of these loads
sometimes is corrected either by adding a capacitor to the device itself or

Q = 0pf = 1,
0 �

|S| = 2 P2
+ Q2.

u = uv - ui.

 =  tan (uv - ui).

 
Q

P
=

(VmIm>2) sin (uv - ui)

(VmIm>2) cos (uv - ui)

 tan u =

Q

P
 .

uv - ui.u

|S|

Q = s5S6. P = t5S6

S = P + jQ.
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by connecting capacitors across the line feeding the load; the latter
method is often used for large industrial loads. Many of the Chapter
Problems give you a chance to make some calculations that correct a lag-
ging power factor load and improve the operation of a circuit.

Example 10.4 uses a power triangle to calculate several quantities
associated with an electrical load.

Example 10.4 Calculating Complex Power

An electrical load operates at 240 V rms. The load
absorbs an average power of 8 kW at a lagging
power factor of 0.8.

a) Calculate the complex power of the load.

b) Calculate the impedance of the load.

Solution
a) The power factor is described as lagging, so we

know that the load is inductive and that the
algebraic sign of the reactive power is positive.
From the power triangle shown in Fig. 10.10,

Now, because 
Therefore

and

b) From the computation of the complex power of
the load, we see that Using Eq. 10.21,

 = 8000 W.

 = (240)Ieff (0.8)

 P = VeffIeff cos (uv - ui)

P = 8 kW.

S = 8 + j6 kVA.

 Q = 10 sin u = 6 kVAR,

 |S| =

P

 cos u
=

8 kW
0.8

= 10 kVA,

 sin u = 0.6. cos u = 0.8,

 Q = |S| sin u.

 P = |S| cos u,

Solving for 

We already know the angle of the load imped-
ance, because it is the power factor angle:

We also know that is positive because the
power factor is lagging, indicating an inductive
load. We compute the magnitude of the load
impedance from its definition as the ratio of the
magnitude of the voltage to the magnitude of
the current:

Hence,

Figure 10.10 � A power triangle.

Q

P

�S�

u

Z = 5.76  l36.87 �  Æ = 4.608 + j3.456 Æ.

|Z| =

|Veff|
|Ieff|

=

240
41.67

= 5.76.

u

u =  cos -1(0.8) = 36.87 � .

Ieff = 41.67 A.

Ieff,

10.5 Power Calculations
We are now ready to develop additional equations that can be used to calcu-
late real, reactive, and complex power. We begin by combining Eqs. 10.10,
10.11, and 10.23 to get

(10.27) =

VmIm

2
e j(uv -ui)

=

1
2

 VmIml(uv - ui).

 =

VmIm

2
 3cos (uv - ui) + j sin (uv - ui)4

 S =

VmIm

2
 cos (uv - ui) + j   

VmIm

2
 sin (uv - ui)
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Complex power �

�

�

Veff

Ieff

Circuit

Figure 10.11 � The phasor voltage and current associ-
ated with a pair of terminals.

If we use the effective values of the sinusoidal voltage and current,
Eq. 10.27 becomes

(10.28)

Equations 10.27 and 10.28 are important relationships in power calcula-
tions because they show that if the phasor current and voltage are known at
a pair of terminals, the complex power associated with that pair of terminals
is either one half the product of the voltage and the conjugate of the cur-
rent, or the product of the rms phasor voltage and the conjugate of the rms
phasor current. We can show this for the rms phasor voltage and current in
Fig. 10.11 as follows:

(10.29)

Note that follows from Euler’s identity and the trigonomet-
ric identities and :

The same derivation technique could be applied to Eq. 10.27 to yield

(10.30)

Both Eqs. 10.29 and 10.30 are based on the passive sign convention. If the
current reference is in the direction of the voltage rise across the termi-
nals, we insert a minus sign on the right-hand side of each equation.

To illustrate the use of Eq. 10.30 in a power calculation, let’s use the
same circuit that we used in Example 10.1. Expressed in terms of the pha-
sor representation of the terminal voltage and current,

Therefore

 = -100 + j173.21 VA.

 S =

1
2

 (100  l15 �)(4  l +105 �) = 200  l120 �

 I = 4l -105 �  A.

 V = 100  l15 �  V,

S =

1
2

VI*.

 = Ieff
* .

 = Ieff cos (ui) - jIeff sin (ui)

 Ieff e-jui
= Ieff cos (-ui) + jIeff sin (-ui)

 sin (-u) = -  sin (u) cos (-u) = cos(u)
Ieff

*
= Ieff e-jui

 = VeffIeff
* .

 = Veff e juvIeff e-jui

 = VeffIeff e j(uv -ui)

 S = VeffIeffl(uv - ui)

S = VeffIeffl(uv - ui).
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Once we calculate the complex power, we can read off both the real and
reactive powers, because Thus

The interpretations of the algebraic signs on P and Q are identical to those
given in the solution of Example 10.1.

Alternate Forms for Complex Power
Equations 10.29 and 10.30 have several useful variations. Here, we use the
rms value form of the equations, because rms values are the most common
type of representation for voltages and currents in power computations.

The first variation of Eq. 10.29 is to replace the voltage with the prod-
uct of the current times the impedance. In other words, we can always rep-
resent the circuit inside the box of Fig. 10.11 by an equivalent impedance,
as shown in Fig. 10.12. Then,

(10.31)

Substituting Eq. 10.31 into Eq. 10.29 yields

(10.32)

from which

(10.33)

(10.34)

In Eq. 10.34, X is the reactance of either the equivalent inductance or
equivalent capacitance of the circuit. Recall from our earlier discussion of
reactance that it is positive for inductive circuits and negative for capaci-
tive circuits.

A second useful variation of Eq. 10.29 comes from replacing the cur-
rent with the voltage divided by the impedance:

(10.35)S = Veff¢Veff

Z
≤ *

=

|Veff|
2

Z*
= P + jQ.

 Q = |Ieff|
2X =

1
2

Im
2 X.

 P = |Ieff|
2R =

1
2

Im
2 R,

 = |Ieff|
2R + j|Ieff|

2X = P + jQ,

 = |Ieff|
2(R + jX)

 = |Ieff|
2Z

 S = Z   IeffI*
eff 

Veff = Z   Ieff.

 Q = 173.21 VAR.

 P = -100 W,

S = P + jQ.

Z
�

�

Veff

Ieff

Figure 10.12 � The general circuit of Fig. 10.11
replaced with an equivalent impedance.
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Note that if Z is a pure resistive element,

(10.36)

and if Z is a pure reactive element,

(10.37)

In Eq. 10.37, X is positive for an inductor and negative for a capacitor.
The following examples demonstrate various power calculations in

circuits operating in the sinusoidal steady state.

Q =

|Veff|
2

X
.

P =

|Veff|
2

R
,

Example 10.5 Calculating Average and Reactive Power

In the circuit shown in Fig. 10.13, a load having an
impedance of is fed from a voltage
source through a line having an impedance of

The effective, or rms, value of the source
voltage is 250 V.

a) Calculate the load current and voltage 

b) Calculate the average and reactive power deliv-
ered to the load.

c) Calculate the average and reactive power deliv-
ered to the line.

d) Calculate the average and reactive power sup-
plied by the source.

Solution

a) The line and load impedances are in series across
the voltage source, so the load current equals the
voltage divided by the total impedance, or

Because the voltage is given in terms of its
rms value, the current also is rms. The load volt-
age is the product of the load current and load
impedance:

b) The average and reactive power delivered to the
load can be computed using Eq. 10.29. Therefore

 = 975 + j650 VA.

 S = VLIL
*

= (234 - j13)(4 + j3)

 = 234.36  l -3.18° V (rms).

 VL = (39 + j26)IL = 234 - j13

IL =

250  l0°

40 + j30
= 4 - j3 = 5  l -36.87° A (rms).

VL.IL

1 + j4 Æ.

39 + j26 Æ
Thus the load is absorbing an average power of
975 W and a reactive power of 650 VAR.

Figure 10.13 � The circuit for Example 10.5.

c) The average and reactive power delivered to the
line are most easily calculated from Eqs. 10.33
and 10.34 because the line current is known.Thus

Note that the reactive power associated with the
line is positive because the line reactance is
inductive.

d) One way to calculate the average and reactive
power delivered by the source is to add the com-
plex power delivered to the line to that delivered
to the load, or

The complex power at the source can also be cal-
culated from Eq. 10.29:

Ss = -250IL
* .

 = 1000 + j  750 VA.

 S = 25 + j100 + 975 + j650

 Q = (5)2(4) = 100 VAR.

 P = (5)2(1) = 25 W,

Source Line Load

j26 �

j4 �1 �

�

�

VL
IL

39 �
250�

�
0�

V (rms)
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The minus sign is inserted in Eq. 10.29 whenever
the current reference is in the direction of a volt-
age rise. Thus

Ss = -250(4 + j3) = -(1000 + j  750) VA.

The minus sign implies that both average power
and magnetizing reactive power are being deliv-
ered by the source. Note that this result agrees
with the previous calculation of S, as it must,
because the source must furnish all the average
and reactive power absorbed by the line and load.

Example 10.6 Calculating Power in Parallel Loads

The two loads in the circuit shown in Fig. 10.14 can
be described as follows: Load 1 absorbs an average
power of 8 kW at a leading power factor of 0.8.
Load 2 absorbs 20 kVA at a lagging power factor 
of 0.6.

Figure 10.14 � The circuit for Example 10.6.

a) Determine the power factor of the two loads in
parallel.

b) Determine the apparent power required to supply
the loads, the magnitude of the current, , and the
average power loss in the transmission line.

c) Given that the frequency of the source is 60 Hz,
compute the value of the capacitor that would
correct the power factor to 1 if placed in parallel
with the two loads. Recompute the values in (b)
for the load with the corrected power factor.

Solution

a) All voltage and current phasors in this problem
are assumed to represent effective values. Note
from the circuit diagram in Fig. 10.14 that

The total complex power absorbed
by the two loads is

We can sum the complex powers geometrically,
using the power triangles for each load, as shown
in Fig. 10.15. By hypothesis,

 = 8000 - j6000 VA,

 S1 = 8000 - j 
8000(.6)

(.8)

 = S1 + S2.

 = (250)I1
*

+ (250)I2
*

 = (250)(I1 + I2)
*

 S = (250)Is
*

Is = I1 + I2.

Is

�

�

0.05 � j0.50 �

�

�

Vs

Is

L1 I1 L2 I2
250 0�

V (rms)

Figure 10.15 � (a) The power triangle for load 1. (b) The
power triangle for load 2. (c) The sum of the power triangles.

It follows that

and

Therefore

Thus the power factor of the combined load is

The power factor of the two loads in parallel is
lagging because the net reactive power is positive.

b) The apparent power which must be supplied to
these loads is

The magnitude of the current that supplies this
apparent power is

|Is| = |80 - j40| = 89.44 A.

|S| = |20 + j10| = 22.36 kVA.

pf = cos(0 + 26.57°) = 0.8944 lagging.

Is = 80 - j40 = 89.44  l -26.57° A.

Is
*

=

20,000 + j10,000
250

= 80 + j40 A.

S = 20,000 + j10,000 VA,

(b)

�

�

(c)

(a)

22.36 kVA

20 kW

10 kVAR26.565�

20 kVA

12 kW

53.13�
16 kVAR8 kW

�6 kVAR
10 kVA

�36.87�

 = 12,000 + j16,000 VA.

 S2 = 20,000(.6) + j  20,000(.8)
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The average power lost in the line results from
the current flowing through the line resistance:

Note that the power supplied totals 
even though the loads require a

total of only 20,000 W.

c) As we can see from the power triangle in
Fig. 10.15(c), we can correct the power factor to 1
if we place a capacitor in parallel with the existing
loads such that the capacitor supplies 10 kVAR
of magnetizing reactive power. The value of the
capacitor is calculated as follows. First, find the
capacitive reactance from Eq. 10.37:

Recall that the reactive impedance of a capacitor
is and if
the source frequency is 60 Hz. Thus,

The addition of the capacitor as the third load is
represented in geometric form as the sum of the
two power triangles shown in Fig. 10.16. When

C =

-1
vX

=

-1
(376.99)(-6.25)

= 424.4 mF.

v = 2p(60) = 376.99 rad>s,-1>vC,

 = -6.25 Æ.

 =

(250)2

-10,000

 X =

|Veff|
2

Q

=  20,400 W,
20,000 + 400

Pline = |Is|
2R = (89.44)2(0.05) = 400 W

the power factor is 1, the apparent power and 
the average power are the same, as seen from the
power triangle in Fig. 10.16(c). Therefore, the
apparent power once the power factor has been
corrected is

The magnitude of the current that supplies this
apparent power is

The average power lost in the line is thus
reduced to

Now, the power supplied totals 
Note that the addition of the capaci-

tor has reduced the line loss from 400 W to 320 W.

Figure 10.16 � (a) The sum of the power triangles for loads 1
and 2. (b) The power triangle for a 424.4 F capacitor at 60 Hz.
(c) The sum of the power triangles in (a) and (b).

m

� �10 kVAR

�

(a) (b)

(c)

22.36 kVA

20 kW

20 kW

10 kVAR26.565�

=  20,320 W.
20,000 + 320

P line = |Is|
2R = (80)2(0.05) = 320 W.

|Is| =

20,000
250

= 80 A.

|S| = P = 20 kVA.

Example 10.7 Balancing Power Delivered with Power Absorbed in an ac Circuit

a) Calculate the total average and reactive power
delivered to each impedance in the circuit shown
in Fig. 10.17.

b) Calculate the average and reactive powers asso-
ciated with each source in the circuit.

c) Verify that the average power delivered equals
the average power absorbed, and that the magnet-
izing reactive power delivered equals the magnet-
izing reactive power absorbed. Figure 10.17 � The circuit, with solution, for Example 10.7.

j2 �

12 �

�j16 �

�

�

1 �

39 Ix
�

�
IxVs

I1

j3 �1 �

I2

V1� �

V2

�

�

V3� �

Vs � 150 0� V

V1 � (78 � j104) V I1 � (�26 � j52) A

Ix � (�2 � j6) A

I2 � (�24 � j58) A

V2 � (72 � j104) V

V3 � (150 � j130) V
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Solution

a) The complex power delivered to the 
impedance is

Thus this impedance is absorbing an average
power of 1690 W and a reactive power of
3380 VAR. The complex power delivered to the

impedance is

Therefore the impedance in the vertical branch
is absorbing 240 W and delivering 320 VAR. The
complex power delivered to the 
impedance is

This impedance is absorbing 1970 W and
5910 VAR.

 = 1970 + j5910 VA.

 =

1
2

(150 - j130)(-24 + j58)

 S3 =

1
2

V3I2
*

= P3 + jQ3

(1 + j  3) Æ

 = 240 - j  320 VA.

 =

1
2

(72 + j104)(-2 - j6)

 S2 =

1
2

V2Ix
*

= P2 + jQ2

(12 - j16) Æ

 = 1690 + j  3380 VA.

 =

1
2

(3380 + j6760)

 =

1
2

(78 - j104)(-26 + j52)

 S1 =

1
2

V1I1
*

= P1 + jQ1

(1 + j  2) Æ

b) The complex power associated with the inde-
pendent voltage source is

Note that the independent voltage source is
absorbing an average power of 1950 W and
delivering 3900 VAR. The complex power asso-
ciated with the current-controlled voltage
source is

Both average power and magnetizing reactive
power are being delivered by the dependent
source.

c) The total power absorbed by the passive imped-
ances and the independent voltage source is

The dependent voltage source is the only circuit
element delivering average power. Thus

Magnetizing reactive power is being absorbed
by the two horizontal branches. Thus

Magnetizing reactive power is being delivered
by the independent voltage source, the capacitor
in the vertical impedance branch, and the
dependent voltage source. Therefore

Qdelivered = 9290 VAR.

Qabsorbed = Q1 + Q3 = 9290 VAR.

Pdelivered = 5850 W.

Pabsorbed = P1 + P2 + P3 + Ps = 5850 W.

 = -5850 - j5070 VA.

 =

1
2

(-78 + j  234)(-24 + j58)

 Sx =

1
2

(39Ix)(I2
*) = Px + jQx

 = 1950 - j3900 VA.

 = -

1
2

(150)(-26 + j52)

 Ss = -

1
2

VsI1
*

= Ps + jQs
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Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them in a circuit

10.4 The load impedance in the circuit shown is
shunted by a capacitor having a capacitive reac-
tance of Calculate:

a) the rms phasors and ,

b) the average power and magnetizing reactive
power absorbed by the load
impedance,

c) the average power and magnetizing reactive
power absorbed by the line
impedance,

d) the average power and magnetizing reactive
power delivered by the source, and

e) the magnetizing reactive power delivered by
the shunting capacitor.

Answer: (a)

(b) 1129.09 W, 752.73 VAR;

5.38  l -38.23° A (rms);
252.20  l -4.54° V (rms),

�

�

Source Load

1 �

39 �

j26 �

j4 �

VL
IL

�

�

Line

250 0�
V (rms)

(1 + j4) Æ

(39 + j  26) Æ

ILVL

-52 Æ.

(c) 23.52 W, 94.09 VAR;

(d) 1152.62 W,

(e) 1223.18 VAR.

10.5 The rms voltage at the terminals of a load is
250 V. The load is absorbing an average power
of 40 kW and delivering a magnetizing reactive
power of 30 kVAR. Derive two equivalent
impedance models of the load.

Answer: in series with of capacitive
reactance; in parallel with 
of capacitive reactance.

10.6 Find the phasor voltage (rms) in the circuit
shown if loads and are absorbing 15 kVA
at 0.6 pf lagging and 6 kVA at 0.8 pf leading,
respectively. Express in polar form.

Answer: 251.64  l15.91° V.

0� V (rms)

j1 �

Vs

�

�

L1 L2
�

�
200

Vs

L2L1

Vs

2.083 Æ1.5625 Æ
0.75 Æ1 Æ

-376.36 VAR;

NOTE: Also try Chapter Problems 10.20, 10.28, and 10.30.

10.6 Maximum Power Transfer
Recall from Chapter 4 that certain systems—for example, those that trans-
mit information via electric signals—depend on being able to transfer a
maximum amount of power from the source to the load. We now reexam-
ine maximum power transfer in the context of a sinusoidal steady-state
network, beginning with Fig. 10.18. We must determine the load imped-
ance that results in the delivery of maximum average power to termi-
nals a and b. Any linear network may be viewed from the terminals of the
load in terms of a Thévenin equivalent circuit. Thus the task reduces to
finding the value of that results in maximum average power delivered
to in the circuit shown in Fig. 10.19.

For maximum average power transfer, must equal the conjugate of
the Thévenin impedance; that is,

(10.38)ZL = ZTh
*

 .

ZL

ZL

ZL

ZL

ZL

a
Generalized linear
network operating
in the sinusoidal
steady state

b

Figure 10.18 � A circuit describing maximum power
transfer.

Condition for maximum average power
transfer �

A S S E S S M E N T  P R O B L E M S



10.6 Maximum Power Transfer 377

�

�

a

b

I

ZTh

VTh ZL

Figure 10.19 � The circuit shown in Fig. 10.18, with
the network replaced by its Thévenin equivalent.

We derive Eq. 10.38 by a straightforward application of elementary calcu-
lus. We begin by expressing and in rectangular form:

(10.39)

(10.40)

In both Eqs. 10.39 and 10.40, the reactance term carries its own algebraic
sign—positive for inductance and negative for capacitance. Because we
are making an average-power calculation, we assume that the amplitude
of the Thévenin voltage is expressed in terms of its rms value. We also use
the Thévenin voltage as the reference phasor. Then, from Fig. 10.19, the
rms value of the load current I is

(10.41)

The average power delivered to the load is

(10.42)

Substituting Eq. 10.41 into Eq. 10.42 yields

(10.43)

When working with Eq. 10.43, always remember that and 
are fixed quantities, whereas and are independent variables.
Therefore, to maximize P, we must find the values of and where

and are both zero. From Eq. 10.43,

(10.44)

(10.45)

From Eq. 10.44, is zero when

(10.46)

From Eq. 10.45, is zero when

(10.47)

Note that when we combine Eq. 10.46 with Eq. 10.47, both derivatives are
zero when ZL = ZTh

* .

RL = 2RTh
2

+ (XL + XTh)2.

0P>0RL

XL = -XTh.

0P>0XL

 
0P

0RL
=

|VTh|2[(RL + RTh)2
+ (XL + XTh)2

- 2RL(RL + RTh)]

[(RL + RTh)2
+ (XL + XTh)2]2  .

 
0P

0XL
=

- |VTh|22RL(XL + XTh)

[(RL + RTh)2
+ (XL + XTh)2]2 ,

0P>0XL0P>0RL

XLRL

XLRL

XThRTh,VTh,

P =

|VTh|2RL

(RTh + RL)2
+ (XTh + XL)2 .

P = |I|2RL.

I =

VTh

(RTh + RL) + j(XTh + XL)
 .

 ZL = RL + jXL.

 ZTh = RTh + jXTh,

ZLZTh
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The Maximum Average Power Absorbed
The maximum average power that can be delivered to when it is set
equal to the conjugate of is calculated directly from the circuit in
Fig. 10.19. When the rms load current is and the max-
imum average power delivered to the load is

(10.48)

If the Thévenin voltage is expressed in terms of its maximum amplitude
rather than its rms amplitude, Eq. 10.48 becomes

(10.49)

Maximum Power Transfer When Z is Restricted
Maximum average power can be delivered to only if can be set
equal to the conjugate of There are situations in which this is not pos-
sible. First, and may be restricted to a limited range of values. In
this situation, the optimum condition for and is to adjust as
near to as possible and then adjust as close to

as possible (see Example 10.9).
A second type of restriction occurs when the magnitude of can be

varied but its phase angle cannot. Under this restriction, the greatest
amount of power is transferred to the load when the magnitude of is
set equal to the magnitude of that is, when

(10.50)

The proof of Eq. 10.50 is left to you as Problem 10.45.
For purely resistive networks, maximum power transfer occurs when

the load resistance equals the Thévenin resistance. Note that we first
derived this result in the introduction to maximum power transfer in
Chapter 4.

Examples 10.8–10.11 illustrate the problem of obtaining maximum
power transfer in the situations just discussed.

|ZL| = |ZTh|.

ZTh;
ZL

ZL

2RTh
2

+ (XL + XTh)2
RL-XTh

XLXLRL

XLRL

ZTh.
ZLZL

Pmax =

1
8

 
Vm

2

RL
 .

Pmax =

|VTh|2RL

4RL
2 =

1
4

 
|VTh|2

RL
 .

VTh>2RL,ZL = ZTh
* ,

ZTh

ZL

Example 10.8 Determining Maximum Power Transfer without Load Restrictions

a) For the circuit shown in Fig. 10.20, determine the
impedance that results in maximum average
power transferred to 

b) What is the maximum average power transferred
to the load impedance determined in (a)?

Solution

a) We begin by determining the Thévenin equiva-
lent with respect to the load terminals a, b. After
two source transformations involving the 20 V
source, the resistor, and the resistor, we20 Æ5 Æ

ZL.
ZL

Figure 10.20 � The circuit for Example 10.8.

�

�

5 �

20 �

j3 �

�j6 �

a

b

ZLV
20 0�

simplify the circuit shown in Fig. 10.20 to the one
shown in Fig. 10.21. Then,

 = 19.2  l -53.13° = 11.52 - j15.36 V.

 VTh =

16  l0°

4 + j3 - j6
 (-j6)
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Figure 10.22 � The circuit shown in Fig. 10.20, with the 
original network replaced by its Thévenin equivalent.

I
�

�V

5.76 �

5.76 �

�j1.68 �

�j1.68 �

a

b

19.2 �53.13�

Figure 10.21 � A simplification of Fig. 10.20 by source
transformations.

�

�

4 � j3 �

�j6 �

a

b

�

�

VThV
16 0�

We find the Thévenin impedance by deactivat-
ing the independent source and calculating the
impedance seen looking into the terminals a
and b. Thus,

For maximum average power transfer, the load
impedance must be the conjugate of so

b) We calculate the maximum average power deliv-
ered to from the circuit shown in Fig. 10.22, inZL

ZL = 5.76 + j1.68 Æ.

ZTh,

ZTh =

(-j6)(4 + j3)
4 + j3 - j6

= 5.76 - j1.68 Æ.

Example 10.9 Determining Maximum Power Transfer with Load Impedance Restriction

a) For the circuit shown in Fig. 10.23, what value of
results in maximum average power transfer to
? What is the maximum power in milliwatts?

b) Assume that the load resistance can be varied
between 0 and and that the capacitive
reactance of the load can be varied between 
0 and What settings of and 
transfer the most average power to the load?
What is the maximum average power that can be
transferred under these restrictions?

Solution

a) If there are no restrictions on and the
load impedance is set equal to the conjugate of
the output or the Thévenin impedance.Therefore
we set

or

ZL = 3000 - j4000 Æ.

RL = 3000 Æ and XL = -4000 Æ,

XL,RL

XLRL-2000 Æ.

4000 Æ

ZL

ZL

Figure 10.23 � The circuit for Examples 10.9 and 10.10.

Because the source voltage is given in terms of its
rms value, the average power delivered to is

b) Because and are restricted, we first set 
as close to as possible; thus 

Next, we set as close to
as possible. Thus

RL = 230002
+ (-2000 + 4000)2

= 3605.55 Æ.

2RTh
2

+ (XL + XTh)2
RL= -2000 Æ.XL

-4000 Æ
XLXLRL

P =

1
4

 
102

3000
=

25
3

 mW = 8.33 mW.

ZL

�

�

3000 �

b

aj4000 �

RL

jXC

0�
V (rms)

10

P = Ieff
2 (5.76) = 8 W.

which we replaced the original network with its
Thévenin equivalent. From Fig. 10.22, the rms magni-
tude of the load current I is

The average power delivered to the load is

Ieff =

19.2>12

2(5.76)
= 1.1785 A.



A load impedance having a constant phase angle of
is connected across the load terminals 

a and b in the circuit shown in Fig. 10.23. The magni-
tude of is varied until the average power deliv-
ered is the most possible under the given restriction.

a) Specify in rectangular form.

b) Calculate the average power delivered to 

Solution

a) From Eq. 10.50, we know that the magnitude of
must equal the magnitude of Therefore

|ZL| = |ZTh| = |3000 + j4000| = 5000 Æ.

ZTh.ZL

ZL.

ZL

ZL

-36.87 �

380 Sinusoidal Steady-State Power Calculations

Example 10.10 Finding Maximum Power Transfer with Impedance Angle Restrictions

Now, as we know that the phase angle of is
we have

b) With set equal to the load
current is

and the average power delivered to the load is

This quantity is the maximum power that can be
delivered by this circuit to a load impedance
whose angle is constant at Again, this
quantity is less than the maximum power that can
be delivered if there are no restrictions on ZL.

-36.87 � .

P = (1.4142 * 10-3)2(4000) = 8 mW.

Ieff =

10
7000 + j1000

= 1.4142 l -8.13° mA,

4000 - j3000 Æ,ZL

ZL = 5000 l -36.87° = 4000 - j3000 Æ.

-36.87 � ,
ZL

A S S E S S M E N T  P R O B L E M

Objective 2—Understand the condition for maximum real power delivered to a load in an ac circuit

10.7 The source current in the circuit shown is

a) What impedance should be connected
across terminals a,b for maximum average
power transfer?

b) What is the average power transferred to
the impedance in (a)?

c) Assume that the load is restricted to pure
resistance. What size resistor connected
across a,b will result in the maximum aver-
age power transferred?

d) What is the average power transferred to
the resistor in (c)?

3 cos 5000t A.

Answer: (a)

(b) 18 W;

(c)

(d) 17.00 W.

22.36 Æ;

20 - j10 Æ;

3.6 mH

20 �

4 �

ig 5 mF

a

b

NOTE: Also try Chapter Problems 10.41, 10.48, and 10.62.

Now, because can be varied from 0 to 
we can set to Therefore, the load
impedance is adjusted to a value of

With set at this value, the value of the load
current is

Ieff =

10 l0°

6605.55 + j2000
= 1.4489 l -16.85° mA.

ZL

ZL = 3605.55 - j2000 Æ.

3605.55 Æ.RL

4000 Æ,RL The average power delivered to the load is

This quantity is the maximum power that we can
deliver to a load, given the restrictions on 
and Note that this is less than the power that
can be delivered if there are no restrictions; in
(a) we found that we can deliver 8.33 mW.

XL.
RL

P = (1.4489 * 10-3)2(3605.55) = 7.57 mW.
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Example 10.11 Finding Maximum Power Transfer in a Circuit with an Ideal Transformer

The variable resistor in the circuit in Fig. 10.24 is
adjusted until maximum average power is delivered
to 

a) What is the value of in ohms?

b) What is the maximum average power (in watts)
delivered to ?

Figure 10.24 � The circuit for Example 10.11.

Solution

a) We first find the Thévenin equivalent with
respect to the terminals of The circuit for
determining the open circuit voltage in shown in
Fig. 10.25. The variables and have
been added to expedite the discussion.

I2I1,V2,V1,

RL.

�

�

a

b

RL

20 �

60 � Ideal
4 : 1

V (rms)
840 0�

RL

RL

RL.

The open circuit value of is zero, hence is
zero. It follows that

From Fig. 10.25 we note that is the negative
of hence

The circuit shown in Fig. 10.26 is used to deter-
mine the short circuit current. Viewing and 
as mesh currents, the two mesh equations are

 0 = 20I2 - 20I1 + V2.

 840 l0° = 80I1 - 20I2 + V1,

I2I1

VTh = -210 l0° V.

V2,
VTh

V1 = 840 l0° V,  V2 = 210 l0° V.

I1I2

Figure 10.25 � The circuit used to find the Thévenin voltage.

�

�

a

b

20 �

60 �

4 : 1

0�
V (rms)

I1

I2

V1

�

�

V2

�

�
VTh

�

�

Ideal840

Figure 10.26 � The circuit used to calculate the short circuit
current.

�

�

a

b

20 �

60 �

4 : 1

0�
V (rms)

I1

I2

V1

�

�

V2

�

�Ideal840

First we note the ideal transformer imposes the
following constraints on the variables and :

V2 =

1
4

 V1,  I1 = -  
1
4

 I2.

I2I1,V2,V1,

When these two mesh current equations are com-
bined with the constraint equations we get

Solving for the short circuit value of yields

Therefore the Thévenin resistance is

RTh =

-210
-6

= 35 Æ.

I2 = -6 A.

I2

 0 = 25I2 +

V1

4
 .

 840 l0° = -40I2 + V1,
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Objective 3—Be able to calculate all forms of ac power in ac circuits with linear transformers and ideal
transformers

Practical Perspective
Vampire Power
Vampire power, or standby power, may cost you more than you think. The average household
has about 40 electrical products that draw power, even when turned off. Approximately 5%
of typical residential power consumption can be attributed to standby power. Table 10.3 
provides the power consumption of several different devices. Notice that when a device is
considered to be off, it is often still consuming power.

Consider a typical mobile phone charger. According to the values given in Table 10.3,
when the charger is detached from the phone it consumes only a fraction of the power that
is used when the charger is attached to the phone and the phone is charging. Suppose you
charge your phone for three hours each day, but leave the charger plugged into the wall 
outlet 24 hours a day. Recall that the electric company bills you based on the number of
kilowatt-hours (kWh) you use in a given month. A device that uses 1000 W of power 

A S S E S S M E N T  P R O B L E M S

10.8 Find the average power delivered to the 
resistor in the circuit shown if

Answer: 612.5 W.

10.9 a) Find the average power delivered to the
resistor in the circuit shown if

b) Find the average power delivered to the
resistor.

c) Find the power developed by the ideal volt-
age source. Check your result by showing the
power absorbed equals the power developed.

375 Æ

vg = 248 cos 10,000t  V.
400 Æ

vg 100 �

10 mH

20 mH8 mH

34 �

�

�

vg = 660 cos 5000t V.
100 Æ

Answer: (a) 50 W;

(b) 49.2 W;

(c) 99.2 W,

10.10 Solve Example 10.11 if the polarity dot on the
coil connected to terminal a is at the top.

Answer: (a)

(b) 735 W.

10.11 Solve Example 10.11 if the voltage source is
reduced to and the turns ratio is
reversed to 1:4.

Answer: (a)

(b) 58.4 W.

1460 Æ;

146 l0° V rms

15 Æ;

50 + 49.2 = 99.2 W.

50 mH

400 �375 �

40 mH 100 mH

vg
�

�

NOTE: Also try Chapter Problems 10.61 and 10.62.

Maximum power will be delivered to when
equals 

b) The maximum power delivered to is most
easily determined using the Thévenin equivalent.
From the circuit shown in Fig. 10.27 we have

Pmax = ¢ -210
70
≤2

(35) = 315 W.

RL

35 Æ.RL

RL

Figure 10.27 � The Thévenin equivalent loaded for maximum
power transfer.

�

�

35 �

b

a

35 �0�
V (rms)

210
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continuously over one hour has consumed 1 kWh. Let’s calculate the number of kilowatt-hours used by
the phone charger in one month.

Now do the calculation again, this time assuming that you unplug the charger when it is not being used
to charge the phone.

Keeping the charger plugged in when you are not using it causes the charger to consume more than 5 times
the power needed to charge your phone every day. You can therefore minimize the cost of vampire power by
unplugging electrical devices if they are not being used.

How can the phone charger consume power when not plugged into the phone? The electronic circuitry
in your phone uses 5 V(dc) sources to supply power. The phone charger must transform the 120 V(rms) 
signal supplied by the wall outlet into a signal that can be used to charge the phone. Phone chargers can
use linear transformers, together with other circuitry, to output a voltage suited to the phone.

Consider the circuit in Fig. 10.28. The linear transformer is part of the circuitry used to reduce the
voltage supplied by the source to a level suited to the phone. The additional components needed to com-
plete this task are not shown in the circuit. When the phone is unplugged from the circuit in Fig. 10.28,
but the circuit is still connected to the 120 V(rms) source, there is still a path for the current, as shown
in Fig. 10.29. The current is

The real power, delivered by the voltage source and supplied to the resistors, is

This is the vampire power being consumed by the phone charger even when it is not connected to the phone.

P = (Rs + R1)|I|2.

I =

120
Rs + R1 + jvL1

.

P[kWh] =

30[3(3.68) + 21(0)]
1000

= 0.33 kWh

P[kWh] =

30[3(3.68) + 21(0.26)]
1000

= 1.8 kWh

TABLE 10.3 Average power consumption of common electrical devices

Electrical device+ Power [W]*

Mobile phone charger
Attached to phone, phone charging 3.68
Plugged into wall outlet but not into phone 0.26

Notebook computer AC adapter
Attached to computer, computer charging 44.28
Attached to computer, computer sleeping 15.77
Attached to computer, computer off 8.9
Plugged into wall outlet but not into computer 4.42

DVD player
On and playing 9.91
On and not playing 7.54
Off 1.55

Microwave oven
Ready with door closed 3.08
Ready with door open 25.79

Cooking 1433.0

Inkjet multifunction printer
On 9.16
Off 5.26

*Data in this table from Lawrence Berkeley National Laboratory report
(http://standby.lbl.gov/standby.html) 
+This value is the average of the power measured for many types of each device

NOTE: Assess you understanding of this Practical Perspective by trying Chapter Problems 10.66–10.68.

120
V (rms)

Rs MR1

L1

R2

L2
�
�

phone

Figure 10.28 � A linear transformed used in a phone charger.

�
�

120
V (rms)

jvM

jvL2jvL1

Rs

I

R1 R2

Figure 10.29 � The phone charger circuit when the phone
is not connected.

http://standby.lbl.gov/standby.html
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Summary

• Instantaneous power is the product of the instanta-
neous terminal voltage and current, or The
positive sign is used when the reference direction for
the current is from the positive to the negative refer-
ence polarity of the voltage. The frequency of the
instantaneous power is twice the frequency of the volt-
age (or current). (See page 360.)

• Average power is the average value of the instanta-
neous power over one period. It is the power converted
from electric to nonelectric form and vice versa. This
conversion is the reason that average power is also
referred to as real power. Average power, with the pas-
sive sign convention, is expressed as

(See page 362.)

• Reactive power is the electric power exchanged
between the magnetic field of an inductor and the
source that drives it or between the electric field of a
capacitor and the source that drives it. Reactive
power is never converted to nonelectric power.
Reactive power, with the passive sign convention, is
expressed as

Both average power and reactive power can be
expressed in terms of either peak ( ) or effective
( ) current and voltage. Effective values are
widely used in both household and industrial applica-
tions. Effective value and rms value are interchangeable
terms for the same value. (See page 362.)

IeffVeff,
ImVm,

 = VeffIeff sin(uv - ui).

 Q =

1
2

VmIm sin(uv - ui)

 = VeffIeff cos(uv - ui).

 P =

1
2

VmIm cos(uv - ui)

p = ;vi.
• The power factor is the cosine of the phase angle

between the voltage and the current:

The terms lagging and leading added to the description
of the power factor indicate whether the current is lag-
ging or leading the voltage and thus whether the load is
inductive or capacitive. (See page 363.)

• The reactive factor is the sine of the phase angle
between the voltage and the current:

(See page 363.)

• Complex power is the complex sum of the real and reac-
tive powers, or

(See page 368.)

• Apparent power is the magnitude of the complex power:

(See page 368.)

• The watt is used as the unit for both instantaneous and
real power. The var (volt amp reactive, or VAR) is used
as the unit for reactive power. The volt-amp (VA) is
used as the unit for complex and apparent power. (See
page 368.)

• Maximum power transfer occurs in circuits operating in
the sinusoidal steady state when the load impedance is
the conjugate of the Thévenin impedance as viewed from
the terminals of the load impedance. (See page 376.)

|S| = 2P2
+ Q2.

 = I2
effZ =

V2
eff

Z*
 .

 =

1
2

 VI*
= VeffI*

eff

 S = P + j Q

rf = sin(uv - ui).

pf = cos(uv - ui).



Problems

10.5 Find the average power delivered by the ideal
current source in the circuit in Fig. P10.5 if

Figure P10.5

10.6 Find the average power dissipated in the 
resistor in the circuit seen in Fig. P10.6 if

Figure P10.6

10.7 The op amp in the circuit shown in Fig. P10.7 is
ideal. Calculate the average power delivered to the

resistor when 

Figure P10.7

10.8 a) Calculate the real and reactive power associated
with each circuit element in the circuit in
Fig. P9.63.

b) Verify that the average power generated equals
the average power absorbed.

c) Verify that the magnetizing vars generated
equal the magnetizing vars absorbed.

10.9 Repeat Problem 10.8 for the circuit shown in
Fig. P9.64.

2 k�

1 k�

5 V

�5 V
vg

20 k�

100 nF

�

�
�

�

500 nF

vg = cos 1000t V.1 kÆ

30 �ig

30 i�

i�

� �

0.5 mH

1.25 mF

ig = 6 cos 20,000t A.

30 Æ

160 nF 100 mH

500 � 1000 �

ig

ig = 4 cos 5000t mA.

Sections 10.1–10.2

10.1 The following sets of values for and i pertain to
the circuit seen in Fig. 10.1. For each set of values,
calculate P and Q and state whether the circuit
inside the box is absorbing or delivering (1) average
power and (2) magnetizing vars.

a)

b)

c)

d)

10.2 a) A college student wakes up hungry. He turns on
the coffee maker, puts some oatmeal in the
microwave oven to cook, puts a couple of slices
of bread in the toaster, and starts making scram-
bled eggs in the electric frying pan. If all of
these appliances in his dorm room are supplied
by a 120 V branch circuit protected by a 50 A
circuit breaker, will the breaker interrupt his
breakfast?

b) The student’s roommate wakes up and turns on
the air conditioner. He realizes that the room is
a mess, so starts to vacuum. Now does the circuit
breaker interrupt breakfast?

10.3 Show that the maximum value of the instantaneous
power given by Eq. 10.9 is and that
the minimum value is 

10.4 A load consisting of a resistor in parallel
with a capacitor is connected across the
terminals of a sinusoidal voltage source where

a) What is the peak value of the instantaneous
power delivered by the source?

b) What is the peak value of the instantaneous
power absorbed by the source?

c) What is the average power delivered to the load?

d) What is the reactive power delivered to the load?

e) Does the load absorb or generate magnetiz-
ing vars?

f) What is the power factor of the load?

g) What is the reactive factor of the load?

vg = 240 cos 5000t V.
vg,

(5>9) mF
480 Æ

P - 2P2
+ Q2.

P + 2P2
+ Q2

 i = 10 cos(vt + 170 �) A.
 v = 80 cos (vt + 120 �) V,

 i = 2 cos(vt + 50 �) A.
 v = 150 sin(vt + 25 �) V,

 i = 5 cos(vt - 75 �) A.
 v = 18 cos(vt - 30 �)  V,

 i = 4 sin(vt + 60 �) A.
 v = 250 cos(vt + 45 �) V,

v

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

Problems 385
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10.10 The load impedance in Fig. P10.10 absorbs 6 kW
and generates 8 kVAR. The sinusoidal voltage
source develops 8 kW.

a) Find the values of inductive line reactance that
will satisfy these constraints.

b) For each value of line reactance found in (a),
show that the magnetizing vars developed
equals the magnetizing vars absorbed.

Figure P10.10

Section 10.3

10.11 a) A personal computer with a monitor and key-
board requires 40 W at 115 V (rms). Calculate
the rms value of the current carried by its
power cord.

b) A laser printer for the personal computer in 
(a) is rated at 90 W at 115 V (rms). If this printer
is plugged into the same wall outlet as the com-
puter, what is the rms value of the current drawn
from the outlet?

10.12 Find the rms value of the periodic current shown in
Fig. P10.12.

Figure P10.12

10.13 The periodic current shown in Fig. P10.12 dissipates
an average power of 1280 W in a resistor. What is
the value of the resistor?

10.14 a) Find the rms value of the periodic voltage shown
in Fig. P10.14.

20

i (A)

0 20 40 60 80 t (ms)100

ZL

LoadSource Line

 1000  0�  
V (rms)

25 �

�

�

jX �

b) Suppose the voltage in part (a) is applied to the
terminals of a resistor. Calculate the aver-
age power dissipated by the resistor.

c) When the voltage in part (a) is applied to a dif-
ferent resistor, that resistor dissipates 10 mW of
average power. What is the value of the resistor? 

40 Æ

Figure P10.14

40

�40

0
5

10 15

20 25

30 35

40

etc.

t(s)

vg(V)

10.15 a) Find the rms value of the periodic voltage shown
in Fig. P10.15.

b) If this voltage is applied to the terminals of a
resistor, what is the average power dissi-

pated in the resistor?

Figure P10.15

10.16 A dc voltage equal to V is applied to a resistor of
A sinusoidal voltage equal to V is also

applied to a resistor of Show that the dc voltage
will deliver the same amount of energy in T seconds
(where T is the period of the sinusoidal voltage) as

R Æ.
vsR Æ.

Vdc

20

etc.10

�10

�20

vg (V)

25 t (ms)50 75 100 125 150 175 200  0

4 Æ



the sinusoidal voltage provided equals the rms
value of (Hint: Equate the two expressions for the
energy delivered to the resistor.)

Sections 10.4–10.5

10.17 The current in the frequency-domain circuit
shown in Fig. P10.17 is 

a) Find the average and reactive power for the 
current source.

b) Is the current source absorbing or delivering
average power?

c) Is the current source absorbing or delivering
magnetizing vars?

d) Find the average and reactive powers associated
with each impedance branch in the circuit.

e) Check the balance between delivered and
absorbed average power.

f) Check the balance between delivered and
absorbed magnetizing vars.

Figure P10.17

10.18 Find the average power, the reactive power, and the
apparent power absorbed by the load in the circuit
in Fig. P10.18 if equals 

Figure P10.18

10.19 a) Find (rms) and for the circuit in Fig. P10.19
if the load absorbs 2500 VA at a lagging power
factor of 0.8.

b) Construct a phasor diagram of each solution
obtained in (a).

Figure P10.19

1 � j2 �

250 u� V (rms) VL Load

�

�

�

�

0�

uVL

80 mF

�
�

vg

Load

50 �

100 mH

150 cos 250t V.vg

50 �ig

25 �

�j75 �

j50 �

50 l0° mA (rms).
Ig

vs.
Vdc 10.20 a) Find the average power, the reactive power, and

the apparent power supplied by the voltage
source in the circuit in Fig. P10.20 if

b) Check your answer in (a) by showing

c) Check your answer in (a) by showing

Figure P10.20

10.21 Two 480 V (rms) loads are connected in parallel.The
two loads draw a total average power of 40,800 W at
a power factor of 0.8 lagging. One of the loads draws
20 kVA at a power factor of 0.96 leading.What is the
power factor of the other load?

10.22 The two loads shown in Fig. P10.22 can be described
as follows: Load 1 absorbs an average power of 
10 kW and delivers 4 kVAR of reactive power;
Load 2 has an impedance of 
The voltage at the terminals of the loads is

a) Find the rms value of the source voltage.

b) By how many microseconds is the load voltage
out of phase with the source voltage?

c) Does the load voltage lead or lag the source
voltage?

Figure P10.22

10.23 The three loads in the circuit seen in Fig. P10.23
are 

a) Calculate the complex power associated with
each voltage source, and 

b) Verify that the total real and reactive power
delivered by the sources equals the total real
and reactive power absorbed by the network.

Vg2.Vg1

S3 = 12 + j9 kVA.
S2 = 7.5 - j4.5 kVA,S1 = 6 + j3 kVA,

�

�

�

�

VLVg

0.5 � j0.05 �

L1 L2

100012 cos 100pt V.

(60 + j80)Æ.

vg 
�

�

40 �

25 nF 80 mH

60 �

Qdev = aQabs.

Pdev = aPabs.

vg = 40 cos 106t V.

PSPICE

MULTISIM

PSPICE

MULTISIM
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Figure P10.23

10.24 The three loads in the circuit seen in Fig. P10.24 are
described as follows: Load 1 is absorbing 4.8 kW
and delivering 2.4 kVAR; Load 2 is absorbing 
6 kVA at a power factor of 0.8 lagging; Load 3 is a
24 resistor in parallel with an inductance whose 
reactance is .

a) Calculate the average power and the magnetiz-
ing reactive power delivered by each source if

b) Check your calculations by showing your results
are consistent with the requirements

Figure P10.24

10.25 Suppose the circuit shown in Fig. P10.24 represents
a residential distribution circuit in which the
impedances of the service conductors are negligi-
ble and The three
loads in the circuit are (a toaster, a coffee
maker, and a microwave oven); (a solid-state
TV, a vacuum cleaner, and a portable heater); and

(an automatic washing machine and a clothes
dryer). Assume that all of these appliances are in
operation at the same time. The service conductors
are protected with 50 A circuit breakers. Will the
service to this residence be interrupted? Why or
why not?

10.26 The three parallel loads in the circuit shown in 
Fig. 10.26 can be described as follows: Load 1 is
absorbing an average power of 6 kW and delivering
reactive power of 8 kvars; Load 2 is absorbing an

L3

L2

L1

Vg1 = Vg2 = 110 l0° V (rms).

L1

L3

L2

Vg1

Vg2
�

�

�

�

 aQdev = aQabs.

 aPdev = aPabs

Vg1 = Vg2 = 120 l0° V (rms).

6 Æ

Æ

�

�
�

�

S1

S3

S2

�

�

�

�

0� V (rms)

0.1 �

0.2 �

0.1 �

Vg1

Vg2

150

0� V (rms)150

average power of 9 kW and reactive power of 
3 kvars; Load 3 is a resistor in parallel with 
a capacitor whose reactance is Find the 
rms magnitude and the phase angle of if

Figure P10.26

10.27 Consider the circuit described in Problem 9.78.

a) What is the rms magnitude of the voltage across
the load impedance?

b) What percentage of the average power devel-
oped by the practical source is delivered to the
load impedance?

10.28 Three loads are connected in parallel across a 
300 V(rms) line, as shown in Fig. P10.28. Load 
1 absorbs 3 kW at unity power factor; Load 2 absorbs
5 kVA at 0.8 leading; Load 3 absorbs 5 kW and deliv-
ers 6 kvars.

a) Find the impedance that is equivalent to the
three parallel loads.

b) Find the power factor of the equivalent load as
seen from the line’s input terminals.

Figure P10.28

10.29 The three loads in Problem 10.28 are fed from a line
having a series impedance as
shown in Fig. P10.29.

a) Calculate the rms value of the voltage at the
sending end of the line.

b) Calculate the average and reactive powers asso-
ciated with the line impedance.

c) Calculate the average and reactive powers at the
sending end of the line.

d) Calculate the efficiency of the line if the effi-
ciency is defined as

h = (Pload>Psending end) * 100.

(h)

(Vs)

0.02 + j0.05 Æ,

�

�

300 V (rms) 1 2 3

�

�
L1 L3L2

j0.1 �

VoVg

�

�

Vo = 250 l0° V.
Vg

-5 Æ.
25 Æ



Figure P10.29

10.30 The three loads in the circuit in Fig. P10.30 can be
described as follows: Load 1 is a resistor in
series with an inductive reactance of ; load 2 is
a capacitive reactance of in series with a

resistor; and load 3 is a resistor in series
with a capacitive reactance of . The frequency
of the voltage source is 60 Hz.

a) Give the power factor and reactive factor of
each load.

b) Give the power factor and reactive factor of the
composite load seen by the voltage source.

Figure P10.30

10.31 a) Find the average power dissipated in the line in
Fig. P10.31.

b) Find the capacitive reactance that when con-
nected in parallel with the load will make the
load look purely resistive.

c) What is the equivalent impedance of the load
in (b)?

d) Find the average power dissipated in the line
when the capacitive reactance is connected
across the load.

e) Express the power loss in (d) as a percentage of
the power loss found in (a).

Figure P10.31

10.32 The steady-state voltage drop between the load and
the sending end of the line seen in Fig. P10.32 is
excessive. A capacitor is placed in parallel with the
150 kVA load and is adjusted until the steady-state
voltage at the sending end of the line has the same

�

�

Line Load

6 � j8 �

30 �

j40 �

Source

0�
V (rms)

270

vg Load 1 Load 2 Load 3
�

�

40 Æ

30 Æ160 Æ

120 Æ

70 Æ

240 Æ

�

�

�

�

j0.05 �

Vs

0.2 �

L1 L2 L3
300 0�

 V (rms)

magnitude as the voltage at the load end, that is,
4800 V (rms). The 150 kVA load is operating at a
power factor of 0.8 lag. Calculate the size of the
capacitor in microfarads if the circuit is operating at
60 Hz. In selecting the capacitor, keep in mind the
need to keep the power loss in the line at a reason-
able level.

Figure P10.32

10.33 A group of small appliances on a 60 Hz system
requires 20 kVA at 0.85 pf lagging when operated at
125 V (rms).The impedance of the feeder supplying
the appliances is The voltage at the
load end of the feeder is 125 V (rms).

a) What is the rms magnitude of the voltage at the
source end of the feeder?

b) What is the average power loss in the feeder?

c) What size capacitor (in microfarads) across the
load end of the feeder is needed to improve the
load power factor to unity?

d) After the capacitor is installed, what is the rms
magnitude of the voltage at the source end of
the feeder if the load voltage is maintained at
125 V (rms)?

e) What is the average power loss in the feeder
for (d)?

10.34 A factory has an electrical load of 1600 kW at a lag-
ging power factor of 0.8. An additional variable
power factor load is to be added to the factory. The
new load will add 320 kW to the real power load of
the factory. The power factor of the added load is to
be adjusted so that the overall power factor of the
factory is 0.96 lagging.

a) Specify the reactive power associated with the
added load.

b) Does the added load absorb or deliver magnet-
izing vars?

c) What is the power factor of the additional load?

d) Assume that the voltage at the input to the fac-
tory is 2400 V (rms). What is the rms magnitude
of the current into the factory before the vari-
able power factor load is added?

e) What is the rms magnitude of the current into
the factory after the variable power factor load
has been added?

0.01 + j0.08 Æ.

150 kVA
0.8
lag

Vs

10 � j5 �

0� V (rms)

�

�

�

�

4800
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10.35 Assume the factory described in Problem 10.34 is fed
from a line having an impedance of 
The voltage at the factory is maintained at
2400 V (rms).

a) Find the average power loss in the line before
and after the load is added.

b) Find the magnitude of the voltage at the sending
end of the line before and after the load is added.

10.36 a) Find the six branch currents in the circuit
in Fig. P10.36.

b) Find the complex power in each branch of the
circuit.

c) Check your calculations by verifying that the
average power developed equals the average
power dissipated.

d) Check your calculations by verifying that the
magnetizing vars generated equal the magnetiz-
ing vars absorbed.

Figure P10.36

10.37 a) Find the average power delivered to the 
resistor in the circuit in Fig. P10.37.

b) Find the average power developed by the ideal
sinusoidal voltage source.

c) Find 

d) Show that the average power developed equals
the average power dissipated.

Figure P10.37

10.38 a) Find the average power delivered by the sinu-
soidal current source in the circuit of Fig. P10.38.

b) Find the average power delivered to the 
resistor.

20 Æ

�

�
Zab

a

b

0�
V (rms) 8 �

j10 �

j20 �

j14 � j8 �

j6 �

2 � j4 �

272

Zab.

8 Æ

+
-

10 �

Ia

Ib Id

Ic

IfIe
50   0°

V (rms)

j10 � j10 �

�j10 �10 �

j20 �

Ia - If

0.25 + j0.1 Æ.
Figure P10.38

10.39 a) Find the average power dissipated in each resis-
tor in the circuit in Fig. P10.39.

b) Check your answer by showing that the total
power developed equals the total power
absorbed.

Figure P10.39

10.40 The sinusoidal voltage source in the circuit in
Fig. P10.40 is developing an rms voltage of 2000 V.
The load in the circuit is absorbing four times
as much average power as the load. The two
loads are matched to the sinusoidal source that has
an internal impedance of 

a) Specify the numerical values of and 

b) Calculate the power delivered to the load.

c) Calculate the rms value of the voltage across the
resistor.

Figure P10.40

�

�V (rms)
0�2000

25 �

4 �
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Ideal
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4 Æ
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4 Æ

�
�

30 �

5 �

900 TurnsI
d
e
a
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�j40 �
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250  0°
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60 � 40 �

20 �

(rms)
5 0�A



Section 10.6

10.41 a) Determine the load impedance for the circuit
shown in Fig. P10.41 that will result in maximum
average power being transferred to the load if

b) Determine the maximum average power
delivered to the load from part (a) if 

c) Repeat part (a) when consists of two com-
ponents from Appendix H whose values yield a
maximum average power closest to the value
calculated in part (b).

Figure P10.41

10.42 Suppose an impedance equal to the conjugate of
the Thévenin impedance is connected to the termi-
nals c, d of the circuit shown in Fig. P9.75.

a) Find the average power developed by the sinu-
soidal voltage source.

b) What percentage of the power developed by the
source is lost in the linear transformer?

10.43 The phasor voltage in the circuit shown in
Fig. P10.43 is when no external load
is connected to the terminals a, b. When a load hav-
ing an impedance of is connected
across a, b, the value of is 

a) Find the impedance that should be connected
across a, b for maximum average power transfer.

b) Find the maximum average power transferred to
the load of (a).

c) Construct the impedance of part (a) using com-
ponents from Appendix H if the source fre-
quency is 50 Hz.

Figure P10.43

A circuit
operating in
the sinusoidal
steady
state b

a
�

�
Vab

156 - j42 V (rms).Vab

200 - j500 Æ

300 l0° V (rms)
Vab

�
�

ZL4 k�

500 mH31.25 nF

vg

ZL.

10 cos 8000t V.
vg =

v = 8 krad>s.

10.44 The load impedance for the circuit shown in
Fig. P10.44 is adjusted until maximum average
power is delivered to 

a) Find the maximum average power delivered 
to 

b) What percentage of the total power developed
in the circuit is delivered to ?

Figure P10.44

10.45 Prove that if only the magnitude of the load
impedance can be varied, most average power is
transferred to the load when (Hint: In
deriving the expression for the average load
power, write the load impedance ( ) in the form

and note that only
is variable.)

10.46 The variable resistor in the circuit shown in
Fig. P10.46 is adjusted until the average power it
absorbs is maximum.

a) Find R.

b) Find the maximum average power.

c) Find a resistor in Appendix H that would have
the most average power delivered to it.

Figure P10.46

10.47 The variable resistor in the circuit shown in
Fig. P10.47 is adjusted until maximum average
power is delivered to 

a) What is the value of in ohms?

b) Calculate the average power delivered to 

c) If is replaced with a variable impedance 
what is the maximum average power that can be
delivered to ?

d) In (c), what percentage of the circuit’s devel-
oped power is delivered to the load ?Zo

Zo

Zo,Ro

Ro.

Ro

Ro.

Ro

�
�

500 � j300 � �j480 �

j200 �

200 �

R
300  0°
V (rms)

|ZL|
ZL = |ZL| cos u + j|ZL| sin u,

ZL

|ZL| = |ZTh|.

�

�

�

�
ZL

25 � 1 �

j3 � 5If100  0� V (rms)

j10 �

If

ZL

ZL.

ZL.

ZL
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Figure P10.47

10.48 The peak amplitude of the sinusoidal voltage
source in the circuit shown in Fig. P10.48 is 
and its frequency is . The load resistor
can be varied from 0 to and the load capac-
itor can be varied from .

a) Calculate the average power delivered to the
load when and 

b) Determine the settings of and that will
result in the most average power being trans-
ferred to 

c) What is the average power in (b)? Is it greater
than the power in (a)?

d) If there are no constraints on and what is
the maximum average power that can be deliv-
ered to a load?

e) What are the values of and for the condi-
tion of (d)?

f) Is the average power calculated in (d) larger
than that calculated in (c)?

Figure P10.48

10.49 a) Assume that in Fig. P10.48 can be varied
between 0 and Repeat (b) and (c) of
Problem 10.48.

b) Is the new average power calculated in (a)
greater than that found in Problem 10.48(a)?

c) Is the new average power calculated in (a) less
than that found in 10.48(d)?

10.50 The sending-end voltage in the circuit seen in
Fig. P10.50 is adjusted so that the rms value of 
the load voltage is always 4000 V. The variable 

10 kÆ.
Ro

�

�
Co

6 k� 0.6 H

vg

Ro

12 k�

CoRo

Co,Ro

Ro.

CoRo

Co = 0.2 mF.Ro = 2000 Æ

0.1 mF to 0.5 mF
4000 Æ,

5000 rad>s 180 V,

�

�

5 �

5 �

�j 5 �

j 5 � RoVf100  0� V (rms)

Vf

�

�

10

capacitor is adjusted until the average power dissi-
pated in the line resistance is minimum.

a) If the frequency of the sinusoidal source is
60 Hz, what is the value of the capacitance in
microfarads?

b) If the capacitor is removed from the circuit,
what percentage increase in the magnitude of 
is necessary to maintain 4000 V at the load?

c) If the capacitor is removed from the circuit,
what is the percentage increase in line loss?

Figure P10.50

10.51 For the frequency-domain circuit in Fig. P10.51,
calculate:

a) the rms magnitude of .

b) the average power dissipated in the 
resistor.

c) the percentage of the average power generated
by the ideal voltage source that is delivered to
the load resistor.

Figure P10.51

10.52 The resistor in the circuit in Fig. P10.51 is
replaced with a variable impedance Assume 
is adjusted for maximum average power transfer
to 

a) What is the maximum average power that can
be delivered to ?

b) What is the average power developed by the
ideal voltage source when maximum average
power is delivered to ?

c) Choose single components from Appendix H to
form an impedance that dissipates average
power closest to the value in part (a). Assume
the source frequency is 60 Hz.

10.53 Find the impedance seen by the ideal voltage source
in the circuit in Fig. P10.53 when is adjusted for
maximum average power transfer to Zo.

Zo

Zo

Zo

Zo.

ZoZo.
160 Æ

�
�

5120  0°
V (rms)

30 � j100 �

j64 � 160 �j40 �
�

�

Vo

9 Æ
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Vo
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�jXCj100 �

�

�

Vs

�

�

0� V (rms)4000

Vs
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Figure P10.53

10.54 The impedance in the circuit in Fig. P10.54 is
adjusted for maximum average power transfer to

The internal impedance of the sinusoidal volt-
age source is 

a) What is the maximum average power delivered
to ?

b) What percentage of the average power delivered
to the linear transformer is delivered to ?

10.55 a) Find the steady-state expression for the currents
and in the circuit in Fig. P10.55 when

b) Find the coefficient of coupling.

c) Find the energy stored in the magnetically cou-
pled coils at and 

d) Find the power delivered to the resistor.

e) If the resistor is replaced by a variable
resistor what value of will yield maxi-
mum average power transfer to ?

f) What is the maximum average power in (e)?

g) Assume the resistor is replaced by a vari-
able impedance What value of will result
in maximum average power transfer to ?

h) What is the maximum average power in (g)?

Figure P10.55

�
�

125 �

625 mHvg

ig iL

625 mH 375 �

312.5 mH

ZL

ZLZL.
375 Æ

RL

RLRL,
375 Æ
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t = 2.5p ms.t = 1.25p ms

vg = 400 cos 400t V.
iLig

ZL

ZL

4 + j7 Æ.
ZL.

ZL

Zo
�
�

40  0°
V (rms)

15 Ω

j30 �
j18 �

j15 �

10.56 The values of the parameters in the circuit shown
in Fig. P10.56 are 

and If
find

a) the rms magnitude of 

b) the average power delivered to 

c) the percentage of the average power generated
by the ideal voltage source that is delivered to 

Figure P10.56

10.57 Assume the coefficient of coupling in the circuit in
Fig. P10.56 is adjustable.

a) Find the value of k that makes equal to zero.

b) Find the power developed by the source when k
has the value found in (a).

10.58 Assume the load resistor ( ) in the circuit in
Fig. P10.56 is adjustable.

a) What value of will result in the maximum
average power being transferred to ?

b) What is the value of the maximum power
transferred?

10.59 The load impedance in the circuit in Fig. P10.59
is adjusted until maximum average power is trans-
ferred to 

a) Specify the value of if and

b) Specify the values of and when is
absorbing maximum average power.

Figure P10.59
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Figure P10.54
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10.60 The sinusoidal voltage source in the circuit in
Fig. P10.60 is operating at a frequency of .
The variable capacitive reactance in the circuit is
adjusted until the average power delivered to the

resistor is as large as possible.

a) Find the value of C in microfarads.

b) When C has the value found in (a), what is the
average power delivered to the resistor?

c) Replace the resistor with a variable resis-
tor Specify the value of so that maximum
average power is delivered to 

d) What is the maximum average power that can
be delivered to ?

Figure P10.60

10.61 Find the average power delivered to the resis-
tor in the circuit of Fig. P10.61.

Figure P10.61

10.62 The ideal transformer connected to the load
in Problem 10.61 is replaced with an ideal trans-
former that has a turns ratio of 1:a.

a) What value of a results in maximum average
power being delivered to the resistor?

b) What is the maximum average power?

10.63 a) Find the turns ratio for the ideal trans-
former in the circuit in Fig. P10.63 so that 
maximum average power is delivered to the

load.

b) Find the average power delivered to the 
load.

c) Find the voltage 

d) What percentage of the power developed by the
ideal current source is delivered to the 
resistor?

400 Æ

V1.

400 Æ

400 Æ

N1>N2

5 kÆ

5 kÆ

�
�

145   0°
V (rms)

200 �

5 k�

Ideal Ideal

25 : 1 1 : 50

5 kÆ

1:5
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2 � 100 �

j10 �20 � C15  0�
A (rms)

Ro

Ro.
RoRo.

100 Æ

100 Æ

100 Æ

20 krad>s
Figure P10.63

10.64 a) If equals 1000 turns, how many turns should
be placed on the winding of the ideal trans-
former in the circuit seen in Fig. P10.64 so that
maximum average power is delivered to the

load?

b) Find the average power delivered to the 
resistor.

c) What percentage of the average power deliv-
ered by the ideal voltage source is dissipated in
the linear transformer?

Figure P10.64

10.65 The variable load resistor in the circuit shown in
Fig. P10.65 is adjusted for maximum average power
transfer to 

a) Find the maximum average power.

b) What percentage of the average power devel-
oped by the ideal voltage source is delivered to

when is absorbing maximum average
power?

c) Test your solution by showing that the power
developed by the ideal voltage source equals the
power dissipated in the circuit.

Figure P10.65
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10.66 Repeat Problem 10.65 for the circuit shown in
Fig. P10.66.

Figure P10.66

Sections 10.1–10.6

10.67 a) Use the values in Table 10.3 to calculate the
number of kilowatt-hours consumed in one
month by a notebook computer AC adapter if
every day the computer is charging for 5 hours
and sleeping for 19 hours..

b) Repeat the calculation in part (a) assuming that
the computer is charging for 5 hours and off for
19 hours.

c) Repeat the calculation in part (a) assuming that
the computer is charging for 5 hours and dis-
connected from the AC adapter for 19 hours,
but the AC adapter remains plugged into the
wall outlet.

80 � 20 � 40 �

�

�V (rms)
0�500 360 �

Ideal

1:2

RL

d) Repeat the calculation in part (a) assuming that
the computer is charging for 5 hours and the AC
adapter is unplugged from the wall outlet for 
19 hours.

10.68 a) Suppose you use your microwave oven for 
12 minutes each day. The remaining time, the
oven is ready with the door closed. Use the val-
ues in Table 10.3 to calculate the total number
of kilowatt-hours used by the microwave oven
in one month.

b) What percentage of the power used by the
microwave oven in one month is consumed
when the oven is ready with the door closed?

10.69 Determine the amount of power, in watts, con-
sumed by the transformer in Fig. 10.29.Assume that
the voltage source is ideal (Rs 0 ), R1 5 ,
and L1 250 mH.The frequency of the 120 V(rms)
source is 60 Hz.

10.70 Repeat Problem 10.69, but assume that the 
linear transformer has been improved so that
Rs 50 m All other values are unchanged.

10.71 Repeat Problem 10.69 assuming that the linear
transformer in Fig. 10.29 has been replaced by an
ideal transformer with a turns ratio of 30:1. (Hint –
you shouldn’t need to make any calculations to
determine the amount of power consumed.)

Æ.=

=

Æ=Æ=
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C H A P T E R

Generating, transmitting, distributing, and using large blocks
of electric power is accomplished with three-phase circuits. The
comprehensive analysis of such systems is a field of study in its
own right; we cannot hope to cover it in a single chapter.
Fortunately, an understanding of only the steady-state sinusoidal
behavior of balanced three-phase circuits is sufficient for engi-
neers who do not specialize in power systems. We define what we
mean by a balanced circuit later in the discussion. The same cir-
cuit analysis techniques discussed in earlier chapters can be
applied to either unbalanced or balanced three-phase circuits.
Here we use these familiar techniques to develop several short-
cuts to the analysis of balanced three-phase circuits.

For economic reasons, three-phase systems are usually
designed to operate in the balanced state. Thus, in this introduc-
tory treatment, we can justify considering only balanced circuits.
The analysis of unbalanced three-phase circuits, which you will
encounter if you study electric power in later courses, relies heav-
ily on an understanding of balanced circuits.

The basic structure of a three-phase system consists of volt-
age sources connected to loads by means of transformers and
transmission lines. To analyze such a circuit, we can reduce it to a
voltage source connected to a load via a line. The omission of the
transformer simplifies the discussion without jeopardizing a basic
understanding of the calculations involved. Figure 11.1 on
page 398 shows a basic circuit. A defining characteristic of a bal-
anced three-phase circuit is that it contains a set of balanced
three-phase voltages at its source. We begin by considering these
voltages, and then we move to the voltage and current relation-
ships for the Y-Y and Y- circuits. After considering voltage and
current in such circuits, we conclude with sections on power and
power measurement.

¢

C H A P T E R  C O N T E N T S

11.1 Balanced Three-Phase Voltages p. 398

11.2 Three-Phase Voltage Sources p. 399

11.3 Analysis of the Wye-Wye Circuit p. 400

11.4 Analysis of the Wye-Delta Circuit p. 405

11.5 Power Calculations in Balanced Three-Phase
Circuits p. 408

11.6 Measuring Average Power in Three-Phase
Circuits p. 413

C H A P T E R  O B J E C T I V E S

1 Know how to analyze a balanced, three-phase
wye-wye connected circuit.

2 Know how to analyze a balanced, three-phase
wye-delta connected circuit.

3 Be able to calculate power (average, reactive,
and complex) in any three-phase circuit.

Balanced 
Three-Phase Circuits1111



In this chapter we introduce circuits that are designed to
handle large blocks of electric power. These are the circuits
that are used to transport electric power from the generating
plants to both industrial and residential customers. We intro-
duced the typical residential customer circuit as used in the
United States as the design perspective in Chapter 9. Now we
introduce the type of circuit used to deliver electric power to
an entire residential subdivision.

One of the constraints imposed on the design and oper-
ation of an electric utility is the requirement that the utility
maintain the rms voltage level at the customer’s premises.
Whether lightly loaded, as at 3:00 am, or heavily loaded, as
at midafternoon on a hot, humid day, the utility is obligated
to supply the same rms voltage. Recall from Chapter 10 that
a capacitor can be thought of as a source of magnetizing
vars. Therefore, one technique for maintaining voltage levels
on a utility system is to place capacitors at strategic loca-
tions in the distribution network. The idea behind this tech-
nique is to use the capacitors to supply magnetizing vars

close to the loads requiring them, as opposed to sending
them over the lines from the generator. We shall illustrate
this concept after we have introduced the analysis of bal-
anced three-phase circuits.
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Practical Perspective
Transmission and Distribution of Electric Power
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398 Balanced Three-Phase Circuits

11.1 Balanced Three-Phase Voltages
A set of balanced three-phase voltages consists of three sinusoidal volt-
ages that have identical amplitudes and frequencies but are out of phase
with each other by exactly Standard practice is to refer to the three
phases as a, b, and c, and to use the a-phase as the reference phase. The
three voltages are referred to as the a-phase voltage, the b-phase voltage,
and the c-phase voltage.

Only two possible phase relationships can exist between the a-phase
voltage and the b- and c-phase voltages. One possibility is for the b-phase
voltage to lag the a-phase voltage by in which case the c-phase volt-
age must lead the a-phase voltage by This phase relationship is
known as the abc (or positive) phase sequence. The only other possibility
is for the b-phase voltage to lead the a-phase voltage by in which
case the c-phase voltage must lag the a-phase voltage by This phase
relationship is known as the acb (or negative) phase sequence. In phasor
notation, the two possible sets of balanced phase voltages are

(11.1)

and

(11.2)

Equations 11.1 are for the abc, or positive, sequence. Equations 11.2
are for the acb, or negative, sequence. Figure 11.2 shows the phasor dia-
grams of the voltage sets in Eqs. 11.1 and 11.2. The phase sequence is
the clockwise order of the subscripts around the diagram from The
fact that a three-phase circuit can have one of two phase sequences
must be taken into account whenever two such circuits operate in par-
allel. The circuits can operate in parallel only if they have the same
phase sequence.

Another important characteristic of a set of balanced three-phase
voltages is that the sum of the voltages is zero. Thus, from either Eqs. 11.1
or Eqs. 11.2,

(11.3)

Because the sum of the phasor voltages is zero, the sum of the instanta-
neous voltages also is zero; that is,

(11.4)

Now that we know the nature of a balanced set of three-phase volt-
ages, we can state the first of the analytical shortcuts alluded to in the
introduction to this chapter: If we know the phase sequence and 

va + vb + vc = 0.

Va + Vb + Vc = 0.

Va.

 Vc = Vm l -120 � .

 Vb = Vm l +120 � ,

 Va = Vm l0 � ,

 Vc = Vm l +120 � ,

 Vb = Vm l -120 � ,

 Va = Vm l0 � ,
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120 � ,
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Figure 11.2 � Phasor diagrams of a balanced set of
three-phase voltages. (a) The abc (positive) sequence.
(b) The acb (negative) sequence.
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Figure 11.1 � A basic three-phase circuit.
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one voltage in the set, we know the entire set. Thus for a balanced three-
phase system, we can focus on determining the voltage (or current) in one
phase, because once we know one phase quantity, we know the others.

NOTE: Assess your understanding of three-phase voltages by trying
Chapter Problems 11.1 and 11.2.

11.2 Three-Phase Voltage Sources
A three-phase voltage source is a generator with three separate wind-
ings distributed around the periphery of the stator. Each winding com-
prises one phase of the generator. The rotor of the generator is an
electromagnet driven at synchronous speed by a prime mover, such as a
steam or gas turbine. Rotation of the electromagnet induces a sinusoidal
voltage in each winding. The phase windings are designed so that the
sinusoidal voltages induced in them are equal in amplitude and out of
phase with each other by The phase windings are stationary with
respect to the rotating electromagnet, so the frequency of the voltage
induced in each winding is the same. Figure 11.3 shows a sketch of a two-
pole three-phase source.

There are two ways of interconnecting the separate phase windings to
form a three-phase source: in either a wye (Y) or a delta ( ) configura-
tion. Figure 11.4 shows both, with ideal voltage sources used to model the
phase windings of the three-phase generator. The common terminal in the
Y-connected source, labeled n in Fig. 11.4(a), is called the neutral terminal
of the source. The neutral terminal may or may not be available for exter-
nal connections.

Sometimes, the impedance of each phase winding is so small (com-
pared with other impedances in the circuit) that we need not account for it
in modeling the generator; the model consists solely of ideal voltage
sources, as in Fig. 11.4. However, if the impedance of each phase winding is
not negligible, we place the winding impedance in series with an ideal
sinusoidal voltage source. All windings on the machine are of the same
construction, so we assume the winding impedances to be identical. The
winding impedance of a three-phase generator is inductive. Figure 11.5
shows a model of such a machine, in which is the winding resistance, and

is the inductive reactance of the winding.
Because three-phase sources and loads can be either Y-connected

or -connected, the basic circuit in Fig. 11.1 represents four different
configurations:
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Figure 11.3 � A sketch of a three-phase voltage source.
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Figure 11.4 � The two basic connections of an ideal
three-phase source. (a) A Y-connected source. 
(b) A -connected source.¢

We begin by analyzing the Y-Y circuit. The remaining three arrangements
can be reduced to a Y-Y equivalent circuit, so analysis of the Y-Y circuit is
the key to solving all balanced three-phase arrangements. We then illus-
trate the reduction of the Y- arrangement and leave the analysis of the 

-Y and - arrangements to you in the Problems.¢¢¢
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Figure 11.6 � A three-phase Y-Y system.

11.3 Analysis of the Wye-Wye Circuit
Figure 11.6 illustrates a general Y-Y circuit, in which we included a fourth
conductor that connects the source neutral to the load neutral. A fourth
conductor is possible only in the Y-Y arrangement. (More about this
later.) For convenience, we transformed the Y connections into “tipped-
over tees.” In Fig. 11.6, and represent the internal impedance
associated with each phase winding of the voltage generator; and

represent the impedance of the lines connecting a phase of the source
to a phase of the load; is the impedance of the neutral conductor con-
necting the source neutral to the load neutral; and and repre-
sent the impedance of each phase of the load.

We can describe this circuit with a single node-voltage equation.
Using the source neutral as the reference node and letting denote the
node voltage between the nodes N and n, we find that the node-voltage
equation is

(11.5)

VN

Z0
+

VN - Va ¿n

ZA + Z1a + Zga
+

VN - Vb ¿n

ZB + Z1b + Zgb
+

VN - Vc¿n

ZC + Z1c + Zgc
= 0.

VN
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Figure 11.5 � A model of a three-phase source with winding impedance: (a) a Y-connected source; and 
(b) a -connected source.¢
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This is the general equation for any circuit of the Y-Y configuration
depicted in Fig. 11.6. But we can simplify Eq. 11.5 significantly if we now
consider the formal definition of a balanced three-phase circuit. Such a
circuit satisfies the following criteria:

1. The voltage sources form a set of balanced three-phase voltages.
In Fig. 11.6, this means that and are a set of bal-
anced three-phase voltages.

2. The impedance of each phase of the voltage source is the same. In
Fig. 11.6, this means that 

3. The impedance of each line (or phase) conductor is the same. In
Fig. 11.6, this means that 

4. The impedance of each phase of the load is the same. In Fig. 11.6,
this means that 

There is no restriction on the impedance of a neutral conductor; its
value has no effect on whether the system is balanced.

If the circuit in Fig. 11.6 is balanced, we may rewrite Eq. 11.5 as

(11.6)

where

The right-hand side of Eq. 11.6 is zero, because by hypothesis the numera-
tor is a set of balanced three-phase voltages and is not zero. The only
value of that satisfies Eq. 11.6 is zero. Therefore, for a balanced three-
phase circuit,

(11.7)

Equation 11.7 is extremely important. If is zero, there is no differ-
ence in potential between the source neutral, n, and the load neutral, N;
consequently, the current in the neutral conductor is zero. Hence we may
either remove the neutral conductor from a balanced Y-Y configuration
( ) or replace it with a perfect short circuit between the nodes n and
N ( ). Both equivalents are convenient to use when modeling bal-
anced three-phase circuits.

We now turn to the effect that balanced conditions have on the three
line currents. With reference to Fig. 11.6, when the system is balanced, the
three line currents are

(11.8)

(11.9)

(11.10)

We see that the three line currents form a balanced set of three-phase cur-
rents; that is, the current in each line is equal in amplitude and frequency
and is out of phase with the other two line currents. Thus, if we calcu-
late the current and we know the phase sequence, we have a shortcutIaA

120 �

 IcC =

Vc¿n - VN

ZC + Z1c + Zgc
=

Vc¿n

Zf
 .

 IbB =

Vb¿n - VN

ZB + Z1b + Zgb
=

Vb¿n

Zf
 ,

 IaA =

Va¿n - VN

ZA + Z1a + Zga
=

Va¿n

Zf
 ,

VN = 0
I0 = 0

VN

VN = 0.

VN

Zf

Zf = ZA + Z1a + Zga = ZB + Z1b + Zgb = ZC + Z1c + Zgc.

VNa 1
Z0

+

3
Zf
b =

Va¿n + Vb¿n + Vc¿n

Zf
 ,

ZA = ZB = ZC.

Z1a = Z1b = Z1c.

Zga = Zgb = Zgc.

Vc¿nVb¿n,Va¿n,

� Conditions for a balanced three-phase 
circuit
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for finding and This procedure parallels the shortcut used to find
the b- and c-phase source voltages from the a-phase source voltage.

We can use Eq. 11.8 to construct an equivalent circuit for the a-phase
of the balanced Y-Y circuit. From this equation, the current in the a-phase
conductor line is simply the voltage generated in the a-phase winding of
the generator divided by the total impedance in the a-phase of the circuit.
Thus Eq. 11.8 describes the simple circuit shown in Fig. 11.7, in which the
neutral conductor has been replaced by a perfect short circuit. The circuit
in Fig. 11.7 is referred to as the single-phase equivalent circuit of a bal-
anced three-phase circuit. Because of the established relationships
between phases, once we solve this circuit, we can easily write down the
voltages and currents in the other two phases. Thus, drawing a single-
phase equivalent circuit is an important first step in analyzing a three-
phase circuit.

A word of caution here. The current in the neutral conductor in
Fig. 11.7 is which is not the same as the current in the neutral conduc-
tor of the balanced three-phase circuit, which is

(11.11)

Thus the circuit shown in Fig. 11.7 gives the correct value of the line cur-
rent but only the a-phase component of the neutral current. Whenever
this single-phase equivalent circuit is applicable, the line currents form
a balanced three-phase set, and the right-hand side of Eq. 11.11 sums 
to zero.

Once we know the line current in Fig. 11.7, calculating any voltages of
interest is relatively simple. Of particular interest is the relationship
between the line-to-line voltages and the line-to-neutral voltages. We
establish this relationship at the load terminals, but our observations also
apply at the source terminals. The line-to-line voltages at the load termi-
nals can be seen in Fig. 11.8. They are and where the dou-
ble subscript notation indicates a voltage drop from the first-named node
to the second. (Because we are interested in the balanced state, we have
omitted the neutral conductor from Fig. 11.8.)

The line-to-neutral voltages are and We can now
describe the line-to-line voltages in terms of the line-to-neutral voltages,
using Kirchhoff’s voltage law:

(11.12)

(11.13)

(11.14)

To show the relationship between the line-to-line voltages and the
line-to-neutral voltages, we assume a positive, or abc, sequence. Using the
line-to-neutral voltage of the a-phase as the reference,

(11.15)

(11.16)

(11.17) VCN = Vf l +120 � ,

 VBN = Vf l -120 � ,

 VAN = Vf l0 � ,

 VCA = VCN - VAN.

 VBC = VBN - VCN,

 VAB = VAN - VBN,

VCN.VBN,VAN,

VCA,VBC,VAB,

Io = IaA + IbB + IcC.

IaA,

IcC.IbBa�

n

a A
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�

�

Figure 11.7 � A single-phase equivalent circuit.
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where represents the magnitude of the line-to-neutral voltage.
Substituting Eqs. 11.15–11.17 into Eqs. 11.12–11.14, respectively, yields

(11.18)

(11.19)

(11.20)

Equations 11.18–11.20 reveal that

1. The magnitude of the line-to-line voltage is times the magni-
tude of the line-to-neutral voltage.

2. The line-to-line voltages form a balanced three-phase set of voltages.

3. The set of line-to-line voltages leads the set of line-to-neutral volt-
ages by 

We leave to you the demonstration that for a negative sequence, the only
change is that the set of line-to-line voltages lags the set of line-to-neutral
voltages by The phasor diagrams shown in Fig. 11.9 summarize these
observations. Here, again, is a shortcut in the analysis of a balanced sys-
tem: If you know the line-to-neutral voltage at some point in the circuit,
you can easily determine the line-to-line voltage at the same point and
vice versa.

We now pause to elaborate on terminology. Line voltage refers to the
voltage across any pair of lines; phase voltage refers to the voltage across
a single phase. Line current refers to the current in a single line; phase
current refers to current in a single phase. Observe that in a connec-
tion, line voltage and phase voltage are identical, and in a Y connection,
line current and phase current are identical.

Because three-phase systems are designed to handle large blocks of
electric power, all voltage and current specifications are given as rms val-
ues. When voltage ratings are given, they refer specifically to the rating of
the line voltage. Thus when a three-phase transmission line is rated at
345 kV, the nominal value of the rms line-to-line voltage is 345,000 V. In
this chapter we express all voltages and currents as rms values.

Finally, the Greek letter phi ( ) is widely used in the literature to
denote a per-phase quantity. Thus and are interpreted
as voltage/phase, current/phase, impedance/phase, power/phase, and
reactive power/phase, respectively.

Example 11.1 shows how to use the observations made so far to solve
a balanced three-phase Y-Y circuit.

QfPf,Zf,If,Vf,
f

¢

30 � .

30 � .

13

 VCA = Vf l120 �
- Vf l0 �

= 13Vf l150 � .

 VBC = Vf l -120 �
- Vf l120 �

= 13Vf l -90 � ,

 VAB = Vf l0 �
- Vf l -120 �

= 13Vf l30 � ,

Vf

VBC

VAN

VCN

VBN

VAB
VCA

30�

30�

30�

VBC

VAN

VCN

VBN

VAB
VCA

30�

30�

30�

Figure 11.9 � Phasor diagrams showing the relation-
ship between line-to-line and line-to-neutral voltages in
a balanced system. (a) The abc sequence. (b) The acb
sequence.

Example 11.1 Analyzing a Wye-Wye Circuit

A balanced three-phase Y-connected generator
with positive sequence has an impedance of

and an internal voltage of 120 
The generator feeds a balanced three-phase 
Y-connected load having an impedance of

The impedance of the line connect-
ing the generator to the load is The
a-phase internal voltage of the generator is speci-
fied as the reference phasor.

0.8 + j1.5 Æ>f.
39 + j28 Æ>f.

V>f.0.2 + j0.5 Æ>f
a) Construct the a-phase equivalent circuit of 

the system.

b) Calculate the three line currents and 

c) Calculate the three phase voltages at the load,
and 

d) Calculate the line voltages and at
the terminals of the load.

VCAVBC,VAB,

VCN.VBN,VAN,

IcC.IbB,IaA,
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e) Calculate the phase voltages at the terminals of
the generator, and 

f) Calculate the line voltages and at
the terminals of the generator.

g) Repeat (a)–(f) for a negative phase sequence.

Solution

a) Figure 11.10 shows the single-phase equivalent
circuit.

b) The a-phase line current is

Figure 11.10 � The single-phase equivalent circuit for
Example 11.1.

For a positive phase sequence,

c) The phase voltage at the A terminal of the load is

For a positive phase sequence,

d) For a positive phase sequence, the line voltages
lead the phase voltages by thus

 VCA = 199.58 l148.81�  V.

 VBC = 199.58 l -91.19 �  V,

 = 199.58 l28.81�  V,

 VAB = (13 l30 �
 )VAN

30 � ;

 VCN = 115.22 l118.81�  V.

 VBN = 115.22 l -121.19 �  V,

 = 115.22 l -1.19 �  V.

 VAN = (39 + j28)(2.4 l -36.87 �
 )

 IcC = 2.4 l83.13 �  A.

 IbB = 2.4 l -156.87 �  A,

�

�

�

0.2 � 0.8 �

n N

j0.5 � j1.5 �

39 �

j 28 �

IaA

Van

�

�

VAN120  0� V

a� a A

�

 = 2.4 l -36.87 �  A.

 =

120 l0 �

40 + j30

 IaA =

120 l0 �

(0.2 + 0.8 + 39) + j(0.5 + 1.5 + 28)

VcaVbc,Vab,

Vcn.Vbn,Van,
e) The phase voltage at the a terminal of the source is

For a positive phase sequence,

f) The line voltages at the source terminals are

g) Changing the phase sequence has no effect on
the single-phase equivalent circuit.The three line
currents are

The phase voltages at the load are

For a negative phase sequence, the line voltages
lag the phase voltages by :

The phase voltages at the terminals of the gener-
ator are

The line voltages at the terminals of the genera-
tor are

 Vca = 205.94 l -150.32 �  V.

 Vbc = 205.94 l89.68 �  V,

 = 205.94 l -30.32 �  V,

 Vab = (13 l -30 �
 )Van

 Vcn = 118.90 l -120.32 �  V.

 Vbn = 118.90 l119.68 �  V,

 Van = 118.90 l -0.32 �  V,

 VCA = 199.58 l -151.19 �  V.

 VBC = 199.58 l88.81�  V,

 = 199.58 l -31.19 �  V,

 VAB = (13 l -30 �
 )VAN

30 �

 VCN = 115.22 l -121.19 �  V.

 VBN = 115.22 l118.81�  V,

 VAN = 115.22 l -1.19 �  V,

 IcC = 2.4 l -156.87 �  A.

 IbB = 2.4 l83.13 �  A,

 IaA = 2.4 l -36.87 �  A,

 Vca = 205.94 l149.68 �  V.

 Vbc = 205.94 l -90.32 �  V,

 = 205.94 l29.68 �  V,

 Vab = (13 l30 �
 )Van

 Vcn = 118.90 l119.68 �  V.

 Vbn = 118.90 l -120.32 �  V,

 = 118.90 l -0.32 �  V.

 = 118.90 - j0.67

 = 120 - 1.29 l31.33 �

 Van = 120 - (0.2 + j0.5)(2.4 l -36.87 �
 )
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Objective 1—Know how to analyze a balanced, three-phase wye-wye circuit

A S S E S S M E N T  P R O B L E M S

sequence of acb and an internal impedance of
Use the a-phase voltage at

the load as the reference and calculate (a) the
line currents and (b) the line volt-
ages at the source, and and (c) the
internal phase-to-neutral voltages at the source,

and 

Answer: (a)
and

(b)
and

(c)
and

Vc¿n = 2482.05 l -118.07 �  V.
Vb¿n = 2482.05 l121.93 �  V,
Va¿n = 2482.05 l1.93 �  V,

Vca = 4275.02 l -148.38 �  V;
Vbc = 4275.02 l91.62 �  V,
Vab = 4275.02 l -28.38 �  V,

IcC = 120 l -156.87 �  A;
IbB = 120 l83.13 �  A,
IaA = 120 l -36.87 �  A,

Vc¿n.Vb¿n,Va¿n,

Vca;Vbc,Vab,
IcC;IbB,IaA,

0.02 + j0.16 Æ>f.
11.1 The voltage from A to N in a balanced three-

phase circuit is If the phase
sequence is positive, what is the value of ?

Answer:

11.2 The c-phase voltage of a balanced three-phase
Y-connected system is If the
phase sequence is negative, what is the value 
of ?

Answer:

11.3 The phase voltage at the terminals of a bal-
anced three-phase Y-connected load is 2400 V.
The load has an impedance of 
and is fed from a line having an impedance of

The Y-connected source at
the sending end of the line has a phase
0.10 + j0.80 Æ>f.

16 + j12 Æ>f

779.42 l65 �  V.

VAB

450 l -25 �  V.

415.69 l -120 �  V.

VBC

240 l -30 �  V.

NOTE: Also try Chapter Problems 11.9, 11.11, and 11.12.

11.4 Analysis of the Wye-Delta Circuit
If the load in a three-phase circuit is connected in a delta, it can be trans-
formed into a wye by using the delta-to-wye transformation discussed in
Section 9.6. When the load is balanced, the impedance of each leg of the
wye is one third the impedance of each leg of the delta, or

(11.21)

which follows directly from Eqs. 9.51–9.53. After the load has been
replaced by its Y equivalent, the a-phase can be modeled by the single-
phase equivalent circuit shown in Fig. 11.11.

We use this circuit to calculate the line currents, and we then use the
line currents to find the currents in each leg of the original load. The
relationship between the line currents and the currents in each leg of the
delta can be derived using the circuit shown in Fig. 11.12.

When a load (or source) is connected in a delta, the current in each leg
of the delta is the phase current, and the voltage across each leg is the
phase voltage. Figure 11.12 shows that, in the configuration, the phase
voltage is identical to the line voltage.

To demonstrate the relationship between the phase currents and line
currents, we assume a positive phase sequence and let represent the
magnitude of the phase current. Then

(11.22)

(11.23)

(11.24) ICA = If l120 � .

 IBC = If l -120 � ,

 IAB = If l0 � ,

If

¢

¢

¢

ZY =

Z
¢

3
 ,

Relationship between three-phase 
delta-connected and wye-connected 
� impedance

Va�n

a� a A

n N

�

�

Zga Zla

ZA
IaA

Figure 11.11 � A single-phase equivalent circuit.
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Figure 11.12 � A circuit used to establish the 
relationship between line currents and phase currents in
a balanced load.¢



In writing these equations, we arbitrarily selected as the reference
phasor.

We can write the line currents in terms of the phase currents by direct
application of Kirchhoff’s current law:

(11.25)

(11.26)

(11.27)

Comparing Eqs. 11.25–11.27 with Eqs. 11.22–11.24 reveals that the magni-
tude of the line currents is times the magnitude of the phase currents
and that the set of line currents lags the set of phase currents by 

We leave to you to verify that, for a negative phase sequence, the line
currents are times larger than the phase currents and lead the phase
currents by Thus, we have a shortcut for calculating line currents from
phase currents (or vice versa) for a balanced three-phase -connected
load. Figure 11.13 summarizes this shortcut graphically. Example 11.2
illustrates the calculations involved in analyzing a balanced three-phase
circuit having a Y-connected source and a -connected load.¢

¢

30 � .
13

30 � .
13

 = 13If l90 � .

 = If l120 �
- If l -120 �

 IcC = ICA - IBC

 = 13If l -150 � ,

 = If l -120 �
- If l0 �

 IbB = IBC - IAB

 = 13If l -30 � ,

 = If l0 �
- If l120 �

 IaA = IAB - ICA

IAB

IaAIbB

IcC

IAB30�

IAB
30�

ICA

30�

IBC

30�

IBC

30�

ICA
30�

IcC

IaAIbB

(a)

(b)

Figure 11.13 � Phasor diagrams showing the 
relationship between line currents and phase currents in
a -connected load. (a) The positive sequence. (b) The
negative sequence.
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The Y-connected source in Example 11.1 feeds a 
-connected load through a distribution line hav-

ing an impedance of The load
impedance is Use the a-phase
internal voltage of the generator as the reference.

a) Construct a single-phase equivalent circuit of the
three-phase system.

b) Calculate the line currents and 

c) Calculate the phase voltages at the load terminals.

d) Calculate the phase currents of the load.

e) Calculate the line voltages at the source terminals.

Solution

a) Figure 11.14 shows the single-phase equivalent
circuit.The load impedance of the Y equivalent is

118.5 + j85.8
3

= 39.5 + j  28.6 Æ>f.

IcC .IbB ,IaA ,

118.5 + j85.8 Æ>f.
0.3 + j0.9 Æ>f.

¢

Figure 11.14 � The single-phase equivalent circuit for
Example 11.2.

b) The a-phase line current is

 =

120 l0 �

40 + j 30
= 2.4 l -36.87 �  A.

 IaA =

120 l0 �

(0.2 + 0.3 + 39.5) + j(0.5 + 0.9 + 28.6)

0.2 �

n

j0.5 �

120  0� V

a� a A

N

0.3 � j0.9 �

IaA

�

�

39.5 �

j28.6 �

Example 11.2 Analyzing a Wye-Delta Circuit
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Hence

c) Because the load is connected, the phase volt-
ages are the same as the line voltages. To calcu-
late the line voltages, we first calculate :

Because the phase sequence is positive, the line
voltage is

Therefore

d) The phase currents of the load may be calculated
directly from the line currents:

 = 1.39 l -6.87 �  A.

 IAB = a 1
13

 l30 � b  IaA

 VCA = 202.72 l149.04 �  V.

 VBC = 202.72 l -90.96 �  V,

 = 202.72 l29.04 �  V.

 VAB = (13 l30 �
 ) VAN

VAB

 = 117.04 l -0.96 �  V.

 VAN = (39.5 + j28.6)(2.4 l -36.87 �
 )

VAN

¢

 IcC = 2.4 l83.13 �  A.

 IbB = 2.4 l -156.87 �  A,

Once we know we also know the other load
phase currents:

Note that we can check the calculation of by
using the previously calculated and the
impedance of the -connected load; that is,

e) To calculate the line voltage at the terminals of
the source, we first calculate Figure 11.14
shows that is the voltage drop across the line
impedance plus the load impedance, so

The line voltage is

or

Therefore

 Vca = 205.94 l149.68 �  V.

 Vbc = 205.94 l -90.32 �  V,

Vab = 205.94 l29.68 �  V.

Vab = (13 l30 �
 )Van,

Vab

 = 118.90 l -0.32 �  V.

 Van = (39.8 + j29.5)(2.4 l -36.87 �
 )

Van

Van.

 = 1.39 l -6.87 �  A.

 IAB =

VAB

Zf
=

202.72l29.04 �

118.5 + j85.8

¢

VAB

IAB

 ICA = 1.39 l113.13 �  A.

 IBC = 1.39 l -126.87 �  A,

IAB,

Objective 2—Know how to analyze a balanced, three-phase wye-delta connected circuit

11.6 The line voltage at the terminals of a bal-
anced three-phase -connected load is

The line current is

a) Calculate the per-phase impedance of the
load if the phase sequence is positive.

b) Repeat (a) for a negative phase sequence.

Answer: (a)

(b)

11.7 The line voltage at the terminals of a balanced 
-connected load is 110 V. Each phase of the

load consists of a resistor in parallel with
a inductive impedance.What is the mag-
nitude of the current in the line feeding the load?

Answer: 86.60 A.

2.75 Æ
3.667 Æ

¢

104 l +40 �  Æ.

104 l -20 �  Æ;

69.28 l -10 �  A.
IaA4160 l0 �  V.

¢

VAB11.4 The current in a balanced three-phase 
-connected load is If the phase

sequence is positive, what is the value of ?

Answer:

11.5 A balanced three-phase -connected load is
fed from a balanced three-phase circuit. The
reference for the b-phase line current is toward
the load. The value of the current in the 
b-phase is If the phase sequence is
negative, what is the value of ?

Answer: 6.93 l -85 �  A.

IAB

12 l65 �  A.

¢

13.86 l -45 �  A.

IcC

8 l -15 �  A.¢

ICA

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 11.14–11.16.
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11.5 Power Calculations in Balanced
Three-Phase Circuits

So far, we have limited our analysis of balanced three-phase circuits to
determining currents and voltages. We now discuss three-phase power
calculations. We begin by considering the average power delivered to a
balanced Y-connected load.

Average Power in a Balanced Wye Load
Figure 11.15 shows a Y-connected load, along with its pertinent currents and
voltages. We calculate the average power associated with any one phase by
using the techniques introduced in Chapter 10. With Eq. 10.21 as a starting
point, we express the average power associated with the a-phase as

(11.28)

where and denote the phase angles of and respectively.
Using the notation introduced in Eq. 11.28, we can find the power associ-
ated with the b- and c-phases:

(11.29)

(11.30)

In Eqs. 11.28–11.30, all phasor currents and voltages are written in terms
of the rms value of the sinusoidal function they represent.

In a balanced three-phase system, the magnitude of each line-to-neutral
voltage is the same, as is the magnitude of each phase current. The argu-
ment of the cosine functions is also the same for all three phases. We
emphasize these observations by introducing the following notation:

(11.31)

(11.32)

and

(11.33)

Moreover, for a balanced system, the power delivered to each phase of the
load is the same, so

(11.34)

where represents the average power per phase.
The total average power delivered to the balanced Y-connected load

is simply three times the power per phase, or

(11.35)

Expressing the total power in terms of the rms magnitudes of the line volt-
age and current is also desirable. If we let and represent the rms
magnitudes of the line voltage and current, respectively, we can modify
Eq. 11.35 as follows:

(11.36) = 13VLIL cos uf.

 PT = 3a VL

13
bIL cos uf

ILVL

PT = 3Pf = 3VfIf cos uf.

Pf

PA = PB = PC = Pf = VfIf cos uf,

uf = uvA - uiA = uvB - uiB = uvC - uiC.

 If = |IaA| = |IbB| = |IcC|,

 Vf = |VAN| = |VBN| = |VCN|,

 PC = |VCN||IcC| cos (uvC - uiC).

 PB = |VBN||IbB| cos (uvB - uiB),

IaA,VANuiAuvA

 PA = |VAN||IaA| cos (uvA - uiA),
��

�

�
�

�

B
N

A

C

VAN

VCN

VBN

IaA

IbB

IcC

ZB

ZA

ZC

Figure 11.15 � A balanced Y load used to introduce
average power calculations in three-phase circuits.
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In deriving Eq. 11.36, we recognized that, for a balanced Y-connected
load, the magnitude of the phase voltage is the magnitude of the line volt-
age divided by and that the magnitude of the line current is equal to
the magnitude of the phase current. When using Eq. 11.36 to calculate the
total power delivered to the load, remember that is the phase angle
between the phase voltage and current.

Complex Power in a Balanced Wye Load
We can also calculate the reactive power and complex power associated
with any one phase of a Y-connected load by using the techniques intro-
duced in Chapter 10. For a balanced load, the expressions for the reactive
power are

(11.37)

(11.38)

Equation 10.29 is the basis for expressing the complex power associated
with any phase. For a balanced load,

(11.39)

where and represent a phase voltage and current taken from the
same phase. Thus, in general,

(11.40)

(11.41)

Power Calculations in a Balanced Delta Load
If the load is -connected, the calculation of power—reactive or complex—
is basically the same as that for a Y-connected load. Figure 11.16 shows a 

-connected load, along with its pertinent currents and voltages. The
power associated with each phase is

(11.42)

(11.43)

(11.44)

For a balanced load,

(11.45)

(11.46)

(11.47)

and

(11.48)

Note that Eq. 11.48 is the same as Eq. 11.34. Thus, in a balanced load,
regardless of whether it is Y- or -connected, the average power per phase
is equal to the product of the rms magnitude of the phase voltage, the rms
magnitude of the phase current, and the cosine of the angle between the
phase voltage and current.

¢

PA = PB = PC = Pf = VfIf cos uf .

 uvAB - uiAB = uvBC - uiBC = uvCA - uiCA = uf,

 |IAB| = |IBC| = |ICA| = If,

 |VAB| = |VBC| = |VCA| = Vf,

 PC = |VCA||ICA| cos (uvCA - uiCA).

 PB = |VBC||IBC| cos (uvBC - uiBC),

 PA = |VAB||IAB| cos (uvAB - uiAB),

¢

¢

 ST = 3Sf = 13VLIL luf
�

 .

 Sf = Pf + jQf = VfIf
*

 ,

IfVf

Sf = VANIaA
*

= VBNIbB
*

= VCNIcC
*

= VfIf*  ,

 QT = 3Qf = 13VLIL sin uf.

 Qf = VfIf sin uf,

uf

13,

� Total reactive power in a balanced 
three-phase load

� Total complex power in a balanced three-
phase load

C

A
�

�

VCAB

�

�

VAB

�

�

VBC

Z�

Z�

Z�

IAB

IBC

ICA

Figure 11.16 � A -connected load used to discuss
power calculations.

¢
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The total power delivered to a balanced -connected load is

(11.49)

Note that Eq. 11.49 is the same as Eq. 11.36. The expressions for reactive
power and complex power also have the same form as those developed for
the Y load:

(11.50)

(11.51)

(11.52)

(11.53)

Instantaneous Power in Three-Phase Circuits
Although we are primarily interested in average, reactive, and complex
power calculations, the computation of the total instantaneous power is
also important. In a balanced three-phase circuit, this power has an inter-
esting property: It is invariant with time! Thus the torque developed at the
shaft of a three-phase motor is constant, which in turn means less vibra-
tion in machinery powered by three-phase motors.

Let the instantaneous line-to-neutral voltage be the reference,
and, as before, is the phase angle Then, for a positive phase
sequence, the instantaneous power in each phase is

where and represent the maximum amplitude of the phase voltage
and line current, respectively. The total instantaneous power is the sum of
the instantaneous phase powers, which reduces to that is,

Note this result is consistent with Eq. 11.35 since and
(see Problem 11.26).

Examples 11.3–11.5 illustrate power calculations in balanced three-
phase circuits.

Im = 12If

Vm = 12Vf

pT = pA + pB + pC = 1.5VmIm cos uf .

1.5VmIm cos uf;

ImVm

 pC = vCNicC = VmIm cos (vt + 120 �) cos (vt - uf + 120 �),

 pB = vBNibB = VmIm cos (vt - 120 �) cos (vt - uf - 120 �),

 pA = vANiaA = VmIm cos vt cos (vt - uf),

uvA - uiA.uf

vAN

 ST = 3Sf = 13VLIL luf .

 Sf = Pf + jQf = VfIf
*

 ;

 QT = 3Qf = 3VfIf sin uf ;

 Qf = VfIf sin uf ;

 = 13VLIL cos uf .

 = 3VLa IL

13
b  cos uf

 PT = 3Pf = 3VfIf cos uf

¢



11.5 Power Calculations in Balanced Three-Phase Circuits 411

Example 11.3 Calculating Power in a Three-Phase Wye-Wye Circuit

a) Calculate the average power per phase delivered
to the Y-connected load of Example 11.1.

b) Calculate the total average power delivered to
the load.

c) Calculate the total average power lost in the line.

d) Calculate the total average power lost in the
generator.

e) Calculate the total number of magnetizing vars
absorbed by the load.

f) Calculate the total complex power delivered by
the source.

Solution

a) From Example 11.1,
and Therefore

The power per phase may also be calculated
from or

b) The total average power delivered to the load is
We calculated the line

voltage in Example 11.1, so we may also use
Eq. 11.36:

 = 673.92 W.

 PT = 13(199.58)(2.4) cos 35.68 �

PT = 3Pf = 673.92 W.

Pf = (2.4)2(39) = 224.64 W.

If
2 Rf,

 = 224.64 W.

 Pf = (115.22)(2.4) cos 35.68 �

=  35.68 � .uf = -1.19 - (-36.87)
2.4 A,=If115.22 V,=Vf

c) The total power lost in the line is

d) The total internal power lost in the generator is

e) The total number of magnetizing vars absorbed
by the load is

f) The total complex power associated with the
source is

The minus sign indicates that the internal power
and magnetizing reactive power are being deliv-
ered to the circuit. We check this result by calcu-
lating the total and reactive power absorbed by
the circuit:

 = 518.40 VAR(check).

 = 483.84 + 25.92 + 8.64

 Q = 483.84 + 3(2.4)2(1.5) + 3(2.4)2(0.5)

 = 691.20 W (check),

 P = 673.92 + 13.824 + 3.456

 = -691.20 - j518.40 VA.

 ST = 3Sf = -3(120)(2.4) l36.87 �

 = 483.84 VAR.

 QT = 13(199.58)(2.4) sin 35.68 �

Pgen = 3(2.4)2(0.2) = 3.456 W.

Pline = 3(2.4)2(0.8) = 13.824 W.

Example 11.4 Calculating Power in a Three-Phase Wye-Delta Circuit

a) Calculate the total complex power delivered to
the -connected load of Example 11.2.

b) What percentage of the average power at the
sending end of the line is delivered to the load?

Solution

a) Using the a-phase values from the solution of
Example 11.2, we obtain

Using Eqs. 11.52 and 11.53, we have

 = 682.56 + j494.21 VA.

 ST = 3(202.72 l29.04 �
 )(1.39 l6.87 �

 )

 If = IAB = 1.39 l -6.87 �  A.

 Vf = VAB = 202.72 l29.04 �  V,

¢

b) The total power at the sending end of the distri-
bution line equals the total power delivered to
the load plus the total power lost in the line;
therefore

The percentage of the average power reaching
the load is , or Nearly

of the average power at the input is
delivered to the load because the impedance of
the line is quite small compared to the load
impedance.

100%
99.25%.682.56>687.74

 = 687.74 W.

 Pinput = 682.56 + 3(2.4)2(0.3)
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Example 11.5 Calculating Three-Phase Power with an Unspecified Load

A balanced three-phase load requires 480 kW at a
lagging power factor of 0.8. The load is fed from a
line having an impedance of 
The line voltage at the terminals of the load is 600 V.

a) Construct a single-phase equivalent circuit of
the system.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at
the sending end of the line.

d) Calculate the power factor at the sending end of
the line.

Solution

a) Figure 11.17 shows the single-phase equivalent
circuit.We arbitrarily selected the line-to-neutral
voltage at the load as the reference.

Figure 11.17 � The single-phase equivalent circuit for
Example 11.5.

b) The line current is given by

or

Therefore, The mag-
nitude of the line current is the magnitude of :

We obtain an alternative solution for from
the expression

 = 577.35 A.

 =

1000
13 

 IL =

480,000

13(600)(0.8) 

 = 480,000 W;

 = 13(600)IL(0.8)

 PT = 13VLIL cos up

IL

IL = 577.35 A.

IaA

IaA = 577.35 l -36.87 �  A.

IaA
*

= 577.35 l36.87 �  A.

a600
13
bIaA

*
= (160 + j120)103,

IaA
*

�

�

0.005 � j0.025 �

N

A
�

�

Van 160 kW at 0.8 lag

a

n

IaA 600
3

0� V

0.005 + j0.025 Æ>f.

c) To calculate the magnitude of the line voltage at
the sending end, we first calculate . From
Fig. 11.17,

Thus

d) The power factor at the sending end of the line
is the cosine of the phase angle between 
and :

An alternative method for calculating the power
factor is to first calculate the complex power at
the sending end of the line:

The power factor is

Finally, if we calculate the total complex power
at the sending end, after first calculating the
magnitude of the line current, we may use this
value to calculate That is,

 = 619.23 V.

 VL =

3(206.41) * 103

13(577.35)
 ,

 13VLIL = 3(206.41) * 103,

VL.

 = 0.783 lagging.

 pf = cos 38.44 �

 = 206.41 l38.44 �  kVA.

 = 161.67 + j128.33 kVA

 Sf = (160 + j120)103
+ (577.35)2(0.005 + j0.025)

 = 0.783 lagging.

 = cos 38.44 �

 pf = cos [1.57 �
- (-36.87 �)]

IaA

Van

 = 619.23 V.

 VL = 13|Van|

 = 357.51 l1.57 �  V.

 =

600
13

+ (0.005 + j0.025)(577.35 l -36.87 �
 )

 Van = VAN + Z
/
IaA

Van
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Objective 3—Be able to calculate power (average, reactive, and complex) in any three-phase circuit

11.8 The three-phase average power rating of the
central processing unit (CPU) on a mainframe
digital computer is 22,659 W.The three-phase
line supplying the computer has a line voltage
rating of 208 V (rms).The line current is 73.8 A
(rms).The computer absorbs magnetizing VARs.

a) Calculate the total magnetizing reactive
power absorbed by the CPU.

b) Calculate the power factor.

Answer: (a)

(b) 0.852 lagging.

13,909.50 VAR;

11.9 The complex power associated with each phase
of a balanced load is The line
voltage at the terminals of the load is 2450 V.

a) What is the magnitude of the line current
feeding the load?

b) The load is delta connected, and the imped-
ance of each phase consists of a resistance in
parallel with a reactance. Calculate R and X.

c) The load is wye connected, and the imped-
ance of each phase consists of a resistance in
series with a reactance. Calculate R and X.

Answer: (a) 169.67 A;

(b)

(c) X = 6.67 Æ.R = 5 Æ,

X = 31.26 Æ;R = 41.68 Æ,

144 + j192 kVA.

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 11.25 and 11.27.

Pointer

Watt
scale

Potential-coil
terminals

Current-coil
terminals

Figure 11.18 � The key features of the 
electrodynamometer wattmeter.

11.6 Measuring Average Power 
in Three-Phase Circuits

The basic instrument used to measure power in three-phase circuits is the
electrodynamometer wattmeter. It contains two coils. One coil, called the
current coil, is stationary and is designed to carry a current proportional to
the load current. The second coil, called the potential coil, is movable and
carries a current proportional to the load voltage. The important features
of the wattmeter are shown in Fig. 11.18.

The average deflection of the pointer attached to the movable coil is
proportional to the product of the effective value of the current in the cur-
rent coil, the effective value of the voltage impressed on the potential coil,
and the cosine of the phase angle between the voltage and current. The
direction in which the pointer deflects depends on the instantaneous polar-
ity of the current-coil current and the potential-coil voltage.Therefore each
coil has one terminal with a polarity mark—usually a plus sign—but some-
times the double polarity mark is used. The wattmeter deflects upscale
when (1) the polarity-marked terminal of the current coil is toward the
source, and (2) the polarity-marked terminal of the potential coil is con-
nected to the same line in which the current coil has been inserted.

The Two-Wattmeter Method
Consider a general network inside a box to which power is supplied by 
n conducting lines. Such a system is shown in Fig. 11.19.

If we wish to measure the total power at the terminals of the box, we
need to know currents and voltages. This follows because if we
choose one terminal as a reference, there are only independent
voltages. Likewise, only independent currents can exist in the n con-
ductors entering the box.Thus the total power is the sum of product
terms; that is, p = v1i1 + v2i2 +

Á
+ vn -1in -1.

n - 1
n - 1

n - 1
n - 1

;
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Applying this general observation, we can see that for a three-
conductor circuit, whether balanced or not, we need only two wattmeters
to measure the total power. For a four-conductor circuit, we need three
wattmeters if the three-phase circuit is unbalanced, but only two
wattmeters if it is balanced, because in the latter case there is no current in
the neutral line. Thus, only two wattmeters are needed to measure the
total average power in any balanced three-phase system.

The two-wattmeter method reduces to determining the magnitude
and algebraic sign of the average power indicated by each wattmeter. We
can describe the basic problem in terms of the circuit shown in Fig. 11.20,
where the two wattmeters are indicated by the shaded boxes and labeled

and The coil notations cc and pc stand for current coil and poten-
tial coil, respectively. We have elected to insert the current coils of the
wattmeters in lines aA and cC. Thus, line bB is the reference line for the
two potential coils. The load is connected as a wye, and the per-phase load
impedance is designated as This is a general representation,
as any -connected load can be represented by its Y equivalent; further-
more, for the balanced case, the impedance angle is unaffected by the 

-to-Y transformation.
We now develop general equations for the readings of the two

wattmeters. We assume that the current drawn by the potential coil of the
wattmeter is negligible compared with the line current measured by the cur-
rent coil.We further assume that the loads can be modeled by passive circuit
elements so that the phase angle of the load impedance ( in Fig. 11.20) lies
between (pure capacitance) and (pure inductance). Finally, we
assume a positive phase sequence.

From our introductory discussion of the average deflection of the
wattmeter, we can see that wattmeter 1 will respond to the product of

and the cosine of the angle between and If we denote
this wattmeter reading as we can write

(11.54)

It follows that

(11.55)

In Eq. 11.54, is the phase angle between and and in Eq. 11.55,
is the phase angle between and 

To calculate and we express and in terms of the imped-
ance angle which is also the same as the phase angle between the phase
voltage and current. For a positive phase sequence,

(11.56)

(11.57)

The derivation of Eqs. 11.56 and 11.57 is left as an exercise (see
Problem 11.35). When we substitute Eqs. 11.56 and 11.57 into Eqs. 11.54
and 11.55, respectively, we get

(11.58)

(11.59) W2 = VLIL cos (uf - 30 �).

 W1 = VLIL cos (uf + 30 �),

 u2 = u - 30 �
= uf - 30 � .

 u1 = u + 30 �
= uf + 30 � ,

u,
u2u1W2,W1

IcC.VCBu2

IaA,VABu1

 = VLIL cos u2.

 W2 = |VCB||IcC| cos u2

 = VLIL cos u1.

 W1 = |VAB||IaA| cos u1

W1,
IaA.VAB|IaA|,|VAB|,

+90 �
-90 �

u

¢

u

¢

Zf = |Z| lu.

W2.W1

n

3

2

�

�

v1

�

�

v2 �

�

v3

1

General
network

i1

i2

i3

Figure 11.19 � A general circuit whose power is 
supplied by conductors.n
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Zf � �Z�  u
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Zf

�

�

�

�

IaA

IcC

VAN

VCN

��
��

��
��

Figure 11.20 � A circuit used to analyze the 
two-wattmeter method of measuring average power
delivered to a balanced load.
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To find the total power, we add and thus

(11.60)

which is the expression for the total power in a three-phase circuit.
Therefore we have confirmed that the sum of the two wattmeter readings
yields the total average power.

A closer look at Eqs. 11.58 and 11.59 reveals the following about the
readings of the two wattmeters:

1. If the power factor is greater than 0.5, both wattmeters read positive.
2. If the power factor equals 0.5, one wattmeter reads zero.
3. If the power factor is less than 0.5, one wattmeter reads negative.
4. Reversing the phase sequence will interchange the readings on the

two wattmeters.

These observations are illustrated in the following example and in
Problems 11.41–11.52.

 = 13VLIL cos uf,

 PT = W1 + W2 = 2VLIL cos uf cos 30 �

W2;W1

Example 11.6 Computing Wattmeter Readings in Three-Phase Circuits

Calculate the reading of each wattmeter in the
circuit in Fig. 11.20 if the phase voltage at the
load is 120 V and (a) 
(b) (c) and
(d) (e) Verify for (a)–(d) that
the sum of the wattmeter readings equals the total
power delivered to the load.

Zf = 10 l -75 �  Æ.
Zf = 5 + j513 Æ;Zf = 8 - j6 Æ;

Zf = 8 + j6 Æ;

c)

d)

e)

 = 1118.10 W.

 W1 + W2 = 1763.63 - 645.53

 PT(d) = 3(12)2(2.5882) = 1118.10 W,

 = 2160 W,

 W1 + W2 = 0 + 2160

 PT(c) = 3(12)2(5) = 2160 W,

 = 3456 W,

 W1 + W2 = 2476.25 + 979.75

PT(b) = PT(a) = 3456 W,

 = 3456 W,

 W1 + W2 = 979.75 + 2476.25

 PT(a) = 3(12)2(8) = 3456 W,

 W2 = (12013)(12) cos (-75 �
- 30 �) = -645.53 W.

 W1 = (12013)(12) cos (-75 �
+ 30 �) = 1763.63 W,

 IL = 12 A.
 Zf = 10 l -75 �  Æ, VL = 12013 V, and

 = 2160 W.

 W2 = (12013)(12) cos (60 �
- 30 �)

 W1 = (12013)(12) cos (60 �
+ 30 �) = 0,

 and IL = 12 A.
Zf = 5(1 + j13) = 10 l60 �  Æ, VL = 12013 V,

Solution

a)

b)

 = 979.75 W.

 W2 = (12013)(12) cos (-36.87 �
- 30 �)

 = 2476.25 W,

 W1 = (12013)(12) cos (-36.87 �
+ 30 �)

 IL = 120>10 = 12 A.
 Zf = 10 l -36.87 �  Æ, VL = 12013 V, and

 = 2476.25 W.

 W2 = (12013)(12) cos (36.87 �
- 30 �)

 = 979.75 W,

 W1 = (12013)(12) cos (36.87 �
+ 30 �)

 IL = 120>10 = 12 A.
 Zf = 10 l36.87 �  Æ, VL = 12013 V, and

NOTE: Assess your understanding of the two-wattmeter method by trying Chapter Problems 11.41 and 11.45.
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Practical Perspective
Transmission and Distribution of Electric Power
At the start of this chapter we pointed out the obligation utilities have to
maintain the rms voltage level at their customer’s premises. Although the
acceptable deviation from a nominal level may vary among different utilities
we will assume for purposes of discussion that an allowable tolerance is

Thus a nominal rms voltage of could range from to
. We also pointed out that capacitors strategically located on the sys-

tem could be used to support voltage levels.
The circuit shown in Fig. 11.21 represents a substation on a Midwestern

municipal system. We will assume the system is balanced, the line-to-line
voltage at the substation is , the phase impedance of the distribu-
tion line is and the load at the substation at 3 PM on a hot,
humid day in July is and magnetizing .

Using the line-to-neutral voltage at the substation as a reference, the
single-phase equivalent circuit for the system in Fig. 11.21 is shown in
Fig. 11.22. The line current can be calculated from the expression for the
complex power at the substation. Thus,

It follows that

or

The line-to-neutral voltage at the generating plant is

Therefore the magnitude of the line voltage at the generating plant is

We are assuming the utility is required to keep the voltage level within
of the nominal value. This means the magnitude of the line-to-line

voltage at the power plant should not exceed nor be less than
. Therefore, the magnitude of the line voltage at the generating plant

could cause problems for customers.
When the magnetizing vars are supplied by a capacitor bank connected

to the substation bus, the line current becomes

IaA = 150.61 + j0 A.

IaA

13 kV
14.6 kV

;  5.8%

|Vab| = 13(8803.50) = 15,248.11 V.

 = 8803.50 l4.12 �  V.

 = 8780.74 + j632.58

 Van =

13,800

13
 l0 �

+ (0.6 + j4.8)(150.61 - j150.61)

 IaA = 150.61 - j150.61 A.

 IaA
*

= 150.61 + j150.61 A

13,800

13
IaA

*
= (1.2 + j1.2)106.

MVAR3.63.6 MW
0.6 + j4.8Æ,

13.8 kV

127 V
113120 V;  5.8%.

Generator
Plant

Sub
Station

3-f line

Figure 11.21 � A substation connected to a power
plant via a three-phase line.

�

�

�

�

a A

Nn

Van

0.6 � j4.8 �

1.2
MW

1.2
MVAR

13,800 0� V
3

Figure 11.22 � A single phase equivalent circuit for
the system in Fig. 11.21.
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Therefore the voltage at the generating plant necessary to maintain a line-
to-line voltage of at the substation is

Hence

This voltage level falls within the allowable range of 13 kV to 14.6 kV.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 11.53(a)–(b) and 11.54, 11.57, and 11.58.

|Vab| = 13(8090.17) = 14,012.58 V.

 = 8090.17 l5.13 �  V.

 = 8057.80 + j  722.94

 Van =

13,800

13
  l0 �

+ (0.6 + j4.8)(150.61 + j0)

13,800 V

Summary

• When analyzing balanced three-phase circuits, the first
step is to transform any connections into Y connections,
so that the overall circuit is of the Y-Y configuration. (See
page 400.)

• A single-phase equivalent circuit is used to calculate the
line current and the phase voltage in one phase of the 
Y-Y structure. The a-phase is normally chosen for this
purpose. (See page 402.)

• Once we know the line current and phase voltage in the
a-phase equivalent circuit, we can take analytical short-
cuts to find any current or voltage in a balanced three-
phase circuit, based on the following facts:

• The b- and c-phase currents and voltages are identi-
cal to the a-phase current and voltage except for a

shift in phase. In a positive-sequence circuit, the
b-phase quantity lags the a-phase quantity by 
and the c-phase quantity leads the a-phase quantity
by For a negative sequence circuit, phases 
b and c are interchanged with respect to phase a.

• The set of line voltages is out of phase with the set of
phase voltages by The plus or minus sign corre-
sponds to positive and negative sequence, respectively.

• In a Y-Y circuit the magnitude of a line voltage is 
times the magnitude of a phase voltage.13

;30 � .

120 � .

120 � ,
120 �

¢

• The set of line currents is out of phase with the set of
phase currents in -connected sources and loads by

The minus or plus sign corresponds to positive
and negative sequence, respectively.

• The magnitude of a line current is times the mag-
nitude of a phase current in a -connected source 
or load.

(See pages 402–403 and 405–406.)
• The techniques for calculating per-phase average

power, reactive power, and complex power are identical
to those introduced in Chapter 10. (See page 408.)

• The total real, reactive, and complex power can be deter-
mined either by multiplying the corresponding per phase
quantity by 3 or by using the expressions based on line
current and line voltage, as given by Eqs. 11.36, 11.38, and
11.41. (See pages 408 and 409.)

• The total instantaneous power in a balanced three-phase
circuit is constant and equals 1.5 times the average
power per phase. (See page 410.)

• A wattmeter measures the average power delivered to a
load by using a current coil connected in series with 
the load and a potential coil connected in parallel 
with the load. (See page 413.)

• The total average power in a balanced three-phase cir-
cuit can be measured by summing the readings of two
wattmeters connected in two different phases of the
circuit. (See page 413.)

¢

13

<30 � .
¢
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Problems

All phasor voltages in the following Problems are stated in
terms of the rms value.

Section 11.1

11.1 What is the phase sequence of each of the following
sets of voltages?

a)

b)

11.2 For each set of voltages, state whether or not the volt-
ages form a balanced three-phase set. If the set is bal-
anced, state whether the phase sequence is positive or
negative. If the set is not balanced, explain why.

a)

b)

c)

d)

 vc = 1121 cos (2000t + 100°) V.

 vb = 1121 sin (2000t - 50°) V,

 va = 1121 cos (2000t - 20 �) V,

 vc = 426 cos(100t - 120°) V.

 vb = 462 cos(100t + 120°) V,

 va = 426  cos 100t V,

 vc = 188 cos (250t - 60 �) V.

 vb = -188 cos 250t V,

 va = 188 cos(250t + 60°) V,

 vc = 48 cos (314t + 75 �) V.

 vb = 48 cos (314t - 165 �) V,

 va = 48 cos(314t - 45°) V,

 vc = 820 sin (vt - 66 �) V.

 vb = 820 cos (vt + 84 �) V,

va = 820 cos (vt - 36 �) V,

 vc = 137 cos (vt + 183 �) V.

 vb = 137 cos (vt - 57 �) V,

 va = 137 cos (vt + 63 �) V,

e)

f)

11.3 Verify that Eq. 11.3 is true for either Eq. 11.1 or
Eq. 11.2.

Section 11.2

11.4 Refer to the circuit in Fig. 11.5(b).Assume that there
are no external connections to the terminals a, b, c.
Assume further that the three windings are from a
three-phase generator whose voltages are those
described in Problem 11.2(b). Determine the current
circulating in the -connected generator.

11.5 Repeat Problem 11.4 but assume that the three-phase
voltages are those described in Problem 11.2(c).

Section 11.3

11.6 a) Is the circuit in Fig. P11.6 a balanced or unbal-
anced three-phase system? Explain.

b) Find 

Figure P11.6

5 �

5 �

5 � 35 �

27 �

1 �

A

B
n N

C

a

b

110  0� V

110  �120� V

110  120� V

c

j8 �

j8 �

I0

j22 �

�j32 �

j8 �

�

�

� �

�

�

Io.

¢

 vc = 144 sin (800t + 50 �) V.

 vb = 144 sin (800t - 70 �) V,

 va = 144 cos (800t + 80°) V,

 vc = 540 cos (630t + 120 �) V.

 vb = 540 cos(630t - 120°) V,

 va = 540 sin 630t V,

PSPICE

MULTISIM

PSPICE

MULTISIM



11.7 a) Find in the circuit in Fig. P11.7.
b) Find 
c) Find 
d) Is the circuit a balanced or unbalanced three-

phase system?

11.8 Find the rms value of in the unbalanced three-
phase circuit seen in Fig. P11.8.

11.9 The time-domain expressions for three line-to-neutral
voltages at the terminals of a Y-connected load are

What are the time-domain expressions for the three
line-to-line voltages and ?

11.10 A balanced three-phase circuit has the following
characteristics:
• Y-Y connected;
• The line voltage at the source, is

• The phase sequence is positive;
• The line impedance is 

• The load impedance is 
a) Draw the single phase equivalent circuit for the

a-phase.
b) Calculated the line current in the a-phase.
c) Calculated the line voltage at the load in the

a-phase.

37 + j  28 Æ>f;

3 + j  2 Æ>f;

11013 l -60° V;
Vab,

vCAvBC,vAB,

 vCN = 288 cos (vt + 75 �) V.

 vBN = 288 cos (vt - 165 �) V,

 vAN = 288 cos (vt - 45°) V,

Io

VAB.
VAN.
Io 11.11 The magnitude of the line voltage at the terminals

of a balanced Y-connected load is 6600 V. The load
impedance is The load is fed from a
line that has an impedance of 

a) What is the magnitude of the line current?

b) What is the magnitude of the line voltage at 
the source?

11.12 The magnitude of the phase voltage of an ideal
balanced three-phase Y-connected source is 
125 V. The source is connected to a balanced 
Y-connected load by a distribution line that has an
impedance of The load impedance
is The phase sequence of the
source is acb. Use the a-phase voltage of the
source as the reference. Specify the magnitude and
phase angle of the following quantities: (a) the
three line currents, (b) the three line voltages at
the source, (c) the three phase voltages at the load,
and (d) the three line voltages at the load.

Section 11.4

11.13 A balanced -connected load has an impedance
of The load is fed through a line
having an impedance of The phase
voltage at the terminals of the load is 7.2 kV.
The phase sequence is negative. Use as the
reference.

a) Calculate the three phase currents of the load.

b) Calculate the three line currents.

c) Calculate the three line voltages at the sending
end of the line.

11.14 A balanced, three-phase circuit is characterized as
follows:
• Y- connected;
• Source voltage in the b-phase is 
• Source phase sequence is acb;
• Line impedance is 
• Load impedance is 129 + j  171 Æ>f.

2 + j  3 Æ>f;

150l135° V;
¢

VAB

3 + j5 Æ>f.
216 - j288 Æ>f.

¢

19.9 + j14.2 Æ>f.
0.1 + j0.8 Æ>f.

0.5 + j4 Æ>f.
240 - j70 Æ>f.

a

n

A

N

277  120� V

277  �120� V

277  0� V

0.4 � 1.6 �j2 � j4 � 78 � j54 �

b B0.4 � 2.6 �j1.6 j2.4 � 77 � j56 �

c C0.2 � 0.8 �j1.2 � j3.8 � 79 � j55 �

��

�

�

�
�

Io

Figure P11.7

2.7 � 1.3 �

1.3 �

1.3 �

2.7 �

2.7 �

56 �

20 �

86 �

26 �

A

B
n N

C

a

b

320  �120� V

320  120� V

320  0� V

c

Io

j77 �

j117 �

j37 �

j0.6 �

j0.6 �

j0.6 �

j2.4 �

j2.4 �

j2.4 �

�

�

�

�

�

�

Figure P11.8
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a) Draw the single phase equivalent for the a-phase.

b) Calculate the a-phase line current.

c) Calculate the a-phase line voltage for the three-
phase load.

11.15 An acb sequence balanced three-phase Y-connected
source supplies power to a balanced, three-phase -
connected load with an impedance of 
The source voltage in the b-phase is 
The line impedance is Draw the single
phase equivalent circuit for the a-phase and use it
to find the current in the a-phase of the load.

11.16 In a balanced three-phase system, the source is a bal-
anced Y with an abc phase sequence and a line voltage

The load is a balanced Y in paral-
lel with a balanced .The phase impedance of the Y is

and the phase impedance of the is
The line impedance is 

Draw the single phase equivalent circuit and use it to
calculate the line voltage at the load in the a-phase.

11.17 A balanced Y-connected load having an imped-
ance of is connected in parallel with
a balanced -connected load having an imped-
ance of The paralleled loads are
fed from a line having an impedance of

The magnitude of the line-to-line 
voltage of the -load is V.

a) Calculate the magnitude of the phase current in
the Y-connected load.

b) Calculate the magnitude of the phase current in
the -connected load.

c) Calculate the magnitude of the current in the
line feeding the loads.

d) Calculate the magnitude of the line voltage at
the sending end of the line.

11.18 A three-phase -connected generator has an inter-
nal impedance of When the load is
removed from the generator, the magnitude of the
terminal voltage is 13,800 V. The generator feeds a

-connected load through a transmission line with
an impedance of The per-phase
impedance of the load is 

a) Construct a single-phase equivalent circuit.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at
the terminals of the load.

d) Calculate the magnitude of the line voltage at
the terminals of the source.

7.056 + j3.417 Æ.
20 + j180 mÆ>f.

¢

9 + j90 mÆ>f.
¢

¢

300 23¢

2 + j2 Æ>f.

9022l45° Æ>f.
¢

60 - j45 Æ>f

1.4 + j0.8 Æ>f.3 - j9 Æ>f.
¢4 + j  3 Æ>f ¢

Vab = 208l50° V.

1 + j1 Æ>f.
240l -50° V.
12 + j9 Æ>f.

¢
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Z

Z Z

a A

c C
b B

�
� �

�

��

0� kV13.2

IaA

IbB

IcC

�120� kV13.2

120� kV13.2

Figure P11.19

Z2

Z1 Z3

a A

c C
b B

�
� �

�
�120� V480

��

120� V480

0� V480

Figure P11.20

e) Calculate the magnitude of the phase current in
the load.

f) Calculate the magnitude of the phase current in
the source.

11.19 The impedance Z in the balanced three-phase cir-
cuit in Fig. P11.19 is Find

a) and 

b) and 

c) and 

11.20 For the circuit shown in Fig. P11.20, find

a) the phase currents and 

b) the line currents and 
when and

11.21 A balanced three-phase -connected source is
shown in Fig. P11.21.

a) Find the Y-connected equivalent circuit.

b) Show that the Y-connected equivalent circuit
delivers the same open-circuit voltage as the
original -connected source.

c) Apply an external short circuit to the terminals
A, B, and C. Use the -connected source to find
the three line currents and 

d) Repeat (c) but use the Y-equivalent source to
find the three line currents.

IcC.IbB,IaA,
¢

¢

¢

Z3 = 20 + j  0 Æ.
Z2 = 8 + j6 Æ,Z1 = 2.4 - j0.7 Æ,

IcCIbB,IaA,

ICAIBC,IAB,

Iac.Icb,Iba,

IcC,IbB,IaA,

ICA,IBC,IAB,

100 - j75 Æ.
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11.24 A balanced three-phase source is supplying 60 kVA
at 0.6 lagging to two balanced Y-connected parallel
loads. The distribution line connecting the source 
to the load has negligible impedance. Load 1 is
purely resistive and absorbs 30 kW. Find the 
per-phase impedance of Load 2 if the line voltage 
is and the impedance components are 
in series.

11.25 In a balanced three-phase system, the source 
has an abc sequence, is Y-connected, and

The source feeds two loads, both
of which are Y-connected. The impedance of load 1
is The complex power for the a-phase
of load 2 is Find the total complex
power supplied by the source.

11.26 The line-to-neutral voltage at the terminals of the
balanced three-phase load in the circuit shown in
Fig. P11.26 is 1600 V. At this voltage, the load is
absorbing 480 kVA at 0.8 pf lag.

a) Use as the reference and express in
polar form.

b) Calculate the complex power associated with
the ideal three-phase source.

c) Check that the total average power delivered
equals the total average power absorbed.

d) Check that the total magnetizing reactive power
delivered equals the total magnetizing reactive
power absorbed.

Figure P11.26

11.27 A three-phase positive sequence Y-connected
source supplies 14 kVA with a power factor of 0.75
lagging to a parallel combination of a Y-connected
load and a -connected load.The Y-connected load
uses 9 kVA at a power factor of 0.6 lagging and has
an a-phase current of 

a) Find the complex power per phase of the 
-connected load.

b) Find the magnitude of the line voltage.

¢

10l -30° A.

¢

��

a

b
n

c

0.2 � j0.8 �

0.2 � j0.8 �

0.2 � j0.8 �

A

B

480 kVA

C

�

�
Van

Vcn
�

�

�j75 � �j75 �

�j75 �

Vbn

0.8 pf
lag

Ina

InaVAN

600l36° VA.
8 + j6 Æ>f.

Van = 120l20° V.

12023 V

Figure P11.21

11.22 The -connected source of Problem 11.21 is con-
nected to a Y-connected load by means of a balanced
three-phase distribution line. The load impedance 
is and the line impedance is

a) Construct a single-phase equivalent circuit of
the system.

b) Determine the magnitude of the line voltage at
the terminals of the load.

c) Determine the magnitude of the phase current
in the -source.

d) Determine the magnitude of the line voltage at
the terminals of the source.

Section 11.5

11.23 a) Find the rms magnitude and the phase angle of
in the circuit shown in Fig. P11.23.

b) What percent of the average power delivered by
the three-phase source is dissipated in the three-
phase load?

Figure P11.23

1.5 �j2 � b
B

A

��

85.5 �

85.5 �
j114 �

85.5 �

j114 �

j114 �

1.5 �j2 � a

C

1.5 �j2 � c

0� V1365
�

�

120� V1365
�

�

�120� V1365

ICA

¢

6.5 + j15 Æ>f.
1192 + j1584 Æ>f.

¢

120� V
�
�

A
a

c

b B

C

4.5 �

4.5 �

j3 �

j3 �

0� V
�

�

4.5 �

j3 �

�120� V
�

�

864

864
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11.28 A balanced three-phase distribution line has an
impedance of This line is used to sup-
ply three balanced three-phase loads that are con-
nected in parallel. The three loads are

at 0.866 pf lag, at
0.28 pf lead, and at unity pf. The
magnitude of the line voltage at the terminals of the
loads is 

a) What is the magnitude of the line voltage at the
sending end of the line?

b) What is the percent efficiency of the distribution
line with respect to average power?

11.29 The three tools described below are part of a uni-
versity’s machine shop. Each piece of equipment is
a balanced three-phase load rated at 220 V(rms).
Calculate (a) the magnitude of the line current sup-
plying these three tools and (b) the power factor of
the combined load.
• Drill press: 10.2 kVA at 0.87 pf lag.
• Lathe: 4.2 kW at 0.91 pf lag.
• Band saw: line current 36.8 A(rms), 7.25 kVAR.

11.30 Calculate the complex power in each phase of the
unbalanced load in Problem 11.20.

11.31 Show that the total instantaneous power in a bal-
anced three-phase circuit is constant and equal to

where and represent the
maximum amplitudes of the phase voltage and
phase current, respectively.

11.32 The total apparent power supplied in a balanced,
three-phase Y- system is 4800 VA. The line volt-
age is 240 V. If the line impedance is negligible and
the power factor angle of the load is , deter-
mine the impedance of the load.

11.33 A balanced three-phase load absorbs 150 kVA at a
leading power factor of 0.96 when the line voltage
at the terminals of the load is 600 V. Find 
four equivalent circuits that can be used to model
this load.

11.34 At full load, a commercially available 100 hp, three-
phase induction motor operates at an efficiency of
97% and a power factor of 0.88 lag.The motor is sup-
plied from a three-phase outlet with a line-voltage
rating of 208 V.

a) What is the magnitude of the line current drawn
from the 208 V outlet? ( )

b) Calculate the reactive power supplied to 
the motor.

1 hp = 746 W.

-50°

¢

ImVm1.5VmIm cos uf,

180013 V.

L3 = 72.12 kW
L2 = 150 kVAL1 = 180 kVA

5 + j10 Æ>f.
11.35 A three-phase line has an impedance of

The line feeds two balanced three-
phase loads connected in parallel. The first load 
is absorbing a total of 630 kW and absorbing
840 kVAR magnetizing vars. The second load 
is Y-connected and has an impedance of

The line-to-neutral voltage at
the load end of the line is 4000 V.What is the magni-
tude of the line voltage at the source end of the line?

11.36 Three balanced three-phase loads are connected in
parallel. Load 1 is Y-connected with an impedance
of load 2 is -connected with an
impedance of and load 3 is

The loads are fed from a dis-
tribution line with an impedance of 
The magnitude of the line-to-neutral voltage at the
load end of the line is 

a) Calculate the total complex power at the send-
ing end of the line.

b) What percentage of the average power at the
sending end of the line is delivered to the loads?

11.37 The output of the balanced positive-sequence
three-phase source in Fig. P11.37 is 41.6 kVA at a
lagging power factor of 0.707. The line voltage at
the source is 

a) Find the magnitude of the line voltage at the load.

b) Find the total complex power at the terminals of
the load.

Figure P11.37

11.38 A balanced three-phase source is supplying 540 kVA
at 0.96 pf lag to two balanced -connected parallel
loads. The distribution line connecting the source to
the load has negligible impedance. The power associ-
ated with load 1 is 

a) Determine the types of components and their
impedances in each phase of load 2 if the line
voltage is and the impedance compo-
nents are in series.

b) Repeat (a) with the impedance components in
parallel.

160013  V

38.4 - j208.8 kVA.

¢

0.04 � j0.03 �

0.04 � j0.03 �

0.04 � j0.03 �

Balanced
three-phase

source

Balanced
three-phase

load

240  V.

2413 kV.

2 + j16 Æ>f.
172.8 + j2203.2 kVA.

2400 - j1800 Æ>f;
¢400 + j300 Æ>f;

15.36 - j4.48 Æ>f.

0.1 + j0.8 Æ>f.
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11.39 The total power delivered to a balanced three-
phase load when operating at a line voltage of

is 900 kW at a lagging power factor of
0.6. The impedance of the distribution line sup-
plying the load is Under these oper-
ating conditions, the drop in the magnitude of
the line voltage between the sending end and the
load end of the line is excessive. To compensate,
a bank of Y-connected capacitors is placed in
parallel with the load. The capacitor bank is
designed to furnish 1125 kVAR of magnetizing
reactive power when operated at a line voltage 
of 

a) What is the magnitude of the voltage at the
sending end of the line when the load is operat-
ing at a line voltage of and the capac-
itor bank is disconnected?

b) Repeat (a) with the capacitor bank connected.

c) What is the average power efficiency of the line
in (a)?

d) What is the average power efficiency in (b)?

e) If the system is operating at a frequency of 60 Hz,
what is the size of each capacitor in microfarads?

11.40 A balanced bank of delta-connected capacitors is
connected in parallel with the load described in
Assessment Problem 11.9. The effect is to place a
capacitor in parallel with the load in each phase.
The line voltage at the terminals of the load thus
remains at 2450 V. The circuit is operating at a fre-
quency of 60 Hz.The capacitors are adjusted so that
the magnitude of the line current feeding the paral-
lel combination of the load and capacitor bank is at
its minimum.

a) What is the size of each capacitor in microfarads?

b) Repeat (a) for wye-connected capacitors.

c) What is the magnitude of the line current?

Section 11.6

11.41 The two-wattmeter method is used to measure the
power at the load end of the line in Example 11.1.
Calculate the reading of each wattmeter.

11.42 The wattmeters in the circuit in Fig. 11.20 read as
follows: W1 40,823.09 W, and W2 103,176.91 W.
The magnitude of the line voltage is 
The phase sequence is positive. Find 

11.43 In the balanced three-phase circuit shown in
Fig. P11.43, the current coil of the wattmeter is con-
nected in line aA, and the potential coil of the
wattmeter is connected across lines b and c. Show

Zf.
240013  V.

==

250013  V

250013  V.

1 + j3 Æ>f.

250013  V

that the wattmeter reading multiplied by equals
the total reactive power associated with the load.
The phase sequence is positive.

Figure P11.43

11.44 The line-to-neutral voltage in the circuit in
Fig. P11.43 is 680 V, the phase sequence is positive,
and the load impedance is 

a) Calculate the wattmeter reading.

b) Calculate the total reactive power associated
with the load.

11.45 The two wattmeters in Fig. 11.20 can be used to
compute the total reactive power of the load.

a) Prove this statement by showing that 

b) Compute the total reactive power from the
wattmeter readings for each of the loads in
Example 11.6. Check your computations by cal-
culating the total reactive power directly from
the given voltage and impedance.

11.46 Derive Eqs. 11.56 and 11.57.

11.47 a) Calculate the complex power associated 
with each phase of the balanced load in
Problem 11.19.

b) If the two-wattmeter method is used to measure
the average power delivered to the load, specify
the reading of each meter.

11.48 The two-wattmeter method is used to measure
the power delivered to the unbalanced load in
Problem 11.20. The current coil of wattmeter 1 is
placed in line aA and that of wattmeter 2 is
placed in line bB.

a) Calculate the reading of wattmeter 1.

b) Calculate the reading of wattmeter 2.

c) Show that the sum of the two wattmeter read-
ings equals the total power delivered to the
unbalanced load.

-  W1) =  13VLIL sin uf.13(W2

16 - j  12 Æ>f.

b

c

a

pc

cc
A

B
N

C

W

Zf

Zf

Zf

��

��
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11.49 The balanced three-phase load shown in Fig. P11.49
is fed from a balanced, positive-sequence, three-
phase Y-connected source. The impedance of 
the line connecting the source to the load is 
negligible. The line-to-neutral voltage of the source
is 7200 V.

a) Find the reading of the wattmeter in watts.

b) Explain how you would connect a second
wattmeter in the circuit so that the two
wattmeters would measure the total power.

c) Calculate the reading of the second wattmeter.

d) Verify that the sum of the two wattmeter read-
ings equals the total average power delivered to
the load.

Figure P11.49

11.50 a) Calculate the reading of each wattmeter in the
circuit shown in Fig. P11.50. The value of is

b) Verify that the sum of the wattmeter readings
equals the total average power delivered to the

-connected load.

Figure P11.50

11.51 a) Calculate the reading of each wattmeter in the
circuit shown in Fig. P11.51 when 

b) Check that the sum of the two wattmeter read-
ings equals the total power delivered to the
load.

c) Check that equals the total mag-
netizing vars delivered to the load.

13(W1 - W2)

13.44 +  j  46.08 Æ.
Z =

��

�� ��

��

c

��

240  120� V

240  �120� V

a

b

A

B

C
W2

W1

Zf

Zf

Zf

�

�

�

�

240  0� V

¢

40 l -30 �  Æ.
Zf

A

B

432 kVA

0.96 pf lead

C
Wm

a

bSource

c

��
��

Figure P11.51

11.52 a) Find the reading of each wattmeter in the circuit
shown in Fig. P11.52 if 

and 

b) Show that the sum of the wattmeter readings
equals the total average power delivered to the
unbalanced three-phase load.

Figure P11.52

Sections 11.1–11.6

11.53 Refer to the Practical Perspective example:

a) Construct a power triangle for the substation
load before the capacitors are connected to
the bus.

b) Repeat (a) after the capacitors are connected to
the bus.

c) Using the line-to-neutral voltage at the substa-
tion as a reference, construct a phasor diagram
that depicts the relationship between and

before the capacitors are added.

d) Assume a positive phase sequence and construct
a phasor diagram that depicts the relationship
between and 

11.54 Refer to the Practical Perspective example.Assume
the frequency of the utility is 60 Hz.

a) What is the rating of each capacitor if the
capacitors are delta-connected?

b) What is the rating of each capacitor if the
capacitors are wye-connected?

mF

mF

Vab.VAB

Van

VAN

Wm1

Wm2

ZC
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ZB

�

�

�

�

��
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ZC = 40 l -30 �  Æ.ZB = 60 l0 �  Æ,
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11.55 Choose a single capacitor from Appendix H that is
closest to the rating of the wye-connected
capacitor from Problem 11.54(b).

a) How much reactive power will a capacitor bank
using this new value supply?

b) What line-to-line voltage at the generating plant
will be required when this new capacitor bank is
connected to the substation bus?

11.56 Choose a single capacitor from Appendix H that is
closest to the rating of the delta-connected
capacitor from Problem 11.54(a).

a) How much reactive power will a capacitor bank
using this new value supply?

b) What line-to-line voltage at the generating plant
will be required when this new capacitor bank is
connected to the substation bus?

11.57 In the Practical Perspective example, what happens
to the voltage level at the generating plant if the
substation is maintained at 13.8 kV, the substation
load is removed, and the added capacitor bank
remains connected?

11.58 In the Practical Perspective example, calculate the
total line loss in kW before and after the capacitors
are connected to the substation bus.

11.59 Assume the load on the substation bus in the
Practical Perspective example drops to 180 kW and

mF

mF
480 magnetizing kVAR. Also assume the capacitors
remain connected to the substation.

a) What is the magnitude of the line-to-line volt-
age at the generating plant that is required to
maintain a line-to-line voltage of 13.8 kV at the
substation?

b) Will this power plant voltage level cause prob-
lems for other customers?

11.60 Assume in Problem 11.59 that when the load drops
to 180 kW and 480 magnetizing kVAR the capaci-
tor bank at the substation is disconnected. Also
assume that the line-to-line voltage at the substa-
tion is maintained at 13.8 kV.

a) What is the magnitude of the line-to-line voltage
at the generating plant?

b) Is the voltage level found in (a) within the
acceptable range of variation?

c) What is the total line loss in kW when the capac-
itors stay on line after the load drops to

?

d) What is the total line loss in kW when the capac-
itors are removed after the load drops to

?

e) Based on your calculations, would you recom-
mend disconnecting the capacitors after the load
drops to ? Explain.180 + j480 kVA

180 + j480 kVA

180 + j480 kVA

PRACTICAL
PERSPECTIVE
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PERSPECTIVE

PRACTICAL
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We now introduce a powerful analytical technique that is
widely used to study the behavior of linear, lumped-parameter
circuits. The method is based on the Laplace transform, which we
define mathematically in Section 12.1. Before doing so, we need
to explain why another analytical technique is needed. First, we
wish to consider the transient behavior of circuits whose describ-
ing equations consist of more than a single node-voltage or mesh-
current differential equation. In other words, we want to consider
multiple-node and multiple-mesh circuits that are described by
sets of linear differential equations.

Second, we wish to determine the transient response of cir-
cuits whose signal sources vary in ways more complicated than
the simple dc level jumps considered in Chapters 7 and 8. Third,
we can use the Laplace transform to introduce the concept of the
transfer function as a tool for analyzing the steady-state sinu-
soidal response of a circuit when the frequency of the sinusoidal
source is varied. We discuss the transfer function in Chapter 13.
Finally, we wish to relate, in a systematic fashion, the time-
domain behavior of a circuit to its frequency-domain behavior.
Using the Laplace transform will provide a broader understand-
ing of circuit functions.

In this chapter, we introduce the Laplace transform, discuss
its pertinent characteristics, and present a systematic method for
transforming from the frequency domain to the time domain.

Introduction to the
Laplace Transform1212

426

C H A P T E R

C H A P T E R  C O N T E N T S

12.1 Definition of the Laplace Transform p. 428

12.2 The Step Function p. 429

12.3 The Impulse Function p. 431

12.4 Functional Transforms p. 434

12.5 Operational Transforms p. 435

12.6 Applying the Laplace Transform p. 440

12.7 Inverse Transforms p. 442

12.8 Poles and Zeros of F(s) p. 452

12.9 Initial- and Final-Value Theorems p. 453

C H A P T E R  O B J E C T I V E S

1 Be able to calculate the Laplace transform of a
function using the definition of Laplace
transform, the Laplace transform table, and/or a
table of operational transforms.

2 Be able to calculate the inverse Laplace
transform using partial fraction expansion and
the Laplace transform table.

3 Understand and know how to use the initial
value theorem and the final value theorem.



As we learned in Chapter 9, power delivered from electrical
wall outlets in the U.S. can be modeled as a sinusoidal volt-
age or current source, where the frequency of the sinusoid is
60 Hz. The phasor concepts introduced in Chapter 9 allowed
us to analyze the steady-state response of a circuit to a sinu-
soidal source.

It is often important to pay attention to the complete
response of a circuit to a sinusoidal source. Remember that the
complete response has two parts—the steady-state response
that takes the same form as the input to the circuit, and the
transient response that decays to zero as time progresses.
When the source for a circuit is modeled as a 60 Hz sinusoid,
the steady-state response is also a 60 Hz sinusoid whose mag-
nitude and phase angle can be calculated using phasor circuit
analysis. The transient response depends on the components
that make up the circuit, the values of those components, and
the way the components are interconnected. The voltage and
current for every component in a circuit is the sum of a tran-
sient part and a steady-state part, once the source is switched
into the circuit.

While the transient part of the voltage and current even-
tually decays to zero, initially this transient part, when added
to the steady-state part, may exceed the voltage or current
rating of the circuit component. This is why it is important to
be able to determine the complete response of a circuit. The
Laplace transform techniques introduced in this chapter can
be used to find the complete response of a circuit to a sinu-
soidal source.

Consider the RLC circuit shown below, comprised of
components from Appendix H and powered by a 60 Hz sinu-
soidal source. As detailed in Appendix H, the 10 mH induc-
tor has a current rating of 40 mA. The amplitude of the
sinusoidal source has been chosen so that this rating is met
in the steady state (see Problem 12.54). Once we have pre-
sented the Laplace transform method, we will be able to
determine whether or not this current rating is exceeded
when the source is first switched on and both the transient
and steady-state components of the inductor current are
active.

�

�

10 mH 100 mF

vg

t � 0
iL

15 �

427
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428 Introduction to the Laplace Transform

12.1 Definition of the Laplace
Transform

The Laplace transform of a function is given by the expression

(12.1)

where the symbol is read “the Laplace transform of ”
The Laplace transform of is also denoted that is,

(12.2)

This notation emphasizes that when the integral in Eq. 12.1 has been evalu-
ated, the resulting expression is a function of s. In our applications, t repre-
sents the time domain, and, because the exponent of e in the integral of
Eq. 12.1 must be dimensionless, s must have the dimension of reciprocal time,
or frequency. The Laplace transform transforms the problem from the time
domain to the frequency domain. After obtaining the frequency-domain
expression for the unknown,we inverse-transform it back to the time domain.

If the idea behind the Laplace transform seems foreign, consider
another familiar mathematical transform. Logarithms are used to change a
multiplication or division problem, such as into a simpler addition
or subtraction problem: Antilogs are
used to carry out the inverse process.The phasor is another transform; as we
know from Chapter 9, it converts a sinusoidal signal into a complex number
for easier, algebraic computation of circuit values. After determining the
phasor value of a signal, we transform it back to its time-domain expression.
Both of these examples point out the essential feature of mathematical
transforms: They are designed to create a new domain to make the mathe-
matical manipulations easier.After finding the unknown in the new domain,
we inverse-transform it back to the original domain. In circuit analysis, we
use the Laplace transform to transform a set of integrodifferential equations
from the time domain to a set of algebraic equations in the frequency
domain. We therefore simplify the solution for an unknown quantity to the
manipulation of a set of algebraic equations.

Before we illustrate some of the important properties of the Laplace
transform, some general comments are in order. First, note that the inte-
gral in Eq. 12.1 is improper because the upper limit is infinite. Thus we are
confronted immediately with the question of whether the integral con-
verges. In other words, does a given have a Laplace transform?
Obviously, the functions of primary interest in engineering analysis have
Laplace transforms; otherwise we would not be interested in the trans-
form. In linear circuit analysis, we excite circuits with sources that have
Laplace transforms. Excitation functions such as or which do not
have Laplace transforms, are of no interest here.

Second, because the lower limit on the integral is zero, the Laplace
transform ignores for negative values of t. Put another way, is
determined by the behavior of only for positive values of t.To empha-
size that the lower limit is zero, Eq. 12.1 is frequently referred to as the
one-sided, or unilateral, Laplace transform. In the two-sided, or bilateral,
Laplace transform, the lower limit is We do not use the bilateral
form here; hence is understood to be the one-sided transform.

Another point regarding the lower limit concerns the situation when
has a discontinuity at the origin. If is continuous at the origin—as,f(t)f(t)

F(s)
- q .

f(t)
F(s)f(t)

et2
,tt

f(t)

log A = log BC = log B + log C.
A = BC,

F(s) = l5f(t)6.
F(s);f(t)

f(t).l5f(t)6

l5f(t)6 =

L

q

0
 f(t)e-st dt,

Laplace transform �
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1.0

f (t)

e�at e�at, t � 0

0
(a)

1.0

f (t)

t 

(b)

t
0

0, t � 0

Figure 12.1 � A continuous and discontinuous function
at the origin. (a) is continuous at the origin. 
(b) is discontinuous at the origin.f(t)

f(t)

for example, in Fig. 12.1(a)— is not ambiguous. However, if has a
finite discontinuity at the origin—as, for example, in Fig. 12.1(b)—the
question arises as to whether the Laplace transform integral should
include or exclude the discontinuity. In other words, should we make the
lower limit and include the discontinuity, or should we exclude the dis-
continuity by making the lower limit ? (We use the notation and to
denote values of t just to the left and right of the origin, respectively.)
Actually, we may choose either as long as we are consistent. For reasons to
be explained later, we choose as the lower limit.

Because we are using as the lower limit, we note immediately that
the integration from to is zero. The only exception is when the dis-
continuity at the origin is an impulse function, a situation we discuss in
Section 12.3. The important point now is that the two functions shown in
Fig. 12.1 have the same unilateral Laplace transform because there is no
impulse function at the origin.

The one-sided Laplace transform ignores for What hap-
pens prior to is accounted for by the initial conditions. Thus we use the
Laplace transform to predict the response to a disturbance that occurs
after initial conditions have been established.

In the discussion that follows, we divide the Laplace transforms into
two types: functional transforms and operational transforms. A functional
transform is the Laplace transform of a specific function, such as t,

and so on. An operational transform defines a general mathematical
property of the Laplace transform, such as finding the transform of the
derivative of Before considering functional and operational trans-
forms, however, we need to introduce the step and impulse functions.

12.2 The Step Function
We may encounter functions that have a discontinuity, or jump, at the ori-
gin. For example, we know from earlier discussions of transient behavior
that switching operations create abrupt changes in currents and voltages.
We accommodate these discontinuities mathematically by introducing the
step and impulse functions.

Figure 12.2 illustrates the step function. It is zero for . The sym-
bol for the step function is Ku(t). Thus, the mathematical definition of the
step function is

(12.3)

If K is 1, the function defined by Eq. 12.3 is the unit step.
The step function is not defined at In situations where we need to

define the transition between and we assume that it is linear and that

(12.4)

As before, and represent symmetric points arbitrarily close to the
left and right of the origin. Figure 12.3 illustrates the linear transition from

to 
A discontinuity may occur at some time other than for exam-

ple, in sequential switching. A step that occurs at is expressed as
Thus

(12.5) Ku(t - a) = K, t 7 a.

 Ku(t - a) = 0,  t 6 a,

Ku(t - a).
t = a

t = 0;
0+.0-

0+0-

Ku(0) = 0.5K.

0+,0-

t = 0.

 Ku(t) = K,  t 7 0.

 Ku(t) = 0,  t 6 0,

 t 6 0

f(t).

e-at,
sin vt,

0-

t 6 0-.f(t)

0+0-

0-

0-

0+0-0+

0-

f(t)f(0)

f (t)

K

0
t 

Figure 12.2 � The step function.

0� 0�

0.5 K

K

f (t)

t 

Figure 12.3 � The linear approximation to the step
function.
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If the step occurs to the right of the origin, and if the step
occurs to the left of the origin. Figure 12.4 illustrates Eq. 12.5. Note that
the step function is 0 when the argument is negative, and it is K
when the argument is positive.

A step function equal to K for is written as Thus

(12.6)

The discontinuity is to the left of the origin when Equation 12.6 is
shown in Fig. 12.5.

One application of the step function is to use it to write the mathe-
matical expression for a function that is nonzero for a finite duration but is
defined for all positive time. One example useful in circuit analysis is a
finite-width pulse, which we can create by adding two step functions. The
function has the value K for and the
value 0 everywhere else, so it is a finite-width pulse of height K initiated at

and terminated at In defining this pulse using step functions,
it is helpful to think of the step function as “turning on” the con-
stant value K at and the step function as “turning off” the
constant value K at We use step functions to turn on and turn off
linear functions at desired times in Example 12.1.

t = 3.
-u(t - 3)t = 1,

u(t - 1)
t = 3.t = 1

1 6 t 6 3K[u(t - 1) - u(t - 3)]

a 6 0.

 Ku(a - t) = 0,  t 7 a.

 Ku(a - t) = K, t 6 a,

Ku(a - t).t 6 a

t - a

a 6 0,a 7 0,

0

K

f (t)

a
t 

Figure 12.4 � A step function occurring at 
when .a 7 0

t = a

f (t)

K

0 a
t 

Figure 12.5 � A step function for .a 7 0Ku(a - t)

Example 12.1 Using Step Functions to Represent a Function of Finite Duration

on at off at These straight
line segments and their equations are shown in
Fig. 12.7. The expression for isf(t)

t = 4.t = 3,+2t - 8,Use step functions to write an expression for the
function illustrated in Fig. 12.6.

Figure 12.6 � The function for Example 12.1.

Solution
The function shown in Fig. 12.6 is made up of linear
segments with break points at 0, 1, 3, and 4 s.To con-
struct this function, we must add and subtract linear
functions of the proper slope. We use the step func-
tion to initiate and terminate these linear segments
at the proper times. In other words, we use the step
function to turn on and turn off a straight line with
the following equations: on at off at

on at off at andt = 3;t = 1,-2t + 4,t = 1;
t = 0,+2t,

0 1 2 3 4
t(s)

f (t)

�2

2

NOTE: Assess your understanding of step functions by trying Chapter Problems 12.3 and 12.4.

f(t) = 2t[u(t) - u(t - 1)] + (-2t + 4)[u(t - 1)
       - u(t - 3)] + (2t - 8)[u(t - 3) - u(t - 4)].

Figure 12.7 � Definition of the three line segments turned 
on and off with step functions to form the function shown 
in Fig. 12.6.

0 1
2t � 8

�2t � 4

2t

2 3 4 t (s)
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1 The impulse function is also known as the Dirac delta function.

0.5
t � 0.5

0 ���  

1.0
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1
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e�a (t �   )
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�

Figure 12.8 � A magnified view of the discontinuity in
Fig. 12.1(b), assuming a linear transition between 
and +P.
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Figure 12.9 � The derivative of the function shown
in Fig. 12.8.

0

f (t)

t 

K/(2  2)

2 �   1

K/(2  1)

K
2  2

e��t�/  1
K

2  1

� �

�

�

�

�
�

e��t�/  2�

Figure 12.10 � A variable-parameter function used to
generate an impulse function.

12.3 The Impulse Function
When we have a finite discontinuity in a function, such as that illustrated
in Fig. 12.1(b), the derivative of the function is not defined at the point of
the discontinuity.The concept of an impulse function1 enables us to define
the derivative at a discontinuity, and thus to define the Laplace transform
of that derivative. An impulse is a signal of infinite amplitude and zero
duration. Such signals don’t exist in nature, but some circuit signals come
very close to approximating this definition, so we find a mathematical
model of an impulse useful. Impulsive voltages and currents occur in cir-
cuit analysis either because of a switching operation or because the circuit
is excited by an impulsive source. We will analyze these situations in
Chapter 13, but here we focus on defining the impulse function generally.

To define the derivative of a function at a discontinuity, we first assume
that the function varies linearly across the discontinuity, as shown in 
Fig. 12.8, where we observe that as an abrupt discontinuity occurs at
the origin. When we differentiate the function, the derivative between 
and is constant at a value of For the derivative is 
Figure 12.9 shows these observations graphically. As approaches zero, the
value of between approaches infinity. At the same time, the dura-
tion of this large value is approaching zero. Furthermore, the area under

between remains constant as In this example, the area is
unity. As approaches zero, we say that the function between 
approaches a unit impulse function, denoted Thus the derivative of 
at the origin approaches a unit impulse function as approaches zero, or

If the area under the impulse function curve is other than unity, the
impulse function is denoted where K is the area. K is often referred
to as the strength of the impulse function.

To summarize, an impulse function is created from a variable-parameter
function whose parameter approaches zero. The variable-parameter func-
tion must exhibit the following three characteristics as the parameter
approaches zero:

1. The amplitude approaches infinity.

2. The duration of the function approaches zero.

3. The area under the variable-parameter function is constant as the
parameter changes.

Many different variable-parameter functions have the aforementioned
characteristics. In Fig. 12.8, we used a linear function 
Another example of a variable-parameter function is the expo-
nential function:

(12.7)

As approaches zero, the function becomes infinite at the origin and at the
same time decays to zero in an infinitesimal length of time. Figure 12.10
illustrates the character of as To show that an impulse functionP : 0.f(t)

P

f(t) =

K

2P

e-|t|>P.

f(t) = 0.5t>P + 0.5.

Kd(t),

f   ¿(0) : d(t) as P : 0.

P

f(t)d(t).
;PP

P : 0.;Pf   ¿(t)

;Pf   ¿(t)
P

-ae-a(t - P).t 7 P,1>2P.+P

-P

P : 0,
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is created as we must also show that the area under the function is
independent of Thus,

(12.8)

which tells us that the area under the curve is constant and equal to K units.
Therefore, as 

Mathematically, the impulse function is defined

(12.9)

(12.10)

Equation 12.9 states that the area under the impulse function is constant.
This area represents the strength of the impulse. Equation 12.10 states
that the impulse is zero everywhere except at An impulse that
occurs at is denoted 

The graphic symbol for the impulse function is an arrow. The strength
of the impulse is given parenthetically next to the head of the arrow.
Figure 12.11 shows the impulses and 

An important property of the impulse function is the sifting property,
which is expressed as

(12.11)

where the function is assumed to be continuous at that is, at the
location of the impulse. Equation 12.11 shows that the impulse function
sifts out everything except the value of at The validity of
Eq. 12.11 follows from noting that is zero everywhere except at

and hence the integral can be written

(12.12)

But because is continuous at a, it takes on the value as so

(12.13)

We use the sifting property of the impulse function to find its Laplace
transform:

(12.14)

which is an important Laplace transform pair that we make good use of in
circuit analysis.
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=
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Figure 12.11 � A graphic representation of the impulse
and .Kd(t - a)Kd(t)
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Figure 12.12 � The first derivative of the impulse 
function. (a) The impulse-generating function used to
define the first derivative of the impulse. (b) The first
derivative of the impulse-generating function that
approaches as .P : 0d¿(t)
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Figure 12.13 � The impulse function as the derivative
of the step function: (a) as ; and 
(b) as .P : 0f¿(t) : d(t)

P : 0f(t) : u(t)

We can also define the derivatives of the impulse function and the
Laplace transform of these derivatives. We discuss the first derivative,
along with its transform and then state the result for the higher-order
derivatives.

The function illustrated in Fig. 12.12(a) generates an impulse function
as Figure 12.12(b) shows the derivative of this impulse-generating
function, which is defined as the derivative of the impulse as 
The derivative of the impulse function sometimes is referred to as a
moment function, or unit doublet.

To find the Laplace transform of we simply apply the defining
integral to the function shown in Fig. 12.12(b) and, after integrating, let

Then

(12.15)

In deriving Eq. 12.15, we had to use l’Hôpital’s rule twice to evaluate the
indeterminate form 

Higher-order derivatives may be generated in a manner similar to
that used to generate the first derivative (see Problem 12.6), and the defin-
ing integral may then be used to find its Laplace transform. For the nth
derivative of the impulse function, we find that its Laplace transform sim-
ply is that is,

(12.16)

Finally, an impulse function can be thought of as a derivative of a step
function; that is,

(12.17)

Figure 12.13 presents the graphic interpretation of Eq. 12.17. The function
shown in Fig. 12.13(a) approaches a unit step function as The func-
tion shown in Fig. 12.13(b)—the derivative of the function in
Fig. 12.13(a)—approaches a unit impulse as 

The impulse function is an extremely useful concept in circuit analy-
sis, and we say more about it in the following chapters. We introduced the
concept here so that we can include discontinuities at the origin in our def-
inition of the Laplace transform.

NOTE: Assess your understanding of the impulse function by trying
Chapter Problems 12.6, 12.8, and 12.10.

P : 0.

P : 0.

d(t) =

du(t)
dt

 .

l5d(n)(t)6 = sn.

sn;

0>0.

 = s.

 =  lim
P:0

 
s2esP

+ s2e-sP

2s

 =  lim
P:0

 
sesP

- se-sP

2Ps

 =  lim
P:0

 
esP

+ e-sP

- 2

sP
2

 L5d¿(t)6 =  lim
P:0
B
L

0-

-P

1

P
2e-st

 dt +

L

P

0+

¢ -

1

P
2 ≤e-st

 dtR

P : 0.

d¿(t),

P : 0.[d¿(t)]
P : 0.
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etc.

t 
0

1.0

�1.0

f (t)

Figure 12.15 � A sinusoidal function for .t 7 0

12.4 Functional Transforms
A functional transform is simply the Laplace transform of a specified
function of t. Because we are limiting our introduction to the unilat-
eral, or one-sided, Laplace transform, we define all functions to be zero
for 

We derived one functional transform pair in Section 12.3, where
we showed that the Laplace transform of the unit impulse function
equals 1; (see Eq. 12.14). A second illustration is the unit step function
of Fig. 12.13(a), where

(12.18)

Equation 12.18 shows that the Laplace transform of the unit step function
is 

The Laplace transform of the decaying exponential function shown in
Fig. 12.14 is

(12.19)

In deriving Eqs. 12.18 and 12.19, we used the fact that integration across
the discontinuity at the origin is zero.

A third illustration of finding a functional transform is the sinusoidal
function shown in Fig. 12.15. The expression for for is 
hence the Laplace transform is

(12.20)

Table 12.1 gives an abbreviated list of Laplace transform pairs. It
includes the functions of most interest in an introductory course on cir-
cuit applications.

 =

v

s2
+ v2 .

 =

1
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 =
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q

0-
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 dt

 =

L

q

0-

¢ ejvt
- e-jvt
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 l5sin vt6 =

L

q
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(sin vt)e-st dt

sin vt;t 7 0-f(t)

l5e-at6 =

L

q

0 +

 e-at e-st dt =

L

q

0 +

e-(a+s)t dt =

1
s + a

 .

1>s.

l5u(t)6 =

L

q

0-

 f(t)e-st dt =

L

q

0 +

 1e-
stdt

     =
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` q
0 +

=
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e�at, t � 0

0
t 

Figure 12.14 � A decaying exponential function.
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Objective 1—Be able to calculate the Laplace transform of a function using the definition of Laplace transform

12.1 Use the defining integral to
a) find the Laplace transform of cosh 
b) find the Laplace transform of sinh bt .

bt ;
Answer: (a)

(b) b>(s2
- b2).

s>(s2
- b2);

NOTE: Also try Chapter Problem 12.20.

12.5 Operational Transforms
Operational transforms indicate how mathematical operations performed
on either or are converted into the opposite domain. The opera-
tions of primary interest are (1) multiplication by a constant; (2) addition
(subtraction); (3) differentiation; (4) integration; (5) translation in the time
domain; (6) translation in the frequency domain; and (7) scale changing.

Multiplication by a Constant
From the defining integral, if

then

(12.21)

Thus, multiplication of by a constant corresponds to multiplying 
by the same constant.

F(s)f(t)

 l5Kf(t)6 = KF(s).

 l5f(t)6 = F(s),

F(s)f(t)

A S S E S S M E N T  P R O B L E M

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs 

Type f(t) (t > 0 ) F(s)

(impulse) 1

(step)

(ramp)

(exponential)

(sine)

(cosine)

(damped ramp)

(damped sine)

(damped cosine)
s + a

(s + a)2
+ v2e-at cos vt

v

(s + a)2
+ v2e-at sin vt

1
(s + a)2te-at

s

s2
+ v2cos vt

v

s2
+ v2sin vt

1
s + a

e-at

1
s2t

1
s

u(t)

d(t)

-
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Addition (Subtraction)
Addition (subtraction) in the time domain translates into addition (sub-
traction) in the frequency domain. Thus if

then

(12.22)

which is derived by simply substituting the algebraic sum of time-domain
functions into the defining integral.

Differentiation
Differentiation in the time domain corresponds to multiplying by s
and then subtracting the initial value of —that is, —from 
this product:

(12.23)

which is obtained directly from the definition of the Laplace transform, or

(12.24)

We evaluate the integral in Eq. 12.24 by integrating by parts. Letting
and yields

(12.25)

Because we are assuming that is Laplace transformable, the evalua-
tion of at is zero.Therefore the right-hand side of Eq. 12.25
reduces to

This observation completes the derivation of Eq. 12.23. It is an important
result because it states that differentiation in the time domain reduces to
an algebraic operation in the s domain.

We determine the Laplace transform of higher-order derivatives by
using Eq. 12.23 as the starting point. For example, to find the Laplace
transform of the second derivative of we first let

(12.26)g(t) =

df(t)
dt

 .

f(t),

-f(0-) + s
L

q

0-

f(t)e-stdt = sF(s) - f(0-).

t = qe-stf(t)
f(t)

l b df(t)
dt
r = e-stf(t) 2 q

0-

-

L

q

0-

f(t)(-se-stdt).

dv = [df(t)>dt] dtu = e-st

lb df(t)
dt
r =

L

q

0-

Bdf(t)
dt
Re-st

 dt.

lb df(t)
dt
r = sF(s) - f(0-),

f(0-)f(t)
F(s)

l5f1(t) + f2(t) - f3(t)6 = F1(s) + F2(s) - F3(s),

 l5f3(t)6 = F3(s),

 l5f2(t)6 = F2(s),

 l5f1(t)6 = F1(s),
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Now we use Eq. 12.23 to write

(12.27)

But because

we write

(12.28)

Combining Eqs. 12.26, 12.27, and 12.28 gives

(12.29)

We find the Laplace transform of the nth derivative by successively
applying the preceding process, which leads to the general result

(12.30)

Integration
Integration in the time domain corresponds to dividing by s in the s domain.
As before, we establish the relationship by the defining integral:

(12.31)

We evaluate the integral on the right-hand side of Eq. 12.31 by integrating
by parts, first letting

Then

 v = -  
e -st

s
 .

 du = f(t) dt,

 dv = e-st
 dt.

 u =

L

t

0- 
f(x) dx,

l b
L

t

0-

f(x) dx r =

L

q

0-

B
L

t

0-

f(x) dxRe-st
 dt.

 - sn -3
 

d2f(0-)

dt2 -
Á

-

dn -1f(0-)

dtn- 1  .

 l b dnf(t)
dtn r = snF(s) - sn -1f(0-) - sn- 2

 

df(0-)
dt

lb d2f(t)

dt2 r = s2F(s) - sf(0-) -

df(0-)
dt

 .

l b dg(t)
dt
r = lb d2f(t)

dt2 r = s G(s) - g(0-).

dg(t)
dt

=

d2f(t)

dt2  ,

G(s) = sF(s) - f(0-).



438 Introduction to the Laplace Transform

The integration-by-parts formula yields

(12.32)

The first term on the right-hand side of Eq. 12.32 is zero at both the upper
and lower limits. The evaluation at the lower limit obviously is zero,
whereas the evaluation at the upper limit is zero because we are assuming
that has a Laplace transform. The second term on the right-hand side
of Eq. 12.32 is therefore

(12.33)

which reveals that the operation of integration in the time domain is trans-
formed to the algebraic operation of multiplying by in the s domain.
Equation 12.33 and Eq. 12.30 form the basis of the earlier statement that
the Laplace transform translates a set of integrodifferential equations into
a set of algebraic equations.

Translation in the Time Domain
If we start with any function we can represent the same function,
translated in time by the constant a, as 2. Translation in
the time domain corresponds to multiplication by an exponential in the
frequency domain. Thus

(12.34)

For example, knowing that

Eq. 12.34 permits writing the Laplace transform of 
directly:

The proof of Eq. 12.34 follows from the defining integral:

(12.35)

In writing Eq. 12.35, we took advantage of for Now
we change the variable of integration. Specifically, we let Thenx = t - a.

t 7 a.u(t - a) = 1

 =

L

q

a
f(t - a)e-st

 dt.

 l5(t - a)u(t - a)6 =

L

q

0-

 u(t - a)f(t - a)e-st dt

l5(t - a)u(t - a)6 =

e-as

s2 .

(t - a)u(t - a)

l5tu(t)6 =

1

s2 ,

l5f(t - a)u(t - a)6 = e-asF(s), a 7 0.

f(t - a)u(t - a)
f(t)u(t),

1>s

l b
L

t

0-

f(x) dx r =

F(s)
s

 ,

F(s)>s;
f(t)

l b
L

t

0-

f(x) dx r = -  
e-st

s L

t

0-

 f(x) dx 2 q
0-

+

L

q

0-

e-st

s
 f(t) dt.

2 Note that throughout we multiply any arbitrary function by the unit step function 
to ensure that the resulting function is defined for all positive time.

u(t)f(t)
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when , when and Thus we write the
integral in Eq. 12.35 as

which is what we set out to prove.

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by an
exponential in the time domain:

(12.36)

which follows from the defining integral.The derivation of Eq. 12.36 is left
to Problem 12.15.

We may use the relationship in Eq. 12.36 to derive new transform
pairs. Thus, knowing that

we use Eq. 12.36 to deduce that

Scale Changing
The scale-change property gives the relationship between and 
when the time variable is multiplied by a positive constant:

(12.37)

the derivation of which is left to Problem 12.16.The scale-change property
is particularly useful in experimental work, especially where time-scale
changes are made to facilitate building a model of a system.

We use Eq. 12.37 to formulate new transform pairs.Thus, knowing that

we deduce from Eq. 12.37 that

Table 12.2 gives an abbreviated list of operational transforms.

l5cosvt6 =

1
v

 
s>v

(s>v)2
+ 1

=

s

s2
+ v2 .

l5cos t6 =

s

s2
+ 1

 ,

l5f(at)6 =

1
a

 F¢ s
a
≤ , a 7 0,

F(s)f(t)

 l5e-at cosvt6 =

s + a

(s + a)2
+ v2 .

 l5cos vt6 =

s

s2
+ v2 ,

l5e-at f(t)6 = F(s + a),

 = e-asF(s),

 = e-sa

L

q

0
f(x)e-sx

 dx

 l5f(t - a)u(t - a)6 =

L

q

0
 f(x)e-s(x + a) dx

dx = dt.t = qx = qt = ax = 0
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Objective 1—Be able to calculate the Laplace transform of a function using the Laplace transform table or a table of
operational transforms

12.2 Use the appropriate operational transform
from Table 12.2 to find the Laplace transform
of each function:

a)

b)

c) t cos vt.

d

dt
 (e-at sinh bt);

t2e-at;

Answer: (a)

(b)

(c)
s2

- v2

(s2
+ v2)2 .

bs

(s + a)2
- b2 ;

2

(s + a)3 ;

12.6 Applying the Laplace Transform
We now illustrate how to use the Laplace transform to solve the ordinary
integrodifferential equations that describe the behavior of lumped-
parameter circuits. Consider the circuit shown in Fig. 12.16. We assume
that no initial energy is stored in the circuit at the instant when the switch,
which is shorting the dc current source, is opened. The problem is to find
the time-domain expression for when t Ú 0.v(t)

Idc
t � 0

CLR

�

�

v(t)

Figure 12.16 � A parallel RLC circuit.
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TABLE 12.2 An Abbreviated List of Operational Transforms

Operation f(t) F(s)

Multiplication by a constant

Addition/subtraction

First derivative (time)

Second derivative (time)

nth derivative (time)

Time integral

Translation in time

Translation in frequency

Scale changing

First derivative (s)

nth derivative (s)

s integral
L

q

s
F(u) du

f(t)

t

(-1)n
 

dnF(s)

dsntnf(t)

-

dF(s)

ds
tf(t)

1
a

Fa s
a
bf(at), a 7 0

F(s + a)e-atf(t)

e-asF(s)f(t - a)u(t - a), a 7 0

F(s)

sL

t

0
f(x) dx

           - sn -3
 

df2(0-)

dt2 -
Á

-

dn -1f(0-)

dtn -1

snF(s) - sn -1f(0-) - sn -2
 

df(0-)

dt

dnf(t)

dtn

s2F(s) - sf(0-) -

df(0-)

dt

d2f(t)

dt2

sF(s) - f(0-)
df(t)

dt

F1(s) + F2(s) - F3(s) +
Áf1(t) + f2(t) - f3(t) +

Á

KF(s)Kf(t)

NOTE: Also try Chapter Problems 12.18 and 12.22.
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We begin by writing the integrodifferential equation that must
satisfy. We need only a single node-voltage equation to describe the cir-
cuit. Summing the currents away from the top node in the circuit gener-
ates the equation:

(12.38)

Note that in writing Eq. 12.38, we indicated the opening of the switch in
the step jump of the source current from zero to 

After deriving the integrodifferential equations (in this example, just
one), we transform the equations to the s domain. We will not go through
the steps of the transformation in detail, because in Chapter 13 we will dis-
cover how to bypass them and generate the s-domain equations directly.
Briefly though, we use three operational transforms and one functional
transform on Eq. 12.38 to obtain

(12.39)

an algebraic equation in which is the unknown variable. We are
assuming that the circuit parameters R, L, and C, as well as the source cur-
rent are known; the initial voltage on the capacitor is zero
because the initial energy stored in the circuit is zero. Thus we have
reduced the problem to solving an algebraic equation.

Next we solve the algebraic equations (again, just one in this case) for
the unknowns. Solving Eq. 12.39 for gives

(12.40)

To find we must inverse-transform the expression for We
denote this inverse operation

(12.41)

The next step in the analysis is to find the inverse transform of the 
s-domain expression; this is the subject of Section 12.7. In that section
we also present a final, critical step: checking the validity of the result-
ing time-domain expression. The need for such checking is not unique
to the Laplace transform; conscientious and prudent engineers always
test any derived solution to be sure it makes sense in terms of known
system behavior.

Simplifying the notation now is advantageous. We do so by dropping
the parenthetical t in time-domain expressions and the parenthetical s in
frequency-domain expressions.We use lowercase letters for all time-domain

v(t) = l
-15V(s)6.

V(s).v(t)

 V(s) =

Idc >C
s2

+ (1>RC)s + (1>LC)
 .

 V(s)¢ 1
R

+

1
sL

+ sC≤ =

Idc

s
 ,

V(s)

v(0-)Idc,

V(s)

V(s)
R

+

1
L

 
V(s)

s
+ C[sV(s) - v(0-)] = Idca1

s
b ,

Idc.

v(t)
R

+

1
LL

t

0
v(x) dx + C

dv(t)
dt

= Idcu(t).

v(t)



442 Introduction to the Laplace Transform

variables, and we represent the corresponding s-domain variables with
uppercase letters.Thus

and so on.

NOTE: Assess your understanding of this material by trying Chapter
Problem 12.26.

12.7 Inverse Transforms
The expression for in Eq. 12.40 is a rational function of s; that is, one
that can be expressed in the form of a ratio of two polynomials in s such
that no nonintegral powers of s appear in the polynomials. In fact, for lin-
ear, lumped-parameter circuits whose component values are constant, the
s-domain expressions for the unknown voltages and currents are always
rational functions of s. (You may verify this observation by working
Problems 12.27–12.30.) If we can inverse-transform rational functions of s,
we can solve for the time-domain expressions for the voltages and cur-
rents. The purpose of this section is to present a straight-forward and sys-
tematic technique for finding the inverse transform of a rational function.

In general, we need to find the inverse transform of a function that
has the form

(12.42)

The coefficients a and b are real constants, and the exponents m and n are
positive integers. The ratio is called a proper rational function
if and an improper rational function if Only a proper
rational function can be expanded as a sum of partial fractions. This
restriction poses no problem, as we show at the end of this section.

Partial Fraction Expansion: Proper Rational Functions
A proper rational function is expanded into a sum of partial fractions by
writing a term or a series of terms for each root of Thus must
be in factored form before we can make a partial fraction expansion. For
each distinct root of a single term appears in the sum of partial frac-
tions. For each multiple root of of multiplicity r, the expansion con-
tains r terms. For example, in the rational function

the denominator has four roots. Two of these roots are distinct—namely,
at and A multiple root of multiplicity 2 occurs at 
Thus the partial fraction expansion of this function takes the form

(12.43)
s + 6

s(s + 3)(s + 1)2 K

K1

s
+

K2

s + 3
+

K3

(s + 1)2 +

K4

s + 1
 .

s = -1.s = -3.s = 0

s + 6

s(s + 3)(s + 1)2 ,

D(s)
D(s),

D(s)D(s).

m … n.m 7 n,
N(s)>D(s)

F(s) =

N(s)
D(s)

=

ansn
+ an -1s

n -1
+

Á
+ a1s + a0

bmsm
+ bm - 1s

m - 1
+

Á
+ b1s + b0

 .

V(s)

 l5f6 = F or f = l
-15F6,

 l5i6 = I  or  i = l
-15I6,

  l5v6 = V or v = l
-15V6,
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The key to the partial fraction technique for finding inverse transforms
lies in recognizing the corresponding to each term in the sum of par-
tial fractions. From Table 12.1 you should be able to verify that

(12.44)

All that remains is to establish a technique for determining the coeffi-
cients ( ) generated by making a partial fraction expansion.
There are four general forms this problem can take. Specifically, the roots
of are either (1) real and distinct; (2) complex and distinct; (3) real
and repeated; or (4) complex and repeated. Before we consider each situ-
ation in turn, a few general comments are in order.

We used the identity sign in Eq. 12.43 to emphasize that expanding
a rational function into a sum of partial fractions establishes an identical
equation. Thus both sides of the equation must be the same for all values
of the variable s. Also, the identity relationship must hold when both sides
are subjected to the same mathematical operation. These characteristics
are pertinent to determining the coefficients, as we will see.

Be sure to verify that the rational function is proper. This check is
important because nothing in the procedure for finding the various Ks will
alert you to nonsense results if the rational function is improper. We pres-
ent a procedure for checking the Ks, but you can avoid wasted effort by
forming the habit of asking yourself, “Is a proper rational function?”

Partial Fraction Expansion: Distinct Real Roots of D(s)
We first consider determining the coefficients in a partial fraction expan-
sion when all the roots of are real and distinct. To find a K associated
with a term that arises because of a distinct root of we multiply both
sides of the identity by a factor equal to the denominator beneath the
desired K.Then when we evaluate both sides of the identity at the root cor-
responding to the multiplying factor, the right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

(12.45)

To find the value of we multiply both sides by s and then evaluate both
sides at :

or

(12.46)

To find the value of we multiply both sides by and then evaluate
both sides at :

 K

K1(s + 8)
s

2
s = -8

+ K2 +

K3(s + 8)
(s + 6)

2
s = -8

 ,

 
96(s + 5)(s + 12)

s(s + 6)
2
s =  -8

s = -8
s + 8K2,

96(5)(12)
8(6)

K K1 = 120.

96(s + 5)(s + 12)
(s + 8)(s + 6)

2
s =0

K K1 +

K2s

s + 8
2
s =0

+

K3s

s + 6
2
s= 0

 ,

s = 0
K1,

F(s) =

96(s + 5)(s + 12)
s(s + 8)(s + 6)

K

K1

s
+

K2

s + 8
+

K3

s + 6
 .

D(s),
D(s)

F(s)

K

D(s)

K1, K2, K3, . . .

 = (K1 + K2e
-3t

+ K3te
-t 

+ K4e
-t )u(t).

 l-1b s + 6

s(s + 3)(s + 1)2 r

f(t)
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or

(12.47)

Then is

(12.48)

From Eq. 12.45 and the K values obtained,

(12.49)

At this point, testing the result to protect against computational errors is a
good idea. As we already mentioned, a partial fraction expansion creates
an identity; thus both sides of Eq. 12.49 must be the same for all s values.
The choice of test values is completely open; hence we choose values that
are easy to verify. For example, in Eq. 12.49, testing at either or is
attractive because in both cases the left-hand side reduces to zero.
Choosing yields

whereas testing gives

Now confident that the numerical values of the various Ks are correct, we
proceed to find the inverse transform:

(12.50)l
-1 b 96(s + 5)(s + 12)

s(s + 8)(s + 6)
r = (120 + 48e-6t

- 72e-8t)u(t).

120
-12

+

48
-6

-

72
-4

= -10 - 8 + 18 = 0.

-12

120
-5

+

48
1

-

72
3

= -24 + 48 - 24 = 0,

-5

-12-5

96(s + 5)(s + 12)
s(s + 8)(s + 6)

K

120
s

+

48
s + 6

-

72
s + 8

 .

96(s + 5)(s + 12)
s(s + 8)

2
s = -6

= K3 = 48.

K3

 
96(-3)(4)
(-8)(-2)

= K2 = -72.

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.3 Find if

Answer: f(t) = (3e-t
+ 2e-2t

+ e-3t)u(t).

F(s) =

6s2
+ 26s + 26

(s + 1)(s + 2)(s + 3)
 .

f(t) 12.4 Find if

Answer: f(t) = (4e-3t
+ 6e-4t

- 3e-5t)u(t).

F(s) =

7s2
+ 63s + 134

(s + 3)(s + 4)(s + 5)
 .

f(t)

NOTE: Also try Chapter Problems 12.40(a) and (b).

A S S E S S M E N T  P R O B L E M S
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Partial Fraction Expansion: Distinct Complex 
Roots of D(s)
The only difference between finding the coefficients associated with dis-
tinct complex roots and finding those associated with distinct real roots is
that the algebra in the former involves complex numbers. We illustrate by
expanding the rational function:

(12.51)

We begin by noting that is a proper rational function. Next we must
find the roots of the quadratic term :

(12.52)

With the denominator in factored form, we proceed as before:

(12.53)

To find and we use the same process as before:

(12.54)

(12.55)

(12.56)

Then

(12.57)

Again, we need to make some observations. First, in physically realiz-
able circuits, complex roots always appear in conjugate pairs. Second, the
coefficients associated with these conjugate pairs are themselves conju-
gates. Note, for example, that (Eq. 12.56) is the conjugate of K2K3

 +

10l53.13°

s + 3 + j4
 .

 
100(s + 3)

(s + 6)(s2
+ 6s + 25)

=

-12
s + 6

+

10l -53.13°

s + 3 - j4

 = 6 + j8 = 10e j53.13 �

.

 K3 =

100(s + 3)
(s + 6)(s + 3 - j4)

2
s = -3 - j4

=

100(-j4)
(3 - j4)(-j8)

 = 6 - j8 = 10e-j53.13 �

,

 K2 =

100(s + 3)
(s + 6)(s + 3 + j4)

2
s = -3 + j4

=

100( j4)
(3 + j4)( j8)

 K1 =

100(s + 3)

s2
+ 6s + 25

2
s = -6

=

100(-3)
25

= -12,

K3,K2,K1,

 
K1

s + 6
+

 K2

s + 3 - j4
+

K3

s + 3 + j4
 .

 
100(s + 3)

(s + 6)(s2
+ 6s + 25)

K

s2
+ 6s + 25 = (s + 3 - j4)(s + 3 + j4).

s2
+ 6s + 25

F(s)

F(s) =

100(s + 3)

(s + 6)(s2
+ 6s + 25)

 .
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(Eq. 12.55). Thus for complex conjugate roots, you actually need to calcu-
late only half the coefficients.

Before inverse-transforming Eq. 12.57, we check the partial fraction
expansion numerically. Testing at is attractive because the left-hand
side reduces to zero at this value:

We now proceed to inverse-transform Eq. 12.57:

(12.58)

In general, having the function in the time domain contain imaginary com-
ponents is undesirable. Fortunately, because the terms involving imaginary
components always come in conjugate pairs, we can eliminate the imagi-
nary components simply by adding the pairs:

(12.59)

which enables us to simplify Eq. 12.58:

(12.60)

Because distinct complex roots appear frequently in lumped-parameter
linear circuit analysis, we need to summarize these results with a new
transform pair. Whenever contains distinct complex roots—that is,
factors of the form —a pair of terms of the form

(12.61)

appears in the partial fraction expansion, where the partial fraction coeffi-
cient is, in general, a complex number. In polar form,

(12.62)K = ƒ K ƒ e ju = ƒ K ƒ lu° ,

K

s + a - jb
+

K*

s + a + jb

(s + a - jb)(s + a + jb)
D(s)

 = [-12e-6t
+ 20e-3t cos(4t - 53.13 �)]u(t).

 l-1 b 100(s + 3)

(s + 6)(s2
+ 6s + 25)

r

 = 20e-3t cos(4t - 53.13 �),

 = 10e-3tAe j(4t -53.13 � )
+ e-j(4t-53.13 � )B

 10e-j53.13 �

e-(3 - j4)t
+ 10e j53.13 �

e-(3 + j4)t

+ 10e j53.13 �

e-(3 + j4)t )u(t).

 l-1 b 100(s + 3)

(s + 6)(s2
+ 6s + 25)

r = (-12e-6t
+ 10e-j53.13 �

e-(3 - j4)t

 = -4 + 2.0 + j1.5 + 2.0 - j1.5 = 0.

 = -4 + 2.5 l36.87° + 2.5 l -36.87°

 F(s) =

-12
3

+

10 l -53.13°

-j4
+

10 l53.13°

j4

-3
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Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.5 Find if

F(s) =

10(s2
+ 119)

(s + 5)(s2
+ 10s + 169)

 .

f(t) Answer: f(t) = (10e-5t
- 8.33e-5t sin 12t)u(t).

NOTE: Also try Chapter Problems 12.41(c) and (d).

A S S E S S M E N T  P R O B L E M

where denotes the magnitude of the complex coefficient. Then

(12.63)

The complex conjugate pair in Eq. 12.61 always inverse-transforms as

(12.64)

In applying Eq. 12.64 it is important to note that K is defined as the coeffi-
cient associated with the denominator term and is defined
as the coefficient associated with the denominator s + a + jb.

K*s + a - jb,

 = 2 ƒ K ƒ e-at cos(bt + u).

 l-1 b K

s + a - jb
+

K*

s + a + jb
r

K*
= ƒ K ƒ e-ju

= ƒ K ƒ l -u° .

ƒ K ƒ

Partial Fraction Expansion: Repeated Real Roots of D(s)
To find the coefficients associated with the terms generated by a multiple
root of multiplicity r, we multiply both sides of the identity by the multiple
root raised to its rth power. We find the K appearing over the factor raised
to the rth power by evaluating both sides of the identity at the multiple root.
To find the remaining coefficients, we differentiate both sides of the
identity times. At the end of each differentiation, we evaluate both
sides of the identity at the multiple root. The right-hand side is always the
desired K, and the left-hand side is always its numerical value. For example,

(12.65)

We find as previously described; that is,

(12.66)

To find we multiply both sides by and then evaluate both
sides at :

(12.67)

(12.68) = K2 = -400.

 
100(20)

(-5)
= K1 * 0 + K2 + K3 * 0 + K4 * 0

 + K4(s + 5)2 2
s = -5 

,

 
100(s + 25)

s
2
s= -5

=

K1(s + 5)3

s
2
s = -5

+ K2 + K3(s + 5) ƒ s = -5

-5
(s + 5)3K2  ,

K1 =

100(s + 25)

(s + 5)3
2
s =0

=

100(25)
125

= 20 .

K1

100(s + 25)

s(s + 5)3 =

K1

s
+

K2

(s + 5)3 +

K3

(s + 5)2 +

K4

s + 5
 .

(r - 1)
(r - 1)
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To find we first must multiply both sides of Eq. 12.65 by Next
we differentiate both sides once with respect to s and then evaluate at

:

(12.69)

(12.70)

To find we first multiply both sides of Eq. 12.65 by Next
we differentiate both sides twice with respect to s and then evaluate both
sides at After simplifying the first derivative, the second deriva-
tive becomes

or

(12.71)

Solving Eq. 12.71 for gives

(12.72)

Then

(12.73)

At this point we can check our expansion by testing both sides of
Eq. 12.73 at Noting both sides of Eq. 12.73 equal zero when

gives us confidence in the correctness of the partial fraction
expansion. The inverse transform of Eq. 12.73 yields

(12.74) = [20 - 200t2e-5t
- 100te-5t

- 20e-5t]u(t).

 l-1 b 100(s + 25)

s(s + 5)3 r

s = -25
s = -25.

100(s + 25)

s(s + 5)3 =

20
s

-

400

(s + 5)3 -

100

(s + 5)2 -

20
s + 5

.

K4 = -20.

K4

-40 = 2K4.

 + 0 +

d

ds
[K3]s= -5 +

d

ds
[2K4(s + 5)]s = -5  ,

 100
d

ds
 B -

25

s2 R
s = -5

= K1
d

ds
 B (s + 5)2 (2s - 5)

s2 R
s = -5

s = -5.

(s + 5)3.K4

 100 B s - (s + 25)

s2 R
s = -5

= K3 = -100.

 +

d

ds
[K4(s + 5)2]s= -5,

 +

d

ds
[K3(s + 5)]s= -5

 +

d

ds
[K2]s = -5

 
d

ds
 B100(s + 25)

s
R

s = -5
=

d

ds
BK1(s + 5)3

s
R

s = -5

s = -5

(s + 5)3.K3
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Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.6 Find if

F(s) =

(4s2
+ 7s + 1)

s(s + 1)2 .

f(t) Answer: f(t) = (1 + 2te-t
+ 3e-t )u(t).

NOTE: Also try Chapter Problems 12.41(a) and (b).

Partial Fraction Expansion: Repeated Complex 
Roots of D(s)
We handle repeated complex roots in the same way that we did repeated
real roots; the only difference is that the algebra involves complex num-
bers. Recall that complex roots always appear in conjugate pairs and that
the coefficients associated with a conjugate pair are also conjugates, so
that only half the Ks need to be evaluated. For example,

(12.75)

After factoring the denominator polynomial, we write

(12.76)

Now we need to evaluate only and because and are conju-
gate values. The value of is

(12.77)

The value of is

(12.78) = -j3 = 3 l -90° .

 = -  

2(768)

( j8)3

 = -  

2(768)

(s + 3 + j4)3
2
s = -3 + j4

 K2 =

d

ds
 B 768

(s + 3 + j4)2R
s = -3 + j4

K2

 =

768

( j8)2 = -12.

 K1 =

768

(s + 3 + j4)2
2
s = -3 + j4

K1

K2
*K1

*K2,K1

 +

K1
*

(s + 3 + j4)2 +

K2
*

s + 3 + j4
.

 =

K1

(s + 3 - j4)2 +

K2

s + 3 - j4

 F(s) =

768

(s + 3 - j4)2(s + 3 + j4)2

F(s) =

768

(s2
+ 6s + 25)2.

A S S E S S M E N T  P R O B L E M
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From Eqs. 12.77 and 12.78,

(12.79)

(12.80)

We now group the partial fraction expansion by conjugate terms to obtain

(12.81)

We now write the inverse transform of :

(12.82)

Note that if has a real root a of multiplicity r in its denominator,
the term in a partial fraction expansion is of the form

The inverse transform of this term is

(12.83)

If has a complex root of of multiplicity r in its denominator,
the term in partial fraction expansion is the conjugate pair

The inverse transform of this pair is

(12.84)

Equations 12.83 and 12.84 are the key to being able to inverse-transform
any partial fraction expansion by inspection. One further note regarding
these two equations: In most circuit analysis problems, r is seldom greater
than 2. Therefore, the inverse transform of a rational function can be han-
dled with four transform pairs. Table 12.3 lists these pairs.

 = B 2|K|tr-1

(r - 1)!
 e-at cos(bt + u)R  u(t).

 l-1 b K

(s + a - jb)r +

K*

(s + a + jb)r r

K

(s + a - jb)r +

K*

(s + a + jb)r.

a + jbF(s)

l
-1 b K

(s + a)r r =

Ktr -1e-at

(r - 1)!
 u(t).

K

(s + a)r  .

F(s)

f(t) = [-24te-3t cos 4t + 6e-3t cos(4t - 90 �)]u(t).

F(s)

 + ¢ 3 l -90°

s + 3 - j4
+

3 l90°

s + 3 + j4
≤ .

 F(s) = B -12

(s + 3 - j4)2 +

-12

(s + 3 + j4)2R

 K2
*

= j3 = 3 l90° .

 K1
*

= -12,
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Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.7 Find if

F(s) =

40

(s2
+ 4s + 5)2.

f(t) Answer: f(t) = (-20te-2t cos t + 20e-2t sin t)u(t).

NOTE: Also try Chapter Problem 12.43(b).

Partial Fraction Expansion: Improper Rational Functions
We conclude the discussion of partial fraction expansions by returning
to an observation made at the beginning of this section, namely, that
improper rational functions pose no serious problem in finding inverse
transforms. An improper rational function can always be expanded into
a polynomial plus a proper rational function. The polynomial is then
inverse-transformed into impulse functions and derivatives of impulse
functions. The proper rational function is inverse-transformed by the
techniques outlined in this section. To illustrate the procedure, we use
the function

(12.85)

Dividing the denominator into the numerator until the remainder is a
proper rational function gives

(12.86)

where the term is the remainder.
Next we expand the proper rational function into a sum of 

partial fractions:

(12.87)
30s + 100

s2
+ 9s + 20

=

30s + 100
(s + 4)(s + 5)

=

-20
s + 4

+

50
s + 5

 .

(30s + 100)>(s2
+ 9s + 20)

F(s) = s2
+ 4s + 10 +

30s + 100

s2
+ 9s + 20

 ,

F(s) =

s4
+ 13s3

+ 66s2
+ 200s + 300

s2
+ 9s + 20

 .

A S S E S S M E N T  P R O B L E M

TABLE 12.3 Four Useful Transform Pairs

Pair Nature of 
Number Roots F(s) f(t)

1 Distinct real

2 Repeated real

3 Distinct complex

4 Repeated complex

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity .ƒ K ƒ  lu

2t ƒ K ƒ e-at cos (bt + u)u(t)
K

(s + a - jb)2 +

K*

(s + a + jb)2

2 ƒ K ƒ e-at cos (bt + u)u(t)
K

s + a - jb
+

K*

s + a + jb

Kte-atu(t)
K

(s + a)2

Ke-atu(t)
K

s + a
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A S S E S S M E N T  P R O B L E M S

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace
transform table

12.8 Find if

Answer: f(t) = 5d(t) - (3e-2t
- 2e-4t)u(t).

F(s) =

(5s2
+ 29s + 32)

(s + 2)(s + 4)
 .

f(t) 12.9 Find if

Answer: f(t) = 2
dd(t)

dt
- 2d(t) + 4e-4tu(t).

F(s) =

(2s3
+ 8s2

+ 2s - 4)

(s2
+ 5s + 4)

 .

f(t)

NOTE: Also try Chapter Problem 12.43(c).

12.8 Poles and Zeros of F(s)
The rational function of Eq. 12.42 also may be expressed as the ratio of
two factored polynomials. In other words, we may write as

(12.90)

where K is the constant For example, we may also write the function

as

(12.91)

The roots of the denominator polynomial, that is,
are called the poles of F(s); they are the values of s at which 

becomes infinitely large. In the function described by Eq. 12.91, the poles
of are and 

The roots of the numerator polynomial, that is,
are called the zeros of F(s); they are the values of s at which 

becomes zero. In the function described by Eq. 12.91, the zeros of 
are and -10.-5

F(s)
F(s)-zn ,

-z1, -z2 , -z3, . . . ,
-4.-3,-2,-1,F(s)

F(s)-pm ,
. . . ,-p3,-p2 ,-p1,

 =

4(s + 5)(s + 10)
(s + 1)(s + 2)(s + 3)(s + 4)

 .

 F(s) =

8(s2
+ 15s + 50)

2(s4
+ 10s3

+ 35s2
+ 50s + 24)

 F(s) =

8s2
+ 120s + 400

2s4
+ 20s3

+ 70s2
+ 100s + 48

an>bm.

F(s) =

K(s + z1)(s + z2) Á (s + zn)
(s + p1)(s + p2) Á (s + pm)

 ,

F(s)

Substituting Eq. 12.87 into Eq. 12.86 yields

(12.88)

Now we can inverse-transform Eq. 12.88 by inspection. Hence

(12.89) - (20e-4t
- 50e-5t)u(t).

 f(t) =

d2d(t)

dt2 + 4
dd(t)

dt
+ 10d(t)

F(s) = s2
+ 4s + 10 -

20
s + 4

+

50
s + 5

 .
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In what follows, you may find that being able to visualize the poles
and zeros of as points on a complex s plane is helpful. A complex
plane is needed because the roots of the polynomials may be complex. In
the complex s plane, we use the horizontal axis to plot the real values of s
and the vertical axis to plot the imaginary values of s.

As an example of plotting the poles and zeros of consider 
the function

(12.92)

The poles of are at 0, and The zeros are at 
and Figure 12.17 shows the poles and zeros plotted on

the s plane, where X’s represent poles and O’s represent zeros.
Note that the poles and zeros for Eq. 12.90 are located in the finite s

plane. can also have either an rth-order pole or an rth-order zero at
infinity. For example, the function described by Eq. 12.91 has a second-
order zero at infinity, because for large values of s the function reduces to

and when In this text, we are interested in the poles
and zeros located in the finite s plane. Therefore, when we refer to the
poles and zeros of a rational function of s, we are referring to the finite
poles and zeros.

12.9 Initial- and Final-Value Theorems
The initial- and final-value theorems are useful because they enable us to
determine from the behavior of at 0 and . Hence we can check
the initial and final values of to see if they conform with known circuit
behavior, before actually finding the inverse transform of 

The initial-value theorem states that

(12.93)

and the final-value theorem states that

(12.94)

The initial-value theorem is based on the assumption that contains no
impulse functions. In Eq. 12.94, we must add the restriction that the theo-
rem is valid only if the poles of except for a first-order pole at the
origin, lie in the left half of the s plane.

To prove Eq. 12.93, we start with the operational transform of the 
first derivative:

(12.95)

Now we take the limit as :

(12.96) lim
s: q

 [sF(s) - f(0-)] = lim
s: qL

q

0-

df

dt
e-st dt.

s : q

l b df

dt
r = sF(s) - f(0-) =

L

q

0-

df

dt
e-st dt.

F(s),

f(t)

 lim
t: q

 f(t) = lim
s:0

 sF(s).

 lim
t:0 +

 f(t) = lim
s: q

 sF(s),

F(s).
f(t)

qf(t)F(s)

s = q .F(s) = 04>s2,

F(s)

-3 - j4.-3 + j4,
-5,-6 - j8.-6 + j8,-10,F(s)

F(s) =

10(s + 5)(s + 3 - j4)(s + 3 + j4)
s(s + 10)(s + 6 - j8)(s + 6 + j8)

 .

F(s),

F(s)

5

�5

�10 �5

�3 � j 4

�3 � j 4

�6 � j 8

�6 � j 8
s plane

Figure 12.17 � Plotting poles and zeros on the s plane.

� Initial value theorem

� Final value theorem
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Observe that the right-hand side of Eq. 12.96 may be written as

As hence the second integral vanishes in the limit.
The first integral reduces to which is independent of s. Thus
the right-hand side of Eq. 12.96 becomes

(12.97)

Because is independent of s, the left-hand side of Eq. 12.96 may
be written

(12.98)

From Eqs. 12.97 and 12.98,

which completes the proof of the initial-value theorem.
The proof of the final-value theorem also starts with Eq. 12.95. Here

we take the limit as :

(12.99)

The integration is with respect to t and the limit operation is with respect
to s, so the right-hand side of Eq. 12.99 reduces to

(12.100)

Because the upper limit on the integral is infinite, this integral may also be
written as a limit process:

(12.101)

where we use y as the symbol of integration to avoid confusion with the
upper limit on the integral. Carrying out the integration process yields

(12.102)

Substituting Eq. 12.102 into Eq. 12.99 gives

(12.103)

Because cancels, Eq. 12.103 reduces to the final-value theorem, namely,

The final-value theorem is useful only if exists.This condition is true
only if all the poles of except for a simple pole at the origin, lie in the
left half of the s plane.

F(s),
f(q)

 lim
s:0

 sF(s) = lim
t: q

 f(t).

f(0-)

 lim
s:0

[sF(s)] - f(0-) = lim
t: q

[f(t)] - f(0-).

 lim
t: q

[f(t) - f(0-)] = lim
t: q

[f(t)] - f(0-).

L

q

0-

df

dt
 dt = lim

t: qL

t

0-

df

dy
 dy,

 lim
s:0
a
L

q

0-

df

dt
e-st dtb =

L

q

0-

df

dt
 dt.

 lim
s:0

[sF(s) - f(0-)] = lim
s:0
a
L

q

0-

df

dt
e-st dtb .

s : 0

 lim
s: q

 sF(s) = f(0+) = lim
t:0+

f(t),

 lim
s: q

[sF(s) - f(0-)] = lim
s: q

[sF(s)] - f(0-).

f(0-)

 lim
s: qL

q

0-

df

dt
e-st dt = f(0+) - f(0-).

f(0+) - f(0-),
(df>dt)e-st : 0;s : q ,

 lim
s: q

a
L

0+

0-

df

dt
e0dt +

L

q

0+

df

dt
e-st dtb .
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The Application of Initial- and Final-Value Theorems
To illustrate the application of the initial- and final-value theorems, we
apply them to a function we used to illustrate partial fraction expan-
sions. Consider the transform pair given by Eq. 12.60. The initial-value
theorem gives

The final-value theorem gives

In applying the theorems to Eq. 12.60, we already had the time-domain
expression and were merely testing our understanding. But the real value of
the initial- and final-value theorems lies in being able to test the s-domain
expressions before working out the inverse transform. For example, con-
sider the expression for given by Eq. 12.40.Although we cannot calcu-
late until the circuit parameters are specified, we can check to see if

predicts the correct values of and We know from the
statement of the problem that generated that is zero. We also
know that must be zero because the ideal inductor is a perfect short
circuit across the dc current source. Finally, we know that the poles of 
must lie in the left half of the s plane because R, L, and C are positive con-
stants. Hence the poles of also lie in the left half of the s plane.

Applying the initial-value theorem yields

Applying the final-value theorem gives

The derived expression for correctly predicts the initial and final val-
ues of v(t).

V(s)

lim
s:0

 sV(s) = lim
s:0 

s(Idc >C)

s2
+ (s>RC) + (1>LC)

= 0.

lim
s: q 

sV(s) = lim
s: q

s(Idc >C)

s2[1 + 1>(RCs) + 1>(LCs2)]
= 0.

sV(s)

V(s)
v(q)

v(0+)V(s)
v(q).v(0+)V(s)

v(t)
V(s)

 lim
t: q

 f(t) = lim
t: q

[-12e-6t
+ 20e-3t cos(4t - 53.13 �)]u(t) = 0.

 lim
s:0

 sF(s) = lim
s:0

 
100s(s + 3)

(s + 6)(s2
+ 6s + 25)

= 0,

 lim
t:0+

 f(t) = [-12 + 20 cos(-53.13 �)](1) = -12 + 12 = 0.

 lim
s: q

 sF(s) = lim
s: q 

100s2[1 + (3>s)]

s3[1 + (6>s)][1 + (6>s) + (25>s2)]
= 0,

Objective 3—Understand and know how to use the initial value theorem and the final value theorem

12.10 Use the initial- and final-value theorems to find
the initial and final values of in Assessment
Problems 12.4, 12.6, and 12.7.

f(t)
Answer: 7, 0; 4, 1; and 0, 0.

NOTE: Also try Chapter Problem 12.50.

A S S E S S M E N T  P R O B L E M
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Practical Perspective
Transient Effects
The circuit introduced in the Practical Perspective at the beginning of the
chapter is repeated in Fig. 12.18 with the switch closed and the chosen
sinusoidal source.

(12.107)IL(s) =

K1

(s + 750 - j661.44)
+

K*
1

(s + 750 + j661.44)
+

K2

(s - j120p)
+

K*
2

(s + j120p)

Determine the values of :K1 and K2

(12.108)

K2 =

100s2

Cs2
+ 1500s + 106 D Cs + j120p D 2 s = j120p

= 0.018345∠56.61°

K1 =

100s2

Cs + 750s + j661.44 D Cs2
+ (120p)2 D 2 s = - 750 + j661.44

= 0.07357∠ -97.89°

Finally, we can use Table 12.3 to calculate the inverse Laplace transform of
Eq. 12.107 to give :iL(t)

(12.109)iL(t) = 147.14e -750t cos(661.44t - 97.89°) + 36.69 cos(120pt + 56.61°) mA

The first term of Eq. 12.109 is the transient response, which will decay to
essentially zero in about 7 ms. The second term of Eq. 12.109 is the steady-
state response, which has the same frequency as the 60 Hz sinusoidal source
and will persist so long as this source is connected in the circuit. Note that
the amplitude of the steady-state response is 36.69 mA, which is less than
the 40 mA current rating of the inductor. But the transient response has an

�

�

10 mH 100 mF

cos 120pt V

iL

15 �

Figure 12.18 � A series RLC circuit with a 60 Hz
sinusoidal source.

We use the Laplace methods to determine the complete response of the
inductor current, . To begin, use KVL to sum the voltages drops around
the circuit, in the clockwise direction:

(12.104)

Now we take the Laplace transform of Eq. 12.104, using Tables 12.1 and 12.2:

(12.105)

Next, rearrange the terms in Eq. 12.105 to get an expression for :

(12.106)

Note that the expression for has two complex conjugate pairs of
poles, so the partial fraction expansion of will have four terms:IL(s)

IL(s)

IL(s) =

100s2

Cs2
+ 1500s + 106 D Cs2

+ (120p2) D
IL(s)

15IL(s) + 0.01sIL(s) + 104IL(s)
s

=

s

s2
+ (120p)2

15iL(t) + 0.01
diL(t)

dt
+

1

100 * 10-6L

t

0
iL(x)dx = cos120pt

iL(t)
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initial amplitude of 147.14 mA, far greater than the 40 mA current rating.
Calculate the value of the inductor current at :

Clearly, the transient part of the response does not cause the inductor current to
exceed its rating initially. But we need a plot of the complete response to deter-
mine whether or not the current rating is ever exceeded, as shown in Fig. 12.19.
The plot suggests we check the value of the inductor current at 1 ms:

iL(0) = 147.14(1)cos(-97.89°) + 36.69 cos(56.61°) =  -6.21mA

t = 0

50

40

30

20

10

0

�10

�20

�30

�40

�50

iL(t)(mA)

t(ms)

0 10 20 30 40 50

Figure 12.19 � Plot of the inductor current for the circuit in Fig. 12.18.

iL(0.001) = 147.14e -0.75 cos(-59.82°) + 36.69 cos(78.21°) = 42.6 mA

Thus, the current rating is exceeded in the inductor, at least momentarily. If
we determine that we never want to exceed the current rating, we should
reduce the magnitude of the sinusoidal source. This example illustrates the
importance of considering the complete response of a circuit to a sinusoidal
input, even if we are satisfied with the steady-state response.

Summary

• The Laplace transform is a tool for converting time-
domain equations into frequency-domain equations,
according to the following general definition:

where is the time-domain expression, and F(s) is
the frequency-domain expression. (See page 428.)

• The step function describes a function that expe-
riences a discontinuity from one constant level to
another at some point in time. K is the magnitude of the
jump; if is the unit step function. (See
page 429.)

• The impulse function is defined

 d(t) = 0,  t Z 0.

 
L

q

-q

 Kd(t)dt = K,

Kd(t)

Ku(t)K = 1,

Ku(t)

f(t)

l5f(t)6 =

L

q

0
 f(t)e-st dt = F(s),

K is the strength of the impulse; if is the
unit impulse function. (See page 431.)

• A functional transform is the Laplace transform of a
specific function. Important functional transform pairs
are summarized in Table 12.1. (See page 434.)

• Operational transforms define the general mathematical
properties of the Laplace transform. Important opera-
tional transform pairs are summarized in Table 12.2.
(See page 435.)

• In linear lumped-parameter circuits, is a rational
function of s. (See page 442.)

• If is a proper rational function, the inverse trans-
form is found by a partial fraction expansion. (See
page 442.)

• If is an improper rational function, it can be inverse-
transformed by first expanding it into a sum of a poly-
nomial and a proper rational function. (See page 451.)

F(s)

F(s)

F(s)

Kd(t)K = 1,

NOTE: Access your understanding of the Practical Perspective by trying Chapter 
Problems 12.55 and 12.56.
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Problems

Section 12.2

12.1 Step functions can be used to define a window func-
tion. Thus defines a window
1 unit high and 5 units wide located on the time axis
between 2 and 3.

A function is defined as follows:

a) Sketch over the interval 

b) Use the concept of the window function to write
an expression for 

12.2 Make a sketch of for when 
is given by the following expression:

f(t) = (-10t - 30)u(t + 3) + 10tu(t)
   + (10t - 30)u(t - 3)
   + (90 - 10t)u(t - 9) + (150 - 10t)u(t - 15)
   + (10t - 180)u(t - 18)

f(t)-3 s … t … 18 sf(t)

f(t).

0 s … t … 60 s.f(t)

60 s … t 6 q . = 0,

40 s … t … 60 s = 2.5t - 150

30 s … t … 40 s; = -50,

10 s … t … 30 s = -5t + 100,

0 … t … 10 s = 5t,

t … 0 f(t) = 0,

f(t)
-

u(t + 2) - u(t - 3)

12.3 Use step functions to write the expression for each
of the functions shown in Fig. P12.3.

Figure P12.3

12.4 Use step functions to write the expression for each
function shown in Fig. P12.4.

f (t)

10

–2

–10

t (s)

(b)

2 4 6–4–6

f (t)

15

5–5

–15

(a)

t (s)
–10 10

• can be expressed as the ratio of two factored poly-
nomials. The roots of the denominator are called poles
and are plotted as Xs on the complex s plane. The roots
of the numerator are called zeros and are plotted as 0s
on the complex s plane. (See page 452.)

• The initial-value theorem states that

The theorem assumes that contains no impulse
functions. (See page 453.)

f(t)

lim
t:0 +

 f(t) = lim
s: q

 sF(s).

F(s) • The final-value theorem states that

The theorem is valid only if the poles of except for
a first-order pole at the origin, lie in the left half of the s
plane. (See page 453.)

• The initial- and final-value theorems allow us to predict
the initial and final values of from an s-domain
expression. (See page 455.)

f(t)

F(s),

lim
t: q

 f(t) = lim
s:0 +

 sF(s).



Problems 459

Figure P12.4

f (t)

30

20

0 5 10

(c)

15 20 25
t (s)

f (t)

25

25e–t

(b)

0 21
t (s)

f (t)

50

0 4 8 12

(a)

16 20
t (s)

Figure P12.7

12.8 Evaluate the following integrals:

a)

b)

12.9 In Section 12.3, we used the sifting property of the
impulse function to show that Show
that we can obtain the same result by finding the
Laplace transform of the rectangular pulse that
exists between in Fig. 12.9 and then finding
the limit of this transform as 

12.10 Find if

and

12.11 Show that

12.12 a) Show that

(Hint: Integrate by parts.)

b) Use the formula in (a) to show that

l5d¿(t)6 = s.

L

q

-q

f(t)d¿(t - a) dt = -f   ¿(a).

l5d(n)(t)6 = sn.

F(v) =

4 + jv

9 + jv
 pd(v).

f(t) =

1
2pL

q

-q

 F(v)ejtv dv,

f(t)

P : 0.
;P

l{d(t)} = 1.

I =

L

2

-2
t2[d(t) + d(t + 1.5) + d(t - 3)] dt.

I =

L

3

-1
(t3

+ 2)[d(t) + 8d(t - 1)] dt.

2/  2

�2/  2

  /2

�  �  /2 0
t

d	(t)

�

� �

�

��

Section 12.3

12.5 Explain why the following function generates an
impulse function as :

12.6 a) Find the area under the function shown in
Fig. 12.12(a).

b) What is the duration of the function when ?

c) What is the magnitude of when ?

12.7 The triangular pulses shown in Fig. P12.7 are equiv-
alent to the rectangular pulses in Fig. 12.12(b),
because they both enclose the same area and
they both approach infinity proportional to as

Use this triangular-pulse representation for
to find the Laplace transform of d–(t).d¿(t)

P : 0.
1>P2

(1>P)

P = 0f(0)

P = 0

f(t) =

P>p
P

2
+ t2, - q … t … q .

P : 0



Sections 12.4–12.5

12.13 Find the Laplace transform of each of the following
functions:

a)

b)

12.14 a) Find the Laplace transform of the function illus-
trated in Fig. P12.14.

b) Find the Laplace transform of the first deriva-
tive of the function illustrated in Fig. P12.14.

c) Find the Laplace transform of the second deriv-
ative of the function illustrated in Fig. P12.14.

Figure P12.14

12.15 Show that

12.16 Show that

12.17 a) Find the Laplace transform of 

b) Use the operational transform given by Eq. 12.23

to find the Laplace transform of 

c) Check your result in part (b) by first differenti-
ating and then transforming the resulting
expression.

12.18 a) Find 

b) Check the results of (a) by first integrating and
then transforming.

l b
L

t

0 -

e-ax dx r .

d

dt
 (te-at ).

te-at.

l5f(at)6 =

1
a

 F ¢ s
a
≤ .

l5e-at f(t)6 = F(s + a).

f (t)

40

–5–10

5 10

–40

t (s)

+  (5t - 20)[u(t - 2) - u(t - 4)].
- 5t[u(t + 2) - u(t - 2)]

f(t) = (5t + 20)[u(t + 4) - u(t + 2)]

f(t) = 20e-500(t-10)u(t - 10).

12.19 a) Find the Laplace transform of

by first integrating and then transforming.

b) Check the result obtained in (a) by using the
operational transform given by Eq. 12.33.

12.20 Find the Laplace transform of each of the following
functions:

a)

b)

c)

d)

e)

(Hint: See Assessment Problem 12.1.)

12.21 a) Given that show that

b) Show that

c) Use the result of (b) to find 
and 

12.22 a) Find 

b) Find 

c) Find 

d) Check the results of parts (a), (b), and (c) by first
differentiating and then transforming.

12.23 Find the Laplace transform (when ) of the
derivative of the exponential function illustrated in
Fig. 12.8, using each of the following two methods:

a) First differentiate the function and then find the
transform of the resulting function.

b) Use the operational transform given by Eq. 12.23.

P : 0

l b d3

dt3 t2u(t) r .

l b d

dt
 cos vt r .

l b d

dt
 sin vt r .

l5te-t cosh t6. l5t sin bt6,l5t56,
(-1)n

 

dnF(s)
dsn = l5tnf(t)6.

-  

d F(s)
ds

= l5t f(t)6.

F(s) = l5f(t)6,

f(t) = cosh(t + u).

f(t) = t ;

f(t) = sin (vt + u);

f(t) = sin vt ;

f(t) = te-at;

L

t

0-

 x dx

460 Introduction to the Laplace Transform
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12.24 Find the Laplace transform for (a) and (b).

a)

b)

c) Verify the results obtained in (a) and (b) by first
carrying out the indicated mathematical opera-
tion and then finding the Laplace transform.

12.25 a) Show that if and is
Laplace-transformable, then

(Hint: Use the defining integral to write

and then reverse the order of integration.)

b) Start with the result obtained in Problem 12.21(c)
for and use the operational transform
given in (a) of this problem to find 

Section 12.6

12.26 In the circuit shown in Fig. 12.16, the dc current
source is replaced with a sinusoidal source that deliv-
ers a current of The circuit components
are and Find 
the numerical expression for 

12.27 There is no energy stored in the circuit shown in
Fig. P12.27 at the time the switch is opened.

a) Derive the integrodifferential equation that
governs the behavior of the voltage 

b) Show that

c) Show that

Figure P12.27

Idc

t � 0

vo R CL
io

�

�

Io(s) =

sIdc

s2
+ (1>RC)s + (1>LC)

.

Vo(s) =

Idc >C
s2

+ (1>RC)s + (1>LC)
.

vo.

V(s).
L = 200 mH.C = 50 mF,R = 1.25 Æ,

5 cos 20t A.

l 5sin bt6.l 5t sin bt6

L

q

s
F(u)du =

L

q

s
 a
L

q

0-

f(t)e-utdtb  du

L

q

s
F(u)du = l b f(t)

t
r .

5f(t)>t6F(s) = l5f(t)6,

f(t) =

L

t

0-

e-ax sin vx dx.

f(t) =

d

dt
(e-at cos vt).

12.28 The switch in the circuit in Fig. P12.28 has been in
position a for a long time. At the switch
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the current for 

b) Show that

Figure P12.28

12.29 The switch in the circuit in Fig. P12.29 has been in
position a for a long time. At the switch
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage for 

b) Show that

Figure P12.29

12.30 The switch in the circuit in Fig. P12.30 has been
open for a long time. At the switch closes.

a) Derive the integrodifferential equation that
governs the behavior of the voltage for 

b) Show that

c) Show that

Io(s) =

Vdc>RLC

s[s2
+ (1>RC)s + (1>LC)]

 .

Vo(s) =

Vdc >RC

s2
+ (1>RC)s + (1>LC)

 .

t Ú 0.vo

t = 0,

�

�

R L

Vdc

t � 0
vob

a

C
�

�

Vo(s) =

Vdc[s + (R>L)]

[s2
+ (R>L)s + (1>LC)]

 .

t Ú 0+ .vo

t = 0,

t � 0 R

a

b
CIdc L

io

Io(s) =

Idc[s + (1>RC)]

[s2
+ (1>RC)s + (1>LC)]

 .

t Ú 0+.io

t = 0,



Figure P12.30

12.31 There is no energy stored in the circuit shown in
Fig. P12.31 at the time the switch is opened.

a) Derive the integrodifferential equations that
govern the behavior of the node voltages 
and 

b) Show that

Figure P12.31

12.32 a) Write the two simultaneous differential equa-
tions that describe the circuit shown in Fig. P12.32
in terms of the mesh currents and 

b) Laplace-transform the equations derived in (a).
Assume that the initial energy stored in the cir-
cuit is zero.

c) Solve the equations in (b) for and 

Figure P12.32

Section 12.7

12.33 Find in Problem 12.26.

12.34 The circuit parameters in the circuit seen in
Fig. P12.27 have the following values:

and 

a) Find for 

b) Find for 

c) Does your solution for make sense when
? Explain.t = 0

io(t)

t Ú 0.io(t)

t Ú 0.vo(t)

Idc = 75 mA.C = 20 mF,L = 50 mH,
R = 20 Æ,

v(t)

150 �

100 �

62.5H

25 H
12.5H

i2i1
625 u(t) V

�

�

I2(s).I1(s)

i2.i1

R

L
t � 0

Cv1ig

�

�

v2

�

�

V2(s) =

sIg(s)

C[s2
+ (R>L)s + (1>LC)]

 .

v2.
v1

�

�

R

Vdc

t � 0
voL Cio
�

�

12.35 The circuit parameters in the circuit in Fig. P12.28
are and If

find for 

12.36 The circuit parameters in the circuit in Fig. P12.29
are and If

find for 

12.37 The circuit parameters in the circuit in Fig. P12.30
are and If 
is 56 V, find

a) for 

b) for 

12.38 The circuit parameters in the circuit in Fig. P12.31
are and 
If find 

12.39 Use the results from Problem 12.32 and the circuit
shown in Fig P12.32 to

a) Find and 

b) Find and 

c) Do the solutions for and make sense?
Explain.

12.40 Find for each of the following functions:

a)

b)

c)

d)

12.41 Find for each of the following functions.

a)

b)

c)

d) F(s) =

8(s + 1)2

(s2
+ 10s + 34)(s2

+ 8s + 20)
.

F(s) =

14s2
+ 56s + 152

(s + 6)(s2
+ 4s + 20)

 .

F(s) =

-s2
+ 52s + 445

s(s2
+ 10s + 89)

 .

F(s) =

280

s2
+ 14s + 245

 .

f(t)

F(s) =

2s3
+ 33s2

+ 93s + 54

s(s + 1)(s2
+ 5s + 6)

 .

F(s) =

15s2
+ 112s + 228

(s + 2)(s + 4)(s + 6)
 .

F(s) =

20s2
+ 141s + 315

s(s2
+ 10s + 21)

 .

F(s) =

6(s + 10)
(s + 5)(s + 8)

 .

f(t)

i2i1

i2(q).i1(q)

i2(t).i1(t)

v2(t).ig(t) = 150 mA,
C = 15.625 nF.L = 40 mH;R = 4000 Æ;

t Ú 0io(t)

t Ú 0vo(t)

VdcC = 5 mF.L = 1.6 H;R = 2 kÆ;

t Ú 0.vo(t)Vdc = 120 V,
C = 156.25 nF.L = 400 mH,R = 4 kÆ,

t Ú 0.io(t)Idc = 40 mA,
C = 2 nF.L = 50 mH,R = 2.5 kÆ,
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12.42 Find for each of the following functions.

a)

b)

c)

d)

12.43 Find for each of the following functions.

a)

b)

c)

d)

12.44 Derive the transform pair given by Eq. 12.64.

12.45 a) Derive the transform pair given by Eq. 12.83.

b) Derive the transform pair given by Eq. 12.84.

Sections 12.8–12.9

12.46 a) Use the initial-value theorem to find the initial
value of in Problem 12.26.

b) Can the final-value theorem be used to find the
steady-state value of ? Why?v

v

F(s) =

5s3
+ 20s2

- 49s - 108

s2
+ 7s + 10

F(s) =

25s2
+ 395s + 1494

s2
+ 15s + 54

F(s) =

10(s + 2)2

(s2
+ 2s + 2)2 .

F(s) =

135

s(s + 3)3 .

f(t)

F(s) =

25(s + 4)2

s2(s + 5)2 .

F(s) =

60(s + 5)

(s + 1)2(s2
+ 6s + 25)

 .

F(s) =

80(s + 3)

s(s + 2)2  .

F(s) =

320

s2(s + 8)
 .

f(t) 12.47 Use the initial- and final-value theorems to check
the initial and final values of the current and volt-
age in Problem 12.27.

12.48 Use the initial- and final-value theorems to check
the initial and final values of the current in
Problem 12.28.

12.49 Use the initial- and final-value theorems to check
the initial and final values of the current and volt-
age in Problem 12.30.

12.50 Apply the initial- and final-value theorems to each
transform pair in Problem 12.40.

12.51 Apply the initial- and final-value theorems to each
transform pair in Problem 12.41.

12.52 Apply the initial- and final-value theorems to each
transform pair in Problem 12.42.

12.53 Apply the initial- and final-value theorems to each
transform pair in Problem 12.43.

Sections 12.1–12.9

12.54 a) Use phasor circuit analysis techniques from
Chapter 9 to determine the steady-state expres-
sion for the inductor current in Fig. 12.18.

b) How does your result in part (a) compare to the
complete response as given in Eq. 12.109?

12.55 Find the maximum magnitude of the sinusoidal
source in Fig. 12.18 such that the complete response
of the inductor current does not exceed the 40 mA
current rating at t = 1 ms.

12.56 Suppose the input to the circuit in Fig 12.18 is a
damped ramp of the form . Find the
largest value of K such that the inductor current
does not exceed the 40 mA current rating.

Kte-100t V



The Laplace transform has two characteristics that make it an
attractive tool in circuit analysis. First, it transforms a set of linear
constant-coefficient differential equations into a set of linear
polynomial equations, which are easier to manipulate. Second, it
automatically introduces into the polynomial equations the initial
values of the current and voltage variables. Thus, initial condi-
tions are an inherent part of the transform process. (This con-
trasts with the classical approach to the solution of differential
equations, in which initial conditions are considered when the
unknown coefficients are evaluated.)

We begin this chapter by showing how we can skip the step of
writing time-domain integrodifferential equations and transform-
ing them into the s domain. In Section 13.1, we’ll develop the 
s-domain circuit models for resistors, inductors, and capacitors so
that we can write s-domain equations for all circuits directly.
Section 13.2 reviews Ohm’s and Kirchhoff’s laws in the context of
the s domain.After establishing these fundamentals, we apply the
Laplace transform method to a variety of circuit problems in
Section 13.3.

Analytical and simplification techniques first introduced with
resistive circuits—such as mesh-current and node-voltage methods
and source transformations—can be used in the s domain as well.
After solving for the circuit response in the s domain, we inverse
transform back to the time domain, using partial fraction expansion
(as demonstrated in the preceding chapter). As before, checking the
final time-domain equations in terms of the initial conditions and
final values is an important step in the solution process.

The s-domain descriptions of circuit input and output lead us,
in Section 13.4, to the concept of the transfer function. The trans-
fer function for a particular circuit is the ratio of the Laplace
transform of its output to the Laplace transform of its input. In
Chapters 14 and 15, we’ll examine the design uses of the transfer
function, but here we focus on its use as an analytical tool. We
continue this chapter with a look at the role of partial fraction
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C H A P T E R  O B J E C T I V E S

1 Be able to transform a circuit into the s domain
using Laplace transforms; be sure you
understand how to represent the initial
conditions on energy-storage elements in the
s domain.

2 Know how to analyze a circuit in the s-domain
and be able to transform an s-domain solution
back to the time domain.

3 Understand the definition and significance of
the transfer function and be able to calculate
the transfer function for a circuit using 
s-domain techniques.

4 Know how to use a circuit’s transfer function to
calculate the circuit’s unit impulse response, its
unit step response, and its steady-state
response to a sinusoidal input.
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With the advent of home-based personal computers, modems,
fax machines, and other sensitive electronic equipment, it is
necessary to provide protection from voltage surges that can
occur in a household circuit due to switching. A commer-
cially available surge suppressor is shown in the accompany-
ing figure.

How can flipping a switch to turn on a light or turn off a
hair dryer cause a voltage surge? At the end of this chapter,
we will answer that question using Laplace transform tech-
niques to analyze a circuit. We will illustrate how a voltage
surge can be created by switching off a resistive load in a cir-
cuit operating in the sinusoidal steady state.
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466 The Laplace Transform in Circuit Analysis

expansion (Section 13.5) and the convolution integral (Section 13.6) in
employing the transfer function in circuit analysis. We conclude with a
look at the impulse function in circuit analysis.

13.1 Circuit Elements in the s Domain
The procedure for developing an s-domain equivalent circuit for each cir-
cuit element is simple. First, we write the time-domain equation that
relates the terminal voltage to the terminal current. Next, we take the
Laplace transform of the time-domain equation. This step generates an
algebraic relationship between the s-domain current and voltage. Note that
the dimension of a transformed voltage is volt-seconds, and the dimension
of a transformed current is ampere-seconds. A voltage-to-current ratio in
the s domain carries the dimension of volts per ampere. An impedance 
in the s domain is measured in ohms, and an admittance is measured in
siemens. Finally, we construct a circuit model that satisfies the relation-
ship between the s-domain current and voltage. We use the passive sign
convention in all the derivations.

A Resistor in the s Domain
We begin with the resistance element. From Ohm’s law,

(13.1)

Because R is a constant, the Laplace transform of Eq. 13.1 is

(13.2)

where

Equation 13.2 states that the s-domain equivalent circuit of a resistor is
simply a resistance of R ohms that carries a current of I ampere-seconds
and has a terminal voltage of V volt-seconds.

Figure 13.1 shows the time- and frequency-domain circuits of the
resistor. Note that going from the time domain to the frequency domain
does not change the resistance element.

An Inductor in the s Domain
Figure 13.2 shows an inductor carrying an initial current of amperes.
The time-domain equation that relates the terminal voltage to the termi-
nal current is

(13.3)

The Laplace transform of Eq. 13.3 gives

(13.4)V = L[sI - i(0-)] = sLI - LI0.

v = L 
di

dt
 .

I0

V = l5v6 and I = l5i6.

V = RI,

v = Ri.

R i

�

�

v

a

b
(a)

�

�

V R I 

a

b
(b)

Figure 13.1 � The resistance element. (a) Time domain.
(b) Frequency domain.

I0L i

�

�

v

a

b

Figure 13.2 � An inductor of L henrys carrying an 
initial current of amperes.I0
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Two different circuit configurations satisfy Eq. 13.4. The first consists
of an impedance of sL ohms in series with an independent voltage source
of volt-seconds, as shown in Fig. 13.3. Note that the polarity marks on
the voltage source agree with the minus sign in Eq. 13.4. Note also
that carries its own algebraic sign; that is, if the initial value of i is
opposite to the reference direction for i, then has a negative value.

The second s-domain equivalent circuit that satisfies Eq. 13.4 consists
of an impedance of sL ohms in parallel with an independent current
source of ampere-seconds, as shown in Fig. 13.4. We can derive the
alternative equivalent circuit shown in Fig. 13.4 in several ways. One way
is simply to solve Eq. 13.4 for the current I and then construct the circuit to
satisfy the resulting equation. Thus

(13.5)

Two other ways are: (1) find the Norton equivalent of the circuit shown in
Fig. 13.3 and (2) start with the inductor current as a function of the induc-
tor voltage and then find the Laplace transform of the resulting integral
equation. We leave these two approaches to Problems 13.1 and 13.2.

If the initial energy stored in the inductor is zero, that is, if the
s-domain equivalent circuit of the inductor reduces to an inductor with an
impedance of sL ohms. Figure 13.5 shows this circuit.

A Capacitor in the s Domain
An initially charged capacitor also has two s-domain equivalent circuits.
Figure 13.6 shows a capacitor initially charged to volts. The terminal
current is

(13.6)

Transforming Eq. 13.6 yields

or

(13.7)

which indicates that the s-domain current I is the sum of two branch cur-
rents. One branch consists of an admittance of sC siemens, and the second
branch consists of an independent current source of ampere-seconds.
Figure 13.7 shows this parallel equivalent circuit.

We derive the series equivalent circuit for the charged capacitor by
solving Eq. 13.7 for V:

(13.8)

Figure 13.8 shows the circuit that satisfies Eq. 13.8.
In the equivalent circuits shown in Figs. 13.7 and 13.8, carries its

own algebraic sign. In other words, if the polarity of is opposite to the
reference polarity for , is a negative quantity. If the initial voltage onV0v

V0

V0

V = ¢ 1
sC
≤I +

V0

s
 .

CV0

I = sCV - CV0,

I = C[sV - v(0-)]

i = C 
dv

dt
 .

V0

I0 = 0,

I =

V + LI0

sL
=

V

sL
+

I0

s
 .

I0>s

I0

LI0

LI0

LI0

a

b

�

�

V

I sL

�

�
LI0

Figure 13.3 � The series equivalent circuit for an
inductor of henrys carrying an initial current of

amperes.I0

L

a

b

�

�

V

I

sL
I0
s

Figure 13.4 � The parallel equivalent circuit for an
inductor of henrys carrying an initial current of 

amperes.I0

L

�

�

V

a

b

sL I

Figure 13.5 � The s-domain circuit for an inductor
when the initial current is zero.

i

a

b

�

�

v

�

�

V0C

Figure 13.6 � A capacitor of farads initially charged
to volts.V0

C
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a

b

�

�

V

I

�

�
V0/s

1/sC

Figure 13.8 � The series equivalent circuit for a
capacitor initially charged to volts.V0

�

�

V

I

1/sC

a

b

Figure 13.9 � The s-domain circuit for a capacitor
when the initial voltage is zero.

the capacitor is zero, both equivalent circuits reduce to an impedance of
ohms, as shown in Fig. 13.9.

In this chapter, an important first problem-solving step will be to
choose between the parallel or series equivalents when inductors and
capacitors are present. With a little forethought and some experience, the
correct choice will often be quite evident. The equivalent circuits are sum-
marized in Table 13.1.

1>sC

Ohm’s law in the s-domain �

TIME DOMAIN FREQUENCY DOMAIN

Ri

�

�

v

b

a

v � Ri

i

�

�

v

b

a

L I0

v � L di/dt,
1
L

i  � vdx � I010�     

t

i  � C dv/dt,
1
C

v � idx � V010�     

t

�

�

v

�

�

V0

b

a

i C

RI

I

�

�

V

b

a

V � RI

b

V

�

� a

V � sLI � LI0

sL

�

�
LI0

a

b

�

�

VI

�

�
V0/s

1/sC

I
sC

V0
sV � �

V
sL

I0
sI � �

b

�

�

V

I

sL I0/s

a

b

a

1/sC

�

�

V CV0

I

I � sCV � CV0

TABLE 13.1 Summary of the s-Domain Equivalent Circuits

1/sC

a

b

�

�

V CV0

I

Figure 13.7 � The parallel equivalent circuit for a
capacitor initially charged to volts.V0

13.2 Circuit Analysis in the s Domain
Before illustrating how to use the s-domain equivalent circuits in analysis,
we need to lay some groundwork.

First, we know that if no energy is stored in the inductor or capacitor,
the relationship between the terminal voltage and current for each passive
element takes the form:

(13.9)

where Z refers to the s-domain impedance of the element. Thus a resistor
has an impedance of R ohms, an inductor has an impedance of sL ohms,

V = ZI,
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and a capacitor has an impedance of ohms. The relationship con-
tained in Eq. 13.9 is also contained in Figs. 13.1(b), 13.5, and 13.9.
Equation 13.9 is sometimes referred to as Ohm’s law for the s domain.

The reciprocal of the impedance is admittance.Therefore, the s domain
admittance of a resistor is siemens, an inductor has an admittance of

siemens, and a capacitor has an admittance of sC siemens.
The rules for combining impedances and admittances in the s domain

are the same as those for frequency-domain circuits.Thus series-parallel sim-
plifications and -to-Y conversions also are applicable to s-domain analysis.

In addition, Kirchhoff’s laws apply to s-domain currents and voltages.
Their applicability stems from the operational transform stating that the
Laplace transform of a sum of time-domain functions is the sum of the
transforms of the individual functions (see Table 12.2). Because the alge-
braic sum of the currents at a node is zero in the time domain, the alge-
braic sum of the transformed currents is also zero. A similar statement
holds for the algebraic sum of the transformed voltages around a closed
path. The s-domain version of Kirchhoff’s laws is

(13.10)

(13.11)

Because the voltage and current at the terminals of a passive element
are related by an algebraic equation and because Kirchhoff’s laws still
hold, all the techniques of circuit analysis developed for pure resistive
networks may be used in s-domain analysis. Thus node voltages, mesh
currents, source transformations, and Thévenin-Norton equivalents are
all valid techniques, even when energy is stored initially in the inductors
and capacitors. Initially stored energy requires that we modify Eq. 13.9 by
simply adding independent sources either in series or parallel with the
element impedances. The addition of these sources is governed by
Kirchhoff’s laws.

 alg aV = 0.

 alg a I = 0,

¢

1>sL
1>R

1>sC

Objective 1—Be able to transform a circuit into the s domain using Laplace transforms

13.1 A resistor, a 16 mH inductor, and a 25 nF
capacitor are connected in parallel.

a) Express the admittance of this parallel com-
bination of elements as a rational function
of s.

b) Compute the numerical values of the zeros
and poles.

Answer: (a)

(b)
p1 = 0.-z2 = -40,000 + j  30,000;

-z1 = -40,000 - j  30,000;

25 * 10-9(s2
+ 80,000s + 25 * 108)>s;

500 Æ 13.2 The parallel circuit in Assessment Problem 13.1
is placed in series with a resistor.

a) Express the impedance of this series combi-
nation as a rational function of s.

b) Compute the numerical values of the zeros
and poles.

Answer: (a)

(b)

-p2 = -40,000 + j  30,000.
-p1 = -40,000 - j  30,000,
-z1 = -z2 = -50,000;

+  25 * 108);

2000(s + 50,000)2>(s2
+ 80,000s

2000 Æ

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 13.4 and 13.5.
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�

�

VR�

�
V0
s

1
sC

I

Figure 13.11 � An s-domain equivalent circuit for the
circuit shown in Fig. 13.10.

�

�

VR
1

sC
CV0

Figure 13.12 � An s-domain equivalent circuit for the
circuit shown in Fig. 13.10.

13.3 Applications
We now illustrate how to use the Laplace transform to determine the tran-
sient behavior of several linear lumped-parameter circuits. We start by ana-
lyzing familiar circuits from Chapters 7 and 8 because they represent a
simple starting place and because they show that the Laplace transform
approach yields the same results. In all the examples, the ease of manipulat-
ing algebraic equations instead of differential equations should be apparent.

The Natural Response of an RC Circuit
We first revisit the natural response of an RC circuit (Fig. 13.10) via
Laplace transform techniques. (You may want to review the classical
analysis of this same circuit in Section 7.2).

The capacitor is initially charged to volts, and we are interested in
the time-domain expressions for i and . We start by finding i. In transfer-
ring the circuit in Fig. 13.10 to the s domain, we have a choice of two equiv-
alent circuits for the charged capacitor. Because we are interested in the
current, the series-equivalent circuit is more attractive; it results in a single-
mesh circuit in the frequency domain. Thus we construct the s-domain cir-
cuit shown in Fig. 13.11.

Summing the voltages around the mesh generates the expression

(13.12)

Solving Eq. 13.12 for I yields

(13.13)

Note that the expression for I is a proper rational function of s and can be
inverse-transformed by inspection:

(13.14)

which is equivalent to the expression for the current derived by the classi-
cal methods discussed in Chapter 7. In that chapter, the current is given by
Eq. 7.26, where is used in place of RC.

After we have found i, the easiest way to determine is simply to
apply Ohm’s law; that is, from the circuit,

(13.15)

We now illustrate a way to find from the circuit without first finding i.
In this alternative approach, we return to the original circuit of Fig. 13.10
and transfer it to the s domain using the parallel equivalent circuit for the
charged capacitor. Using the parallel equivalent circuit is attractive now
because we can describe the resulting circuit in terms of a single node volt-
age. Figure 13.12 shows the new s-domain equivalent circuit.

The node-voltage equation that describes the new circuit is

(13.16)

Solving Eq. 13.16 for V gives

V

R
+ sCV = CV0.

v

v = Ri = V0e
-t>RCu(t).

v
t

i =

V0

R
 e-t>RCu(t),

I =

CV0

RCs + 1
=

V0>R
s + (1>RC)

 .

V0

s
=

1
sC

I + RI.

v
V0

Ri

�

�

v

�

�

V0 C

t � 0

Figure 13.10 � The capacitor discharge circuit.
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Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the
time domain

13.3 The switch in the circuit shown has been in
position a for a long time. At the switch
is thrown to position b.

a) Find I, and as rational functions of s.

b) Find the time-domain expressions for 
and 

Answer: (a)

V2 = 20>(s + 1250);
V1 = 80>(s + 1250),
I = 0.02>(s + 1250),

v2.
i, v1,

V2V1,

t = 0,
(b)

v2 = 20e-1250tu(t) V.
v1 = 80e-1250tu(t) V,

i = 20e-1250tu(t) mA,

NOTE: Also try Chapter Problems 13.11 and 13.14.

A S S E S S M E N T  P R O B L E M

(13.17)

Inverse-transforming Eq. 13.17 leads to the same expression for given by
Eq. 13.15, namely,

(13.18)

Our purpose in deriving by direct use of the transform method is to
show that the choice of which s-domain equivalent circuit to use is influ-
enced by which response signal is of interest.

v = V0e
-t>RC

= V0e
-t>tu(t).

v

V =

V0

s + (1>RC)
 .

C R
25 nF 625 �

Idc

25 mH24 mA

t � 0
iL L

Figure 13.13 � The step response of a parallel
RLC circuit.

R
1

sC
Idc
s

�

�

V sL IL

Figure 13.14 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.13.

The Step Response of a Parallel Circuit
Next we analyze the parallel RLC circuit, shown in Fig. 13.13, that we first
analyzed in Example 8.7. The problem is to find the expression for after
the constant current source is switched across the parallel elements. The
initial energy stored in the circuit is zero.

As before, we begin by constructing the s-domain equivalent circuit
shown in Fig. 13.14. Note how easily an independent source can be trans-
formed from the time domain to the frequency domain. We transform the
source to the s domain simply by determining the Laplace transform of its
time-domain function. Here, opening the switch results in a step change in
the current applied to the circuit.Therefore the s-domain current source is

or To find we first solve for V and then use

(13.19)

to establish the s-domain expression for Summing the currents away
from the top node generates the expression

(13.20)

Solving Eq. 13.20 for V gives

(13.21)V =

Idc>C
s2

+ (1>RC)s + (1>LC)
 .

sCV +

V

R
+

V

sL
=

Idc

s
 .

IL.

IL =

V

sL

IL,Idc>s.l5Idcu(t)6,

iL

5 k�i

t � 0
�

�
100 V

10 k� a b

0.2 mF
�

�
v1

0.8 mF
�

�
v2
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Substituting Eq. 13.21 into Eq. 13.19 gives

(13.22)

Substituting the numerical values of R, L, C, and into Eq. 13.22 yields

(13.23)

Before expanding Eq. 13.23 into a sum of partial fractions, we factor the
quadratic term in the denominator:

(13.24)

Now, we can test the s-domain expression for by checking to see
whether the final-value theorem predicts the correct value for at

All the poles of except for the first-order pole at the origin, lie
in the left half of the s plane, so the theorem is applicable. We know from
the behavior of the circuit that after the switch has been open for a long
time, the inductor will short-circuit the current source. Therefore, the final
value of must be 24 mA. The limit of as is

(13.25)

(Currents in the s domain carry the dimension of ampere-seconds, so the
dimension of will be amperes.) Thus our s-domain expression checks out.

We now proceed with the partial fraction expansion of Eq. 13.24:

(13.26)

The partial fraction coefficients are

(13.27)

(13.28)

Substituting the numerical values of and into Eq. 13.26 and inverse-
transforming the resulting expression yields

(13.29)

The answer given by Eq. 13.29 is equivalent to the answer given for
Example 8.7 because

If we weren’t using a previous solution as a check, we would test
Eq. 13.29 to make sure that satisfied the given initial conditions and

satisfied the known behavior of the circuit.iL(q)
iL(0)

40 cos (24,000t + 126.87 �) = -24 cos 24,000t - 32 sin 24,000t.

iL = [24 + 40e-32,000t cos (24,000t + 126.87 �)]u(t)mA.

K2K1

 = 20 * 10-3
l126.87°  .

 K2 =

384 * 105

(-32,000 + j  24,000)(  j  48,000)

 K1 =

384 * 105

16 * 108 = 24 * 10-3,

 +

K*
2

s + 32,000 + j  24,000
 .

 IL =

K1

s
+

K2

s + 32,000 - j  24,000

sIL

 lim
s:0

 sIL =

384 * 105

16 * 108 = 24 mA.

s : 0sILiL

IL,t = q .
iL

IL

IL =

384 * 105

s(s + 32,000 - j  24,000)(s + 32,000 + j  24,000)
 .

IL =

384 * 105

s(s2
+ 64,000s + 16 * 108)

 .

Idc

IL =

Idc>LC

s[s2
+ (1>RC)s + (1>LC)]

 .
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Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the
time domain

13.4 The energy stored in the circuit shown is zero
at the time when the switch is closed.

a) Find the s-domain expression for I.

b) Find the time-domain expression for i when

c) Find the s-domain expression for V.

d) Find the time-domain expression for when
t 7 0.

v

t 7 0.

Answer: (a)

(b)

(c)

(d)

4.8 � 4 H

0.25 F
t � 0

160 V
�

� i

� �v

v = [200e-0.6t cos (0.8t + 36.87 �)]u(t) V.

V = 160s>(s2
+ 1.2s + 1);

i = (50e-0.6t sin 0.8t)u(t) A;

I = 40>(s2
+ 1.2s + 1);

NOTE: Also try Chapter Problems 13.13 and 13.25.

A S S E S S M E N T  P R O B L E M

The Transient Response of a Parallel RLC Circuit
Another example of using the Laplace transform to find the transient behav-
ior of a circuit arises from replacing the dc current source in the circuit shown
in Fig. 13.13 with a sinusoidal current source.The new current source is

(13.30)

where and As before, we assume that the
initial energy stored in the circuit is zero.

The s-domain expression for the source current is

(13.31)

The voltage across the parallel elements is

(13.32)

Substituting Eq. 13.31 into Eq. 13.32 results in

(13.33)

from which

(13.34)

Substituting the numerical values of R, L, and C into Eq. 13.34 gives

(13.35)

We now write the denominator in factored form:

(13.36)IL =

384 * 105s

(s - jv)(s + jv)(s + a - jb)(s + a + jb)
 ,

IL =

384 * 105s

(s2
+ 16 * 108)(s2

+ 64,000s + 16 * 108)
 .

v,Im,

IL =

V

sL
=

(Im>LC)s

(s2
+ v2)[s2

+ (1>RC)s + (1>LC)]
 .

V =

(Im>C)s2

(s2
+ v2)[s2

+ (1>RC)s + (1>LC)]
 ,

V =

(Ig>C)s

s2
+ (1>RC)s + (1>LC)

 .

Ig =

sIm

s2
+ v2 .

v = 40,000 rad>s.Im = 24 mA

ig = Im cos vt A,
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10 H8.4 H

336 V
�

�
48 �42 �

t � 0 i1 i2

Figure 13.15 � A multiple-mesh RL circuit.

where and 
We can’t test the final value of with the final-value theorem because

has a pair of poles on the imaginary axis; that is, poles at 
Thus we must first find and then check the validity of the expression
from known circuit behavior.

When we expand Eq. 13.36 into a sum of partial fractions, we generate
the equation

(13.37)

The numerical values of the coefficients and are

(13.38)

(13.39)

Substituting the numerical values from Eqs. 13.38 and 13.39 into
Eq. 13.37 and inverse-transforming the resulting expression yields

(13.40)

We now test Eq. 13.40 to see whether it makes sense in terms of the
given initial conditions and the known circuit behavior after the switch has
been open for a long time. For Eq. 13.40 predicts zero initial current,
which agrees with the initial energy of zero in the circuit. Equation 13.40
also predicts a steady-state current of

(13.41)

which can be verified by the phasor method (Chapter 9).

The Step Response of a Multiple Mesh Circuit
Until now, we avoided circuits that required two or more node-voltage or
mesh-current equations, because the techniques for solving simultaneous
differential equations are beyond the scope of this text. However, using
Laplace techniques, we can solve a problem like the one posed by the
multiple-mesh circuit in Fig. 13.15.

iLss
= 15 sin 40,000t mA,

t = 0,

 = (15 sin 40,000t - 25e-32,000t sin 24,000t)u(t) mA.

 + 25e-32,000t cos (24,000t + 90 �)] mA,

 iL = [15 cos (40,000t - 90 �)

 = 12.5 * 10-3
l90° .

 K2 =

384 * 105(-32,000 + j  24,000)
(-32,000 - j16,000)(-32,000 + j64,000)(  j48,000)

 = 7.5 * 10-3
l -90° ,

 K1 =

384 * 105(j40,000)
(j80,000)(32,000 + j16,000)(32,000 + j64,000)

K2K1

 +

K2
*

s + 32,000 + j  24,000
 .

 IL =

K1

s -  j40,000
+

K1
*

s + j40,000
+

K2

s + 32,000 - j  24,000

iL

;j4 * 104.IL

iL

b = 24,000.v = 40,000, a = 32,000,
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Here we want to find the branch currents and that arise when the
336 V dc voltage source is applied suddenly to the circuit. The initial
energy stored in the circuit is zero. Figure 13.16 shows the s-domain equiv-
alent circuit of Fig. 13.15. The two mesh-current equations are

(13.42)

(13.43)

Using Cramer’s method to solve for and we obtain

(13.44)

(13.45)

(13.46)

Based on Eqs. 13.44–13.46,

(13.47)

(13.48)

Expanding and into a sum of partial fractions gives

(13.49)

(13.50) I2 =

7
s

-

8.4
s + 2

+

1.4
s + 12

 .

 I1 =

15
s

-

14
s + 2

-

1
s + 12

 ,

I2I1

 I2 =

N2

¢

=

168
s(s + 2)(s + 12)

 .

 I1 =

N1

¢

=

40(s + 9)
s(s + 2)(s + 12)

 ,

 =

14,112
s

 .

 N2 = 2 42 + 8.4s 336>s
- 42 0

2

 =

3360(s + 9)
s

 ,

 N1 = 2 336>s - 42
0 90 + 10s

2

 = 84(s + 2)(s + 12),

 = 84(s2
+ 14s + 24)

 ¢ = 2 42 + 8.4s - 42
- 42 90 + 10s

2
I2,I1

 0 = -42I1 + (90 + 10s)I2.

 
336

s
= (42 + 8.4s)I1 - 42I2,

i2i1 8.4 s 10 s

48 �42 �
�

�

336
s I1 I2

Figure 13.16 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.15.
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We obtain the expressions for and by inverse-transforming Eqs. 13.49
and 13.50, respectively:

(13.51)

(13.52)

Next we test the solutions to see whether they make sense in terms of the
circuit. Because no energy is stored in the circuit at the instant the switch is
closed, both and must be zero. The solutions agree with these
initial values.After the switch has been closed for a long time, the two induc-
tors appear as short circuits.Therefore, the final values of and are

(13.53)

(13.54)

One final test involves the numerical values of the exponents and calcu-
lating the voltage drop across the resistor by three different methods.
From the circuit, the voltage across the resistor (positive at the top) is

(13.55)

You should verify that regardless of which form of Eq. 13.55 is used, the
voltage is

We are thus confident that the solutions for and are correct.i2i1

v = (336 - 235.2e-2t
- 100.80e-12t )u(t) V.

v = 42(i1 - i2) = 336 - 8.4 
di1

dt
= 48i2 + 10 

di2

dt
 .

42 Æ
42 Æ

 i2(q) =

15(42)
90

= 7 A.

 i1(q) =

336(90)
42(48)

= 15 A,

i2i1

i2(0-)i1(0-)

 i2 = (7 - 8.4e-2t
+ 1.4e-12t)u(t) A.

 i1 = (15 - 14e-2t
- e-12t)u(t) A,

i2i1

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the
time domain

13.5 The dc current and voltage sources are 
applied simultaneously to the circuit shown.
No energy is stored in the circuit at the instant
of application.

a) Derive the s-domain expressions for 
and 

b) For derive the time-domain expres-
sions for and 

c) Calculate and 

d) Compute the steady-state values of 
and v2.

v1

v2(0+).v1(0+)

v2.v1

t 7 0,

V2.
V1

Answer: (a)

(b)

(c) 

(d) v1 = v2 = 15 V.

v2(0+) = 2.5 V;v1(0+) = 0,

v2 = (15 -
125
6  e-0.5t

+
25
3  e-2t)u(t) V;

v1 = (15 -
50
3  e-0.5t

+
5
3 e-2t)u(t) V,

V2 = [2.5(s2
+ 6)]>[s(s + 0.5)(s + 2)];

V1 = [5(s + 3)]>[s(s + 0.5)(s + 2)],

NOTE: Also try Chapter Problems 13.19 and 13.21.

A S S E S S M E N T  P R O B L E M

1 H

5 A 15 V
�

�

t � 0 t � 0
1 F

�

�

v1 3 �

�

�

v2

15 �
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The Use of Thévenin’s Equivalent
In this section we show how to use Thévenin’s equivalent in the s domain.
Figure 13.17 shows the circuit to be analyzed. The problem is to find the
capacitor current that results from closing the switch.The energy stored in
the circuit prior to closing is zero.

To find we first construct the s-domain equivalent circuit and then
find the Thévenin equivalent of this circuit with respect to the terminals of
the capacitor. Figure 13.18 shows the s-domain circuit.

The Thévenin voltage is the open-circuit voltage across terminals a, b.
Under open-circuit conditions, there is no voltage across the resis-
tor. Hence

(13.56)

The Thévenin impedance seen from terminals a and b equals the 
resistor in series with the parallel combination of the resistor and the
2 mH inductor. Thus

(13.57)

Using the Thévenin equivalent, we reduce the circuit shown in Fig. 13.18
to the one shown in Fig. 13.19. It indicates that the capacitor current 
equals the Thévenin voltage divided by the total series impedance.Thus,

(13.58)

We simplify Eq. 13.58 to

(13.59)

A partial fraction expansion of Eq. 13.59 generates

(13.60)

the inverse transform of which is

(13.61)

We now test Eq. 13.61 to see whether it makes sense in terms of
known circuit behavior. From Eq. 13.61,

(13.62)

This result agrees with the initial current in the capacitor, as calculated from
the circuit in Fig. 13.17. The initial inductor current is zero and the initial
capacitor voltage is zero, so the initial capacitor current is or 6 A.
The final value of the current is zero, which also agrees with Eq. 13.61. Note
also from this equation that the current reverses sign when t exceeds

or The fact that reverses sign makes sense because,
when the switch first closes, the capacitor begins to charge. Eventually this
charge is reduced to zero because the inductor is a short circuit at 
The sign reversal of reflects the charging and discharging of the capacitor.

Let’s assume that the voltage drop across the capacitor is also of inter-
est. Once we know we find by integration in the time domain; that is,

(13.63)vC = 2 * 105

L

t

0-

(6 - 30,000x)e-5000x
 dx.

vCiC,
vC

iC

t = q .

iC200 ms.6>30,000,

480>80,

iC(0) = 6 A.

iC = (-30,000te-5000t
+ 6e-5000t)u(t) A.

IC =

-30,000

(s + 5000)2 +

6
s + 5000

 ,

IC =

6s

s2
+ 10,000s + 25 * 106 =

6s

(s + 5000)2 .

IC =

480>(s + 104)

[80(s + 7500)>(s + 104)] + [(2 * 105)>s]
 .

IC

ZTh = 60 +

0.002s(20)
20 + 0.002s

=

80(s + 7500)

s + 104  .

20 Æ
60 Æ

VTh =

(480>s)(0.002s)

20 + 0.002s
=

480

s + 104 .

60 Æ

iC ,

IC

a

b

�

�

VC 2 � 105

s

80 (s � 7500)

s � 104

�

�

480
s � 104

Figure 13.19 � A simplified version of the circuit
shown in Fig. 13.18, using a Thévenin equivalent.

60 �20 �

0.002 s IC

a

b

�

�

VC
�

�

480
s

2 � 105

s

Figure 13.18 � The s-domain model of the circuit
shown in Fig. 13.17.

�

�

vC

60 �20 �

5 mF
t � 0

480 V
�

�
2 mH iC

a

b

Figure 13.17 � A circuit to be analyzed using
Thévenin’s equivalent in the s domain.



478 The Laplace Transform in Circuit Analysis

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the
time domain

13.6 The initial charge on the capacitor in the circuit
shown is zero.

a) Find the s-domain Thévenin equivalent cir-
cuit with respect to terminals a and b.

b) Find the s-domain expression for the current
that the circuit delivers to a load consisting of
a 1 H inductor in series with a resistor.

Answer: (a)
ZTh = 5(s + 2.8)>(s + 2);
VTh = Vab = [20(s + 2.4)]>[s(s + 2)],

2 Æ

(b) Iab = [20(s + 2.4)]>[s(s + 3)(s + 6)].

NOTE: Also try Chapter Problem 13.35.

A S S E S S M E N T  P R O B L E M

Although the integration called for in Eq. 13.63 is not difficult, we may
avoid it altogether by first finding the s-domain expression for and then
finding by an inverse transform. Thus

(13.64)

from which

(13.65)

You should verify that Eq. 13.65 is consistent with Eq. 13.63 and that it
also supports the observations made with regard to the behavior of (see
Problem 13.33).

iC

vC = 12 * 105te-5000tu(t).

 =

12 * 105

(s + 5000)2 ,

 VC =

1
sC

IC =

2 * 105

s
 

6s

(s + 5000)2

vC

Vc

A Circuit with Mutual Inductance
The next example illustrates how to use the Laplace transform to analyze
the transient response of a circuit that contains mutual inductance.
Figure 13.20 shows the circuit. The make-before-break switch has been in
position a for a long time. At the switch moves instantaneously to
position b. The problem is to derive the time-domain expression for 

We begin by redrawing the circuit in Fig. 13.20, with the switch in
position b and the magnetically coupled coils replaced with a T-equivalent
circuit.1 Figure 13.21 shows the new circuit.

i2.
t = 0,

2 H

b

a 2 H

t � 0

60 V
�

�

3 � 2 �9 �

10 �

i1

8 H

i2

Figure 13.20 � A circuit containing magnetically coupled coils.

1 See Appendix C.

5 � 1 � 2 �

0.2 vx

� �

0.5 F

20 u(t)
�

�

a

b

�

�

vx 1 H
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We now transform this circuit to the s domain. In so doing, we note that

(13.66)

(13.67)

Because we plan to use mesh analysis in the s domain, we use the series
equivalent circuit for an inductor carrying an initial current. Figure 13.22
shows the s-domain circuit. Note that there is only one independent volt-
age source. This source appears in the vertical leg of the tee to account for
the initial value of the current in the 2 H inductor of or 5 A.
The branch carrying has no voltage source because 

The two s-domain mesh equations that describe the circuit in
Fig. 13.22 are

(13.68)

(13.69)

Solving for yields

(13.70)

Expanding Eq. 13.70 into a sum of partial fractions generates

(13.71)

Then,

(13.72)

Equation 13.72 reveals that increases from zero to a peak value of
481.13 mA in 549.31 ms after the switch is moved to position b.Thereafter,

decreases exponentially toward zero. Figure 13.23 shows a plot of ver-
sus t. This response makes sense in terms of the known physical behavior
of the magnetically coupled coils. A current can exist in the inductor
only if there is a time-varying current in the inductor. As decreases
from its initial value of 5 A, increases from zero and then approaches
zero as approaches zero.i1

i2

i1L1

L2

i2i2

i2

i2 = (1.25e-t
- 1.25e-3t)u(t) A.

I2 =

1.25
s + 1

-

1.25
s + 3

 .

I2 =

2.5
(s + 1)(s + 3)

 .

I2

 2sI1 + (12 + 8s)I2 = 10.

 (3 + 2s)I1 + 2sI2 = 10

L1 - M = 0.i1

i1(0-) + i2(0-),

 i2(0-) = 0.

 i1(0-) =

60
12

= 5 A,

b

3 � 2 �

10 �
i1 i2

(L1 � M)
0 H

(L2 � M)
6 H

(M) 2 H

Figure 13.21 � The circuit shown in Fig. 13.20, with
the magnetically coupled coils replaced by a T-equivalent
circuit.

b

3 � 2 �

10 �
i1 i2

6 s

2 s

�

�
10

Figure 13.22 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.21.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the
time domain

13.7 a) Verify from Eq. 13.72 that reaches a peak
value of 481.13 mA at 

b) Find for for the circuit shown in
Fig. 13.20.

c) Compute when is at its peak value.
d) Express as a function of when is

at its peak value.
e) Use the results obtained in (c) and (d) to

calculate the peak value of i2.

i2di1>dti2

i2di1>dt

t 7 0,i1,
t = 549.31 ms.

i2 Answer: (a) when 

(b)

(c)

(d)

(e) 481.13 mA.

i2 = -(Mdi1>dt)>12;

-2.89  A>s;

i1 = 2.5(e-t
+ e-3t)u(t) A;

t =
1
2 ln 3 (s);di2>dt = 0

NOTE: Also try Chapter Problems 13.36 and 13.37.

A S S E S S M E N T  P R O B L E M

t (ms)
0

481.13

i2 (mA)

549.31

Figure 13.23 � The plot of versus t for the circuit
shown in Fig. 13.20.

i2
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L igvg

�

�

v2

CR1

R2r

g� �
�

�

Figure 13.24 � A circuit showing the use of super-
position in s-domain analysis.

1/sC

gC

IgVg

�

�

V2
�

�

r
ssL

R1

R2

Figure 13.25 � The s-domain equivalent for the circuit
of Fig. 13.24.

sLVg

�

�

V�2

�

�

V�1
�

�

1/sCR1

R2

Figure 13.26 � The circuit shown in Fig. 13.25 with 
acting alone.

Vg

The Use of Superposition
Because we are analyzing linear lumped-parameter circuits, we can use
superposition to divide the response into components that can be identi-
fied with particular sources and initial conditions. Distinguishing these
components is critical to being able to use the transfer function, which we
introduce in the next section.

Figure 13.24 shows our illustrative circuit. We assume that at the
instant when the two sources are applied to the circuit, the inductor is car-
rying an initial current of amperes and that the capacitor is carrying an
initial voltage of volts. The desired response of the circuit is the voltage
across the resistor labeled 

Figure 13.25 shows the s-domain equivalent circuit. We opted for the
parallel equivalents for L and C because we anticipated solving for 
using the node-voltage method.

To find by superposition, we calculate the component of result-
ing from each source acting alone, and then we sum the components. We
begin with acting alone. Opening each of the three current sources
deactivates them. Figure 13.26 shows the resulting circuit. We added the
node voltage to aid the analysis. The primes on and indicate that
they are the components of and attributable to acting alone. The
two equations that describe the circuit in Fig. 13.26 are

(13.73)

(13.74)

For convenience, we introduce the notation

(13.75)

(13.76)

(13.77)

Substituting Eqs. 13.75–13.77 into Eqs. 13.73 and 13.74 gives

(13.78)

(13.79)

Solving Eqs. 13.78 and 13.79 for gives

(13.80)

With the current source acting alone, the circuit shown in Fig. 13.25
reduces to the one shown in Fig. 13.27. Here, and are the compo-
nents of and resulting from If we use the notation introduced inIg.V2V1

Vfl

2Vfl

1

Ig

Vœ

2 =

-Y12>R1

Y11Y22 - Y12
2  Vg.

Vœ

2

 Y12V
œ

1 + Y22V
œ

2 = 0.

 Y11V
œ

1 + Y12V
œ

2 = Vg>R1,

 Y22 =

1
R2

+ sC.

 Y12 = -sC;

 Y11 =

1
R1

+

1
sL

+ sC;

 -sCVœ

1 + ¢ 1
R2

+ sC≤Vœ

2 = 0.

 ¢ 1
R1

+

1
sL

+ sC≤Vœ

1 - sCVœ

2 =

Vg

R1
 ,

VgV2V1

V2V1Vœ

1

Vg

V2V2

V2

v2.R2,
g

r
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sL Ig

�

�

V �2

�

�

V �1

1/sCR1

R2

Figure 13.27 � The circuit shown in Fig. 13.25, with
acting alone.Ig

sL

�

�

V	2

�

�

V	1

1/sCR1

R2s
r

Figure 13.28 � The circuit shown in Fig. 13.25, with
the energized inductor acting alone.

sL

�

�

V 2��

�

�

V1�� 

1/sC

gC

R1

R2

Figure 13.29 � The circuit shown in Fig. 13.25, with
the energized capacitor acting alone.

Eqs. 13.75–13.77, the two node-voltage equations that describe the circuit
in Fig. 13.27 are

(13.81)

and

(13.82)

Solving Eqs. 13.81 and 13.82 for yields

(13.83)

To find the component of resulting from the initial energy stored in
the inductor we must solve the circuit shown in Fig. 13.28, where

(13.84)

(13.85)

Thus

(13.86)

From the circuit shown in Fig. 13.29, we find the component of
resulting from the initial energy stored in the capacitor. The

node-voltage equations describing this circuit are

(13.87)

(13.88)

Solving for yields

(13.89)

The expression for is

(13.90)

We can find without using superposition by solving the two node-
voltage equations that describe the circuit shown in Fig. 13.25. Thus

V2

  +

Y12>s
Y11Y22 - Y12

2  r +

-C(Y11 + Y12)

Y11Y22 - Y12
2  g.

 =

-(Y12>R1)

Y11Y22 - Y12
2 Vg +

Y11

Y11Y22 - Y12
2 Ig

 V2 = Vœ

2 + Vfl

2 + VÔ

2 + Vˇ

2

V2

Vˇ

2 =

-(Y11 + Y12)C

Y11Y22 - Y12
2  g.

Vˇ

2

 Y12V
ˇ

1 + Y22V
ˇ

2 = -gC.

 Y11V
ˇ

1 + Y12V
ˇ

2 = gC,

V2 (Vˇ

2 )

VÔ

2 =

Y12>s
Y11Y22 - Y12

2  r.

 Y12V
Ô

1 + Y22V
Ô

2 = 0.

 Y11V
Ô

1 + Y12V
Ô

2 = -r>s,

(VÔ

2 ),
V2

Vfl

2 =

Y11

Y11Y22 - Y12
2 Ig.

Vfl

2

 Y12V
fl

1 + Y22V
fl

2 = Ig.

 Y11V
fl

1 + Y12V
fl

2 = 0
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(13.91)

(13.92)

You should verify in Problem 13.42 that the solution of Eqs. 13.91 and
13.92 for gives the same result as Eq. 13.90.V2

 Y12V1 + Y22V2 = Ig - gC.

 Y11V1 + Y12V2 =

Vg

R1
+ gC -

r

s
 ,

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the
time domain

13.8 The energy stored in the circuit shown is zero
at the instant the two sources are turned on.

a) Find the component of for owing to
the voltage source.

b) Find the component of for owing to
the current source.

c) Find the expression for when t 7 0.v

t 7 0v

t 7 0v

Answer: (a)

(b)

(c) [50e-2t
- 50e-8t]u(t) V.

[(50>3)e-2t
- (50>3)e-8t]u(t) V;

[(100>3)e-2t
- (100>3)e-8t]u(t) V;

NOTE: Also try Chapter Problem 13.43.

13.4 The Transfer Function
The transfer function is defined as the s-domain ratio of the Laplace trans-
form of the output (response) to the Laplace transform of the input
(source). In computing the transfer function, we restrict our attention to
circuits where all initial conditions are zero. If a circuit has multiple inde-
pendent sources, we can find the transfer function for each source and use
superposition to find the response to all sources.

The transfer function is

(13.93)

where is the Laplace transform of the output signal, and is the
Laplace transform of the input signal. Note that the transfer function
depends on what is defined as the output signal. Consider, for example,
the series circuit shown in Fig. 13.30. If the current is defined as the
response signal of the circuit,

(13.94)

In deriving Eq. 13.94, we recognized that I corresponds to the output 
and corresponds to the input X(s).Vg

Y(s)

H(s) =

I

Vg
=

1
R + sL + 1>sC

=

sC

s2LC + RCs + 1
 .

X(s)Y(s)

H(s) =

Y(s)
X(s)

 ,Definition of a transfer function �

A S S E S S M E N T  P R O B L E M

R sL

�

�

VVg 1/sC
�

�

I

Figure 13.30 � A series RLC circuit.

1.25 H 50 mF 5u(t)
A

20u(t)
V
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If the voltage across the capacitor is defined as the output signal of the
circuit shown in Fig. 13.30, the transfer function is

(13.95)

Thus, because circuits may have multiple sources and because the definition
of the output signal of interest can vary, a single circuit can generate many
transfer functions. Remember that when multiple sources are involved, no
single transfer function can represent the total output—transfer functions
associated with each source must be combined using superposition to yield
the total response. Example 13.1 illustrates the computation of a transfer
function for known numerical values of R, L, and C.

H(s) =

V

Vg
=

1>sC

R + sL + 1>sC
=

1

s2LC + RCs + 1
 .

Example 13.1 Deriving the Transfer Function of a Circuit

The voltage source drives the circuit shown in
Fig. 13.31. The response signal is the voltage across
the capacitor,

a) Calculate the numerical expression for the trans-
fer function.

b) Calculate the numerical values for the poles and
zeros of the transfer function.

Figure 13.31 � The circuit for Example 13.1.

Solution

a) The first step in finding the transfer function is to
construct the s-domain equivalent circuit, as
shown in Fig. 13.32. By definition, the transfer
function is the ratio of which can be com-
puted from a single node-voltage equation.
Summing the currents away from the upper 
node generates

Vo - Vg

1000
+

Vo

250 + 0.05s
=

Vos

106 = 0.

Vo>Vg,

1 mFvg

�

�

vo

1000 �

50 mH

�

�

250 �

vo.

vg

Figure 13.32 � The s-domain equivalent circuit for the circuit
shown in Fig. 13.31.

Solving for yields

Hence the transfer function is

b) The poles of are the roots of the denomina-
tor polynomial. Therefore

The zeros of are the roots of the numera-
tor polynomial; thus has a zero at

-z1 = -5000.

H(s)
H(s)

 -p2 = -3000 + j4000.

 -p1 = -3000 - j4000,

H(s)

 =

1000(s + 5000)

s2
+ 6000s + 25 * 106 .

 H(s) =

Vo

Vg

Vo =

1000(s + 5000)Vg

s2
+ 6000s + 25 * 106 .

Vo

Vg

�

�

Vo

1000 �

0.05s

�

�

250 �
106

s
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The Location of Poles and Zeros of H(s)
For linear lumped-parameter circuits, is always a rational function
of s. Complex poles and zeros always appear in conjugate pairs. The
poles of must lie in the left half of the s plane if the response to a
bounded source (one whose values lie within some finite bounds) is to
be bounded. The zeros of may lie in either the right half or the left
half of the s plane.

With these general characteristics in mind, we next discuss the role
that plays in determining the response function. We begin with the
partial fraction expansion technique for finding 

13.5 The Transfer Function 
in Partial Fraction Expansions

From Eq. 13.93 we can write the circuit output as the product of the trans-
fer function and the driving function:

(13.96)

We have already noted that is a rational function of s. Reference to
Table 13.1 shows that also is a rational function of s for the excitation
functions of most interest in circuit analysis.

Expanding the right-hand side of Eq. 13.96 into a sum of partial frac-
tions produces a term for each pole of and Remember from
Chapter 12 that poles are the roots of the denominator polynomial; zeros
are the roots of the numerator polynomial. The terms generated by the
poles of give rise to the transient component of the total response,
whereas the terms generated by the poles of give rise to the steady-
state component of the response. By steady-state response, we mean the
response that exists after the transient components have become negligi-
ble. Example 13.2 illustrates these general observations.

X(s)
H(s)

X(s).H(s)

X(s)
H(s)

Y(s) = H(s)X(s).

y(t).
H(s)

H(s)

H(s)

H(s)

Objective 3—Understand the definition and significance of the transfer function; be able to derive a transfer function

13.9 a) Derive the numerical expression for the
transfer function for the circuit shown.

b) Give the numerical value of each pole and
zero of 

NOTE: Also try Chapter Problem 13.52.

H(s).

Vo>Ig

Answer: (a)

(b)
-z = -2.

-p2 = -1 - j  3,-p1 = -1 + j  3,

H(s) = 10(s + 2)>(s2
+ 2s + 10);

A S S E S S M E N T  P R O B L E M

ig

�

�

vo

1 H

2 �

0.1 F
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Example 13.2 Analyzing the Transfer Function of a Circuit

The circuit in Example 13.1 (Fig. 13.31) is driven by
a voltage source whose voltage increases linearly
with time, namely,

a) Use the transfer function to find 

b) Identify the transient component of the
response.

c) Identify the steady-state component of the
response.

d) Sketch versus t for 

Solution

a) From Example 13.1,

The transform of the driving voltage is 
therefore, the s-domain expression for the out-
put voltage is

The partial fraction expansion of is

We evaluate the coefficients and by
using the techniques described in Section 12.7:

 K3 = -4 * 10-4.

 K2 = 10,

 K1
*

= 515 * 10-4
l -79.70° ,

 K1 = 515 * 10-4
l79.70° ;

K3K1, K2,

 +

K1
*

s + 3000 + j4000
+

K2

s2 +

K3

s
 .

 Vo =

K1

s + 3000 - j4000

Vo

Vo =

1000(s + 5000)

(s2
+ 6000s + 25 * 106)

 
50

s2  .

50>s2;

H(s) =

1000(s + 5000)

s2
+ 6000s + 25 * 106 .

0 … t … 1.5 ms.vo

vo.

vg = 50tu(t).

The time-domain expression for is

b) The transient component of is

Note that this term is generated by the poles
and of the

transfer function.

c) The steady-state component of the response is

These two terms are generated by the second-
order pole ( ) of the driving voltage.

d) Figure 13.33 shows a sketch of versus t. Note
that the deviation from the steady-state solution

is imperceptible after approxi-
mately 1 ms.

Figure 13.33 � The graph of versus for Example 13.2.tvo

2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t (ms)

4

6

8

10

12

14

16

vo (mV)

(10,000t � 0.4) mV

vo

10,000t - 0.4 mV

vo

K>s2

(10t - 4 * 10-4)u(t).

(-3000 - j4000)(-3000 + j4000)

1015 * 10-4e-3000t cos (4000t + 79.70 �).

vo

 + 10t - 4 * 10-4]u(t) V.

 vo = [1015 * 10-4e-3000t cos (4000t + 79.70 �)

vo
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Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit step
response, and steady-state response to sinusoidal input

13.10 Find (a) the unit step and (b) the unit impulse
response of the circuit shown in Assessment
Problem 13.9.

Answer: (a)

(b)

NOTE: Also try Chapter Problems 13.77(a) and (b).

10.54e-t cos (3t - 18.43 �)u(t) V.

[2 + (10>3)e-t cos (3t - 126.87 �)]u(t) V;

13.11 The unit impulse response of a circuit is

where 

a) Find the transfer function of the circuit.

b) Find the unit step response of the circuit.

Answer: (a)

(b) 40e-70t sin 240t V.

9600s>(s2
+ 140s + 62,500);

tan u =
7
24.

vo(t) = 10,000e-70t cos (240t + u) V,

Observations on the Use of H(s) in Circuit Analysis
Example 13.2 clearly shows how the transfer function relates to the
response of a circuit through a partial fraction expansion. However, the
example raises questions about the practicality of driving a circuit with an
increasing ramp voltage that generates an increasing ramp response.
Eventually the circuit components will fail under the stress of excessive
voltage, and when that happens our linear model is no longer valid. The
ramp response is of interest in practical applications where the ramp
function increases to a maximum value over a finite time interval. If the
time taken to reach this maximum value is long compared with the time
constants of the circuit, the solution assuming an unbounded ramp is
valid for this finite time interval.

We make two additional observations regarding Eq. 13.96. First, let’s
look at the response of the circuit due to a delayed input. If the input is
delayed by a seconds,

and, from Eq. 13.96, the response becomes

(13.97)

If then, from Eq. 13.97,

(13.98)

Therefore, delaying the input by a seconds simply delays the response
function by a seconds. A circuit that exhibits this characteristic is said to
be time invariant.

Second, if a unit impulse source drives the circuit, the response of the
circuit equals the inverse transform of the transfer function. Thus if

and

(13.99) Y(s) = H(s).

x(t) = d(t), then X(s) = 1

y(t - a)u(t - a) = l
-15H(s)X(s)e-as6.

y(t) = l
-15H(s)X(s)6,

Y(s) = H(s)X(s)e-as.

l5x(t - a)u(t - a)6 = e-asX(s),

H(s)

A S S E S S M E N T  P R O B L E M S
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Hence, from Eq. 13.99,

(13.100)

where the inverse transform of the transfer function equals the unit
impulse response of the circuit. Note that this is also the natural response
of the circuit because the application of an impulsive source is equivalent
to instantaneously storing energy in the circuit (see Section 13.8). The
subsequent release of this stored energy gives rise to the natural response
(see Problem 13.82).

Actually, the unit impulse response of a circuit, contains enough
information to compute the response to any source that drives the circuit.
The convolution integral is used to extract the response of a circuit to an
arbitrary source as demonstrated in the next section.

13.6 The Transfer Function and the
Convolution Integral

The convolution integral relates the output of a linear time-invariant
circuit to the input of the circuit and the circuit’s impulse response

The integral relationship can be expressed in two ways:

(13.101)

We are interested in the convolution integral for several reasons.
First, it allows us to work entirely in the time domain. Doing so may be
beneficial in situations where and are known only through
experimental data. In such cases, the transform method may be awkward
or even impossible, as it would require us to compute the Laplace trans-
form of experimental data. Second, the convolution integral introduces
the concepts of memory and the weighting function into analysis. We will
show how the concept of memory enables us to look at the impulse
response (or the weighting function) and predict, to some degree,
how closely the output waveform replicates the input waveform. Finally,
the convolution integral provides a formal procedure for finding the
inverse transform of products of Laplace transforms.

We based the derivation of Eq. 13.101 on the assumption that the cir-
cuit is linear and time invariant. Because the circuit is linear, the principle
of superposition is valid, and because it is time invariant, the amount of
the response delay is exactly the same as that of the input delay. Now con-
sider Fig. 13.34, in which the block containing represents any linear
time-invariant circuit whose impulse response is known, represents
the excitation signal and represents the desired output signal.

We assume that is the general excitation signal shown in
Fig. 13.35(a). For convenience we also assume that for 
Once you see the derivation of the convolution integral assuming

for the extension of the integral to include excitation
functions that exist over all time becomes apparent. Note also that we
permit a discontinuity in at the origin, that is, a jump between 
and 0+.

0-x(t)

t 6 0-,x(t) = 0

t 6 0-.x(t) = 0
x(t)

y(t)
x(t)

h(t)

h(t)

h(t)x(t)

y(t) =

L

q

-q

h(l)x(t - l) dl =

L

q

-q

h(t - l)x(l) dl.

h(t).
x(t)

y(t)

h(t),

 y(t) = h(t),

x(t) y(t)h(t)

Figure 13.34 � A block diagram of a general circuit.
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Figure 13.35 � The excitation signal of (a) A
general excitation signal. (b) Approximating with a
series of pulses. (c) Approximating with a series 
of impulses.

x(t)
x(t)

x(t).

Now we approximate by a series of rectangular pulses of uni-
form width as shown in Fig. 13.35(b). Thus

(13.102)

where is a rectangular pulse that equals between and 
and is zero elsewhere. Note that the ith pulse can be expressed in terms of
step functions; that is,

The next step in the approximation of is to make small
enough that the ith component can be approximated by an impulse func-
tion of strength Figure 13.35(c) shows the impulse representa-
tion, with the strength of each impulse shown in brackets beside each
arrow. The impulse representation of is

(13.103)

Now when is represented by a series of impulse functions
(which occur at equally spaced intervals of time, that is, at ),
the response function consists of the sum of a series of uniformly
delayed impulse responses. The strength of each response depends on
the strength of the impulse driving the circuit. For example, let’s assume
that the unit impulse response of the circuit contained in the box in 
Fig. 13.34 is the exponential decay function shown in Fig. 13.36(a). Then
the approximation of is the sum of the impulse responses shown in
Fig. 13.36(b).

Analytically, the expression for is

(13.104)

As the summation in Eq. 13.104 approaches a continuous 
integration, or

(13.105)

Therefore,

(13.106)

If exists over all time, then the lower limit on Eq. 13.106 becomes
thus, in general,

(13.107)y(t) =

L

q

-q

x(l)h(t - l) dl,

- q ;
x(t)

y(t) =

L

q

0
x(l)h(t - l) dl.

a
q

i=0
x(li)h(t - li)¢l:

L

q

0
x(l)h(t - l) dl.

¢l: 0,

 + x(li)¢lh(t - li) +
Á

 + x(l2)¢lh(t - l2) +
Á 

 y(t) = x(l0)¢lh(t - l0) + x(l1)¢lh(t - l1)

y(t)

y(t)

y(t)
l0, l1, l2, . . .

x(t)

 + x(li)¢ld(t - li) +
Á

 x(t) = x(l0)¢ld(t - l0) + x(l1)¢ld(t - l1) +
Á

x(t)

x(li)¢l.

¢lx(t)

xi(t) = x(li)5u(t - li) - u[t - (li + ¢l)]6.

li +1lix(li)xi(t)

x(t) = x0(t) + x1(t) +
Á

+ xi(t) +
Á ,

¢l,
x(t)

h(t)

0

y(t)


0 
1 
2 
3

Approximation of y(t)

t

t

(a)

(b)

Figure 13.36 � The approximation of y(t). (a) The
impulse response of the box shown in Fig. 13.34. 
(b) Summing the impulse responses.
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which is the second form of the convolution integral given in Eq. 13.101.
We derive the first form of the integral from Eq. 13.107 by making a
change in the variable of integration. We let and then we note
that when and when 
Now we can write Eq. 13.107 as

or

(13.108)

But because u is just a symbol of integration, Eq. 13.108 is equivalent to
the first form of the convolution integral, Eq. 13.101.

The integral relationship between and expressed in
Eq. 13.101, often is written in a shorthand notation:

(13.109)

where the asterisk signifies the integral relationship between 
and Thus is read as “ is convolved with ” and 
implies that

whereas is read as “ is convolved with ” and implies that

The integrals in Eq. 13.101 give the most general relationship for the
convolution of two functions. However, in our applications of the convolu-
tion integral, we can change the lower limit to zero and the upper limit to
t. Then we can write Eq. 13.101 as

(13.110)

We change the limits for two reasons. First, for physically realizable
circuits, is zero for In other words, there can be no impulse
response before an impulse is applied. Second, we start measuring
time at the instant the excitation is turned on; therefore 
for 

A graphic interpretation of the convolution integrals contained in
Eq. 13.110 is important in the use of the integral as a computational
tool. We begin with the first integral. For purposes of discussion, we
assume that the impulse response of our circuit is the exponential decay
function shown in Fig. 13.37(a) and that the excitation function has the
waveform shown in Fig. 13.37(b). In each of these plots, we replaced t
with the symbol of integration. Replacing with simply folds the
excitation function over the vertical axis, and replacing with 
slides the folded function to the right. See Figures 13.37(c) and (d). This

t - l-l

-lll,

t 6 0-.
x(t) = 0x(t)

t 6 0.h(t)

y(t) =

L

t

0
h(l)x(t - l) dl =

L

t

0
x(l)h(t - l) dl.

x(t) * h(t) =

L

q

-q

x(l)h(t - l) dl.

h(t)x(t)x(t) * h(t)

h(t) * x(t) =

L

q

-q

h(l)x(t - l) dl,

x(t)h(t)h(t) * x(t)x(t).
h(t)

y(t) = h(t) * x(t) = x(t) * h(t),

x(t),y(t), h(t),

y(t) =

L

q

-q

x(t - u)h(u)(du).

y(t) =

L

-q

q

x(t - u)h(u)(-du),

l = - q .u = + ql = q ,u = - qdu = -dl,
u = t - l,

h(
)
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(a)

Figure 13.37 � A graphic interpretation of the
convolution integral . (a) The
impulse response. (b) The excitation function. (c) The
folded excitation function. (d) The folded excitation
function displaced t units. (e) The product
h(l)x(t - l).

1
t

0 h(l)x(t - l) dl
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�1

t
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y(t) � Area

Figure 13.38 � A graphic interpretation of the convolu-
tion integral (a) The impulse
response. (b) The excitation function. (c) The folded
impulse response. (d) The folded impulse response
displaced units. (e) The product h(t - l)x(l).t

1
t

0 h(t - l)x(l) dl.

folding operation gives rise to the term convolution. At any specified
value of t, the response function is the area under the product func-
tion as shown in Fig. 13.37(e). It should be apparent from
this plot why the lower limit on the convolution integral is zero and the
upper limit is t. For the product is zero because 
is zero. For the product is zero because 
is zero.

Figure 13.38 shows the second form of the convolution integral. Note
that the product function in Fig. 13.38(e) confirms the use of zero for the
lower limit and t for the upper limit.

Example 13.3 illustrates how to use the convolution integral, in
conjunction with the unit impulse response, to find the response of 
a circuit.

x(t - l)h(l)x(t - l)l 7 t,
h(l)h(l)x(t - l)l 6 0,

h(l)x(t - l),
y(t)
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Example 13.3 Using the Convolution Integral to Find an Output Signal

The excitation voltage for the circuit shown in
Fig. 13.39(a) is shown in Fig. 13.39(b).

a) Use the convolution integral to find 

b) Plot over the range of 

Figure 13.39 � The circuit and excitation voltage for
Example 13.3. (a) The circuit. (b) The excitation voltage.

Solution

a) The first step in using the convolution integral is
to find the unit impulse response of the circuit.
We obtain the expression for from the 
s-domain equivalent of the circuit in Fig. 13.39(a):

When is a unit impulse function

from which

Using the first form of the convolution integral
in Eq. 13.110, we construct the impulse response
and folded excitation function shown in
Fig. 13.40, which are helpful in selecting the lim-
its on the convolution integral. Sliding the
folded excitation function to the right requires
breaking the integration into three intervals:

and The
breaks in the excitation function at 0, 5, and 10 s
dictate these break points. Figure 13.41 shows
the positioning of the folded excitation for each
of these intervals. The analytical expression for

in the time interval is

vi = 4t, 0 … t … 5 s.

0 … t … 5vi

10 … t … q .5 … t … 10;0 … t … 5;

h(l) = e-lu(l).

vo = h(t) = e-tu(t),

d(t),vi

Vo =

Vi

s + 1
 (1).

Vo

�

�

1 H

1 �

�

�

vovi

(a)

20 V

0 5

vi

10
t (s)

(b)

0 … t … 15 s.vo

vo.

vi

Figure 13.40 � The impulse response and the folded excitation
function for Example 13.3.

Figure 13.41 � The displacement of for three
different time intervals.
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Hence, the analytical expression for the folded
excitation function in the interval 

is

We can now set up the three integral
expressions for For 

For 

And for 

b) We have computed for 1 s intervals of time,
using the appropriate equation. The results are
tabulated in Table 13.2 and shown graphically in
Fig. 13.42.

vo

 = 4(e-t
- e-(t- 5)

+ 5e-(t -10)) V.

 vo =

L

t -5

t -10
20e-l

 dl +

L

t

t- 5
4(t - l)e-l

 dl

10 … t … q  s,

 = 4(5 + e-t
- e-(t- 5)) V.

 vo =

L

t -5

0
20e-l

 dl +

L

t

t- 5
4(t - l)e-l

 dl

5 … t … 10 s,

 = 4(e-t
+ t - 1) V.

 vo =

L

t

0
4(t - l)e-l

 dl

0 … t … 5 s:vo.

vi(t - l) = 4(t - l),  t - 5 … l … t.

…  t
t - 5 … l

Figure 13.42 � The voltage response versus time for
Example 13.3.

TABLE 13.2 Numerical Values of vo(t) 

t vo t vo

1 1.47 9 19.93

2 4.54 10 19.97

3 8.20 11 7.35

4 12.07 12 2.70

5 16.03 13 0.99

6 18.54 14 0.37

7 19.56 15 0.13

8 19.80

20 4 6 8 10 12 14
t (s)

2
4
6
8

10
12
14
16
18
20

vo (V)

(t � 5)

vi (t � 
)

(t � 10) 0 t

Past (has happened)

Future (will happen)

P
re

se
nt




Figure 13.43 � The past, present, and future values of
the excitation function.

The Concepts of Memory and the Weighting Function
We mentioned at the beginning of this section that the convolution inte-
gral introduces the concepts of memory and the weighting function into
circuit analysis. The graphic interpretation of the convolution integral is
the easiest way to begin to grasp these concepts. We can view the folding
and sliding of the excitation function on a timescale characterized as past,
present, and future. The vertical axis, over which the excitation function

is folded, represents the present value; past values of lie to the
right of the vertical axis, and future values lie to the left. Figure 13.43
shows this description of For illustrative purposes, we used the excita-
tion function from Example 13.3.

When we combine the past, present, and future views of with
the impulse response of the circuit, we see that the impulse response
weights according to present and past values. For example, Fig. 13.41
shows that the impulse response in Example 13.3 gives less weight to past
values of than to the present value of In other words, the circuit
retains less and less about past input values. Therefore, in Fig. 13.42,
quickly approaches zero when the present value of the input is zero (that
is, when ). In other words, because the present value of the input
receives more weight than the past values, the output quickly approaches
the present value of the input.

t 7 10 s

vo

x(t).x(t)

x(t)

x(t - t)

x(t).

x(t)x(t)

NOTE: Assess your understanding of convolution by trying Chapter Problems 13.52 and 13.60.
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0
(a)

0

t

1.0

h(t)

(b)

t

1.0

h(t)

Figure 13.44 � Weighting functions. (a) Perfect mem-
ory. (b) No memory.

The multiplication of by gives rise to the practice of
referring to the impulse response as the circuit weighting function. The
weighting function, in turn, determines how much memory the circuit has.
Memory is the extent to which the circuit’s response matches its input. For
example, if the impulse response, or weighting function, is flat, as shown in
Fig. 13.44(a), it gives equal weight to all values of past and present.
Such a circuit has a perfect memory. However, if the impulse response is
an impulse function, as shown in Fig. 13.44(b), it gives no weight to past
values of Such a circuit has no memory. Thus the more memory a cir-
cuit has, the more distortion there is between the waveform of the excita-
tion function and the waveform of the response function.We can show this
relationship by assuming that the circuit has no memory, that is,

and then noting from the convolution integral that

(13.111)

Equation 13.111 shows that, if the circuit has no memory, the output is a
scaled replica of the input.

The circuit shown in Example 13.3 illustrates the distortion between input
and output for a circuit that has some memory.This distortion is clear when we
plot the input and output waveforms on the same graph, as in Fig. 13.45.

13.7 The Transfer Function and the
Steady-State Sinusoidal Response

Once we have computed a circuit’s transfer function, we no longer need to
perform a separate phasor analysis of the circuit to determine its steady-
state response. Instead, we use the transfer function to relate the steady-
state response to the excitation source. First we assume that

(13.112)

and then we use Eq. 13.96 to find the steady-state solution of To find
the Laplace transform of we first write as

(13.113)

from which

(13.114) =

A(s cos f - v sin f)

s2
+ v2  .

 X(s) =

(A cos f)s

s2
+ v2 -

(A sin f)v

s2
+ v2

x(t) = A cos vt cos f - A sin vt sin f,

x(t)x(t),
y(t).

x(t) = A cos (vt + f),

 = Ax(t).

 =

L

t

0
Ad(l)x(t - l) dl

 y(t) =

L

t

0
h(l)x(t - l) dl

h(t) = Ad(t),

x(t).

x(t),

h(l)x(t - l)

2

2 40 6 8 10 12 14
t (s)

4
6
8

10
12
14
16
18
20

vo, vi (V)

Response

Excitation

Figure 13.45 � The input and output waveforms for
Example 13.3.
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Substituting Eq. 13.114 into Eq. 13.96 gives the s-domain expression for
the response:

(13.115)

We now visualize the partial fraction expansion of Eq. 13.115.The number
of terms in the expansion depends on the number of poles of 
Because is not specified beyond being the transfer function of a
physically realizable circuit, the expansion of Eq. 13.115 is

(13.116)

In Eq. 13.116, the first two terms result from the complex conjugate poles
of the driving source; that is, However, the
terms generated by the poles of do not contribute to the steady-state
response of because all these poles lie in the left half of the s plane;
consequently, the corresponding time-domain terms approach zero as t
increases. Thus the first two terms on the right-hand side of Eq. 13.116
determine the steady-state response. The problem is reduced to finding
the partial fraction coefficient :

(13.117)

In general, is a complex quantity, which we recognize by writing it
in polar form; thus

(13.118)

Note from Eq. 13.118 that both the magnitude, and phase angle,
of the transfer function vary with the frequency When we substi-

tute Eq. 13.118 into Eq. 13.117, the expression for becomes

(13.119)

We obtain the steady-state solution for by inverse-transforming
Eq. 13.116 and, in the process, ignoring the terms generated by the poles of

Thus

(13.120)

which indicates how to use the transfer function to find the steady-state
sinusoidal response of a circuit. The amplitude of the response equals the
amplitude of the source, A, times the magnitude of the transfer function,

The phase angle of the response, equals the phase
angle of the source, plus the phase angle of the transfer function,
We evaluate both and at the frequency of the source,

Example 13.4 illustrates how to use the transfer function to find the
steady-state sinusoidal response of a circuit.

v.u(v)|H(jv)|
u(v).f,

f + u(v),|H(jv)|.

yss(t) = A|H(jv)| cos [vt + f + u(v)],

H(s).

y(t)

K1 =

A

2
 |H(jv)|ej[u(v) +f].

K1

v.u(v),
|H(jv)|,

H(jv) = |H(jv)|eju(v).

H(jv)

 =

H(jv)A( cos f + j sin f)
2

=

1
2

 H(jv)Aejf.

 =

H(jv)A(jv cos f - v sin f)
2jv

 K1 =

H(s)A(s cos f - v sin f)
s + jv

2
s = jv

K1

y(t),
H(s)

s2
+ v2

= (s - jv)(s + jv).

 + a  terms generated by the poles of H(s).

 Y(s) =

K1

s - jv
+

K1
*

s + jv

H(s)
H(s).

Y(s) = H(s) 
A(s cos f - v sin f)

s2
+ v2  .

Steady-state sinusoidal response computed
using a transfer function �
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Example 13.4 Using the Transfer Function to Find the Steady-State Sinusoidal Response

The circuit from Example 13.1 is shown in Fig. 13.46.
The sinusoidal source voltage is 

Find the steady-state expression for 

Figure 13.46 � The circuit for Example 13.4.

Solution
From Example 13.1,

H(s) =

1000(s + 5000)

s2
+ 6000s + 25 * 106 .

�

�
vg

�

�

vo1 mF
50 mH

250 �

1000 �

vo.+  30 �) V.
120 cos (5000t

The frequency of the voltage source is 
hence we evaluate at :

Then, from Eq. 13.120,

 = 2012 cos (5000t - 15 �) V.

 voss
=

(120)12
6

 cos (5000t + 30 �
- 45 �)

 =

1 + j1
j6

=

1 - j1
6

=

12
6

l -45°.

 H(j5000) =

1000(5000 + j5000)

-25 * 106
+ j5000(6000) + 25 * 106

H(j5000)H(s)
5000 rad>s;

The ability to use the transfer function to calculate the steady-state sinusoidal
response of a circuit is important. Note that if we know we also know

at least theoretically. In other words, we can reverse the process; instead of
using to find we use to find Once we know we
can find the response to other excitation sources. In this application,we determine

experimentally and then construct from the data. Practically, this
experimental approach is not always possible; however, in some cases it does pro-
vide a useful method for deriving In theory, the relationship between 
and provides a link between the time domain and the frequency domain.
The transfer function is also a very useful tool in problems concerning the fre-
quency response of a circuit, a concept we introduce in the next chapter.

H(jv)
H(s)H(s).

H(s)H(jv)

H(s),H(s).H(jv)H(jv),H(s)
H(s),

H(jv),

Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit step
response, and steady-state response to sinusoidal input

13.12 The current source in the circuit shown is deliv-
ering Use the transfer function to
compute the steady-state expression for 

Answer:

13.13 a) For the circuit shown, find the steady-state
expression for when
vg = 10 cos 50,000t V.

vo

44.7cos(4t - 63.43 �) V.

vo.
10 cos 4t A.

b) Replace the resistor with a variable
resistor and compute the value of resistance
necessary to cause to lead by 

Answer: (a)

(b) 28,867.51 Æ.

10 cos (50,000t + 90 �) V;

120 � .vgvo

50 kÆ

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 13.76 and 13.78.

ig

�

�

vo0.1 F
1 H

2 �

�

�

�

�

400 pF

10 k� 10 k�

vg
50 k�

�15 V

�15 V
�

�

vo
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13.8 The Impulse Function in 
Circuit Analysis

Impulse functions occur in circuit analysis either because of a switching
operation or because a circuit is excited by an impulsive source. The
Laplace transform can be used to predict the impulsive currents and volt-
ages created during switching and the response of a circuit to an impulsive
source. We begin our discussion by showing how to create an impulse
function with a switching operation.

Switching Operations
We use two different circuits to illustrate how an impulse function can be
created with a switching operation: a capacitor circuit, and a series induc-
tor circuit.

Capacitor Circuit

In the circuit shown in Fig. 13.47, the capacitor is charged to an initial
voltage of at the time the switch is closed. The initial charge on is
zero. The problem is to find the expression for as Figure 13.48
shows the s-domain equivalent circuit.

From Fig. 13.48,

(13.121)

where the equivalent capacitance is replaced by .
We inverse-transform Eq. 13.121 by inspection to obtain

(13.122)

which indicates that as R decreases, the initial current increases
and the time constant decreases. Thus, as R gets smaller, the current
starts from a larger initial value and then drops off more rapidly.
Figure 13.49 shows these characteristics of i.

Apparently i is approaching an impulse function as R approaches zero
because the initial value of i is approaching infinity and the duration of i is
approaching zero. We still have to determine whether the area under the
current function is independent of R. Physically, the total area under the
i versus t curve represents the total charge transferred to after the switch
is closed. Thus

(13.123)

which says that the total charge transferred to is independent of R and
equals coulombs. Thus, as R approaches zero, the current approaches
an impulse strength that is,

(13.124)i : V0Ced(t).

V0Ce ;
V0Ce

C2

Area = q =

L

q

0-

V0

R
 e-t>RCedt = V0Ce,

C2

(RCe)
(V0>R)

i = ¢V0

R
e-t>RCe≤  

u(t),

CeC1C2>(C1 + C2)

 =

V0>R
s + (1>RCe)

 ,

 I =

V0>s
R + (1>sC1) + (1>sC2)

R : 0.i(t)
C2V0

C1

C2C1

i(t)t � 0

R

�

�

V0

Figure 13.47 � A circuit showing the creation of an
impulsive current.

�

�

I

R

V0
s

1
sC2

1
sC1

Figure 13.48 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.47.

R1

R2

R2 � R1V0
R1

V0

R2

0
t

i

Figure 13.49 � The plot of versus for two
different values of R.

ti(t)
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The physical interpretation of Eq. 13.124 is that when a finite
amount of charge is transferred to instantaneously. Making R zero in
the circuit shown in Fig. 13.47 shows why we get an instantaneous transfer
of charge.With we create a contradiction when we close the switch;
that is, we apply a voltage across a capacitor that has a zero initial voltage.
The only way to have an instantaneous change in capacitor voltage is to
have an instantaneous transfer of charge. When the switch is closed, the
voltage across does not jump to but to its final value of

(13.125)

We leave the derivation of Eq. 13.125 to you (see Problem 13.81).
If we set R equal to zero at the outset, the Laplace transform analysis

will predict the impulsive current response. Thus,

(13.126)

In writing Eq. 13.126, we use the capacitor voltages at The inverse
transform of a constant is the constant times the impulse function; there-
fore, from Eq. 13.126,

(13.127)

The ability of the Laplace transform to predict correctly the occurrence of an
impulsive response is one reason why the transform is widely used to analyze
the transient behavior of linear lumped-parameter time-invariant circuits.

Series Inductor Circuit

The circuit shown in Fig. 13.50 illustrates a second switching operation
that produces an impulsive response. The problem is to find the time-
domain expression for after the switch has been opened. Note that
opening the switch forces an instantaneous change in the current of 
which causes to contain an impulsive component.

Figure 13.51 shows the s-domain equivalent with the switch open. In
deriving this circuit, we recognized that the current in the 3 H inductor at

is 10 A, and the current in the 2 H inductor at is zero. Using
the initial conditions at is a direct consequence of our using as
the lower limit on the defining integral of the Laplace transform.

We derive the expression for from a single node-voltage equation.
Summing the currents away from the node between the resistor and
the 30 V source gives

(13.128)
Vo

2s + 15
+

Vo - [(100>s) + 30]

3s + 10
= 0.

15 Æ
Vo

0-t = 0-

t = 0-t = 0-

vo

L2,
vo

i = CeV0d(t).

t = 0-.

I =

V0>s
(1>sC1) + (1>sC2)

=

C1C2V0

C1 + C2
= CeV0.

v2 =

C1V0

C1 + C2
 .

V0C2

R = 0,

C2

R = 0,

�

�

10 �

t � 0

3 H

100 V

�

�

vo

L1i1
i2

2 H L2

15 �

Figure 13.50 � A circuit showing the creation of an impulsive
voltage.

�

�

10 � 3s
� �

30

100
s

�

�

Vo

I

2 s

15 �

Figure 13.51 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.50.
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Solving for yields

(13.129)

We anticipate that will contain an impulse term because the second
term on the right-hand side of Eq. 13.129 is an improper rational function.
We can express this improper fraction as a constant plus a rational func-
tion by simply dividing the denominator into the numerator; that is,

(13.130)

Combining Eq. 13.130 with the partial fraction expansion of the first term
on the right-hand side of Eq. 13.129 gives

(13.131)

from which

(13.132)

Does this solution make sense? Before answering that question, let’s
first derive the expression for the current when After the switch has
been opened, the current in is the same as the current in If we refer-
ence the current clockwise around the mesh, the s-domain expression is

(13.133)

Inverse-transforming Eq. 13.133 gives

(13.134)

Before the switch is opened, the current in is 10 A, and the current
in is 0 A; from Eq. 13.134 we know that at the current in and
in is 6 A.Then, the current in changes instantaneously from 10 to 6 A,
while the current in changes instantaneously from 0 to 6 A. From this
value of 6 A, the current decreases exponentially to a final value of 4 A.

L2

L1L2

L1t = 0+,L2

L1

i = (4 + 2e-5t)u(t) A.

 =

4
s

+

2
s + 5

 .

 =

4
s

-

4
s + 5

+

6
s + 5

 I =

(100>s) + 30

5s + 25
=

20
s(s + 5)

+

6
s + 5

L2.L1

t 7 0-.

vo = 12d(t) + (60 + 10e-5t)u(t) V.

 = 12 +

60
s

+

10
s + 5

 ,

 Vo =

60
s

-

20
s + 5

+ 12 +

30
s + 5

12(s + 7.5)
s + 5

= 12 +

30
s + 5

 .

vo

Vo =

40(s + 7.5)
s(s + 5)

+

12(s + 7.5)
s + 5

 .

Vo
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This final value is easily verified from the circuit; that is, it should equal
or 4 A. Figure 13.52 shows these characteristics of and 

How can we verify that these instantaneous jumps in the inductor cur-
rent make sense in terms of the physical behavior of the circuit? First, we
note that the switching operation places the two inductors in series. Any
impulsive voltage appearing across the 3 H inductor must be exactly bal-
anced by an impulsive voltage across the 2 H inductor, because the sum of
the impulsive voltages around a closed path must equal zero. Faraday’s
law states that the induced voltage is proportional to the change in flux
linkage ( ). Therefore, the change in flux linkage must sum to
zero. In other words, the total flux linkage immediately after switching is
the same as that before switching. For the circuit here, the flux linkage
before switching is

(13.135)

Immediately after switching, it is

(13.136)

Combining Eqs. 13.135 and 13.136 gives

(13.137)

Thus the solution for i (Eq. [13.134]) agrees with the principle of the con-
servation of flux linkage.

We now test the validity of Eq. 13.132. First we check the impulsive
term The instantaneous jump of from 0 to 6 A at gives rise
to an impulse of strength in the derivative of This impulse gives
rise to the in the voltage across the 2 H inductor. For 
is therefore, the voltage is

(13.138)

Equation 13.138 agrees with the last two terms on the right-hand side of
Eq. 13.132; thus we have confirmed that Eq. 13.132 does make sense in
terms of known circuit behavior.

We can also check the instantaneous drop from 10 to 6 A in the cur-
rent This drop gives rise to an impulse of in the derivative of 
Therefore the voltage across contains an impulse of at the ori-
gin.This impulse exactly balances the impulse across that is, the sum of
the impulsive voltages around a closed path equals zero.

Impulsive Sources
Impulse functions can occur in sources as well as responses; such sources
are called impulsive sources. An impulsive source driving a circuit imparts
a finite amount of energy into the system instantaneously. A mechanical
analogy is striking a bell with an impulsive clapper blow. After the energy
has been transferred to the bell, the natural response of the bell deter-
mines the tone emitted (that is, the frequency of the resulting sound
waves) and the tone’s duration.

L2;
-12d(t)L1

i1.-4d(t)i1.

 = (60 + 10e-5t)u(t) V.

 vo = 15(4 + 2e-5t) + 2(-10e-5t)

vo-10e-5t A>s;
t 7 0+, di2>dt12d(t)

i2.6d(t)
t = 0i212d(t).

i(0+) = 30>5 = 6 A.

l = (L1 + L2)i(0+) = 5i(0+).

l = L1i1 + L2i2 = 3(10) + 2(0) = 30 Wb-turns.

v = dl>dt

i2.i1100>25,

2

0

4
6
8

10i1

i2 t

i1, i2 (A)

i1 � i2 � i

Figure 13.52 � The inductor currents versus t for the
circuit shown in Fig. 13.50.
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In the circuit shown in Fig. 13.53, an impulsive voltage source having a
strength of volt-seconds is applied to a series connection of a resistor
and an inductor. When the voltage source is applied, the initial energy in
the inductor is zero; therefore the initial current is zero.There is no voltage
drop across R, so the impulsive voltage source appears directly across L.
An impulsive voltage at the terminals of an inductor establishes an instan-
taneous current. The current is

(13.139)

Given that the integral of over any interval that includes zero is 1, we
find that Eq. 13.139 yields

(13.140)

Thus, in an infinitesimal moment, the impulsive voltage source has
stored in the inductor.

(13.141)

The current now decays to zero in accordance with the natural
response of the circuit; that is,

(13.142)

where Remember from Chapter 7 that the natural response is
attributable only to passive elements releasing or storing energy, and not
to the effects of sources. When a circuit is driven by only an impulsive
source, the total response is completely defined by the natural response;
the duration of the impulsive source is so infinitesimal that it does not
contribute to any forced response.

We may also obtain Eq. 13.142 by direct application of the Laplace
transform method. Figure 13.54 shows the s-domain equivalent of the cir-
cuit in Fig. 13.53.

Hence

(13.143)

(13.144)

Thus the Laplace transform method gives the correct solution for 
Finally, we consider the case in which internally generated impulses

and externally applied impulses occur simultaneously. The Laplace trans-
form approach automatically ensures the correct solution for if
inductor currents and capacitor voltages at are used in constructing
the s-domain equivalent circuit and if externally applied impulses are rep-
resented by their transforms. To illustrate, we add an impulsive voltage

t = 0-

t 7 0+

i Ú 0+.

 i =

V0

L
 e-(R>L)t

=

V0

L
e-t>tu(t).

 I =

V0

R + sL
=

V0>L
s + (R>L)

 ,

t = L>R.

i =

V0

L
e-t>tu(t),

V0>L
w =

1
2

L¢V0

L
≤ 2

=

1
2

 
V0

2

L
  J

i(0+) =

V0

L
  A.

d(t)

i =

1
LL

t

0-

V0d(x) dx.

V0

LV0d(t)

R

�

�

Figure 13.53 � An RL circuit excited by an impulsive
voltage source.

sLV0

R

I
�

�

Figure 13.54 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.53.

10 � 3 H

100 V

50d(t) 15 �

2 H

t � 0

�

�

vo

i1

i2

�

�

�

�

Figure 13.55 � The circuit shown in Fig. 13.50 with
an impulsive voltage source added in series with the
100 V source.
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source of in series with the 100 V source to the circuit shown in
Fig. 13.50. Figure 13.55 shows the new arrangement.

At and The Laplace transform of
If we use these values, the s-domain equivalent circuit is as

shown in Fig. 13.56.
The expression for I is

(13.145)

from which

(13.146)

The expression for is

(13.147)

from which

(13.148)

Now we test the results to see whether they make sense. From
Eq. 13.146, we see that the current in and is 16 A at As in the
previous case, the switch operation causes to decrease instantaneously
from 10 to 6 A and, at the same time, causes to increase from 0 to 6 A.
Superimposed on these changes is the establishment of 10 A in and 
by the impulsive voltage source; that is,

(13.149)

Therefore increases suddenly from 10 to 16 A, while increases sud-
denly from 0 to 16 A. The final value of i is 4 A. Figure 13.57 shows 
and i graphically.

i1, i2,
i2i1

i =

1
3 + 2L

t

0-

50d(x) dx = 10 A.

L2L1

i2

i1

t = 0+.L2L1

vo = 32d(t) + (60e-5t
+ 60)u(t) V.

 = 32 +

60
s + 5

+

60
s

 ,

 = 32¢1 +

2.5
s + 5

≤ +

60
s

-

20
s + 5

 Vo = (15 + 2s)I =

32(s + 7.5)
s + 5

+

40(s + 7.5)
s(s + 5)

Vo

i(t) = (12e-5t
+ 4)u(t) A.

 =

12
s + 5

+

4
s

 ,

 =

16
s + 5

+

4
s

-

4
s + 5

 =

16
s + 5

+

20
s(s + 5)

 I =

50 + (100>s) + 30

25 + 5s

50d(t) = 50.
i2(0-) = 0 A.i1(0-) = 10 At = 0-,

50d(t)
10 � 3s

50

30

15 �

2s

�

�

Vo

I�

�

�

�

��

100
s

Figure 13.56 � The s-domain equivalent circuit for the
circuit shown in Fig. 13.55.
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Figure 13.57 � The inductor currents versus t for the
circuit shown in Fig. 13.55.
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We may also find the abrupt changes in and without using super-
position. The sum of the impulsive voltages across (3 H) and (2 H)
equals Thus the change in flux linkage must sum to 50; that is,

(13.150)

Because we express Eq. 13.150 as

(13.151)

But because and must be equal after the switching takes place,

(13.152)

Then,

(13.153)

Solving Eqs. 13.151 and 13.153 for and yields

(13.154)

(13.155)

These expressions agree with the previous check.
Figure 13.57 also indicates that the derivatives of will contain

an impulse at Specifically, the derivative of will have an impulse
of and the derivative of will have an impulse of 
Figure 13.58(a), (b), respectively, illustrate the derivatives of and 

Now let’s turn to Eq. 13.148. The impulsive component agrees
with the impulse that characterizes at the origin. The term

agrees with the fact that for 

We test the impulsive component of by noting that it produces
an impulsive voltage of or across This voltage, along
with across adds to Thus the algebraic sum of the impul-
sive voltages around the mesh adds to zero.

To summarize, the Laplace transform will correctly predict the creation
of impulsive currents and voltages that arise from switching. However, the 
s-domain equivalent circuits must be based on initial conditions at 
that is, on the initial conditions that exist prior to the disturbance caused by
the switching. The Laplace transform will correctly predict the response to
impulsive driving sources by simply representing these sources in the 
s domain by their correct transforms.

NOTE: Assess your understanding of the impulse function in circuit
analysis by trying Chapter Problems 13.88 and 13.90.

t = 0-,

50d(t).L2,32d(t)
L1.18d(t),(3)6d(t),

di1>dt

vo = 15i + 2
di

dt
 .

t 7 0+,(60e-5t
+ 60)

di2>dt16d(t)
32d(t)

i2.i1

16d(t).i26d(t),
i1t = 0.

i1 and i2

 ¢i2 = 16 A.

 ¢i1 = 6 A,

¢i2¢i1

10 + ¢i1 = 0 + ¢i2.

i1(0-) + ¢i1 = i2(0-) + ¢i2.

i2i1

3¢i1 + 2¢i2 = 50.

l = Li,

¢l1 + ¢l2 = 50.

50d(t).
L2L1

i2i1

t

(16)

0

�60

t

di1
dt

di2
dt(6)

0

�60

Figure 13.58 � The derivative of i1 and i2.
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Practical Perspective
Surge Suppressors
As mentioned at the beginning of this chapter, voltage surges can occur in
a circuit that is operating in the sinusoidal steady state. Our purpose is to
show how the Laplace transform is used to determine the creation of a surge
in voltage between the line and neutral conductors of a household circuit
when a load is switched off during sinusoidal steady-state operation.

Consider the circuit shown in Fig. 13.59, which models a household cir-
cuit with three loads, one of which is switched off at time . To simplify
the analysis, we assume that the line-to-neutral voltage, , is

, a standard household voltage, and that when the load 
is switched off at , the value of does not change. After the switch
is opened, we can construct the s-domain circuit, as shown in Fig. 13.60.
Note that because the phase angle of the voltage across the inductive load
is , the initial current through the inductive load is 0. Therefore, only the
inductance in the line has a non-zero initial condition, which is modeled in
the s-domain circuit as a voltage source with the value , as seen in
Fig. 13.60.

Just before the switch is opened at , each of the loads has a
steady-state sinusoidal voltage with a peak magnitude of .
All of the current flowing through the line from the voltage source is
divided among the three loads. When the switch is opened at , all of
the current in the line will flow through the remaining resistive load. This is
because the current in the inductive load is at and the current in an
inductor cannot change instantaneously. Therefore, the voltage drop across
the remaining loads can experience a surge as the line current is directed
through the resistive load. For example, if the initial current in the line is

and the impedance of the resistive load is , the voltage
drop across the resistor surges from to 
when the switch is opened. If the resistive load cannot handle this amount
of voltage, it needs to be protected with a surge suppressor such as those
shown at the beginning of the chapter.

(25)(12 )(12) = 424.3 V169.7 V
12 Æ25 A (rms)

t = 00

t = 0
yg

=  169.7 V12012
t = 0

LlI0

0°

Vgt = 0
120 l0° V (rms)

Vo

t = 0

�

�
RaVg I1

I0

jXaI2 RbI3Vo

�

�

t � 0

Figure 13.59 � Circuit used to introduce a switching surge voltage.

RaVg

sL
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L I0
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�

�

� �

�

�

Figure 13.60 � Symbolic s-domain circuit.

NOTE: Assess your understanding of this Practical Perspective by trying Chapter
Problems 13.92 and 13.93
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Summary

• We can represent each of the circuit elements as an 
s-domain equivalent circuit by Laplace-transforming
the voltage-current equation for each element:

• Resistor:

• Inductor:

• Capacitor:

In these equations, is the ini-
tial current through the inductor, and is the initial
voltage across the capacitor. (See pages 466–467.)

• We can perform circuit analysis in the s domain by
replacing each circuit element with its s-domain equiva-
lent circuit. The resulting equivalent circuit is solved by
writing algebraic equations using the circuit analysis
techniques from resistive circuits. Table 13.1 summa-
rizes the equivalent circuits for resistors, inductors, and
capacitors in the s domain. (See page 468.)

• Circuit analysis in the s domain is particularly advanta-
geous for solving transient response problems in linear
lumped parameter circuits when initial conditions are
known. It is also useful for problems involving multiple
simultaneous mesh-current or node-voltage equations,
because it reduces problems to algebraic rather than
differential equations. (See pages 474–476.)

• The transfer function is the s-domain ratio of a circuit’s
output to its input. It is represented as

where is the Laplace transform of the output sig-
nal, and is the Laplace transform of the input sig-
nal. (See page 482.)

• The partial fraction expansion of the product 
yields a term for each pole of and The 

terms correspond to the transient component of
the total response; the terms correspond to the
steady-state component. (See page 484.)

• If a circuit is driven by a unit impulse, then
the response of the circuit equals the inverse Laplace
transform of the transfer function,

(See pages 486–487.)=  h(t).
y(t) = l

-15H(s)6
x(t) = d(t),

X(s)
H(s)

X(s).H(s)
H(s)X(s)

X(s)
Y(s)

H(s) =

Y(s)
X(s)

 ,

V0

I0I = l5i6,V = l5v6,
V = (1>s C)I + Vo>s

V = sLI - LI0

V = RI

• A time-invariant circuit is one for which, if the input is
delayed by a seconds, the response function is also
delayed by a seconds. (See page 486.)

• The output of a circuit, can be computed by con-
volving the input, with the impulse response of the
circuit,

A graphical interpretation of the convolution integral
often provides an easier computational method to gen-
erate (See page 487.)

• We can use the transfer function of a circuit to compute
its steady-state response to a sinusoidal source.To do so,
make the substitution in and represent the
resulting complex number as a magnitude and phase
angle. If

then

(See page 494.)

• Laplace transform analysis correctly predicts impulsive
currents and voltages arising from switching and impul-
sive sources. You must ensure that the s-domain equiva-
lent circuits are based on initial conditions at 
that is, prior to the switching. (See page 496.)

t = 0- ,

yss(t) = A|H(jv)| cos[vt + f + u(v)].

 H(jv) = |H(jv)|eju(v) ,

 x(t) = A cos(vt + f),

H(s)s = jv

y(t).

 = x(t) * h(t) =

L

t

0
 x(l)h(t - l) dl.

 y(t) = h(t) * x(t) =

L

t

0
 h(l)x(t - l) dl

h(t):
x(t),

y(t),



Problems

Section 13.1

13.1 Derive the s-domain equivalent circuit shown in
Fig. 13.4 by expressing the inductor current i as a
function of the terminal voltage and then find-
ing the Laplace transform of this time-domain
integral equation.

13.2 Find the Thévenin equivalent of the circuit shown
in Fig. 13.7.

13.3 Find the Norton equivalent of the circuit shown 
in Fig. 13.3.

Section 13.2

13.4 A resistor, a 12.5 mH inductor, and a 0.5 F
capacitor are in series.

a) Express the s-domain impedance of this series
combination as a rational function.

b) Give the numerical value of the poles and zeros
of the impedance.

13.5 An resistor, a 25 mH inductor, and a 62.5 pF
capacitor are in parallel.

a) Express the s-domain impedance of this parallel
combination as a rational function.

b) Give the numerical values of the poles and zeros
of the impedance.

13.6 A resistor is in series with a 62.5 F capaci-
tor. This series combination is in parallel with a
400 mH inductor.

a) Express the equivalent s-domain impedance of
these parallel branches as a rational function.

b) Determine the numerical values of the poles
and zeros.

13.7 Find the poles and zeros of the impedance seen
looking into the terminals a,b of the circuit shown
in Fig. P13.7.

Figure P13.7

Zab
1 � 1 �

1 F
a

b

1 H

m200 Æ

8 kÆ

m400 Æ

v

13.8 Find the poles and zeros of the impedance seen
looking into the terminals a,b of the circuit shown
in Fig. P13.8.

Figure P13.8

Section 13.3

13.9 Find and in the circuit shown in Fig. P13.9 if
the initial energy is zero and the switch is closed
at 

Figure P13.9

13.10 Repeat Problem 13.9 if the initial voltage on the
capacitor is 150 V positive at the upper terminal.

13.11 The switch in the circuit shown in Fig. P13.11 has
been in position x for a long time. At the
switch moves instantaneously to position y.

a) Construct an s-domain circuit for 

b) Find 

c) Find 

Figure P13.11

13.12 The switch in the circuit in Fig. P13.12 has been
closed for a long time. At the switch 
is opened.

a) Find for 

b) Find for t Ú 0.vo

t Ú 0.io

t = 0,

75 V
�
�

x y250 � 100 �

io

312.5mF
500 mH

t = 0

io.

Io.

t 7 0.

t = 0,

�

�
1.25 mF

140 �

90 V
t � 0

vo

�

�

5 mH

t = 0.

voVo

1 H

a

b

1 �

1 �1 H 1 F
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Figure P13.12

13.13 The switch in the circuit in Fig. P13.13 has been in
position a for a long time. At it moves instan-
taneously from a to b.

a) Construct the s-domain circuit for 

b) Find 

c) Find for 

Figure P13.13

13.14 The switch in the circuit in Fig. P13.14 has been in
position a for a long time. At the switch
moves instantaneously to position b.

a) Construct the s-domain circuit for 

b) Find 

c) Find 

d) Find for 

e) Find for 

Figure P13.14

13.15 The switch in the circuit in Fig. P13.15 has been
closed for a long time before opening at 

a) Construct the s-domain equivalent circuit for

b) Find 

c) Find for t Ú 0.io

Io.

t 7 0.

t = 0.

360 V
–
+

400 � a

b

1 k�

4 k�

6.25 nF

16 mHiL vo

+

–

t = 0

t Ú 0.iL

t 7 0.vo

IL.

Vo.

t 7 0.

t = 0,

�

�

100 �a

b

16 mH

25 �

240 �100 V 275 V80 mF

t � 0

�

�

80 �

�

�

vo

t Ú 0.vo(t)

Vo(s).

t 7 0.

t = 0,

�

�
4 mH

�

�

vo

t � 0

25 nF
800 �

io
80 V

Figure P13.15

13.16 The make-before-break switch in the circuit in
Fig. P13.16 has been in position a for a long time.At

it moves instantaneously to position b. Find 
for t Ú 0.

vot = 0,

25mF

80 � 80 �

32 �

�
�

64 �

40 V
200 mH

240 �

t = 0

io
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Figure P13.16

5 mA

4 k�

a

b

100 �

500 �

1mF2 k�1 H vo

t = 0
+

−

13.17 a) Find the s-domain expression for in the circuit
in Fig. P13.17.

b) Use the s-domain expression derived in (a) to
predict the initial- and final-values of 

c) Find the time-domain expression for 

Figure P13.17

13.18 Find the time-domain expression for the current in
the capacitor in Fig. P13.17. Assume the reference
direction for is down.

13.19 There is no energy stored in the circuit in Fig. P13.19
at 

a) Use the mesh current method to find 

b) Find the time domain expression for 

c) Do your answers in (a) and (b) make sense in
terms of known circuit behavior? Explain.

vo.

io.

t = 0-.

iC

35 Ω

1 mF60u(t) mA 250 mH vo

�

�

vo.

vo.

Vo



Figure P13.19

13.20 There is no energy stored in the circuit in Fig. P13.20
at the time the voltage source is turned on, and

a) Find and 

b) Find and 

c) Do the solutions for and make sense in
terms of known circuit behavior? Explain.

Figure P13.20

13.21 There is no energy stored in the circuit in Fig. P13.21
at the time the sources are energized.

a) Find and 

b) Use the initial- and final-value theorems to check
the initial- and final-values of and 

c) Find and for 

Figure P13.21

13.22 There is no energy stored in the circuit in Fig. P13.22
at 

a) Find 

b) Find 

c) Does your solution for make sense in terms of
known circuit behavior? Explain.

vo

vo.

Vo.

t = 0-.

�

�
50 �

100 �

30u(t) A

500 mH 400 mF

375u(t) Vi2

i1

t Ú 0.i2(t)i1(t)

i2(t).i1(t)

I2(s).I1(s)

�

�
500 �

250 � 250 �

625 mH

800 nF

iovg

� �vo

iovo

io.vo

Io.Vo

vg = 325u(t) V.

�

�

200 �200 �

200u(t) V 10 mF
400 mH

io
�

�

vo

Figure P13.22

13.23 Find in the circuit shown in Fig. P13.23 if
. There is no energy stored in the

circuit at 

Figure P13.23

13.24 The switch in the circuit in Fig. P13.24 has been
closed for a long time before opening at Find

for 

Figure P13.24

13.25 There is no energy stored in the circuit in Fig. P13.25
at the time the switch is closed.

a) Find for 

b) Does your solution make sense in terms of
known circuit behavior? Explain.

Figure P13.25

13.26 The initial energy in the circuit in Fig. P13.26 is zero.
The ideal voltage source is 

a) Find 

b) Use the initial- and final-value theorems to find
and vo(q).vo(0+)

Vo(s).

600u(t) V.

�

�

�

�
35 V

v�

if
8if0.4v�

t � 0 4 mF

1 H
2 �

vo

�

�

� �

t Ú 0.vo

1 k�50 mA 100 � 200 nF 0.3ib

�
t = 0

vo

ib

�

t Ú 0.vo

t = 0.

50 �
ig

vf

vo

100 mF

15 � 10�3 vf 1 H�

�

�

�

t = 0.
ig = 20u(t) mA

vo

�

�

vo50 �

150 �

250u(t) V

400 mH160 mF

25u(t) A
�

�
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c) Do the values obtained in (b) agree with known
circuit behavior? Explain.

d) Find 

Figure P13.26

13.27 There is no energy stored in the circuit in Fig. P13.27
at the time the current source turns on. Given that

a) Find 

b) Use the initial- and final-value theorems to find
and 

c) Determine if the results obtained in (b) agree
with known circuit behavior.

d) Find 

Figure P13.27

13.28 The switch in the circuit seen in Fig. P13.28 has been
in position a for a long time. At it moves
instantaneously to position b.

a) Find 

b) Find 

Figure P13.28

a

b

5.625 H

�

�

��

if
3 �

20 �5 �24 V vo 0.1 F

25if

�

�

t � 0

vo.

Vo.

t = 0,

25 �

� �

if

io

5 �

25 H

20 if

ig20 mF

io(t).

io(q).io(0+)

Io(s).

ig = 100u(t) A:

10 �

�

�

� �

��

vf

vg vf vo 140 �

4

20 H

100 mF

vo(t).

13.29 The switch in the circuit seen in Fig. P13.29 has been
in position a for a long time before moving instanta-
neously to position b at 

a) Construct the s-domain equivalent circuit for

b) Find and 

c) Find and 

Figure P13.29

13.30 There is no energy stored in the capacitors in 
the circuit in Fig. P13.30 at the time the switch 
is closed.

a) Construct the s-domain circuit for 

b) Find and 

c) Find and 

d) Do your answers for and make sense in
terms of known circuit behavior? Explain.

Figure P13.30

13.31 There is no energy stored in the circuit in Fig. P13.31
at the time the current source is energized.

a) Find and 

b) Find and 

c) Find and 

d) Find and 

e) Assume a capacitor will break down whenever
its terminal voltage is 1000 V. How long after the
current source turns on will one of the capacitors
break down?

vc.vb,va,

Vc.Vb,Va,

ib.ia

Ib.Ia

�

�

50 k�

300 nF

100 nF500 nF

t � 0

20 V

v2

�

�

v1

�

�

i1

v2v1,i1,

v2.v1,i1,

V2.V1,I1,

t 7 0.

�

�

25 �

1.25 mH 

50 k�

10 mF

24 mF16 mF

t � 0

450 V

v2

�

�

v1

�

�

a b

v2.V2

v1.V1

t 7 0.

t = 0.
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Figure P13.31

13.32 The switch in the circuit shown in Fig. P13.32
has been open for a long time. The voltage of 
the sinusoidal source is 
The switch closes at Note that the angle 

in the voltage expression determines the value
of the voltage at the moment when the switch
closes, that is,

a) Use the Laplace transform method to find 
i for 

b) Using the expression derived in (a), write the
expression for the current after the switch has
been closed for a long time.

c) Using the expression derived in (a), write the
expression for the transient component of i.

d) Find the steady-state expression for i using the
phasor method. Verify that your expression is
equivalent to that obtained in (b).

e) Specify the value of so that the circuit passes
directly into steady-state operation when the
switch is closed.

Figure P13.32

13.33 Beginning with Eq. 13.65, show that the capacitor
current in the circuit in Fig. 13.19 is positive for

and negative for Also
show that at the current is zero and that this
corresponds to when is zero.

13.34 There is no energy stored in the circuit in Fig. P13.34
at the time the voltage source is energized.

a) Find , , and 

b) Find , , and for t Ú 0.iLiovo

IL.IoVo

dvC>dt
200 ms,

t 7 200 ms.0 6 t 6 200 ms

�

�
Vg

L

Ri
t � 0

f

t 7 0.

vg(0) = Vm sin f.

f

t = 0.
vg = Vm sin (vt + f).

�

�

vc

� �vb

� �va

10 �

10 �

100 mF

100 mF

100 mF9u(t) A

ia

ib

Figure P13.34

13.35 The two switches in the circuit shown in Fig. P13.35
operate simultaneously. There is no energy stored
in the circuit at the instant the switches close. Find

for by first finding the s-domain
Thévenin equivalent of the circuit to the left of the
terminals a, b.

Figure P13.35

13.36 There is no energy stored in the circuit in Fig. P13.36
at the time the switch is closed.

a) Find 

b) Use the initial- and final-value theorems to find
and 

c) Find 

Figure P13.36

13.37 a) Find the current in the resistor in the cir-
cuit in Fig. P13.36. The reference direction for
the current is down through the resistor.

b) Repeat part (a) if the dot on the 250 mH coil 
is reversed.

13.38 The magnetically coupled coils in the circuit seen in
Fig. P13.38 carry initial currents of 300 and 200 A,
as shown.

a) Find the initial energy stored in the circuit.

b) Find and I2.I1

160 Æ

�

�

100 � 40 �

160 �250 mH187.5 mH

125 mH

150 V
t � 0

i1

i1.

i1(q).i1(0+)

I1.

�

�

1 k� 1 k� a

b

40 V i(t)
t � 0 t � 0

2 mF10 H

t Ú 0+i(t)

25te�75tu(t) A 4 H vo

�

�

iL
200 �

io
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c) Find and 

d) Find the total energy dissipated in the 240 and
resistors.

e) Repeat (a)–(d), with the dot on the 720 mH
inductor at the lower terminal.

Figure P13.38

13.39 The make-before-break switch in the circuit seen in
Fig. P13.39 has been in position a for a long time.At

it moves instantaneously to position b. Find
for 

Figure P13.39

13.40 The switch in the circuit seen in Fig. P13.40 has
been closed for a long time before opening at 
Use the Laplace transform method of analysis to
find 

Figure P13.40

13.41 In the circuit in Fig. P13.41, switch 1 closes at 
and the make-before-break switch moves instanta-
neously from position a to position b.

a) Construct the s-domain equivalent circuit for

b) Find I1.

t 7 0.

t = 0,

�

�

4 �

20 �1.6 H0.8 H

0.8 H

48 V

t � 0

10 mF

�

�

vo

vo.

t = 0.

5 �

20 �

b

a

2 H

1 H90 V

3 Ht � 0

io

�

�
10 �

t Ú 0.io

t = 0,

240 mH

320 mH

300 A i2i1
200 A

720 mH
540 �240 �

540 Æ

i2.i1 c) Use the initial- and final-value theorems to
check the initial and final values of 

d) Find for 

Figure P13.41

13.42 Verify that the solution of Eqs. 13.91 and 13.92 for
yields the same expression as that given by

Eq. 13.90.

13.43 There is no energy stored in the circuit seen in
Fig. P13.43 at the time the two sources are energized.

a) Use the principle of superposition to find 

b) Find for 

Figure P13.43

13.44 The op amp in the circuit shown in Fig. P13.44 is
ideal. There is no energy stored in the circuit at the
time it is energized. If find 
(a) (b) (c) how long it takes to saturate the
operational amplifier, and (d) how small the rate of
increase in must be to prevent saturation.

Figure P13.44

�

�

10 V

�10 V

2 k�

625 nF

800 �
3.125 mF

�

�

vo

�

�

vg

C1
R1

R2

C2

vg

vo,Vo,
vg = 5000tu(t) V,

�

�

40 �

80 �400u(t) V 6u(t) Avo 31.25 mF

400 mH

�

�

t 7 0.vo

Vo.

V2

�

�

�

�

10 �

120 �

a

b

15 H3 H

1
3 H

2

360 �24 V 20 V

i1 t � 0 t � 0

t Ú 0+.i1

i1.
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13.45 Find in the circuit shown in Fig. P13.45 if the
ideal op amp operates within its linear range and

Figure P13.45

13.46 The op amp in the circuit shown in Fig. P13.46 is
ideal. There is no energy stored in the capacitors at
the instant the circuit is energized.

a) Find if and 

b) How many milliseconds after the two voltage
sources are turned on does the op amp 
saturate?

Figure P13.46

13.47 The op amp in the circuit seen in Fig. P13.47 is
ideal. There is no energy stored in the capacitors at
the time the circuit is energized. Determine (a) 
(b) and (c) how long it takes to saturate the
operational amplifier.

vo,
Vo,

5 V

�5 V

vo

�

�

vg2
�

�

vg1

20 mF

20 �

5 �

5 �

10 �

�

�

10 mF

�

�

vg2 = 16u(t) V.vg1 = 40u(t) Vvo

�

�

10 k�

20 nF

2 k�
20 nF

�

�

vo(t)
vg

�

�

vg = 16u(t) mV.

vo(t) Figure P13.47

Sections 13.4–13.5

13.48 a) Find the transfer function for the
circuit shown in Fig. P13.48(a).

b) Find the transfer function for the
circuit shown in Fig. P13.48(b).

c) Create two different circuits that have the transfer
function Use
components selected from Appendix H and 
Figs. P13.48(a) and (b).

Figure P13.48

13.49 a) Find the transfer function for the
circuit shown in Fig. P13.49(a).

b) Find the transfer function for the
circuit shown in Fig. P13.49(b).

c) Create two different circuits that have the trans-
fer function Use
components selected from Appendix H and 
Figs. P13.49(a) and (b).

Figure P13.49

(a) (b)

C
vo Lvi

�

�

�

�

R

voR vi

�

�

�

�

H(s) = Vo>Vi = s>(s +  10,000).

H(s) = Vo>Vi

H(s) = Vo>Vi

(a) (b)

R

voCvi

�

�

�

�

L

voRvi

�

�

�

�

H(s) = Vo>Vi = 1000>(s+1000).

H(s) = Vo>Vi

H(s) = Vo>Vi

�

�

4 V

�4 V

100 k�

250 nF

500 nF

250 nF

200 k�200 k�

�

�

vo

�

�

0.5u(t) V

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

Problems 511



13.50 a) Find the transfer function for the
circuit shown in Fig. P13.50. Identify the poles
and zeros for this transfer function.

b) Find three components from Appendix H which
when used in the circuit of Fig. P13.50 will result in
a transfer function with two poles that are distinct
real numbers. Calculate the values of the poles.

c) Find three components from Appendix H
which when used in the circuit of Fig. P13.50
will result in a transfer function with two poles,
both with the same value. Calculate the value
of the poles.

d) Find three components from Appendix H which
when used in the circuit of Fig. P13.50 will result
in a transfer function with two poles that are
complex conjugate complex numbers. Calculate
the values of the poles.

Figure P13.50

13.51 a) Find the numerical expression for the trans-
fer function for the circuit in
Fig. P13.51.

b) Give the numerical value of each pole and zero
of 

Figure P13.51

13.52 Find the numerical expression for the transfer func-
tion of each circuit in Fig. P13.52 and give
the numerical value of the poles and zeros of each
transfer function.

(Vo>Vi)

100 �

400 �

500 nF
vi

�

�

vo

�

�

2.5 k�

H(s).

H(s) = Vo>Vi

R vovi

�

�

�

�

LC

H(s) = Vo>Vi Figure P13.52

13.53 The operational amplifier in the circuit in Fig. P13.53
is ideal.

a) Find the numerical expression for the transfer
function 

b) Give the numerical value of each zero and pole
of 

Figure P13.53

�

�

VCC 

�VCC 

125 k�

400 pF

250 k�

1.6 nF

�

�

vo

�

�

vg

H(s).

H(s) = Vo>Vg.

2 k�

vo

(c) (d)

20 mF

20 mF 2 k�vi

(a) (b)

�

�

�

�

250 k�

vo125 mHvi

�

�

�

�

125 mH

vo250 �vi

�

�

�

�

vovi

�

�

�

�
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13.54 The operational amplifier in the circuit in Fig. P13.54
is ideal.

a) Find the numerical expression for the transfer
function 

b) Give the numerical value of each zero and pole
of 

Figure P13.54

13.55 The operational amplifier in the circuit in
Fig. P13.55 is ideal.

a) Derive the numerical expression of the trans-
fer function for the circuit in
Fig. P13.55.

b) Give the numerical value of each pole and zero
of 

Figure P13.55

13.56 There is no energy stored in the circuit in Fig. P13.56
at the time the switch is opened.The sinusoidal current
source is generating the signal The
response signal is the current 

a) Find the transfer function 

b) Find 

c) Describe the nature of the transient component
of without solving for io(t).io(t)

Io(s).

Io>Ig.

io.
25 cos 200t mA.

�

�

�

�

5 k�

200 nF

1 k�
200 nF

�

�

vo

vg

VCC 

�VCC 

H(s).

H(s) = Vo>Vg

R1 C1

250 � 32 mF 8 V

�8 V

�

�

vg

R2 � 10 k�

C2 � 4 mF

�

�

vo

�

�

H(s).

H(s) = Vo>Vg.

d) Describe the nature of the steady-state compo-
nent of without solving for 

e) Verify the observations made in (c) and (d) by
finding 

Figure P13.56

13.57 a) Find the transfer function as a function of
for the circuit seen in Fig. P13.57.

b) Find the largest value of that will produce a
bounded output signal for a bounded input 
signal.

c) Find for –3, 0, 4, 5, and 6 if 

Figure P13.57

13.58 In the circuit of Fig. P13.58 is the output signal
and is the input signal. Find the poles and zeros
of the transfer function, assuming there is no initial
energy stored in the linear transformer or in the
capacitor.

Figure P13.58

Section 13.6

13.59 A rectangular voltage pulse 
is applied to the circuit in Fig. P13.59. Use the con-
volution integral to find vo.

-  1)] Vu(t[u(t) -=vi
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50 � 1 Hig
t � 0

500 mF
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Figure P13.59

13.60 Interchange the inductor and resistor in
Problem 13.59 and again use the convolution inte-
gral to find 

13.61 a) Use the convolution integral to find the output
voltage of the circuit in Fig. P13.52(a) if the
input voltage is the rectangular pulse shown in
Fig. P13.61.

b) Sketch versus t for the time interval

Figure P13.61

13.62 a) Repeat Problem 13.61, given that the resistor 
in the circuit in Fig. P13.52(a) is decreased to

b) Does decreasing the resistor increase or decrease
the memory of the circuit?

c) Which circuit comes closer to transmitting a
replica of the input voltage?

13.63 a) Given find when and
are the rectangular pulses shown in

Fig. P13.63(a).

b) Repeat (a) when changes to the rectangular
pulse shown in Fig. P13.63(b).

c) Repeat (a) when changes to the rectangular
pulse shown in Fig. P13.63(c).

d) Sketch versus t for (a)–(c) on a single graph.

e) Do the sketches in (d) make sense? Explain.

y(t)

h(t)

h(t)

x(t)
h(t)y(t)y(t) = h(t) * x(t),

200 Æ.

0 40

vi (V)

10

t (ms)

0 … t … 100 ms.
vo(t)

vo.

1 �

1 H

�

�

vi

�

�

vo

Figure P13.63

13.64 a) Find when and are the rec-
tangular pulses shown in Fig. P13.64(a).

b) Repeat (a) when changes to the rectangular
pulse shown in Fig. P13.64(b).

c) Repeat (a) when changes to the rectangular
pulse shown in Fig. P13.64(c).

Figure P13.64

13.65 The voltage impulse response of a circuit is shown in
Fig. P13.65(a). The input signal to the circuit is the
rectangular voltage pulse shown in Fig. P13.65(b).

a) Derive the equations for the output voltage.
Note the range of time for which each equation
is applicable.

b) Sketch for  -1 … t … 34 s.vo

(a)

25

h(t)

t

(b)

100

(c)

25

h(t)

t
10

25

x(t)

t100

12.5

x(t)

t
200

h(t)

x(t)

x(t)h(t)h(t) * x(t)

t t

tt

40
(a)

(b) (c)

0

1

h(t)

100

4

h(t)

40

h(t)

400

10

x(t)

10
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Figure P13.65

13.66 Assume the voltage impulse response of a circuit
can be modeled by the triangular waveform shown
in Fig. P13.66.The voltage input signal to this circuit
is the step function 

a) Use the convolution integral to derive the
expressions for the output voltage.

b) Sketch the output voltage over the interval 
0 to 15 s.

c) Repeat parts (a) and (b) if the area under the
voltage impulse response stays the same but the
width of the impulse response narrows to 4 s.

d) Which output waveform is closer to replicating
the input waveform: (b) or (c)? Explain.

Figure P13.66

13.67 a) Assume the voltage impulse response of a
circuit is

h(t) = b0, t 6 0;
10e-4t, t Ú 0.

5 100

2

h(t) (V)

t (s)

10u(t) V.

20

10

3010

l (s)

t (s)

10

vi(l) (V)

h(t) (V)

�1

(a)

(b)
4

Use the convolution integral to find the output
voltage if the input signal is 

b) Repeat (a) if the voltage impulse response is

c) Plot the output voltage versus time for (a) and
(b) for 

13.68 Use the convolution integral to find in the circuit
seen in Fig. P13.68 if 

Figure P13.68

13.69 a) Use the convolution integral to find in the cir-
cuit in Fig. P13.69(a) if is the pulse shown in
Fig. P13.69(b).

b) Use the convolution integral to find 

c) Show that your solutions for and are consis-
tent by calculating and at 

and 

Figure P13.69
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�

�
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vi = 75u(t) V.
vo

0 … t … 1 s.

h(t) = c
0, t 6 0;
10(1 - 2t), 0 … t … 0.5 s;
0, t Ú 0.5 s.

10u(t) V.
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13.70 The input voltage in the circuit seen in Fig. P13.70 is

a) Use the convolution integral to find 

b) Sketch for 

Figure P13.70

13.71 a) Find the impulse response of the circuit shown
in Fig. P13.71(a) if is the input signal and is
the output signal.

b) Given that has the waveform shown in
Fig. P13.71(b), use the convolution integral to
find 

c) Does have the same waveform as Why or
why not?

Figure P13.71

13.72 a) Find the impulse response of the circuit seen in
Fig. P13.72 if is the input signal and is the
output signal.

b) Assume that the voltage source has the wave-
form shown in Fig. P13.71(b). Use the convolu-
tion integral to find 

c) Sketch for 

d) Does have the same waveform as ? Why or
why not?

Figure P13.72
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vo.

vi = 5[u(t) - u(t - 0.5)] V.

13.73 The current source in the circuit shown in
Fig. P13.73(a) is generating the waveform shown in
Fig. P13.73(b). Use the convolution integral to find

at 

Figure P13.73

13.74 The sinusoidal voltage pulse shown in Fig. P13.74(a)
is applied to the circuit shown in Fig. P13.74(b). Use
the convolution integral to find the value of at

Figure P13.74

13.75 a) Show that if then 

b) Use the result given in (a) to find if

Section 13.7

13.76 The operational amplifier in the circuit seen in
Fig. P13.76 is ideal and is operating within its lin-
ear region.

a) Calculate the transfer function 

b) If what is the steady-state
expression for ?vo

vg = cos 3000t V,

Vo>Vg.

F(s) =

a

s(s + a)2 .

f(t)

H(s)X(s).
Y(s) =y(t) = h(t) * x(t),
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Figure P13.76

13.77 The op amp in the circuit seen in Fig. P13.77 is ideal.

a) Find the transfer function 

b) Find if 

c) Find the steady-state expression for if

Figure P13.77

13.78 The transfer function for a linear time-invariant
circuit is

If what is the steady-state
expression for ?

13.79 The transfer function for a linear time-invariant
circuit is

If what is the steady-state
expression for ?io

ig = 80 cos 500t A,
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13.80 When an input voltage of is applied to a
circuit, the response is known to be

What will the steady-state response be if
?

Section 13.8

13.81 Show that after coulombs are transferred from
to in the circuit shown in Fig. 13.47, the volt-

age across each capacitor is (Hint:
Use the conservation-of-charge principle.)

13.82 The voltage source in the circuit in Example 13.1 is
changed to a unit impulse; that is,

a) How much energy does the impulsive voltage
source store in the capacitor?

b) How much energy does it store in the inductor?

c) Use the transfer function to find 

d) Show that the response found in (c) is identical
to the response generated by first charging the
capacitor to 1000 V and then releasing the
charge to the circuit, as shown in Fig. P13.82.

Figure P13.82

13.83 There is no energy stored in the circuit in Fig. P13.83
at the time the impulsive voltage is applied.

a) Find for 

b) Does your solution make sense in terms of
known circuit behavior? Explain.

Figure P13.83
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13.84 The inductor in the circuit shown in Fig. P13.84
is carrying an initial current of at the instant
the switch opens. Find (a) (b) (c) 
and (d) where is the total flux linkage in
the circuit.

Figure P13.84

13.85 a) Let in the circuit shown in Fig. P13.84,
and use the solutions derived in Problem 13.84
to find and 

b) Let in the circuit shown in Fig. P13.84
and use the Laplace transform method to find

and 

13.86 The parallel combination of and in the circuit
shown in Fig. P13.86 represents the input circuit to a
cathode-ray oscilloscope (CRO). The parallel combi-
nation of and is a circuit model of a compensat-
ing lead that is used to connect the CRO to the source.
There is no energy stored in or at the time when
the 10 V source is connected to the CRO via the com-
pensating lead. The circuit values are 

and 

a) Find 

b) Find 

c) Repeat (a) and (b) given is changed to 64 pF.

Figure P13.86

13.87 Show that if in the circuit shown in
Fig. P13.86, will be a scaled replica of the
source voltage.

vo

R1C1 = R2C2

�

�
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R210 V vo

io

C1

C2

t � 0
�

�

C1

io.
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C2C1
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R = q
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R : q

L1 L2R v i2
i1

t � 0r

�

�

l(t)l(t),
i2(t);i1(t);v(t);

r A
L1 13.88 The switch in the circuit in Fig. P13.88 has been

closed for a long time. The switch opens at 
Compute (a) (b) (c) (d) 
(e) (f) and (g) 

Figure P13.87

13.89 There is no energy stored in the circuit in Fig. P13.89
at the time the impulse voltage is applied.

a) Find for 

b) Find for 

c) Find for 

d) Do your solutions for and make sense in
terms of known circuit behavior? Explain.

Figure P13.89

13.90 The switch in the circuit in Fig. P13.90 has been in
position a for a long time. At the switch
moves to position b. Compute (a) (b) 
(c) (d) (e) (f) and 
(g) 

Figure P13.90
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13.91 There is no energy stored in the circuit in Fig. P13.91
at the time the impulsive current is applied.

a) Find for 

b) Does your solution make sense in terms of
known circuit behavior? Explain.

Figure P13.91

Sections 13.1–13.8

13.92 Assume the line-to-neutral voltage in the 60 Hz
circuit of Fig. 13.59 is Load is
absorbing 1200 W; load is absorbing 1800 W; and
load is absorbing 350 magnetizing VAR. The
inductive reactance of the line is Assume

does not change after the switch opens.

a) Calculate the initial value of and 

b) Find and using the s-domain
circuit of Fig. 13.60.

c) Test the steady-state component of using pha-
sor domain analysis.

d) Using a computer program of your choice, plot
vs. t for 0 … t … 20 ms.vo

vo

vo(0+)vo(t),Vo,

io(t).i2(t)

Vg

1 Æ.(X1)
Xa

Rb

Ra120 l0° V (rms).
Vo

50 k�10d(t) mA vo1 mF

�

�

250 nF

t Ú 0+.vo

13.93 Assume the switch in the circuit in Fig. 13.59
opens at the instant the sinusoidal steady-state
voltage is zero and going positive, i.e.,

a) Find for 

b) Using a computer program of your choice, plot
vs. t for 

c) Compare the disturbance in the voltage in
part (a) with that obtained in part (c) of
Problem 13.92.

13.94 The purpose of this problem is to show that the
line-to-neutral voltage in the circuit in Fig. 13.59
can go directly into steady state if the load is
disconnected from the circuit at precisely the
right time. Let where

Assume does not change after 
is disconnected.

a) Find the value of (in degrees) so that goes
directly into steady-state operation when the
load is disconnected.

b) For the value of found in part (a), find for

c) Using a computer program of your choice, plot
on a single graph, for 

before and after load is disconnected.Rbvo(t)
-10 ms … t … 10 ms,

t Ú 0.
vo(t)u

Rb

vou

RbvgVm = 12012.
vo = Vm cos(120pt - u°) V,

Rb

0 … t … 20 ms.vo(t)

t Ú 0.vo(t)

vo = 12012 sin 120pt V.
vo
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Up to this point in our analysis of circuits with sinusoidal
sources, the source frequency was held constant. In this chapter,
we analyze the effect of varying source frequency on circuit volt-
ages and currents. The result of this analysis is the frequency
response of a circuit.

We’ve seen in previous chapters that a circuit’s response
depends on the types of elements in the circuit, the way the ele-
ments are connected, and the impedance of the elements.
Although varying the frequency of a sinusoidal source does not
change the element types or their connections, it does alter the
impedance of capacitors and inductors, because the impedance
of these elements is a function of frequency. As we will see, the
careful choice of circuit elements, their values, and their con-
nections to other elements enables us to construct circuits that
pass to the output only those input signals that reside in a
desired range of frequencies. Such circuits are called
frequency-selective circuits. Many devices that communicate
via electric signals, such as telephones, radios, televisions, and
satellites, employ frequency-selective circuits.

Frequency-selective circuits are also called filters because of
their ability to filter out certain input signals on the basis of fre-
quency. Figure 14.1 on page 522 represents this ability in a sim-
plistic way. To be more accurate, we should note that no practical
frequency-selective circuit can perfectly or completely filter out
selected frequencies. Rather, filters attenuate—that is, weaken or
lessen the effect of—any input signals with frequencies outside
frequencies outside a particular frequency band. Your home
stereo system may have a graphic equalizer, which is an excellent
example of a collection of filter circuits. Each band in the graphic
equalizer is a filter that amplifies sounds (audible frequencies) in
the frequency range of the band and attenuates frequencies out-
side of that band. Thus the graphic equalizer enables you to
change the sound volume in each frequency band.

Introduction to Frequency
Selective Circuits

C H A P T E R  C O N T E N T S

14.1 Some Preliminaries p. 522

14.2 Low-Pass Filters p. 524

14.3 High-Pass Filters p. 530

14.4 Bandpass Filters p. 534

14.5 Bandreject Filters p. 543

520

C H A P T E R

1414

C H A P T E R  O B J E C T I V E S

1 Know the RL and RC circuit configurations that
act as low-pass filters and be able to design 
RL and RC circuit component values to meet a
specified cutoff frequency.

2 Know the RL and RC circuit configurations that
act as high-pass filters and be able to design 
RL and RC circuit component values to meet a
specified cutoff frequency.

3 Know the RLC circuit configurations that act as
bandpass filters, understand the definition of
and relationship among the center frequency,
cutoff frequencies, bandwidth, and quality
factor of a bandpass filter, and be able to
design RLC circuit component values to meet
design specifications.

4 Know the RLC circuit configurations that act as
bandreject filters, understand the definition of
and relationship among the center frequency,
cutoff frequencies, bandwidth, and quality
factor of a bandreject filter, and be able to
design RLC circuit component values to meet
design specifications.



In this chapter, we examine circuits in which the source fre-
quency varies. The behavior of these circuits varies as the
source frequency varies, because the impedance of the reac-
tive components is a function of the source frequency. These
frequency-dependent circuits are called filters and are used
in many common electrical devices. In radios, filters are used
to select one radio station’s signal while rejecting the signals
from others transmitting at different frequencies. In stereo
systems, filters are used to adjust the relative strengths of the
low- and high-frequency components of the audio signal.
Filters are also used throughout telephone systems.

A pushbutton telephone produces tones that you hear
when you press a button. You may have wondered about these
tones. How are they used to tell the telephone system which
button was pushed? Why are tones used at all? Why do the
tones sound musical? How does the phone system tell the dif-
ference between button tones and the normal sounds of peo-
ple talking or singing?

The telephone system was designed to handle audio
signals—those with frequencies between 300 Hz and 3 kHz.
Thus, all signals from the system to the user have to be
audible—including the dial tone and the busy signal. Similarly,
all signals from the user to the system have to be audible,
including the signal that the user has pressed a button. It is
important to distinguish button signals from the normal audio
signal, so a dual-tone-multiple-frequency (DTMF) design is
employed. When a number button is pressed, a unique pair of
sinusoidal tones with very precise frequencies is sent by the
phone to the telephone system. The DTMF frequency and timing
specifications make it unlikely that a human voice could pro-
duce the exact tone pairs, even if the person were trying. In
the central telephone facility, electric circuits monitor the
audio signal, listening for the tone pairs that signal a number.
In the Practical Perspective example at the end of the chapter,
we will examine the design of the DTMF filters used to deter-
mine which button has been pushed.

521

Practical Perspective
Pushbutton Telephone Circuits
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522 Introduction to Frequency Selective Circuits

We begin this chapter by analyzing circuits from each of the four
major categories of filters: low pass, high pass, band pass, and band reject.
The transfer function of a circuit is the starting point for the frequency
response analysis. Pay close attention to the similarities among the trans-
fer functions of circuits that perform the same filtering function. We will
employ these similarities when designing filter circuits in Chapter 15.

14.1 Some Preliminaries
Recall from Section 13.7 that the transfer function of a circuit provides an
easy way to compute the steady-state response to a sinusoidal input. There,
we considered only fixed-frequency sources.To study the frequency response
of a circuit, we replace a fixed-frequency sinusoidal source with a varying-
frequency sinusoidal source.The transfer function is still an immensely useful
tool because the magnitude and phase of the output signal depend only on
the magnitude and phase of the transfer function 

Note that the approach just outlined assumes that we can vary the fre-
quency of a sinusoidal source without changing its magnitude or phase
angle. Therefore, the amplitude and phase of the output will vary only if
those of the transfer function vary as the frequency of the sinusoidal
source is changed.

To further simplify this first look at frequency-selective circuits, we will
also restrict our attention to cases where both the input and output signals
are sinusoidal voltages, as illustrated in Fig. 14.2. Thus, the transfer function
of interest to us will be the ratio of the Laplace transform of the output volt-
age to the Laplace transform of the input voltage, or 
We should keep in mind, however, that for a particular application, a current
may be either the input signal or output signal of interest.

The signals passed from the input to the output fall within a band of
frequencies called the passband. Input voltages outside this band have
their magnitudes attenuated by the circuit and are thus effectively pre-
vented from reaching the output terminals of the circuit. Frequencies not
in a circuit’s passband are in its stopband. Frequency-selective circuits are
categorized by the location of the passband.

One way of identifying the type of frequency-selective circuit is to
examine a frequency response plot. A frequency response plot shows how
a circuit’s transfer function (both amplitude and phase) changes as the
source frequency changes.A frequency response plot has two parts. One is
a graph of versus frequency This part of the plot is called the
magnitude plot.The other part is a graph of versus frequency This
part is called the phase angle plot.

The ideal frequency response plots for the four major categories of fil-
ters are shown in Fig. 14.3. Parts (a) and (b) illustrate the ideal plots for a
low-pass and a high-pass filter, respectively. Both filters have one pass-
band and one stopband, which are defined by the cutoff frequency that
separates them. The names low pass and high pass are derived from the
magnitude plots: a low-pass filter passes signals at frequencies lower than
the cutoff frequency from the input to the output, and a high-pass filter
passes signals at frequencies higher than the cutoff frequency. Thus the
terms low and high as used here do not refer to any absolute values of fre-
quency, but rather to relative values with respect to the cutoff frequency.

Note from the graphs for both these filters (as well as those for the
bandpass and bandreject filters) that the phase angle plot for an ideal filter
varies linearly in the passband. It is of no interest outside the passband
because there the magnitude is zero. Linear phase variation is necessary to
avoid phase distortion.

v.u(jv)
v.|H( jv)|

H(s) = Vo(s)>Vi(s).

H(jv).

Input
signal

Output
signalFilter

Figure 14.1 � The action of a filter on an input signal
results in an output signal.

Vo(s)

�

�

Vi (s) �

�
Circuit

Figure 14.2 � A circuit with voltage input and output.
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Figure 14.3 � Ideal frequency response plots of the four types of filter circuits.
(a) An ideal low-pass filter. (b) An ideal high-pass filter. (c) An ideal bandpass filter.
(d) An ideal bandreject filter.

The two remaining categories of filters each have two cutoff frequen-
cies. Figure 14.3(c) illustrates the ideal frequency response plot of a
bandpass filter, which passes a source voltage to the output only when the
source frequency is within the band defined by the two cutoff frequencies.
Figure 14.3(d) shows the ideal plot of a bandreject filter, which passes a
source voltage to the output only when the source frequency is outside the
band defined by the two cutoff frequencies. The bandreject filter thus
rejects, or stops, the source voltage from reaching the output when its fre-
quency is within the band defined by the cutoff frequencies.

In specifying a realizable filter using any of the circuits from this chap-
ter, it is important to note that the magnitude and phase angle characteris-
tics are not independent. In other words, the characteristics of a circuit
that result in a particular magnitude plot will also dictate the form of the
phase angle plot and vice versa. For example, once we select a desired
form for the magnitude response of a circuit, the phase angle response is
also determined. Alternatively, if we select a desired form for the phase
angle response, the magnitude response is also determined. Although
there are some frequency-selective circuits for which the magnitude and
phase angle behavior can be independently specified, these circuits are
not presented here.

The next sections present examples of circuits from each of the four
filter categories. They are a few of the many circuits that act as filters. You
should focus your attention on trying to identify what properties of a cir-
cuit determine its behavior as a filter. Look closely at the form of the
transfer function for circuits that perform the same filtering functions.
Identifying the form of a filter’s transfer function will ultimately help you
in designing filtering circuits for particular applications.

All of the filters we will consider in this chapter are passive filters, so
called because their filtering capabilities depend only on the passive 
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elements: resistors, capacitors, and inductors. The largest output amplitude
such filters can achieve is usually 1, and placing an impedance in series with
the source or in parallel with the load will decrease this amplitude. Because
many practical filter applications require increasing the amplitude of the
output, passive filters have some significant disadvantages. The only pas-
sive filter described in this chapter that can amplify its output is the series
RLC resonant filter.A much greater selection of amplifying filters is found
among the active filter circuits, the subject of Chapter 15.

14.2 Low-Pass Filters
Here, we examine two circuits that behave as low-pass filters, the series
RL circuit and the series RC circuit, and discover what characteristics of
these circuits determine the cutoff frequency.

The Series RL Circuit—Qualitative Analysis
A series RL circuit is shown in Fig. 14.4(a). The circuit’s input is a sinu-
soidal voltage source with varying frequency. The circuit’s output is
defined as the voltage across the resistor. Suppose the frequency of the
source starts very low and increases gradually. We know that the behavior
of the ideal resistor will not change, because its impedance is independent
of frequency. But consider how the behavior of the inductor changes.

Recall that the impedance of an inductor is At low frequencies,
the inductor’s impedance is very small compared with the resistor’s
impedance, and the inductor effectively functions as a short circuit. The
term low frequencies thus refers to any frequencies for which 
The equivalent circuit for is shown in Fig. 14.4(b). In this equivalent
circuit, the output voltage and the input voltage are equal both in magni-
tude and in phase angle.

As the frequency increases, the impedance of the inductor increases rel-
ative to that of the resistor. Increasing the inductor’s impedance causes a
corresponding increase in the magnitude of the voltage drop across the
inductor and a corresponding decrease in the output voltage magnitude.
Increasing the inductor’s impedance also introduces a shift in phase angle
between the inductor’s voltage and current.This results in a phase angle dif-
ference between the input and output voltage. The output voltage lags the
input voltage, and as the frequency increases, this phase lag approaches 

At high frequencies, the inductor’s impedance is very large compared
with the resistor’s impedance, and the inductor thus functions as an open
circuit, effectively blocking the flow of current in the circuit.The term high
frequencies thus refers to any frequencies for which The equiv-
alent circuit for is shown in Fig. 14.4(c), where the output voltage
magnitude is zero. The phase angle of the output voltage is more neg-
ative than that of the input voltage.

Based on the behavior of the output voltage magnitude, this series RL
circuit selectively passes low-frequency inputs to the output, and it blocks
high-frequency inputs from reaching the output. This circuit’s response to
varying input frequency thus has the shape shown in Fig. 14.5. These two
plots comprise the frequency response plots of the series RL circuit in
Fig. 14.4(a). The upper plot shows how varies with frequency. The
lower plot shows how varies as a function of frequency.We present a
more formal method for constructing these plots in Appendix E.

We have also superimposed the ideal magnitude plot for a low-pass
filter from Fig. 14.3(a) on the magnitude plot of the RL filter in Fig. 14.5.
There is obviously a difference between the magnitude plots of an ideal
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Figure 14.4 � (a) A series RL low-pass filter. (b) The
equivalent circuit at and (c) The equivalent
circuit at v = q .

v = 0.
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Figure 14.5 � The frequency response plot for the
series RL circuit in Fig. 14.4(a).

filter and the frequency response of an actual RL filter. The ideal filter
exhibits a discontinuity in magnitude at the cutoff frequency, which
creates an abrupt transition into and out of the passband.While this is, ide-
ally, how we would like our filters to perform, it is not possible to use real
components to construct a circuit that has this abrupt transition in magni-
tude. Circuits acting as low-pass filters have a magnitude response that
changes gradually from the passband to the stopband. Hence the magni-
tude plot of a real circuit requires us to define what we mean by the cutoff
frequency,

Defining the Cutoff Frequency
We need to define the cutoff frequency, for realistic filter circuits
when the magnitude plot does not allow us to identify a single frequency
that divides the passband and the stopband. The definition for cutoff fre-
quency widely used by electrical engineers is the frequency for which the
transfer function magnitude is decreased by the factor from its
maximum value:

(14.1)

where is the maximum magnitude of the transfer function. It follows
from Eq. 14.1 that the passband of a realizable filter is defined as the
range of frequencies in which the amplitude of the output voltage is at
least 70.7% of the maximum possible amplitude.

The constant used in defining the cutoff frequency may seem like
an arbitrary choice. Examining another consequence of the cutoff frequency
will make this choice seem more reasonable. Recall from Section 10.5 that
the average power delivered by any circuit to a load is proportional to 
where is the amplitude of the voltage drop across the load:

(14.2)

If the circuit has a sinusoidal voltage source, then the load voltage
is also a sinusoid, and its amplitude is a function of the frequency 
Define as the value of the average power delivered to a load when
the magnitude of the load voltage is maximum:

(14.3)

If we vary the frequency of the sinusoidal voltage source, the load
voltage is a maximum when the magnitude of the circuit’s transfer func-
tion is also a maximum:

(14.4)

Now consider what happens to the average power when the frequency of
the voltage source is Using Eq. 14.1, we determine the magnitude of
the load voltage at to be

(14.5) =

1
12
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Substituting Eq. 14.5 into Eq. 14.2,

(14.6)

Equation 14.6 shows that at the cutoff frequency the average power
delivered by the circuit is one half the maximum average power. Thus, is
also called the half-power frequency.Therefore, in the passband, the average
power delivered to a load is at least 50% of the maximum average power.

The Series RL Circuit—Quantitative Analysis
Now that we have defined the cutoff frequency for real filter circuits, we can
analyze the series RL circuit to discover the relationship between the com-
ponent values and the cutoff frequency for this low-pass filter. We begin by
constructing the s-domain equivalent of the circuit in Fig. 14.4(a), assuming
initial conditions of zero.The resulting equivalent circuit is shown in Fig. 14.6.

The voltage transfer function for this circuit is

(14.7)

To study the frequency response, we make the substitution in Eq. 14.7:

(14.8)

We can now separate Eq. 14.8 into two equations. The first defines the
transfer function magnitude as a function of frequency; the second defines
the transfer function phase angle as a function of frequency:

(14.9)

(14.10)

Close examination of Eq. 14.9 provides the quantitative support for
the magnitude plot shown in Fig. 14.5. When the denominator and
the numerator are equal and This means that at the
input voltage is passed to the output terminals without a change in the
voltage magnitude.

As the frequency increases, the numerator of Eq. 14.9 is unchanged,
but the denominator gets larger. Thus decreases as the frequency
increases, as shown in the plot in Fig. 14.5. Likewise, as the frequency
increases, the phase angle changes from its dc value of becoming more
negative, as seen from Eq. 14.10.

When the denominator of Eq. 14.9 is infinite and
as seen in Fig. 14.5. At the phase angle reaches a

limit of as seen from Eq. 14.10 and the phase angle plot in Fig. 14.5.
Using Eq. 14.9, we can compute the cutoff frequency, Remember

that is defined as the frequency at which For|H(jvc)| = (1>12 )Hmax.vc
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Figure 14.6 � The s-domain equivalent for the circuit
in Fig. 14.4(a).
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the low-pass filter, as seen in Fig. 14.5.Thus, for the circuit
in Fig. 14.4(a),

(14.11)

Solving Eq. 14.11 for we get

(14.12)

Equation 14.12 provides an important result. The cutoff frequency,
can be set to any desired value by appropriately selecting values for R and
L.We can therefore design a low-pass filter with whatever cutoff frequency
is needed. Example 14.1 demonstrates the design potential of Eq. 14.12.

vc,

vc =

R

L
 .

vc,

|H(  jvc)| =

1
12

 |1| =

R>L
2vc

2
+ (R>L)2

 .

Hmax = |H( j0)|,

� Cutoff frequency for RL filters

Example 14.1 Designing a Low-Pass Filter

Electrocardiology is the study of the electric signals
produced by the heart. These signals maintain the
heart’s rhythmic beat, and they are measured by an
instrument called an electrocardiograph. This instru-
ment must be capable of detecting periodic signals
whose frequency is about 1 Hz (the normal heart
rate is 72 beats per minute). The instrument must
operate in the presence of sinusoidal noise consisting
of signals from the surrounding electrical environ-
ment, whose fundamental frequency is 60 Hz—the
frequency at which electric power is supplied.

Choose values for R and L in the circuit of
Fig. 14.4(a) such that the resulting circuit could be
used in an electrocardiograph to filter out any
noise above 10 Hz and pass the electric signals
from the heart at or near 1 Hz. Then compute the
magnitude of at 1 Hz, 10 Hz, and 60 Hz to see
how well the filter performs.

Solution
The problem is to select values for R and L that
yield a low-pass filter with a cutoff frequency of
10 Hz. From Eq. 14.12, we see that R and L cannot
be specified independently to generate a value for

Therefore, let’s choose a commonly available
value of L, 100 mH. Before we use Eq. 14.12 to
compute the value of R needed to obtain the
desired cutoff frequency, we need to convert the
cutoff frequency from hertz to radians per second:

Now, solve for the value of R which, together with
will yield a low-pass filter with a cut-

off frequency of 10 Hz:

 = 6.28 Æ.

 = (20p)(100 * 10-3)

 R = vc L

L = 100 mH,

vc = 2p(10) = 20p rad>s.

vc.

Vo

We can compute the magnitude of using the
equation :

Table 14.1 summarizes the computed magnitude
values for the frequencies 1 Hz, 10 Hz, and 60 Hz.
As expected, the input and output voltages have the
same magnitudes at the low frequency, because the
circuit is a low-pass filter. At the cutoff frequency,
the output voltage magnitude has been reduced by

from the unity passband magnitude. At
60 Hz, the output voltage magnitude has been
reduced by a factor of about 6, achieving the
desired attenuation of the noise that could corrupt
the signal the electrocardiograph is designed to
measure.

TABLE 14.1 Input and Output Voltage Magnitudes
for Several Frequencies

1 1.0 0.995

10 1.0 0.707

60 1.0 0.164

|Vo| (V )|Vi| (V )f(Hz)

1>12

 =

20p

2v2
+ 400p2

 |Vi|.

 |Vo(v)| =

R>L
2v2

+ (R>L)2
 |Vi|

|Vo| = |H( jv)| # |Vi|
Vo



528 Introduction to Frequency Selective Circuits

A Series RC Circuit
The series RC circuit shown in Fig. 14.7 also behaves as a low-pass filter.We
can verify this via the same qualitative analysis we used previously. In fact,
such a qualitative examination is an important problem-solving step that
you should get in the habit of performing when analyzing filters. Doing so
will enable you to predict the filtering characteristics (low pass, high pass,
etc.) and thus also predict the general form of the transfer function. If the
calculated transfer function matches the qualitatively predicted form, you
have an important accuracy check.

Note that the circuit’s output is defined as the output across the
capacitor. As we did in the previous qualitative analysis, we use three
frequency regions to develop the behavior of the series RC circuit in
Fig. 14.7:

1. Zero frequency ( ): The impedance of the capacitor is infinite,
and the capacitor acts as an open circuit. The input and output volt-
ages are thus the same.

2. Frequencies increasing from zero: The impedance of the capacitor
decreases relative to the impedance of the resistor, and the source
voltage divides between the resistive impedance and the capaci-
tive impedance. The output voltage is thus smaller than the source
voltage.

3. Infinite frequency ( ): The impedance of the capacitor is
zero, and the capacitor acts as a short circuit. The output voltage
is thus zero.

Based on this analysis of how the output voltage changes as a function of
frequency, the series RC circuit functions as a low-pass filter. Example 14.2
explores this circuit quantitatively.

v = q

v = 0

�

�
vi C vo

�

�

R

Figure 14.7 � A series RC low-pass filter.

Example 14.2 Designing a Series RC Low-Pass Filter

For the series RC circuit in Fig. 14.7:

a) Find the transfer function between the source
voltage and the output voltage.

b) Determine an equation for the cutoff frequency
in the series RC circuit.

c) Choose values for R and C that will yield a low-
pass filter with a cutoff frequency of 3 kHz.

Solution

a) To derive an expression for the transfer function,
we first construct the s-domain equivalent of the
circuit in Fig. 14.7, as shown in Fig. 14.8.

Using s-domain voltage division on the
equivalent circuit, we find

H(s) =

1
RC

s +

1
RC

 .

Now, substitute and compute the magni-
tude of the resulting complex expression:

Figure 14.8 � The s-domain equivalent for the circuit 
in Fig. 14.7.

b) At the cutoff frequency is equal 
to For a low-pass filter,(1>12 )Hmax.

|H(  jv)|vc,

Vo(s)

�

�

R

�

�
Vi(s)

sC
1

|H(  jv)| =

1
RC

Bv2
+ a 1

RC
b2

 .

s = jv



14.2 Low-Pass Filters 529

�

�
Vi R Vo

�

�

sL

s � R/L
R/L

H(s) �

vc � R/L

�

�
Vi Vo

�

�

R

s � 1/RC
1/RC

H(s) �

sC
1

vc � 1/RC

Figure 14.9 � Two low-pass filters, the series RL and
the series RC, together with their transfer functions and
cutoff frequencies.

Figure 14.9 summarizes the two low-pass filter circuits we have examined.
Look carefully at the transfer functions. Notice how similar in form they
are—they differ only in the terms that specify the cutoff frequency. In fact,
we can state a general form for the transfer functions of these two low-
pass filters:

(14.13)

Any circuit with the voltage ratio in Eq. 14.13 would behave as a low-pass
filter with a cutoff frequency of The problems at the end of the chapter
give you other examples of circuits with this voltage ratio.

Relating the Frequency Domain to the Time Domain
Finally, you might have noticed one other important relationship.
Remember our discussion of the natural responses of the first-order RL
and RC circuits in Chapter 6. An important parameter for these circuits is
the time constant, , which characterizes the shape of the time response.
For the RL circuit, the time constant has the value (Eq. 7.14); for the
RC circuit, the time constant is RC (Eq. 7.24). Compare the time constants
to the cutoff frequencies for these circuits and notice that

(14.14)

This result is a direct consequence of the relationship between the
time response of a circuit and its frequency response, as revealed by the
Laplace transform. The discussion of memory and weighting as repre-
sented in the convolution integral of Section 13.6 shows that as 
the filter has no memory, and the output approaches a scaled replica of the
input; that is, no filtering has occurred. As the filter has increased
memory and the output voltage is a distortion of the input, because filter-
ing has occurred.

vc : 0,
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 . � Transfer function for a low-pass filter

and for the circuit in Fig. 14.8,
We can then describe the relation-

ship among the quantities R, C, and :

Solving this equation for we get

� Cutoff frequency of RC filters
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Hmax = H(  j0), c) From the results in (b), we see that the cutoff fre-

quency is determined by the values of R and C.
Because R and C cannot be computed independ-
ently, let’s choose Given a choice, we
will usually specify a value for C first, rather than
for R or L, because the number of available
capacitor values is much smaller than the num-
ber of resistor or inductor values. Remember
that we have to convert the specified cutoff fre-
quency from 3 kHz to :

 = 53.05 Æ.
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Objective 1—Know the RL and RC circuit configurations that act as low-pass filters

14.1 A series RC low-pass filter requires a cutoff
frequency of 8 kHz. Use and com-
pute the value of C required.

Answer: 1.99 nF.

R = 10 kÆ

14.2 A series RL low-pass filter with a cutoff fre-
quency of 2 kHz is needed. Using 
compute (a) L; (b) at 50 kHz; and
(c) at 50 kHz.

Answer: (a) 0.40 H;

(b) 0.04;

(c) -87.71� .

u( jv)
|H( jv)|

R = 5 kÆ,

NOTE: Also try ChapterProblems 14.1 and 14.7.

A S S E S S M E N T  P R O B L E M S

14.3 High-Pass Filters
We next examine two circuits that function as high-pass filters. Once
again, they are the series RL circuit and the series RC circuit. We will see
that the same series circuit can act as either a low-pass or a high-pass filter,
depending on where the output voltage is defined. We will also determine
the relationship between the component values and the cutoff frequency
of these filters.

The Series RC Circuit—Qualitative Analysis
A series RC circuit is shown in Fig. 14.10(a). In contrast to its low-pass
counterpart in Fig. 14.7, the output voltage here is defined across the resis-
tor, not the capacitor. Because of this, the effect of the changing capacitive
impedance is different than it was in the low-pass configuration.

At the capacitor behaves like an open circuit, so there is no
current flowing in the resistor.This is illustrated in the equivalent circuit in
Fig. 14.10(b). In this circuit, there is no voltage across the resistor, and the
circuit filters out the low-frequency source voltage before it reaches the
circuit’s output.

As the frequency of the voltage source increases, the impedance of
the capacitor decreases relative to the impedance of the resistor, and the
source voltage is now divided between the capacitor and the resistor. The
output voltage magnitude thus begins to increase.

When the frequency of the source is infinite ( ), the capacitor
behaves as a short circuit, and thus there is no voltage across the capacitor.
This is illustrated in the equivalent circuit in Fig. 14.10(c). In this circuit,
the input voltage and output voltage are the same.

The phase angle difference between the source and output voltages
also varies as the frequency of the source changes. For the output
voltage is the same as the input voltage, so the phase angle difference is
zero. As the frequency of the source decreases and the impedance of the
capacitor increases, a phase shift is introduced between the voltage and
the current in the capacitor. This creates a phase difference between the
source and output voltages. The phase angle of the output voltage leads
that of the source voltage. When this phase angle difference
reaches its maximum of +90 � .
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Figure 14.10 � (a) A series RC high-pass filter; (b) the
equivalent circuit at and (c) the equivalent
circuit at v = q .

v = 0;
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Based on our qualitative analysis, we see that when the output is
defined as the voltage across the resistor, the series RC circuit behaves as
a high-pass filter. The components and connections are identical to the
low-pass series RC circuit, but the choice of output is different. Thus, we
have confirmed the earlier observation that the filtering characteristics of
a circuit depend on the definition of the output as well as on circuit com-
ponents, values, and connections.

Figure 14.11 shows the frequency response plot for the series RC
high-pass filter. For reference, the dashed lines indicate the magnitude
plot for an ideal high-pass filter. We now turn to a quantitative analysis of
this same circuit.

The Series RC Circuit—Quantitative Analysis
To begin, we construct the s-domain equivalent of the circuit in
Fig. 14.10(a). This equivalent is shown in Fig. 14.12. Applying s-domain
voltage division to the circuit, we write the transfer function:

Making the substitution results in

(14.15)

Next, we separate Eq. 14.15 into two equations. The first is the equation
describing the magnitude of the transfer function; the second is the equa-
tion describing the phase angle of the transfer function:

(14.16)

(14.17)

A close look at Eqs. 14.16 and 14.17 confirms the shape of the frequency
response plot in Fig. 14.11. Using Eq. 14.16, we can calculate the cutoff fre-
quency for the series RC high-pass filter. Recall that at the cutoff frequency,
the magnitude of the transfer function is For a high-pass filter,

as seen from Fig. 14.11. We can construct
an equation for by setting the left-hand side of Eq. 14.16 to

noting that for this series RC circuit, :

(14.18)

Solving Eq. 14.18 for we get

(14.19)

Equation 14.19 presents a familiar result. The cutoff frequency for the
series RC circuit has the value whether the circuit is configured as a
low-pass filter in Fig. 14.7 or as a high-pass filter in Fig. 14.10(a). This is
perhaps not a surprising result, as we have already discovered a connec-
tion between the cutoff frequency, , and the time constant, , of a circuit.

Example 14.3 analyzes a series RL circuit, this time configured as a
high-pass filter. Example 14.4 examines the effect of adding a load resistor
in parallel with the inductor.
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Figure 14.11 � The frequency response plot for the
series RC circuit in Fig. 14.10(a).
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Figure 14.12 � The s-domain equivalent of the circuit
in Fig. 14.10(a).
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Example 14.3 Designing a Series RL High-Pass Filter

Show that the series RL circuit in Fig. 14.13 also
acts like a high-pass filter:

a) Derive an expression for the circuit’s transfer
function.

b) Use the result from (a) to determine an equation
for the cutoff frequency in the series RL circuit.

c) Choose values for R and L that will yield a high-
pass filter with a cutoff frequency of 15 kHz.

Figure 14.13 � The circuit for Example 14.3.

Solution

a) Begin by constructing the s-domain equivalent
of the series RL circuit, as shown in Fig. 14.14.
Then use s-domain voltage division on the equiv-
alent circuit to construct the transfer function:

Making the substitution we get

Notice that this equation has the same form as
Eq. 14.15 for the series RC high-pass filter.

 H( jv) =

jv

jv + R>L  .

s = jv,

 H(s) =

s

s + R>L  .

�

�
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Figure 14.14 � The s-domain equivalent of the circuit in
Fig. 14.13.

b) To find an equation for the cutoff frequency, first
compute the magnitude of :

Then, as before, we set the left-hand side of this
equation to based on the defini-
tion of the cutoff frequency Remember that

for a high-pass filter, and for
the series RL circuit, We solve the
resulting equation for the cutoff frequency:

This is the same cutoff frequency we computed
for the series RL low-pass filter.

c) Using the equation for computed in (b), we
recognize that it is not possible to specify values
for R and L independently. Therefore, let’s arbi-
trarily select a value of for R. Remember
to convert the cutoff frequency to radians per
second:
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R
vc
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Example 14.4 Loading the Series RL High-Pass Filter

Examine the effect of placing a load resistor in par-
allel with the inductor in the RL high-pass filter
shown in Fig. 14.15:

a) Determine the transfer function for the circuit in
Fig. 14.15.

b) Sketch the magnitude plot for the loaded RL
high-pass filter, using the values for R and L
from the circuit in Example 14.3(c) and letting

. On the same graph, sketch the magni-
tude plot for the unloaded RL high-pass filter of
Example 14.3(c).

RL = R

Solution

a) Begin by transforming the circuit in Fig. 14.15 to
the s-domain, as shown in Fig. 14.16. Use voltage
division across the parallel combination of
inductor and load resistor to compute the trans-
fer function:

H(s) =

RLsL

RL + sL

R +

RLsL

RL + sL
 

=

a RL

R + RL
bs

s + a RL

R + RL
bR

L

=

Ks

s + vc
 ,
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where

Note that is the cutoff frequency of the
loaded filter.

b) For the unloaded RL high-pass filter from
Example 14.3(c), the passband magnitude is 1,
and the cutoff frequency is 15 kHz. For the
loaded RL high-pass filter, so

Thus, for the loaded filter, the passband
magnitude is and the cutoff fre-
quency is A sketch of
the magnitude plots of the loaded and unloaded
circuits is shown in Fig. 14.17.

Figure 14.15 � The circuit for Example 14.4.
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�
vi vo
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�
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(15,000)(1>2) = 7.5 kHz.
(1)(1>2) = 1>2,

K = 1>2.
R = RL = 500 Æ,

vc

K =

RL

R + RL
 , vc = KR>L.

Figure 14.16 � The s-domain equivalent of the circuit in
Fig. 14.15.

Figure 14.17 � The magnitude plots for the unloaded 
RL high-pass filter of Fig 14.13 and the loaded RL high-pass filter
of Fig. 14.15.
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Comparing the transfer functions of the unloaded filter in Example 14.3
and the loaded filter in Example 14.4 is useful at this point. Both transfer
functions are in the form:

with for the unloaded filter and for the loaded
filter. Note that the value of K for the loaded circuit reduces to the value
of K for the unloaded circuit when that is, when there is no load
resistor. The cutoff frequencies for both filters can be seen directly from
their transfer functions. In both cases, where for the
unloaded circuit, and for the loaded circuit. Again, the
cutoff frequency for the loaded circuit reduces to that of the unloaded cir-
cuit when Because the effect of the load
resistor is to reduce the passband magnitude by the factor K and to lower
the cutoff frequency by the same factor. We predicted these results at the
beginning of this chapter.The largest output amplitude a passive high-pass
filter can achieve is 1, and placing a load across the filter, as we did in
Example 14.4, has served to decrease the amplitude. When we need to
amplify signals in the passband, we must turn to active filters, such as those
discussed in Chapter 15.

The effect of a load on a filter’s transfer function poses another
dilemma in circuit design.We typically begin with a transfer function spec-
ification and then design a filter to produce that function. We may or may
not know what the load on the filter will be, but in any event, we usually
want the filter’s transfer function to remain the same regardless of the
load on it. This desired behavior cannot be achieved with the passive fil-
ters presented in this chapter.

RL>(R + RL) 6 1,RL = q .

K = RL>(R + RL)
K = 1vc = K(R>L),

RL = q ;

K = RL>(R + RL)K = 1

H(s) =

Ks

s + K(R>L)
 ,

s � 1/RC
sH(s) �

vc � 1/RC
�

�
Vi R Vo

�

�

s � R/L
sH(s) �

vc � R/L

�

�
Vi sL Vo

�

�

R

sC
1

Figure 14.18 � Two high-pass filters, the series RC and
the series RL, together with their transfer functions and
cutoff frequencies.
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Transfer function for a high-pass filter �

Figure 14.18 summarizes the high-pass filter circuits we have exam-
ined. Look carefully at the expressions for H(s). Notice how similar in form
these expressions are—they differ only in the denominator, which includes
the cutoff frequency. As we did with the low-pass filters in Eq. 14.13, we
state a general form for the transfer function of these two high-pass filters:

(14.20)

Any circuit with the transfer function in Eq. 14.20 would behave as a high-
pass filter with a cutoff frequency of The problems at the end of the
chapter give you other examples of circuits with this voltage ratio.

We have drawn attention to another important relationship. We have
discovered that a series RC circuit has the same cutoff frequency whether
it is configured as a low-pass filter or as a high-pass filter. The same is true
of a series RL circuit. Having previously noted the connection between
the cutoff frequency of a filter circuit and the time constant of that same
circuit, we should expect the cutoff frequency to be a characteristic param-
eter of the circuit whose value depends only on the circuit components,
their values, and the way they are connected.

vc.

H(s) =

s

s + vc
 .

14.4 Bandpass Filters
The next filters we examine are those that pass voltages within a band of
frequencies to the output while filtering out voltages at frequencies out-
side this band. These filters are somewhat more complicated than the low-
pass and high-pass filters of the previous sections.As we have already seen
in Fig. 14.3(c), ideal bandpass filters have two cutoff frequencies, and

which identify the passband. For realistic bandpass filters, these cutoff
frequencies are again defined as the frequencies for which the magnitude
of the transfer function equals 

Center Frequency, Bandwidth, and Quality Factor
There are three other important parameters that characterize a bandpass
filter. The first is the center frequency, defined as the frequency for
which a circuit’s transfer function is purely real.Another name for the center

vo,

(1>12 )Hmax.

vc2,
vc1

Objective 2—Know the RL and RC circuit configurations that act as high-pass filters

14.3 A series RL high-pass filter has and
What is for this filter?

Answer:

14.4 A series RC high-pass filter has 
Compute the cutoff frequency for the following
values of R: (a) (b) and (c) 

Answer: (a)

(b)

(c) 33.33 rad>s.

200 rad>s;

10 krad>s;

30 kÆ.5 kÆ;100 Æ;

C = 1 mF.

1.43 Mrad>s.

vcL = 3.5 mH.
R = 5 kÆ 14.5 Compute the transfer function of a series RC

low-pass filter that has a load resistor in
parallel with its capacitor.

Answer: where K =

RL

R + RL
 .H(s) =

1
RC

s +

1
KRC

 ,

RL

NOTE: Also try ChapterProblems 14.13 and 14.17.

A S S E S S M E N T  P R O B L E M S
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frequency is the resonant frequency.This is the same name given to the fre-
quency that characterizes the natural response of the second-order circuits
in Chapter 8, because they are the same frequencies! When a circuit is
driven at the resonant frequency, we say that the circuit is in resonance,
because the frequency of the forcing function is the same as the natural fre-
quency of the circuit. The center frequency is the geometric center of the
passband, that is, For bandpass filters, the magnitude of the
transfer function is a maximum at the center frequency ( ).

The second parameter is the bandwidth, , which is the width of the pass-
band.The final parameter is the quality factor, which is the ratio of the center
frequency to the bandwidth.The quality factor gives a measure of the width of
the passband, independent of its location on the frequency axis. It also
describes the shape of the magnitude plot, independent of frequency.

Although there are five different parameters that characterize the
bandpass filter— and Q—only two of the five can be speci-
fied independently. In other words, once we are able to solve for any two
of these parameters, the other three can be calculated from the dependent
relationships among them. We will define these quantities more specifi-
cally once we have analyzed a bandpass filter. In the next section, we
examine two RLC circuits which act as bandpass filters, and then we
derive expressions for all of their characteristic parameters.

The Series RLC Circuit—Qualitative Analysis
Figure 14.19(a) depicts a series RLC circuit. We want to consider the
effect of changing the source frequency on the magnitude of the output
voltage. As before, changes to the source frequency result in changes to
the impedance of the capacitor and the inductor. This time, the qualitative
analysis is somewhat more complicated, because the circuit has both an
inductor and a capacitor.

At the capacitor behaves like an open circuit, and the inductor
behaves like a short circuit.The equivalent circuit is shown in Fig. 14.19(b).
The open circuit representing the impedance of the capacitor prevents cur-
rent from reaching the resistor, and the resulting output voltage is zero.

At the capacitor behaves like a short circuit, and the induc-
tor behaves like an open circuit. The equivalent circuit is shown in
Fig. 14.19(c). The inductor now prevents current from reaching the resis-
tor, and again the output voltage is zero.

But what happens in the frequency region between and 
? Between these two extremes, both the capacitor and the inductor

have finite impedances. In this region, voltage supplied by the source will
drop across both the inductor and the capacitor, but some voltage will
reach the resistor. Remember that the impedance of the capacitor is nega-
tive, whereas the impedance of the inductor is positive. Thus, at some fre-
quency, the impedance of the capacitor and the impedance of the inductor
have equal magnitudes and opposite signs; the two impedances cancel out,
causing the output voltage to equal the source voltage. This special fre-
quency is the center frequency, On either side of the output voltage
is less than the source voltage. Note that at the series combination of
the inductor and capacitor appears as a short circuit.

The plot of the voltage magnitude ratio is shown in Fig. 14.20. Note
that the ideal bandpass filter magnitude plot is overlaid on the plot of the
series RLC transfer function magnitude.

Now consider what happens to the phase angle of the output voltage.
At the frequency where the source and output voltage are the same, the
phase angles are the same. As the frequency decreases, the phase angle
contribution from the capacitor is larger than that from the inductor.

vo,
vo,vo.

v = q

v = 0

v = q ,

v = 0,

b,vo,vc2,vc1,

b

Hmax = |H(  jvo)|
vo = 1vc1vc2  .

1
2

v

v

1.0

�H( jv)�

u( jv)

�90�

90�

0
vc1 vc2vo

b

Figure 14.20 � The frequency response plot for the
series RLC bandpass filter circuit in Fig. 14.19.
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Figure 14.19 � (a) A series RLC bandpass filter; (b) the
equivalent circuit for ; and (c) the equivalent
circuit for v = q .

v = 0
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Because the capacitor contributes positive phase shift, the net phase angle
at the output is positive. At very low frequencies, the phase angle at the
output maximizes at 

Conversely, if the frequency increases from the frequency at which the
source and the output voltage are in phase, the phase angle contribution
from the inductor is larger than that from the capacitor. The inductor con-
tributes negative phase shift, so the net phase angle at the output is nega-
tive. At very high frequencies, the phase angle at the output reaches its
negative maximum of The plot of the phase angle difference thus
has the shape shown in Fig. 14.20.

The Series RLC Circuit—Quantitative Analysis
We begin by drawing the s-domain equivalent for the series RLC circuit,
as shown in Fig. 14.21. Use s-domain voltage division to write an equation
for the transfer function:

(14.21)

As before, we substitute into Eq. 14.21 and produce the equations
for the magnitude and the phase angle of the transfer function:

(14.22)

(14.23)

We now calculate the five parameters that characterize this RLC band-
pass filter. Recall that the center frequency, is defined as the frequency
for which the circuit’s transfer function is purely real. The transfer func-
tion for the RLC circuit in Fig. 14.19(a) will be real when the frequency of
the voltage source makes the sum of the capacitor and inductor imped-
ances zero:

(14.24)

Solving Eq. 14.24 for we get

(14.25)

Next, calculate the cutoff frequencies, and Remember that at the
cutoff frequencies, the magnitude of the transfer function is 
Because we can calculate by substituting Eq. 14.25
into Eq. 14.22:

 =

1(1>LC)(R>L)

5[(1>LC) - (1>LC)]2 
+

 c2(1>LC)(R>L) d2
= 1.

 =

vo(R>L)

 2[(1>LC) - vo
2]2 

+
 (voR>L)2

 Hmax = |H( jvo)|

HmaxHmax = |H( jvo)|,
(1>12 )Hmax.

vc2.vc1

vo = A
1

LC
 .

vo,

jvoL +

1
jvoC

= 0.

vo,

 u( jv) = 90 �
-  tan -1B v(R>L)

(1>LC) - v2R .

 |H( jv)| =

v(R>L)

2[(1>LC) - v2]2 
+

 [v(R>L)]2
 ,

s = jv

H(s) =

(R>L)s

s2
+ (R>L)s + (1>LC)

 .

-90 � .

+90 � .

sL

�

�
Vi(s)

1/sC

R Vo(s)

�

�

Figure 14.21 � The s-domain equivalent for the circuit
in Fig. 14.19(a).

Center frequency �



Now set the left-hand side of Eq. 14.22 to (which equals
) and prepare to solve for :

(14.26)

We can equate the denominators of the two sides of Eq. 14.26 to get

(14.27)

Rearranging Eq. 14.27 results in the following quadratic equation:

(14.28)

The solution of Eq. 14.28 yields four values for the cutoff frequency. Only
two of these values are positive and have physical significance; they iden-
tify the passband of this filter:

(14.29)

(14.30)

We can use Eqs. 14.29 and 14.30 to confirm that the center frequency,
is the geometric mean of the two cutoff frequencies:

 vo = 1vc1
# vc2

vo,

 vc2 =

R

2L
+ B a

R

2L
b2

+ a 1
LC
b  .

 vc1 = -

R

2L
+ B a

R

2L
b 2

+ a 1
LC
b  ,

vc
2L ; vcR - 1>C = 0.

;1 = vc
L

R
-

1
vcRC

 .

 =

1

2[(vcL>R) - (1>vcRC)]2
+ 1

 .

 
1
12

=

vc(R>L)

2[(1>LC) - vc
2]2 

+
 (vcR>L)2

vc 1>12
(1>12)Hmax
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� Cutoff frequencies, series RLC filters

� Relationship between center frequency
and cutoff frequencies

 = DB -

R

2L
+ B a

R

2L
b 2

+ a 1
LC
b  R B R

2L
+ B a

R

2L
b2

+ a 1
LC
b  R

(14.31) = A
1

LC
 .

Recall that the bandwidth of a bandpass filter is defined as the differ-
ence between the two cutoff frequencies. Because we can com-
pute the bandwidth by subtracting Eq. 14.29 from Eq. 14.30:

(14.32) =

R
L

 .

 = C R

2L
+ B a

R

2L
b2

+ a 1
LC

 b S - C -

R

2L
+ B a

R

2L
b2

+ a 1
LC
b S

 b = vc2 - vc1

vc2 7 vc1

� Relationship between bandwidth and 
cutoff frequencies
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The quality factor, the last of the five characteristic parameters, is defined
as the ratio of center frequency to bandwidth. Using Eqs. 14.25 and 14.32:

(14.33)

We now have five parameters that characterize the series RLC band-
pass filter: two cutoff frequencies, and which delimit the passband;
the center frequency, at which the magnitude of the transfer function is
maximum; the bandwidth, a measure of the width of the passband; and
the quality factor, Q, a second measure of passband width. As previously
noted, only two of these parameters can be specified independently in a
design. We have already observed that the quality factor is specified in
terms of the center frequency and the bandwidth. We can also rewrite the
equations for the cutoff frequencies in terms of the center frequency and
the bandwidth:

(14.34)

(14.35)

Alternative forms for these equations express the cutoff frequencies in
terms of the quality factor and the center frequency:

(14.36)

(14.37)

Also see Problem 14.24 at the end of the chapter.
The examples that follow illustrate the design of bandpass filters,

introduce another RLC circuit that behaves as a bandpass filter, and
examine the effects of source resistance on the characteristic parameters
of a series RLC bandpass filter.

 vc2 = vo
# B 1

2Q
+ B1 + a 1

2Q
b2

 R .

 vc1 = vo
# B -

1
2Q

+ B1 + a 1
2Q
b2

 R ,

 vc2 =

b

2
+ B a

b

2
b 2

+ vo
2

 .

 vc1 = -

b

2
+ B a

b

2
b 2

+ vo
2

 ,

b,
vo,

vc2,vc1

 = A
L

CR2 .

 =

(1>LC)

(R>L) 

 Q = vo>bQuality factor �

Example 14.5 Designing a Bandpass Filter

A graphic equalizer is an audio amplifier that
allows you to select different levels of amplification
within different frequency regions. Using the series
RLC circuit in Fig. 14.19(a), choose values for R, L,
and C that yield a bandpass circuit able to select
inputs within the 1–10 kHz frequency band. Such a
circuit might be used in a graphic equalizer to select
this frequency band from the larger audio band
(generally 0–20 kHz) prior to amplification.

Solution
We need to compute values for R, L, and C that pro-
duce a bandpass filter with cutoff frequencies of 
1 kHz and 10 kHz. There are many possible
approaches to a solution. For instance, we could use
Eqs. 14.29 and 14.30, which specify and in
terms of R, L, and C. Because of the form of these
equations, the algebraic manipulations might get

vc2vc1
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complicated. Instead, we will use the fact that the
center frequency is the geometric mean of the cutoff
frequencies to compute and we will then use
Eq. 14.31 to compute L and C from Next we will
use the definition of quality factor to compute Q,
and last we will use Eq. 14.33 to compute R. Even
though this approach involves more individual com-
putational steps, each calculation is fairly simple.

Any approach we choose will provide only two
equations—insufficient to solve for the three
unknowns—because of the dependencies among the
bandpass filter characteristics.Thus, we need to select
a value for either R, L, or C and use the two equations
we’ve chosen to calculate the remaining component
values. Here, we choose as the capacitor value,
because there are stricter limitations on commercially
available capacitors than on inductors or resistors.

We compute the center frequency as the geo-
metric mean of the cutoff frequencies:

Next, compute the value of L using the com-
puted center frequency and the selected value for C.
We must remember to convert the center frequency
to radians per second before we can use Eq. 14.31:

L =

1

vo
2C

=

1

[2p(3162.28)]2(10-6)
= 2.533 mH. 

fo = 1fc1fc2 = 1(1000)(10,000) = 3162.28 Hz. 

1 mF

vo.
vo,

The quality factor, Q, is defined as the ratio of
the center frequency to the bandwidth. The band-
width is the difference between the two cutoff fre-
quency values. Thus,

Now use Eq. 14.33 to calculate R:

To check whether these component values pro-
duce the bandpass filter we want, substitute them
into Eqs. 14.29 and 14.30. We find that

which are the cutoff frequencies specified for 
the filter.

This example reminds us that only two of the
five bandpass filter parameters can be specified
independently. The other three parameters can
always be computed from the two that are speci-
fied. In turn, these five parameter values depend on
the three component values, R, L, and C, of which
only two can be specified independently.

 vc2 = 62,831.85 rad>s (10,000 Hz),

 vc1 = 6283.19 rad>s (1000 Hz),

R = A
L

CQ2 = A
0.0025

(10-6)(0.3514)2 = 143.24 Æ.

Q =

fo

fc2 - fc1
=

3162.28
10,000 - 1000

= 0.3514. 

Example 14.6 Designing a Parallel RLC Bandpass Filter

a) Show that the RLC circuit in Fig. 14.22 is also a
bandpass filter by deriving an expression for the
transfer function 

b) Compute the center frequency,
c) Calculate the cutoff frequencies, and the

bandwidth, and the quality factor, Q.
d) Compute values for R and L to yield a bandpass

filter with a center frequency of 5 kHz and a
bandwidth of 200 Hz, using a capacitor.

Figure 14.22 � The circuit for Example 14.6.

Solution
a) Begin by drawing the s-domain equivalent of

the circuit in Fig. 14.22, as shown in Fig. 14.23.
Using voltage division, we can compute the
transfer function for the equivalent circuit if we

R

�

�
vi voC L

�

�

5 mF

b,
vc2,vc1

vo.
H(s).

first compute the equivalent impedance of the
parallel combination of L and C, identified as

in Fig. 14.23:

Now,

Figure 14.23 � The s-domain equivalent of the circuit in
Fig. 14.22.
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b) To find the center frequency, , we need to calcu-
late where the transfer function magnitude is
maximum. Substituting in 

The magnitude of this transfer function is maxi-
mum when the term

is zero. Thus,

and

c) At the cutoff frequencies, the magnitude of the
transfer function is Sub-
stituting this constant on the left-hand side of the
magnitude equation and then simplifying, we get

Squaring the left-hand side of this equation once
again produces two quadratic equations for the
cutoff frequencies, with four solutions. Only two
of them are positive and therefore have physical
significance:

� Cutoff frequencies for parallel RLC filters
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1
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+
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We compute the bandwidth from the cut-
off frequencies:

Finally, use the definition of quality factor to
calculate Q:

Notice that once again we can specify the cutoff
frequencies for this bandpass filter in terms of
its center frequency and bandwidth:

d) Use the equation for bandwidth in (c) to com-
pute a value for R, given a capacitance of .
Remember to convert the bandwidth to the
appropriate units:

Using the value of capacitance and the equation
for center frequency in (c), compute the induc-
tor value:

 = 202.64 mH.

 =

1

[2p(5000)]2(5 * 10-6)

 L =

1

vo
2C 

 = 159.15 Æ.

 =

1

(2p)(200)(5 * 10-6)
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 = B
R2C
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 Q = vo>b

 =

1
RC

 .

 b = vc2 - vc1

Example 14.7 Determining Effect of a Nonideal Voltage Source on a RLC Bandpass Filter

For each of the bandpass filters we have constructed,
we have always assumed an ideal voltage source, that
is, a voltage source with no series resistance. Even
though this assumption is often valid, sometimes it is

not, as in the case where the filter design can be
achieved only with values of R, L, and C whose equiv-
alent impedance has a magnitude close to the actual
impedance of the voltage source. Examine the effect
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of assuming a nonzero source resistance, on the
characteristics of a series RLC bandpass filter.

a) Determine the transfer function for the circuit in
Fig. 14.24.

b) Sketch the magnitude plot for the circuit in
Fig. 14.24, using the values for R, L, and C from
Example 14.5 and setting . On the same
graph, sketch the magnitude plot for the circuit
in Example 14.5, where 

Figure 14.24 � The circuit for Example 14.7.

Solution

a) Begin by transforming the circuit in Fig. 14.24 to
its s-domain equivalent, as shown in Fig. 14.25.
Now use voltage division to construct the trans-
fer function:

Figure 14.25 � The s-domain equivalent of the circuit in
Fig. 14.24.

Substitute and calculate the transfer
function magnitude:

The center frequency, is the frequency at
which this transfer function magnitude is maxi-
mum, which is
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 .
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Ri, At the center frequency, the maximum magni-
tude is

The cutoff frequencies can be computed by set-
ting the transfer function magnitude equal to

:

The bandwidth is calculated from the cutoff
frequencies:

Finally, the quality factor is computed from the
center frequency and the bandwidth:

From this analysis, note that we can write the
transfer function of the series RLC bandpass fil-
ter with nonzero source resistance as

where

Note that when and the transfer
function is

b) The circuit in Example 14.5 has a center fre-
quency of 3162.28 Hz and a bandwidth of 9 kHz,
and If we use the same values for R,
L, and C in the circuit in Fig. 14.24 and let

then the center frequency remains atRi = R,

Hmax = 1.
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Figure 14.27 � Two RLC bandpass filters, together with
equations for the transfer function, center frequency,
and bandwidth of each.

If we compare the characteristic parameter values for the filter with
to the values for the filter with we see the following:

• The center frequencies are the same.
• The maximum transfer function magnitude for the filter with 

is smaller than for the filter with 
• The bandwidth for the filter with is larger than that for the fil-

ter with Thus, the cutoff frequencies and the quality factors
for the two circuits are also different.

The addition of a nonzero source resistance to a series RLC bandpass fil-
ter leaves the center frequency unchanged but widens the passband and
reduces the passband magnitude.

Here we see the same design challenge we saw with the addition of a
load resistor to the high-pass filter, that is, we would like to design a band-
pass filter that will have the same filtering properties regardless of any
internal resistance associated with the voltage source. Unfortunately, fil-
ters constructed from passive elements have their filtering action altered
with the addition of source resistance. In Chapter 15, we will discover that
active filters are insensitive to changes in source resistance and thus are
better suited to designs in which this is an important issue.

Figure 14.27 summarizes the two RLC bandpass filters we have stud-
ied. Note that the expressions for the circuit transfer functions have the
same form. As we have done previously, we can create a general form for
the transfer functions of these two bandpass filters:

(14.38)

Any circuit with the transfer function in Eq. 14.38 acts as a bandpass filter
with a center frequency and a bandwidth 

In Example 14.7, we saw that the transfer function can also be written
in the form

(14.39)

where the values for K and depend on whether the series resistance of
the voltage source is zero or nonzero.

b

H(s) =

Kbs

s2
+ bs + vo

2  ,

b.vo

H(s) =

bs

s2
+ bs + vo

2 .

Ri = 0.
Ri Z 0
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Figure 14.26 � The magnitude plots for a series RLC bandpass filter with a zero source
resistance and a nonzero source resistance.

3162.28 kHz, but 
and The transferHmax = R>(R + Ri) = 1>2.

b = (R + Ri)>L = 18 kHz, function magnitudes for these two bandpass fil-
ters are plotted on the same graph in Fig. 14.26.
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Relating the Frequency Domain to the Time Domain
We can identify a relationship between the parameters that characterize the
frequency response of RLC bandpass filters and the parameters that char-
acterize the time response of RLC circuits. Consider the series RLC circuit
in Fig. 14.19(a). In Chapter 8 we discovered that the natural response of this
circuit is characterized by the neper frequency ( ) and the resonant fre-
quency ( ). These parameters were expressed in terms of the circuit com-
ponents in Eqs. 8.58 and 8.59, which are repeated here for convenience:

(14.40)

(14.41)

We see that the same parameter is used to characterize both the time
response and the frequency response. That’s why the center frequency is
also called the resonant frequency. The bandwidth and the neper fre-
quency are related by the equation

(14.42)

Recall that the natural response of a series RLC circuit may be under-
damped, overdamped, or critically damped.The transition from overdamped
to underdamped occurs when Consider the relationship between 
and from Eq. 14.42 and the definition of the quality factor Q. The transi-
tion from an overdamped to an underdamped response occurs when

Thus, a circuit whose frequency response contains a sharp peak at
indicating a high Q and a narrow bandwidth, will have an underdamped

natural response. Conversely, a circuit whose frequency response has a broad
bandwidth and a low Q will have an overdamped natural response.

vo,
Q = 1>2.

b

avo
2

= a2.

b = 2a.

vo

 vo = A
1

LC
  rad>s. 

 a =

R

2L
  rad>s,

vo

a

Objective 3—Know the RLC circuit configurations that act as bandpass filters

14.6 Using the circuit in Fig. 14.19(a), compute the
values of R and L to give a bandpass filter with
a center frequency of 12 kHz and a quality fac-
tor of 6. Use a capacitor.

Answer:

14.7 Using the circuit in Fig. 14.22, compute the val-
ues of L and C to give a bandpass filter with a
center frequency of 2 kHz and a bandwidth of
500 Hz. Use a resistor.

Answer: C = 1.27 mF.L = 4.97 mH,

250 Æ

R = 22.10 Æ.L = 1.76 mH,

0.1 mF

14.8 Recalculate the component values for the cir-
cuit in Example 14.6(d) so that the frequency
response of the resulting circuit is unchanged
using a capacitor.

Answer:

14.9 Recalculate the component values for the cir-
cuit in Example 14.6(d) so that the quality fac-
tor of the resulting circuit is unchanged but the
center frequency has been moved to 2 kHz. Use
a capacitor.

Answer: L = 31.66 mH.R = 9.95 kÆ,

0.2 mF

R = 3.98 kÆ.L = 5.07 mH,

0.2 mF

NOTE: Also try Chapter Problems 14.18 and 14.25.

A S S E S S M E N T  P R O B L E M S

14.5 Bandreject Filters
We turn now to the last of the four filter categories—the bandreject filter.
This filter passes source voltages outside the band between the two cutoff
frequencies to the output (the passband), and attenuates source voltages
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Figure 14.28 � (a) A series RLC bandreject filter. 
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Figure 14.29 � The frequency response plot for the
series RLC bandreject filter circuit in Fig. 14.28(a).

�

�

R

Vi(s)

1/sC

�

�

Vo(s)

sL

Figure 14.30 � The s-domain equivalent of the circuit
in Fig. 14.28(a).

before they reach the output at frequencies between the two cutoff fre-
quencies (the stopband). Bandpass filters and bandreject filters thus per-
form complementary functions in the frequency domain.

Bandreject filters are characterized by the same parameters as band-
pass filters: the two cutoff frequencies, the center frequency, the band-
width, and the quality factor. Again, only two of these five parameters can
be specified independently.

In the next sections, we examine two circuits that function as band-
reject filters and then compute equations that relate the circuit compo-
nent values to the characteristic parameters for each circuit.

The Series RLC Circuit—Qualitative Analysis
Figure 14.28(a) shows a series RLC circuit.Although the circuit components
and connections are identical to those in the series RLC bandpass filter in
Fig. 14.19(a), the circuit in Fig. 14.28(a) has an important difference: the out-
put voltage is now defined across the inductor-capacitor pair. As we saw in
the case of low- and high-pass filters, the same circuit may perform two dif-
ferent filtering functions, depending on the definition of the output voltage.

We have already noted that at the inductor behaves like a
short circuit and the capacitor behaves like an open circuit, but at

these roles switch. Figure 14.28(b) presents the equivalent cir-
cuit for Fig. 14.28(c) presents the equivalent circuit for In
both equivalent circuits, the output voltage is defined over an effective
open circuit, and thus the output and input voltages have the same mag-
nitude. This series RLC bandreject filter circuit then has two pass-
bands—one below a lower cutoff frequency, and the other above an
upper cutoff frequency.

Between these two passbands, both the inductor and the capacitor
have finite impedances of opposite signs. As the frequency is increased
from zero, the impedance of the inductor increases and that of the capac-
itor decreases. Therefore the phase shift between the input and the out-
put approaches as approaches As soon as exceeds

the phase shift jumps to and then approaches zero as con-
tinues to increase.

At some frequency between the two passbands, the impedances of the
inductor and capacitor are equal but of opposite sign. At this frequency,
the series combination of the inductor and capacitor is that of a short cir-
cuit, so the magnitude of the output voltage must be zero. This is the cen-
ter frequency of this series RLC bandreject filter.

Figure 14.29 presents a sketch of the frequency response of the series
RLC bandreject filter from Fig. 14.28(a). Note that the magnitude plot is
overlaid with that of the ideal bandreject filter from Fig. 14.3(d). Our qual-
itative analysis has confirmed the shape of the magnitude and phase angle
plots. We now turn to a quantitative analysis of the circuit to confirm this
frequency response and to compute values for the parameters that charac-
terize this response.

The Series RLC Circuit—Quantitative Analysis
After transforming to the s-domain, as shown in Fig. 14.30, we use voltage
division to construct an equation for the transfer function:

(14.43)H(s) =

sL +

1
sC

R + sL +

1
sC

=

s2
+

1
LC

s2
+

R

L
s +

1
LC

 .

v+90 �1>vC,
vL1>vC.vL-90 �

v = q .v = 0;
v = q ,

v = 0,
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Substitute for s in Eq. 14.43 and generate equations for the transfer
function magnitude and the phase angle:

(14.44)

(14.45)

Note that Eqs. 14.44 and 14.45 confirm the frequency response shape
pictured in Fig. 14.29, which we developed based on the qualita-
tive analysis.

We use the circuit in Fig. 14.30 to calculate the center frequency. For
the bandreject filter, the center frequency is still defined as the frequency
for which the sum of the impedances of the capacitor and inductor is zero.
In the bandpass filter, the magnitude at the center frequency was a maxi-
mum, but in the bandreject filter, this magnitude is a minimum. This is
because in the bandreject filter, the center frequency is not in the pass-
band; rather, it is in the stopband. It is easy to show that the center fre-
quency is given by

(14.46)

Substituting Eq. 14.46 into Eq. 14.44 shows that 
The cutoff frequencies, the bandwidth, and the quality factor are

defined for the bandreject filter in exactly the way they were for the
bandpass filters. Compute the cutoff frequencies by substituting the
constant for the left-hand side of Eq. 14.44 and then solv-
ing for and Note that for the bandreject filter,

, and for the series RLC bandreject filter in
Fig. 14.28(a), Thus,

(14.47)

(14.48)

Use the cutoff frequencies to generate an expression for the band-
width, :

(14.49)

Finally, the center frequency and the bandwidth produce an equation for
the quality factor, Q:

(14.50) Q = B
L

R2C
 .

 b = R>L.

b

 vc2 =

R

2L
+ B a

R

2L
b2

+

1
LC

 .

 vc1 = -

R

2L
+ B a

R

2L
b2

+

1
LC

 ,

Hmax = 1.
Hmax = |H( j0)| = |H( jq)|

vc2.vc1
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1
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 .
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Again, we can represent the expressions for the two cutoff frequencies
in terms of the bandwidth and center frequency, as we did for the band-
pass filter:

(14.51)

(14.52)

Alternative forms for these equations express the cutoff frequencies in
terms of the quality factor and the center frequency:

(14.53)

(14.54)

Example 14.8 presents the design of a series RLC bandreject filter.

 vc2 = vo
# B 1

2Q
+ B1 + a 1

2Q
b 2R .

 vc1 = vo
# B -

1
2Q

+ B1 + a 1
2Q
b2R ,

 vc2 =

b

2
+ B a

b

2
b 2

+ vo
2

 .

 vc1 = -

b

2
+ B a

b

2
b 2

+ vo
2

 ,

Using the series RLC circuit in Fig. 14.28(a), com-
pute the component values that yield a bandreject
filter with a bandwidth of 250 Hz and a center fre-
quency of 750 Hz. Use a 100 nF capacitor. Compute
values for R, L, and Q.

Solution
We begin by using the definition of quality factor to
compute its value for this filter:

Use Eq. 14.46 to compute L, remembering to con-
vert to radians per second:

 = 450 mH.

 =

1

[2p(750)]2(100 * 10-9)

 L =

1

vo
2C

vo

Q = vo >b = 3.

vc2,vc1,

Use Eq. 14.49 to calculate R:

The values for the center frequency and band-
width can be used in Eqs. 14.51 and 14.52 to com-
pute the two cutoff frequencies:

The cutoff frequencies are at 635.3 Hz and 885.3 Hz.
Their difference is con-
firming the specified bandwidth. The geometric
mean is confirming the
specified center frequency.

1(635.3)(885.3) = 750 Hz,

885.3 - 635.3 = 250 Hz,

 = 5562.8 rad>s.

 vc2 =

b

2
+ B a

b

2
b2

+ vo
2

 = 3992.0 rad>s,

 vc1 = -

b

2
+ B a

b

2
b2

+ vo
2

 = 707 Æ.

 = 2p(250)(450 * 10-3)

 R = bL

Example 14.8 Designing a Series RLC Bandreject Filter
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As you might suspect by now, another configuration that produces a
bandreject filter is a parallel RLC circuit. Whereas the analysis details of
the parallel RLC circuit are left to Problem 14.37, the results are summa-
rized in Fig. 14.31, along with the series RLC bandreject filter. As we did
for other categories of filters, we can state a general form for the transfer
functions of bandreject filters, replacing the constant terms with and :

(14.55)

Equation 14.55 is useful in filter design, because any circuit with a transfer
function in this form can be used as a bandreject filter.

H(s) =

s2
+ vo

2

s2
+ bs + vo

2 .

vob

� Transfer function for RLC bandreject filter

Objective 4—Know the RLC circuit configurations that act as bandreject filters

14.10 Design the component values for the series
RLC bandreject filter shown in Fig. 14.28(a) so
that the center frequency is 4 kHz and the
quality factor is 5. Use a 500 nF capacitor.

Answer:

R = 15.92 Æ.

L = 3.17 mH,

14.11 Recompute the component values for
Assessment Problem 14.10 to achieve a band-
reject filter with a center frequency of 20 kHz.
The filter has a resistor. The quality fac-
tor remains at 5.

Answer:

C = 15.92 nF.

L = 3.98 mH,

100 Æ

NOTE: Also try Chapter Problems 14.38 and 14.42.

A S S E S S M E N T  P R O B L E M S
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Figure 14.31 � Two RLC bandreject filters, together
with equations for the transfer function, center
frequency, and bandwidth of each.
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Practical Perspective
Pushbutton Telephone Circuits
In the Practical Perspective at the start of this chapter, we described the
dual-tone-multiple-frequency (DTMF) system used to signal that a button
has been pushed on a pushbutton telephone. A key element of the DTMF
system is the DTMF receiver—a circuit that decodes the tones produced by
pushing a button and determines which button was pushed.

In order to design a DTMF reciever, we need a better understanding of
the DTMF system. As you can see from Fig. 14.32, the buttons on the tele-
phone are organized into rows and columns. The pair of tones generated by
pushing a button depends on the button’s row and column. The button’s row
determines its low-frequency tone, and the button’s column determines its
high-frequency tone.1 For example, pressing the “6” button produces sinu-
soidal tones with the frequencies and .

At the telephone switching facility, bandpass filters in the DTMF receiver
first detect whether tones from both the low-frequency and high-frequency
groups are simultaneously present. This test rejects many extraneous audio
signals that are not DTMF. If tones are present in both bands, other filters are
used to select among the possible tones in each band so that the frequencies
can be decoded into a unique button signal. Additional tests are performed to
prevent false button detection. For example, only one tone per frequency
band is allowed; the high- and low-band frequencies must start and stop
within a few milliseconds of one another to be considered valid; and the high-
and low-band signal amplitudes must be sufficiently close to each other.

You may wonder why bandpass filters are used instead of a high-pass
filter for the high-frequency group of DTMF tones and a low-pass filter for
the low-frequency group of DTMF tones. The reason is that the telephone
system uses frequencies outside of the – band for other signal-
ing purposes, such as ringing the phone’s bell. Bandpass filters prevent
the DTMF receiver from erroneously detecting these other signals.

NOTE: Assess your understanding of this Practical Perspective by trying
Chapter Problems 14.51–14.53.
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Figure 14.32 � Tones generated by the rows and
columns of telephone pushbuttons.

1 A fourth high-frequency tone is reserved at 1633 Hz. This tone is used infrequently and is not
produced by a standard 12-button telephone.

• A frequency selective circuit, or filter, enables signals at
certain frequencies to reach the output, and it attenu-
ates signals at other frequencies to prevent them from
reaching the output. The passband contains the fre-
quencies of those signals that are passed; the stopband
contains the frequencies of those signals that are atten-
uated. (See page 522.)

• The cutoff frequency, identifies the location on the
frequency axis that separates the stopband from the

vc ,

passband. At the cutoff frequency, the magnitude of the
transfer function equals (See page 525.)

• A low-pass filter passes voltages at frequencies below
and attenuates frequencies above Any circuit

with the transfer function

functions as a low-pass filter. (See page 529.)

 H(s) =

vc

s + vc

vc.vc

(1>12 )Hmax.

Summary



Section 14.2

14.1 a) Find the cutoff frequency in hertz for the RL fil-
ter shown in Fig. P14.1.

b) Calculate at and 

c) If write the steady-state
expression for when 
and 

Figure P14.1

14.2 a) Find the cutoff frequency (in hertz) of the low-
pass filter shown in Fig. P14.2.

b) Calculate at and 

c) If write the steady-state
expression for when and 

Figure P14.2
160 �
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v = 0.125vc ,v = vc ,vo

vi = 20 cos vt V,

8vc.0.125vc ,vc ,H( jv)

14.3 A resistor, denoted as is added in series with the
inductor in the circuit in Fig. 14.4(a). The new low-
pass filter circuit is shown in Fig. P14.3.

a) Derive the expression for where

b) At what frequency will the magnitude of 
be maximum?

c) What is the maximum value of the magnitude
of ?

d) At what frequency will the magnitude of 
equal its maximum value divided by ?

e) Assume a resistance of is added in series
with the 50 mH inductor in the circuit in
Fig. P14.1. Find 
and 

Figure P14.3

14.4 A resistor denoted as is connected in parallel
with the capacitor in the circuit in Fig. 14.7.
The loaded low-pass filter circuit is shown in 
Fig. P14.7.

RL

Rl

R

L

�

�

vi

�

�

vo

H( j5vc).
H( j0.2vc),H( jvc),H( j0),vc ,

300 Æ

12
H( jv)

H( jv)

H( jv)

H(s) = Vo>Vi.
H(s)

Rl ,

Problems

• A high-pass filter passes voltages at frequencies above 
and attenuates voltages at frequencies below Any cir-
cuit with the transfer function

functions as a high-pass filter. (See page 534.)

• Bandpass filters and bandreject filters each have two cut-
off frequencies, and .These filters are further char-
acterized by their center frequency ( ), bandwidth ( ),
and quality factor (Q).These quantities are defined as

(See pages 537–538.)

• A bandpass filter passes voltages at frequencies within
the passband, which is between and It attenuatesvc2.vc1

 Q = vo>b.

 b = vc2 - vc1,

 vo = 1vc1
# vc2,

bvo

vc2vc1

 H(s) =

s

s + vc

frequencies outside of the passband.Any circuit with the
transfer function

functions as a bandpass filter. (See page 542.)
• A bandreject filter attenuates voltages at frequencies

within the stopband, which is between and It
passes frequencies outside of the stopband. Any circuit
with the transfer function

functions as a bandreject filter. (See page 549.)
• Adding a load to the output of a passive filter changes

its filtering properties by altering the location and mag-
nitude of the passband. Replacing an ideal voltage
source with one whose source resistance is nonzero also
changes the filtering properties of the rest of the circuit,
again by altering the location and magnitude of the
passband. (See page 540.)

 H(s) =

s2
+ v2

o

s2
+ bS + v2

o

vc2.vc1

 H(s) =

bS

s2
+ bS + v2

o

Problems 549
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a) Derive the expression for the voltage transfer
function 

b) At what frequency will the magnitude of 
be maximum?

c) What is the maximum value of the magnitude
of ?

d) At what frequency will the magnitude of 
equal its maximum value divided by ?

e) Assume a resistance of is added in paral-
lel with the capacitor in the circuit in
Fig. P14.4. Find 
and 

Figure P14.4

14.5 Study the circuit shown in Fig. P14.5 (without the
load resistor).

a) As , the inductor behaves like what circuit
component? What value will the output voltage

have?

b) As , the inductor behaves like what cir-
cuit component? What value will the output
voltage have?

c) Based on parts (a) and (b), what type of filtering
does this circuit exhibit?

d) What is the transfer function of the unloaded
filter?

e) If and what is the cutoff
frequency of the filter in 

Figure P14.5

14.6 Suppose we wish to add a load resistor in parallel
with the resistor in the circuit shown in Fig. P14.5.

a) What is the transfer function of the loaded filter?

b) Compare the transfer function of the unloaded
filter (part (d) of Problem 14.5) and the trans-
fer function of the loaded filter (part (a) of
Problem 14.6).Are the cutoff frequencies differ-
ent? Are the passband gains different?
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�
vi R RLvo
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Vo(s)
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H(s) �

rad>s?
L = 10 mH,R = 330 Æ
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v: 0
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vi C

H( j5vc).
H( j0.2vc),H( jvc),H( j0),vc ,

5 mF
320 Æ

12
H( jv)

H( jv)

H( jv)

Vo>Vi.
c) What is the smallest value of load resistance that

can be used with the filter from Problem 14.5(e)
such that the cutoff frequency of the resulting
filter is no more than 5% different from the
unloaded filter?

14.7 Use a 1 mH inductor to design a low-pass, RL, pas-
sive filter with a cutoff frequency of 5 kHz.

a) Specify the value of the resistor.

b) A load having a resistance of is connected
across the output terminals of the filter. What is
the corner, or cutoff, frequency of the loaded fil-
ter in hertz?

c) If you must use a single resistor from Appendix H
for part (a), what resistor should you use? What is
the resulting cutoff frequency of the filter?

Section 14.3

14.8 Use a 10 mH inductor to design a low-pass passive
filter with a cutoff frequency of 1600 .

a) Specify the cutoff frequency in hertz.

b) Specify the value of the filter resistor.

c) Assume the cutoff frequency cannot decrease
by more than 10%. What is the smallest value of
load resistance that can be connected across the
output terminals of the filter?

d) If the resistor found in (c) is connected across the
output terminals, what is the magnitude of 
when ?

14.9 Design a passive RC low pass filter (see Fig. 14.7)
with a cutoff frequency of 100 Hz using a 
capacitor.

a) What is the cutoff frequency in 

b) What is the value of the resistor?

c) Draw your circuit, labeling the component val-
ues and output voltage.

d) What is the transfer function of the filter in
part (c)?

e) If the filter in part (c) is loaded with a resistor
whose value is the same as the resistor 
part (b), what is the transfer function of this
loaded filter?

f) What is the cutoff frequency of the loaded filter
from part (e)?

g) What is the gain in the pass band of the loaded
filter from part (e)?

14.10 Use a 500 nF capacitor to design a low-pass passive
filter with a cutoff frequency of .

a) Specify the cutoff frequency in hertz.

b) Specify the value of the filter resistor.

50 krad>s

rad>s?

4.7 mF

v = 0
H( jv)

rad>s

68 Æ

DESIGN
PROBLEM
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MULTISIM

DESIGN
PROBLEM
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MULTISIM



c) Assume the cutoff frequency cannot increase by
more than 5%. What is the smallest value of
load resistance that can be connected across the
output terminals of the filter?

d) If the resistor found in (c) is connected across
the output terminals, what is the magnitude of

when ?

Section 14.3

14.11 a) Find the cutoff frequency (in hertz) for the high-
pass filter shown in Fig. P14.11.

b) Find at and 
c) If write the steady-state expres-

sion for when and

Figure P14.11

14.12 A resistor, denoted as is connected in series
with the capacitor in the circuit in Fig. 14.11(a).
The new high-pass filter circuit is shown in 
Fig. P14.12.
a) Derive the expression for where

b) At what frequency will the magnitude of 
be maximum?

c) What is the maximum value of the magnitude
of ?

d) At what frequency will the magnitude of 
equal its maximum value divided by ?

e) Assume a resistance of is connected in
series with the 80 F capacitor in the circuit in
Fig. P14.11. Calculate 
and 

Figure P14.12

14.13 Using a 100 nF capacitor, design a high-pass passive
filter with a cutoff frequency of 300 Hz.

a) Specify the value of R in kilohms.

b) A resistor is connected across the output
terminals of the filter. What is the cutoff fre-
quency, in hertz, of the loaded filter?
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v = 0.125vc ,v = vc ,vo

vi = 75 cos vt V,
8vc .0.125vc ,vc ,H( jv)

v = 0H( jv)

14.14 Consider the circuit shown in Fig. P14.14.
a) With the input and output voltages shown in the

figure, this circuit behaves like what type of filter?
b) What is the transfer function,

of this filter?
c) What is the cutoff frequency of this filter?
d) What is the magnitude of the filter’s transfer

function at ?

Figure P14.14

14.15 Suppose a 150 load resistor is attached to the fil-
ter in Fig. P14.14.
a) What is the transfer function, ,

of this filter?
b) What is the cutoff frequency of this filter?
c) How does the cutoff frequency of the loaded fil-

ter compare with the cutoff frequency of the
unloaded filter in Fig. P14.14?

d) What else is different for these two filters?

14.16 Design a passive RC high pass filter (see Fig. 14.10[a])
with a cutoff frequency of 500 Hz using a 220 pF
capacitor.
a) What is the cutoff frequency in 
b) What is the value of the resistor?
c) Draw your circuit, labeling the component val-

ues and output voltage.
d) What is the transfer function of the filter in

part (c)?
e) If the filter in part (c) is loaded with a resistor

whose value is the same as the resistor in (b),
what is the transfer function of this loaded filter?

f) What is the cutoff frequency of the loaded filter
from part (e)?

g) What is the gain in the pass band of the loaded
filter from part (e)?

14.17 Using a inductor, design a high-pass, RL,
passive filter with a cutoff frequency of 
a) Specify the value of the resistance, selecting

from the components in Appendix H.
b) Assume the filter is connected to a pure resistive

load. The cutoff frequency is not to drop below
What is the smallest load resistor

from Appendix H that can be connected across
the output terminals of the filter?

1200 krad>s.

1500 krad>s.
100 mH

rad>s?

H(s) = Vo(s)>Vi(s)

Æ

�

�
vi

150 �

vo

�

�

10 mH

s = jvc

H(s) = Vo(s)>Vi(s),
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Section 14.4

14.18 For the bandpass filter shown in Fig. P14.18, find 
(a) (b) (c) Q, (d) (e) (f) (g) 
and (h) 

Figure P14.18

14.19 Calculate the center frequency, the bandwidth, and
the quality factor of a bandpass filter that has an
upper cutoff frequency of and a lower
cutoff frequency of 

14.20 A bandpass filter has a center, or resonant, frequency
of and a quality factor of 4. Find the band-
width, the upper cutoff frequency, and the lower cut-
off frequency. Express all answers in kilohertz.

14.21 Design a series RLC bandpass filter (see Fig. 14.19[a])
with a quality of 8 and a center frequency of

using a 0.01 F capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) For the filter in part (a), calculate the bandwidth
and the values of the two cutoff frequencies.

14.22 The input to the series RLC bandpass filter designed
in Problem 14.21 is 5cos . Find the voltage drop
across the resistor when (a) (b) 

; (c) ; (d) (e) .

14.23 The input to the series RLC bandpass filter designed
in Problem 14.21 is 5cos t V. Find the voltage drop
across the series combination of the inductor and
capacitor when (a) ; (b) ;
(c) ; (d) ; (e) .

14.24 Show that the alternative forms for the cutoff fre-
quencies of a bandpass filter, given in Eqs. 14.36
and 14.37, can be derived from Eqs. 14.34 and 14.35.

14.25 Using a 50 nF capacitor in the bandpass circuit
shown in Fig. 14.22, design a filter with a quality fac-
tor of 5 and a center frequency of 

a) Specify the numerical values of R and L.

b) Calculate the upper and lower cutoff frequen-
cies in kilohertz.

c) Calculate the bandwidth in hertz.

20 krad>s.

v = 10vov = 0.1vov = vc2

v = vc1v = vo

v

v = 10vov = 0.1vo;v = vc2vc1

v=v = vo;
vt V

m50 krad>s,

50 krad>s

100 krad>s.
121 krad>s

8 k�

10 nF

�

�

vo

�

�

vi 10 mH

b.
fc2,vc2,fc1,vc1,fo,vo,

14.26 Design a series RLC bandpass filter using only
three components from Appendix H that comes
closest to meeting the filter specifications in
Problem 14.25.

a) Draw your filter, labeling all component values
and the input and output voltages.

b) Calculate the percent error in this new filter’s
center frequency and quality factor when com-
pared to the values specified in Problem 14.25.

14.27 Use a 5 nF capacitor to design a series RLC band-
pass filter, as shown at the top of Fig. 14.27.The cen-
ter frequency of the filter is 8 kHz, and the quality
factor is 2.

a) Specify the values of R and L.

b) What is the lower cutoff frequency in kilohertz?

c) What is the upper cutoff frequency in kilohertz?

d) What is the bandwidth of the filter in kilohertz?

14.28 Design a series RLC bandpass filter using only
three components from Appendix H that comes
closest to meeting the filter specifications in
Problem 14.27.

a) Draw your filter, labeling all component values
and the input and output voltages.

b) Calculate the percent error in this new 
filter’s center frequency and quality factor
when compared to the values specified in
Problem 14.27.

14.29 For the bandpass filter shown in Fig. P14.29, calculate
the following: (a) (b) Q; (c) (d) and (e) 

Figure P14.29

14.30 The input voltage in the circuit in Fig. P14.29
is Calculate the output voltage when
(a) (b) and (c) 

14.31 Consider the circuit shown in Fig. P14.31.

a) Find 

b) Find 

c) Find Q.

d) Find the steady-state expression for when
vi = 250 cos vot mV.

vo

b.

vo.

v = vc2.v = vc1 ;v = vo ;
10 cos vt V.

20 � 40 mH

180 �

40 nF

�

�

vi

�

�

vo

b.fc2 ;fc1 ;fo ;
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e) Show that if is expressed in kilohms the Q of
the circuit in Fig. P14.31 is

f) Plot Q versus for 

Figure P14.31

14.32 A block diagram of a system consisting of a sinu-
soidal voltage source, an RLC series bandpass fil-
ter, and a load is shown in Fig. P14.32. The
internal impedance of the sinusoidal source is

and the impedance of the load is

The RLC series bandpass filter has a 20 nF
capacitor, a center frequency of and a
quality factor of 6.25.

a) Draw a circuit diagram of the system.

b) Specify the numerical values of L and R for the
filter section of the system.

c) What is the quality factor of the interconnected
system?

d) What is the bandwidth (in hertz) of the inter-
connected system?

Figure P14.32

14.33 The purpose of this problem is to investigate how a
resistive load connected across the output termi-
nals of the bandpass filter shown in Fig. 14.19
affects the quality factor and hence the bandwidth
of the filtering system. The loaded filter circuit is
shown in Fig. P14.33.

a) Calculate the transfer function for the cir-
cuit shown in Fig. P14.33.

b) What is the expression for the bandwidth of 
the system?

c) What is the expression for the loaded band-
width ( ) as a function of the unloaded band-
width ( )?bU

bL

Vo>Vi

Source
Filter

Load

50 krad>s,

480 + j0 Æ.
80 + j0 Æ,

100 k�

200 pF 5 mH

�

�

vo

�

�

vi 400 k�

20 kÆ … RL … 2 MÆ.RL

Q =

20
1 + 100>RL

RL d) What is the expression for the quality factor of
the system?

e) What is the expression for the loaded quality
factor ( ) as a function of the unloaded quality
factor ( )?

f) What are the expressions for the cutoff frequen-
cies and ?

Figure P14.33

14.34 The parameters in the circuit in Fig. P14.33 are
and The 

quality factor of the circuit is not to drop below 7.5.
What is the smallest permissible value of the load
resistor ?

Section 14.5

14.35 For the bandreject filter in Fig. P14.35, calculate 
(a) (b) (c) Q; (d) in hertz; (e) (f) 
(g) and (h) .

Figure P14.35

14.36 For the bandreject filter in Fig. P14.35,

a) Find at and 

b) If , write the steady-state expres-
sion for when 

and 

14.37 a) Show (via a qualitative analysis) that the circuit
in Fig. P14.37 is a bandreject filter.

b) Support the qualitative analysis of (a) by finding
the voltage transfer function of the filter.

c) Derive the expression for the center frequency
of the filter.

d) Derive the expressions for the cutoff frequen-
cies and 

e) What is the expression for the bandwidth of the
filter?

f) What is the expression for the quality factor of
the circuit?

vc2.vc1

v = 10vo.v = 0.1vo,
v = vc2,v = vc1,v = vo,vo

vi = 80 cos vt V

10vo.vo, vc1, vc2 , 0.1vo,H(jv)

1875 �

vi vo
156.25 mH

100 nF
�

�

�

�

fc2 vc2 ;
fc1 ;vc1 ;bfo ;vo ;

RL

L = 2 mH.C = 50 pF,R = 2.4 kÆ,

R

C L

�

�

vo

�

�

vi RL

vc2vc1

QU

QL
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Figure P14.37

14.38 For the bandreject filter in Fig. P14.38, calculate 
(a) (b) (c) Q; (d) (e) (f) (g) 
and (h) in kilohertz.

Figure P14.38

14.39 Design an RLC bandreject filter (see Fig. 14.28[a])
with a quality of 2.5 and a center frequency of

using a 200 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) For the filter in part (a), calculate the bandwidth
and the values of the two cutoff frequencies.

14.40 The input to the RLC bandreject filter designed in
Problem 14.39 is 10cos . Find the voltage drop
across the series combination of the inductor and
capacitor when (a) ; (b) ;
(c) ; (d) ; (e) .

14.41 The input to the RLC bandreject filter designed in
Problem 14.39 is 10cos . Find the voltage drop
across the resistor when (a) ; (b) ;
(c) ; (d) ; (e) .

14.42 Use a 500 nF capacitor to design a bandreject filter,
as shown in Fig. P14.42. The filter has a center fre-
quency of 4 kHz and a quality factor of 5.

a) Specify the numerical values of R and L.

b) Calculate the upper and lower corner, or cutoff,
frequencies in kilohertz.

c) Calculate the filter bandwidth in kilohertz.

Figure P14.42

�

�

vi

�

�

voR

500 nF

L

v = 8vov = 0.125vov = vc2

v = vc1v = vo

vt V

v = 8vov = 0.125vov = vc2

v = vc1v = vo

vt V

25 krad>s,

�

�

vi

�

�

vo3 k�

62.5 nF

2.5 mH

b

fc2 ;vc2 ;fc1 ;vc1 ;fo ;vo ;

�

�

vi

�

�

voR

C

L

14.43 Assume the bandreject filter in Problem 14.42 is
loaded with a resistor.
a) What is the quality factor of the loaded circuit?
b) What is the bandwidth (in kilohertz) of the

loaded circuit?
c) What is the upper cutoff frequency in kilohertz?
d) What is the lower cutoff frequency in kilohertz?

14.44 Design a series RLC bandreject filter using only
three components from Appendix H that comes
closest to meeting the filter specifications in
Problem 14.42.
a) Draw your filter, labeling all component values

and the input and output voltages.
b) Calculate the percent error in this new filter’s

center frequency and quality factor when com-
pared to the values specified in Problem 14.42.

14.45 The purpose of this problem is to investigate how a
resistive load connected across the output terminals
of the bandreject filter shown in Fig. 14.28(a) affects
the behavior of the filter. The loaded filter circuit is
shown in Fig. P14.45.
a) Find the voltage transfer function 
b) What is the expression for the center frequency?
c) What is the expression for the bandwidth?
d) What is the expression for the quality factor?
e) Evaluate 
f) Evaluate 
g) Evaluate 
h) What are the expressions for the corner fre-

quencies and ?

Figure P14.45

14.46 The parameters in the circuit in Fig. P14.45
are and

a) Find (in kilohertz), and Q.

b) Find and 

c) Find and 

d) Show that if is expressed in ohms the Q of
the circuit is

e) Plot Q versus for 10 Æ … RL … 300 Æ. RL

Q =

50
3

 [1 + (30>RL)].

RL

fc1.fc2

H(jq).H(j0)

bvo,

RL = 150 Æ.
C = 4 pF,L = 1 mH,R = 30 Æ,

�

�

vi

�

�

vo

R

RL

L

C

vc2vc1

H(jq).
H(j0).
H( jvo).

Vo>Vi.

1 kÆ
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14.47 The load in the bandreject filter circuit shown in
Fig. P14.42 is The center frequency of the fil-
ter is and the capacitor is 25 nF. At very
low and very high frequencies, the amplitude of the
sinusoidal output voltage should be at least 90% of
the amplitude of the sinusoidal input voltage.

a) Specify the numerical values of R and L.

b) What is the quality factor of the circuit?

Sections 14.1–14.5

14.48 Given the following voltage transfer function:

a) At what frequencies (in radians per second) is
the magnitude of the transfer function equal to
unity?

b) At what frequency is the magnitude of the trans-
fer function maximum?

c) What is the maximum value of the transfer func-
tion magnitude?

14.49 Consider the series RLC circuit shown in 
Fig. P14.49. When the output is the voltage
across the resistor, we know this circuit is a
bandpass filter. When the output is the voltage
across the series combination of the inductor
and capacitor, we know this circuit is a ban-
dreject filter. This problem investigates the
behavior of this circuit when the output is across
the inductor.

a) Find the transfer function,
when is the voltage across the inductor.

b) Find the magnitude of the transfer function in
part (a) for very low frequencies.

c) Find the magnitude of the transfer function in
part (a) for very high frequencies.

d) Based on your answers in parts (b) and (c), what
type of filter is this?

e) Suppose 
Calculate the cutoff frequency of this filter, that
is, the frequency at which the magnitude of the
transfer function is .1>12

C = 2.5 mF.L = 400 mH,R = 600 Æ,

Vo(s)
H(s ) = Vo(s)>Vi(s)

 =

25 * 106

s2
+ 1000s + 25 * 106 .

 H(s) =

Vo

Vi

25 krad>s,
500 Æ.

Figure P14.49

14.50 Repeat parts (a) – (d) from Problem 14.49 for the
circuit shown in Fig. P14.50. Note that the output
voltage is now the voltage across the capacitor.

Figure P14.50

14.51 Design a series RLC bandpass filter (see
Fig. 14.27) for detecting the low-frequency tone
generated by pushing a telephone button as shown
in Fig. 14.32.

a) Calculate the values of L and C that place 
the cutoff frequencies at the edges of the
DTMF low-frequency band. Note that the
resistance in standard telephone circuits is
always .

b) What is the output amplitude of this circuit at
each of the low-band frequencies, relative to the
peak amplitude of the bandpass filter?

c) What is the output amplitude of this circuit at
the lowest of the high-band frequencies?

14.52 Design a DTMF high-band bandpass filter similar
to the low-band filter design in Problem 14.51. Be
sure to include the fourth high-frequency tone,
1633 Hz, in your design.What is the response ampli-
tude of your filter to the highest of the low-
frequency DTMF tones?

14.53 The 20 Hz signal that rings a telephone’s bell has to
have a very large amplitude to produce a loud
enough bell signal. How much larger can the ring-
ing signal amplitude be, relative to the low-bank
DTMF signal, so that the response of the filter in
Problem 14.51 is no more than half as large as the
largest of the DTMF tones?

R = 600 Æ

vi vo

�

�

�

�

L

C

R

vi vo

�

�

�

�

L
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Up to this point, we have considered only passive filter circuits,
that is, filter circuits consisting of resistors, inductors, and capaci-
tors. There are areas of application, however, where active cir-
cuits, those that employ op amps, have certain advantages over
passive filters. For instance, active circuits can produce bandpass
and bandreject filters without using inductors. This is desirable
because inductors are usually large, heavy, costly, and they may
introduce electromagnetic field effects that compromise the
desired frequency response characteristics.

Examine the transfer functions of all the filter circuits from
Chapter 14 and you will notice that the maximum magnitude
does not exceed 1. Even though passive resonant filters can
achieve voltage and current amplification at the resonant fre-
quency, passive filters in general are incapable of amplification,
because the output magnitude does not exceed the input magni-
tude. This is not a surprising observation, as many of the transfer
functions in Chapter 14 were derived using voltage or current
division. Active filters provide a control over amplification not
available in passive filter circuits.

Finally, recall that both the cutoff frequency and the pass-
band magnitude of passive filters were altered with the addition
of a resistive load at the output of the filter. This is not the case
with active filters, due to the properties of op amps. Thus, we use
active circuits to implement filter designs when gain, load varia-
tion, and physical size are important parameters in the design
specifications.

In this chapter, we examine a few of the many filter circuits
that employ op amps. As you will see, these op amp circuits over-
come the disadvantages of passive filter circuits. Also, we will
show how the basic op amp filter circuits can be combined to
achieve specific frequency responses and to attain a more nearly
ideal filter response. Note that throughout this chapter we
assume that every op amp behaves as an ideal op amp.

Active Filter Circuits
C H A P T E R  C O N T E N T S

15.1 First-Order Low-Pass and High-Pass
Filters p. 558

15.2 Scaling p. 562

15.3 Op Amp Bandpass and Bandreject
Filters p. 564

15.4 Higher Order Op Amp Filters p. 571

15.5 Narrowband Bandpass and Bandreject
Filters p. 584

C H A P T E R  O B J E C T I V E S

1 Know the op amp circuits that behave as first-
order low-pass and high-pass filters and be able
to calculate component values for these circuits
to meet specifications of cutoff frequency and
passband gain.

2 Be able to design filter circuits starting with a
prototype circuit and use scaling to achieve
desired frequency response characteristics and
component values.

3 Understand how to use cascaded first- and
second-order Butterworth filters to implement
low-pass, high-pass, bandpass, and bandreject
filters of any order.

4 Be able to use the design equations to calculate
component values for prototype narrowband,
bandpass, and bandreject filters to meet desired
filter specifications.
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In this chapter, we continue to examine circuits that are fre-
quency selective. As described in Chapter 14, this means that
the behavior of the circuit depends on the frequency of its
sinusoidal input. Most of the circuits presented here fall into
one of the four categories identified in Chapter 14—low-pass
filters, high-pass filters, bandpass filters, and bandreject fil-
ters. But whereas the circuits in Chapter 14 were constructed
using sources, resistors, capacitors, and inductors, the cir-
cuits in this chapter employ op amps. We shall soon see what
advantages are conferred to a filter circuit constructed using
op amps.

Audio electronic systems such as radios, tape players, and
CD players often provide separate volume controls labeled
“treble” and “bass.” These controls permit the user to select

the volume of high frequency audio signals (“treble”) inde-
pendent of the volume of low frequency audio signals
(“bass”). The ability to independently adjust the amount of
amplification (boost) or attenuation (cut) in these two fre-
quency bands allows a listener to customize the sound with
more precision than would be provided with a single volume
control. Hence the boost and cut control circuit is also
referred to as a tone control circuit.

The Practical Perspective example at the end of this
chapter presents a circuit that implements bass volume con-
trol using a single op amp together with resistors and capaci-
tors. An adjustable resistor supplies the necessary control
over the amplification in the bass frequency range.

557

Practical Perspective
Bass Volume Control

Treble
Bass

Dana Hoff / Beateworks / Corbis 
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15.1 First-Order Low-Pass 
and High-Pass Filters

Consider the circuit in Fig. 15.1. Qualitatively, when the frequency of the
source is varied, only the impedance of the capacitor is affected. At very
low frequencies, the capacitor acts like an open circuit, and the op amp cir-
cuit acts like an amplifier with a gain of At very high frequencies,
the capacitor acts like a short circuit, thereby connecting the output of the
op amp circuit to ground. The op amp circuit in Fig. 15.1 thus functions as
a low-pass filter with a passband gain of 

To confirm this qualitative assessment, we can compute the transfer
function Note that the circuit in Fig. 15.1 has the gen-
eral form of the circuit shown in Fig. 15.2, where the impedance in the
input path is the resistor and the impedance in the feedback path

is the parallel combination of the resistor and the capacitor C.
The circuit in Fig. 15.2 is analogous to the inverting amplifier circuit

from Chapter 5, so its transfer function is Therefore, the transfer
function for the circuit in Fig. 15.1 is

(15.1)

where

(15.2)

and

(15.3)

Note that Eq. 15.1 has the same form as the general equation for low-pass fil-
ters given in Chapter 14, with an important exception: The gain in the pass-
band, K, is set by the ratio The op amp low-pass filter thus permits the
passband gain and the cutoff frequency to be specified independently.

A Note About Frequency Response Plots
Frequency response plots, introduced in Chapter 14, provide valuable
insight into the way a filter circuit functions. Thus we make extensive
use of frequency response plots in this chapter, too. The frequency
response plots in Chapter 14 comprised two separate plots—a plot of
the transfer function magnitude versus frequency, and a plot of the
transfer function phase angle, in degrees, versus frequency. When we
use both plots, they are normally stacked on top of one another so that
they can share the same frequency axis.

In this chapter, we use a special type of frequency response plots
called Bode plots. Bode plots are discussed in detail in Appendix E, which
includes detailed information about how to construct these plots by hand.
You will probably use a computer to construct Bode plots, so here we

R2>R1.

 vc =

1
R2C

 .

 K =

R2

R1
 ,

 = -K
vc

s + vc
 ,

 =

-R2 7  a 1
sC
b

R1

 H(s) =

-Zf

Zi

-Zf >Zi.

R2(Zf)
R1,(Zi)

H(s) = Vo(s)>Vi(s).

-R2>R1.

-R2>R1.

vi vo

�

�

�

�

R2

C

R1

�

�

Figure 15.1 � A first-order low-pass filter.

Vi Vo

�

�

�

�
�

�

Zi

Zf

Figure 15.2 � A general op amp circuit.
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summarize the special features of these plots. Bode plots differ from the
frequency response plots in Chapter 14 in two important ways.

First, instead of using a linear axis for the frequency values, a Bode
plot uses a logarithmic axis. This permits us to plot a wider range of fre-
quencies of interest. Normally we plot three or four decades of frequen-
cies, say from to , or 1 kHz to 1 MHz, choosing the
frequency range where the transfer function characteristics are changing.
If we plot both the magnitude and phase angle plots, they again share the
frequency axis.

Second, instead of plotting the absolute magnitude of the transfer
function versus frequency, the Bode magnitude is plotted in decibels (dB)
versus the log of the frequency. The decibel is discussed in Appendix D.
Briefly, if the magnitude of the transfer function is , its value in dB
is given by

.

It is important to remember that while is an unsigned quantity,
is a signed quantity. When the transfer function magnitude

is 1, since When the transfer function magni-
tude is between 0 and 1, and when the transfer function magni-
tude is greater than 1. Finally, note that

.

Recall that we define the cutoff frequency of filters by determining
the frequency at which the maximum magnitude of the transfer function
has been reduced by If we translate this definition to magnitude in
dB, we define the cutoff frequency of a filter by determining the frequency
at which the maximum magnitude of the transfer function in dB has been
reduced by 3 dB. For example, if the magnitude of a low-pass filter in its
passband is 26 dB, the magnitude used to find the cutoff frequency is

Example 15.1 illustrates the design of a first-order low pass filter to
meet desired specifications of passband gain and cutoff frequency, and
also illustrates a Bode magnitude plot of the filter’s transfer function.

26 - 3 = 23 dB.

1>12.

20 log10 ƒ 1>12 ƒ = -3 dB

AdB 7 0,
AdB 6 0,20 log10(1) = 0.

AdB = 0,AdB

ƒ H( jv) ƒ

AdB = 20 log10 ƒ H( jv) ƒ

ƒ H( jv) ƒ

106 rad>s102 rad>s

Example 15.1 Designing a Low-Pass Op Amp Filter

Using the circuit shown in Fig. 15.1, calculate values
for C and that, together with produce
a low-pass filter having a gain of 1 in the passband
and a cutoff frequency of Construct the
transfer function for this filter and use it to sketch a
Bode magnitude plot of the filter’s frequency
response.

Solution
Equation 15.2 gives the passband gain in terms of

and so it allows us to calculate the required
value of :

 = 1 Æ.

 = (1)(1)

 R2 = KR1

R2

R2,R1

1 rad>s.

R1 = 1 Æ,R2

Equation 15.3 then permits us to calculate C to
meet the specified cutoff frequency:

The transfer function for the low-pass filter is
given by Eq. 15.1:

 =

-1
s + 1

.

 H(s) = -K
vc

s + vc

 = 1 F.

 =

1
(1)(1)

 C =

1
R2vc
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Figure 15.3 � The Bode magnitude plot of the low-pass filter from
Example 15.1.

You may have recognized the circuit in Fig. 15.1 as the integrating
amplifier circuit introduced in Chapter 7. They are indeed the same cir-
cuit, so integration in the time domain corresponds to low-pass filtering in
the frequency domain. This relationship between integration and low-pass
filtering is further confirmed by the operational Laplace transform for
integration derived in Chapter 12.

The circuit in Fig. 15.4 is a first-order high-pass filter. This circuit also
has the general form of the circuit in Fig. 15.2, only now the impedance in
the input path is the series combination of and C, and the impedance in
the feedback path is the resistor The transfer function for the circuit 
in Fig 15.4 is thus

(15.4)

where

(15.5)

and

(15.6) vc =

1
R1C

 .

 K =

R2

R1
 ,

 = -K
s

s + vc
 ,

 =

-R2

R1 +

1
sC

 H(s) =

-Zf

Zi

R2.
R1

Vi

R2

Vo

�

�

�

�
�

�

R1 sC
1

Figure 15.4 � A first-order high-pass filter.

The Bode plot of is shown in Fig. 15.3. This
is the so-called prototype low-pass op amp filter,
because it uses a resistor value of and a capaci-
tor value of 1 F, and it provides a cutoff frequency
of As we shall see in the next section, proto-
type filters provide a useful starting point for the
design of filters by using more realistic component
values to achieve a desired frequency response.

1 rad>s.

1 Æ

ƒ H( jv) ƒ
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Again, the form of the transfer function given in Eq. 15.4 is the same as that
given in Eq. 14.20, the equation for passive high-pass filters. And again, the
active filter permits the design of a passband gain greater than 1.

Example 15.2 considers the design of an active high-pass filter which
must meet frequency response specifications from a Bode plot.

Example 15.2 Designing a High-Pass Op Amp Filter

Figure 15.5 shows the Bode magnitude plot of a
high-pass filter. Using the active high-pass filter cir-
cuit in Fig. 15.4, calculate values of and that
produce the desired magnitude response. Use a

capacitor. If a load resistor is added to
this filter, how will the magnitude response change?

Solution
Begin by writing a transfer function that has the
magnitude plot shown in Fig. 15.5. To do this, note
that the gain in the passband is 20 dB; therefore,

Also note that the 3 dB point is 
Equation 15.4 is the transfer function for a high-
pass filter, so the transfer function that has the mag-
nitude response shown in Fig. 15.5 is given by

We can compute the values of and needed to
yield this transfer function by equating the transfer
function with Eq. 15.4:

Equating the numerators and denominators and
then simplifying, we get two equations:

Using the specified value of C ( ), we find

The circuit is shown in Fig. 15.6.
Because we have made the assumption that

the op amp in this high-pass filter circuit is ideal,
the addition of any load resistor, regardless of its
resistance, has no effect on the behavior of the op
amp. Thus, the magnitude response of a high-pass
filter with a load resistor is the same as that of a
high-pass filter with no load resistor, which is
depicted in Fig. 15.5.

R1 = 20 kÆ, R2 = 200 kÆ.

0.1 mF

10 =

R2

R1
 , 500 =

1
R1C

 .

H(s) =

-10s

s + 500
=

-(R2>R1)s

s + (1>R1C)
 .

R2R1

H(s) =

-10s

s + 500
 .

500 rad>s.K = 10.

10 kÆ0.1 mF

R2R1

Figure 15.6 � The high-pass filter for Example 15.2.
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Figure 15.5 � The Bode magnitude plot of the high-pass filter for
Example 15.2.
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15.2 Scaling
In the design and analysis of both passive and active filter circuits, working
with element values such as 1 H, and 1 F is convenient. Although
these values are unrealistic for specifying practical components, they
greatly simplify computations. After making computations using conven-
ient values of R, L, and C, the designer can transform the convenient val-
ues into realistic values using the process known as scaling.

There are two types of scaling: magnitude and frequency. We scale a
circuit in magnitude by multiplying the impedance at a given frequency by
the scale factor Thus we multiply all resistors and inductors by and
all capacitors by If we let unprimed variables represent the initial
values of the parameters, and we let primed variables represent the scaled
values of the variables, we have

(15.7)

Note that is by definition a positive real number that can be either less
than or greater than 1.

In frequency scaling, we change the circuit parameters so that at the
new frequency, the impedance of each element is the same as it was at the
original frequency. Because resistance values are assumed to be independ-
ent of frequency, resistors are unaffected by frequency scaling. If we let 
denote the frequency scale factor, both inductors and capacitors are multi-
plied by Thus for frequency scaling,

(15.8)

The frequency scale factor is also a positive real number that can be less
than or greater than unity.

A circuit can be scaled simultaneously in both magnitude and frequency.
The scaled values (primed) in terms of the original values (unprimed) are

(15.9) C¿ =

1
kmkf

 C.

 L¿ =

km

kf
 L,

 R¿ = km R,

kf

R¿ = R, L¿ = L>kf, and C¿ = C>kf.

1>kf .

kf

km

R¿ = kmR, L¿ = kmL, and C¿ = C>km .

1>km .
kmkm .

1 Æ,

Component scale factors �

Objective 1—Know the op amp circuits that behave as first order low-pass and high-pass filters and be able to
calculate their component values

15.1 Compute the values for and C that yield a
high-pass filter with a passband gain of 1 and a
cutoff frequency of if is (Note:
This is the prototype high-pass filter.)

Answer: R2 = 1 Æ, C = 1 F.

1 Æ.R11 rad>s
R2 15.2 Compute the resistor values needed for the

low-pass filter circuit in Fig. 15.1 to produce the
transfer function

Use a capacitor.

Answer: R1 = 10 Æ, R2 = 40 Æ.

5 mF

H(s) =

-20,000
s + 5000

 .

NOTE: Also try Chapter Problems 15.1 and 15.8.

A S S E S S M E N T  P R O B L E M S
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The Use of Scaling in the Design of Op Amp Filters
To use the concept of scaling in the design of op amp filters, first select
the cutoff frequency, to be (if you are designing low- or high-
pass filters), or select the center frequency, to be (if you are
designing bandpass or bandreject filters). Then select a 1 F capacitor and
calculate the values of the resistors needed to give the desired passband
gain and the cutoff or center frequency. Finally, use scaling to
compute more realistic component values that give the desired cutoff or
center frequency.

Example 15.3 illustrates the scaling process in general, and
Example 15.4 illustrates the use of scaling in the design of a low-pass filter.

1 rad>s

1 rad>svo ,
1 rad>svc ,

Example 15.3 Scaling a Series RLC Circuit

The series RLC circuit shown in Fig. 15.7 has a cen-
ter frequency of a bandwidth of

and thus a quality factor of 1. Use
scaling to compute new values of R and L that yield
a circuit with the same quality factor but with a cen-
ter frequency of 500 Hz. Use a capacitor.

Figure 15.7 � The series RLC circuit for Example 15.3.

Solution
Begin by computing the frequency scale factor that
will shift the center frequency from to
500 Hz. The unprimed variables represent values

1 rad>s

vi

1 F1 H

�

�

vs1 �
�

�

2 mF

R>L = 1 rad>s,
11>LC = 1 rad>s,

before scaling, whereas the primed variables repre-
sent values after scaling.

Now, use Eq. 15.9 to compute the magnitude scale
factor that, together with the frequency scale factor,
will yield a capacitor value of :

Use Eq. 15.9 again to compute the magnitude- and
frequency-scaled values of R and L:

With these component values, the center fre-
quency of the series RLC circuit is

and the band-
width is thus the
quality factor is still 1.

R>L = 3141.61 rad>s or 500 Hz;
11>LC = 3141.61 rad>s or 500 Hz,

 L¿ =

km

kf
L = 50.66 mH.

 R¿ = kmR = 159.155 Æ,

km =

1
kf

 
C

C¿

=

1

(3141.59)(2 * 10-6)
= 159.155.

2 mF

kf =

vœ

o

vo
=

2p(500)
1

= 3141.59.

Example 15.4 Scaling a Prototype Low-Pass Op Amp Filter

Use the prototype low-pass op amp filter from
Example 15.1, along with magnitude and frequency
scaling, to compute the resistor values for a low-
pass filter with a gain of 5, a cutoff frequency of
1000 Hz, and a feedback capacitor of 
Construct a Bode plot of the resulting transfer func-
tion’s magnitude.

Solution
To begin, use frequency scaling to place the cutoff
frequency at 1000 Hz:

kf = vœ

c>vc = 2p(1000)>1 = 6283.185,

0.01 mF.

where the primed variable has the new value and
the unprimed variable has the old value of the cut-
off frequency. Then compute the magnitude scale
factor that, together with will scale
the capacitor to :

Since resistors are scaled only by using magnitude
scaling,

Rœ

1 = Rœ

2 = kmR = (15,915.5)(1) = 15,915.5 Æ.

km =

1
kf

 
C

C¿

=

1

(6283.185)(10-8)
= 15,915.5.

0.01 mF
kf = 6283.185,
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Figure 15.8 � The Bode magnitude plot of the low-pass filter from
Example 15.4.

Objective 2—Be able to design filter circuits starting with a prototype and use scaling to achieve desired frequency
response and component values

15.3 What magnitude and frequency scale factors
will transform the prototype high-pass filter
into a high-pass filter with a capacitor
and a cutoff frequency of 10 kHz?

0.5 mF

Answer: km = 31.831.kf = 62,831.85,

NOTE: Also try Chapter Problems 15.15 and 15.16.

A S S E S S M E N T  P R O B L E M

15.3 Op Amp Bandpass 
and Bandreject Filters

We now turn to the analysis and design of op amp circuits that act as band-
pass and bandreject filters. While there is a wide variety of such op amp
circuits, our initial approach is motivated by the Bode plot construction
shown in Fig. 15.9. We can see from the plot that the bandpass filter con-
sists of three separate components:

1. A unity-gain low-pass filter whose cutoff frequency is the larger
of the two cutoff frequencies;

2. A unity-gain high-pass filter whose cutoff frequency is the
smaller of the two cutoff frequencies; and

3. A gain component to provide the desired level of gain in
the passband.

vc1,

vc2,

Finally, we need to meet the passband gain
specification. We can adjust the scaled values of
either or because If we adjust

we will change the cutoff frequency, because
Therefore, we can adjust the value of

to alter only the passband gain:

The final component values are

The transfer function of the filter is given by

The Bode plot of the magnitude of this transfer
function is shown in Fig. 15.8.

H(s) =

-31,415.93
s + 6283.185

 .

R1 = 3183.1 Æ, R2 = 15,915.5 Æ, C = 0.01 mF .

R1 = R2>K = (15,915.5)>(5) = 3183.1 Æ.

R1

vc = 1>R2C.
R2 ,

K = R2>R1 .R2 ,R1
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These three components are cascaded in series. They combine additively
in the Bode plot construction and so will combine multiplicatively in the 
s domain. It is important to note that this method of constructing a band-
pass magnitude response assumes that the lower cutoff frequency ( ) is
smaller than the upper cutoff frequency ( ). The resulting filter is called
a broadband bandpass filter, because the band of frequencies passed is
wide. The formal definition of a broadband filter requires the two cutoff
frequencies to satisfy the equation

As illustrated by the Bode plot construction in Fig. 15.9, we require the
magnitude of the high-pass filter be unity at the cutoff frequency of the
low-pass filter and the magnitude of the low-pass filter be unity at the cut-
off frequency of the high-pass filter. Then the bandpass filter will have the
cutoff frequencies specified by the low-pass and high-pass filters. We need
to determine the relationship between and that will satisfy the
requirements illustrated in Fig. 15.9.

We can construct a circuit that provides each of the three compo-
nents by cascading a low-pass op amp filter, a high-pass op amp filter,
and an inverting amplifier (see Section 5.3), as shown in Fig. 15.10(a).
Figure 15.10(a) is a form of illustration called a block diagram. Each
block represents a component or subcircuit, and the output of one
block is the input to the next, in the direction indicated. We wish to
establish the relationship between and that will permit each sub-
circuit to be designed independently, without concern for the other sub-
circuits in the cascade. Then the design of the bandpass filter is reduced
to the design of a unity-gain first-order low-pass filter, a unity-gain first-
order high-pass filter, and an inverting amplifier, each of which is a sim-
ple circuit.

vc2vc1

vc2vc1

vc2

vc1
Ú 2.

vc2

vc1

�40

�30

�20

�10

0

10

20

105 100
v (rad/s)
50 1000500 10,00050001

30

�H
(j
v

)� 
dB

Cascaded
bandpass

Gain

High pass Low pass

vc2

vc1

Figure 15.9 � Constructing the Bode magnitude plot of a bandpass filter.
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Figure 15.10 � A cascaded op amp bandpass filter. (a) The block diagram. (b) The circuit.

The transfer function of the cascaded bandpass filter is the product of
the transfer functions of the three cascaded components:

(15.10)

We notice right away that Eq. 15.10 is not in the standard form for the
transfer function of a bandpass filter discussed in Chapter 14, namely,

In order to convert Eq. 15.10 into the form of the standard transfer func-
tion for a bandpass filter, we require that

(15.11)

When Eq. 15.11 holds,

and the transfer function for the cascaded bandpass filter in 
Eq. 15.10 becomes

Once we confirm that Eq. 15.11 holds for the cutoff frequencies spec-
ified for the desired bandpass filter, we can design each stage of the cas-
caded circuit independently and meet the filter specifications. We

H(s) =

-Kvc2s

s2
+ vc2s + vc1vc2

 .

(vc1 + vc2) L vc2,

vc2 W vc1.

HBP =

bs

s2
+ bs + vo

2  .

 =

-Kvc2s

s2
+ (vc1 + vc2)s + vc1vc2

 .

 =

-Kvc2s

(s + vc1)(s + vc2)

 = a -vc2

s + vc2
b a -s

s + vc1
b a -Rf

Ri
b

 H(s) =

Vo

Vi
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compute the values of and in the low-pass filter to give us the
desired upper cutoff frequency, :

(15.12)

We compute the values of and in the high-pass filter to give us the
desired lower cutoff frequency, :

(15.13)

Now we compute the values of and in the inverting amplifier
to provide the desired passband gain. To do this, we consider the magni-
tude of the bandpass filter’s transfer function, evaluated at the center
frequency, :

(15.14)

Recall from Chapter 5 that the gain of the inverting amplifier is 
Therefore,

(15.15)

Any choice of resistors that satisfies Eq. 15.15 will produce the desired
passband gain.

Example 15.5 illustrates the design process for the cascaded band-
pass filter.

ƒ H(jvo) ƒ =

Rf

Ri
 .

Rf >Ri.

 = K.

 =

Kvc2

vc2

 ƒ H(jvo) ƒ = 2 -Kvc2(jvo)

(jvo)2
+ vc2(jvo) + vc1vc2

2
vo

RfRi

 vc1 =

1
RHCH

 .

vc1

CHRH

 vc2 =

1
RLCL

 .

vc2

CLRL

Example 15.5 Designing a Broadband Bandpass Op Amp Filter

Design a bandpass filter for a graphic equalizer to
provide an amplification of 2 within the band of fre-
quencies between 100 and 10,000 Hz. Use 
capacitors.

Solution
We can design each subcircuit in the cascade and
meet the specified cutoff frequency values only if
Eq. 15.11 holds. In this case, so we can
say that 

Begin with the low-pass stage. From Eq. 15.12,

 L 80 Æ.

 RL =

1

[2p(10000)](0.2 * 10-6)

 vc2 =

1
RLCL

= 2p(10000),

vc2 W vc1.
vc2 = 100vc1,

0.2 mF

Next, we turn to the high-pass stage. From Eq. 15.13,

Finally, we need the gain stage. From Eq. 15.15, we
see there are two unknowns, so one of the resistors
can be selected arbitrarily. Let’s select a resis-
tor for Then, from Eq. 15.15,

 = 2000 Æ = 2 kÆ.

 Rf = 2(1000)

Ri.
1 kÆ

 L 7958 Æ.

 RH =

1

[2p(100)](0.2 * 10-6)

 vc1 =

1
RHCH

= 2p(100),
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Figure 15.11 � The cascaded op amp bandpass filter designed in Example 15.5.

We can use a component approach to the design of op amp bandreject
filters too, as illustrated in Fig. 15.12. Like the bandpass filter, the band-
reject filter consists of three separate components. There are important
differences, however:

1. The unity-gain low-pass filter has a cutoff frequency of which is
the smaller of the two cutoff frequencies.

2. The unity-gain high-pass filter has a cutoff frequency of which
is the larger of the two cutoff frequencies.

3. The gain component provides the desired level of gain in
the passbands.

vc2,

vc1,
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Figure 15.12 � Constructing the Bode magnitude plot of a bandreject filter.

The resulting circuit is shown in Fig. 15.11. We
leave to you to verify that the magnitude of this cir-
cuit’s transfer function is reduced by at both
cutoff frequencies, verifying the validity of the
assumption vc2 W vc1.

1>12
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The most important difference is that these three components cannot
be cascaded in series, because they do not combine additively on the Bode
plot. Instead, we use a parallel connection and a summing amplifier, as
shown both in block diagram form and as a circuit in Fig. 15.13.Again, it is
assumed that the two cutoff frequencies are widely separated, so that the
resulting design is a broadband bandreject filter, and Then
each component of the parallel design can be created independently, and
the cutoff frequency specifications will be satisfied. The transfer function
of the resulting circuit is the sum of the low-pass and high-pass filter trans-
fer functions. From Fig. 15.13(b),

(15.16)

Using the same rationale as for the cascaded bandpass filter, the two
cutoff frequencies for the transfer function in Eq. 15.16 are and 
only if Then the cutoff frequencies are given by the equations

(15.17)

(15.18) vc2 =

1
RHCH

 .

 vc1 =

1
RLCL

 ,

vc2 W vc1.
vc2vc1

 =

Rf

Ri
a s2

+ 2vc1s + vc1vc2

(s + vc1)(s + vc2)
b .

 =

Rf

Ri
avc1(s + vc2) + s(s + vc1)

(s + vc1)(s + vc2)
b

 H(s) = a -

Rf

Ri
b B -vc1

s + vc1
+

-s

s + vc2
R

vc2 W vc1.

vi

Low-pass filter

High-pass filter

(a)

(b)

Summing amplifier

RL
Ri

Ri

RL

CL

�

�

vi
�

� RH
CH

RH
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Rf

�

� �

�

vo

vo

Figure 15.13 � A parallel op amp bandreject filter. (a) The block diagram. (b) The circuit.
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In the two passbands (as and ), the gain of the transfer func-
tion is Therefore,

(15.19)

As with the design of the cascaded bandpass filter, we have six unknowns
and three equations.Typically we choose a commercially available capacitor
value for and Then Eqs. 15.17 and 15.18 permit us to calculate 
and to meet the specified cutoff frequencies. Finally, we choose a value
for either or and then use Eq. 15.19 to compute the other resistance.

Note the magnitude of the transfer function in Eq. 15.16 at the center
frequency, :

(15.20)

If then (as ), so the magni-
tude at the center frequency is much smaller than the passband magnitude.
Thus the bandreject filter successfully rejects frequencies near the center
frequency, again confirming our assumption that the parallel implementa-
tion is meant for broadband bandreject designs.

Example 15.6 illustrates the design process for the parallel band-
reject filter.

vc1>vc2 V 1ƒ H( jvo) ƒ V 2Rf >Rivc2 W vc1,

 L

Rf

Ri
 
2vc1

vc2
 .

 =

Rf

Ri
 

2vc1

vc1 + vc2

 ƒ H( jvo) ƒ = 2 Rf

Ri
a ( jvo)2

+ 2vc1( jvo) + vc1vc2

( jvo)2
+ (vc1 + vc2)( jvo) + vc1vc2

b 2
vo = 1vc1, vc2

RiRf

RH

RLCH.CL

K =

Rf

Ri
 .

Rf >Ri.
s : qs : 0

Example 15.6 Designing a Broadband Bandreject Op Amp Filter

Design a circuit based on the parallel bandreject op
amp filter in Fig. 15.13(b). The Bode magnitude
response of this filter is shown in Fig. 15.14. Use

capacitors in your design.

Solution
From the Bode magnitude plot in Fig. 15.14, we see
that the bandreject filter has cutoff frequencies of

and a gain of 3 in the pass-
bands. Thus, so we make the assump-
tion that Begin with the prototype
low-pass filter and use scaling to meet the specifica-
tions for cutoff frequency and capacitor value. The
frequency scale factor is 100, which shifts the cut-
off frequency from The magni-
tude scale factor is 20,000, which permits the use
of a capacitor. Using these scale factors
results in the following scaled component values:

 CL = 0.5 mF.

 RL = 20 kÆ,

0.5 mF
km

1 rad>s to 100 rad>s.
kf

vc2 W vc1.
vc2 = 20vc1,

100 rad>s and 2000 rad>s

0.5 mF

Figure 15.14 � The Bode magnitude plot for the circuit to be designed
in Example 15.6.
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Finally, because the cutoff frequencies are
widely separated, we can use the ratio to
establish the desired passband gain of 3. Let’s choose

as we are already using that resistance
for Then and 

The resulting parallel op amp band-
reject filter circuit is shown in Fig. 15.15.

Now let’s check our assumption that
by calculating the actual gain at the

specified cutoff frequencies. We do this by making
the substitutions and 
into the transfer function for the parallel bandreject
filter, Eq. 15.16 and calculating the resulting magni-
tude. We leave it to the reader to verify that the
magnitude at the specified cutoff frequencies is
2.024, which is less than the magnitude of

that we expect. Therefore, our reject-
ing band is somewhat wider than specified in the
problem statement.

3>12 = 2.12

s = j2p(2000)s = j2p(100)

vc2 W vc1

3000>1000 = 3.
K = Rf>Ri =Rf = 3 kÆ,RH.

Ri = 1 kÆ,

Rf >Ri

The resulting cutoff frequency of the low-pass filter
component is

We use the same approach to design the high-
pass filter, starting with the prototype high-pass op
amp filter. Here, the frequency scale factor is

and the magnitude scale factor is
resulting in the following scaled com-

ponent values:

 CH = 0.5 mF.

 RH = 1 kÆ,

km = 1000,
kf = 2000,

 = 100 rad>s.

 =

1

(20 * 103)(0.5 * 10-6)

 vc1 =

1
RLCL

20 k�

20 k�
1 k�

1 k�

1 k�

3 k�

1 k�

0.5 mF
vi

�

�

vo

0.5 mF

�

�
�

�

�

�

�

�

NOTE: Assess your understanding of this material by trying Chapter Problems 15.30 and 15.31.

Figure 15.15 � The resulting bandreject filter circuit designed in Example 15.6.

15.4 Higher Order Op Amp Filters
You have probably noticed that all of the filter circuits we have exam-
ined so far, both passive and active, are nonideal. Remember from
Chapter 14 that an ideal filter has a discontinuity at the point of cutoff,
which sharply divides the passband and the stopband. Although we can-
not hope to construct a circuit with a discontinuous frequency response,
we can construct circuits with a sharper, yet still continuous, transition at
the cutoff frequency.
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Figure 15.16 � The Bode magnitude plot of a cascade of identical
prototype first-order filters.

Cascading Identical Filters
How can we obtain a sharper transition between the passband and the
stopband? One approach is suggested by the Bode magnitude plots in
Fig. 15.16. This figure shows the Bode magnitude plots of a cascade of
identical prototype low-pass filters and includes plots of just one filter, two
in cascade, three in cascade, and four in cascade. It is obvious that as more
filters are added to the cascade, the transition from the passband to the
stopband becomes sharper. The rules for constructing Bode plots (from
Appendix E) tell us that with one filter, the transition occurs with an
asymptotic slope of 20 decibels per decade ( ). Because circuits in
cascade are additive on a Bode magnitude plot, a cascade with two filters
has a transition with an asymptotic slope of ; for
three filters, the asymptotic slope is and for four filters, it is

as seen in Fig. 15.16.
In general, an n-element cascade of identical low-pass filters will transi-

tion from the passband to the stopband with a slope of . Both
the block diagram and the circuit diagram for such a cascade are shown in
Fig. 15.17. It is easy to compute the transfer function for a cascade of n pro-
totype low-pass filters—we just multiply the individual transfer functions:

(15.21)

The order of a filter is determined by the number of poles in its trans-
fer function. From Eq. 15.21, we see that a cascade of first-order low-pass
filters yields a higher order filter. In fact, a cascade of n first-order filters
produces an nth-order filter, having n poles in its transfer function and a
final slope of in the transition band.20n dB>dec

 =

(-1)n

(s + 1)n  .

 H(s) = ¢ -1
s + 1

≤ ¢ -1
s + 1

≤ Á ¢ -1
s + 1

≤

20n dB>dec

80 dB>dec,
60 dB>dec,

20 + 20 = 40 dB>dec

dB>dec
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There is an important issue yet to be resolved, as you will see if you
look closely at Fig. 15.16. As the order of the low-pass filter is increased by
adding prototype low-pass filters to the cascade, the cutoff frequency also
changes. For example, in a cascade of two first-order low-pass filters, the
magnitude of the resulting second-order filter at is , so the cutoff
frequency of the second-order filter is not In fact, the cutoff frequency
is less than 

As long as we are able to calculate the cutoff frequency of the higher
order filters formed in the cascade of first-order filters, we can use fre-
quency scaling to calculate component values that move the cutoff fre-
quency to its specified location. If we start with a cascade of n prototype
low-pass filters, we can compute the cutoff frequency for the resulting 
nth-order low-pass filter.We do so by solving for the value of that results
in :

(15.22)

To demonstrate the use of Eq. 15.22, let’s compute the cutoff fre-
quency of a fourth-order unity-gain low-pass filter constructed from a cas-
cade of four prototype low-pass filters:

(15.23)vc4 = 422
 
4

- 1 = 0.435 rad>s.

 vcn = 42n 2 - 1.

 2n 2 = vcn
2

+ 1,

 
1

vcn
2

+ 1
= ¢ 1

12
≤2>n

,

 
1

(2vcn
2

+ 1)n
=

1
12

 ,

 ƒ H(jvcn) ƒ = ` 1
(jvcn + 1)n ` =

1
12

 ,

 H(s) =

(-1)n

(s + 1)n  ,

ƒ H(  jv) ƒ = 1>12
vcn

vc .
vc .

-6 dBvc

�

�

vo

voLow-pass filterLow-pass filter
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Figure 15.17 � A cascade of identical unity-gain low-pass filters. (a) The block diagram. (b) The circuit.
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Example 15.7 Designing a Fourth-Order Low-Pass Op Amp Filter

Design a fourth-order low-pass filter with a cutoff
frequency of 500 Hz and a passband gain of 10. Use

capacitors. Sketch the Bode magnitude plot
for this filter.

Solution
We begin our design with a cascade of four proto-
type low-pass filters. We have already used
Eq. 15.23 to calculate the cutoff frequency for the
resulting fourth-order low-pass filter as 
A frequency scale factor of will scale
the component values to give a 500 Hz cutoff fre-
quency. A magnitude scale factor of 
permits the use of capacitors. The scaled com-
ponent values are thus

R = 138.46 Æ; C = 1 mF .

1 mF
km = 138.46

kf = 7222.39
0.435 rad>s.

1 mF

Finally, add an inverting amplifier stage with a gain
of As usual, we can arbitrarily select one
of the two resistor values. Because we are already
using resistors, let then,

The circuit for this cascaded the fourth-order
low-pass filter is shown in Fig. 15.18. It has the
transfer function

The Bode magnitude plot for this transfer func-
tion is sketched in Fig. 15.19.

H(s) = -10B 7222.39
s + 7222.39

R4

 .

Rf = 10Ri = 1384.6 Æ.

Ri = 138.46 Æ;138.46 Æ

Rf>Ri = 10.

�

�

vo

�

�

�

�

1 mF

138.46 �

�

�

1 mF

138.46 �

138.46 � 138.46 �
�

�

1 mF

138.46 �

138.46 �

�

�

�

�

1 mF

138.46 �

138.46 � 138.46 �

138.46 �

vi

Figure 15.18 � The cascade circuit for the fourth-order low-pass filter designed in Example 15.7.

Thus, we can design a fourth-order low-pass filter with any arbitrary cutoff
frequency by starting with a fourth-order cascade consisting of prototype
low-pass filters and then scaling the components by to
place the cutoff frequency at any value of desired.

Note that we can build a higher order low-pass filter with a
nonunity gain by adding an inverting amplifier circuit to the cascade.
Example 15.7 illustrates the design of a fourth-order low-pass filter
with nonunity gain.

vc

kf = vc>0.435
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Figure 15.19 � The Bode magnitude plot for the fourth-order low-pass
filter designed in Example 15.7.

By cascading identical low-pass filters, we can increase the asymptotic
slope in the transition and control the location of the cutoff frequency, but
our approach has a serious shortcoming: The gain of the filter is not con-
stant between zero and the cutoff frequency Remember that in an
ideal low-pass filter, the passband magnitude is 1 for all frequencies below
the cutoff frequency. But in Fig. 15.16, we see that the magnitude is less
than 1 (0 dB) for frequencies much less than the cutoff frequency.

This nonideal passband behavior is best understood by looking at the
magnitude of the transfer function for a unity-gain low-pass nth-order cas-
cade. Because

the magnitude is given by

(15.24)

As we can see from Eq. 15.24, when the denominator is
approximately 1, and the magnitude of the transfer function is also nearly 1.
But as the denominator becomes larger than 1, so the magnitude
becomes smaller than 1. Because the cascade of low-pass filters results in
this nonideal behavior in the passband, other approaches are taken in the
design of higher order filters. One such approach is examined next.

v: vcn,

v V vcn,

 =

1

a2(v>vcn)2
+ 1bn  .

 ƒ H(  jv) ƒ =

vcn
n

a2v2
+ vcn

2 bn

H(s) =

vcn
n

(s + vcn)n  ,

vc.
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1 This filter was developed by the British engineer S. Butterworth and reported in Wireless
Engineering 7 (1930): 536–541.

Butterworth Filters
A unity-gain Butterworth low-pass filter has a transfer function whose
magnitude is given by

(15.25)

where n is an integer that denotes the order of the filter.1

When studying Eq. 15.25, note the following:

1. The cutoff frequency is for all values of n.

2. If n is large enough, the denominator is always close to unity when

3. In the expression for the exponent of is always even.

This last observation is important, because an even exponent is required
for a physically realizable circuit (see Problem 15.26).

Given an equation for the magnitude of the transfer function, how do
we find ? The derivation for is greatly simplified by using a proto-
type filter.Therefore, we set equal to in Eq. 15.25.As before, we
will use scaling to transform the prototype filter to a filter that meets the
given filtering specifications.

To find first note that if N is a complex quantity, then
where is the conjugate of N. It follows that

(15.26)

But because we can write

(15.27)

Now observe that Thus,

or

(15.28)

The procedure for finding for a given value of n is as follows:

1. Find the roots of the polynomial

2. Assign the left-half plane roots to and the right-half plane
roots to 

3. Combine terms in the denominator of to form first- and
second-order factors.

Example 15.8 illustrates this process.

H(s)

H(-s) .
H(s)

1 + (-1)n s2n
= 0.

H(s)

H(s)H(-s) =

1

1 + (-1)ns2n  .

 =

1

1 + (-1)ns2n  ,

 =

1

1 + (-s2)n

 =

1

1 + (v2)n

 ƒ H(jv) ƒ
2

=

1

1 + v2n

s2
= -v2.

ƒ H(jv) ƒ
2

= H(s)H(-s).

s = jv,

ƒ H(jv) ƒ
2

= H(jv)H(-jv).

N*
ƒ N ƒ

2
= NN*,

H(s),

1 rad>svc

H(s)H(s)

v>vcƒ H(jv) ƒ ,

v 6 vc.

vc rad>s

ƒ H(jv) ƒ =

1

21 + (v>vc)
2n

 ,
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Example 15.8 Calculating Butterworth Transfer Functions

Find the Butterworth transfer functions for 
and 

Solution
For we find the roots of the polynomial

Rearranging terms, we find

Therefore, the four roots are

Roots and are in the left-half plane. Thus,

For we find the roots of the polynomial

1 + (-1)3s6
= 0 .

n = 3 ,

 =

1

(s2
+ 12s + 1)

 .

 H(s) =

1
(s + 1>12 - j>12 )(s + 1>12 + j>12 )

s3s2

 s4 = 1l315 �
= 1>12 + -j>12. 

 s3 = 1l225 �
= -1>12 + -j>12,

 s2 = 1l135 �
= -1>12 + j>12,

 s1 = 1l45 �
= 1>12 + j>12,

s4
= -1 = 1l180 �

 .

1 + (-1)2s4
= 0.

n = 2,

n = 3.
n = 2 Rearranging terms,

Therefore, the six roots are

Roots and are in the left-half plane. Thus,s5s4 ,s3 ,

 s6 = 1l300 �
= 1>2 + -j13>2.

 s5 = 1l240 �
= -1>2 + -j13>2,

 s4 = 1l180 �
= -1 + j0,

 s3 = 1l120 �
= -1>2 + j13>2,

 s2 = 1l60 �
= 1>2 + j13>2,

 s1 = 1l0 �
= 1,

s6
= 1l0 �

= 1l360 �
 .

 =

1

(s + 1)(s2
+ s + 1)

 .

 H(s) =

1
(s + 1)(s + 1>2 - j13>2)(s + 1>2 + j13>2)

We note in passing that the roots of the
Butterworth polynomial are always equally spaced
around the unit circle in the s plane. To assist in the
design of Butterworth filters, Table 15.1 lists the
Butterworth polynomials up to n = 8 .

n nth-Order Butterworth Polynomial

1

2

3

4

5

6

7

8 (s2
+ 0.390s + 1)(s2

+ 1.111s + 1)(s2
+ 1.6663s + 1)(s2

+ 1.962s + 1)

(s + 1)(s2
+ 0.445s + 1)(s2

+ 1.247s + 1)(s2
+ 1.802s + 1)

(s2
+ 0.518s + 1)(s2

+ 12 + 1)(s2
+ 1.932s + 1)

(s + 1)(s2
+ 0.618s + 1)(s2

+ 1.618s + 1)

(s2
+ 0.765s + 1)(s2

+ 1.848s + 1)

(s + 1)(s2
+ s + 1)

(s2
+ 12s + 1)

(s + 1)

Butterworth Filter Circuits
Now that we know how to specify the transfer function for a Butterworth
filter circuit (either by calculating the poles of the transfer function directly
or by using Table 15.1), we turn to the problem of designing a circuit with

TABLE 15.1 Normalized (so that ) Butterworth Polynomials up to the Eighth Order vc = 1 rad>s
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VoVi
1

s2 � 0.618s � 1
1

s2 � 1.618s � 1
1

s � 1

Figure 15.20 � A cascade of first- and second-order circuits with the indicated transfer
functions yielding a fifth-order low-pass Butterworth filter with .vc = 1 rad>s
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Figure 15.21 � A circuit that provides the second-order
transfer function for the Butterworth filter cascade.

such a transfer function. Notice the form of the Butterworth polynomials
in Table 15.1. They are the product of first- and second-order factors;
therefore, we can construct a circuit whose transfer function has a
Butterworth polynomial in its denominator by cascading op amp circuits,
each of which provides one of the needed factors.A block diagram of such
a cascade is shown in Fig. 15.20, using a fifth-order Butterworth poly-
nomial as an example.

All odd-order Butterworth polynomials include the factor 
so all odd-order Butterworth filter circuits must have a subcircuit that
provides the transfer function This is the transfer
function of the prototype low-pass op amp filter from Fig. 15.1. So what
remains is to find a circuit that provides a transfer function of the form

Such a circuit is shown in Fig. 15.21. The analysis of this circuit begins
by writing the s-domain nodal equations at the noninverting terminal of
the op amp and at the node labeled :

(15.29)

(15.30)

Simplifying Eqs. 15.29 and 15.30 yields

(15.31)

(15.32)

Using Cramer’s rule with Eqs. 15.31 and 15.32, we solve for :

(15.33)

Then, rearrange Eq. 15.33 to write the transfer function for the circuit in
Fig. 15.21:

(15.34)H(s) =

Vo

Vi
=

1

R2C1C2

s2
+

2
RC1

s +

1

R2C1C2

 .

 =

Vi

R2C1C2s
2

+ 2RC2s + 1
 .

 Vo =

` 2+RC1s Vi

-1 0
`

` 2+RC1s -(1+RC1s)
-1 1+RC2s

`

Vo

 -Va + (1 + RC2s)Vo = 0.

 (2 + RC1s)Va - (1 + RC1s)Vo = Vi  ,

 Vo sC2 +

Vo - Va

R
= 0.

 
Va - Vi

R
+ (Va - Vo)sC1 +

Va - Vo

R
= 0,

Va

H(s) = 1>(s2
+ b1s + 1) .

H(s) = 1>(s + 1) .

(s + 1) ,



15.4 Higher Order Op Amp Filters 579

Finally, set in Eq. 15.34; then

(15.35)

Note that Eq. 15.35 has the form required for the second-order circuit
in the Butterworth cascade. In other words, to get a transfer function of
the form

we use the circuit in Fig. 15.21 and choose capacitor values so that

(15.36)

We have thus outlined the procedure for designing an nth-order
Butterworth low-pass filter circuit with a cutoff frequency of 
and a gain of 1 in the passband. We can use frequency scaling to calculate
revised capacitor values that yield any other cutoff frequency, and we can
use magnitude scaling to provide more realistic or practical component
values in our design. We can cascade an inverting amplifier circuit to pro-
vide a gain other than 1 in the passband.

Example 15.9 illustrates this design process.

vc = 1 rad>s

b1 =

2
C1

 and 1 =

1
C1C2

 .

H(s) =

1

s2
+ b1s + 1

 ,

H(s) =

1
C1C2

s2
+

2
C1

s +

1
C1C2

 .

R = 1 Æ

Example 15.9 Designing a Fourth-Order Low-Pass Butterworth Filter

Design a fourth-order Butterworth low-pass filter
with a cutoff frequency of 500 Hz and a passband
gain of 10. Use as many resistors as possible.
Compare the Bode magnitude plot for this
Butterworth filter with that of the identical cascade
filter in Example 15.7.

Solution
From Table 15.1, we find that the fourth-order
Butterworth polynomial is

We will thus need a cascade of two second-order fil-
ters to yield the fourth-order transfer function plus
an inverting amplifier circuit for the passband gain
of 10. The circuit is shown in Fig. 15.22.

Let the first stage of the cascade implement 
the transfer function for the polynomial

From Eq. 15.36,

 C2 = 0.38  F.

 C1 = 2.61 F,

(s2
+ 0.765s + 1) .

(s2
+ 0.765s + 1)(s2

+ 1.848s + 1).

1 kÆ

Let the second stage of the cascade implement
the transfer function for the polynomial

From Eq. 15.36,

The preceding values for and 
yield a fourth-order Butterworth filter with a cutoff
frequency of A frequency scale factor of

will move the cutoff frequency to
500 Hz. A magnitude scale factor of will
permit the use of resistors in place of 
resistors.The resulting scaled component values are

 C4 = 294 nF.

 C3 = 344 nF,

 C2 = 121 nF,

 C1 = 831 nF,

 R = 1 kÆ,

1 Æ1 kÆ

km = 1000
kf = 3141.6

1 rad>s.

C4C3 ,C2 ,C1 ,

 C4 = 0.924 F.

 C3 = 1.08 F,

(s2
+ 1.848s + 1) .
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Finally, we need to specify the resistor values in the
inverting amplifier stage to yield a passband gain
of 10. Let then

Figure 15.23 compares the magnitude
responses of the fourth-order identical cascade fil-
ter from Example 15.7 and the Butterworth filter

Rf = 10R1 = 10 kÆ  .

R1 = 1 kÆ;

we just designed. Note that both filters provide a
passband gain of 10 (20 dB) and a cutoff frequency
of 500 Hz, but the Butterworth filter is closer to an
ideal low-pass filter due to its flatter passband and
steeper rolloff at the cutoff frequency. Thus, the
Butterworth design is preferred over the identical
cascade design.

R R

C1

C2

R

R1

Rf

R

C3

C4vi

�

�

vo�

�

�

�

�

�

�

�

Figure 15.22 � A fourth-order Butterworth filter with non-unity gain.
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Figure 15.23 � A comparison of the magnitude responses for a 
fourth-order low-pass filter using the identical cascade and Butterworth
designs.

The Order of a Butterworth Filter
It should be apparent at this point that the higher the order of the
Butterworth filter, the closer the magnitude characteristic comes to that of
an ideal low-pass filter. In other words, as n increases, the magnitude stays
close to unity in the passband, the transition band narrows, and the magni-
tude stays close to zero in the stopband. At the same time, as the order
increases, the number of circuit components increases. It follows then that
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a fundamental problem in the design of a filter is to determine the small-
est value of n that will meet the filtering specifications.

In the design of a low-pass filter, the filtering specifications are usually
given in terms of the abruptness of the transition region, as shown in
Fig. 15.24. Once and are specified, the order of the
Butterworth filter can be determined.

For the Butterworth filter,

(15.37)

(15.38)

It follows from the definition of the logarithm that

(15.39)

(15.40)

Now we solve for and and then form the ratio We get

(15.41)

where the symbols and have been introduced for convenience.
From Eq. 15.41 we can write

or

(15.42)

We can simplify Eq. 15.42 if is the cutoff frequency, because then 
equals and Hence

(15.43)

One further simplification is possible. We are using a Butterworth fil-
ter to achieve a steep transition region. Therefore, the filtering specifica-
tion will make Thus

(15.44)

(15.45)

Therefore, a good approximation for the calculation of n is

(15.46)

Note that , so we can work with either radians per second or
hertz to calculate n.

vs>vp = fs>fp

n =

-0.05As

 log10(vs>vp)
 .

 log10 ss L -0.05As.

 ss L 10-0.05As,

10-0.1As
W 1.

 n =

log10 ss

log10(vs>vp)
 .

sp = 1.-20 log1012,
Apvp

 n =

log10(ss>sp)

 log10(vs>vp)
 .

n log10(vs>vp) = log10(ss>sp),

spss

a vs

vp
bn

=

210-0.1As
- 1

210-0.1Ap
- 1

=

ss

sp
 ,

(vs>vp)n.vs
nvp

n

 10-0.1As
= 1 + v2n

s .

 10-0.1Ap
= 1 + v2n

p ,

 = -10 log10(1 + vs
2n).

 As = 20 log10 
1

21 + vs
2n

 = -10 log10(1 + vp
2n),

 Ap = 20 log10 
1

21 + vp
2n

vsAs ,vp ,Ap ,

Pass
band

Transition band Stop band

As

Ap

�H( jv)� dB

vp vs

log10v

Figure 15.24 � Defining the transition region for a
low-pass filter.
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The order of the filter must be an integer; hence, in using either
Eq. 15.42 or Eq. 15.46, we must select the nearest integer value greater
than the result given by the equation. The following examples illustrate
the usefulness of Eqs. 15.42 and 15.46.

Example 15.10 Determining the Order of a Butterworth Filter

a) Determine the order of a Butterworth filter that
has a cutoff frequency of 1000 Hz and a gain of
no more than at 6000 Hz.

b) What is the actual gain in dB at 6000 Hz?

Solution

a) Because the cutoff frequency is given, we know
We also note from the specification thatsp = 1.

-50 dB

is much greater than 1. Hence, we can
use Eq. 15.46 with confidence:

Therefore, we need a fourth-order Butterworth
filter.

b) We can use Eq. 15.25 to calculate the actual gain
at 6000 Hz. The gain in decibels will be

K = 20 log10¢ 1

21 + 68
≤ = -62.25 dB.

n =

(-0.05)(-50)
 log10(6000>1000)

= 3.21.

10-0.1(-50)

Example 15.11 An Alternate Approach to Determining the Order of a Butterworth Filter

a) Determine the order of a Butterworth filter
whose magnitude is 10 dB less than the passband
magnitude at 500 Hz and at least 60 dB less than
the passband magnitude at 5000 Hz.

b) Determine the cutoff frequency of the filter 
(in hertz).

c) What is the actual gain of the filter (in decibels)
at 5000 Hz?

Solution

a) Because the cutoff frequency is not given, we use
Eq. 15.42 to determine the order of the filter:

 n =

log10(1000>3)

log10(10)
= 2.52.

 vs>vp = fs>fp = 5000>500 = 10,

 ss = 210-0.1(-60)
- 1 L 1000,

 sp = 210-0.1(-10)
- 1 = 3,

Therefore we need a third-order Butterworth
filter to meet the specifications.

b) Knowing that the gain at 500 Hz is we can
determine the cutoff frequency. From Eq. 15.25 we
can write

where Therefore

and

It follows that

c) The actual gain of the filter at 5000 Hz is

 = -69.54 dB.

 K = -10 log10[1 + (5000>346.68)6]

fc = 346.68 Hz.

 = 2178.26 rad>s.

 vc =

v

29
  

6

1 + (v>vc)
6

= 10 ,

v = 1000p rad>s.

-10 log10[1 + (v>vc)
6] = -10 ,

-10 dB,
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Butterworth High-Pass, Bandpass, and Bandreject Filters
An nth-order Butterworth high-pass filter has a transfer function with the
nth-order Butterworth polynomial in the denominator, just like the nth-order
Butterworth low-pass filter. But in the high-pass filter, the numerator of the
transfer function is whereas in the low-pass filter, the numerator is 1.
Again, we use a cascade approach in designing the Butterworth high-pass
filter. The first-order factor is achieved by including a prototype high-pass
filter (Fig. 15.4, with and ) in the cascade.

To produce the second-order factors in the Butterworth polynomial,
we need a circuit with a transfer function of the form

Such a circuit is shown in Fig. 15.25.
This circuit has the transfer function

(15.47)

Setting yields

(15.48)

Thus, we can realize any second-order factor in a Butterworth polynomial
of the form by including in the cascade the second-order
circuit in Fig. 15.25 with resistor values that satisfy Eq. 15.49:

(15.49)

At this point, we pause to make a couple of observations relative to
Figs. 15.21 and 15.25 and their prototype transfer functions

and These observations are impor-
tant because they are true in general. First, the high-pass circuit in Fig.
15.25 was obtained from the low-pass circuit in Fig. 15.21 by interchanging
resistors and capacitors. Second, the prototype transfer function of a high-
pass filter can be obtained from that of a low-pass filter by replacing s in
the low-pass expression with (see Problem 15.46).

We can use frequency and magnitude scaling to design a Butterworth
high-pass filter with practical component values and a cutoff frequency
other than Adding an inverting amplifier to the cascade will
accommodate designs with nonunity passband gains. The problems at the
end of the chapter include several Butterworth high-pass filter designs.

Now that we can design both nth-order low-pass and high-pass
Butterworth filters with arbitrary cutoff frequencies and passband gains,
we can combine these filters in cascade (as we did in Section 15.3) to pro-
duce nth-order Butterworth bandpass filters. We can combine these filters
in parallel with a summing amplifier (again, as we did in Section 15.3) to
produce nth-order Butterworth bandreject filters. This chapter’s problems
also include Butterworth bandpass and bandreject filter designs.

1 rad>s.

1>s

s2>(s2
+ b1s + 1) .1>(s2

+ b1s + 1)

b1 =

2
R2

 and 1 =

1
R1R2

 .

(s2
+ b1s + 1)

H(s) =

s2

s2
+

2
R2

s +

1
R1R2

 .

C = 1 F

H(s) =

Vo

Vi
=

s2

s2
+

2
R2C

s +

1

R1R2C
2

 .

H(s) =

s2

s2
+ b1s + 1

 .

C = 1 FR1 = R2 = 1 Æ,

sn
 ,

�

�

vo

CC
R1

R2vi

�

�

�

�

Figure 15.25 � A second-order Butterworth high-pass
filter circuit.
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Objective 3—Understand how to use cascaded first- and second-order Butterworth filters

15.4 For the circuit in Fig. 15.25, find values of 
and that yield a second-order prototype
Butterworth high-pass filter.

R2

R1 Answer: R2 = 1.41 Æ  .R1 = 0.707 Æ  ,

NOTE: Also try Chapter Problems 15.34, 15.36 and 15.40.

15.5 Narrowband Bandpass and
Bandreject Filters

The cascade and parallel component designs for synthesizing bandpass
and bandreject filters from simpler low-pass and high-pass filters have the
restriction that only broadband, or low-Q, filters will result. (The Q, of
course, stands for quality factor.) This limitation is due principally to the
fact that the transfer functions for cascaded bandpass and parallel band-
reject filters have discrete real poles. The synthesis techniques work best
for cutoff frequencies that are widely separated and therefore yield the
lowest quality factors. But the largest quality factor we can achieve with
discrete real poles arises when the cutoff frequencies, and thus the pole
locations, are the same. Consider the transfer function that results:

(15.50)

Eq. 15.50 is in the standard form of the transfer function of a bandpass filter,
and thus we can determine the bandwidth and center frequency directly:

(15.51)

(15.52)

From Eqs. 15.51 and 15.52 and the definition of Q, we see that

(15.53)

Thus with discrete real poles, the highest quality bandpass filter (or band-
reject filter) we can achieve has 

To build active filters with high quality factor values, we need an op
amp circuit that can produce a transfer function with complex conjugate
poles. Figure 15.26 depicts one such circuit for us to analyze. At the invert-
ing input of the op amp, we sum the currents to get

Va

1>sC
=

-Vo

R3
 .

Q = 1>2 .

Q =

vo

b
=

vc

2vc
=

1
2

 .

 vo
2

= vc
2.

 b = 2vc ,

 =

0.5bs

s2
+ bs + vc

2 .

 =

svc

s2
+ 2vcs + vc

2

 H(s) = a -vc

s + vc
b a -s

s + vc
b

�

�

Vo

R1

R3

R2Vi

a

sC
1

sC
1

�

�
�

�

Figure 15.26 � An active high- bandpass filter.Q

A S S E S S M E N T  P R O B L E M
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Solving for 

(15.54)

At the node labeled a, we sum the currents to get

Solving for 

(15.55)

Substituting Eq. 15.54 into Eq. 15.55 and then rearranging, we get an
expression for the transfer function :

(15.56)

where

Since Eq. 15.56 is in the standard form of the transfer function for a
bandpass filter, that is,

we can equate terms and solve for the values of the resistors, which will
achieve a specified center frequency ( ), quality factor (Q), and passband
gain (K):

(15.57)

(15.58)

(15.59)

At this point, it is convenient to define the prototype version of the
circuit in Fig. 15.25 as a circuit in which and Then
the expressions for and can be given in terms of the desired
quality factor and passband gain.We leave you to show (in Problem 15.48)
that for the prototype circuit, the expressions for and are

Scaling is used to specify practical values for the circuit components. This
design process is illustrated in Example 15.12.

 R3 = 2Q.

 R2 = Q>(2Q2
- K),

 R1 = Q>K,

R3R2 ,R1 ,

R3R2 ,R1 ,
C = 1 F.vo = 1 rad>s

 vo
2

=

1

ReqR3C
2 .

 Kb =

1
R1C

 ;

 b =

2
R3C

 ;

vo

H(s) =

-Kbs

s2
+ bs + vo

2  ,

Req = R1 7R2 =

R1R2

R1 + R2
 .

H(s) =

-s

R1C

s2
+

2
R3C

s +

1

ReqR3C
2

 ,

Vo >  Vi

Vi = (1 + 2sR1C + R1>R2)Va - sR1CVo  .

Vi ,

Vi - Va

R1
=

Va - Vo

1>sC
+

Va

1>sC
+

Va

R2
 .

Va =

-Vo

sR3C
 .

Va,
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Example 15.12 Designing a High-Q Bandpass Filter

Design a bandpass filter, using the circuit in Fig. 15.26,
which has a center frequency of 3000 Hz, a quality
factor of 10, and a passband gain of 2. Use 
capacitors in your design. Compute the transfer func-
tion of your circuit, and sketch a Bode plot of its mag-
nitude response.

Solution
Since and the values for 
and in the prototype circuit are

The scaling factors are and
After scaling,

The circuit is shown in Fig. 15.27.
Substituting the values of resistance and capac-

itance in Eq. 15.56 gives the transfer function for
this circuit:

It is easy to see that this transfer function meets the
specification of the bandpass filter defined in the
example. A Bode plot of its magnitude response is
sketched in Fig. 15.28.

H(s) =

-3770s

s2
+ 1885.0s + 355 * 106 .

 R3 = 106.1 kÆ.

 R2 = 268.0 Æ,

 R1 = 26.5 kÆ,

km = 108>kf .
kf = 6000p

 R3 = 2(10) = 20.

 R2 = 10>(200 - 2) = 10>198,

 R1 = 10>2 = 5,

R3

R2 ,R1 ,K = 2 ,Q = 10

0.01 mF

Figure 15.27 � The high-Q bandpass filter designed in
Example 15.12.
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Figure 15.28 � The Bode magnitude plot for the high-Q bandpass filter
designed in Example 15.12.

The parallel implementation of a bandreject filter that combines low-
pass and high-pass filter components with a summing amplifier has the same
low-Q restriction as the cascaded bandpass filter. The circuit in Fig. 15.29 is
an active high-Q bandreject filter known as the twin-T notch filter because of
the two T-shaped parts of the circuit at the nodes labeled a and b.

We begin the analysis of this circuit by summing the currents away
from node a:

or

(15.60)Va [2sCR + 2] - Vo [sCR + 2s] = sCRVi  .

(Va - Vi)sC + (Va - Vo)sC +

2(Va - sVo )
R

= 0
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Summing the currents away from node b yields

or

(15.61)

Summing the currents away from the noninverting input terminal of
the top op amp gives

or

(15.62)

From Eqs. 15.60–15.62, we can use Cramer’s rule to solve for :

(15.63)

Rearranging Eq. 15.63, we can solve for the transfer function:

(15.64)H(s) =

Vo

Vi
=

¢s2
+

1

R2C2 ≤
cs2

+

4(1 - s)
RC

s +

1

R2C2 d
 ,

 =

(R2C2s2
+ 1)Vi

R2C2s2
+ 4RC(1 - s)s + 1

 .

 Vo =

3 2(RCs + 1) 0 sCRVi

0 2(RCs + 1) Vi

-RCs -1 0

3

3 2(RCs + 1) 0 -(RCs + 2s)
0 2(RCs + 1) -(2sRCs + 1)

-RCs -1 RCs + 1

3

Vo

-sRCVa - Vb + (sRC + 1)Vo = 0.

(Vo - Va )sC +

Vo - Vb

R
= 0

Vb [2 + 2RCs] - Vo [1 + 2sRCs] = Vi  .

Vb - Vi

R
+

Vb - Vo

R
+ (Vb - sVo)2sC = 0

b

a

R R

Vi

Vo

R
2

�

�

sVo

�

�

sVo

(1 � s)R

sR

sC
1

sC
1

2sC
1

�

�

�

�

�

�

Figure 15.29 � A high-Q active bandreject filter.
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which is in the standard form for the transfer function of a bandreject filter:

(15.65)

Equating Eqs. 15.64 and 15.65 gives

(15.66)

(15.67)

In this circuit, we have three parameters (R, C, and ) and two design
constraints ( and ). Thus one parameter is chosen arbitrarily; it is usu-
ally the capacitor value because this value typically provides the fewest
commercially available options. Once C is chosen,

(15.68)

and

(15.69)

Example 15.13 illustrates the design of a high-Q active bandreject filter.

s = 1 -

b

4vo
= 1 -

1
4Q

 .

R =

1
voC

 ,

bvo

s

 b =

4(1 - s)
RC

 .

 vo
2

=

1

R2C2 ,

H(s) =

s2
+ v2

0

s2
+ bs + v2

0
 .

Example 15.13 Designing a High-Q Bandreject Filter

Design a high-Q active bandreject filter (based on
the circuit in Fig. 15.29) with a center frequency of

and a bandwidth of Use 
capacitors in your design.

Solution
In the bandreject prototype filter,

and As just discussed, once 
and Q are given, C can be chosen arbitrarily, and R
and can be found from Eqs. 15.68 and 15.69. From
the specifications, Using Eqs. 15.68 and
15.69, we see that

 s = 0.95.

 R = 200 Æ,

Q = 5.
s

voC = 1 F.R = 1 Æ,
vo = 1 rad>s,

1 mF1000 rad>s.5000 rad>s
Therefore we need resistors with the values 
(R), ( ), ( ), and 
The final design is depicted in Fig. 15.30, and the
Bode magnitude plot is shown in Fig. 15.31.

[(1 - s)R] .10 ÆsR190 ÆR>2100 Æ
200 Æ

10 �

100 �

190 �

200 � 200 �

1 mF 1 mF

2 mF

�

�

svo

�

�

svo

vo

vi

�

�

�

�

�

�

Figure 15.30 � The high- active bandreject filter designed in Example 15.13.Q
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Figure 15.31 � The Bode magnitude plot for the high- active 
bandreject filter designed in Example 15.13.

Q

Objective 4—Be able to use design equations to calculate component values for prototype narrowband, bandpass,
and bandreject filters

15.5 Design an active bandpass filter with 
and Use capaci-

tors, and specify the values of all resistors.

Answer: R3 = 16 kÆ.R2 = 65.04 Æ,R1 = 1.6 kÆ,

1 mFvo = 1000 rad>s.K = 5 ,
Q = 8 , 15.6 Design an active unity-gain bandreject filter

with and Use 
capacitors in your design, and specify the values
of R and 

Answer: s = 0.9375 .R = 500 Æ  ,

s .

2 mFQ = 4 .vo = 1000 rad>s

NOTE: Also try Chapter Problem 15.60.

A S S E S S M E N T  P R O B L E M S

Practical Perspective
Bass Volume Control
We now look at an op amp circuit that can be used to control the amplifica-
tion of an audio signal in the bass range. The audio range consists of signals
having frequencies from to . The bass range includes frequen-
cies up to 300 Hz. The volume control circuit and its frequency response are
shown in Fig. 15.32. The particular response curve in the family of response
curves is selected by adjusting the potentiometer setting in Fig. 15.32(a).

In studying the frequency response curves in Fig. 15.32(b) note the fol-
lowing. First, the gain in dB can be either positive or negative. If the gain
is positive a signal in the bass range is amplified or boosted. If the gain is
negative the signal is attenuated or cut. Second, it is possible to select a

20 kHz20 Hz
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vo

R1 R1R2

C1

vs

dB
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Figure 15.32 � (a) Bass volume control circuit; (b) Bass volume control circuit frequency response.

R1 R1R2

(l�a)R2

1/sC1

Vs

Vo

VbVa aR2

�

�

response characteristic that yields unity gain (zero dB) for all frequencies in
the bass range. As we shall see, if the potentiometer is set at its midpoint,
the circuit will have no effect on signals in the bass range. Finally, as the
frequency increases, all the characteristic responses approach zero dB or
unity gain. Hence the volume control circuit will have no effect on signals
in the upper end or treble range of the audio frequencies.

The first step in analyzing the frequency response of the circuit in
Fig. 15.32(a) is to calculate the transfer function . To facilitate this
calculation the s-domain equivalent circuit is given in Fig. 15.33. The node
voltages and have been labeled in the circuit to support node volt-
age analysis. The position of the potentiometer is determined by the numer-
ical value of , as noted in Fig. 15.33.

To find the transfer function we write the three node voltage equations
that describe the circuit and then solve the equations for the voltage ratio

. The node voltage equations are

These three node-voltage equations can be solved to find as a function
of and hence the transfer function :

It follows directly that

Now let’s verify that this transfer function will generate the family of fre-
quency response curves depicted in Fig. 15.32(b). First note that when

the magnitude of is unity for all frequencies, i.e.,

|H(jv)| =

|R1 + 0.5R2 + jvR1R2C1|
|R1 + 0.5R2 + jvR1R2C1|

= 1.

H(  jv)a = 0.5

H(jv) =

-(R1 + aR2 + jvR1R2C1)
[R1 + (1 - a)R2 + jvR1R2C1]

 .

H(s) =

Vo

Vs
=

-(R1 + aR2 + R1R2C1s)
R1 + (1 - a)R2 + R1R2C1s

 .

H(s)Vs

Vo

 
Va

(1 - a)R2
+

Vb

aR2
= 0.

 
Vb

aR2
+ (Vb - Va)s C1 +

Vb - Vo

R1
= 0;

 
Va

(1 - a)R2
+

Va - Vs

R1
+ (Va - Vb)s C1 = 0;

Vo >  Vs

a

VbVa

Vo >  Vs

Figure 15.33 � The s-domain circuit for the bass 
volume control. Note that determines the 
potentiometer setting, so .0 … a … 1

a
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When we have

Observe that at is the reciprocal of at , that is

With a little thought the reader can see that the reciprocal relationship
holds for all frequencies, not just . For example and 
are symmetric with and

while

Hence

It follows that depending on the value of the volume control circuit can
either amplify or attenuate the incoming signal.

The numerical values of , , and are based on two design deci-
sions. The first design choice is the passband amplification or attenuation
in the bass range (as ). The second design choice is the frequency at
which this passband amplification or attenuation is changed by . The
component values which satisfy the design decisions are calculated with 
equal to either 1 or 0.

As we have already observed, the maximum gain will be 
and the maximum attenuation will be . If we assume

then the gain (or attenuation) will differ by 
from its maximum value when . This can be seen by noting that

and

NOTE: Assess your understanding of this Practical Perspective by trying
Chapter Problems 15.61 and 15.62.

 =

|1 + j1|

` R1 + R2

R1
+ j1 `

L 12 ¢ R1

R1 + R2
≤ .

 ̀ H¢j 
1

R2C1
≤ `
a=0

=

|R1 + jR1|
|R1 + R2 + jR1|

 =

` R1 + R2

R1
+ j1 `

|1 + j1|
L

1
12

 ¢R1 + R2

R1
≤

 ̀ H¢j 
1

R2C1
≤ `
a= 1

=

|R1 + R2 + jR1|
|R1 + jR1|

v = 1>R2C1

3 dB(R1 + R2)>R1 W 1
R1>(R1 + R2)

(R1 + R2)>R1

a

3 dB
v: 0

C1R2R1

a

H(  jv)a=0.4 =

1
H(jv)a=0.6

 .

 H(jv)a= 0.6 =

-(R1 + 0.6R2) + jvR1R2C1

(R1 + 0.4R2) + jvR1R2C1
 .

 H(jv)a=0.4 =

-(R1 + 0.4R2) + jvR1R2C1

(R1 + 0.6R2) + jvR1R2C1

a = 0.5
a = 0.6a = 0.4v = 0

|H(  j0)|a= 1 =

R1 + R2

R1
=

1
|H(  j0)|a=0

 .

a = 0|H(  j  0)|a = 1|H(  j  0)|

|H(  j0)| =

R1 + aR2

R1 + (1 - a)R2
 .

v = 0
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Summary

• Active filters consist of op amps, resistors, and capacitors.
They can be configured as low-pass, high-pass, bandpass,
and bandreject filters.They overcome many of the disad-
vantages associated with passive filters. (See page 558.)

• A prototype low-pass filter has component values of
and , and it produces a unity

passband gain and a cutoff frequency of The
prototype high-pass filter has the same component val-
ues and also produces a unity passband gain and a cut-
off frequency of (See pages 559 and 560.)

• Magnitude scaling can be used to alter component val-
ues without changing the frequency response of a circuit.
For a magnitude scale factor of km, the scaled (primed)
values of resistance, capacitance, and inductance are

(See page 562.)

• Frequency scaling can be used to shift the frequency
response of a circuit to another frequency region without
changing the overall shape of the frequency response.
For a frequency scale factor of , the scaled (primed)
values of resistance, capacitance, and inductance are

(See page 562.)

• Components can be scaled in both magnitude and fre-
quency, with the scaled (primed) component values
given by

(See page 562.)

• The design of active low-pass and high-pass filters can
begin with a prototype filter circuit. Scaling can then be
applied to shift the frequency response to the desired
cutoff frequency, using component values that are com-
mercially available. (See page 563.)

• An active broadband bandpass filter can be constructed
using a cascade of a low-pass filter with the bandpass fil-
ter’s upper cutoff frequency, a high-pass filter with the
bandpass filter’s lower cutoff frequency, and (optionally)
an inverting amplifier gain stage to achieve nonunity
gain in the passband. Bandpass filters implemented in
this fashion must be broadband filters ( ), so
that the elements of the cascade can be specified inde-
pendently of one another. (See page 566.)

• An active broadband bandreject filter can be con-
structed using a parallel combination of a low-pass filter
with the bandreject filter’s lower cutoff frequency and a

vc2 W vc1

R¿ = kmR, L¿ = (km>kf)L, and C¿ = C>(kmkf).

R¿ = R, L¿ = L>kf, and C¿ = C>kf.

kf

R¿ = kmR, L¿ = kmL, and C¿ = C>km.

1 rad>s.

1 rad>s.
C = 1 FR1 = R2 = 1 Æ

high-pass filter with the bandreject filter’s upper cutoff
frequency. The outputs are then fed into a summing
amplifier, which can produce nonunity gain in the pass-
band. Bandreject filters implemented in this way must
be broadband filters ( ), so that the low-pass
and high-pass filter circuits can be designed independ-
ently of one another. (See page 570.)

• Higher order active filters have multiple poles in their
transfer functions, resulting in a sharper transition from
the passband to the stopband and thus a more nearly
ideal frequency response. (See page 571.)

• The transfer function of an nth-order Butterworth low-
pass filter with a cutoff frequency of can be
determined from the equation

by
• finding the roots of the denominator polynomial
• assigning the left-half plane roots to H(s)

• writing the denominator of H(s) as a product of first-
and second-order factors

(See page 576–577.)

• The fundamental problem in the design of a
Butterworth filter is to determine the order of the filter.
The filter specification usually defines the sharpness of
the transition band in terms of the quantities Ap, p, As,
and s. From these quantities, we calculate the smallest
integer larger than the solution to either Eq. 15.42 or
Eq. 15.46. (See page 581.)

• A cascade of second-order low-pass op amp filters
(Fig. 15.21) with 1 resistors and capacitor values cho-
sen to produce each factor in the Butterworth poly-
nomial will produce an even-order Butterworth low-pass
filter.Adding a prototype low-pass op amp filter will pro-
duce an odd-order Butterworth low-pass filter. (See
page 579.)

• A cascade of second-order high-pass op amp filters
(Fig. 15.25) with 1 F capacitors and resistor values cho-
sen to produce each factor in the Butterworth poly-
nomial will produce an even-order Butterworth
high-pass filter. Adding a prototype high-pass op amp
filter will produce an odd-order Butterworth high-pass
filter. (See page 583.)

• For both high- and low-pass Butterworth filters, fre-
quency and magnitude scaling can be used to shift the
cutoff frequency from and to include realistic1 rad>s

Æ

v

v

H(s)H(-s) =

1

1 + (-1)ns2n

1 rad>s

vc2 W vc1



component values in the design. Cascading an inverting
amplifier will produce a nonunity passband gain. (See
page 578.)

• Butterworth low-pass and high-pass filters can be cas-
caded to produce Butterworth bandpass filters of any
order n. Butterworth low-pass and high-pass filters can
be combined in parallel with a summing amplifier to
produce a Butterworth bandreject filter of any order n.
(See page 583.)

• If a high-Q, or narrowband, bandpass, or bandreject fil-
ter is needed, the cascade or parallel combination will
not work. Instead, the circuits shown in Figs. 15.26 and
15.29 are used with the appropriate design equations.
Typically, capacitor values are chosen from those com-
mercially available, and the design equations are used
to specify the resistor values. (See page 584.)

Section 15.1

15.1 a) Using the circuit in Fig. 15.1, design a low-pass
filter with a passband gain of 10 dB and a cutoff
frequency of 1 kHz. Assume a 750 nF capacitor
is available.

b) Draw the circuit diagram and label all
components.

15.2 a) Using only three components from Appendix
H, design a low-pass filter with a cutoff fre-
quency and passband gain as close as possible
to the specifications in Problem 15.1(a). Draw
the circuit diagram and label all component
values.

b) Calculate the percent error in this new 
filter’s cutoff frequency and passband gain
when compared to the values specified in
Problem 15.1(a).

15.3 Design an op amp-based low-pass filter with a cut-
off frequency of 2500 Hz and a passband gain of 5
using a 10 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) If the value of the feedback resistor in the filter
is changed but the value of the resistor in the
forward path is unchanged, what characteristic
of the filter is changed?

15.4 The input to the low-pass filter designed in
Problem 15.3 is 3.5 cos t V.

a) Suppose the power supplies are . What is
the smallest value of that will still cause the
op amp to operate in its linear region?

b) Find the output voltage when .

c) Find the output voltage when .

d) Find the output voltage when .v = 8vc

v = 0.125vc

v = vc

Vcc

;Vcc

v

15.5 Find the transfer function for the circuit
shown in Fig. P15.5 if is the equivalent imped-
ance of the feedback circuit, is the equivalent
impedance of the input circuit, and the operational
amplifier is ideal.

Figure P15.5

15.6 a) Use the results of Problem 15.5 to find the trans-
fer function of the circuit shown in Fig. P15.6.

b) What is the gain of the circuit as ?

c) What is the gain of the circuit as ?

d) Do your answers to (b) and (c) make sense in
terms of known circuit behavior?

Figure P15.6

15.7 Repeat Problem 15.6, using the circuit shown in
Fig. P15.7.

vi vo

�

�

�

�

R1

C1

R2

C2

�

�

v: q

v: 0

Vi Vo

�

�

�

�

Zi

Zf

�

�

Zi

Zf

Vo >  Vi

Problems

Problems 593

DESIGN
PROBLEM
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Figure P15.7

15.8 a) Use the circuit in Fig. 15.4 to design a high-pass
filter with a cutoff frequency of 8 kHz and a
passband gain of 14 dB. Use a 3.9 nF capacitor in
the design.

b) Draw the circuit diagram of the filter and label
all the components.

15.9 Using only three components from Appendix H,
design a high-pass filter with a cutoff frequency and
passband gain as close as possible to the specifica-
tions in Problem 15.8.

a) Draw the circuit diagram and label all compo-
nent values.

b) Calculate the percent error in this new filter’s cut-
off frequency and passband gain when compared
to the values specified in Problem 15.10(a).

15.10 Design an op amp-based high-pass filter with a cut-
off frequency of 4 kHz and a passband gain of 8
using a 250 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and the output voltage.

b) If the value of the feedback resistor in the filter
is changed but the value of the resistor in the
forward path is unchanged, what characteristic
of the filter is changed?

15.11 The input to the high-pass filter designed in
Problem 15.10 is 2.5 cos t V.

a) Suppose the power supplies are . What is
the smallest value of that will still cause the
op amp to operate in its linear region?

b) Find the output voltage when .

c) Find the output voltage when .

d) Find the output voltage when .

Section 15.2

15.12 The voltage transfer function for either high-pass
prototype filter shown in Fig. P15.12 is

H(s) =

s

s + 1
 .

v = 8vc

v = 0.125vc

v = vc

Vcc

;Vcc

v

vi vo

�

�

�

�

R1
C1

R2

C2

�

�

Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

Figure P15.12

15.13 The voltage transfer function of either low-pass
prototype filter shown in Fig. P15.13 is

Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

Figure P15.13

15.14 The voltage transfer function of the prototype
bandpass filter shown in Fig. P15.14 is

H(s) =

a 1
Q
bs

s2
+ a 1

Q
bs + 1

 .

(a)

R � 1 �

(b)

L � 1 H

�

�

vo

�

�

vi

�

�

vo

�

�

vi

C � 1 F

R � 1 �

H¿(s) =

1
(s>kf) + 1

 .

H(s) =

1
s + 1

 .

C � 1 F

L � 1 H

R � 1 �

�

�

vo

�

�

vi

�

�

vo

�

�

vi

R � 1 �

(a)

(b)

H¿(s) =

(s>kf)

(s>kf) + 1
 .
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Show that if the circuit is scaled in both magnitude
and frequency, the scaled transfer function is

Figure P15.14

15.15 a) Specify the component values for the prototype
passive bandpass filter described in Problem 15.14
if the quality factor of the filter is 20.

b) Specify the component values for the scaled
bandpass filter described in Problem 15.14 if
the quality factor is 20; the center, or resonant,
frequency is and the impedance at
resonance is 

c) Draw a circuit diagram of the scaled filter and
label all the components.

15.16 An alternative to the prototype bandpass filter
illustrated in Fig. P15.14 is to make ,

and henrys.

a) What is the value of C in the prototype
filter circuit?

b) What is the transfer function of the
prototype filter?

c) Use the alternative prototype circuit just described
to design a passive bandpass filter that has a qual-
ity factor of 16, a center frequency of 
and an impedance of at resonance.

d) Draw a diagram of the scaled filter and label all
the components.

e) Use the results obtained in Problem 15.14 to
write the transfer function of the scaled circuit.

15.17 The passive bandpass filter illustrated in Fig. 14.22
has two prototype circuits. In the first prototype
circuit, and

In the second prototype circuit,
farads, and

henrys.

a) Use one of these prototype circuits (your
choice) to design a passive bandpass filter that
has a quality factor of 25 and a center frequency
of The resistor R is 40 kÆ.50 krad>s.

L = (1>Q)
C = QR = 1 Æ,vo = 1 rad>s,

R = Q ohms.
L = 1 H,C = 1 F,vo = 1 rad>s,

10 kÆ

25 krad>s,

L = QR = 1 Æ,
vo = 1 rad>s

5 kÆ.
40 krad>s;

L � 1 H

�

�

vo

�

�

vi

C � 1 F

R � � 1
Q

H¿(s) =

a 1
Q
b a s

kf
b

a s

kf
b2

+ a 1
Q
b a s

kf
b + 1

 .

b) Draw a circuit diagram of the scaled filter and
label all components.

15.18 The passive bandreject filter illustrated in
Fig. 14.28(a) has the two prototype circuits shown
in Fig. P15.18.

a) Show that for both circuits, the transfer function is

b) Write the transfer function for a bandreject fil-
ter that has a center frequency of and
a quality factor of 10.

Figure P15.18

15.19 The transfer function for the bandreject filter
shown in Fig. 14.28(a) is

Show that if the circuit is scaled in both magnitude
and frequency, the transfer function of the scaled
circuit is equal to the transfer function of the
unscaled circuit with s replaced by where 
is the frequency scale factor.

15.20 Show that the observation made in Problem 15.19
with respect to the transfer function for the circuit
in Fig. 14.28(a) also applies to the bandreject filter
circuit (lower one) in Fig. 14.31.

15.21 The two prototype versions of the passive band-
reject filter shown in Fig. 14.31 (lower circuit) are
shown in Fig. P15.21(a) and (b).

Show that the transfer function for either ver-
sion is

H(s) =

s2
+ 1

s2
+ a 1

Q
bs + 1

 .

kf(s>kf),

H(s) =

s2
+ a 1

LC
b

s2
+ aR

L
bs + a 1

LC
b

 .

(b)

1 �

�

�

vo

�

�

vi

(a)

1 H

1 F

Q H
�

�

vo

�

�

vi

 � 1
Q

F1
Q

8000 rad>s

H(s) =

s2
+ 1

s2
+ a 1

Q
bs + 1

 .
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Figure P15.21

15.22 The circuit in Fig. P9.24 is scaled so that the 
resistor is replaced by resistor and the

400 mH inductor is replaced by a 20 mH inductor.

a) What is the scaled value of the capacitor? 

b) Find the frequency for which the impedance Zab
is purely resistive for the scaled circuit.

c) How is the frequency you found in part (b)
related to the frequency for which the impedance
Zab is purely resistive in the un-scaled circuit?

15.23 Scale the inductor and capacitor in Fig. P9.66 so
that the magnitude and the phase angle of the 
output current do not change when the input 
frequency is changed from 250 rad/sec to 
10,000 rad/sec.

a) What are the scaled values of the inductor and
capacitor? 

b) What is the steady-state value of the output 
current, , when the input current is 

60 cos 10,000t mA?

15.24 Scale the bandpass filter in Problem 14.18 so that
the center frequency is 25 kHz and the quality fac-
tor is still 8, using a inductor. Determine the
values of the resistor and the capacitor, and the two
cutoff frequencies of the scaled filter.

15.25 Scale the bandreject filter in Problem 14.38 to get 
a center frequency of 16 krad/s, using a 50 nF 
capacitor. Determine the values of the resistor,
the inductor, and the bandwidth of the scaled filter.

15.26 a) Show that if the low-pass filter circuit illustrated
in Fig. 15.1 is scaled in both magnitude and fre-
quency, the transfer function of the scaled circuit
is the same as Eq. 15.1 with s replaced by ,
where is the frequency scale factor.

b) In the prototype version of the low-pass filter
circuit in Fig. 15.1,

and What is the
transfer function of the prototype circuit?

c) Using the result obtained in (a), derive the
transfer function of the scaled filter.

15.27 a) Show that if the high-pass filter illustrated in
Fig. 15.4 is scaled in both magnitude and fre-
quency, the transfer function is the same as

R1 = 1>K ohms.R2 = 1 Æ,
C = 1 F,vc = 1 rad>s,

kf

s>kf

25 mH

io

80 Æ200 Æ

Q �

1 H

1 F

(a) (b)

�

�

vo

�

�

vi 1 �

Q F
�

�

vo

�

�

vi

 H1
Q

Eq. 15.4 with s replaced by where is the
frequency scale factor.

b) In the prototype version of the high-pass filter
circuit in Fig. 15.4,

and What is the transfer
function of the prototype circuit?

c) Using the result in (a), derive the transfer func-
tion of the scaled filter.

Section 15.3

15.28 a) Using capacitors, design an active broad-
band first-order bandpass filter that has a lower
cutoff frequency of 200 Hz, an upper cutoff fre-
quency of 2000 Hz, and a passband gain of
20 dB. Use prototype versions of the low-pass
and high-pass filters in the design process (see
Problems 15.26 and 15.27).

b) Write the transfer function for the scaled filter.

c) Use the transfer function derived in part (b) to
find where is the center frequency of
the filter.

d) What is the passband gain (in decibels) of the fil-
ter at ?

e) Using a computer program of your choice, make
a Bode magnitude plot of the filter.

15.29 a) Using capacitors, design an active broad-
band first-order bandreject filter with a lower
cutoff frequency of 80 Hz, an upper cutoff fre-
quency of 800 Hz, and a passband gain of 0 dB.
Use the prototype filter circuits introduced in
Problems 15.26 and 15.27 in the design process.

b) Draw the circuit diagram of the filter and label
all the components.

c) What is the transfer function of the scaled filter?

d) Evaluate the transfer function derived in (c) at
the center frequency of the filter.

e) What is the gain (in decibels) at the 
center frequency?

f) Using a computer program of your choice,
make a Bode magnitude plot of the filter trans-
fer function.

15.30 Design a unity-gain bandpass filter, using a cascade
connection, to give a center frequency of 200 Hz
and a bandwidth of 1000 Hz. Use capacitors.
Specify and 

15.31 Design a parallel bandreject filter with a center fre-
quency of , a bandwidth of ,
and a passband gain of 6. Use capacitors, and
specify all resistor values.

15.32 Show that the circuit in Fig. P15.32 behaves as a
bandpass filter. (Hint—find the transfer function
for this circuit and show that it has the same form as

0.2 mF
4000 rad>s1000 rad>s

RH.RL,fc2,fc1,
5 mF

2 mF

vo

voH(jvo),

50 nF

R2 = K ohms.C = 1 F,
R1 = 1 Æ,vc = 1 rad>s,

kfs>kf,
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the transfer function for a bandpass filter. Use the
result from Problem 15.1.)

a) Find the center frequency, bandwidth and gain
for this bandpass filter.

b) Find the cutoff frequencies and the quality for
this bandpass filter.

Figure P15.32

15.33 For circuits consisting of resistors, capacitors, induc-
tors, and op amps, involves only even pow-
ers of To illustrate this, compute for the
three circuits in Fig. P15.33 when

Figure P15.33

R

1
sC

(c)

Vi
Vo

(a)

(b)

�

�

Vo

�

�

Vi

R1

R1

R2

R3

R2

1
sC

1
sC

1
sC

�

�

Vo

�

�

Vi sL

�

�

H(s) =

Vo

Vi
 .

ƒ H(  jv) ƒ
2v.

ƒ H(  jv) ƒ
2

vo

�

�

vi

�

�

�

�

5 k�

10 �F

50 �F400 �

Section 15.4

15.34 a) Determine the order of a low-pass Butterworth
filter that has a cutoff frequency of 2000 Hz and
a gain of no more than at 7000 Hz.

b) What is the actual gain, in decibels, at 7000 Hz?

15.35 The circuit in Fig. 15.21 has the transfer function
given by Eq. 15.34. Show that if the circuit in
Fig. 15.21 is scaled in both magnitude and fre-
quency, the transfer function of the scaled circuit is

15.36 a) Write the transfer function for the prototype
low-pass Butterworth filter obtained in
Problem 15.34(a).

b) Write the transfer function for the scaled filter
in (a) (see Problem 15.35).

c) Check the expression derived in part (b) by
using it to calculate the gain (in decibels) at
7000 Hz. Compare your result with that found in
Problem 15.34(b).

15.37 a) Using resistors and ideal op amps, design a
circuit that will implement the low-pass
Butterworth filter specified in Problem 15.34.
The gain in the passband is one.

b) Construct the circuit diagram and label all com-
ponent values.

15.38 The purpose of this problem is to illustrate the
advantage of an nth-order low-pass Butterworth fil-
ter over the cascade of n identical low-pass sections
by calculating the slope (in decibels per decade) of
each magnitude plot at the corner frequency To
facilitate the calculation, let y represent the magni-
tude of the plot (in decibels), and let 
Then calculate at for each plot.

a) Show that at the corner frequency
of an nth-order low-pass proto-

type Butterworth filter,

b) Show that for a cascade of n identical low-pass
prototype sections, the slope at is

c) Compute for each type of filter for
and .

d) Discuss the significance of the results obtained
in part (c).

qn = 1, 2, 3, 4,
dy>dx

dy

dx
=

-20n(21>n
- 1)

21>n   dB>dec.

vc

dy

dx
= -10n dB>dec.

(vc = 1 rad>s)

vcdy>dx
x = log10v.

vc.

1 kÆ

H¿(s) =

1

R2C1C2

a s

kf
b 2

+

2
RC1
a s

kf
b +

1

R2C1C2

 .

-30 dB

Problems 597

DESIGN
PROBLEM



598 Active Filter Circuits

15.39 Verify the entries in Table 15.1 for and 

15.40 The circuit in Fig. 15.25 has the transfer function
given by Eq. 15.47. Show that if the circuit is scaled
in both magnitude and frequency, the transfer func-
tion of the scaled circuit is

Hence the transfer function of a scaled circuit is
obtained from the transfer function of an unscaled
circuit by simply replacing s in the unscaled trans-
fer function by where is the frequency scal-
ing factor.

15.41 a) Using resistors and ideal op amps, design a
high-pass unity-gain Butterworth filter that has
a cutoff frequency of 2.5 kHz and has a gain of
no more than at 500 Hz.

b) Draw a circuit diagram of the filter and label all
the components.

15.42 a) Using 250 nF capacitors and ideal op amps,
design a low-pass unity-gain Butterworth filter
with a cutoff frequency of 40 kHz and is down 
at least at 200 kHz.

b) Draw a circuit diagram of the filter and label all
component values.

15.43 The high-pass filter designed in Problem 15.41 is
cascaded with the low-pass filter designed in
Problem 15.42.

a) Describe the type of filter formed by this
interconnection.

b) Specify the cutoff frequencies, the mid-
frequency, and the quality factor of the filter.

c) Use the results of Problems 15.35 and 15.40 to
derive the scaled transfer function of the filter.

d) Check the derivation of (c) by using it to calculate
where is the midfrequency of the filter.

15.44 a) Design a broadband Butterworth bandpass fil-
ter with a lower cutoff frequency of 200 Hz and
an upper cutoff frequency of 2500 Hz. The pass-
band gain of the filter is 40 dB. The gain should
be down at least 40 dB at 40 Hz and 12.5 kHz.
Use 1 F capacitors in the high-pass circuit and

resistors in the low-pass circuit.

b) Draw a circuit diagram of the filter and label all
the components.

15.45 a) Derive the expression for the scaled transfer
function for the filter designed in Problem 15.44.

2.5 kÆ

m

voH(jvo),

-55 dB

-55 dB

8 kÆ

kfs>kf,

H¿(s) =

a s

kf
b2

a s

kf
b2

+

2
R2C

 a s

kf
b +

1

R1R2C
2

 .

n = 6.n = 5 b) Using the expression derived in (a), find the gain
(in decibels) at 40 Hz and 1000 Hz.

c) Do the values obtained in part (b) satisfy the fil-
tering specifications given in Problem 15.44?

15.46 Derive the prototype transfer function for a fifth-
order high-pass Butterworth filter by first writing
the transfer function for a fifth-order prototype
low-pass Butterworth filter and then replacing s by

in the low-pass expression.

15.47 The fifth-order Butterworth filter in Problem 15.46
is used in a system where the cutoff frequency is

a) What is the scaled transfer function for the filter?

b) Test your expression by finding the gain (in deci-
bels) at the cutoff frequency.

15.48 Show that if and in the cir-
cuit in Fig. 15.26, the prototype values of 
and are

15.49 a) Use 20 nF capacitors in the circuit in Fig. 15.26
to design a bandpass filter with a quality factor
of 16, a center frequency of 6.4 kHz, and a pass-
band gain of 20 dB.

b) Draw the circuit diagram of the filter and label
all the components.

15.50 The purpose of this problem is to guide you
through the analysis necessary to establish a design
procedure for determining the circuit components
in a filter circuit.The circuit to be analyzed is shown
in Fig. P15.50.

a) Analyze the circuit qualitatively and convince
yourself that the circuit is a low-pass filter with a
passband gain of 

b) Support your qualitative analysis by deriving the
transfer function (Hint: In deriving the
transfer function, represent the resistors with their
equivalent conductances, that is, and
so forth.) To make the transfer function useful in
terms of the entries in Table 15.1, put it in the form

c) Now observe that we have five circuit 
components— and —and three
transfer function constraints—K, and Atbo.b1,

C2C1,R3,R2,R1,

H(s) =

-Kbo

s2
+ b1s + bo

 .

G1 = 1>R1,

Vo >  Vi.

R2>R1.

 R3 = 2Q.

 R2 =

Q

2Q2
- K

 ,

 R1 =

Q

K
 ,

R3

R2,R1,
C = 1 Fvo = 1 rad>s

800 rad>s.

1>s
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first glance, it appears we have two free choices
among the five components. However, when we
investigate the relationships between the circuit
components and the transfer function constraints,
we see that if is chosen, there is an upper limit
on in order for to be realizable. With
this in mind, show that if the three con-
ductances are given by the expressions

For to be realizable,

d) Based on the results obtained in (c), outline the
design procedure for selecting the circuit com-
ponents once K, and are known.

Figure P15.50

15.51 Assume the circuit analyzed in Problem 15.50 is
part of a third-order low-pass Butterworth filter
having a passband gain of 4. (Hint: implement the
gain of 4 in the second-order section of the filter.)

a) If in the prototype second-order sec-
tion, what is the upper limit on ?

b) If the limiting value of is chosen, what are the
prototype values of and ?

c) If the corner frequency of the filter is 2.5 kHz
and is chosen to be 10 nF, calculate the scaled
values of and 

d) Specify the scaled values of the resistors and the
capacitor in the first-order section of the filter.

e) Construct a circuit diagram of the filter and
label all the component values on the diagram.

15.52 Interchange the Rs and Cs in the circuit in
Fig. P15.50; that is, replace with with 

with with and with R2.C2R1,C1C3,R3

C2,R2C1,R1

R3.R2,R1,C1,
C2

R3R2,R1,
C1

C1

C2 = 1 F

R1 R3

R2 C1

C2

�

� �

�

vo

�

�

vi

b1bo,

C1 …

b2
1

4bo(1 + K)
 .

G2

 G2 =

b1 ; 2b2
1 - 4bo(1 + K)C1

2(1 + K)
 .

 G3 = a bo

G2
bC1;

 G1 = KG2;

C2 = 1 F,
R2(G2)C1

C2

a) Describe the type of filter implemented as a
result of the interchange.

b) Confirm the filter type described in (a) by deriv-
ing the transfer function Write the trans-
fer function in a form that makes it compatible
with Table 15.1.

c) Set and derive the expressions
for and in terms of K, and 
(See Problem 15.50 for the definition of 
and )

d) Assume the filter described in (a) is used in the
same type of third-order Butterworth filter that
has a passband gain of 8. With 
calculate the prototype values of and 
in the second-order section of the filter.

15.53 a) Use the circuits analyzed in Problems 15.50 and
15.52 to implement a broadband bandreject 
filter having a passband gain of 20 dB, a lower
corner frequency of 1 kHz, an upper corner fre-
quency of 8 kHz, and an attenuation of at least
24 dB at both 2 kHz and 4 kHz. Use 25 nF 
capacitors whenever possible.

b) Draw a circuit diagram of the filter and label all
the components.

15.54 a) Derive the transfer function for the bandreject
filter described in Problem 15.53.

b) Use the transfer function derived in part (a) to
find the attenuation (in decibels) at the center
frequency of the filter.

15.55 The purpose of this problem is to develop the
design equations for the circuit in Fig. P15.55. (See
Problem 15.50 for suggestions on the development
of design equations.)

a) Based on a qualitative analysis, describe the type
of filter implemented by the circuit.

b) Verify the conclusion reached in (a) by deriving
the transfer function Write the transfer
function in a form that makes it compatible with
the entries in Table 15.1.

c) How many free choices are there in the selec-
tion of the circuit components?

d) Derive the expressions for the conductances
and in terms of 

and the coefficients and (See Problem
15.50 for the definition of and )

e) Are there any restrictions on or ?

f) Assume the circuit in Fig. P15.55 is used to
design a fourth-order low-pass unity-gain
Butterworth filter. Specify the prototype val-
ues of and in each second-order section
if capacitors are used in the prototype 
circuit.

1 F
R2R1

C2C1

b1.bo

b1.bo

C2,C1,G2 = 1>R2G1 = 1>R1

Vo >  Vi.

R2R1,C1,
C2 = C3 = 1 F,

bo.
b1

bo.b1,R2R1,C1,
C2 = C3 = 1 F

Vo >  Vi.
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Figure P15.55

15.56 The fourth-order low-pass unity-gain Butterworth
filter in Problem 15.55 is used in a system where the
cutoff frequency is 3 kHz. The filter has 4.7 nF
capacitors.
a) Specify the numerical values of and in

each section of the filter.
b) Draw a circuit diagram of the filter and label all

the components.

15.57 Interchange the Rs and Cs in the circuit in
Fig. P15.55, that is, replace with with 
and vice versa.
a) Analyze the circuit qualitatively and predict the

type of filter implemented by the circuit.
b) Verify the conclusion reached in (a) by deriving

the transfer function Write the transfer
function in a form that makes it compatible with
the entries in Table 15.1.

c) How many free choices are there in the selec-
tion of the circuit components?

d) Find and as functions of and 
e) Are there any restrictions on and ?
f) Assume the circuit is used in a third-order

Butterworth filter of the type found in (a). Specify
the prototype values of and in the second-
order section of the filter if 

15.58 a) The circuit in Problem 15.57 is used in a third-
order high-pass unity-gain Butterworth filter
that has a cutoff frequency of 800 Hz. Specify
the values of and if 5 F capacitors are
available to construct the filter.

b) Specify the values of resistance and capacitance
in the first-order section of the filter.

c) Draw the circuit diagram and label all the
components.

d) Give the numerical expression for the scaled
transfer function of the filter.

e) Use the scaled transfer function derived in (d)
to find the gain in dB at the cutoff frequency.

mR2R1

C1 = C2 = 1 F.
R2R1

C2C1

C2.C1,b1,bo,R2R1

Vo >  Vi.

C2,R2C1,R1

R2R1

�

�

vo

�

�

vi

R1

R2

C1

C2

�

�
�

�

Section 15.5

15.59 a) Show that the transfer function for a prototype
narrow band bandreject filter is

b) Use the result found in (a) to find the transfer
function of the filter designed in Example 15.13.

15.60 a) Using the circuit shown in Fig. 15.29, design a
narrow-band bandreject filter having a center
frequency of 4 kHz and a quality factor of 10.
Base the design on 

b) Draw the circuit diagram of the filter and label
all component values on the diagram.

c) What is the scaled transfer function of the 
filter?

Sections 15.1–15.5

15.61 Using the circuit in Fig. 15.32(a) design a volume
control circuit to give a maximum gain of 14 dB 
and a gain of 11 dB at a frequency of 50 Hz. Use a
10 k resistor and a 50 k potentiometer. Test
your design by calculating the maximum gain at

and the gain at using the
selected values of R1, R2, and C1.

15.62 Use the circuit in Fig. 15.32(a) to design a bass 
volume control circuit that has a maximum gain of
20 dB that drops off 3 dB at 75 Hz.

15.63 Plot the maximum gain in decibels versus when
for the circuit designed in Problem 15.61. Let

vary from 0 to 1 in increments of 0.1.

15.64 a) Show that the circuits in Fig. P15.64(a)and (b)
are equivalent.

b) Show that the points labeled x and y in
Fig. P15.64(b) are always at the same potential.

c) Using the information in (a) and (b), show that
the circuit in Fig. 15.33 can be drawn as shown in
Fig. P15.64(c).

d) Show that the circuit in Fig. P15.64(c) is in the
form of the circuit in Fig. 15.2, where

 Zf =

R1 + aR2 + R1R2C1s

1 + R2C1s
 .

 Zi =

R1 + (1 - a)R2 + R1R2C1s

1 + R2C1s
 ,

a

v = 0
a

v = 1>R2C1v = 0

ÆÆ

C = 0.5  mF.

H(s) =

s2
+ 1

s2
+ (1>Q)s + 1

 .
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Figure P15.64

15.65 An engineering project manager has received a
proposal from a subordinate who claims the circuit
shown in Fig. P15.65 could be used as a treble vol-
ume control circuit if The
subordinate further claims that the voltage transfer
function for the circuit is

where Fortunately the project
engineer has an electrical engineering undergraduate

Ro = R1 + R3 + 2R2.

=

-5(2R3 + R4) + [(1 - b)R4 + Ro](bR4 + R3)C2s6
5(2R3 + R4) + [(1 - b)R4 + R3](bR4 + Ro)C2s6

H(s) =

Vo

Vs

R4 W R1 + R3 + 2R2.

1/sC1

(1�a)R2

(a)

aR2 (1�a)R2

(b)

aR2

1�a
sC1

a

sC1x

y

(c)

(1�a)R2

R4 � 2R3

aR2

R1 R1

1�a
sC1

a

sC1

�

�

Vs

Vo

(x, y)

student as an intern and therefore asks the student to
check the subordinate’s claim.

The student is asked to check the behavior of the
transfer function as as and the
behavior when and varies between 0 and 1.
Based on your testing of the transfer function do you
think the circuit could be used as a treble volume
control? Explain.

Figure P15.65

15.66 In the circuit of Fig. P15.65 the component values
are 
and 

a) Calculate the maximum boost in decibels.

b) Calculate the maximum cut in decibels.

c) Is significantly greater than ?

d) When what is the boost in decibels when
?

e) When what is the cut in decibels when
?

f) Based on the results obtained in (d) and (e),
what is the significance of the frequency 
when ? 

15.67 Using the component values given in
Problem 15.66, plot the maximum gain in decibels
versus when is inifinite. Let vary from 0 to 1
in increments of 0.1.

bvb

R4 W R0

1>R3C2

v = 1>R3C2

b = 0,

v = 1>R3C2

b = 1,

RoR4

C2 = 2.7 nF.
R4 = 500 kÆ,R3 = 5.9 kÆ,R1 = R2 = 20 kÆ,

(1�b)R4 bR4

�

�

R1

R2

vs v0

R1

R3 R3R4

C2

bv = q

v: q ;v: 0;
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In the preceding chapters, we devoted a considerable amount
of discussion to steady-state sinusoidal analysis. One reason for
this interest in the sinusoidal excitation function is that it allows
us to find the steady-state response to nonsinusoidal, but peri-
odic, excitations. A periodic function is a function that repeats
itself every T seconds. For example, the triangular wave illus-
trated in Fig. 16.1 on page 604 is a nonsinusoidal, but periodic,
break waveform.

A periodic function is one that satisfies the relationship

(16.1)

where n is an integer ( ) and T is the period. The func-
tion shown in Fig. 16.1 is periodic because

for any arbitrarily chosen value of Note that T is the smallest
time interval that a periodic function may be shifted (in either
direction) to produce a function that is identical to itself.

Why the interest in periodic functions? One reason is that
many electrical sources of practical value generate periodic
waveforms. For example, nonfiltered electronic rectifiers driven
from a sinusoidal source produces rectified sine waves that are
nonsinusoidal, but periodic. Figures 16.2(a) and (b) on page 604
show the waveforms of the full-wave and half-wave sinusoidal
rectifiers, respectively.

The sweep generator used to control the electron beam of a
cathode-ray oscilloscope produces a periodic triangular wave like
the one shown in Fig. 16.3 on page 604.

Electronic oscillators, which are useful in laboratory testing of
equipment, are designed to produce nonsinusoidal periodic
waveforms. Function generators, which are capable of producing
square-wave, triangular-wave, and rectangular-pulse waveforms,
are found in most testing laboratories. Figure 16.4 on page 604
illustrates typical waveforms.

t0.

f(t0) = f(t0 - T) = f(t0 + T) = f(t0 + 2T) =
Á

1, 2, 3, . . .

f(t) = f(t ; nT),

Fourier Series
C H A P T E R  C O N T E N T S

16.1 Fourier Series Analysis: 
An Overview p. 605

16.2 The Fourier Coefficients p. 606

16.3 The Effect of Symmetry on the Fourier
Coefficients p. 609

16.4 An Alternative Trigonometric Form of the
Fourier Series p. 615

16.5 An Application p. 617

16.6 Average-Power Calculations with Periodic
Functions p. 621

16.7 The rms Value of a Periodic 
Function p. 624

16.8 The Exponential Form of the Fourier
Series p. 625

16.9 Amplitude and Phase Spectra p. 628

C H A P T E R  O B J E C T I V E S

1 Be able to calculate the trigonometric form of
the Fourier coefficients for a periodic waveform
using the definition of the coefficients and the
simplifications possible if the waveform exhibits
one or more types of symmetry.

2 Know how to analyze a circuit’s response to a
periodic waveform using Fourier coefficients
and superposition.

3 Be able to estimate the average power
delivered to a resistor using a small number 
of Fourier coefficients.

4 Be able to calculate the exponential form of the
Fourier coefficients for a periodic waveform and
use them to generate magnitude and phase
spectrum plots for that waveform.
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In Chapters 14 and 15, we discovered that an important char-
acteristic of bandpass and bandreject filters is the quality fac-
tor, Q. The quality factor provides a measure of how selective
the filter is at its center frequency. For example, a bandpass fil-
ter with a large value of Q will amplify signals at or near its
center frequency and will attentuate signals at all other fre-
quencies. On the other hand, a bandreject filter with a small
value of Q will not effectively distinguish between signals at
the center frequency and signals at frequencies quite different
from the center frequency.

In this chapter, we learn that any periodic signal can be
represented as a sum of sinusoids, where the frequencies of the

sinusoids in the sum are comprised of the frequency of the
periodic signal and integer multiples of that frequency. We can
use a periodic signal like a square wave to test the quality fac-
tor of a bandpass or bandreject filter. To do this, we choose a
square wave whose frequency is the same as the center fre-
quency of a bandpass filter, for example. If the bandpass filter
has a high quality factor, its output will be nearly sinusoidal,
thereby transforming the input square wave into an output
sinusoid. If the filter has a low quality factor, its output will
still look like a square wave, as the filter is not able to select
from among the sinusoids that make up the input square wave.
We present an example at the end of this chapter. 
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Another practical problem that stimulates interest in periodic func-
tions is that power generators, although designed to produce a sinusoidal
waveform, cannot in practice be made to produce a pure sine wave. The
distorted sinusoidal wave, however, is periodic. Engineers naturally are
interested in ascertaining the consequences of exciting power systems
with a slightly distorted sinusoidal voltage.

Interest in periodic functions also stems from the general observation
that any nonlinearity in an otherwise linear circuit creates a nonsinusoidal
periodic function. The rectifier circuit alluded to earlier is one example of
this phenomenon. Magnetic saturation, which occurs in both machines
and transformers, is another example of a nonlinearity that generates a
nonsinusoidal periodic function. An electronic clipping circuit, which uses
transistor saturation, is yet another example.

Moreover, nonsinusoidal periodic functions are important in the
analysis of nonelectrical systems. Problems involving mechanical vibra-
tion, fluid flow, and heat flow all make use of periodic functions. In fact,
the study and analysis of heat flow in a metal rod led the French mathe-
matician Jean Baptiste Joseph Fourier (1768–1830) to the trigonometric
series representation of a periodic function.This series bears his name and
is the starting point for finding the steady-state response to periodic exci-
tations of electric circuits.

�T T 2T0t0�T t0�T t0�2Tt0 t

f(t)

A

B

Figure 16.1 � A periodic waveform.

T

v(t)
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T/20
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(a) (b)

v(t)

Vm

T 2T 3T
t

0

T 2T

v(t)

�Vm

Vm

0
t

(a)

T

v(t)

�Vm

Vm

0
t

(b)

t
T 2T

v(t)

Vm

0

(c)

Figure 16.4 � Waveforms produced by function
generators used in laboratory testing. (a) Square wave.
(b) Triangular wave. (c) Rectangular pulse.

Figure 16.2 � Output waveforms of a nonfiltered sinu-
soidal rectifier. (a) Full-wave rectification. (b) Half-wave
rectification.

Figure 16.3 � The triangular waveform of a cathode-ray
oscilloscope sweep generator.
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16.1 Fourier Series Analysis: 
An Overview

What Fourier discovered in investigating heat-flow problems is that a
periodic function can be represented by an infinite sum of sine or cosine
functions that are harmonically related. In other words, the period of any
trigonometric term in the infinite series is an integral multiple, or har-
monic, of the fundamental period T of the periodic function.Thus for peri-
odic Fourier showed that can be expressed as

(16.2)

where n is the integer sequence 1, 2, 3, . . . .
In Eq. 16.2, and are known as the Fourier coefficients and are

calculated from The term (which equals ) represents the
fundamental frequency of the periodic function The integral multi-
ples of —that is, and so on—are known as the harmonic
frequencies of Thus is the second harmonic, is the third har-
monic, and is the nth harmonic of 

We discuss the determination of the Fourier coefficients in
Section 16.2. Before pursuing the details of using a Fourier series in circuit
analysis, we first need to look at the process in general terms. From an
applications point of view, we can express all the periodic functions of
interest in terms of a Fourier series. Mathematically, the conditions on a
periodic function that ensure expressing as a convergent Fourier
series (known as Dirichlet’s conditions) are that

1. be single-valued,

2. have a finite number of discontinuities in the periodic interval,

3. have a finite number of maxima and minima in the periodic
interval,

4. the integral

exists.

Any periodic function generated by a physically realizable source satisfies
Dirichlet’s conditions. These are sufficient conditions, not necessary con-
ditions. Thus if meets these requirements, we know that we can
express it as a Fourier series. However, if does not meet these require-
ments, we still may be able to express it as a Fourier series. The necessary
conditions on are not known.

After we have determined and calculated the Fourier coefficients
( and ), we resolve the periodic source into a dc source ( ) plus a
sum of sinusoidal sources ( and ). Because the periodic source is driv-
ing a linear circuit, we may use the principle of superposition to find the
steady-state response. In particular, we first calculate the response to each
source generated by the Fourier series representation of and then add
the individual responses to obtain the total response. The steady-state
response owing to a specific sinusoidal source is most easily found with
the phasor method of analysis.

The procedure is straightforward and involves no new techniques of
circuit analysis. It produces the Fourier series representation of the
steady-state response; consequently, the actual shape of the response is

f(t)

bnan

avbnan,av,
f(t)

f(t)

f(t)
f(t)

L

t0 + T

t0

|  f(t)| dt

f(t)

f(t)

f(t)

f(t)f(t)

f(t).nv0

3v02v0f(t).
4v0,3v0,2v0,v0

f(t).
2p>Tv0f(t).

bnan,av,

f(t) = av + a
q

n =1
an cos nv0t + bn sin nv0t,

f(t)f(t),

� Fourier series representation of a periodic
function
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Fourier coefficients �

unknown. Furthermore, the response waveform can be estimated only by
adding a sufficient number of terms together. Even though the Fourier
series approach to finding the steady-state response does have some draw-
backs, it introduces a way of thinking about a problem that is as important
as getting quantitative results. In fact, the conceptual picture is even more
important in some respects than the quantitative one.

16.2 The Fourier Coefficients
After defining a periodic function over its fundamental period, we deter-
mine the Fourier coefficients from the relationships

(16.3)

(16.4)

(16.5)

In Eqs. 16.4 and 16.5, the subscript k indicates the kth coefficient in the
integer sequence 1, 2, 3, . . . . Note that is the average value of is
twice the average value of and is twice the average value
of 

We easily derive Eqs. 16.3–16.5 from Eq. 16.2 by recalling the follow-
ing integral relationships, which hold when m and n are integers:

(16.6)

(16.7)

(16.8)

(16.9)

(16.10)

We leave you to verify Eqs. 16.6–16.10 in Problem 16.5.

 =

T

2
 ,  for m = n.

 
L

t0 +T

t0

cos mv0t cos nv0t dt = 0,  for all m Z n,

 =

T

2
 ,  for m = n,

 
L

t0 +T

t0

sin mv0t sin nv0t dt = 0,  for all m Z n,

 
L

t0 + T

t0

cos mv0t sin nv0t dt = 0,  for all m and n,

 
L

t0 + T

t0

 cos mv0t dt = 0,  for all m,

 
L

t0 +T

t0

 sin mv0t dt = 0,  for all m,

f(t) sin kv0t.
bkf(t) cos kv0t,

f(t), akav

 bk =

2
TL

t0 +T

t0

 f(t) sin kv0t dt.

 ak =

2
TL

t0 +T

t0

 f(t) cos kv0t dt,

 av =

1
TL

t0 +T

t0

 f(t) dt,
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To derive Eq. 16.3, we simply integrate both sides of Eq. 16.2 over
one period:

(16.11)

Equation 16.3 follows directly from Eq. 16.11.
To derive the expression for the kth value of we first multiply

Eq. 16.2 by and then integrate both sides over one period of :

(16.12)

Solving Eq. 16.12 for yields the expression in Eq. 16.4.
We obtain the expression for the kth value of by first multiplying

both sides of Eq. 16.2 by and then integrating each side over one
period of Example 16.1 shows how to use Eqs. 16.3–16.5 to find the
Fourier coefficients for a specific periodic function.

f(t).
 sin kv0t

bn

ak

 = 0 + akaT

2
b + 0.

  + a
q

n=1L

t0 + T

t0

(an cos nv0t cos kv0t + bn sin nv0t cos kv0t) dt

 
L

t0 +T

t0

f(t) cos kv0t   dt =

L

t0 +T

t0

av cos kv0t   dt

f(t)cos kv0t
an,

 = avT + 0.

 =

L

t0 +T

t0

avdt + a
q

n =1L

t0 +T

t0

(an cos nv0t + bn sin nv0t) dt

 
L

t0 +T

t0

f(t)  dt =

L

t0 +T

t0

aav + a
q

n =1
ancos nv0t + bn sin nv0tb  dt

Example 16.1 Finding the Fourier Series of a Triangular Waveform with No Symmetry

Find the Fourier series for the periodic voltage
shown in Fig. 16.5.

Figure 16.5 � The periodic voltage for Example 16.1.

Solution
When using Eqs. 16.3–16.5 to find and we
may choose the value of For the periodic voltage
of Fig. 16.5, the best choice for is zero. Any other
choice makes the required integrations more cum-
bersome.The expression for between 0 and T is

v(t) = aVm

T
b t.

v(t)

t0

t0.
bk,ak,av,

v(t)

Vm

T 2T�T 0

The equation for is

This is clearly the average value of the waveform in
Fig. 16.5.

The equation for the kth value of is

 =

2Vm

T2  B 1

k2v0
2 ( cos 2pk - 1)R = 0 for all k.

 =

2Vm

T2 a 1

k2v0
2 cos kv0t +
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 sin kv0tb 2 T

0
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2
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T

0
aVm

T
b t cos kv0tdt

an
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1
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T
b t dt =

1
2
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Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

A S S E S S M E N T  P R O B L E M S

16.1 Derive the expressions for and for the
periodic voltage function shown if 

Answer:

bk =
6
k (1 -  cos 4kp

3 ) V.

ak =
6
k sin 4kp

3  V,

av = 21.99 V,

Vm

t

Vm

3

T
3

2T
3

4T
3

5T
3

T 2T

Vm = 9p V.
bkak,av, 16.2 Refer to Assessment Problem 16.1.

a) What is the average value of the periodic
voltage?

b) Compute the numerical values of 
and 

c) If what is the fundamental
frequency in radians per second?

d) What is the frequency of the third harmonic
in hertz?

e) Write the Fourier series up to and including
the fifth harmonic.

Answer: (a) 21.99 V;

(b) 2.6 V, 0 V, and 1.04 V;
9 V, 4.5 V, 0 V, 2.25 V, and 1.8 V;

(c) ;

(d) 23.87 Hz;

(e)

1.8 sin 250t V.1.04 cos 250t +

1.3 cos 200t +  2.25 sin 200t +
2.6 cos 100t + 4.5 sin 100t -
v(t) = 21.99 - 5.2 cos 50t + 9 sin 50t +

50 rad>s
-1.3,-5.2 V,

T = 125.66 ms,
b1 - b5.

a1 - a5

NOTE: Also try Chapter Problems 16.1–16.3.

The equation for the kth value of is

 =

-Vm

pk
 .

 =

2Vm

T2  a0 -

T

kv0
 cos 2pkb

 =

2Vm

T2  a 1
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2 sin kv0t -
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 cos kv0tb 2 T

0
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2
TL
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0
aVm

T
b  t sin kv0t dt

bn The Fourier series for isv(t)

 =

Vm

2
-

Vm

p
 sin v0t -

Vm

2p
 sin 2v0t -

Vm

3p
 sin 3v0t -

Á .

 v(t) =

Vm

2
-

Vm

p a
q

n= 1

1
n

 sin nv0t

Finding the Fourier coefficients, in general, is tedious. Therefore any-
thing that simplifies the task is beneficial. Fortunately, a periodic function
that possesses certain types of symmetry greatly reduces the amount of
work involved in finding the coefficients. In Section 16.3, we discuss how
symmetry affects the coefficients in a Fourier series.
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f(t)

0
t

�T T

Figure 16.6 � An even periodic function,
.f(t) = f(- t)

16.3 The Effect of Symmetry 
on the Fourier Coefficients

Four types of symmetry may be used to simplify the task of evaluating the
Fourier coefficients:

• even-function symmetry,
• odd-function symmetry,
• half-wave symmetry,
• quarter-wave symmetry.

The effect of each type of symmetry on the Fourier coefficients is discussed
in the following sections.

Even-Function Symmetry
A function is defined as even if

(16.13)

Functions that satisfy Eq. 16.13 are said to be even because polynomial
functions with only even exponents possess this characteristic. For even
periodic functions, the equations for the Fourier coefficients reduce to

(16.14)

(16.15)

(16.16)

Note that all the b coefficients are zero if the periodic function is even.
Figure 16.6 illustrates an even periodic function. The derivations of
Eqs. 16.14–16.16 follow directly from Eqs. 16.3–16.5. In each derivation,
we select and then break the interval of integration into the
range from to 0 and 0 to or

(16.17)

Now we change the variable of integration in the first integral on the
right-hand side of Eq. 16.17. Specifically, we let and note that

because the function is even. We also observe that
when and Then

(16.18)
L

0

-T>2
f(t) dt =

L

0

T>2
f(x)(-dx) =

L

T>2

0
f(x) dx,

dt = -dx.t = -T>2x = T>2f(t) = f(-x) = f(x)
t = -x

 =

1
TL

0

-T>2
f(t) dt +

1
TL

T>2

0
f(t) dt.

 av =

1
TL

T>2

-T>2
f(t) dt

T>2,-T>2t0 = -T>2

 bk = 0,  for all k.

 ak =

4
TL

T>2

0
f(t) cos kv0t  dt,

 av =

2
TL

T>2

0
f(t)  dt,

f(t) = f(- t). � Even function
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which shows that the integration from to 0 is identical to that from
0 to therefore Eq. 16.17 is the same as Eq. 16.14. The derivation of
Eq. 16.15 proceeds along similar lines. Here,

(16.19)

but

(16.20)

As before, the integration from to 0 is identical to that from 0 to
Combining Eq. 16.20 with Eq. 16.19 yields Eq. 16.15.

All the b coefficients are zero when is an even periodic function,
because the integration from to 0 is the exact negative of the inte-
gration from 0 to that is,

(16.21)

When we use Eqs. 16.14 and 16.15 to find the Fourier coefficients, the
interval of integration must be between 0 and 

Odd-Function Symmetry
A function is defined as odd if

(16.22)

Functions that satisfy Eq. 16.22 are said to be odd because polynomial
functions with only odd exponents have this characteristic. The expres-
sions for the Fourier coefficients are

(16.23)

(16.24)

(16.25)

Note that all the a coefficients are zero if the periodic function is odd.
Figure 16.7 shows an odd periodic function.
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4
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f(t) sin kv0t dt.
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 av = 0;

f(t) = -f(- t).
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Figure 16.7 � An odd periodic function
.f(t) = -f(- t)
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We use the same process to derive Eqs. 16.23–16.25 that we used to
derive Eqs. 16.14–16.16. We leave the derivations to you in Problem 16.7.

The evenness, or oddness, of a periodic function can be destroyed by
shifting the function along the time axis. In other words, the judicious
choice of where may give a periodic function even or odd symmetry.
For example, the triangular function shown in Fig. 16.8(a) is neither even
nor odd. However, we can make the function even, as shown in
Fig. 16.8(b), or odd, as shown in Fig. 16.8(c).

Half-Wave Symmetry
A periodic function possesses half-wave symmetry if it satisfies the
constraint

(16.26)

Equation 16.26 states that a periodic function has half-wave symmetry if,
after it is shifted one-half period and inverted, it is identical to the original
function. For example, the functions shown in Figs. 16.7 and 16.8 have half-
wave symmetry, whereas those in Figs. 16.5 and 16.6 do not. Note that half-
wave symmetry is not a function of where 

If a periodic function has half-wave symmetry, both and are zero
for even values of k. Moreover, also is zero because the average value
of a function with half-wave symmetry is zero. The expressions for the
Fourier coefficients are

(16.27)

(16.28)

(16.29)

(16.30)

(16.31)

We derive Eqs. 16.27–16.31 by starting with Eqs. 16.3–16.5 and choos-
ing the interval of integration as to We then divide this range
into the intervals to 0 and 0 to For example, the derivation 
for is

(16.32) +
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 ak =

4
TL
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0
f(t) cos kv0t dt,  for k odd;

 ak = 0,            for k even; 

 av = 0,
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bkak
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Figure 16.8 � How the choice of where can
make a periodic function even, odd, or neither. (a) A
periodic triangular wave that is neither even nor odd.
(b) The triangular wave of (a) made even by shifting the
function along the t axis. (c) The triangular wave of (a)
made odd by shifting the function along the t axis.

t = 0
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Now we change a variable in the first integral on the right-hand side of
Eq. 16.32. Specifically, we let

Then

We rewrite the first integral as

(16.33)

Note that

and that, by hypothesis,

Therefore Eq. 16.33 becomes

(16.34)

Incorporating Eq. 16.34 into Eq. 16.32 gives

(16.35)

But is 1 when k is even and when k is odd. Therefore Eq. 16.35
generates Eqs. 16.28 and 16.29.

We leave it to you to verify that this same process can be used to
derive Eqs. 16.30 and 16.31 (see Problem 16.8).

We summarize our observations by noting that the Fourier series rep-
resentation of a periodic function with half-wave symmetry has zero aver-
age, or dc, value and contains only odd harmonics.

Quarter-Wave Symmetry
The term quarter-wave symmetry describes a periodic function that has
half-wave symmetry and, in addition, symmetry about the midpoint of the
positive and negative half-cycles. The function illustrated in Fig. 16.9(a)

-1cos kp
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(1 - cos kp)
L
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f(t) cos kv0t dt.
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0
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f(t) cos kv0t dt =
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T>2

0
[-f(x)] cos kp cos kv0x dx.

f(x - T>2) = -f(x).

 cos kv0(x - T>2) = cos (kv0x - kp) = cos kp cos kv0x

L

0

-T>2 f(t) cos kv0t dt =

L

T>2

0
f(x - T>2) cos kv0(x - T>2) dx.

 dt = dx.

 x = 0,    when t = -T>2;

 x = T>2,  when t = 0;

t = x - T>2.

0

A

�A

T/4 3T/4T/2 T

0 T/4 3T/4T/2 T

t

t

(a)

�A

(b)

f(t)

A

f(t)

Figure 16.9 � (a) A function that has quarter-wave
symmetry. (b) A function that does not have quarter-
wave symmetry.
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has quarter-wave symmetry about the midpoint of the positive and nega-
tive half-cycles. The function in Fig. 16.9(b) does not have quarter-wave
symmetry, although it does have half-wave symmetry.

A periodic function that has quarter-wave symmetry can always be
made either even or odd by the proper choice of the point where 
For example, the function shown in Fig. 16.9(a) is odd and can be made
even by shifting the function units either right or left along the t axis.
However, the function in Fig. 16.9(b) can never be made either even or
odd.To take advantage of quarter-wave symmetry in the calculation of the
Fourier coefficients, you must choose the point where to make the
function either even or odd.

If the function is made even, then

(16.36)

Equations 16.36 result from the function’s quarter-wave symmetry in
addition to its being even. Recall that quarter-wave symmetry is super-
imposed on half-wave symmetry, so we can eliminate and for k even.
Comparing the expression for k odd, in Eqs. 16.36 with Eq. 16.29 shows
that combining quarter-wave symmetry with evenness allows the shorten-
ing of the range of integration from 0 to to 0 to We leave the der-
ivation of Eqs. 16.36 to you in Problem 16.9.

If the quarter-wave symmetric function is made odd,

(16.37)

Equations 16.37 are a direct consequence of quarter-wave symmetry and
oddness.Again, quarter-wave symmetry allows the shortening of the inter-
val of integration from 0 to to 0 to We leave the derivation of
Eqs. 16.37 to you in Problem 16.10.

Example 16.2 shows how to use symmetry to simplify the task of find-
ing the Fourier coefficients.

T>4.T>2

 bk =

8
TL

T>4

0
f(t) sin kv0t dt,   for k odd.

 bk = 0, for k even, because of half-wave symmetry;

 ak = 0, for all k, because the function is odd;

 av = 0, because the function is odd;

T>4.T>2
ak,

akav

 bk = 0, for all k, because the function is even.

 ak =

8
TL

T>4

0
f(t) cos kv0t dt,   for k odd;

 ak = 0, for k even, because of half-wave symmetry;

 av = 0, because of half-wave symmetry;

t = 0

T>4
t = 0.
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Example 16.2 Finding the Fourier Series of an Odd Function with Symmetry

Find the Fourier series representation for the cur-
rent waveform shown in Fig. 16.10.

Figure 16.10 � The periodic waveform for Example 16.2.

Solution
We begin by looking for degrees of symmetry in the
waveform. We find that the function is odd and, in
addition, has half-wave and quarter-wave symme-
try. Because the function is odd, all the a coeffi-
cients are zero; that is, and for all k.
Because the function has half-wave symmetry,

for even values of k. Because the function
has quarter-wave symmetry, the expression for 
for odd values of k is

bk =

8
TL

T>4

0
i(t) sin kv0t dt.

bk

bk = 0

ak = 0av = 0

�Im

Im

i(t)

�T/2 T/2 T 2T 5T/2 3T3T/20
t

In the interval the expression for
is

Thus

The Fourier series representation of is

+

1
25

 sin 5v0t -

1
49

 sin 7v0t +
Áb .

 =

8Im

p2  a  sin v0t -

1
9

 sin 3v0t

 i(t) =

8Im

p2 a
q

n =1,3,5,...

1

n2 sin 
np

2
 sin nv0t

i(t)

 =

8Im

p2k2 sin 
kp

2
  (k is odd).

 =

32Im

T2  ¢ sin kv0t

k2v0
2 -

t cos kv0t

kv0
` T>4
0
≤

 bk =

8
TL

T>4

0

4Im

T
 t sin kv0t dt

i(t) =

4Im

T
 t.

i(t)
0 … t … T>4,

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

16.3 Derive the Fourier series for the periodic volt-
age shown.

Answer: vg(t) =

12Vm

p2  a
q

n =1,3,5,...
 
 sin (np>3)

n2  sin nv0t.

vg (t)

Vm

�Vm

T/60 T5T/62T/3T/2T/3
t

NOTE: Also try Chapter Problems 16.11 and 16.12.

A S S E S S M E N T  P R O B L E M



16.4 An Alternative Trigonometric Form of the Fourier Series 615

16.4 An Alternative Trigonometric Form
of the Fourier Series

In circuit applications of the Fourier series, we combine the cosine and
sine terms in the series into a single term for convenience. Doing so allows
the representation of each harmonic of or as a single phasor quan-
tity. The cosine and sine terms may be merged in either a cosine expres-
sion or a sine expression. Because we chose the cosine format in the
phasor method of analysis (see Chapter 9), we choose the cosine expres-
sion here for the alternative form of the series. Thus we write the Fourier
series in Eq. 16.2 as

(16.38)

where and are defined by the complex quantity

(16.39)

We derive Eqs. 16.38 and 16.39 using the phasor method to add the cosine
and sine terms in Eq. 16.2. We begin by expressing the sine functions as
cosine functions; that is, we rewrite Eq. 16.2 as

(16.40)

Adding the terms under the summation sign by using phasors gives

(16.41)

and

(16.42)

Then

(16.43)

When we inverse-transform Eq. 16.43, we get

(16.44)

Substituting Eq. 16.44 into Eq. 16.40 yields Eq. 16.38. Equation 16.43
corresponds to Eq. 16.39. If the periodic function is either even or odd,

reduces to either (even) or (odd), and is either (even) or
(odd).
The derivation of the alternative form of the Fourier series for a given

periodic function is illustrated in Example 16.3.

90 �
0 �unbnanAn

 = An cos(nv0t - un).

 an cos nv0t + bn cos(nv0t - 90°) = p
-15Anl -un6

 = Anl -un.

 = 2an
2

+ bn
2
l -un

 p5an cos(nv0t + bn cos(nv0t - 90°)6 = an - jbn

p5bn cos(nv0t - 90°)6 = bn l -90° = -jbn.

p5an cos nv0t6 = an l0°

f(t) = av + a
q

n =1
an cos nv0t + bn cos(nv0t - 90 �).

an - jbn = 2an
2

+ bn
2
l -un = Anl -un .

unAn

f(t) = av + a
q

n =1
An cos(nv0t - un),

i(t)v(t)
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Example 16.3 Calculating Forms of the Trigonometric Fourier Series for Periodic Voltage

a) Derive the expressions for and for the peri-
odic function shown in Fig. 16.11.

b) Write the first four terms of the Fourier series
representation of using the format of
Eq. 16.38.

Figure 16.11 � The periodic function for Example 16.3.

Solution

a) The voltage is neither even nor odd, nor
does it have half-wave symmetry. Therefore we
use Eqs. 16.4 and 16.5 to find and Choosing

as zero, we obtaint0

bk.ak

v(t)

v(t)

Vm

0
t

T
4

T
2

3T
4

3T
2

5T
4

7T
4

T 2T

v(t)

bkak and

b) The average value of is

The values of for and 3 are

Thus the first four terms in the Fourier series
representation of arev(t)

 a3 - jb3 =

-Vm

3p
- j

Vm

3p
=

12Vm

3p
 l -135 �

 .

 a2 - jb2 = 0 - j 
Vm

p
=

Vm

p
 l -90 �

 ,

 a1 - jb1 =

Vm

p
- j 

Vm

p
=

12Vm

p
 l -45 �

 ,

k = 1, 2,ak - jbk

av =

Vm(T>4)

T
=

Vm

4
 .

v(t)

 =

Vm

kp
 a1-  cos 

kp

2
b .

 =

2Vm

T
 a -cos kv0t

kv0
` T>4
0
b

 bk =

2
TL

T>4

0
Vm sin kv0t dt

  +

12Vm

3p
 cos(3v0t - 135 �) +

Á

 v(t) =

Vm

4
+

12Vm

p
 cos(v0t - 45 �) +

Vm

p
 cos(2v0t - 90 �)

 =

2Vm

T

 sin kv0t

kv0

2 T>4
0

=

Vm

kp
 sin 

kp

2

 ak =

2
T
B
L

T>4

0
Vm cos kv0t dt +

L

T

T>4
(0) cos kv0t dtR

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

16.4 a) Compute and for the periodic
function shown if 

b) Using the format of Eq. 16.38, write the
Fourier series for up to and including
the fifth harmonic assuming 

Answer: (a) 10.4, 5.2, 0, 2.6, 2.1 V, and 
not defined,

(b)

2.1 cos(250t - 60 �) V.
2.6 cos(200t -  120°) +
5.2 cos(100t - 60 �) +
v(t) = 21.99 +  10.4 cos(50t - 120 �) +

-60 � ;-120 � ,
-60 � ,-120 � ,

T = 125.66 ms.
v(t)

Vm = 9p V.
u1-u5A1-A5 Vm

Vm

3

T
3

2T
3

4T
3

5T
3

2TT

t

NOTE: Also try Chapter Problem 16.22.

A S S E S S M E N T  P R O B L E M
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vg

Vm

�Vm

T

(b)

2T 3T
t

(a)

vg

�

�

vo
�

�

R

C

Figure 16.12 � An RC circuit excited by a periodic
voltage. (a) The RC series circuit. (b) The square-wave
voltage.

16.5 An Application
Now we illustrate how to use a Fourier series representation of a periodic
excitation function to find the steady-state response of a linear circuit.The
RC circuit shown in Fig. 16.12(a) will provide our example. The circuit is
energized with the periodic square-wave voltage shown in Fig. 16.12(b).
The voltage across the capacitor is the desired response, or output, signal.

The first step in finding the steady-state response is to represent the peri-
odic excitation source with its Fourier series.After noting that the source has
odd, half-wave, and quarter-wave symmetry, we know that the Fourier
coefficients reduce to with k restricted to odd integer values:

(16.45)

Then the Fourier series representation of is

(16.46)

Writing the series in expanded form, we have

(16.47)

The voltage source expressed by Eq. 16.47 is the equivalent of infi-
nitely many series-connected sinusoidal sources, each source having its
own amplitude and frequency. To find the contribution of each source to
the output voltage, we use the principle of superposition.

For any one of the sinusoidal sources, the phasor-domain expression
for the output voltage is

(16.48)

All the voltage sources are expressed as sine functions, so we interpret a
phasor in terms of the sine instead of the cosine. In other words, when we
go from the phasor domain back to the time domain, we simply write the
time-domain expressions as instead of 

The phasor output voltage owing to the fundamental frequency of the
sinusoidal source is

(16.49)

Writing in polar form gives

(16.50)

where

(16.51)b1 =  tan-1v0RC.

Vo1 =

(4Vm)l -b1

p21 + v0
2R2C2

 ,

Vo1

Vo1 =

(4Vm>p)l0 �

1 + jv0RC
 .

 cos(vt + u). sin(vt + u)

Vo =

Vg

1 + jvRC
 .

  +

4Vm

5p
 sin 5v0t +

4Vm

7p
 sin 7v0t +

Á

 vg =

4Vm

p
 sin v0t +

4Vm

3p
 sin 3v0t

vg =

4Vm

p a
q

n =1,3,5,...

1
n

 sin nv0t.

vg

 =

4Vm

pk
  (k is odd).

 bk =

8
TL

T>4

0
Vm sin kv0t dt

bk,
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From Eq. 16.50, the time-domain expression for the fundamental fre-
quency component of is

(16.52)

We derive the third-harmonic component of the output voltage in a simi-
lar manner. The third-harmonic phasor voltage is

(16.53)

where

(16.54)

The time-domain expression for the third-harmonic output voltage is

(16.55)

Hence the expression for the kth-harmonic component of the output
voltage is

(16.56)

where

(16.57)

We now write down the Fourier series representation of the output
voltage:

(16.58)

The derivation of Eq. 16.58 was not difficult. But, although we have an ana-
lytic expression for the steady-state output, what looks like is not imme-
diately apparent from Eq. 16.58.As we mentioned earlier, this shortcoming is
a problem with the Fourier series approach. Equation 16.58 is not useless,
however, because it gives some feel for the steady-state waveform of if
we focus on the frequency response of the circuit. For example, if C is large,

is small for the higher order harmonics.Thus the capacitor short cir-
cuits the high-frequency components of the input waveform, and the higher
order harmonics in Eq. 16.58 are negligible compared to the lower order har-
monics. Equation 16.58 reflects this condition in that, for large C,

(16.59)

Equation 16.59 shows that the amplitude of the harmonic in the output
is decreasing by compared with for the input harmonics. If C is
so large that only the fundamental component is significant, then to a
first approximation

(16.60)vo(t) L

-4Vm

pv0RC
 cos v0t,

1>n1>n2,

 L

-4Vm

pv0RC
 a

q

n =1,3,5,...
 

1

n2 cos nv0t.

 vo L

4Vm

pv0RC
 a

q

n =1,3,5,...

1

n2 sin(nv0t - 90 �)

1>nv0C

vo(t),

vo(t)

vo(t) =

4Vm

p a
q

n =1,3,5,... 

 sin(nv0t - bn)

n21 + (nv0RC)2
 .

bk =  tan -1kv0RC  (k is odd).

vok =

4Vm

kp21 + k2v0
2R2C2

 sin(kv0t - bk)  (k is odd),

vo3 =

4Vm

3p21 + 9v0
2R2C2

 sin(3v0t - b3).

b3 =  tan-13v0RC.

 =

4Vm

3p21 + 9v0
2R2C2

l -b3 ,

 Vo3 =

(4Vm>3p) l0 �

1 + j3v0RC

vo1 =

4Vm

p21 + v0
2R2C2

 sin(v0t - b1).

vo
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and Fourier analysis tells us that the square-wave input is deformed into a
sinusoidal output.

Now let’s see what happens as The circuit shows that and 
are the same when because the capacitive branch looks like an
open circuit at all frequencies. Equation 16.58 predicts the same result
because, as 

(16.61)

But Eq. 16.61 is identical to Eq. 16.46, and therefore as 
Thus Eq. 16.58 has proven useful because it enabled us to predict that

the output will be a highly distorted replica of the input waveform if C is
large, and a reasonable replica if C is small. In Chapter 13, we looked at
the distortion between the input and output in terms of how much mem-
ory the system weighting function had. In the frequency domain, we look
at the distortion between the steady-state input and output in terms of
how the amplitude and phase of the harmonics are altered as they are
transmitted through the circuit. When the network significantly alters the
amplitude and phase relationships among the harmonics at the output rel-
ative to that at the input, the output is a distorted version of the input.
Thus, in the frequency domain, we speak of amplitude distortion and
phase distortion.

For the circuit here, amplitude distortion is present because the ampli-
tudes of the input harmonics decrease as whereas the amplitudes of
the output harmonics decrease as

.

This circuit also exhibits phase distortion because the phase angle of each
input harmonic is zero, whereas that of the nth harmonic in the output sig-
nal is 

An Application of the Direct Approach 
to the Steady-State Response
For the simple RC circuit shown in Fig. 16.12(a), we can derive the expres-
sion for the steady-state response without resorting to the Fourier series
representation of the excitation function. Doing this extra analysis here
adds to our understanding of the Fourier series approach.

To find the steady-state expression for by straightforward circuit
analysis, we reason as follows. The square-wave excitation function alter-
nates between charging the capacitor toward and After the
circuit reaches steady-state operation, this alternate charging becomes
periodic.We know from the analysis of the single time-constant RC circuit
(Chapter 7) that the response to abrupt changes in the driving voltage is
exponential. Thus the steady-state waveform of the voltage across the
capacitor in the circuit shown in Fig. 16.12(a) is as shown in Fig. 16.13.

The analytic expressions for in the time intervals 
and are

(16.62)

(16.63)

We derive Eqs. 16.62 and 16.63 by using the methods of Chapter 7, as sum-
marized by Eq. 7.60. We obtain the values of and by noting from
Eq. 16.62 that

(16.64)V2 = Vm + (V1 - Vm)e-T>2RC,

V2V1

 vo = -Vm + (V2 + Vm)e-[t- (T>2)]>RC , T>2 … t … T.

 vo = Vm + (V1 - Vm)e-t>RC ,     0 … t … T>2;

T>2 … t … T
0 … t … T>2vo(t)

-Vm.+Vm

vo

-  tan-1 nv0RC.

1
n

 
1

21 + (nv0RC)2

1>n,

C : 0.vo : vg

vo =

4Vm

p a
q

n= 1,3,5,...

1
n

 sin nv0t.

C : 0,

C = 0,
vgvoC : 0.

vo

V2

0

Toward �Vm

Toward �Vm Toward �Vm

Toward �Vm

V1

T/2 T 2T3T/2
t

Figure 16.13 � The steady-state waveform of for the
circuit in Fig. 16.12(a).

vo
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and from Eq. 16.63 that

(16.65)

Solving Eqs. 16.64 and 16.65 for and yields

(16.66)

Substituting Eq. 16.66 into Eqs. 16.62 and 16.63 gives

(16.67)

and

(16.68)

Equations 16.67 and 16.68 indicate that has half-wave symmetry
and that therefore the average value of is zero. This result agrees with
the Fourier series solution for the steady-state response—namely, that
because the excitation function has no zero frequency component, the
response can have no such component. Equations 16.67 and 16.68 also
show the effect of changing the size of the capacitor. If C is small, the
exponential functions quickly vanish, between 0 and and

between and T. In other words, as If C is
large, the output waveform becomes triangular in shape, as Fig. 16.14
shows. Note that for large C, we may approximate the exponential
terms and e by the linear terms and

respectively. Equation 16.59 gives the Fourier
series of this triangular waveform.

Figure 16.14 summarizes the results. The dashed line in Fig. 16.14 is
the input voltage, the solid colored line depicts the output voltage when
C is small, and the solid black line depicts the output voltage when C is large.

Finally, we verify that the steady-state response of Eqs. 16.67 and
16.68 is equivalent to the Fourier series solution in Eq. 16.58. To do so we
simply derive the Fourier series representation of the periodic function
described by Eqs. 16.67 and 16.68.We have already noted that the periodic
voltage response has half-wave symmetry. Therefore the Fourier series
contains only odd harmonics. For k odd,

(16.69)

(16.70)

To show that the results obtained from Eqs. 16.69 and 16.70 are consistent
with Eq. 16.58, we must prove that

(16.71)

and that

(16.72)
ak

bk
= -kv0RC.

2ak
2

+ bk
2

=

4Vm

kp
 

1

21 + (kv0RC)2
 ,

 =

4Vm

kp
-

8kv0VmR2C2

T[1 + (kv0RC)2]
  (k is odd).

 bk =

4
TL

T>2

0
aVm -

2Vme-t>RC

1 + e-T>2RCb  sin kv0t dt

 =

-8RCVm

T[1 + (kv0RC)2]
  (k is odd),

 ak =

4
TL

T>2

0
aVm -

2Vme-t>RC

1 + e-T>2RCb  cos kv0t dt

1 - 5[t - (T>2)]>RC6, 1 - (t>RC)-[t - (T>2)]>RCe-t>RC

C : 0.vo : vgT>2vo = -Vm

T>2,vo = Vm

vo

vo(t)

vo = -Vm +

2Vm

1 + e-T>2RCe-[t- (T>2)]>RC , T>2 … t … T.

vo = Vm -

2Vm

1 + e-T>2RCe-t>RC , 0 … t … T>2,

 V2 = -V1 =

Vm(1 - e-T>2RC)

1 + e-T>2RC  .

V2V1

 V1 = -Vm + (V2 + Vm)e-T>2RC.

vo
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�Vm

V2

0

Small C
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V1

T/2 T 2T3T/2
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Figure 16.14 � The effect of capacitor size on the
steady-state response.
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We leave you to verify Eqs. 16.69–16.72 in Problems 16.23 and 16.24.
Equations 16.71 and 16.72 are used with Eqs. 16.38 and 16.39 to derive the
Fourier series expression in Eq. 16.58; we leave the details to you in
Problem 16.25.

With this illustrative circuit, we showed how to use the Fourier series
in conjunction with the principle of superposition to obtain the steady-
state response to a periodic driving function. Again, the principal short-
coming of the Fourier series approach is the difficulty of ascertaining the
waveform of the response. However, by thinking in terms of a circuit’s fre-
quency response, we can deduce a reasonable approximation of the
steady-state response by using a finite number of appropriate terms in the
Fourier series representation. (See Problems 16.28 and 16.30.)

Objective 2—Know how to analyze a circuit’s response to a periodic waveform

16.5 The periodic triangular-wave voltage seen on
the left is applied to the circuit shown on the
right. Derive the first three nonzero terms in
the Fourier series that represents the steady-
state voltage if and the
period of the input voltage is 

Answer:

16.6 The periodic square-wave shown on the left is
applied to the circuit shown on the right.

a) Derive the first four nonzero terms in the
Fourier series that represents the steady-
state voltage if and the
period of the input voltage is 

b) Which harmonic dominates the output
voltage? Explain why.

0.2p ms.
Vm = 210p Vvo

16.70°) + 80.50 cos(50t - 26.57 �) + . . . mV
2238.83 cos(10t - 5.71 �) +  239.46 cos(30t -

200p ms.
Vm = 281.25p2 mVvo

Answer: (a)

(b) The fifth harmonic, at ,
because the circuit is a bandpass filter
with a center frequency of 
and a quality factor of 10.

50,000 rad>s
10,000 rad>s

17.32 cos(70,000t + 98.30°) +
Á V;

168 cos(50,000t) +
26.14 cos(30,000t - 95.36 �) +
17.5 cos(10,000t + 88.81 �) +

100 nF

�

�

vi

100 k�

�

�

vo

Vm

vi

T/20 T
t

�Vm

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 16.28 and 16.29.
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�

vo

Vm

vg

T/20 T
t

�Vm

20 mH20 nF

16.6 Average-Power Calculations
with Periodic Functions

If we have the Fourier series representation of the voltage and current at
a pair of terminals in a linear lumped-parameter circuit, we can easily
express the average power at the terminals as a function of the harmonic
voltages and currents. Using the trigonometric form of the Fourier series
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expressed in Eq. 16.38, we write the periodic voltage and current at the
terminals of a network as

(16.73)

(16.74)

The notation used in Eqs. 16.73 and 16.74 is defined as follows:

We assume that the current reference is in the direction of the refer-
ence voltage drop across the terminals (using the passive sign conven-
tion), so that the instantaneous power at the terminals is . The average
power is

(16.75)

To find the expression for the average power, we substitute Eqs. 16.73 and
16.74 into Eq. 16.75 and integrate. At first glance, this appears to be a for-
midable task, because the product requires multiplying two infinite
series. However, the only terms to survive integration are the products of
voltage and current at the same frequency. A review of Eqs. 16.8–16.10
should convince you of the validity of this observation. Therefore
Eq. 16.75 reduces to

(16.76)

Now, using the trigonometric identity

we simplify Eq. 16.76 to

(16.77)

The second term under the integral sign integrates to zero, so

(16.78)

Equation 16.78 is particularly important because it states that in the case
of an interaction between a periodic voltage and the corresponding periodic
current, the total average power is the sum of the average powers obtained
from the interaction of currents and voltages of the same frequency. Currents
and voltages of different frequencies do not interact to produce average

P = VdcIdc + a
q

n= 1

VnIn

2
 cos(uvn - uin).

 + cos(2nv0t - uvn - uin)]dt.

 P = VdcIdc +

1
Ta

q

n =1

VnIn

2 L

t0 +T

t0

[ cos(uvn - uin)

 cos a cos b =

1
2

 cos(a - b) +

1
2

 cos(a + b),

 *  cos(nv0t - uin) dt.

 P =

1
T

VdcIdct 2 t0 +T

t0

+ a
q

n =1

1
TL

t0 +T

t0

 VnIn cos(nv0t - uvn)

vi

P =

1
T

 
L

t0 +T

t0

 p dt =

1
TL

t0 + T

t0

 vi dt.

vi

 uin = the phase angle of the nth-harmonic current.

 In = the amplitude of the nth-harmonic current,

 Idc = the amplitude of the dc current component,

 uvn = the phase angle of the nth-harmonic voltage,

 Vn = the amplitude of the nth-harmonic voltage,

 Vdc = the amplitude of the dc voltage component,

 i = Idc + a
q

n =1
In cos(nv0t - uin).

 v = Vdc + a
q

n= 1
Vn cos(nv0t - uvn),
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power. Therefore, in average-power calculations involving periodic func-
tions, the total average power is the superposition of the average powers
associated with each harmonic voltage and current. Example 16.4 illustrates
the computation of average power involving a periodic voltage.

Example 16.4 Calculating Average Power for a Circuit with a Periodic Voltage Source

Assume that the periodic square-wave voltage in
Example 16.3 is applied across the terminals of a

resistor. The value of is 60 V, and that of T
is 5 ms.

a) Write the first five nonzero terms of the Fourier
series representation of . Use the trigono-
metric form given in Eq. 16.38.

b) Calculate the average power associated with
each term in (a).

c) Calculate the total average power delivered to
the resistor.

d) What percentage of the total power is delivered
by the first five terms of the Fourier series?

Solution

a) The dc component of is

From Example 16.3 we have

 v0 =

2p
T

=

2p(1000)
5

= 400p rad>s.

 u5 = 45 � ,

 A5 = 5.40 V,

 u4 = 0 � ,

 A4 = 0,

 u3 = 135 � ,

 A3 = 2012>p = 9.00 V,

 u2 = 90 � ,

 A2 = 60>p = 19.10 V,

 u1 = 45 � ,

 A1 = 12 60>p = 27.01 V,

av =

(60)(T>4)

T
= 15 V.

v(t)

15 Æ

v(t)

Vm15 Æ

Thus, using the first five nonzero terms of the
Fourier series,

b) The voltage is applied to the terminals of a resis-
tor, so we can find the power associated with
each term as follows:

c) To obtain the total average power delivered to
the resistor, we first calculate the rms value
of :

The total average power delivered to the 
resistor is

d) The total power delivered by the first five
nonzero terms is

This is ( )(100), or 91.92% of the total.55.15>60

P = Pdc + P1 + P2 + P3 + P5 = 55.15 W.

PT =

302

15
= 60 W.

15 Æ

Vrms = D
(60)2(T>4)

T
= 1900 = 30 V.

v(t)
15 Æ

 P5 =

1
2

 
5.42

15
= 0.97 W.

 P3 =

1
2

 
92

15
= 2.70 W,

 P2 =

1
2

 
19.102

15
= 12.16 W,

 P1 =

1
2

 
27.012

15
= 24.32 W,

 Pdc =

152

15
= 15 W,

 + 5.40 cos(2000pt - 45 �) +
Á V.

 + 9.00 cos(1200pt - 135 �)

 + 19.10 cos(800pt - 90 �)

 v(t) = 15 + 27.01 cos(400pt - 45 �)
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Objective 3—Be able to estimate the average power delivered to a resistor using a small number of Fourier 
coefficients

16.7 The trapezoidal voltage function in Assessment
Problem 16.3 is applied to the circuit shown. If

and estimate
the average power delivered to the resistor.

Answer: 60.75 W.

2 Æ
T = 2094.4 ms,12Vm = 296.09 V

�

�
2 �

1 H

vg

�

�

vR

1 F

NOTE: Also try Chapter Problems 16.34 and 16.35.

A S S E S S M E N T  P R O B L E M

16.7 The rms Value of a Periodic Function
The rms value of a periodic function can be expressed in terms of the
Fourier coefficients; by definition,

(16.79)

Representing by its Fourier series yields

(16.80)

The integral of the squared time function simplifies because the only
terms to survive integration over a period are the product of the dc term
and the harmonic products of the same frequency.All other products inte-
grate to zero. Therefore Eq. 16.80 reduces to

(16.81)

Equation 16.81 states that the rms value of a periodic function is the
square root of the sum obtained by adding the square of the rms value of
each harmonic to the square of the dc value. For example, let’s assume that
a periodic voltage is represented by the finite series

The rms value of this voltage is

Usually, infinitely many terms are required to represent a periodic func-
tion by a Fourier series, and therefore Eq. 16.81 yields an estimate of the
true rms value. We illustrate this result in Example 16.5.

 = 1764.5 = 27.65 V.

 V = 2102
+ (30>12)2

+ (20>12)2
+ (5>12)2

+ (2>12)2

  + 5 cos(3v0t - u3) + 2 cos(5v0t - u5).

 v = 10 + 30 cos(v0t - u1) + 20 cos(2v0t - u2)

 = Dav
2

+ a
q

n =1
a An

12
b2

.

 = Dav
2

+ a
q

n =1

An
2

2

 Frms = D
1
T

 ¢av
2T + a

q

n =1

T

2
An

2 ≤

Frms = D
1
TL

t0 + T

t0

 Bav + a
q

n =1
An cos (nv0t - un)R2

dt.

f(t)

Frms = D
1
TL

t0 +T

t0

f(t)2
 dt.
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16.8 The Exponential Form 
of the Fourier Series

The exponential form of the Fourier series is of interest because it
allows us to express the series concisely. The exponential form of the
series is

(16.82)

where

(16.83)

To derive Eqs. 16.82 and 16.83, we return to Eq. 16.2 and replace the
cosine and sine functions with their exponential equivalents:

(16.84)

(16.85)

Substituting Eqs. 16.84 and 16.85 into Eq. 16.2 gives

(16.86)

Now we define as

(16.87)Cn =

1
2

(an - jbn) =

An

2
l -un,  n = 1, 2, 3, Á

Cn

 = av + a
q

n =1
a an - jbn

2
bejnv0t

+ aan + jbn

2
be-jnv0t.

 f(t) = av + a
q

n =1

an

2
(ejnv0t

+ e-jnv0t) +

bn

2j
(ejnv0t

- e-jnv0t)

 sin nv0t =

ejnv0t
- e-jnv0t

2j
 .

 cos nv0t =

ejnv0t
+ e-jnv0t

2
 ,

Cn =

1
TL

t0 +T

t0

f(t)e-jnv0t dt.

f(t) = a
q

n = -q

Cnejnv0t,

Example 16.5 Estimating the rms Value of a Periodic Function

Use Eq. 16.81 to estimate the rms value of the voltage
in Example 16.4.

Solution
From Example 16.4,

Therefore,

 = 28.76 V.

 Vrms = D152
+ a27.01

12
b 2

+ a19.10
12
b2

+ a9.00
12
b2

+ a 5.40
12
b2

From Example 16.4, the true rms value is 30 V. We
approach this value by including more and more harmon-
ics in Eq. 16.81. For example, if we include the harmonics
through the equation yields a value of 29.32 V.k = 9,

NOTE: Assess your understanding of this material by trying Chapter Problems 16.37 and 16.39.

the rms value of the fundamental,

the rms value of the second harmonic,

the rms value of the third harmonic,

the rms value of the fifth harmonic. V5 = 5.40>12 V,

 V3 = 9.00>12 V,

 V2 = 19.10>12 V,

 V1 = 27.01>12 V,

 Vdc = 15 V,
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From the definition of ,

(16.88)

which completes the derivation of Eq. 16.83.To complete the derivation of
Eq. 16.82, we first observe from Eq. 16.88 that

. (16.89)

Next we note that

(16.90)

Substituting Eqs. 16.87, 16.89, and 16.90 into Eq. 16.86 yields

(16.91)

Note that the second summation on the right-hand side of Eq. 16.91 is
equivalent to summing from to that is,

(16.92)

Because the summation from to is the same as the summation
from to we use Eq. 16.92 to rewrite Eq. 16.91:

(16.93)

which completes the derivation of Eq. 16.82.
We may also express the rms value of a periodic function in terms of

the complex Fourier coefficients. From Eqs. 16.81, 16.87, and 16.89,

(16.94)

(16.95)

(16.96)

Substituting Eqs. 16.95 and 16.96 into Eq. 16.94 yields the desired
expression:

(16.97)

Example 16.6 illustrates the process of finding the exponential
Fourier series representation of a periodic function.

Frms = DC0
2

+ 2a
q

n =1
|Cn|2.

 C0
2

= av
2.

 |Cn| =

2an
2

+ bn
2

2
 ,

 Frms = Dav
2

+ a
q

n= 1

an
2

+ bn
2

2
 ,

 = a
q

-q

Cnejnv0t,

 f(t) = a
q

n =0
Cnejnv0t

+ a
-1

-q

Cnejnv0t

-1,- q

- q-1

a
q

n =1
Cn

*e-jnv0t
= a

-q

n = -1
Cnejnv0t.

- q ;-1Cnejnv0t

 = a
q

n =0
Cnejnv0t

+ a
q

n= 1
Cn

*e-jnv0t.

 f(t) = C0 + a
q

n =1
(Cnejnv0t

+ Cn
*e-jnv0t)

C
-n =

1
TL

t0 +T

t0

f(t)ejnv0t dt = Cn
*

=

1
2

(an + jbn).

C0 =

1
TL

t0 +T

t0

t0
f(t) dt = av

 =

1
TL

t0 + T

t0

f(t)e-jnv0t dt,

 =

1
TL

t0 + T

t0

f(t)(cos nv0t - jsin nv0t) dt

 Cn =

1
2
B 2

TL

t0 + T

t0

f(t) cos nv0t dt - j 
2
TL

t0 + T

t0

f(t) sin nv0t dtR
Cn
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Example 16.6 Finding the Exponential Form of the Fourier Series

Find the exponential Fourier series for the periodic
voltage shown in Fig. 16.15.

Figure 16.15 � The periodic voltage for Example 16.6.

Solution
Using as the starting point for the integration,
we have, from Eq. 16.83,

 =

Vm

T
¢ e-jnv0t

-jnv0
≤ ` t>2

-t>2

 Cn =

1
TL

t>2

-t>2
Vme-jnv0t

 dt

-t>2

Vm

v(t)

0 T
t

�t/2 T�t/2 T�t/2t/2

Here, because has even symmetry,
for all n, and hence we expect to be real.
Moreover, the amplitude of follows a 
distribution, as indicated when we rewrite

We say more about this subject in Section 16.9.
The exponential series representation of is

 = aVmt

T
b a

q

n = -q

 sin (nv0t>2)

nv0t>2 ejnv0t.

 v(t) = a
q

n= -q

aVmt

T
b  sin (nv0t>2)

nv0t>2 ejnv0t

v(t)

Cn =

Vmt

T
 
 sin (nv0t>2)

nv0t>2 .

(sin x)>xCn

Cn

bn = 0v(t)

 =

2Vm

nv0T
 sin nv0 t>2.

 =

jVm

nv0T
(e-jnv0t>2

- ejnv0t>2)

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

16.8 Derive the expression for the Fourier coeffi-
cients for the periodic function shown.
Hint: Take advantage of symmetry by using the
fact that 

Answer: Cn = -j 4
pn(1 + 3 cos np4 ), n odd

8
i (A)

�8

2

�2 4 8 12 16 20 24 28 32 36 40 44

t (ms)

Cn = (an - jbn)>2.

Cn

16.9 a) Calculate the rms value of the periodic cur-
rent in Assessment Problem 16.8.

b) Using estimate the rms value.

c) What is the percentage of error in the value
obtained in (b), based on the true value
found in (a)?

d) For this periodic function, could fewer terms
be used to estimate the rms value and still
insure the error is less than 1%?

Answer: (a)

(b) 5.777 A;

(c)

(d) yes; if are used, the error is
-0.98 %.

C1-C9

-0.93 %;

134 A;

C1-C11,

NOTE: Also try Chapter Problems 16.44 and 16.45.

A S S E S S M E N T  P R O B L E M S
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16.9 Amplitude and Phase Spectra
A periodic time function is defined by its Fourier coefficients and its period.
In other words, when we know , , , and T, we can construct , at
least theoretically. When we know and , we also know the amplitude
( ) and phase angle ( ) of each harmonic.Again, we cannot, in general,
visualize what the periodic function looks like in the time domain from a
description of the coefficients and phase angles; nevertheless, we recognize
that these quantities characterize the periodic function completely. Thus,
with sufficient computing time, we can synthesize the time-domain wave-
form from the amplitude and phase angle data. Also, when a periodic driv-
ing function is exciting a circuit that is highly frequency selective, the
Fourier series of the steady-state response is dominated by just a few terms.
Thus the description of the response in terms of amplitude and phase may
provide an understanding of the output waveform.

We can present graphically the description of a periodic function in
terms of the amplitude and phase angle of each term in the Fourier series
of The plot of the amplitude of each term versus the frequency is
called the amplitude spectrum of and the plot of the phase angle ver-
sus the frequency is called the phase spectrum of Because the ampli-
tude and phase angle data occur at discrete values of the frequency (that
is, at , , these plots also are referred to as line spectra.

An Illustration of Amplitude and Phase Spectra
Amplitude and phase spectra plots are based on either Eq. 16.38 ( and

) or Eq. 16.82 ( ).We focus on Eq. 16.82 and leave the plots based on
Eq. 16.38 to Problem 16.49. To illustrate the amplitude and phase spectra,
which are based on the exponential form of the Fourier series, we use the
periodic voltage of Example 16.6. To aid the discussion, we assume that

and From Example 16.6,

(16.98)

which for the assumed values of and reduces to

(16.99)

Figure 16.16 illustrates the plot of the magnitude of from Eq. 16.99 for
values of n ranging from to . The figure clearly shows that the
amplitude spectrum is bounded by the envelope of the func-
tion.We used the order of the harmonic as the frequency scale because the
numerical value of T is not specified. When we know T, we also know 
and the frequency corresponding to each harmonic.

Figure 16.17 provides the plot of versus x, where x is in
radians. It shows that the function goes through zero whenever x is an
integral multiple of From Eq. 16.98,

(16.100)

From Eq. 16.100, we deduce that the amplitude spectrum goes through
zero whenever is an integer. For example, in the plot, is , and
therefore the envelope goes through zero at 10, 15, and son = 5, 10, 15,

1>5t>Tnt>T

nv0a t2 b =

np t
T

=

np

T>t  .

p.

|( sin x)>x|

v0

|( sin x)>x|
+10-10

Cn

Cn = 1
 sin (np>5)

np>5  .

tVm

Cn =

Vmt

T
 
 sin (nv0t>2)

nv0t>2  ,

t = T>5.Vm = 5 V

Cn-un

An

3v0, . . .),2v0v0

f(t).
f(t),

f(t).

-unAn

bnan

f(t)bnanav

0.2

n
�10 �8 �6 �4 �2

�0.4

2 4 6 8 10

1.0
0.8
0.6
0.4

�Cn�

Figure 16.16 � The plot of versus when ,
for the periodic voltage for Example 16.6.

t = T>5nCn

0.2

0

0.4
0.6
0.8

1.0

sin x
x

x
�2p 2p�1.5p �p �0.5p 0.5p p 1.5p

Figure 16.17 � The plot of versus .x(sin x)>x
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on. In other words, the fifth, tenth, fifteenth, . . . harmonics are all zero. As
the reciprocal of becomes an increasingly larger integer, the number
of harmonics between every radians increases. If is not an integer,
the amplitude spectrum still follows the envelope. However,
the envelope is not zero at an integral multiple of 

Because is real for all n, the phase angle associated with is
either zero or depending on the algebraic sign of 
For example, the phase angle is zero for and It is
not defined at because is zero. The phase angle is at

and and it is not defined at This pattern repeats
itself as n takes on larger integer values. Figure 16.18 shows the phase
angle of given by Eq. 16.98.

Now, what happens to the amplitude and phase spectra if is
shifted along the time axis? To find out, we shift the periodic voltage in
Example 16.6 units to the right. By hypothesis,

(16.101)

Therefore

(16.102)

which indicates that shifting the origin has no effect on the amplitude spec-
trum, because

(16.103)

However, reference to Eq. 16.87 reveals that the phase spectrum has
changed to rads. For example, let’s shift the periodic voltage
in Example 16.1 units to the right. As before, we assume that 
then the new phase angle is

(16.104)

We have plotted Eq. 16.104 in Fig. 16.19 for n ranging from to Note
that no phase angle is associated with a zero amplitude coefficient.

You may wonder why we have devoted so much attention to the
amplitude spectrum of the periodic pulse in Example 16.6. The reason is
that this particular periodic waveform provides an excellent way to illus-
trate the transition from the Fourier series representation of a periodic
function to the Fourier transform representation of a nonperiodic func-
tion. We discuss the Fourier transform in Chapter 17.

+8.-8

uœ

n = -(un + np>5).

uœ

n

t = T>5;t>2-(un + nv0t0)

|Cn| = |Cne-jnv0t0|.

v(t - t0) = a
q

n= -q

Cnejnv0(t - t0)
= a

q

n = -q

Cne-jnv0t0ejnv0t,

v(t) = a
q

n = -q

Cnejnv0t.

t0

f(t)
Cn

;10.;9,;8,;7,n = ;6,
180 �C

;5n = ;5,
;4.;3,;2,;1,n = 0,

(sin np>5)>(np>5).180 � ,
CnCn

v0.
|( sin x)>x|

np>Tp

t>T

�1 1

90�

180�

un

2
3

4
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6
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8
9

10
11

12
13

14
15

16
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Figure 16.18 � The phase angle of Cn.
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Figure 16.19 � The plot of versus for Eq. 16.104.nuœ
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Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

16.10 The function in Assessment Problem 16.8 is
shifted along the time axis 8 ms to the right.
Write the exponential Fourier series for the
periodic current.

Answer:

i(t) =

4
p a

q

n = -q(odd)
 
1
n

(1 + 3 cos 
np

4
)e-(jp>2)(n +1)ejnv0t A.

NOTE: Also try Chapter Problems 16.49 and 16.50.

A S S E S S M E N T  P R O B L E M

Practical Perspective
Active High-Q Filters
Consider the narrowband op amp bandpass filter shown in Fig. 16.20(a). The
square wave voltage shown in Fig. 16.20(b) is the input to the filter. We
know that the square wave is comprised of an infinite sum of sinusoids, one
sinusoid at the same frequency as the square wave and all of the remaining
sinusoids at integer multiples of that frequency. What effect will the filter
have on this input sum of sinusoids?

�

�

(a)

(b)

�

�

vo

�

�

vg

100 nF3912.50 �

100 nF 10 k�

6.26 �

C2

C1

R1

R2

R3

15.65p

vg (V)

t (ms)
25p 50p0�50p �25p 12.5p 37.5p

�15.65p

�37.5p �12.5p

Figure 16.20 � (a) narrowband bandpass filter; (b) square wave input. 
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The Fourier series representation of the square wave in Fig. 16.20(b) is
given by

where . The first three terms of this Fourier series are given by

The period of the square wave is so the frequency of the square
wave is . 

The transfer function for the bandpass filter in Fig. 16.20(a) is 

where , , . This filter has
a quality factor of . Note that the center frequency of the
bandpass filter equals the frequency of the input square wave. 

Multiply each term of the Fourier series representation of the square
wave, represented as a phasor, by the transfer function evaluated at
the frequency of the term in the Fourier series to get the representation of
the output voltage of the filter as a Fourier series:  

Notice the selective nature of the bandpass filter, which effectively
amplifies the fundamental frequency component of the input square wave
and attenuates all of the harmonic components. 

Now make the following changes to the bandpass filter of Fig. 16.20(a)
— let , , , and 
. The transfer function for the filter, , has the same form given above,
but now , , . The pass-
band gain and center frequency are unchanged, but the bandwidth has
increased by a factor of 10. This makes the quality factor 2, and the result-
ing bandpass filter is less selective than the original filter. We can see this
by looking at the output voltage of the filter as a Fourier series:  

The fundamental frequency of the input has the same amplification fac-
tor, but the higher harmonic components have not been attenuated as signif-
icantly as they were when the filter with was used. Figure 16.21 plots
the first three terms of the Fourier series representations of the input square
wave and the resulting output waveforms for the two bandpass filters. Note
the nearly perfect replication of a sinusoid in Fig. 16.21(b) and the distortion
that results from the use of a less-selective filter in Fig. 16.21(c).

Q = 20

v0(t) = - 80 cos v0t - 5 cos 3v0t + 1.63 cos 5v0t - ...

v0 = 40,000 rad>sb = 20,000 rad>sK = 400>313
H(s)

C1 = C2 = 0.1 mFR3 = 1 kÆR2 = 74.4 ÆR1 = 391.25 Æ

vg(t) = -80 cos v0t - 0.5 cos 3v0t + 0.17 cos 5v0t - ...

H(s)

40,000>2000 = 20
v0 = 40,000 rad>sb = 2000 rad>sK = 400>313

H(s) =

Kbs

s2
+ bs + v0

2

40,000 rad>s 50p ms

vg(t) = 62.6 cos v0t - 20.87 cos 3v0t + 12.52 cos 5v0t - ...

A = 15.65pV

vg(t) =

4A
p a

q

n =1,3,5,...

1
n

 sin 
np

2
 cos nv0t
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80

�80

20

�20
t (ms)

60
40

0

�40
�60

100 200 300

(a)

vg (V)

80

�80

20

�20
t (ms)

60
40

0

�40
�60

(b)

v0 (V)
100

�100

100 200 300

80

�80

20

�20
t (ms)

60
40

0

�40
�60

(c)

v0 (V)
100

�100

100 200 300

Figure 16.21 � (a) The first three terms of the Fourier series of the square wave in Fig. 16.20(b); (b) the first three terms of the Fourier
series of the output from the bandpass filter in Fig. 16.20(a), where ; (c) the first three terms of the Fourier series of the output
from the bandpass filter in Fig. 16.20(a) with component values changed to give . Q = 2

Q = 20

Summary

• A periodic function is a function that repeats itself
every T seconds.

• A period is the smallest time interval (T ) that a peri-
odic function can be shifted to produce a function iden-
tical to itself. (See page 602.)

• The Fourier series is an infinite series used to represent
a periodic function. The series consists of a constant
term and infinitely many harmonically related cosine
and sine terms. (See page 605.)

• The fundamental frequency is the frequency determined
by the fundamental period ( or ).
(See page 605.)

• The harmonic frequency is an integer multiple of the
fundamental frequency. (See page 605.)

• The Fourier coefficients are the constant term and the
coefficient of each cosine and sine term in the series.
(See Eqs. 16.3–16.5.) (See page 606.)

v0 = 2pf0f0 = 1>T

• Five types of symmetry are used to simplify the compu-
tation of the Fourier coefficients:

• even, in which all sine terms in the series are zero

• odd, in which all cosine terms and the constant term
are zero

• half-wave, in which all even harmonics are zero

• quarter-wave, half-wave, even, in which the series
contains only odd harmonic cosine terms

• quarter-wave, half-wave, odd, in which the series con-
tains only odd harmonic sine terms

(See page 609.)

• In the alternative form of the Fourier series, each har-
monic represented by the sum of a cosine and sine
term is combined into a single term of the form

. (See page 615.)An cos(nv0t - un)

NOTE: Assess your understanding of the Practical Perspective by solving Chapter Problems 16.56–16.57.



• For steady-state response, the Fourier series of the
response signal is determined by first finding 
the response to each component of the input signal. The
individual responses are added (super-imposed) to
form the Fourier series of the response signal. The
response to the individual terms in the input series is
found by either frequency domain or s-domain analysis.
(See page 617.)

• The waveform of the response signal is difficult to obtain
without the aid of a computer. Sometimes the frequency
response (or filtering) characteristics of the circuit can
be used to ascertain how closely the output waveform
matches the input waveform. (See page 618.)

• Only harmonics of the same frequency interact to pro-
duce average power.The total average power is the sum

of the average powers associated with each frequency.
(See page 621.)

• The rms value of a periodic function can be estimated
from the Fourier coefficients. (See Eqs. 16.81, 16.94, and
16.97.) (See page 624.)

• The Fourier series may also be written in exponential
form by using Euler’s identity to replace the cosine and
sine terms with their exponential equivalents. (See
page 625.)

• The Fourier series is used to predict the steady-state
response of a system when the system is excited by a
periodic signal. The series assists in finding the steady-
state response by transferring the analysis from the time
domain to the frequency domain.

Problems

Sections 16.1–16.2

16.1 For each of the periodic functions in Fig. P16.1,
specify

a) in radians per second

b) in hertz

c) the value of 

d) the equations for and 

e) as a Fourier series

Figure P16.1

16.2 Find the Fourier series expressions for the periodic
voltage functions shown in Fig. P16.2. Note that
Fig. P16.1(a) illustrates the square wave; Fig. P16.2 (b)
illustrates the full-wave rectified sine wave, where

and Fig. P16.2 (c)
illustrates the half-wave rectified sine wave, where

0 … t … T>2.v(t) = Vm sin(2p>T)t,

0 … t … T;v(t) = Vm sin(p>T)t,

v(V)
90

60

30

–40 –20 20 40 60 80 100
–30

–60

–90
(b)

t (ms)

v(V)

50

2�4 �2 0 4 6
(a)

t (ms)
8 10

v(t)

bkak

av

fo

vo

Figure P16.2

16.3 Derive the Fourier series for the periodic voltage
shown in Fig. P16.3, given that

 v(t) = -25 cos 
2p
T

 t V,    
T
4

… t …

3T
4

.

 v(t) = 50 cos 
2p
T

 t V,    
-T
4

… t …

T
4

 ;

Vm

�Vm

T
t

�T 2T 3T

v(t)

v(t)

v(t)

(a)

0

Vm

T
t

�T 2T 3T

(b)
0

Vm

T/2
t

T 3T/2
(c)

0

Problems 633
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Figure P16.3

16.4 Derive the expressions for , , and for the 
periodic voltage shown in Fig. P16.4 if 

Figure P16.4

16.5 a) Verify Eqs. 16.6 and 16.7.

b) Verify Eq. 16.8. Hint: Use the trigonometric iden-
tity 

c) Verify Eq. 16.9. Hint: Use the trigonometric iden-
tity 

d) Verify Eq. 16.10. Hint: Use the trigonometric iden-
tity 

16.6 Derive Eq. 16.5.

Section 16.3

16.7 Derive the expressions for the Fourier coefficients of
an odd periodic function. Hint: Use the same tech-
nique as used in the text in deriving Eqs. 16.14–16.16.

16.8 Show that if the Fourier coef-
ficients are given by the expressions

Hint: Use the same technique as used in the text to
derive Eqs. 16.28 and 16.29.

16.9 Derive Eqs. 16.36. Hint: Start with Eq. 16.29 and
divide the interval of integration into 0 to 
and to Note that because of evenness and
quarter-wave symmetry, in thef(t) = -f(T>2 - t)

T>2.T>4
T>4

 bk =

4
TL

T>2

0
f(t) sin kvot dt,  for k odd.

 bk = 0           for k even;

bk

f(t) = -f(t - T>2),

1
2 cos(a + b).cos a cos b =

1
2 cos(a - b) +

1
2 cos(a + b).sin a sin b =

1
2 cos(a - b) -

1
2 sin(a - b).cos a sin b =

1
2 sin(a + b) -

t

v(t)

0

Vm/2

Vm

TT/2 3T/4T/4 5T/4

Vm = 100p V.
bkakav

v(t)V

50

– T – 3T/4 – T/2 – T/4 T/4 T/2 3T/4 T
t

0

25

interval Let in the
second interval and combine the resulting integral
with the integration between 0 and 

16.10 Derive Eqs. 16.37. Follow the hint given in
Problem 16.9 except that because of oddness and
quarter-wave symmetry, in the
interval 

16.11 It is given that over the interval
The function then repeats itself.

a) What is the fundamental frequency in radians
per second?

b) Is the function even?

c) Is the function odd?

d) Does the function have half-wave symmetry?

16.12 One period of a periodic function is described by
the following equations:

a) What is the fundamental frequency in hertz?

b) Is the function even?

c) Is the function odd?

d) Does the function have half-wave symmetry?

e) Does the function have quarter-wave symmetry?

f) Give the numerical expressions for and 

16.13 Find the Fourier series of each periodic function
shown in Fig. P16.13.
Figure P16.13

v(t)

v(t)

Vm

�Vm

�T �T/2 0 T/2 T
t

(a)

Vp

�Vp

�T �T/2 0 T/2 3T/2T
t

(b)

bk.ak,av,

 i(t) = 40 mA,      25 ms … t … 35 ms.

 i(t) = 8t - 0.16 A,    15 ms … t … 25 ms;

 i(t) = -40 mA,   5 ms … t … 15 ms;

 i(t) = -8t A,      -5 ms … t … 5 ms;

-1 … t … 1 s.
v(t) = 50 cos p ƒ t ƒ V

T>4 … t … T>2.
f(t) = f(T>2 - t)

T>4.

x = T>2 - tT>4 … t … T>2.



16.14 The periodic function shown in Fig. P16.14 is even
and has both half-wave and quarter-wave symmetry.

a) Sketch one full cycle of the function over the
interval 

b) Derive the expression for the Fourier coeffi-
cients 

c) Write the first three nonzero terms in the
Fourier expansion of 

d) Use the first three nonzero terms to estimate

Figure P16.14

16.15 It is given that over the interval

a) Construct a periodic function that satisfies this
between and s, has a period of 20 s,

and has half-wave symmetry.

b) Is the function even or odd?

c) Does the function have quarter-wave symmetry?

d) Derive the Fourier series for 

e) Write the Fourier series for if is shifted
5 s to the right.

16.16 Repeat Problem 16.15 given that over
the interval 

16.17 a) Derive the Fourier series for the periodic cur-
rent shown in Fig. P16.17.

b) Repeat (a) if the vertical reference axis is shifted
units to the right.

Figure P16.17

t

i (t)

Im

�Im

T/2 3T/2T�3T/2 �T/2�T

T>2

-5 6 t 6 5 s.
f(t) = 2 t3

f(t)f(t)

f(t).

+5-5f(t)

-5 6 t 6 5 s.
f(t) = 10t2

f (t)
3

2

1

T/8 T/4

t

f(T>8).

f(t).

av, ak, and bk.

-T>4 … t … 3T>4.

16.18 It is sometimes possible to use symmetry to find 
the Fourier coefficients, even though the original func-
tion is not symmetrical! With this thought in mind,
consider the function in Fig P16.4. Observe that 
can be divided into the two functions illustrated in
Fig. P16.18(a) and (b). Furthermore, we can make 
an even function by shifting it units to the left.This
is illustrated in Fig. P16.18(c).At this point we note that

and that the Fourier series of
is a single-term series consisting of To find

the Fourier series of we first find the Fourier
series of and then shift this series 
units to the right.Use the technique just outlined to ver-
ify the Fourier coefficients found in Problem 16.4.

Figure P16.18

Section 16.4

16.19 For each of the periodic functions in Fig. P16.3,
derive the Fourier series for using the form of
Eq. 16.38.

16.20 Derive the Fourier series for the periodic function
described in Problem 16.12, using the form of
Eq. 16.38.

16.21 Derive the Fourier series for the periodic function
constructed in Problem 16.15, using the form of
Eq. 16.38.

v(t)

v1(t)

(a)

Vm /2

t
T
44

�T 0 T
2

3T
4

T 5T
4

(b)

v2(t)

Vm /2

t
T
44

�T 0 T
2

3T
4

T 5T
4

v2(t + T/8)

(c)

Vm /2

t
T
44

�T
2

�T 0 T
2

3T
4

T 5T
4

T>8v2(t + T>8)
v2(t),

Vm >2.v1(t)
v(t) = v1(t) + v2(t)

T>8 v2(t)

v(t)
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16.22 a) Derive the Fourier series for the periodic func-
tion shown in Fig. P16.22 when 
Write the series in the form of Eq. 16.38.

b) Use the first five nonzero terms to estimate

Figure P16.22

Section 16.5

16.23 Derive Eqs. 16.69 and 16.70.

16.24 a) Derive Eq. 16.71. Hint: Note that 
Use this expression for 

to find in terms of . Then use the
expression for to derive Eq. 16.71.

b) Derive Eq. 16.72.

16.25 Show that when we combine Eqs. 16.71 and 16.72
with Eqs. 16.38 and 16.39, the result is Eq. 16.58.
Hint: Note from the definition of that

and from the definition of that

Now use the trigonometric identity

to show that 

16.26 a) Show that for large values of C, Eq. 16.67 can be
approximated by the expression

Note that this expression is the equation
of the triangular wave for 
Hints: (1) Let and

(2) put the resulting
expression over the common denominator

(3) simplify the numerator; and
(4) for large C, assume that is much
less than 2.

T>2RC
2 - (T>2RC);

e-T>2RC
L 1 - (T>2RC);

e-t>RC
L 1 - (t>RC)

0 … t … T>2.

vo(t) L

-VmT

4RC
+

Vm

RC
 t.

uk = 90 + bk.

 tan x =  cot(90 - x)

 tan uk = -  cot bk.

uk

ak

bk
= -  tan bk,

bk

ak

akak
2

+ bk
2

bk4Vm>pk + kvoRCak.
bk =

0

T/2 T
t

i(t)

�Im

Im

i(T>4).

Im = 5p2 A.
b) Substitute the peak value of the triangular wave

into the solution for Problem 16.13 (see
Fig. P16.13(b)) and show that the result is
Eq. 16.59.

16.27 The square-wave voltage shown in Fig. P16.27(a) is
applied to the circuit shown in Fig. P16.27(b).

a) Find the Fourier series representation of the
steady-state current i.

b) Find the steady-state expression for i by straight-
forward circuit analysis.

Figure P16.27

16.28 The periodic square-wave voltage shown in 
Fig P16.13(a) with is
applied to the circuit shown in Fig. P16.28.

a) Derive the first three nonzero terms in the
Fourier series that represents the steady-state
voltage 

b) Which frequency component in the input volt-
age is eliminated from the output voltage?
Explain why.

Figure P16.28

16.29 The periodic square-wave voltage seen in
Fig. P16.29(a) is applied to the circuit shown in
Fig. P16.29(b). Derive the first three nonzero terms
in the Fourier series that represents the steady-state
voltage if and the period of the
input voltage is 

Figure P16.29
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16.30 The full-wave rectified sine-wave voltage shown in
Fig. P16.30(a) is applied to the circuit shown in
Fig. P16.30(b).
a) Find the first five nonzero terms in the Fourier

series representation of 
b) Does your solution for make sense? Explain.

Figure P16.30

16.31 The periodic current described below is used to
energize the circuit shown in Fig. P16.31. Write the
time-domain expression for the third-harmonic
component in the expression for 

Figure P16.31

16.32 A periodic voltage having a period of is
given by the following Fourier series:

This periodic voltage is applied to the circuit shown
in Fig. P16.32. Find the amplitude and phase angle
of the components of that have frequencies of

.3 and 5 Mrad>s vo

vg = 150 a
q

n= 1,3,5,... 

1
n

 sin 
np

2
 cos nvot V.

10p ms

ig 2 �

16 �

40 mH

50 mF

�

�

vo

 = -5 A,       300 ms … t … 450 ms.

 = 25 - 100t A,  200 ms … t … 300 ms;

 = 5 A,            50 ms … t … 200 ms;

 ig = 100t A,       -50 ms … t … 50 ms;

vo.

�

�

1 k�
vg

(a)

(b)

0 1/120 1/60 1/40
t (s)

vg (V)

340

12.5 mF

io

16 H

io

io.

Figure P16.32

Section 16.6

16.33 The periodic current shown in Fig. P16.33 is applied
to a resistor.
a) Use the first three nonzero terms in the Fourier

series representation of to estimate the aver-
age power dissipated in the resistor.

b) Calculate the exact value of the average power
dissipated in the resistor.

c) What is the percentage of error in the estimated
value of the average power?

Figure P16.33

16.34 The periodic voltage across a resistor is
shown in Fig. P16.34.
a) Use the first three nonzero terms in the Fourier

series representation of to estimate the
average power dissipated in the resistor.

b) Calculate the exact value of the average power
dissipated in the resistor.

c) What is the percentage error in the estimated
value of the average power dissipated?

Figure P16.34

16.35 The triangular-wave voltage source is applied to the
circuit in Fig. P16.35(a). The triangular-wave volt-
age is shown in Fig. P16.35(b). Estimate the average
power delivered to the resistor when the
circuit is in steady-state operation.

5012 Æ
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T
44
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400 Æ
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vg 4 pF10 mH vo
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Figure P16.35

Section 16.7

16.36 The voltage and current at the terminals of a
network are

The current is in the direction of the voltage drop
across the terminals.
a) What is the average power at the terminals?
b) What is the rms value of the voltage?
c) What is the rms value of the current?

16.37 a) Find the rms value of the voltage shown in
Fig. P16.37 for Note that the
Fourier series for this periodic voltage was
found in Assessment Problem 16.3.

b) Estimate the rms value of the voltage, using the
first three nonzero terms in the Fourier series
representation of 

Figure P16.37

16.38 a) Use the first three nonzero terms in the
Fourier series approximation of the periodic
voltage shown in Fig. P16.38 to estimate its rms
value.

vg (t)

Vm

�Vm

T/60 T5T/62T/3T/3
t

T/2

vg(t).

Vm = 100 V.

 i = 3 + 4 cos (2000t - 25°) + sin(8000t + 45°) A.

 v = 30 + 60 cos 2000t + 20 sin 8000t V,

�

�
50  2 �vg 10 mF

100 mH

(a)

(b)

vg (V)

t (ms)

20

0 2p 4p 6p 8p

b) Calculate the true rms value of the voltage.

c) Calculate the percentage of error in the esti-
mated value.

Figure P16.38

16.39 a) Estimate the rms value of the periodic square-
wave voltage shown in Fig. P16.39(a) by using
the first five nonzero terms in the Fourier series
representation of 

b) Calculate the percentage of error in the 
estimation.

c) Repeat parts (a) and (b) if the periodic square-
wave voltage is replaced by the periodic triangu-
lar voltage shown in Fig. P16.39(b).

v(t).

4�

2�

�2�

0 T/8 T/4 3T/8 5T/8 3T/4 7T/8 T
t

v(V)

T/2

�4�

Figure P16.39

(a) (b)

v (V)
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120

�120

t (ms)

v (V)

0 5 10

120

�120

t (ms)

16.40 a) Estimate the rms value of the full-wave rectified
sinusoidal voltage shown in Fig. P16.40(a) by
using the first three nonzero terms in the
Fourier series representation of 

b) Calculate the percentage of error in the 
estimation.

c) Repeat (a) and (b) if the full-wave rectified
sinusoidal voltage is replaced by the half-
wave rectified sinusoidal voltage shown in
Fig. P16.40(b).

v(t).



Figure P16.40

16.41 Assume the periodic function described in
Problem 16.14 is a current with a peak amplitude
of 3 A.
a) Find the rms value of the current.
b) If this current exists in a resistor, what is

the average power dissipated in the resistor?
c) If is approximated by using just the fundamental

frequency term of its Fourier series, what is the
average power delivered to the resistor?

d) What is the percentage of error in the estimation
of the power dissipated?

16.42 a) Derive the expressions for the Fourier coefficients
for the periodic current shown in Fig. P16.42.

b) Write the first four nonzero terms of the series
using the alternative trigonometric form given
by Eq. 16.39.

c) Use the first four nonzero terms of the expression
derived in (b) to estimate the rms value of 

d) Find the exact rms value of 
e) Calculate the percentage of error in the esti-

mated rms value.

Figure P16.42
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Figure P16.43

16.43 The rms value of any periodic triangular wave hav-
ing the form depicted in Fig. P16.43(a) is independ-
ent of and Note that for the function to be single
valued, The rms value is equal to 
Verify this observation by finding the rms value of
the three waveforms depicted in Fig. P16.43(b)–(d).

Vp>13.ta … tb.
tb.ta

Section 16.8

16.44 Derive the expression for the complex Fourier
coefficients for the periodic voltage shown in
Fig. P16.44.

Figure P16.44

16.45 a) The periodic voltage in Problem 16.44 is applied
to a resistor. If what is the
average power delivered to the resistor?

b) Assume is approximated by a truncated
exponential form of the Fourier series consisting
of the first five nonzero terms, that is,

and 4.What is the rms value of the
voltage, using this approximation?

c) If the approximation in part (b) is used to repre-
sent what is the percentage of error in the cal-
culated power?

v

n = 0, 1, 2, 3,

v(t)

Vm = 150 V25 Æ

T 2T
t

v(t)

Vm
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16.46 Use the exponential form of the Fourier series to
write an expression for the voltage shown in
Fig. P16.46.

Figure P16.46

16.47 The periodic voltage source in the circuit shown
in Fig. P16.47(a) has the waveform shown in
Fig. P16.47(b).

a) Derive the expression for 

b) Find the values of the complex coefficients
and for the

input voltage if and 

c) Repeat (b) for 

d) Use the complex coefficients found in (c) to
estimate the average power delivered to the

resistor.

Figure P16.47

16.48 a) Find the rms value of the periodic voltage in
Fig. P16.47(b).

b) Use the complex coefficients derived in
Problem 16.47(b) to estimate the rms value of 

c) What is the percentage of error in the estimated
rms value of ?vg

vg.

�

�

�

�

62.5 �

250 �vg 1 mF25 mH vo

(a)

(b)

TT/2T
t

vg

Vm

�Vm

250 kÆ

vo.

T = 10p ms.Vm = 54 Vvg

C4Co, C
-1, C1, C-2, C2, C-3, C3, C-4,

Cn.

t

v(t)

T/2 3T/4 5p/4T/4�T/4 T0

Vm

Section 16.9

16.49 a) Make an amplitude and phase plot, based on
Eq. 16.38, for the periodic voltage in Example 16.3.
Assume is 40 V. Plot both amplitude and phase
versus where 

b) Repeat (a), but base the plots on Eq. 16.82.

16.50 a) Make an amplitude and phase plot, based on
Eq. 16.38, for the periodic voltage in
Problem 16.33. Plot both amplitude and phase
versus where 

b) Repeat (a), but base the plots on Eq. 16.82.

16.51 A periodic voltage is represented by a truncated
Fourier series. The amplitude and phase spectra are
shown in Fig. P16.51(a) and (b), respectively.

a) Write an expression for the periodic voltage
using the form given by Eq. 16.38.

b) Is the voltage an even or odd function of t?

c) Does the voltage have half-wave symmetry?

d) Does the voltage have quarter-wave symmetry?

Figure P16.51

16.52 A periodic function is represented by a Fourier
series that has a finite number of terms. The ampli-
tude and phase spectra are shown in Fig. P16.52(a)
and (b), respectively.

a) Write the expression for the periodic current
using the form given by Eq. 16.38.

b) Is the current an even or odd function of t?

c) Does the current have half-wave symmetry?

d) Calculate the rms value of the current in
milliamperes.

e) Write the exponential form of the Fourier series.

f) Make the amplitude and phase spectra plots on
the basis of the exponential series.

0
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�90�

3vovo 5vo 7vo
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nvo
3vo 7vo
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n = 0, 1, 2, . . .nvo

n = 0, 1, 2, 3, . . . nvo,
Vm



Figure P16.52

16.53 The input signal to a unity-gain third-order high-pass
Butterworth filter is a half-wave rectified sinusoidal
voltage. The corner frequency of the filter is

The amplitude of the sinusoidal voltage is
and its period is .Write the first three

terms of the Fourier series that represents the steady-
state output voltage of the filter.

Sections 16.1–16.9

16.54 The input signal to a unity-gain second-order low-
pass Butterworth filter is the periodic triangular-
wave voltage shown in Fig P16.54. The corner
frequency of the filter is . Write the first
three terms of the Fourier series that represents the
steady-state output voltage of the filter.

2 krad>s

400p ms270p V
2500 rad>s.

8.82

0.98

0.353

0.18

1000

90�

–90�

250
500

750
1000

rad/s
0

rad/s

−un

750500250

An(A)

0

frequency of .The corner frequency of the
filter is . Write the first two terms in the
Fourier series that represents the steady-state output
voltage of the filter.

16.56 The transfer function for the narrowband
bandpass filter circuit in Fig. P16.56(a) is

a) Find and as functions of the circuit
parameters and 

b) Write the first three terms in the Fourier series
that represents if is the periodic voltage in
Fig. P16.56(b).

c) Predict the value of the quality factor for the fil-
ter by examining the result in part (b).

d) Calculate the quality factor for the filter using 
and and compare the value to your predic-
tion in part (c).

vo

b

vgvo

C2.R1, R2, R3, C1,
vo

2Ko, b,

H(s) =

-Kobs

s2
+ bs + vo

2 .

(Vo>Vg)
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20.016 �
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�2.25p2
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vg (mV)
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�0.1p 0.1p 0.2p

Figure P16.56

16.57 a) Find the values for for the band-
pass filter shown in Fig. 16.20(b).

b) Find the first three terms in the Fourier series
for in Fig. 16.20(b) if the input to the filter is
the waveform shown in Fig. 16.20(a).

v0

K, b, and vo
2

Figure P16.54
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Problems 641

16.55 The input signal to a unity-gain second-order low-
pass Butterworth filter is a full-wave rectified sine
wave with an amplitude of and a fundamental2.5p V



In Chapter 16, we discussed the representation of a periodic
function by means of a Fourier series. This series representation
enables us to describe the periodic function in terms of the
frequency-domain attributes of amplitude and phase.The Fourier
transform extends this frequency-domain description to functions
that are not periodic. Through the Laplace transform, we already
introduced the idea of transforming an aperiodic function from
the time domain to the frequency domain.You may wonder, then,
why yet another type of transformation is necessary. Strictly
speaking, the Fourier transform is not a new transform. It is a spe-
cial case of the bilateral Laplace transform, with the real part of
the complex frequency set equal to zero. However, in terms of
physical interpretation, the Fourier transform is better viewed as
a limiting case of a Fourier series. We present this point of view in
Section 17.1, where we derive the Fourier transform equations.

The Fourier transform is more useful than the Laplace trans-
form in certain communications theory and signal-processing sit-
uations. Although we cannot pursue the Fourier transform in
depth, its introduction here seems appropriate while the ideas
underlying the Laplace transform and the Fourier series are still
fresh in your mind.

The Fourier Transform
C H A P T E R  C O N T E N T S

17.1 The Derivation of the Fourier 
Transform p. 644

17.2 The Convergence of the Fourier
Integral p. 646

17.3 Using Laplace Transforms to Find Fourier
Transforms p. 648

17.4 Fourier Transforms in the Limit p. 651

17.5 Some Mathematical Properties p. 653

17.6 Operational Transforms p. 655

17.7 Circuit Applications p. 659

17.8 Parseval’s Theorem p. 662

C H A P T E R  O B J E C T I V E S

1 Be able to calculate the Fourier transform of a
function using any or all of the following:

• The definition of the Fourier transform;

• Laplace transforms;

• Mathematical properties of the Fourier
transform;

• Operational transforms.

2 Know how to use the Fourier transform to find
the response of a circuit.

3 Understand Parseval’s theorem and be able to
use it to answer questions about the energy
contained within specific frequency bands.

642
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It is common to use telephone lines to communicate informa-
tion from one computer to another. As you may know, com-
puters represent all information as collections of 1’s and 0’s.
Usually the value 1 is represented as a voltage, usually 5 V,
and 0 is represented as 0 V, as shown below.

The telephone line has a frequency response characteristic
that is similar to a low pass filter. We can use Fourier trans-
forms to understand the effect of transmitting a digital value
using a telephone line that behaves like a filter.

0 1 1 1 0 1 0 0 1 0

643
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Filtering Digital Signals



644 The Fourier Transform

17.1 The Derivation of the 
Fourier Transform

We begin the derivation of the Fourier transform, viewed as a limiting case
of a Fourier series, with the exponential form of the series:

(17.1)

where

(17.2)

In Eq. 17.2, we elected to start the integration at 
Allowing the fundamental period T to increase without limit accom-

plishes the transition from a periodic to an aperiodic function. In other
words, if T becomes infinite, the function never repeats itself and hence is
aperiodic. As T increases, the separation between adjacent harmonic fre-
quencies becomes smaller and smaller. In particular,

(17.3)

and as T gets larger and larger, the incremental separation approaches
a differential separation . From Eq. 17.3,

(17.4)

As the period increases, the frequency moves from being a discrete vari-
able to becoming a continuous variable, or

(17.5)

In terms of Eq. 17.2, as the period increases, the Fourier coefficients 
get smaller. In the limit, as . This result makes sense,
because we expect the Fourier coefficients to vanish as the function loses
its periodicity. Note, however, the limiting value of the product ; that is,

(17.6)

In writing Eq. 17.6 we took advantage of the relationship in Eq. 17.5.
The integral in Eq. 17.6 is the Fourier transform of and is denoted

(17.7)F(v) = f5f(t)6 =

L

q

-q

f(t)e-jvt dt.

f(t)

CnT :
L

q

-q

f(t)e- jvt dt as  T : q .

CnT

T : qCn : 0
Cn

nv0 : v as  T : q .

1
T

: dv

2p
 as  T : q .

dv
¢v

¢v = (n + 1)v0 - nv0 = v0 =

2p
T

 ,

t0 = -T>2.

Cn =

1
TL

T>2

-T>2
f(t)e- jnv0t  dt.

f(t) = a
q

n = -q

Cne jnv0t,

Fourier transform �
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We obtain an explicit expression for the inverse Fourier transform by
investigating the limiting form of Eq. 17.1 as . We begin by multi-
plying and dividing by T :

(17.8)

As , the summation approaches integration, ,
, and . Thus in the limit, Eq. 17.8 becomes

(17.9)

Equations 17.7 and 17.9 define the Fourier transform. Equation 17.7 trans-
forms the time-domain expression into its corresponding frequency-
domain expression . Equation 17.9 defines the inverse operation of
transforming into .

Let’s now derive the Fourier transform of the pulse shown in Fig. 17.1.
Note that this pulse corresponds to the periodic voltage in Example 16.6 if
we let .The Fourier transform of comes directly from Eq. 17.7:

(17.10)

which can be put in the form of by multiplying the numerator
and denominator by . Then,

(17.11)

For the periodic train of voltage pulses in Example 16.6, the expression for
the Fourier coefficients is

(17.12)

Comparing Eqs. 17.11 and 17.12 clearly shows that, as the time-domain
function goes from periodic to aperiodic, the amplitude spectrum goes
from a discrete line spectrum to a continuous spectrum. Furthermore, the
envelope of the line spectrum has the same shape as the continuous spec-
trum.Thus, as T increases, the spectrum of lines gets denser and the ampli-
tudes get smaller, but the envelope doesn’t change shape. The physical
interpretation of the Fourier transform is therefore a measure of the
frequency content of . Figure 17.2 illustrates these observations. The
amplitude spectrum plot is based on the assumption that is constant and
T is increasing.

t

v(t)
V(v)

Cn =

Vmt

T
 
sin nv0t>2

nv0t>2  .

V(v) = Vmt 

sin vt>2
vt>2  .

t

(sin x)>x

 =

Vm

-jv
 a -2j sin 

vt

2
b ,

 = Vm 
e- jvt

(-jv)
2 t>2
-t>2

 V(v) =

L

t>2

-t>2
Vme- jvt dt

v(t)T : q

f(t)F(v)
F(v)

f(t)

f(t) =

1
2pL

q

-q

F(v)e jvt
 dv.

1>T : dv>2pnv0 : v
CnT : F(v)T : q

f(t) = a
q

n = -q

(CnT)e jnv0t a 1
T
b .

T : q

� Inverse Fourier transform

v(t)

Vm

0 t/2�t/2
t

Figure 17.1 � A voltage pulse.
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17.2 The Convergence of the 
Fourier Integral

A function of time has a Fourier transform if the integral in Eq. 17.7
converges. If is a well-behaved function that differs from zero over a
finite interval of time, convergence is no problem. Well-behaved implies
that is single valued and encloses a finite area over the range of inte-
gration. In practical terms, all the pulses of finite duration that interest us
are well-behaved functions.The evaluation of the Fourier transform of the
rectangular pulse discussed in Section 17.1 illustrates this point.

If is different from zero over an infinite interval, the convergence
of the Fourier integral depends on the behavior of as . A 
single-valued function that is nonzero over an infinite interval has a Fourier
transform if the integral

L

q

-q

ƒ f(t) ƒ  dt

t : qf(t)
f(t)

f(t)

f(t)
f(t)

2p/t�2p/t�4p/t 4p/t

0.2 Vm

nv0

Cn

0
(a)

2p/t�2p/t�4p/t
nv0

Cn

0.1 Vm

0 4p/t

(b)

�2p/t�4p/t

V(v)

2p/t 4p/t
v

Vmt

0
(c)

Figure 17.2 � Transition of the amplitude spectrum as 
goes from periodic to aperiodic. (a) versus , ;
(b) versus , ; (c) versus .vV(v)T>t = 10nv0Cn

T>t = 5nv0Cn

f(t)
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exists and if any discontinuities in are finite. An example is the
decaying exponential function illustrated in Fig. 17.3. The Fourier trans-
form of is

(17.13)

A third important group of functions have great practical interest but
do not in a strict sense have a Fourier transform. For example, the integral
in Eq. 17.7 doesn’t converge if is a constant. The same can be said if

is a sinusoidal function, or a step function, . These func-
tions are of great interest in circuit analysis, but, to include them in Fourier
analysis, we must resort to some mathematical subterfuge. First, we create
a function in the time domain that has a Fourier transform and at the same
time can be made arbitrarily close to the function of interest. Next, we find
the Fourier transform of the approximating function and then evaluate the
limiting value of as this function approaches . Last, we define 
the limiting value of as the Fourier transform of .

Let’s demonstrate this technique by finding the Fourier transform of a
constant. We can approximate a constant with the exponential function

(17.14)

As , . Figure 17.4 shows the approximation graphically. The
Fourier transform of is

(17.15)

Carrying out the integration called for in Eq. 17.15 yields

(17.16)

The function given by Eq. 17.16 generates an impulse function at as
. You can verify this result by showing that (1) approaches

infinity at as ; (2) the width of approaches zero as ;
and (3) the area under is independent of The area under is
the strength of the impulse and is

(17.17)
L

q

-q

 
2PA

P
2

+ v2  dv = 4PA
L

q

0

dv

P
2

+ v2 = 2pA.

F(v)P.F(v)
P : 0F(v)P : 0v = 0

F(v)P : 0
v = 0

F(v) =

A

P - jv
+

A

P + jv
=

2PA

P
2

+ v2 .

F(v) =

L

0

-q

AePte-jvt dt +

L

q

0
Ae-Pte-jvt dt.

f(t)
f(t) : AP : 0

f(t) = Ae-Pƒt ƒ
 , P 7 0.

f(t)F(v)
f(t)F(v)

Ku(t)cos v0t,f(t)
f(t)

 =

K

a + jv
 , a 7 0.

 =

Ke-(a+ jv)t

-(a + jv)
2 q
0

=

K

-(a + jv)
 (0-1)

 F(v) =

L

q

-q

f(t)e- jvt dt =

L

q

0
Ke-ate- jvt 

 dt

f(t)

f(t)

A

t

f(t)

0

   2 �   1� �

Ae�  2 t�Ae 2 t�

Ae 1 t� Ae�  1 t�

Figure 17.4 � The approximation of a constant with an
exponential function.

f(t)

K

Ke�at

0
t

Figure 17.3 � The decaying exponential function
.Ke-atu(t)
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Objective 1—Be able to calculate the Fourier transform of a function

17.1 Use the defining integral to find the Fourier
transform of the following functions:

a)

b)

Answer: (a)

(b)
1

(a + jv)2 .

-ja2A
v
b a1 - cos 

vt

2
b ;

t Ú 0, a 7 0. f(t) = te-at,

t 6 0; f(t) = 0,

elsewhere. f(t) = 0

0 6 t … t>2; f(t) = A,

-t>2 … t 6 0; f(t) = -A,

17.2 The Fourier transform of is given by

Find .

Answer: f(t) =

1
pt

 (4 sin 3t - 3 sin 2t).

f(t)

 F(v) = 0,    3 6 v … q .

 F(v) = 4,    2 6 v 6 3;

 F(v) = 1,  -2 6 v 6 2;

 F(v) = 4,  -3 6 v 6 -2;

 F(v) = 0,  - q … v 6 -3;

f(t)

NOTE: Also try Chapter Problems 17.1 and 17.2.

17.3 Using Laplace Transforms 
to Find Fourier Transforms

We can use a table of unilateral, or one-sided, Laplace transform pairs to
find the Fourier transform of functions for which the Fourier integral con-
verges. The Fourier integral converges when all the poles of F(s) lie in the
left half of the s plane. Note that if F(s) has poles in the right half of the
s plane or along the imaginary axis, does not satisfy the constraint that

exists.
The following rules apply to the use of Laplace transforms to find the

Fourier transforms of such functions.

1. If is zero for , we obtain the Fourier transform of 
from the Laplace transform of simply by replacing s by .Thus

(17.19)f5f(t)6 = l5 f(t)6s = jv  .

jvf(t)
f(t)t … 0-f(t)

1
q

-q
ƒ f(t) ƒ  dt

f(t)

In the limit, approaches a constant A, and approaches an
impulse function Therefore, the Fourier transform of a constant
A is defined as , or

(17.18)

In Section 17.4, we say more about Fourier transforms defined
through a limit process. Before doing so, in Section 17.3 we show how to
take advantage of the Laplace transform to find the Fourier transform of
functions for which the Fourier integral converges.

f5A6 = 2pAd(v).

2pAd(v)
2pAd(v).

F(v)f(t)

A S S E S S M E N T  P R O B L E M S
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For example, say that

Then

2. Because the range of integration on the Fourier integral goes from
to , the Fourier transform of a negative-time function

exists. A negative-time function is nonzero for negative values of
time and zero for positive values of time. To find the Fourier trans-
form of such a function, we proceed as follows. First, we reflect the
negative-time function over to the positive-time domain and then
find its one-sided Laplace transform. We obtain the Fourier trans-
form of the original time function by replacing s with .
Therefore, when for ,

(17.20)

For example, if

then

Both and its mirror image are plotted in Fig. 17.5.
The Fourier transform of is

3. Functions that are nonzero over all time can be resolved into positive-
and negative-time functions. We use Eqs. 17.19 and 17.20 to find the

 =

-jv + a

(-jv + a)2
+ v0

2 .

 f5f(t)6 = l5f(- t)6s = -jv =

s + a

(s + a)2
+ v2

0
`
s = -jv

f(t)
f(t)

 f(- t) = e-atcos v0t, (for  t Ú  0+).

 f(- t) = 0,          (for  t …  0-);

 f(t) = eatcos v0t,  (for  t …  0-).

 f(t) = 0,       (for  t Ú  0+);

f5f(t)6 = l5f(- t)6s = -jv  .

t Ú 0+f(t) = 0
-jv

+ q- q

f5f(t)6 =

s + a

(s + a)2
+ v2

0
`
s = jv

=

jv + a

(jv + a)2
+ v2

0
 .

 f(t) = e-at cos v0t,  t Ú 0+.

 f(t) = 0,      t … 0-;

f(t)

f(t) f(�t)

0
0� 0�

t

Figure 17.5 � The reflection of a negative-time
function over to the positive-time domain.
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Fourier transform of the positive- and negative-time functions, respec-
tively.The Fourier transform of the original function is the sum of the
two transforms.Thus if we let

then

and

(17.21)

An example of using Eq. 17.21 involves finding the Fourier trans-
form of For the original function, the positive- and negative-
time functions are

Then

Therefore, from Eq. 17.21,

If is even, Eq. 17.21 reduces to

(17.22)

If is odd, then Eq. 17.21 becomes

(17.23)f5f(t)6 = l5f(t)6s = jv - l5f(t)6s = -jv  .

f(t)

f5f(t)6 = l5f(t)6s = jv + l5f(t)6s = -jv  .

f(t)

 =

2a

v2
+ a2 .

 =

1
jv + a

+

1
-jv + a

 f5e-a|t|6 =

1
s + a

`
s= jv

+

1
s + a

`
s = -jv

 l5f-(- t)6 =

1
s + a

 .

 l5f+(t)6 =

1
s + a

 ,

f +(t) = e-at and f -(t) = eat.

e-a|t|.

 = l5f+(t)6s = jv + l5f-(- t)6s = -jv  .

 f5f(t)6 = f5f+(t)6 + f5f-(t)6

f(t) = f +(t) + f -(t)

 f -(t) = f (t)  (for  t 6 0),

 f +(t) = f (t)  (for  t 7 0),
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Objective 1—Be able to calculate the Fourier transform of a function

17.3 Find the Fourier transform of each function. In
each case, a is a positive real constant.

a)

b)

c)
t … 0. f(t) = teat,
t Ú 0, f(t) = te-at,

t … 0. f(t) = - teat,
t 7 0, f(t) = 0,

t Ú 0. f(t) = e-atsin v0t,
t 6 0, f(t) = 0,

Answer: (a)

(b) ;

(c)
-j4av

(a2
+ v2)2 .

1

(a - jv)2

v0

(a + jv)2
+ v0

2 ;

NOTE: Also try Chapter Problem 17.5.

17.4 Fourier Transforms in the Limit
As we pointed out in Section 17.2, the Fourier transforms of several prac-
tical functions must be defined by a limit process. We now return to these
types of functions and develop their transforms.

The Fourier Transform of a Signum Function
We showed that the Fourier transform of a constant A is in
Eq. 17.18. The next function of interest is the signum function, defined as

for and for . The signum function is denoted sgn(t) and
can be expressed in terms of unit-step functions, or

(17.24)

Figure 17.6 shows the function graphically.
To find the Fourier transform of the signum function, we first create a

function that approaches the signum function in the limit:

(17.25)

The function inside the brackets, plotted in Fig. 17.7, has a Fourier trans-
form because the Fourier integral converges. Because is an odd func-
tion, we use Eq. 17.23 to find its Fourier transform:

(17.26)

As , , and Therefore,

(17.27)f5sgn(t)6 =

2
jv

 .

f5f(t)6: 2>jv.f(t) :  sgn(t)P : 0

 =

-2jv

v2
+ P

2 .

 =

1
jv + P

-

1
-jv + P

 f5f(t)6 =

1
s + P

`
s = jv

-

1
s + P

`
s = -jv

f(t)

sgn(t) = lim
P:0

[e-Ptu(t) - ePtu(- t)], P 7 0.

sgn(t) = u(t) - u(- t).

t 6 0-1t 7 0+1

2pAd(v)

0

�1.0

1.0

sgn(t)

t

Figure 17.6 � The signum function.

0

1.0

�1.0

t

e�  tu(t)

e tu(�t)

f(t)

�

�

A S S E S S M E N T  P R O B L E M

Figure 17.7 � A function that approaches as 
approaches zero.P

sgn(t)
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The Fourier Transform of a Unit Step Function
To find the Fourier transform of a unit step function, we use Eqs. 17.18 and
17.27. We do so by recognizing that the unit-step function can be
expressed as

(17.28)

Thus,

(17.29)

The Fourier Transform of a Cosine Function
To find the Fourier transform of , we return to the inverse-transform
integral of Eq. 17.9 and observe that if

(17.30)

then

(17.31)

Using the sifting property of the impulse function, we reduce Eq. (17.31) to

(17.32)

Then, from Eqs. 17.30 and 17.32,

(17.33)

We now use Eq. 17.33 to find the Fourier transform of , because

(17.34)

Thus,

(17.35) = pd(v - v0) + pd(v + v0).

 =

1
2

 [2pd(v - v0) + 2pd(v + v0)]

 f5cos v0t6 =

1
2

(f5ejv0t6 + f5e- jv0t6)

cos v0t =

e jv0t
+ e- jv0t

2
 .

cos v0t

f5ejv0t6 = 2pd(v-v0).

f(t) = e jv0t.

f(t) =

1
2pL

q

-q

[2pd(v - v0)]e jvt dv.

F(v) = 2pd(v - v0),

cos v0t

 = pd(v) +

1
jv

 .

 f5u(t)6 = fb 1
2
r + fb 1

2
 sgn(t)r

u(t) =

1
2

+

1
2

 sgn(t).
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The Fourier transform of involves similar manipulation, which
we leave for Problem 17.4. Table 17.1 presents a summary of the transform
pairs of the important elementary functions.

We now turn to the properties of the Fourier transform that enhance our
ability to describe aperiodic time-domain behavior in terms of frequency-
domain behavior.

sin v0t

TABLE 17.1 Fourier Transforms of Elementary Functions

Type f(t) F( )

impulse 1

constant

signum

step

positive-time exponential

negative-time exponential

positive- and negative-time exponential

complex exponential

cosine

sine jp[d(v + v0) - d(v - v0)]sin v0t

p[d(v + v0) + d(v - v0)]cos v0t

2pd(v - v0)e jv0t

2a>(a2
+ v2),  a 7 0e-a|t|

1>(a - jv),  a 7 0eatu(- t)

1>(a + jv),  a 7 0e-atu(t)

pd(v) + 1>jvu(t)

2>jvsgn(t)

2pAd(v)A

d(t)

v

17.5 Some Mathematical Properties
The first mathematical property we call to your attention is that is a
complex quantity and can be expressed in either rectangular or polar
form. Thus from the defining integral,

(17.36)

Now we let

(17.37)

(17.38)

Thus, using the definitions given by Eqs. 17.37 and 17.38 in Eq. 17.36, we get

(17.39)F(v) = A(v) + jB(v) = ƒ F(v) ƒ e ju(v).

 B(v) = -

L

q

-q

f(t) sin vt dt.

 A(v) =

L

q

-q

f(t) cos vt dt

 =

L

q

-q

f(t) cos vt dt - j
L

q

-q

f(t) sin vt dt.

 =

L

q

-q

f(t)(cos vt - j sin vt) dt

 F(v) =

L

q

-q

f(t)e-jvt dt

F(v)
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The following observations about are pertinent:

• The real part of —that is, —is an even function of ; in
other words, .

• The imaginary part of —that is, —is an odd function of ;
in other words, .

• The magnitude of —that is, —is an even func-
tion of .

• The phase angle of —that is, —is an
odd function of .

• Replacing by generates the conjugate of ; in other words,
.

Hence, if is an even function, is real, and if is an odd
function, is imaginary. If is even, from Eqs. 17.37 and 17.38,

(17.40)

and

(17.41)

If is an odd function,

(17.42)

and

(17.43)

We leave the derivations of Eqs. 17.40–17.43 for you as Problems 17.10
and 17.11.

If is an even function, its Fourier transform is an even function,
and if is an odd function, its Fourier transform is an odd function.
Moreover, if is an even function, from the inverse Fourier integral,

(17.44) =

2
2pL

q

0
A(v) cos vt dv.

 =

1
2pL

q

-q

A(v) cos vt dv +  0

 =

1
2pL

q

-q

A(v)(cos vt + j sin vt) dv

 f(t) =

1
2pL

q

-q

F(v)e jvt dv =

1
2pL

q

-q

A(v)e 
 
jvt dv

f(t)
f(t)
f(t)

B(v) = -2
L

q

0
f(t) sin vt dt.

A(v) = 0

f(t)

B(v) = 0.

A(v) = 2
L

q

0
f(t) cos vt dt

f(t)F(v)
f(t)F(v)f(t)

F(-v) = F*(v)
F(v)-vv

v

u(v) = tan -1B(v)>A(v)F(v)

v
2A2(v) + B2(v)F(v)

B(v) = -B(-v)
vB(v)F(v)

A(v) = A(-v)
vA(v)F(v)

F(v)
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Now compare Eq. 17.44 with Eq. 17.40. Note that, except for a factor of
, these two equations have the same form. Thus, the waveforms of

and become interchangeable if is an even function. For
example, we have already observed that a rectangular pulse in the time
domain produces a frequency spectrum of the form . Specifically,
Eq. 17.11 expresses the Fourier transform of the voltage pulse shown in
Fig. 17.1. Hence a rectangular pulse in the frequency domain must be gen-
erated by a time-domain function of the form . We can illustrate
this requirement by finding the time-domain function corresponding
to the frequency spectrum shown in Fig. 17.8. From Eq. 17.44,

(17.45)

We say more about the frequency spectrum of a rectangular pulse in
the time domain versus the rectangular frequency spectrum of 
after we introduce Parseval’s theorem.

17.6 Operational Transforms
Fourier transforms, like Laplace transforms, can be classified as functional
and operational. So far, we have concentrated on the functional trans-
forms.We now discuss some of the important operational transforms.With
regard to the Laplace transform, these operational transforms are similar
to those discussed in Chapter 12. Hence we leave their proofs to you as
Problems 17.12–17.19.

Multiplication by a Constant
From the defining integral, if

then

(17.46)

Thus, multiplication of by a constant corresponds to multiplying 
by that same constant.

F(v)f(t)

 f5Kf(t)6 = KF(v).

 f5f(t)6 = F(v),

(sin t)>t

 =

1
2p

 ¢Mv0  

sin v0t>2
v0t>2 ≤ .

 =

1
2p

 ¢M 

sin v0t>2
t>2 ≤

 f(t) =

2
2pL

v0>2

0
Mcosvt dv =

2M

2p
a sinvt

t
b 2 v0>2

0

f(t)
(sin t)>t

(sin v)>v
f(t)f(t)A(v)

1>2p

v0/2�v0/2 0

A(v)

M

v

Figure 17.8 � A rectangular frequency spectrum.
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Addition (Subtraction)
Addition (subtraction) in the time domain translates into addition (sub-
traction) in the frequency domain. Thus if

then

(17.47)

which is derived by substituting the algebraic sum of time-domain func-
tions into the defining integral.

Differentiation
The Fourier transform of the first derivative of is

(17.48)

The nth derivative of is

(17.49)

Equations 17.48 and 17.49 are valid if is zero at .

Integration
If

then

(17.50)

Equation 17.50 is valid if

L

q

-q

f(x) dx = 0.

f5g(t)6 =

F(v)
jv

 .

g(t) =

L

t

-q

f(x) dx,

; qf(t)

fb dnf(t)
dtn r = (jv)nF(v).

f(t)

fb df(t)
dt
r = jvF(v).

f(t)

f5f1(t) - f2(t) + f3(t)6 = F1(v) - F2(v) + F3(v),

 f5f3(t)6 = F3(v),

 f5f2(t)6 = F2(v),

 f5f1(t)6 = F1(v),



17.6 Operational Transforms 657

Scale Change
Dimensionally, time and frequency are reciprocals. Therefore, when time
is stretched out, frequency is compressed (and vice versa), as reflected in
the functional transform

(17.51)

Note that when , time is stretched out, whereas when ,
time is compressed.

Translation in the Time Domain
The effect of translating a function in the time domain is to alter the phase
spectrum and leave the amplitude spectrum untouched. Thus

(17.52)

If a is positive in Eq. 17.52, the time function is delayed, and if a is nega-
tive, the time function is advanced.

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by the
complex exponential in the time domain:

(17.53)

Modulation
Amplitude modulation is the process of varying the amplitude of a sinu-
soidal carrier. If the modulating signal is denoted , the modulated car-
rier becomes .The amplitude spectrum of this carrier is one-half
the amplitude spectrum of centered at , that is,

(17.54)

Convolution in the Time Domain
Convolution in the time domain corresponds to multiplication in the fre-
quency domain. In other words,

becomes

(17.55)f5y(t)6 = Y(v) = X(v)H(v).

y(t) =

L

q

-q

x(l)h(t - l) dl

f5f(t) cos v0t6 =

1
2

 F(v - v0) +

1
2

 F(v + v0).

;v0f(t)
f(t) cos v0t

f(t)

f5ejv0t f(t)6 = F(v - v0).

f5f(t - a)6 = e- jva F(v).

a 7 1.00 6 a 6 1.0

f5f(at)6 =

1
a

 Fav
a
b ,  a 7 0.
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TABLE 17.2 Operational Transforms

f(t) F( )

( j)n
 

dn F(v)

dvntnf(t)

1
2pL

q

-q

F1(u)F2(v - u) duf1(t)f2(t)

X(v)H(v)
L

q

-q

x(l)h(t - l) dl

1
2

F (v - v0) +

1
2

F (v + v0)f(t) cos v0t

F(v - v0)e jv0tf(t)

e-jva F(v)f(t - a)

1
a

F ¢v
a
≤ ,   a 7 0f(at)

F(v)>jv
L

t

-q

f(x) dx

(  jv)n F (v)dn f(t)>dtn

F1(v) - F2(v) + F3(v)f1(t) - f2(t) + f3(t)

KF(v)Kf(t)

v

Equation 17.55 is important in applications of the Fourier transform,
because it states that the transform of the response function is the
product of the input transform and the system function . We
say more about this relationship in Section 17.7.

Convolution in the Frequency Domain
Convolution in the frequency domain corresponds to finding the Fourier
transform of the product of two time functions. Thus if

then

(17.56)

Table 17.2 summarizes these ten operational transforms and another
operational transform that we introduce in Problem 17.18.

F(v) =

1
2pL

q

-q

F1(u)F2(v - u) du.

f(t) = f1(t) f2(t),

H(v)X(v)
Y(v)
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17.7 Circuit Applications
The Laplace transform is used more widely to find the response of a cir-
cuit than is the Fourier transform, for two reasons. First, the Laplace trans-
form integral converges for a wider range of driving functions, and second,
it accommodates initial conditions. Despite the advantages of the Laplace
transform, we can use the Fourier transform to find the response. The fun-
damental relationship underlying the use of the Fourier transform in tran-
sient analysis is Eq. 17.55, which relates the transform of the response

to the transform of the input and the transfer function of
the circuit. Note that is the familiar with s replaced by .

Example 17.1 illustrates how to use the Fourier transform to find the
response of a circuit.

jvH(s)H(v)
H(v)X(v)Y(v)

Objective 1—Be able to calculate the Fourier transform of a function

17.4 Suppose is defined as follows:

a) Find the second derivative of .

b) Find the Fourier transform of the second
derivative.

c) Use the result obtained in (b) to find the
Fourier transform of the function in (a).
(Hint: Use the operational transform of
differentiation.)

Answer: (a)

(b)

(c)
4A

v2t
 a1 - cos 

vt

2
b .

4A
t

 acos 
vt

2
- 1b ;

+  
2A
t

 d a t -

t

2
b ;

d2f

dt2 =

2A
t

 d a t +

t

2
b -

4A
t

 d(t)

f(t)

elsewhere. f(t) = 0,

0 … t …

t

2
 , f(t) = -  

2A
t

 t + A,

-  
t

2
… t … 0, f(t) =

2A
t

 t + A,

f(t) 17.5 The rectangular pulse shown can be expressed
as the difference between two step voltages;
that is,

Use the operational transform for translation in
the time domain to find the Fourier transform
of .

Answer: V(v) = Vmt 

sin(vt>2)

(vt>2)
 .

v(t)

Vm

t/2�t/2 0
t

v(t)

v(t) = Vm u a t +

t

2
b - Vm u a t -  

t

2
b  V.

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problem 17.19.
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Example 17.1 Using the Fourier Transform to Find the Transient Response

Use the Fourier transform to find in the circuit
shown in Fig. 17.9. The current source is the
signum function 20 sgn(t) A.

Figure 17.9 � The circuit for Example 17.1.

Solution
The Fourier transform of the driving source is

The transfer function of the circuit is the ratio of 
to ; so

The Fourier transform of is

Expanding into a sum of partial fractions yields

Io(v) =

K1

jv
+

K2

4 + jv
 .

Io(v)

 =

40
jv(4 + jv)

 .

 Io(v) = Ig(v)H(v)

io(t)

H(v) =

Io

Ig
=

1
4 + jv

 .

Ig

Io

 =

40
jv

 .

 = 20 a 2
jv
b

 Ig(v) = f520 sgn(t)6

ig(t)

1 H

3 �

1 � io(t)

ig(t)
io(t) Evaluating and gives

Therefore

The response is

Figure 17.10 shows the response. Does the solu-
tion make sense in terms of known circuit behav-
ior? The answer is yes, for the following reasons.
The current source delivers to the circuit
between and 0. The resistance in each branch
governs how the divides between the two
branches. In particular, one fourth of the 
appears in the branch; therefore is for .
When the current source jumps from to

at , approaches its final value of
exponentially with a time constant of 

An important characteristic of the Fourier
transform is that it directly yields the steady-state
response to a sinusoidal driving function. The rea-
son is that the Fourier transform of is based
on the assumption that the function exists over all
time. Example 17.2 illustrates this feature.

Figure 17.10 � The plot of versus .tio(t)

0
�5

t

io(t)
5 sgn(t)

5 sgn(t)

5
(A)

io

io
�10

�10e�4t

cos v0t

1
4 s.+5 A

iot = 0+20 A
-20 A

t 6 0-5ioio

-20 A
-20 A

- q

-20 A

 = 5 sgn(t) - 10e-4tu(t).

 io(t) = f
-1[Io(v)]

Io(v) =

10
jv

-

10
4 + jv

 .

 K2 =

40
-4

= -10.

 K1 =

40
4

= 10,

K2K1
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Objective 2—Know how to use the Fourier transform to find the response of a circuit

17.6 The current source in the circuit shown delivers
a current of 10 sgn (t) A. The response is the
voltage across the 1 H inductor. Compute 
(a) ; (b) ; (c) ; (d) ;
(e) ; (f) ; (g) ; (h) ;
(i) ; and ( j) .

Answer: (a) ;

(b) ;

(c) ;

(d)

(e)

(f) 18 A;

(g) 8 A;

-2 A;

80e-5tu(t) V;

80>(5 + jv)

4jv>(5 + jv)

20>jv

ig 1 H4 �i1

1 �

i2

vo

�

�

vo(0+)vo(0-)
i2(0+)i2(0-)i1(0+)i1(0-)

vo(t)Vo(v)H( jv)Ig(v)

(h) 8 A;

(i) 0 V;

( j) 80 V.

17.7 The voltage source in the circuit shown is gen-
erating the voltage

a) Use the Fourier transform method to find .

b) Compute , , and .

Answer: (a)

(b)
1
4

  V,  
1
4

  V,  
1
3

  V.

+  
1
6

 sgn(t) V;

va =

1
4

 etu(- t) -

1
12

 e-3tu(t) +

1
6

1 F0.5 �

1 �

va

�

�

vg
�

�

va(q)va(0+)va(0-)

va

vg = etu(- t) + u(t) V.

A S S E S S M E N T  P R O B L E M S

NOTE: Also try Chapter Problems 17.20, 17.28, and 17.30.

Example 17.2 Using the Fourier Transform to Find the Sinusoidal Steady-State Response

The current source in the circuit in Example 17.1
(Fig. 17.9) is changed to a sinusoidal source. The
expression for the current is

Use the Fourier transform method to find .

Solution
The transform of the driving function is

As before, the transfer function of the circuit is

The transform of the current response then is

Io(v) = 50p 

d(v - 3) + d(v + 3)
4 + jv

 .

H(v) =

1
4 + jv

 .

Ig(v) = 50p[d(v - 3) + d(v + 3)].

io(t)

ig(t) = 50 cos 3t A.

Because of the sifting property of the impulse func-
tion, the easiest way to find the inverse transform of

is by the inversion integral:

We leave you to verify that the solution for is
identical to that obtained by phasor analysis.

io(t)

 = 10cos(3t - 36.87 �).

 = 5[2cos(3t - 36.87 �)]

 = 25 a e 
j3te-

 
j36.87 �

5
 +  

e-j3te 
j36.87 �

5
b

 = 25 a e 
j3t

4 + j3
 +  

e-j3t

4 - j3
b

 =

50p
2p L

q

-q

cd(v - 3) + d(v + 3)
4 + jv

de 
jvt  dv

 io(t) = f
-15Io(v)6

Io(v)
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17.8 Parseval’s Theorem
Parseval’s theorem relates the energy associated with a time-domain func-
tion of finite energy to the Fourier transform of the function. Imagine that
the time-domain function is either the voltage across or the current in
a resistor. The energy associated with this function then is

(17.57)

Parseval’s theorem holds that this same energy can be calculated by an
integration in the frequency domain, or specifically,

(17.58)

Therefore the energy associated with can be calculated either by
integrating the square of over all time or by integrating times
the square of the magnitude of the Fourier transform of over all fre-
quencies. Parseval’s theorem is valid if both integrals exist.

The average power associated with time-domain signals of finite
energy is zero when averaged over all time. Therefore, when comparing
signals of this type, we resort to the energy content of the signals. Using a

resistor as the base for the energy calculation is convenient for com-
paring the energy content of voltage and current signals.

We begin the derivation of Eq. 17.58 by rewriting the kernel of the
integral on the left-hand side as times itself and then expressing one

in terms of the inversion integral:

(17.59)

We move inside the interior integral, because the integration is with
respect to , and then factor the constant outside both integrations.
Thus Eq. 17.59 becomes

(17.60)

We reverse the order of integration and in so doing recognize that 
can be factored out of the integration with respect to t. Thus

(17.61)

The interior integral is , so Eq. 17.61 reduces to

(17.62)
L

q

-q

 f
2(t) dt =

1
2pL

q

-q

F(v) F(-v) dv.

F(-v)

L

q

-q

f2(t) dt =

1
2pL

q

-q

F(v) c
L

q

-q

f(t)e 
jvt dt d  dv.

F(v)

L

q

-q

f2(t) dt =

1
2pL

q

-q

 c
L

q

-q

F(v) f(t)e 
jvt dv d  dt.

1>2pv

f(t)

 =

L

q

-q

f(t) c 1
2pL

q

-q

F (v)e 
jvt  dv d  dt.

 
L

q

-q

f2(t) dt =

L

q

-q

f(t) f(t) dt

f(t)
f(t)

1 Æ

f(t)
1>2pf(t)

f(t)1 Æ

L

q

-q

 f
2(t) dt =

1
2pL

q

-q

ƒ F(v) ƒ
2 dv.

W1Æ
=

L

q

-q

 f
2(t) dt.

1 Æ
f(t)
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In Section 17.6, we noted that . Thus the product
is simply the magnitude of squared, and Eq. 17.62 is

equivalent to Eq. 17.58.We also noted that is an even function of 
Therefore, we can also write Eq. 17.58 as

(17.63)

A Demonstration of Parseval’s Theorem
We can best demonstrate the validity of Eq. 17.63 with a specific example. If

the left-hand side of Eq. 17.63 becomes

(17.64)

The Fourier transform of is

and therefore the right-hand side of Eq. 17.63 becomes

(17.65)

Note that the result given by Eq. 17.65 is the same as that given by Eq. 17.64.

The Interpretation of Parseval’s Theorem
Parseval’s theorem gives a physical interpretation that the magnitude of
the Fourier transform squared, , is an energy density (in joules per
hertz). To see it, we write the right-hand side of Eq. 17.63 as

(17.66)

where is the energy in an infinitesimal band of frequencies
and the total energy associated with is the summation (inte-

gration) of over all frequencies. We can associate a portion
of the total energy with a specified band of frequencies. In other words,
the energy in the frequency band from to isv2v11 Æ

ƒ F(2pf ) ƒ
2 df

f(t)1 Æ(df ),
ƒ F(2pf ) ƒ

2 df

1
pL

q

0
ƒ F(2pf) ƒ

22p df = 2
L

q

0
ƒ F(2pf) ƒ

2 df,

ƒ F(v) ƒ
2

 =

1
a

 .

 =

2
p

 ¢0 +

p

2a
- 0 - 0≤

 
1
pL

q

0

4a2

(a2
+ v2)2  dv =

4a2

p
 

1

2a2 a v

v2
+ a2 +

1
a

 tan -1v

a
b 2 q

0

F(v) =

2a

a2
+ v2 ,

f(t)

 =

1
2a

 +  
1
2a

 =  
1
a

 .

 =

e2at

2a
2 0
-q

+  
e-2at

-2a
2 q
0

 
L

q

-q

e-2a ƒt ƒ dt =

L

0

-q

e 

2at dt +

L

q

0
e 

-2at dt

f(t) = e-a ƒt ƒ

 ,

L

q

-q

f2(t) dt =

1
pL

q

0
ƒ F(v) ƒ

2 dv.

v.ƒ F(v) ƒ

F(v)F(v) F(-v)
F(-v) = F*(v)
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�F(v)�2

v
0 v1�v1�v2 v2

Figure 17.11 � The graphic interpretation of Eq. 17.68.

Example 17.3 Applying Parseval’s Theorem

The current in a resistor is

What percentage of the total energy dissipated in
the resistor can be associated with the frequency
band ?

Solution
The total energy dissipated in the resistor is

We can check this total energy calculation with
Parseval’s theorem:

Therefore

 ƒ F(v) ƒ =

20

24 + v2

 F(v) =

20
2 + jv

 .

 = 16,000 
e-4t

-4
2 q
0

= 4000 J.

 W40Æ
= 40

L

q

0
400e-4t dt

40 Æ

0 … v …  213 rad>s

i = 20e-2tu(t) A.

40 Æ and

The energy associated with the frequency band
is

Hence the percentage of the total energy associated
with this range of frequencies is

h =

8000>3
4000

* 100 = 66.67%.

 =

8000
p
ap

3
b =

8000
3

  J.

 =

16,000
p

 £1
2

 tan-1
 
v

2
2 223

0
≥

 W40Æ
=

40
p L

2

130

400

4 + v2  dv

0 … v …  213 rad>s

 =

8000
p

 ap
2
b = 4000 J.

 =

16,000
p

 a1
2

 tan -1v

2
2 q
0
b

 W40Æ
=

40
p L

q

0
 

400

4 + v2 dv

(17.67)

Note that expressing the integration in the frequency domain as

instead of

allows Eq. 17.67 to be written in the form

(17.68)

Figure 17.11 shows the graphic interpretation of Eq. 17.68.
Examples 17.3–17.5 illustrate calculations involving Parseval’s theorem.

W1Æ
=

1
2pL

-v1

-v2

ƒ F(v) ƒ
2  dv +

1
2pL

v2

v1

ƒ F(v) ƒ
2  dv.

1
pL

q

0
ƒ F(v) ƒ

2 dv

1
2pL

q

-q

ƒ F(v) ƒ
2 dv

W1Æ
=

1
pL

v2

v1

ƒ F(v) ƒ
2 dv.
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Example 17.4 Applying Parseval’s Theorem to an Ideal Bandpass Filter

The input voltage to an ideal bandpass filter is

The filter passes all frequencies that lie between
24 and , without attenuation, and completely
rejects all frequencies outside this passband.

a) Sketch for the filter input voltage.

b) Sketch for the filter output voltage.

c) What percentage of the total energy content
of the signal at the input of the filter is available
at the output?

Solution

a) The Fourier transform of the filter input voltage is

Therefore

Fig. 17.12 shows the sketch of versus .

b) The ideal bandpass filter rejects all frequencies
outside the passband, so the plot of ver-
sus appears as shown in Fig. 17.13.

c) The total energy available at the input to the
filter is

1 Æ

v

ƒ V0(v) ƒ
2

vƒ V(v) ƒ
2

ƒ V(v) ƒ
2

=

14,400

576 + v2 .

V(v) =

120
24 + jv

 .

1 Æ

ƒ Vo(v) ƒ
2

ƒ V(v) ƒ
2

48 rad>s

v(t) = 120e-24tu(t) V.

The total energy available at the output of
the filter is

The percentage of the input energy available at
the output is

Figure 17.12 � versus for Example 17.4.

Figure 17.13 � versus for Example 17.4.vƒ V0(v) ƒ
2

0�60 �40 �20 20 40 60

�Vo(v)�2

25
20
15
10
5

v (rad/s)

vƒ V(v) ƒ
2

25

5

6020�20�40�60 40

10
15
20

0

�V(v)�2

v (rad/s)

h =

61.45
300

* 100 = 20.48%.

 = 61.45  J.

 =

600
p

 (tan-12 - tan-11) =

600
p
a p

2.84
-

p

4
b

 Wo =

1
pL

48

24

14,400

576 + v2  dv =

600
p

 tan-1 
v

24
2 48

24

1 Æ

 =

600
p

 
p

2
= 300  J.

 Wi =

1
pL

q

0

14,400

576 + v2  dv =

14,400
p

 a 1
24

  tan -1
 
v

24
2 q
0
b
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Example 17.5 Applying Parseval’s Theorem to a Low-Pass Filter

Parseval’s theorem makes it possible to calculate
the energy available at the output of the filter even
if we don’t know the time-domain expression for

. Suppose the input voltage to the low-pass RC
filter circuit shown in Fig. 17.14 is

a) What percentage of the energy available in
the input signal is available in the output signal?

b) What percentage of the output energy is associ-
ated with the frequency range ?

Solution

a) The energy in the input signal to the filter is

The Fourier transform of the output voltage is

where

Hence

The energy available in the output signal of
the filter is

Wo =

1
pL

q

0

22,500

(25 + v2)(100 + v2)
  dv.

1 Æ

 ƒ Vo(v) ƒ
2

=

22,500

(25 + v2)(100 + v2)
 .

 Vo(v) =

150
(5 + jv)(10 + jv)

 H(v) =

1>RC

1>RC + jv
=

10
10 + jv

 .

 Vi(v) =

15
5 + jv

Vo(v) = Vi(v)H(v),

Wi =

L

q

0
(15e-5t)2 dt = 225 

e-10t

-10
2 q
0

= 22.5  J.

1 Æ

0 … v … 10 rad>s

1 Æ

vi(t) = 15e-5tu(t) V.

vo(t)

Figure 17.14 � The low-pass RC filter for Example 17.5.

We can easily evaluate the integral by expand-
ing the kernel into a sum of partial fractions:

Then

The energy available in the output signal there-
fore is 66.67% of the energy available in the
input signal; that is,

b) The output energy associated with the frequency
range is0 … v … 10 rad>s

h =

15
22.5

(100) = 66.67%.

 =

300
p

 c1
5

 ap
2
b -

1
10

 ap
2
b d = 15  J.

 Wo =

300
p

 e
L

q

0

dv

25 + v2 -

L

q

0

dv

100 + v2 f

22,500

(25 + v2)(100 + v2)
 =  

300
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�
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1
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 a 2p
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 -  
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4
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 Wœ
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300
p
e
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dv

25 + v2  -
L
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0
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100 + v2 f

The total energy in the output signal is 15 J,
so the percentage associated with the frequency
range 0 to is 90.97%.10 rad>s

1 Æ

The Energy Contained in a Rectangular Voltage Pulse
We conclude our discussion of Parseval’s theorem by calculating the
energy associated with a rectangular voltage pulse. In Section 17.1 we
found the Fourier transform of the voltage pulse to be

(17.69)V(v) = Vmt 
sin vt>2
vt>2  .
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0

v(t)

Vm

�t/2 t/2
t

(a)

V(v)

Vm t

�4p
t

�2p
t

2p
t

4p
t

(b)

0
v

Figure 17.15 � The rectangular voltage pulse and its
Fourier transform. (a) The rectangular voltage pulse. 
(b) The Fourier transform of .v(t)

To aid our discussion, we have redrawn the voltage pulse and its Fourier
transform in Fig. 17.15(a) and (b), respectively. These figures show that, as
the width of the voltage pulse ( ) becomes smaller, the dominant portion
of the amplitude spectrum (that is, the spectrum from to )
spreads out over a wider range of frequencies. This result agrees with our
earlier comments about the operational transform involving a scale
change, in other words, when time is compressed, frequency is stretched
out and vice versa. To transmit a single rectangular pulse with reasonable
fidelity, the bandwidth of the system must be at least wide enough to
accommodate the dominant portion of the amplitude spectrum. Thus the
cutoff frequency should be at least , or 

We can use Parseval’s theorem to calculate the fraction of the total
energy associated with that lies in the frequency range 
From Eq. 17.69,

(17.70)

To carry out the integration called for in Eq. 17.70, we let

(17.71)

noting that

(17.72)

and that

(17.73)

If we make the substitutions given by Eqs. 17.71–17.73, Eq. 17.70 becomes

(17.74)

We can integrate the integral in Eq. 17.74 by parts. If we let

(17.75)

(17.76)

then

(17.77)

and

(17.78)

Hence

(17.79) = 0 +

L

p

0

sin2x
x

  dx.

 
L

p

0

sin2 x

x2  dx = -  
sin2 x

x
 2 p

0
-

L

p

0
-  

1
x

 sin 2x  dx

v = -  
1
x

 .

du = 2sinxcosx  dx = sin2x  dx,

 dv =

dx

x2  ,

 u = sin2 x

W =

2Vm  

2 t

p L

p

0

sin2 x

x2   dx.

x = p,  when  v = 2p>t.

 dx =

t

2
  dv

 x =

vt

2
 ,

W =

1
pL

2p>t

0
Vm

2 t2 
sin2 vt>2
(vt>2)2   dv.

0 … v … 2p>t.v(t)

1>t Hz.2p>t rad>s

2p>t-2p>tt



668 The Fourier Transform

Substituting Eq. 17.79 into Eq. 17.74 yields

(17.80)

To evaluate the integral in Eq. 17.80, we must first put it in the form of
.We do so by letting and noting that , and 

when . Thus Eq. 17.80 becomes

(17.81)

The value of the integral in Eq. 17.81 can be found in a table of sine
integrals.1 Its value is 1.41815, so

(17.82)

The total energy associated with can be calculated either from
the time-domain integration or the evaluation of Eq. 17.81 with the upper
limit equal to infinity. In either case, the total energy is

(17.83)

The fraction of the total energy associated with the band of frequencies
between 0 and is

(17.84)

Therefore, approximately 90% of the energy associated with is con-
tained in the dominant portion of the amplitude spectrum.

v(t)

 = 0.9028.

 =

2Vm
2 t(1.41815)

p(Vm
2 t)

 h =

W

Wt

2p>t

Wt = Vm
2 t.

v(t)1 Æ

W =

2Vm
2 t

p
 (1.41815).

W =

2Vm
2 t

p L

2p

0

sin y

y
  dy.

x = p

y = 2pdy = 2 dxy = 2xsin y>y

W =

4Vm
2 t

p L

p

0

sin 2x

2x
  dx.

1 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (New York: Dover,
1965), p. 244.
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Practical Perspective
Filtering Digital Signals
To understand the effect of transmitting a digital signal on a telephone line,
consider a simple pulse that represents a digital value of 1, using 5 V, as shown
in Fig. 17.15(a), with and The Fourier transform of this
pulse is shown in Fig. 17.15(b), where the amplitude and the first
positive zero-crossing on the frequency axis is 

Note that the digital pulse representing the value 1 is ideally a sum of
an infinite number of frequency components. But the telephone line cannot
transmit all of these frequency components. Typically, the telephone has a
bandwidth of 10 MHz, meaning that it is capable of transmitting only those
frequency components below 10 MHz. This causes the original pulse to be
distorted once it is received by the computer on the other end of the tele-
phone line, as seen in Fig. 17.16.

2p/t = 6.28 Mrad/s = 1 MHz.
Vmt = 5 mV

t = 1 ms.Vm = 5 V

Figure 17.16 � The effect of sending a square voltage
pulse through a bandwidth-limited filter, causing distor-
tion of the resulting output signal in the time domain.

Vm 

0
t

v(t)

t/2�t/2

Objective 3—Understand Parseval’s theorem and be able to use it

17.8 The voltage across a resistor is

What percentage of the total energy dissipated
in the resistor can be associated with the fre-
quency band ?

Answer: 94.23%.

0 … v … 13 rad>s

v = 4te-tu(t) V.

50 Æ 17.9 Assume that the magnitude of the Fourier
transform of is as shown. This voltage is
applied to a resistor. Calculate the total
energy delivered to the resistor.

Answer: 4 J.

0

6

v (rad/s)

�V ( jv)�

�2000p 2000p

6 kÆ

v(t)

NOTE: Also try Chapter Problem 17.40.
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Summary

• The Fourier transform gives a frequency-domain descrip-
tion of an aperiodic time-domain function. Depending on
the nature of the time-domain signal, one of three
approaches to finding its Fourier transform may be used:

• If the time-domain signal is a well-behaved pulse of
finite duration, the integral that defines the Fourier
transform is used.

• If the one-sided Laplace transform of exists and
all the poles of lie in the left half of the s plane,

may be used to find F( ).

• If is a constant, a signum function, a step func-
tion, or a sinusoidal function, the Fourier transform is
found by using a limit process.

(See page 646.)

• Functional and operational Fourier transforms that are
useful in circuit analysis are tabulated in Tables 17.1 and
17.2. (See pages 655 and 660.)

f(t)

vF(s)
F(s)

f(t)

• The Fourier transform of a response signal y(t) is

where X( ) is the Fourier transform of the input signal
x(t), and H( ) is the transfer function H(s) evaluated at

. (See page 660.)

• The Fourier transform accommodates both negative-
time and positive-time functions and therefore is suited
to problems described in terms of events that start at

. In contrast, the unilateral Laplace transform is
suited to problems described in terms of initial condi-
tions and events that occur for .

• The magnitude of the Fourier transform squared is a
measure of the energy density ( joules per hertz) in the
frequency domain (Parseval’s theorem).Thus the Fourier
transform permits us to associate a fraction of the total
energy contained in with a specified band of fre-
quencies. (See page 664.)

f(t)

t 7 0

t = - q

s = jv
v

v

Y(v) = X(v)H(v),

Problems

Sections 17.1–17.2

17.1 a) Find the Fourier transform of the function shown
in Fig. P17.1.

b) Find when .

c) Sketch versus when and
. Hint: Remember that is an even

function of .

Figure P17.1

f(t)

A

t
0 t/2�t/2

v

ƒ F(v) ƒt = 0.1
A = 10vƒ F(v) ƒ

v = 0F(v)

17.2 The Fourier transform of is shown in Fig. P17.2.

a) Find .

b) Evaluate .

c) Sketch for when
and . Hint: Remember

that is even.

Figure P17.2

A

�jA

v0/2�v0/2
v

F(v)

f(t)
v0 = 100 rad>sA = 5p

-150 … t … 150 sf(t)

f(0)

f(t)

f(t)
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17.11 Show that if is an even function,

Section 17.6

17.12 a) Show that where
Hint: Use the defining integral

and integrate by parts.

b) What is the restriction on if the result given
in (a) is valid?

c) Show that where

17.13 a) Show that

where Hint: Use the defining
integral and integrate by parts.

b) What is the restriction on if the result given
in (a) is valid?

c) If , can the operational trans-
form in (a) be used? Explain.

17.14 a) Show that

b) Given that for , sketch
for , and 2.0. Do

your sketches reflect the observation that
compression in the time domain corresponds to
stretching in the frequency domain?

17.15 Derive each of the following operational transforms:

a)

b)

c)

17.16 Given

show that where
and Hint: Use

the defining integral to write

f5y(t)6 =

L

q

- q

B
L

q

- q

x(l)h(t - l) dlRe- jvt dt.

H(v) = f5h(t)6.X(v) = f5x(t)6Y(v) = f5y(t)6 = X(v)H(v),

y(t) =

L

q

-q

x(l)h(t - l) dl,

f5f(t)cos v0t6 =
1
2F(v - v0) +

1
2F(v + v0).

f5ejv0t f(t)6 = F(v - v0);

f5f(t - a)6 = e- jva F(v);

a = 0.5, 1.0F(v) = f5f(at)6
a 7 0f(at) = e- a|t|

f5f(at)6 =

1
a

F av
a
b , a 7 0.

f(x) = e-axu (x)

f(x)

F(v) = f5f(x)6.

fb
L

t

- q

f(x)dx r =

F(v)
jv

 ,

F(v) = f5f(t)6.f5dnf(t)>dtn6 = (jv)nF(v),

f(t)

F(v) = f5f(t)6. jvF(v),=f5df(t)>dt6

 B(v) = 0.

 A(v) = 2
L

q

0
f(t) cos vt dt,

f(t)17.3 Use the defining integral to find the Fourier trans-
form of the following functions:

a)

b)

Sections 17.3 –17.5

17.4 Derive .

17.5 Find the Fourier transform of each of the following
functions. In all of the functions, a is a positive real
constant and .

a)

b)

c)

d)

e) .

17.6 If is a real function of t, show that the inversion
integral reduces to

17.7 If is a real, odd function of t, show that the
inversion integral reduces to

17.8 Use the inversion integral (Eq. 17.9) to show that
Hint: Use Problem 17.7.

17.9 Find by using the approximating function

where is a positive real constant.

17.10 Show that if is an odd function,

 B(v) = -2
L

q

0
f(t) sin  vt dt.

 A(v) = 0,

f(t)

P

f(t) = e- P|t| cos v0t,

f5cos v0t6
f

-152>jv6 = sgn(t).

f(t) = -  
1

2pL

q

-q

B(v) sin vt dv.

f(t)

f(t) =

1
2pL

q

-q

[A(v) cos vt - B(v) sin vt] dv.

f(t)

 f(t) = d(t - t0)

 f(t) = e-a|t| sin v0t;

 f(t) = e-a|t| cos v0t;

 f(t) = t3e- a|t|
 ;

 f(t) = |t|e-a|t|
 ;

- q … t … q

f5sin v0t6

elsewhere. f(t) = 0,

0 … t …

t

2
 ; f(t) = -

2A
t

 t + A,

-  
t

2
… t … 0; f(t) =

2A
t

 t + A,

elsewhere. f(t) = 0,

-2 … t … 2; f(t) = A sin 
p

2
 t,
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Figure P17.20

17.21 Repeat Problem 17.20 except replace with .

17.22 a) Use the Fourier transform method to find 
in the circuit shown in Fig. P17.22. The initial
value of is zero, and the source voltage is

b) Sketch versus t.

Figure P17.22

17.23 Repeat Problem 17.22 if the input voltage is
changed to 

17.24 a) Use the Fourier transform to find in the circuit
in Fig. P17.24 if 

b) Does your solution make sense in terms of
known circuit behavior? Explain.

Figure P17.24

17.25 Repeat Problem 17.24 except replace with .

17.26 The voltage source in the circuit in Fig. P17.26 is
given by the expression

a) Find .

b) What is the value of ?

c) What is the value of ?

d) Use the Laplace transform method to find 
for .

e) Does the solution obtained in (d) agree with
for from (a)?t 7 0+vo(t)

t 7 0+

vo(t)

vo(0+)

vo(0-)

vo(t)

vg = 8 sgn(t) V.

voio

�

�

vo(t)1250 �ig

io(t)

0.8 mF

ig = 40 sgn(t) mA.
io

25 sgn(t).
(vg)

2 H

400 �
�

�
vg

�

�

vo

vo(t)

50u(t) V.
vo(t)

vo(t)

vo(t)io(t)

�

�

480 �

vg 625 nF2.4 k�

�

�

vo

io
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Next, reverse the order of integration and then
make a change in the variable of integration; that is,
let .

17.17 Given , show that 

. Hint: First, use the

defining integral to express as

Second, use the inversion integral to write

Third, substitute the expression for into the
defining integral and then interchange the order
of integration.

17.18 a) Show that

b) Use the result of (a) to find each of the following
Fourier transforms (assuming ):

17.19 Suppose that , where

a) Use convolution in the frequency domain to
find .

b) What happens to as the width of 
increases so that includes more and more
cycles on ?

Section 17.7

17.20 a) Use the Fourier transform method to find 
in the circuit shown in Fig. P17.20 if

b) Does your solution make sense in terms of
known circuit behavior? Explain.

vg = 60 sgn(t) V.
io(t)

f1(t)
f(t)

f2(t)F(v)

F(v)

f2(t) = 0, elsewhere.

f2(t) = 1, -t>2 6 t 6 t>2;

f1(t) = cos v0t,

f(t) = f1(t)f2(t)

f5te-a|t|6.
f5|t|e-a|t|6,
f5te-at u(t)6,

a 7 0

(  j)nBdnF(v)
dvn R = f5tnf(t)6.

f1(t)

f1(t) =

1
2pL

q

-q

F1(u)e 
jvt  du.

F(v) =

L

q

-q

f1(t) f2(t)e-jvt  dt.

F(v)

F1(u)F2(v -  u) du(1>2p)
L

q

-q

=F(v)f1(t) f2 (t)=f(t)

u = t - l
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MULTISIM
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MULTISIM

PSPICE

MULTISIM



Figure P17.26

17.27 Repeat Problem 17.26 except replace with .

17.28 a) Use the Fourier transform to find in the cir-
cuit in Fig. P17.28 if equals .

b) Find .

c) Find .

d) Use the Laplace transform method to find 
for .

e) Does the solution obtained in (d) agree with 
for from (a)?

Figure P17.28

17.29 a) Use the Fourier transform to find in the circuit
in Fig. P17.28 if equals .

b) Find .

c) Find .

d) Use the Laplace transform method to find 
for .

e) Does the solution obtained in (d) agree with 
for from (a)?

17.30 Use the Fourier transform method to find in the
circuit in Fig. P17.30 if .

Figure P17.30

�

�

25 �

100 �

io

vg 10 mH

800 nF

vg = 300 cos 5000t V
io

t 7 0+

io

t Ú 0
io

io(0+)

io(0-)

2e-100|t|  Aig

io

500 �

�

�

vo 100 mFig

io

t 7 0+

vo

t Ú 0
vo

vo(0+)

vo(0-)

2e-100|t|  Aig

vo

io(t)vo(t)

�

�

100 � 100 mH

vg

�

�

vo

io

62.5 mF

17.31 a) Use the Fourier transform method to find in the
circuit in Fig. P17.31 if 

b) Check the answer obtained in (a) by finding the
steady-state expression for using phasor
domain analysis.

Figure P17.31

17.32 a) Use the Fourier transform method to find in
the circuit shown in Fig. P17.32. The voltage
source generates the voltage

b) Calculate , , and .

c) Find ; ; ; and .

d) Do the results in part (b) make sense in terms of
known circuit behavior? Explain.

Figure P17.32

17.33 The voltage source in the circuit in Fig. P17.33 is
generating the signal

a) Find and .

b) Find and .

c) Find .

Figure P17.33

17.34 a) Use the Fourier transform method to find in
the circuit in Fig. P17.34 when

b) Find .

c) Find .vo(0+)

vo(0-)

vg = 36e4t u(- t) - 36e-4t u(t) V.

vo

�

�

25 �

vg 0.2 mF

io

vo

�

�

vo

io(0+)io(0-)

vo(0+)vo(0-)

vg = 25 sgn(t) - 25 + 150e-100tu(t) V.

�

�
vo

vC

4 H 800 �
iL

vg

1 mF

� � �

�

vC(0+)vC(0-)iL(0+)iL(0-)

vo(q)vo(0+)vo(0-)

vg = 45e-500|t| V.

vo

�

�
vg

5 mH

20 mH 120 �io

io

vg = 125 cos 40,000t V.
io
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What percentage of the total energy content in
the output current lies in the frequency range

?

Figure P17.38

17.39 The input current signal in the circuit seen in
Fig. P17.39 is

What percentage of the total energy content in
the output signal lies in the frequency range 0 to

?

Figure P17.39

17.40 The input voltage in the circuit in Fig. P17.40 is

a) Find .

b) Sketch for 

c) Sketch for 

d) Calculate the energy content of .

e) Calculate the energy content of .

f) What percentage of the energy content in 
lies in the frequency range ?

g) Repeat (f) for .

Figure P17.40

17.41 The amplitude spectrum of the input voltage to the
high-pass RC filter in Fig. P17.41 is

 Vi(v) = 0,  elsewhere.

 Vi(v) =

200
|v|

, 100 rad>s … |v| … 200 rad>s;

�

�

20 �

vo80 �vg

�

�

125 mF

vo

0 … ƒv ƒ … 2 rad>s vg1 Æ

vo1 Æ

vg1 Æ

-5 … v … 5 rad>s.|Vo(v)|

-5 … v … 5 rad>s.|Vg(v)|

vo(t)

vg = 30e-|t| V.

2 k�ig io 2.5 mF

100 rad>s
1 Æ

ig = 10e-50t u1t2 mA,  t Ú 0+.

25 �ig 500 mH

io

0 … ƒv ƒ … 100 rad>sio

1 Æ
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Figure P17.34

17.35 a) Use the Fourier transform method to find in
the circuit in Fig. P17.35 when

b) Find .

c) Find .

d) Do the answers obtained in (b) and (c) make
sense in terms of known circuit behavior?
Explain.

Figure P17.35

17.36 When the input voltage to the system shown in Fig.
P17.36 is the output voltage is

What is the output voltage if ?

Figure P17.36

Section 17.8

17.37 It is given that .

a) Find .

b) Find the energy associated with via
time-domain integration.

c) Repeat (b) using frequency-domain integration.

d) Find the value of if has 90% of the
energy in the frequency band .

17.38 The circuit shown in Fig. P17.38 is driven by 
the current

ig = 12e-10t u(t) A.

0 … ƒv ƒ … v1

f(t)v1

f(t)1 Æ

f(t)

F(v) = evu(-v) + e-vu(v)

h(t)
vi(t)

(Input voltage)
vo(t)

(Output voltage)

vi = 20 sgn(t) V

vo = [40 + 60e-100t
- 100e-300t ] u(t) V.

20u(t) V,

1 Hig

10 mF

25 �

�

�

vo

vo(0+)

vo(0-)

ig = 18e10t u(- t) - 18e- 10t u(t) A.

vo

�

�

10 �

62.5 mFvg vo

�

�

1 H
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17.42 The input voltage to the high-pass RC filter circuit
in Fig. P17.42 is

Let denote the corner frequency of the filter, that
is, .

a) What percentage of the energy in the signal at
the output of the filter is associated with the fre-
quency band if ?

b) Repeat (a), given that .

c) Repeat (a), given that .

Figure P17.42

C
vovi R

�

�

�

�

a = a>13

a = 13a

a = a0 … ƒv ƒ … a

a = 1>RC
a

vi(t) = Ae-atu(t).

a) Sketch for .

b) Sketch for .

c) Calculate the energy in the signal at the
input of the filter.

d) Calculate the energy in the signal at the out-
put of the filter.

Figure P17.41

0.5 mF

vovi 20 k�

�

�

�

�

1 Æ

1 Æ

-300 … v … 300 rad>s|Vo(v)|2
-300 … v … 300 rad>s|Vi(v)|2
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We have frequently focused on the behavior of a circuit at a
specified pair of terminals. Recall that we introduced the
Thévenin and Norton equivalent circuits solely to simplify circuit
analysis relative to a pair of terminals. In analyzing some electri-
cal systems, focusing on two pairs of terminals is also convenient.
In particular, this is helpful when a signal is fed into one pair of
terminals and then, after being processed by the system, is
extracted at a second pair of terminals. Because the terminal
pairs represent the points where signals are either fed in or
extracted, they are referred to as the ports of the system. In this
chapter, we limit the discussion to circuits that have one input and
one output port. Figure 18.1 on page 678 illustrates the basic two-
port building block. Use of this building block is subject to sev-
eral restrictions. First, there can be no energy stored within the
circuit. Second, there can be no independent sources within the
circuit; dependent sources, however, are permitted.Third, the cur-
rent into the port must equal the current out of the port; that is,

and . Fourth, all external connections must be made
to either the input port or the output port; no such connections are
allowed between ports, that is, between terminals a and c, a and d,
b and c, or b and d. These restrictions simply limit the range of cir-
cuit problems to which the two-port formulation is applicable.

The fundamental principle underlying two-port modeling of a
system is that only the terminal variables ( , , , and ) are of
interest. We have no interest in calculating the currents and volt-
ages inside the circuit.We have already stressed terminal behavior
in the analysis of operational amplifier circuits. In this chapter, we
formalize that approach by introducing the two-port parameters.

v2i2v1i1

i2 = i¿2i1 = i¿1

Two-Port Circuits

C H A P T E R

C H A P T E R  C O N T E N T S

18.1 The Terminal Equations p. 678

18.2 The Two-Port Parameters p. 679

18.3 Analysis of the Terminated Two-Port
Circuit p. 687

18.4 Interconnected Two-Port Circuits p. 692

C H A P T E R  O B J E C T I V E S

1 Be able to calculate any set of two-port
parameters with any of the following methods:

• Circuit analysis;

• Measurements made on a circuit;

• Converting from another set of two-port
parameters using Table 18.1.

2 Be able to analyze a terminated two-port circuit
to find currents, voltages, impedances, and
ratios of interest using Table 18.2.

3 Know how to analyze a cascade interconnection
of two-port circuits.
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Up to this point, whenever we wanted to create a model of a
circuit, we needed to know what types of components make
up the circuit, the values of those components, and the inter-
connections among those components. But what if we want
to model a circuit that is inside a "black box", where the com-
ponents, their values, and their interconnections are hidden?

In this chapter, we will discover that we can perform two
simple experiments on such a black box to create a model
that consists of just 4 values – the two-port parameter model
for the circuit. We can then use the two-port parameter

model to predict the behavior of the circuit once we have
attached a power source to one of its ports and a load to the
other port.

In this example, suppose we have found a circuit,
enclosed in a casing, with two wires extending from each
side, as shown below. The casing is labeled "amplifier" and we
want to determine whether or not it would be safe to use this
amplifier to connect a music player modeled as a source
to a speaker modeled as a 32 resistor with a power rating
of .100 W

Æ

2 V

677

amplifier

Practical Perspective
Characterizing an Unknown Circuit
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18.1 The Terminal Equations
In viewing a circuit as a two-port network, we are interested in relating the
current and voltage at one port to the current and voltage at the other
port. Figure 18.1 shows the reference polarities of the terminal voltages
and the reference directions of the terminal currents. The references at
each port are symmetric with respect to each other; that is, at each port the
current is directed into the upper terminal, and each port voltage is a rise
from the lower to the upper terminal. This symmetry makes it easier to
generalize the analysis of a two-port network and is the reason for its uni-
versal use in the literature.

The most general description of the two-port network is carried out in
the s domain. For purely resistive networks, the analysis reduces to solving
resistive circuits. Sinusoidal steady-state problems can be solved either by
first finding the appropriate s-domain expressions and then replacing s
with or by direct analysis in the frequency domain. Here, we write all
equations in the s domain; resistive networks and sinusoidal steady-state
solutions become special cases. Figure 18.2 shows the basic building block
in terms of the s-domain variables and 

Of these four terminal variables, only two are independent. Thus for
any circuit, once we specify two of the variables, we can find the two
remaining unknowns. For example, knowing and and the circuit
within the box, we can determine and Thus we can describe a two-
port network with just two simultaneous equations. However, there are six
different ways in which to combine the four variables:

(18.1)

(18.2)

(18.3)

(18.4)

(18.5)

(18.6)

These six sets of equations may also be considered as three pairs of
mutually inverse relations. The first set, Eqs. 18.1, gives the input and out-
put voltages as functions of the input and output currents. The second set,
Eqs. 18.2, gives the inverse relationship, that is, the input and output cur-
rents as functions of the input and output voltages. Equations 18.3 and
18.4 are inverse relations, as are Eqs. 18.5 and 18.6.

The coefficients of the current and/or voltage variables on the right-
hand side of Eqs. 18.1–18.6 are called the parameters of the two-port cir-
cuit.Thus, when using Eqs. 18.1, we refer to the z parameters of the circuit.
Similarly, we refer to the y parameters, the a parameters, the b parameters,
the h parameters, and the g parameters of the network.

 V2 = g21V1 + g22I2.

 I1 = g11V1 + g12I2,

 I2 = h21I1 + h22V2;

 V1 = h11I1 + h12V2,

 I2 = b21V1 - b22I1;

 V2 = b11V1 - b12I1,

 I1 = a21V2 - a22I2;

 V1 = a11V2 - a12I2,

 I2 = y21V1 + y22V2;

 I1 = y11V1 + y12V2,

 V2 = z21I1 + z22I2;

 V1 = z11I1 + z12I2,

I2.I1

V2V1

V2.I2,V1,I1,

jv,

CircuitInput
port

Output
port

�

�

v1

�

�

v2

i1
a

b

c

d
i�1 i�2

i2

s-domain
circuit

�

�

V1

�

�

V2

I1 I2

Figure 18.1 � The two-port building block.

Figure 18.2 � The s-domain two-port basic 
building block.
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18.2 The Two-Port Parameters
We can determine the parameters for any circuit by computation or meas-
urement. The computation or measurement to be made comes directly
from the parameter equations. For example, suppose that the problem is
to find the z parameters for a circuit. From Eqs. 18.1,

(18.7)

(18.8)

(18.9)

(18.10)

Equations 18.7–18.10 reveal that the four z parameters can be described
as follows:

• is the impedance seen looking into port 1 when port 2 is open.
• is a transfer impedance. It is the ratio of the port 1 voltage to the

port 2 current when port 1 is open.
• is a transfer impedance. It is the ratio of the port 2 voltage to the

port 1 current when port 2 is open.
• is the impedance seen looking into port 2 when port 1 is open.

Therefore the impedance parameters may be either calculated or
measured by first opening port 2 and determining the ratios and

and then opening port 1 and determining the ratios and 
Example 18.1 illustrates the determination of the z parameters for a resis-
tive circuit.

V2>I2.V1>I2V2>I1,
V1>I1

z22

z21

z12

z11

 z22 =

V2

I2

2
I1 =0

Æ.

 z21 =

V2

I1

2
I2 =0

Æ,

 z12 =

V1

I2

2
I1 =0

Æ,

 z11 =

V1

I1

2
I2 =0

Æ,

Example 18.1 Finding the z Parameters of a Two-Port Circuit

Find the z parameters for the circuit shown in Fig. 18.3.

Figure 18.3 � The circuit for Example 18.1.

Solution
The circuit is purely resistive, so the s-domain cir-
cuit is also purely resistive. With port 2 open, that is,

the resistance seen looking into port 1 is the
resistor in parallel with the series combination

of the 5 and resistors. Therefore

When is zero, is

V2 =

V1

15 + 5
(15) = 0.75V1,

V2I2

z11 =

V1

I1

2
I2 =0

=

(20)(20)
40

= 10 Æ.

15 Æ
20 Æ
I2 = 0,

�

�

V1 20 �

5 �

15 �

�

�

V2

I2I1

and therefore

When is zero, the resistance seen looking into
port 2 is the resistor in parallel with the series
combination of the 5 and resistors. Therefore

When port 1 is open, is zero and the voltage
is

With port 1 open, the current into port 2 is

Hence

z12 =

V1

I2

2
I1 =0

=

0.8V2

V2>9.375
= 7.5 Æ.

I2 =

V2

9.375
 .

V1 =

V2

5 + 20
(20) = 0.8V2.

V1

I1

z22 =

V2

I2

2
I1 = 0

=

(15)(25)
40

= 9.375 Æ.

20 Æ
15 Æ

I1

z21 =

V2

I1

2
I2 =0

=

0.75V1

V1>10
= 7.5 Æ.
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Equations 18.7–18.10 and Example 18.1 show why the parameters in
Eqs. 18.1 are called the z parameters. Each parameter is the ratio of a volt-
age to a current and therefore is an impedance with the dimension of ohms.

We use the same process to determine the remaining port parameters,
which are either calculated or measured. A port parameter is obtained by
either opening or shorting a port. Moreover, a port parameter is an imped-
ance, an admittance, or a dimensionless ratio. The dimensionless ratio is
the ratio of either two voltages or two currents. Equations 18.11–18.15
summarize these observations.

(18.11)

(18.12)

(18.13)

(18.14)

(18.15)

The two-port parameters are also described in relation to the reciprocal
sets of equations. The impedance and admittance parameters are grouped
into the immittance parameters. The term immittance denotes a quantity

g22 =

V2

I2

2
V1 =0

Æ.g21 =

V2

V1

2
I2 = 0

,

g12 =

I1

I2

2
V1 =0

,g11 =

I1

V1

2
I2 = 0

S,

h22 =

I2

V2

2
I1 =0

S.h21 =

I2

I1

2
V2 =0

,

h12 =

V1

V2

2
I1 =0

,h11 =

V1

I1

2
V2 =0

Æ,

b22 = -

I2

I1

2
V1 =0

.b21 =

I2

V1

2
I1 =0

S,

b12 = -

V2

I1

2
V1 = 0

Æ,b11 =

V2

V1

2
I1 =0

,

a22 = -

I1

I2

2
V2 =0

.a21 =

I1

V2

2
I2 =0

S,

a12 = -

V1

I2

2
V2 =0

Æ,a11 =

V1

V2

2
I2 =0

,

y22 =

I2

V2

2
V1 =0

S.y21 =

I2

V1

2
V2 =0

S,

y12 =

I1

V2

2
V1 =0

S,y11 =

I1

V1

2
V2 =0

S,
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that is either an impedance or an admittance. The a and b parameters are
called the transmission parameters because they describe the voltage and
current at one end of the two-port network in terms of the voltage and cur-
rent at the other end. The immittance and transmission parameters are the
natural choices for relating the port variables. In other words, they relate
either voltage to current variables or input to output variables. The h and 
g parameters relate cross-variables, that is, an input voltage and output cur-
rent to an output voltage and input current. Therefore the h and g parame-
ters are called hybrid parameters.

Example 18.2 illustrates how a set of measurements made at the ter-
minals of a two-port circuit can be used to calculate the a parameters.

Example 18.2 Finding the a Parameters from Measurements

The following measurements pertain to a two-port
circuit operating in the sinusoidal steady state.
With port 2 open, a voltage equal to 
is applied to port 1. The current into port 1 is

and the port 2 voltage is
With port 2 short-circuited,

a voltage equal to is applied to port 1.
The current into port 1 is 
and the current into port 2 is 

Find the a parameters that can describe
the sinusoidal steady-state behavior of the circuit.

Solution
The first set of measurements gives

 V2 = 100 l15 �  V,  I2 = 0 A.

 V1 = 150 l0 �  V,  I1 = 25l -45° A,

+  150 �) A.
0.25 cos (4000t

1.5 cos (4000t + 30 �) A,
30 cos 4000t V

100 cos (4000t + 15 �) V.
25 cos (4000t - 45 �) A,

150 cos 4000t V

From Eqs. 18.12,

The second set of measurements gives

Therefore

 a21 = -

I1

I2

2
V2 =0

=

-1.5l30 �

0.25l150 � = 6l60 � .

 a12 = -

V1

I2

2
V2 =0

=

-30l0 �

0.25l150 � = 120l30 �  Æ,

 V2 = 0 V,     I2 = 0.25 l150° A.

 V1 = 30l0 �  V,  I1 = 1.5 l30°A,

 a21 =

I1

V2

2
I2 = 0

=

25l -45 �

100l15 � = 0.25l -60 �S.

 a11 =

V1

V2

2
I2 = 0

=

150l0 �

100l15 � = 1.5l -15 � ,

Objective 1—Be able to calculate any set of two-port parameters

18.1 Find the y parameters for the circuit in Fig. 18.3.

Answer:

18.2 Find the g and h parameters for the circuit in
Fig. 18.3.

Answer:

h22 = 0.1067 S.h21 = -0.8;
h12 = 0.8;h11 = 4 Æ;g22 = 3.75 Æ;
g21 = 0.75;g12 = -0.75;g11 = 0.1 S;

y22 =

4
15

  S.

y12 = y21 = -0.2 S,
y11 = 0.25 S,

18.3 The following measurements were made on a
two-port resistive circuit. With 50 mV applied
to port 1 and port 2 open, the current into port
1 is and the voltage across port 2 is
200 mV. With port 1 short-circuited and 10 mV
applied to port 2, the current into port 1 is

and the current into port 2 is 
Find the g parameters of the network.

Answer:

g22 = 20 kÆ.
g21 = 4;
g12 = 4;
g11 = 0.1 mS;

0.5 mA.2 mA,

5 mA,

NOTE: Also try Chapter Problems 18.2, 18.4, and 18.10.

A S S E S S M E N T  P R O B L E M S
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Although we do not derive all the relationships listed in Table 18.1, we
do derive those between the z and y parameters and between the z and 
a parameters. These derivations illustrate the general process involved in
relating one set of parameters to another. To find the z parameters as
functions of the y parameters, we first solve Eqs. 18.2 for and WeV2.V1

¢g = g11g22 - g12g21

¢h = h11h22 - h12h21

¢b = b11b22 - b12b21

¢a = a11a22 - a12a21

¢y = y11 y22 - y12 y21

¢z = z11z22 - z12z21

g22 =

¢z
z11

=

1
y22

=

a12

a11
=

b12

b22
=

h11

¢h

g21 =

z21

z11
= -

y21

y22
=

1
a11

=

¢b

b22
= -

h21

¢h

g12 = -

z12

z11
=

y12

y22
= -

¢a
a11

= -

1
b22

= -

h12

¢h

g11 =

1
z11

=

¢y

y22
=

a21

a11
=

b21

b22
=

h22

¢h

h22 =

1
z22

=

¢y

y11
=

a21

a22
=

b21

b11
=

g11

¢g

h21 = -

z21

z22
=

y21

y11
= -

1
a22

= -

¢b

b11
= -

g21

¢g

h12 =

z12

z22
= -

y12

y11
=

¢a
a22

=

1
b11

= -

g12

¢g

h11 =

¢z
z22

=

1
y11

=

a12

a22
=

b12

b11
=

g22

¢g

b22 =

z11

z12
=

y22

y12
=

a11

¢a
=

¢h

h12
= -

1
g12

b21 =

1
z12

= -

¢y

y12
=

a21

¢a
=

h22

h12
= -

g11

g12

b12 =

¢z
z12

= -

1
y12

=

a12

¢a
=

h11

h12
= -

g22

g12

b11 =

z22

z12
= -

y11

y12
=

a22

¢a
=

1
h12

= -

¢g

g12

a22 =

z22

z21
= -

y11

y21
=

b11

¢b
= -

1
h21

=

¢g

g21

a21 =

1
z21

= -

¢y

y21
=

b21

¢b
= -

h22

h21
=

g11

g21

a12 =

¢z
z21

= -

1
y21

=

b12

¢b
= -

h11

h21
=

g22

g21

a11 =

z11

z21
= -

y22

y21
=

b22

¢b
= -

¢h

h21
=

1
g21

y22 =

z11

¢z
=

a11

a12
=

b22

b12
=

¢h

h11
=

1
g22

y21 = -

z21

¢z
= -

1
a12

= -

¢b

b12
=

h21

h11
= -

g21

g22

y12 = -

z12

¢z
= -

¢a
a12

= -

1
b12

= -

h12

h11
=

g12

g22

y11 =

z22

¢z
=

a22

a12
=

b11

b12
=

1
h11

=

¢g

g22

z22 =

y11

¢y
=

a22

a21
=

b11

b21
=

1
h22

=

¢g

g11

z21 =

-y21

¢y
=

1
a21

=

¢b

b21
= -

h21

h22
=

g21

g11

z12 = -

y12

¢y
=

¢a
a21

=

1
b21

=

h12

h22
= -

g12

g11

z11 =

y22

¢y
=

a11

a21
=

b22

b21
=

¢h

h22
=

1
g11

TABLE 18.1 Parameter Conversion Table

Relationships Among the Two-Port Parameters
Because the six sets of equations relate to the same variables, the parame-
ters associated with any pair of equations must be related to the parameters
of all the other pairs. In other words, if we know one set of parameters, we
can derive all the other sets from the known set. Because of the amount of
algebra involved in these derivations, we merely list the results in Table 18.1.
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then compare the coefficients of and in the resulting expressions to
the coefficients of and in Eqs. 18.1. From Eqs. 18.2,

(18.16)

(18.17)

Comparing Eqs. 18.16 and 18.17 with Eqs. 18.1 shows

(18.18)

(18.19)

(18.20)

(18.21)

To find the z parameters as functions of the a parameters, we rearrange
Eqs. 18.3 in the form of Eqs. 18.1 and then compare coefficients. From the
second equation in Eqs. 18.3,

(18.22)

Therefore, substituting Eq. 18.22 into the first equation of Eqs. 18.3 yields

(18.23)

From Eq. 18.23,

(18.24)

(18.25)

From Eq. 18.22,

(18.26)

(18.27)

Example 18.3 illustrates the usefulness of the parameter conversion table.

 z22 =

a22

a21
 .

 z21 =

1
a21

 ,

 z12 =

¢a
a21

 .

 z11 =

a11

a21
 ,

V1 =

a11

a21
I1 + a a11a22

a21
- a12b

 
I2 .

V2 =

1
a21

I1 +

a22

a21
I2 .

 z22 =

y11

¢y
 .

 z21 = -

y21

¢y
 ,

 z12 = -

y12

¢y
 ,

 z11 =

y22

¢y
 ,

V2 =

2 y11 I1

y21 I2

2
¢y

= -  

y21

¢y
 I1 +

y11

¢y
 I2.

V1 =

2 I1 y12

I2 y22

2
2 y11 y12

y21 y22

2
=

y22

¢y
 I1 -

y12

¢y
 I2,

I2I1

I2I1
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Example 18.3 Finding h Parameters from Measurements and Table 18.1

Two sets of measurements are made on a two-port
resistive circuit.The first set is made with port 2 open,
and the second set is made with port 2 short-circuited.
The results are as follows:

Port 2 Open Port 2 Short-Circuited

Find the h parameters of the circuit.

Solution
We can find and directly from the short-
circuit test:

The parameters and cannot be obtained
directly from the open-circuit test. However, a
check of Eqs. 18.7–18.15 indicates that the four
a parameters can be derived from the test data.
Therefore, and can be obtained through the
conversion table. Specifically,

 h22 =

a21

a22
 .

 h12 =

¢a
a22

h22h12

h22h12

 =

10-3

20 * 10-6 = 50.

 h21 =

I2

I1

2
V2 =0

 =

24 * 10-3

20 * 10-6 = 1.2 kÆ,

 h11 =

V1

I1

2
V2 =0

h21h11

I2 = 1 mAV2 = -40 V

I1 = 20 mAI1 = 10 mA

V1 = 24 mVV1 = 10 mV

The a parameters are

The numerical value of is

Thus

 =

-0.25 * 10-6

-20 * 10-3 = 12.5 mS.

 h22 =

a21

a22

 =

-10-6

-20 * 10-3 = 5 * 10-5,

 h12 =

¢a
a22

 = 5 * 10-6
- 6 * 10-6

= -10-6.

 ¢a = a11a22 - a12a21

¢a

 a22 = -

I1

I2

2
V2 =0

= -

20 * 10-6

10-3 = -20 * 10-3.

 a12 = -

V1

I2

2
V2 =0

= -

24 * 10-3

10-3 = -24 Æ,

 a21 =

I1

V2

2
I2 =0

=

10 * 10-6

-40
= -0.25 * 10-6 S,

 a11 =

V1

V2

2
I2 =0

=

10 * 10-3

-40
= -0.25 * 10-3,

Objective 1—Be able to calculate any set of two-port parameters

18.4 The following measurements were made on a
two-port resistive circuit: With port 1 open,

and with
port 1 short-circuited, and

Calculate the z parameters.I1 = -5 A.
I2 = 4 A,V2 = 10 V,

I2 = 30 A;V1 = 10 V,V2 = 15 V,

Answer:

z22 = 0.5 Æ.

z21 = -1.6 Æ;

z12 = (1>3) Æ;

z11 = (4>15) Æ;

NOTE: Also try Chapter Problem 18.13.

A S S E S S M E N T  P R O B L E M
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Reciprocal Two-Port Circuits
If a two-port circuit is reciprocal, the following relationships exist among
the port parameters:

(18.28)

(18.29)

(18.30)

(18.31)

(18.32)

(18.33)

A two-port circuit is reciprocal if the interchange of an ideal voltage
source at one port with an ideal ammeter at the other port produces the
same ammeter reading. Consider, for example, the resistive circuit shown
in Fig. 18.4.When a voltage source of 15 V is applied to port ad, it produces
a current of 1.75 A in the ammeter at port cd. The ammeter current is eas-
ily determined once we know the voltage Thus

(18.34)

and Therefore

(18.35)

If the voltage source and ammeter are interchanged, the ammeter will still
read 1.75 A. We verify this by solving the circuit shown in Fig. 18.5:

(18.36)

From Eq. 18.36, The current equals

(18.37)

A two-port circuit is also reciprocal if the interchange of an ideal cur-
rent source at one port with an ideal voltmeter at the other port produces

Iad =

7.5
30

+

15
10

= 1.75 A.

IadVbd = 7.5 V.

Vbd

60
+

Vbd

30
+

Vbd - 15
20

= 0.

I =

5
20

+

15
10

= 1.75 A.

Vbd = 5 V.

Vbd

60
+

Vbd - 15
30

+

Vbd

20
= 0,

Vbd.

 g12 = -g21.

 h12 = -h21,

 b11b22 - b12b21 = ¢b = 1,

 a11a22 - a12a21 = ¢a = 1,

 y12 = y21,

 z12 = z21,

�

�
15 V

a c

d d

I Ammeter60 �

20 �30 �

10 �

b

Figure 18.4 � A reciprocal two-port circuit.

15 V

a c

d d

Ammeter 60 �

20 �30 �

10 �

b

�

�
I

Figure 18.5 � The circuit shown in Fig. 18.4, with the voltage
source and ammeter interchanged.
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the same voltmeter reading. For a reciprocal two-port circuit, only three
calculations or measurements are needed to determine a set of parameters.

A reciprocal two-port circuit is symmetric if its ports can be inter-
changed without disturbing the values of the terminal currents and volt-
ages. Figure 18.6 shows four examples of symmetric two-port circuits. In
such circuits, the following additional relationships exist among the 
port parameters:

(18.38)

(18.39)

(18.40)

(18.41)

(18.42)

(18.43)

For a symmetric reciprocal network, only two calculations or meas-
urements are necessary to determine all the two-port parameters.

 g11 g22 - g12 g21 = ¢g = 1.

 h11h22 - h12h21 = ¢h = 1,

 b11 = b22,

 a11 = a22,

 y11 = y22,

 z11 = z22,

Za Za

Zb

Zc

Zb

Zb

Zb

ZbZb

Za

Za

Za

Za

Za

V2V1

I2I1

I2I1

I2I1

I2I1

(a)

(d)(c)

(b)

�

�

�

�

V2V1

�

�

�

�

V1

�

�

V2

�

�

V2V1

�

�

�

�

Figure 18.6 � Four examples of symmetric two-port circuits. (a) A symmetric tee. 
(b) A symmetric pi. (c) A symmetric bridged tee. (d) A symmetric lattice.

Objective 1—Be able to calculate any set of two-port parameters

18.5 The following measurements were made on a
resistive two-port network that is symmetric
and reciprocal: With port 2 open,
and with a short circuit across port 2,I1 = 5 A;

V1 = 95 V

and . Calculate the
z parameters of the two-port network.

Answer: z12 = z21 = 17 Æ.z11 = z22 = 19 Æ,

I2 = -2.72 AV1 = 11.52 V

NOTE: Also try Chapter Problem 18.14.

A S S E S S M E N T  P R O B L E M
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�

�

Zg

ZLVg

Two-port model
of a

network

I2I1

V1

�

�

V2

�

�

18.3 Analysis of the Terminated
Two-Port Circuit

In the typical application of a two-port model, the circuit is driven at port
1 and loaded at port 2. Figure 18.7 shows the s-domain circuit diagram for
a typically terminated two-port model. Here, represents the internal
impedance of the source, the internal voltage of the source, and the
load impedance. Analysis of this circuit involves expressing the terminal
currents and voltages as functions of the two-port parameters,
and 

Six characteristics of the terminated two-port circuit define its termi-
nal behavior:

• the input impedance or the admittance 
• the output current
• the Thévenin voltage and impedance ( ) with respect to port 2
• the current gain 
• the voltage gain
• the voltage gain

The Six Characteristics in Terms of the z Parameters
To illustrate how these six characteristics are derived, we develop the
expressions using the z parameters to model the two-port portion of the
circuit. Table 18.2 summarizes the expressions involving the y, a, b, h, and
g parameters.

The derivation of any one of the desired expressions involves the
algebraic manipulation of the two-port equations along with the two con-
straint equations imposed by the terminations. If we use the z-parameter
equations, the four that describe the circuit in Fig. 18.7 are

(18.44)

(18.45)

(18.46)

(18.47)

Equations 18.46 and 18.47 describe the constraints imposed by 
the terminations.

To find the impedance seen looking into port 1, that is, we
proceed as follows. In Eq. 18.45 we replace with and solve the
resulting expression for :

(18.48)I2 =

-z21I1

ZL + z22
 .

I2

-I2ZLV2

Zin = V1>I1,

 V2 = -I2ZL .

 V1 = Vg - I1Zg ,

 V2 = z21I1 + z22I2 ,

 V1 = z11I1 + z12I2 ,

V2>Vg

V2>V1

I2>I1

ZThVTh,

I2

Yin = I1>V1Zin = V1>I1,

ZL.
Zg  ,Vg  ,

ZLVg

Zg

Figure 18.7 � A terminated two-port model.
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TABLE 18.2 Terminated Two-Port Equations

z Parameters y Parameters

a Parameters b Parameters

h Parameters g Parameters

V2

Vg
=

g21ZL

(1 + g11Zg)(g22 + ZL) - g12 g21Zg

V2

Vg
=

-h21ZL

(h11 + Zg)(1 + h22ZL) - h12h21ZL

V2

V1
=

g21ZL

g22 + ZL

V2

V1
=

-h21ZL

¢hZL + h11

I2

I1
=

-g21

g11ZL + ¢g

I2

I1
=

h21

1 + h22ZL

ZTh = g22 -

g12g21Zg

1 + g11Zg
ZTh =

Zg + h11

h22Zg + ¢h

VTh =

g21Vg

1 + g11Zg
VTh =

-h21Vg

h22 Zg + ¢h

I2 =

-g21Vg

(1 + g11Zg)(g22 + ZL) - g12 g21Zg
I2 =

h21Vg

(1 + h22ZL)(h11 + Zg) - h12h21ZL

Yin = g11 -

g12 g21

g22 + ZL
Zin = h11 -

h12h21ZL

1 + h22ZL

V2

Vg
=

¢bZL

b12 + b11Zg + b22ZL + b21Zg ZL

V2

Vg
=

ZL

(a11 + a21Zg)ZL + a12 + a22Zg

V2

V1
=

¢bZL

b12 + b22ZL

V2

V1
=

ZL

a11ZL + a12

I2

I1
=

- ¢b

b11 + b21ZL

I2

I1
=

-1
a21ZL + a22

ZTh =

b11Zg + b12

b21Zg + b22
ZTh =

a12 + a22Zg

a11 + a21Zg

VTh =

Vg¢b

b22 + b21Zg
VTh =

Vg

a11 + a21Zg

I2 =

-Vg¢b

b11Zg + b21Zg ZL + b22 ZL + b12
I2 =

-Vg

a11ZL + a12 + a21Zg ZL + a22 Zg

Zin =

b22ZL + b12

b21ZL + b11
Zin =

a11ZL + a12

a21ZL + a22

V2

Vg
=

y21ZL

y12 y21 Zg ZL - (1 + y11Zg)(1 + y22ZL)
V2

Vg
=

z21ZL

(z11 + Zg)(z22 + ZL) - z12z21

V2

V1
=

-y21ZL

1 + y22ZL

V2

V1
=

z21ZL

z11ZL + ¢z

I2

I1
=

y21

y11 + ¢yZL

I2

I1
=

-z21

z22 + ZL

ZTh =

1 + y11Zg

y22 + ¢yZg
ZTh = z22 -

z12z21

z11 + Zg

VTh =

-y21Vg

y22 + ¢yZg
VTh =

z21

z11 + Zg
Vg

I2 =

y21Vg

1 + y22 ZL + y11Zg + ¢yZg ZL
I2 =

-z21Vg

(z11 + Zg)(z22 + ZL) - z12z21

Yin = y11 -

y12 y21ZL

1 + y22 ZL
Zin = z11 -

z12z21

z22 + ZL
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We then substitute this equation into Eq. 18.44 and solve for :

(18.49)

To find the terminal current we first solve Eq. 18.44 for after
replacing with the right-hand side of Eq. 18.46. The result is

(18.50)

We now substitute Eq. 18.50 into Eq. 18.48 and solve the resulting equa-
tion for :

(18.51)

The Thévenin voltage with respect to port 2 equals when With
Eqs. 18.44 and 18.45 combine to yield

(18.52)

But and therefore substituting the
results into Eq. 18.52 yields the open-circuit value of :

(18.53)

The Thévenin, or output, impedance is the ratio when is replaced
by a short circuit. When is zero, Eq. 18.46 reduces to

(18.54)

Substituting Eq. 18.54 into Eq. 18.44 gives

(18.55)

We now use Eq. 18.55 to replace in Eq. 18.45, with the result that

(18.56)

The current gain comes directly from Eq. 18.48:

(18.57)

To derive the expression for the voltage gain we start by replac-
ing in Eq. 18.45 with its value from Eq. 18.47; thus

(18.58)V2 = z21I1 + z22 a -V2

ZL
b .

I2

V2>V1,

I2

I1
=

-z21

ZL + z22
 .

I2>I1

V2

I2

2
Vg =0

= ZTh = z22 -

z12z21

z11 + Zg
 .

I1

I1 =

-z12I2

z11 + Zg
 .

V1 = -I1Zg .

Vg

VgV2>I2

V2|I2 =0 = VTh =

z21

Zg + z11
Vg .

V2

I1 = Vg>(Zg + z11);V1 = Vg - I1Zg  ,

V2|I2 = 0 = z21I1 = z21 
V1

z11
 .

I2 = 0,
I2 = 0.V2

I2 =

-z21Vg

(z11 + Zg)(z22 + ZL) - z12z21
 .

I2

I1 =

Vg - z12I2

z11 + Zg
 .

V1

I1I2,

Zin = z11 -

z12z21

z22 + ZL
 .

Zin
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Next we solve Eq. 18.44 for as a function of and :

or

(18.59)

We now replace in Eq. 18.58 with Eq. 18.59 and solve the resulting
expression for :

(18.60)

To derive the voltage ratio we first combine Eqs. 18.44, 18.46,
and 18.47 to find as a function of and :

(18.61)

We now use Eqs. 18.61 and 18.47 in conjunction with Eq. 18.45 to derive
an expression involving only and that is,

(18.62)

which we can manipulate to get the desired voltage ratio:

(18.63)

The first entries in Table 18.2 summarize the expressions for these six
attributes of the terminated two-port circuit. Also listed are the corre-
sponding expressions in terms of the y, a, b, h, and g parameters.

Example 18.4 illustrates the usefulness of the relationships listed in
Table 18.2.

V2

Vg
=

z21ZL

(z11 + Zg)(z22 + ZL) - z12z21
 .

V2 =

z21z12V2

ZL(z11 + Zg)
+

z21Vg

z11 + Zg
-

z22

ZL
 V2  ,

Vg ;V2

I1 =

z12V2

ZL(z11 + Zg)
+

Vg

z11 + Zg
 .

VgV2I1

V2>Vg ,

 =

z21ZL

z11ZL + ¢z
 .

 
V2

V1
=

z21ZL

z11ZL + z11z22 - z12z21

V2>V1

I1

 I1 =

V1

z11
+

z12V2

z11ZL
 .

 z11I1 = V1 - z12 a -V2

ZL
b

V2V1I1

Example 18.4 Analyzing a Terminated Two-Port Circuit

The two-port circuit shown in Fig. 18.8 is described
in terms of its b parameters, the values of which are

a) Find the phasor voltage 

b) Find the average power delivered to the load.

c) Find the average power delivered to the input port.

5 kÆ

V2.

 b21 = -2 mS,    b22 = -0.2.

 b11 = -20,     b12 = -3000 Æ,

d) Find the load impedance for maximum average
power transfer.

e) Find the maximum average power delivered to
the load in (d).

Solution

a) To find we have two choices from the entries
in Table 18.2. We may choose to find and then
find from the relationship or we
may find the voltage gain and calculate 
from the gain. Let’s use the latter approach. For
the b-parameter values given, we have

 = 4 - 6 = -2.

 ¢b = (-20)(-0.2) - (-3000)(-2 * 10-3)

V2V2>Vg

V2 = -I2ZL,V2

I2

V2,

�

�
500  0�

500 �

5 k�V1 V2

I1 I2

[b]

�

�

�

�

Figure 18.8 � The circuit for Example 18.4.
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From Table 18.2,

 
V2

Vg
=

¢bZL

b12 + b11Zg + b22ZL + b21Zg ZL

The average power delivered to the input port is

d) The load impedance for maximum power trans-
fer equals the conjugate of the Thévenin imped-
ance seen looking into port 2. From Table 18.2,

Therefore 

e) To find the maximum average power delivered
to we first find from the voltage-gain
expression When is this
gain is

Thus

and

 = 8.01 W.

 PL(maximum) =

1
2

 
416.672

10,833.33

V2 = (0.8333)(500) = 416.67 V,

V2

Vg
= 0.8333.

10,833.33 Æ,ZLV2>Vg  .
V2ZL,

ZL = ZTh
*

= 10,833.33 Æ.

 =

13,000
1.2

= 10,833.33 Æ.

 =

(-20)(500) - 3000

(-2 * 10-3)(500) - 0.2

 ZTh =

b11Zg + b12

b21Zg + b22

P1 =

0.789472

2
(133.33) = 41.55 W.

Then,

 =

10
19

 .

 =

(-2)(5000)

-3000 + (-20)500 + (-0.2)5000 + [-2 * 10-3(500)(5000)]

b) The average power delivered to the load is

c) To find the average power delivered to the input
port, we first find the input impedance From
Table 18.2,

Now follows directly:

I1 =

500
500 + 133.33

= 789.47 mA.

I1

 =

400
3

= 133.33 Æ.

 =

(-0.2)(5000) - 3000

-2 * 10-3(5000) - 20

 Zin =

b22ZL + b12

b21ZL + b11

Zin.

P2 =

263.162

2(5000)
= 6.93 W.

5000 Æ

V2 = ¢10
19
≤500 = 263.16l0 �  V.

Objective 2—Be able to analyze a terminated two-port circuit to find currents, voltages, and ratios of interest

18.6 The a parameters of the two-port network
shown are 

and The net-
work is driven by a sinusoidal voltage source
having a maximum amplitude of 50 mV and an
internal impedance of . It is termi-
nated in a resistive load of 

a) Calculate the average power delivered to
the load resistor.

b) Calculate the load resistance for maximum
average power.

c) Calculate the maximum average power
delivered to the resistor in (b).

5 kÆ.
100 + j0 Æ

a22 = -3 * 10-2.a21 = 10-6 S,
a12 = 10 Æ,a11 = 5 * 10-4,

Answer: (a) 62.5 mW;

(b)

(c) 74.4 mW.

70>6 kÆ;

�

�

Zg

ZLVg

Two-port model
of a

network

I2I1

V1

�

�

V2

�

�

NOTE: Also try Chapter Problems 18.29, 18.31, and 18.33.

A S S E S S M E N T  P R O B L E M
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(a)

1

2

1

2

1 1

2 2

1 2

(b) (c)

(d) (e)

Figure 18.9 � The five basic interconnections of two-port circuits.
(a) Cascade. (b) Series. (c) Parallel. (d) Series-parallel. (e) Parallel-series.

18.4 Interconnected Two-Port Circuits
Synthesizing a large, complex system is usually made easier by first designing
subsections of the system. Interconnecting these simpler, easier-to-design
units then completes the system. If the subsections are modeled by two-port
circuits, synthesis involves the analysis of interconnected two-port circuits.

Two-port circuits may be interconnected five ways: (1) in cascade,
(2) in series, (3) in parallel, (4) in series-parallel, and (5) in parallel-series.
Figure 18.9 depicts these five basic interconnections.

We analyze and illustrate only the cascade connection in this section.
However, if the four other connections meet certain requirements, we can
obtain the parameters that describe the interconnected circuits by simply
adding the individual network parameters. In particular, the z parameters
describe the series connection, the y parameters the parallel connection,
the h parameters the series-parallel connection, and the g parameters the
parallel-series connection.1

The cascade connection is important because it occurs frequently in
the modeling of large systems. Unlike the other four basic interconnec-
tions, there are no restrictions on using the parameters of the individual
two-port circuits to obtain the parameters of the interconnected circuits.
The a parameters are best suited for describing the cascade connection.

We analyze the cascade connection by using the circuit shown in
Fig. 18.10, where a single prime denotes a parameters in the first circuit
and a double prime denotes a parameters in the second circuit.The output

1 A detailed discussion of these four interconnections is presented in Henry Ruston and
Joseph Bordogna, Electric Networks: Functions, Filters, Analysis (New York: McGraw-Hill,
1966), ch. 4.
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voltage and current of the first circuit are labeled and and the input
voltage and current of the second circuit are labeled and The prob-
lem is to derive the a-parameter equations that relate and to and

In other words, we seek the pair of equations

(18.64)

(18.65)

where the a parameters are given explicitly in terms of the a parameters of
the individual circuits.

We begin the derivation by noting from Fig. 18.10 that

(18.66)

(18.67)

The interconnection means that and Substituting
these constraints into Eqs. 18.66 and Eqs. 18.67 yields

(18.68)

(18.69)

The voltage and the current are related to and through the
a parameters of the second circuit:

(18.70)

(18.71)

We substitute Eqs. 18.70 and 18.71 into Eqs. 18.68 and 18.69 to generate
the relationships between and :

(18.72)

(18.73)

By comparing Eqs. 18.72 and 18.73 to Eqs. 18.64 and 18.65, we get the
desired expressions for the a parameters of the interconnected 
networks, namely,

(18.74)

(18.75)

(18.76)

(18.77) a22 = a21
œ a12

fl

+ a22
œ a22

fl .

 a21 = a21
œ a11

fl

+ a22
œ a21

fl ,

 a12 = a11
œ a12

fl

+ a12
œ a22

fl ,

 a11 = a11
œ a11

fl

+ a12
œ a21

fl ,

 I1 = (a21
œ a11

fl

+ a22
œ a21

fl )V2-(a21
œ a12

fl

+ a22
œ a22

fl )I2.

 V1 = (a11
œ a11

fl

+ a12
œ a21

fl )V2-(a11
œ a12

fl

+ a12
œ a22

fl )I2,

I2V2,I1V1,

 I1
œ

= a21
fl V2 - a22

fl I2.

 V1
œ

= a11
fl V2 - a12

fl I2,

I2V2I1
œV1

œ

 I1 = a21
œ V1

œ

+ a22
œ I1

œ .

 V1 = a11
œ V1

œ

+ a12
œ I1

œ ,

I2
œ

= -I1
œ .V2

œ

= V1
œ

 I1 = a21
œ V2

œ

- a22
œ I2

œ .

 V1 = a11
œ V2

œ

- a12
œ I2

œ ,

 I1 = a21V2 - a22I2,

 V1 = a11V2 - a12I2

I1.
V1I2V2

I1
œ .V1

œ

I2
œ ,V2

œ Circuit 1 Circuit 2

a�11

a�21

a�12

a�22

a�11

a�21

a�12

a�22

�

�

�

�

�

�

V1 V�1V�2

�

�

V2

I2I1 I�2 I�1

Figure 18.10 � A cascade connection.
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Example 18.5 Analyzing Cascaded Two-Port Circuits

Two identical amplifiers are connected in cas-
cade, as shown in Fig. 18.11. Each amplifier is
described in terms of its h parameters. The values
are and

Find the voltage gain

Figure 18.11 � The circuit for Example 18.5.

Solution
The first step in finding is to convert from 
h parameters to a parameters. The amplifiers are
identical, so one set of a parameters describes 
the amplifiers:

Next we use Eqs. 18.74–18.77 to compute the 
a parameters of the cascaded amplifiers:

 = 25 * 10-8
+ (-10)(-10-6)

 a11 = a11
œ a11

œ

+ a12
œ a21

œ

 a22
œ

=

-1
h21

=

-1
100

= -10-2.

 a21
œ

=

-h22

h21
=

-100 * 10-6

100
= -10-6 S,

 a12
œ

=

-h11

h21
=

-1000
100

= -10 Æ,

 a11
œ

=

- ¢h

h21
=

+0.05
100

= 5 * 10-4,

V2>Vg

�

�

500 �

10 k�

�

�

Vg V2A1 A2

V2>Vg.h22 = 100 mS.
h21 = 100,h12 = 0.0015,h11 = 1000 Æ,

From Table 18.2,

 
V2

Vg
=

ZL

(a11 + a21Zg)ZL + a12 + a22Zg

 = 1.1 * 10-4.

 = (-10-6)(-10) + (-10-2)2

 a22 = a21
œ a12

œ

+ a22
œ a22

œ

 = 9.5 * 10-9 S,

 = (-10-6)(5 * 10-4) + (-0.01)(-10-6)

 a21 = a21
œ a11

œ

+ a22
œ a21

œ

 = 0.095 Æ,

 = (5 * 10-4)(-10) + (-10)(-10-2)

 a12 = a11
œ a12

œ

+ a12
œ a22

œ

 = 10.25 * 10-6,

Thus an input signal of is amplified to an
output signal of 5 V. For an alternative approach to
finding the voltage gain see Problem 18.41.V2>Vg  ,

150 mV

 = 33,333.33.

 =

105

3

 =

104

0.15 + 0.095 + 0.055

 =

104

[10.25 * 10-6
+ 9.5 * 10-9(500)]104

+ 0.095 + 1.1 * 10-4(500)

If more than two units are connected in cascade, the a parameters of
the equivalent two-port circuit can be found by successively reducing the
original set of two-port circuits one pair at a time.

Example 18.5 illustrates how to use Eqs. 18.74–18.77 to analyze a cas-
cade connection with two amplifier circuits.
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Objective 3—Know how to analyze a cascade interconnection of two-port circuits

18.7 Each element in the symmetric bridged-tee
circuit shown is a resistor.Two of these
bridged tees are connected in cascade between a
dc voltage source and a resistive load.The dc
voltage source has a no load voltage of 100 V and
an internal resistance of .The load resistor is
adjusted until maximum power is delivered to
the load. Calculate (a) the load resistance, (b) the
load voltage, and (c) the load power.

8 Æ

15 Æ

A S S E S S M E N T  P R O B L E M

NOTE: Also try Chapter Problem 18.38.

Answer: (a)

(b) 16 V;

(c) 17.73 W.

14.44 Æ;

Zc

Zb

Za Za

I2I1

V2V1

�

�

�

�

Practical Perspective
Characterizing an Unknown Circuit
We make the following measurements to find the h parameters for our "black
box" amplifier:

With Port 1 open, apply 50 V at Port 2. Measure the voltage at Port 1
and the current at Port 2:

.

With Port 2 short-circuited, apply 2.5 mA at Port 1. Measure the volt-
age at Port 1 and the current at Port 2:

.

Calculate the h parameters according to Eq. 18.14:

;

.

Now we use the terminated two-port equations to determine whether or not
it is safe to attach a 2 V(rms) source with a 100 internal impedance to
Port 1 and use this source together with the amplifier to drive a speaker
modeled as a 32 resistance with a power rating of 100 W. Here we find
the value of  from Table 18.2:

Calculate the power to the 32 speaker:

The amplifier would thus deliver 126 W to the speaker, which is rated at 
100 W, so it would be better to use a different amplifier or buy a more pow-
erful speaker.

 P = RI2
2 = (32)(1.98)2

= 126 W.

Æ

 = 1.98 A(rms)

 =

1500(2)

[1 + (0.05)(32)][500 + 100] - (1500)(10- 3)(32)

 I2 =

h21Vg

(1 + h22ZL)(h11 + Zg) - h12h21ZL
 

I2

Æ

Æ

 h22 =

I2

V2

2
I1 =0

=

2.5
50

= 50 mS h21 =

I2

I1

2
V2 =0

=

3.75
0.0025

= 1500;

 h12 =

V1

V2

2
I1 =0

=

0.05
50

= 10- 3 h11 =

V1

I1

2
V2 =0

=

1.25
0.0025

= 500 Æ;

I2 = 3.75 AV1 = 1.25 V;

I2 = 2.5 AV1 = 50 mV;
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Summary

• The two-port model is used to describe the performance
of a circuit in terms of the voltage and current at its
input and output ports. (See page 676.)

• The model is limited to circuits in which
• no independent sources are inside the circuit between

the ports;
• no energy is stored inside the circuit between the ports;
• the current into the port is equal to the current out of

the port; and
• no external connections exist between the input and

output ports.
(See page 676.)

• Two of the four terminal variables ( , , , ) are
independent; therefore, only two simultaneous equa-
tions involving the four variables are needed to describe
the circuit. (See page 678.)

• The six possible sets of simultaneous equations involv-
ing the four terminal variables are called the z-, y-, a-, b-,
h-, and g-parameter equations. See Eqs. 18.1–18.6. (See
page 678.)

• The parameter equations are written in the s domain.The
dc values of the parameters are obtained by setting 
and the sinusoidal steady-state values are obtained by
setting . (See page 678.)s = jv

s = 0,

I2V2I1V1

• Any set of parameters may be calculated or measured by
invoking appropriate short-circuit and open-circuit con-
ditions at the input and output ports. See Eqs. 18.7–18.15.
(See pages 679 and 680.)

• The relationships among the six sets of parameters are
given in Table 18.1. (See page 682.)

• A two-port circuit is reciprocal if the interchange of an
ideal voltage source at one port with an ideal ammeter
at the other port produces the same ammeter reading.
The effect of reciprocity on the two-port parameters is
given by Eqs. 18.28–18.33. (See page 685.)

• A reciprocal two-port circuit is symmetric if its ports
can be interchanged without disturbing the values of
the terminal currents and voltages. The added effect
of symmetry on the two-port parameters is given by
Eqs. 18.38–18.43. (See page 686)

• The performance of a two-port circuit connected to a
Thévenin equivalent source and a load is summarized by
the relationships given in Table 18.2. (See page 688.)

• Large networks can be divided into subnetworks by
means of interconnected two-port models. The cas-
cade connection was used in this chapter to illustrate
the analysis of interconnected two-port circuits. (See
page 692.)

Sections 18.1–18.2

18.1 Find the h and g parameters for the circuit in
Example 18.1.

18.2 Find the z parameters for the circuit in Fig. P18.2.

Figure P18.2

18.3 Use the results obtained in Problem 18.2 to calcu-
late the y parameters for the circuit in Fig. P18.2.

18.4 Find the y parameters for the circuit shown in
Fig. P18.4.

4 �1 �

12 �

I1

V1 V2

I2

�

�

�

�

Figure P18.4

18.5 Find the b parameters for the circuit shown in
Fig. P18.5.

Figure P18.5
I1 I25 �

20 �

10 �

15 �
V1

�

�

V2

�

�

I1

V1 V2

I220 � 4 �

8 �

10 �

�

�

�

�

Problems



18.6 Find the h parameters for the circuit in Fig. P18.6.

Figure P18.6

18.7 Select the values of and in the circuit 
in Fig. P18.7 so that 

and 

Figure P18.7

18.8 The operational amplifier in the circuit shown
in Fig. P18.8 is ideal. Find the h parameters of 
the circuit.

Figure P18.8

18.9 Find the g parameters for the operational amplifier
circuit shown in Fig. P18.9.

Figure P18.9

�
�

V1

I1 I2

�

�

Vs

�

�

25 � 13 Vs V2

�

�

100 �

5 � 50 �

�

� �

�

V2

�

�

V1

I1

400 �

1000 �1200 �

500 �

200 �
�VCC

�VCC
I2

� �

R1

R2 R3

I1

V1 V2

I2

� �

h22 = 0.14 S.h21 = -0.8,
h12 = 0.8,h11 = 4 Æ,

R3R1, R2,

20 �10 �

80 � 20 � 80 �

I1

V1 V2

I2

�

�

�

�

18.10 Find the a parameters for the circuit in Fig. P18.10.

Figure P18.10

18.11 Use the results obtained in Problem 18.10 to calcu-
late the g parameters of the circuit in Fig. P18.10.

18.12 Find the h parameters of the two-port circuit shown
in Fig. P18.12.

Figure P18.12

18.13 The following direct-current measurements were
made on the two-port network shown in
Fig. P18.13.

Port 2 Open Port 2 Short-Circuited

Calculate the g parameters for the network.

Figure P18.13

18.14 a) Use the measurements given in Problem 18.13
to find the y parameters for the network.

b) Check your calculations by finding the
y parameters directly from the g parameters
found in Problem 18.4.

18.15 Derive the expressions for the g parameters as
functions of the h parameters.

V1

I1 I2

�

�

V2g
�

�

V1 = 10 VI1 = 0.25 mA

I2 = 50 mAV2 = -5 V

I1 = 200 mAV1 = 20 mV

�
�

10 � 200 �j 20 �

�j 100 �50 I2V1

I1 I2

�

�

V2

�

�

�
�

1 k�

40 k�10�4 V2 50 I1

I1

V1 V2

I2

� �

��
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18.16 Derive the expressions for the h parameters as
functions of the a parameters.

18.17 Derive the expressions for the y parameters as
functions of the g parameters.

18.18 Find the s-domain expressions for the z parameters
of the two-port circuit shown in Fig. P18.18.

Figure P18.18

18.19 Find the s-domain expressions for the y parameters
of the two-port circuit shown in Fig. P18.19.

Figure P18.19

18.20 a) Use the defining equations to find the s-domain
expressions for the a parameters for the circuit
in Fig. P18.20.

b) Show that the results obtained in (a) agree with
the a-parameter relationships for a reciprocal
symmetric network.

Figure P18.20

18.21 Find the frequency-domain values of the a
parameters for the two-port circuit shown in 
Fig. P18.21.

R R

L

M

L

i1 i2

v2

�

�

v1

�

�

1 H

1 F

1 � 1 �
i1

v1

�

�

v2

�

�

i2

0.5 F

10 �

i1

v1

�

�

v2

�

�

i20.2 H

18.22 Find the h parameters for the two-port circuit
shown in Fig. P18.21.

18.23 Is the two-port circuit shown in Fig. P18.23 sym-
metric? Justify your answer.

Figure P18.23

Section 18.3

18.24 Derive the expression for the voltage gain 
of the circuit in Fig. 18.7 in terms of the 
a parameters.

18.25 Derive the expression for the input admittance
of the circuit in Fig. 18.7 in terms of

the y parameters.

18.26 Derive the expression for the current gain 
of the circuit in Fig. 18.7 in terms of the 
h parameters.

18.27 Find the Thévenin equivalent circuit with respect
to port 2 of the circuit in Fig. 18.7 in terms of the
g parameters.

18.28 Derive the expression for the voltage gain 
of the circuit in Fig. 18.7 in terms of the b
parameters.

18.29 The following dc measurements were made on the
resistive network shown in Fig. P18.29.

Measurement 1 Measurement 2

A variable resistor is connected across port
2 and adjusted for maximum power transfer to 
Find the maximum power.

Ro.
Ro

I2 = 5 mA I2 = 0 A

V2 = 200 V V2 = 200 V

I1 = -25 mA I1 = 100 mA

V1 = 0 V V1 = 0.1 V

V2>Vg

I2>I1

(Yin = I1>V1)

V2>V1

Za

Zc

Zb

Zb

I1

V1

�

�

V2

�

�

I2

V1

I1 I2

�

�

20 �

�
�

100 �

�j 50 �
5 V2

V2

�

�

40 �
V1
40

Figure P18.21



Figure P18.29

18.30 The g parameters for the two-port circuit in
Fig. P18.30 are

The load impedance is adjusted for maximum
average power transfer to The ideal voltage
source is generating a sinusoidal voltage of

a) Find the rms value of 

b) Find the average power delivered to 

c) What percentage of the average power developed
by the ideal voltage source is delivered by ?

Figure P18.30

18.31 The y parameters for the two-port amplifier circuit
in Fig. P18.31 are

The internal impedance of the source is 
and the load impedance is . The ideal
voltage source is generating a voltage

vg = 8012 cos 4000t mV.

70,000 + j0 Æ
2500 + j0 Æ,

 y21 = 100 mS;  y22 = -50 mS.

 y11 = 2 mS;   y12 = -2 mS;

�

�

6 �

�

�

V1Vg

�

�

V2

g11 g12

g21 g22
ZL

ZL

ZL.

V2.

vg = 4212 cos 5000t V.

ZL.
ZL

 g21 = 0.5 - j0.5;  g22 = 1.5 + j2.5 Æ.

 g11 =

1
6

- j
1
6

 S;   g12 = -0.5 + j0.5;

�

�

1 k�

Resistive
network

4.5 mV

I1

Ro

�

�

V2

�

�

V1

I2

a) Find the rms value of 

b) Find the average power delivered to 

c) Find the average power developed by the ideal
voltage source.

Figure P18.31

18.32 For the terminated two-port amplifier circuit in
Fig. P18.31, find

a) the value of for maximum average power
transfer to 

b) the maximum average power delivered to 

c) the average power developed by the ideal voltage
source when maximum power is delivered to 

18.33 The b parameters of the amplifier in the circuit
shown in Fig. P18.33 are

Find the ratio of the output power to that supplied
by the ideal voltage source.

Figure P18.33

18.34 The linear transformer in the circuit shown in
Fig. P18.34 has a coefficient of coupling of 0.75. The
transformer is driven by a sinusoidal voltage source
whose internal voltage is The
internal impedance of the source is 5 + j0 Æ.

vg = 80 cos 400t V.

�

�

20 �

I1

Amplifier 100 �

�

�

V1

�

�

V2

I2

120  0� V
(rms)

 b21 = -1.25 S;    b22 = -40.

 b11 = 25;     b12 = 1 kÆ;

ZL.

ZL

ZL

ZL

�

�
Vg

�

�

V2

y11 y12

y21 y22
ZL

Zg

ZL.

V2.

�

�
25 mH

5 � 10 � 80 �0.75
k

200 �400 mH

�

�

v1

�

�

v2vg

Figure P18.34
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a) Find the frequency-domain a parameters of the
linear transformer.

b) Use the a parameters to derive the Thévenin
equivalent circuit with respect to the terminals
of the load.

c) Derive the steady-state time-domain expression
for 

18.35 The following measurements were made on a resis-
tive two-port network:

Condition 1 – create a short circuit at port 2 and
apply 20 V to port 1:
Measurements: ; .
Condition 2 – create an open circuit at port 1 and
apply 80 V to port 2:
Measurements: ; .

Find the maximum power that this two-port circuit
can deliver to a resistive load at port 2 when port 1
is driven by a 4 A dc current source with an internal
resistance of .

18.36 a) Find the y parameters for the two-port network
in Fig. P18.36.

b) Find for when 

Figure P18.36

18.37 a) Find the s-domain expressions for the g parame-
ters of the circuit in Fig. P18.37.

b) Port 2 in Fig. P18.37 is terminated in a resistance
of and port 1 is driven by a step voltage
source Find for if

and 

Figure P18.37

sL

1/sC 1/sC

I1 I2

�

V1

�

�

V2

�

L = 50 mH.C = 32 nF
t 7 0v2(t)v1(t) = 4u(t) V.

500 Æ,

�

�

1 �

1 �

s � s �

1/s �

I1 I2

Vg V1

�

�

V2

�

�

vg = 10e-2tu(t) V.t 7 0v2

60 Æ

I2 = 3 AV1 = 400 V

I2 = -1 AI1 = 1 A

v2.

Section 18.4

18.38 The z and y parameters for the resistive two-ports
in Fig. P18.38 are given by

Calculate if .

Figure P18.38

18.39 The h parameters of the first two-port circuit in
Fig. P18.39(a) are

The circuit in the second two-port circuit is shown
in Fig. P18.39(b), where Find if

.

Figure P18.39

�

�

R

RR

R

[ h ]

R � 72 k�

72 k�vg

800 �

vo

�

�

a

b 1

(a)

(b)

c

d

c

c

d

e

f

d 2

e

f

vg = 9 mV dc
voR = 72 kÆ.

 h21 = 40;       h22 = 25 mS.

 h11 = 1000 Æ;     h12 = 5 * 10-4;

�

�
[ z ] 15 k�vg [ y ]

10 �

v0

�

�

vg = 30 mV dcvo

 z22 =

10
3

 kÆ;    y22 = 40 mS;

 z21 =

4
3

 kÆ;   y21 = -800 mS

 z12 = -

100
3

 Æ;  y12 = 40 mS;

 z11 =

35
3

 Æ;   y11 = 200 mS;



18.43 a) Show that the circuit in Fig. P18.43 is also an
equivalent circuit satisfied by the z-parameter
equations.

b) Assume that the equivalent circuit in Fig. P18.43
is terminated in an impedance of ohms at
port 2. Find the input impedance Check
your results against the appropriate entry in
Table 18.2.

Figure P18.43

18.44 a) Derive two equivalent circuits that are satisfied
by the y-parameter equations. Hint: Start with
Eqs. 18.2. Add and subtract to the first
equation of the set. Construct a circuit that satis-
fies the resulting set of equations, by thinking in
terms of node voltages. Derive an alternative
equivalent circuit by first altering the second
equation in Eq. 18.2.

b) Assume that port 1 is driven by a voltage source
having an internal impedance and port 2 is
loaded with an impedance Find the current
gain Check your results against the appro-
priate entry in Table 18.2.

18.45 a) Derive the equivalent circuit satisfied by the 
g-parameter equations.

b) Use the g-parameter equivalent circuit derived
in part (a) to solve for the output voltage 
in Problem 18.39. Hint: Use Problem 3.67 to 
simplify the second two-port circuit in
Problem 18.39.

18.46 a) What conditions and measurements will allow
you to calculate the b parameters for the “black
box” amplifier described in the Practical
Perspective?

b) What measurements will be made if the result-
ing b parameters are equivalent to the h param-
eters calculated in the Practical Perspective?

18.47 Repeat Problem 18.46 for the y parameters.

I2>I1.
ZL.

Zg ,

y21V2

� �

I1(z21 � z12)

I1

�

�

V2

�

�

V1

z22 � z12z11 � z12

I2

z12

V1>I1.
ZL

18.40 The networks A and B in the circuit in Fig. P18.40
are reciprocal and symmetric. For network A, it is
known that and 

a) Find the a parameters of network B.

b) Find when ,

, and .

Sections 18.1–18.4

18.41 a) Show that the circuit in Fig. P18.41 is an equiva-
lent circuit satisfied by the h-parameter equations.

b) Use the h-parameter equivalent circuit of (a) to
find the voltage gain in the circuit in
Fig. 18.11.

Figure P18.41

18.42 a) Show that the circuit in Fig. P18.42 is an equiva-
lent circuit satisfied by the z-parameter equations.

b) Assume that the equivalent circuit in Fig. P18.42
is driven by a voltage source having an internal
impedance of ohms. Calculate the Thévenin
equivalent circuit with respect to port 2. Check
your results against the appropriate entries in
Table 18.2.

Figure P18.42

z21

� �

I2(z12 � z21)

I1

�

�

V1

�

�

V2

z11 � z21 z22 � z21

I2

Zg

�

�

h11 �
I1

�

�

V1

�

�

V2h21I1h12V2

I2

1
h22S

V2>Vg

ZL = 10l0 �  ÆZg = 1l0 �  Æ

Vg = 75l0 �  VV2

aœ

12 = 24 Æ.aœ

11 = 5

�

�

5 � j 15 � 5 �

BA

j 15 �j 5 �

Vg [a�]V1

�

�

V2

�

�

�j 10 � ZL

Zg

Figure P18.40
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703

Circuit analysis frequently involves the solution of linear simultaneous
equations. Our purpose here is to review the use of determinants to solve
such a set of equations.The theory of determinants (with applications) can
be found in most intermediate-level algebra texts. (A particularly good
reference for engineering students is Chapter 1 of E.A. Guillemin’s The
Mathematics of Circuit Analysis [New York: Wiley, 1949]. In our review
here, we will limit our discussion to the mechanics of solving simultaneous
equations with determinants.

A.1 Preliminary Steps
The first step in solving a set of simultaneous equations by determinants is
to write the equations in a rectangular (square) format. In other words, we
arrange the equations in a vertical stack such that each variable occupies
the same horizontal position in every equation. For example, in Eqs. A.1,
the variables , , and occupy the first, second, and third position,
respectively, on the left-hand side of each equation:

(A.1)

Alternatively, one can describe this set of equations by saying that 
occupies the first column in the array, the second column, and the
third column.

If one or more variables are missing from a given equation, they can
be inserted by simply making their coefficient zero. Thus Eqs. A.2 can be
“squared up” as shown by Eqs. A.3:

(A.2)

(A.3)

 7v1 + 0v2 + 2v3 = 5.

 0v1 + 4v2 + 3v3 = 16,

 2v1 - v2 + 0v3 = 4,

 7v1 + 2v3 = 5;

 4v2 + 3v3 = 16,

 2v1 - v2 = 4,

i3i2

i1

 -8i1 - 4i2 + 22i3 = 50.

 -3i1 + 6i2 - 2i3 = 3,

 21i1 - 9i2 - 12i3 = -33,

i3i2i1

The Solution of Linear
Simultaneous EquationsAAppendix
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A.2 Cramer’s Method
The value of each unknown variable in the set of equations is expressed as
the ratio of two determinants. If we let N, with an appropriate subscript,
represent the numerator determinant and represent the denominator
determinant, then the kth unknown is

(A.4)

The denominator determinant is the same for every unknown variable
and is called the characteristic determinant of the set of equations. The
numerator determinant varies with each unknown. Equation A.4 is
referred to as Cramer’s method for solving simultaneous equations.

A.3 The Characteristic Determinant
Once we have organized the set of simultaneous equations into an
ordered array, as illustrated by Eqs. A.1 and A.3, it is a simple matter to
form the characteristic determinant. This determinant is the square array
made up from the coefficients of the unknown variables. For example, the
characteristic determinants of Eqs. A.1 and A.3 are

(A.5)

and

(A.6)

respectively.

A.4 The Numerator Determinant
The numerator determinant is formed from the characteristic determi-
nant by replacing the kth column in the characteristic determinant with
the column of values appearing on the right-hand side of the equations.
For example, the numerator determinants for evaluating , , and in
Eqs. A.1 are

(A.7) N1 = 3
-33 -9 -12

3 6 -2
50 - 4 22

3 ,

i3i2i1

Nk

¢ = 3
2 -1 0
0 4 3
7 0 2

3 ,

¢ = 3
21 -9 -12
-3 6 -2
-8 -4 22

3

Nk

¢

xk =

Nk

¢

 .

xk

¢
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(A.8)

and

(A.9)

The numerator determinants for the evaluation of , , and in
Eqs. A.3 are

(A.10)

(A.11)

and

(A.12)

A.5 The Evaluation of a Determinant
The value of a determinant is found by expanding it in terms of its minors.
The minor of any element in a determinant is the determinant that
remains after the row and column occupied by the element have been
deleted. For example, the minor of the element 6 in Eq. A.7 is

while the minor of the element 22 in Eq. A.7 is

The cofactor of an element is its minor multiplied by the sign-
controlling factor

where i and j denote the row and column, respectively, occupied by the
element. Thus the cofactor of the element 6 in Eq. A.7 is

-1(2 +2) 2 -33 -12
50 22

2 ,

-1(i+ j),

2 -33 -9
3 6

2 .

2 -33 -12
50 22

2 ,

 N3 = 3
2 - 1 4
0 4 16
7 0 5

3 .

 N2 = 3
2 4 0
0 16 3
7 5 2

3 ,

 N1 = 3
4 -1 0

16 4 3
5 0 2

3 ,

v3v2v1

 N3 = 3
21 -9 -33
-3 6 3
-8 -4 50

3 .

 N2 = 3
21 -33 -12
-3 3 -2
-8 50 22

3 ,
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and the cofactor of the element 22 is

The cofactor of an element is also referred to as its signed minor.
The sign-controlling factor will equal or depending on

whether is an even or odd integer. Thus the algebraic sign of a cofac-
tor alternates between and as we move along a row or column. For
a 3 determinant, the plus and minus signs form the checkerboard pat-
tern illustrated here:

A determinant can be expanded along any row or column. Thus the first
step in making an expansion is to select a row i or a column j. Once a row
or column has been selected, each element in that row or column is multi-
plied by its signed minor, or cofactor. The value of the determinant is the
sum of these products. As an example, let us evaluate the determinant in
Eq. A.5 by expanding it along its first column. Following the rules just
explained, we write the expansion as

(A.13)

The determinants in Eq. A.13 can also be expanded by minors.
The minor of an element in a determinant is a single element. It fol-
lows that the expansion reduces to multiplying the upper-left element by
the lower-right element and then subtracting from this product the product
of the lower-left element times the upper-right element. Using this obser-
vation, we evaluate Eq. A.13 to

(A.14)

Had we elected to expand the determinant along the second row of ele-
ments, we would have written

(A.15)

The numerical values of the determinants , , and given by
Eqs. A.7, A.8, and A.9 are

(A.16) N1 = 1146,

N3N2N1

 = -738 + 2196 - 312 = 1146.

 = 3(-198 - 48) + 6(462 - 96) + 2(-84 - 72)

 ¢ = -3(-1) 2 -9 -12
-4 22

2 +6(+1) 2 21 -12
-8 22

2 -2(-1) 2 21 -9
-8 -4

2

 = 2604 - 738 - 720 = 1146.

 ¢ = 21(132 - 8) + 3(-198 - 48) - 8(18 + 72)

2 * 2
2 * 2

¢ = 21(1) 2 6 -2
-4 22

2 - 3(-1) 2 -9 -12
-4 22

2 - 8(1) 2 -9 -12
6 -2

2

3 + - +

- + -

+ - +

3

* 3
-1+1

i + j
-1+1-1(i+ j)

-1(3 +3) 2 -33 -9
3 6

2 .
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(A.17)

and

(A.18)

It follows from Eqs.A.15 through A.18 that the solutions for , , and in
Eq. A.1 are

(A.19)

and

We leave you to verify that the solutions for , , and in Eqs. A.3 are

(A.20)

and

A.6 Matrices
A system of simultaneous linear equations can also be solved using
matrices. In what follows, we briefly review matrix notation, algebra, and
terminology.1

A matrix is by definition a rectangular array of elements; thus

(A.21)

is a matrix with m rows and n columns.We describe A as being a matrix of
order m by n, or , where m equals the number of rows and n them * n

A = D
a11 a12 a13

Á a1n

a21 a22 a23
Á a2n

Á Á Á Á Á

am1 am2 am3
Á amn

T

 v3 =

-184
-5

= 36.8 V.

 v2 =

118
-5

= -23.6 V,

 v1 =

49
-5

= -9.8 V,

v3v2v1

 i3 =

N3

¢

= 3 A.

 i2 =

N2

¢

= 2 A,

 i1 =

N1

¢

= 1 A,

i3i2i1

 N3 = 3438.

 N2 = 2292,

1 An excellent introductory-level text in matrix applications to circuit analysis is Lawrence P.
Huelsman, Circuits, Matrices, and Linear Vector Spaces (New York: McGraw-Hill, 1963).
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number of columns. We always specify the rows first and the columns sec-
ond. The elements of the matrix— —can be real numbers,
complex numbers, or functions. We denote a matrix with a boldface capi-
tal letter.

The array in Eq. A.21 is frequently abbreviated by writing

(A.22)

where is the element in the i th row and the jth column.
If , A is called a row matrix, that is,

(A.23)

If , A is called a column matrix, that is,

(A.24)

If , A is called a square matrix. For example, if , the
square 3 by 3 matrix is

(A.25)

Also note that we use brackets to denote a matrix, whereas we use
vertical lines to denote a determinant. It is important to know the differ-
ence. A matrix is a rectangular array of elements. A determinant is a func-
tion of a square array of elements. Thus if a matrix A is square, we can
define the determinant of A. For example, if

then

A.7 Matrix Algebra
The equality, addition, and subtraction of matrices apply only to matrices
of the same order. Two matrices are equal if, and only if, their correspon-
ding elements are equal. In other words, if, and only if, for
all i and j. For example, the two matrices in Eqs. A.26 and A.27 are equal
because , , , and :

(A.26) A = c36 -20
4 16

d ,

a22 = b22a21 = b21a12 = b12a11 = b11

aij =  bijA = B

det A = 2 2 1
6 15

2 = 30 - 6 = 24.

A = c2 1
6 15

d ,

ƒ ƒ

[  ]

A = C
a11 a12 a13

a21 a22 a23

a31 a32 a33

S .

m = n = 3m = n

A = E
a11

a21

a31

o

am1

U .

n = 1

A = [a11 a12 a13
Á a1n].

m = 1
aij

A = [aij]mn ,

a11, a12, a13, . . .
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(A.27)

If A and B are of the same order, then

(A.28)

implies

(A.29)

For example, if

(A.30)

and

(A.31)

then

(A.32)

The equation

(A.33)

implies

(A.34)

For the matrices in Eqs. A.30 and A.31, we would have

(A.35)

Matrices of the same order are said to be conformable for addition and
subtraction.

Multiplying a matrix by a scalar k is equivalent to multiplying each
element by the scalar. Thus if, and only if, . It should be
noted that k may be real or complex. As an example, we will multiply the
matrix D in Eq. A.35 by 5. The result is

(A.36)

Matrix multiplication can be performed only if the number of
columns in the first matrix is equal to the number of rows in the second
matrix. In other words, the product AB requires the number of columns in
A to equal the number of rows in B. The order of the resulting matrix will

5D = c -60 -80 200
140 20 -95

d .

aij = kbijA = kB

D = c -12 -16 40
28 4 -19

d .

dij = aij - bij.

D = A - B

C = c 20 4 -20
-12 20 11

d .

B = c 16 10 -30
-20 8 15

d ,

A = c4 -6 10
8 12 -4

d ,

cij = aij + bij   .

C = A + B

 B = c36 -20
4 16

d .
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be the number of rows in A by the number of columns in B. Thus if
, where A is of order and B is of order , then will

be a matrix of order . When the number of columns in A equals the
number of rows in B, we say A is conformable to B for multiplication.

An element in is given by the formula

(A.37)

The formula given by Eq. A.37 is easy to use if one remembers that
matrix multiplication is a row-by-column operation. Hence to get the i th,
j th term in , each element in the ith row of A is multiplied by the corre-
sponding element in the jth column of B, and the resulting products are
summed.The following example illustrates the procedure.We are asked to
find the matrix when

(A.38)

and

(A.39)

First we note that will be a matrix and that each element in 
will require summing three products.

To find we multiply the corresponding elements in row 1 of matrix A
with the elements in column 1 of matrix B and then sum the products. We
can visualize this multiplication and summing process by extracting the
corresponding row and column from each matrix and then lining them up
element by element. So to find we have

therefore

To find we visualize

thus

For we have

Row 2 of A
Column 1 of B

 
 1 
 4 � 4 

 0 � 6 
 1 

 ;

C21

C12 = 6 * 2 + 3 * 3 + 2 * (-2) = 17.

Row 1 of A
Column 2 of B

 
 6 
 2 � 3 

 3 �  2 
 -2 

 ;

C12

C11 = 6 * 4 + 3 * 0 + 2 * 1 = 26.

Row 1 of A
Column 1 of B

 
 6 
 4 � 3 

 0 � 2 
 1 

 ;

C11

C11

C2 * 2C

 B = C
4 2
0 3
1 -2

S .

 A = c6 3 2
1 4 6

d

C

C

cij = a
p

k = 1
aikbkj   .

C

m * n
Cp * nm * pC = AB
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and

Finally, for we have

from which

It follows that

(A.40)

In general, matrix multiplication is not commutative, that is,
. As an example, consider the product for the matrices in

Eqs.A.38 and A.39.The matrix generated by this multiplication is of order
, and each term in the resulting matrix requires adding two products.

Therefore if , we have

(A.41)

Obviously, . We leave you to verify the elements in Eq. A.41.
Matrix multiplication is associative and distributive. Thus

(A.42)

(A.43)

and

(A.44)

In Eqs.A.42,A.43, and A.44, we assume that the matrices are conformable
for addition and multiplication.

We have already noted that matrix multiplication is not commutative.
There are two other properties of multiplication in scalar algebra that do
not carry over to matrix algebra.

First, the matrix product does not imply either or
. (Note: A matrix is equal to zero when all its elements are zero.) For

example, if

then

AB = c0 0
0 0
d = 0.

A = c1 0
2 0
d and B = c0 0

4 8
d ,

B = 0
A = 0AB = 0

 (A + B)C = AC + BC.

 A(B + C) = AB + AC,

 (AB)C = A(BC),

C Z D

 D = C
26 20 20
3 12 18
4 -5 -10

S .

D = BA
3 * 3

BAAB Z BA

 C = AB = B26 17
10 2

R .

C22 = 1 * 2 + 4 * 3 + 6 * (-2) = 2.

Row 2 of A
Column 2 of B

 
 1 
 2 � 4 

 3 �  6  
 -2  

 ;

C22

C21 = 1 * 4 + 4 * 0 + 6 * 1 = 10.
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Hence the product is zero, but neither A nor B is zero.
Second, the matrix equation does not imply . For

example, if

then

The transpose of a matrix is formed by interchanging the rows and
columns. For example, if

The transpose of the sum of two matrices is equal to the sum of the
transposes, that is,

(A.45)

The transpose of the product of two matrices is equal to the product
of the transposes taken in reverse order. In other words,

(A.46)

Equation A.46 can be extended to a product of any number of matri-
ces. For example,

(A.47)

If , the matrix is said to be symmetric. Only square matrices
can be symmetric.

A.8 Identity, Adjoint, and
Inverse Matrices

An identity matrix is a square matrix where for , and 
for . In other words, all the elements in an identity matrix are zero
except those along the main diagonal, where they are equal to 1. Thus

c1 0
0 1

d , C
1 0 0
0 1 0
0 0 1

S , and D
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T

i = j
aij = 1i Z jaij = 0

A = AT

[ABCD]T
= DTCTBTAT.

[AB]T
= BTAT.

 (A + B)T
= AT

+ BT.

A = C
1 2 3
4 5 6
7 8 9

S , then AT
= C

1 4 7
2 5 8
3 6 9

S .

AB = AC = c3 4
6 8
d , but B Z C.

A = c1 0
2 0
d ,  B = c3 4

7 8
d , and C = c3 4

5 6
d ,

B = CAB = AC
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are all identity matrices. Note that identity matrices are always square. We
will use the symbol for an identity matrix.

The adjoint of a matrix A of order is defined as

(A.48)

where is the cofactor of . (See Section A.5 for the definition of a
cofactor.) It follows from Eq. A.48 that one can think of finding the
adjoint of a square matrix as a two-step process. First construct a matrix
made up of the cofactors of A, and then transpose the matrix of cofactors.
As an example we will find the adjoint of the matrix

The cofactors of the elements in A are

The matrix of cofactors is

It follows that the adjoint of A is

One can check the arithmetic of finding the adjoint of a matrix by
using the theorem

(A.49)

Equation A.49 tells us that the adjoint of A times A equals the determi-
nant of A times the identity matrix, or for our example,

det A = 1(9) + 3(-7) - 1(-4) = -8.

adj A # A = det A # U.

adj A = BT
= C

9 -7 -4
-16 8 8

5 -3 -4
S .

B = C
9 -16 5

-7 8 -3
-4 8 -4

S .

¢11 = 1(10 - 1) = 9,
¢12 = -1(15 + 1) = -16,
¢13 = 1(3 + 2) = 5,
¢21 = -1(10 - 3) = -7,
¢22 = 1(5 + 3) = 8,
¢23 = -1(1 + 2) = -3,
¢31 = 1(2 - 6) = -4,
¢32 = -1(1 - 9) = 8,
¢33 = 1(2 - 6) = -4.

A = C
1 2 3
3 2 1

-1 1 5
S .

3 * 3

aij¢ij

adj A = [¢ji]n *n ,

n * n
U
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If we let and use the technique illustrated in Section A.7,
we find the elements of to be

Therefore

A square matrix A has an inverse, denoted as , if

(A.50)

Equation A.50 tells us that a matrix either premultiplied or postmultiplied
by its inverse generates the identity matrix . For the inverse matrix to
exist, it is necessary that the determinant of A not equal zero. Only square
matrices have inverses, and the inverse is also square.

A formula for finding the inverse of a matrix is

(A.51)

The formula in Eq. A.51 becomes very cumbersome if A is of an order
larger than 3 by 3.2 Today the digital computer eliminates the drudgery
of having to find the inverse of a matrix in numerical applications of
matrix algebra.

It follows from Eq. A.51 that the inverse of the matrix A in the previ-
ous example is

You should verify that .A-1A = AA-1
= U

 = C
-1.125 0.875 0.5

2 -1 -1
-0.625 0.375 0.5

S .

 A-1
= -1>8C

9 -7 -4
-16 8 8

5 -3 -4
S

A-1
=

adj A
det A

 .

U

A-1A = AA-1
= U.

A-1

 = det A # U.

 C = C
-8 0 0

0 -8 0
0 0 -8

S = -8C
1 0 0
0 1 0
0 0 1

S

c11 = 9 - 21 + 4 = -8,
c12 = 18 - 14 - 4 = 0,
c13 = 27 - 7 - 20 = 0,
c21 = -16 + 24 - 8 = 0,
c22 = -32 + 16 + 8 = -8,
c23 = -48 + 8 + 40 = 0,
c31 = 5 - 9 + 4 = 0,
c32 = 10 - 6 - 4 = 0,
c33 = 15 - 3 - 20 = -8.

C
C = adj A # A

2 You can learn alternative methods for finding the inverse in any introductory text on 
matrix theory. See, for example, Franz E. Hohn, Elementary Matrix Algebra (New York:
Macmillan, 1973).
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A.9 Partitioned Matrices
It is often convenient in matrix manipulations to partition a given matrix
into submatrices. The original algebraic operations are then carried out in
terms of the submatrices. In partitioning a matrix, the placement of the
partitions is completely arbitrary, with the one restriction that a partition
must dissect the entire matrix. In selecting the partitions, it is also neces-
sary to make sure the submatrices are conformable to the mathematical
operations in which they are involved.

For example, consider using submatrices to find the product
, where

and

Assume that we decide to partition B into two submatrices, and 
; thus

Now since B has been partitioned into a two-row column matrix, A must be
partitioned into at least a two-column matrix; otherwise the multiplication
cannot be performed.The location of the vertical partitions of the A matrix
will depend on the definitions of and . For example, if

then must contain three columns, and must contain two columns.
Thus the partitioning shown in Eq. A.52 would be acceptable for execut-
ing the product AB:

(A.52)C = E
1 2 3 | 4 5
5 4 3 | 2 1

-1 0 2 | -3 1
0 1 -1 | 0 1
0 2 1 | -2 0

U  F

2
0

-1
Á

3
0

V .

A12A11

B11 = C
2
0

-1
S and B21 = c3

0
d ,

B21B11

B = cB11

B21
d .

B21

B11

B = E
2
0

-1
3
0

U .

A = E
1 2 3 4 5
5 4 3 2 1

-1 0 2 -3 1
0 1 -1 0 1
0 2 1 -2 0

U

C = AB
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If, on the other hand, we partition the B matrix so that

then must contain two columns, and must contain three columns.
In this case the partitioning shown in Eq.A.53 would be acceptable in exe-
cuting the product :

(A.53)

For purposes of discussion, we will focus on the partitioning given in
Eq. A.52 and leave you to verify that the partitioning in Eq. A.53 leads to
the same result.

From Eq. A.52 we can write

(A.54)

It follows from Eqs. A.52 and A.54 that

and

The A matrix could also be partitioned horizontally once the vertical
partitioning is made consistent with the multiplication operation. In this
simple problem, the horizontal partitions can be made at the discretion of

C = E
11
13

-13
1

-7

U .

 A12B21 = E
4 5
2 1

-3 1
0 1

-2 0

U  c3
0
d = E

12
6

-9
0

-6

U ,

 A11B11 = E
1 2 3
5 4 3

-1 0 2
0 1 -1
0 2 1

U  C
2
0

-1
S = E

-1
7

-4
1

-1

U ,

C = [A11 A12] cB11

B21
d = A11B11 + A12B21.

C = E
1 2 | 3 4 5
5 4 | 3 2 1

-1 0 | 2 -3 1
0 1 | -1 0 1
0 2 | 1 -2 0

U  F

2
0

Á

-1
3
0

V .

C = AB

A12A11

B11 = c2
0
d and B21 = C

-1
3
0
S ,
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the analyst. Therefore could also be evaluated using the partitioning
shown in Eq. A.55:

(A.55)

From Eq. A.55 it follows that

(A.56)

where

You should verify that

and

We note in passing that the partitioning in Eqs. A.52 and A.55 is
conformable with respect to addition.

C = E
11
13

-13
1

-7

U .

 = C
-4

1
-1
S + C

-9
0

-6
S = C

-13
1

-7
S ,

 C21 = C
-1 0 2

0 1 -1
0 2 1

S  C
2
0

-1
S + C

-3 1
0 1

-2 0
S  c3

0
d

 = c -1
7
d + c12

6
d = c11

13
d ,

 C11 = c1 2 3
5 4 3

d  C
2
0

-1
S + c4 5

2 1
d  c3

0
d

C11 = A11B11 + A12B21,
C21 = A21B11 + A22B21.

C = cA11 A12

A21 A22
d  cB11

B21
d = cC11

C21
d ,

C = F

1 2 3 | 4 5
5 4 3 | 2 1

Á Á Á Á Á Á

-1 0 2 | -3 1
0 1 -1 | 0 1
0 2 1 | -2 0

V  F  

2
0

-1
Á

3
0

V .

C
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Use the matrix method to solve for the node volt-
ages and in Eqs. 4.5 and 4.6.

Solution
The first step is to rewrite Eqs. 4.5 and 4.6 in matrix
notation. Collecting the coefficients of and 
and at the same time shifting the constant terms to
the right-hand side of the equations gives us

(A.57)

It follows that in matrix notation, Eq.A.57 becomes

(A.58)

or

(A.59)

where

To find the elements of the matrix, we pre-
multiply both sides of Eq. A.59 by the inverse of
A; thus

(A.60)

Equation A.60 reduces to

(A.61)

or

(A.62)V = A-1I.

UV = A-1I,

A-1AV = A-1I.

V

 I = c10
2
d .

 V = cv1

v2
d ,

 A = c 1.7 -0.5
-0.5 0.6

d ,

AV = I,

c 1.7 -0.5
-0.5 0.6

d  cv1

v2
d = c10

2
d ,

 -0.5v1 + 0.6v2 = 2.

 1.7v1 - 0.5v2 = 10,

v2v1

v2v1

It follows from Eq. A.62 that the solutions for
and are obtained by solving for the matrix

product .
To find the inverse of A, we first find the

cofactors of A. Thus

(A.63)

The matrix of cofactors is

(A.64)

and the adjoint of A is

(A.65)

The determinant of A is

adj A = BT
= c0.6 0.5

0.5 1.7
d .

B = c0.6 0.5
0.5 1.7

d ,

¢11 = (-1)2(0.6) = 0.6,
¢12 = (-1)3(-0.5) = 0.5,
¢21 = (-1)3(-0.5) = 0.5,
¢22 = (-1)4(1.7) = 1.7.

A-1I
v2v1

Example A.1

A.10 Applications
The following examples demonstrate some applications of matrix algebra
in circuit analysis.

det A = 2 1.7 -0.5
-0.5 0.6

2 = (1.7)(0.6) - (0.25) = 0.77.

(A.66)

From Eqs. A.65 and A.66, we can write the inverse
of the coefficient matrix, that is,

(A.67)

Now the product is found:

(A.68)

It follows directly that

(A.69)

or and v2 = 10.91 V.v1 = 9.09 V

cv1

v2
d = c 9.09

10.91
d ,

 =

100
77
c 7
8.4
d = c 9.09

10.91
d .

 A-1I =

100
77

 c0.6 0.5
0.5 1.7

d  c10
2
d

A-1I

A-1
=

1
0.77

 c0.6 0.5
0.5 1.7

d .
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Use the matrix method to find the three mesh cur-
rents in the circuit in Fig. 4.24.

Solution
The mesh-current equations that describe the cir-
cuit in Fig. 4.24 are given in Eq. 4.34. The constraint
equation imposed by the current-controlled voltage
source is given in Eq. 4.35. When Eq. 4.35 is substi-
tuted into Eq. 4.34, the following set of
equations evolves:

(A.70)

In matrix notation, Eqs. A.70 reduce to

(A.71)

where

and

It follows from Eq.A.71 that the solution for is

(A.72)

We find the inverse of A by using the relationship

(A.73)

To find the adjoint of A, we first calculate the cofac-
tors of A. Thus

¢21 = (-1)3(-45 - 80) = 125,

¢13 = (-1)4(20 + 50) = 70,

¢12 = (-1)3(-45 - 20) = 65,

¢11 = (-1)2(90 - 16) = 74,

A-1
=

adj A
det A

 .

I = A-1V.

I

V = C
50
0
0
S .

 I = C
i1

i2

i3

S ,

 A = C
25 -5 -20
-5 10 -4
-5 -4 9

S ,

AI = V,

 -5i1 - 4i2 + 9i3 = 0.

 -5ii + 10i2 - 4i3 = 0,

 25ii - 5i2 - 20i3 = 50,

The cofactor matrix is

(A.74)

from which we can write the adjoint of A:

(A.75)adj A = BT
= C

74 125 220
65 125 200
70 125 225

S .

B = C
74 65 70

125 125 125
220 200 225

S ,

¢33 = (-1)6(250 - 25) = 225.

¢32 = (-1)5(-100 - 100) = 200,

¢31 = (-1)4(20 + 200) = 220,

¢23 = (-1)5(-100 - 25) = 125,

¢22 = (-1)4(225 - 100) = 125,

Example A.2

It follows from Eq. A.73 that

(A.76)

The solution for is

(A.77)

The mesh currents follow directly from Eq.A.77.Thus

(A.78)

or , , and .
Example A.3 illustrates the application of the
matrix method when the elements of the matrix are
complex numbers.

28 A=i326 A=i229.6 A=i1

C
ii

i2

i3

S = C
29.6
26.0
28.0
S

I =

1
125
C

74 125 220
65 125 200
70 125 225

S  C
50

0
0
S = C

29.60
26.00
28.00

S .

I

A-1
=

1
125
C

74 125 220
65 125 200
70 125 225

S .

The determinant of A is

 = 25(90 - 16) + 5(-45 - 80) - 5(20 + 200) = 125.

 det A = 3
25 -5 -20
-5 10 -4
-5 -4 9

3
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Use the matrix method to find the phasor mesh cur-
rents and in the circuit in Fig. 9.37.

Solution
Summing the voltages around mesh 1 generates
the equation

(A.79)

Summing the voltages around mesh 2 produces
the equation

(A.80)

The current controlling the dependent voltage
source is

(A.81)

After substituting Eq. A.81 into Eq. A.80, the
equations are put into a matrix format by first collect-
ing, in each equation, the coefficients of and ; thus

(A.82)

Now, using matrix notation, Eq. A.82 is written

(A.83)

where

It follows from Eq. A.83 that

(A.84)

The inverse of the coefficient matrix A is found
using Eq. A.73. In this case, the cofactors of A are

¢11 = (-1)2(-26 - j13) = -26 - j13,
¢12 = (-1)3(27 + j16) = -27 - j16,
¢21 = (-1)3(-12 + j16) = 12 - j16,
¢22 = (-1)4(13 - j14) = 13 - j14.

I = A-1V.

 I = cI1

I2
d , and V = c150l0 �

0
d .

 A = c13 - j14 -(12 - j16)
27 + j16 -(26 + j13)

d ,

AI = V,

(13 - j14)I1 - (12 - j16)I2 = 150l0 � ,
(27 + j16)I1 - (26 + j13)I2 = 0.

I2I1

Ix = (I1 - I2).

(12 - j16)(I2 - I1) + (1 + j3)I2 + 39Ix = 0.

(1 + j2)I1 + (12 - j16)(I1 - I2) = 150l0 � .

I2I1

The cofactor matrix B is

(A.85)

The adjoint of A is

(A.86)

The determinant of A is

adj A = BT
= c(-26 - j13) (12 - j16)

(-27 - j16) (13 - j14)
d .

B = c(-26 - j13) (-27 - j16)
(12 - j16) (13 - j14)

d .

Example A.3

In the first three examples, the matrix elements have been numbers—real
numbers in Examples A.1 and A.2, and complex numbers in Example A.3. It
is also possible for the elements to be functions. Example A.4 illustrates the
use of matrix algebra in a circuit problem where the elements in the coeffi-
cient matrix are functions.

(A.87) = 60 - j45.

 = -(13 - j14)(26 + j13) + (12 - j16)(27 + j16)

 det A = 2 (13 - j14) -(12 - j16)
(27 + j16) -(26 + j13)

2

The inverse of the coefficient matrix is

(A.88)

Equation A.88 can be simplified to

(A.89)

Substituting Eq. A.89 into A.84 gives us

(A.90)

It follows from Eq. A.90 that

(A.91)
I1 = (-26 - j52) = 58.14l -116.57 �  A,
I2 = (-24 - j58) = 62.77l -122.48 �  A.

 = c(-26 - j52)
(-24 - j58)

d .

 cI1

I2
d =

1
375
c(-65 - j130) (96 - j28)
(-60 - j145) (94 - j17)

d  c150l0 �

0
d

 =

1
375
c -65 - j130 96 - j28
-60 - j145 94 - j17

d .

 A-1
=

60 + j45
5625

c(-26 - j13) (12 - j16)
(-27 - j16) (13 - j14)

d

 A-1
=

c(-26 - j13) (12 - j16)
(-27 - j16) (13 - j14)

d
(60 - j45)

.
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Use the matrix method to derive expressions for
the node voltages and in the circuit in Fig. A.1.

Solution
Summing the currents away from nodes 1 and 2
generates the following set of equations:

(A.92)

Letting and collecting the coefficients of
and gives us

(A.93)

Writing Eq. A.93 in matrix notation yields

(A.94)

where

It follows from Eq. A.94 that

(A.95)

As before, we find the inverse of the coefficient
matrix by first finding the adjoint of A and the
determinant of A. The cofactors of A are

The cofactor matrix is

(A.96)

and therefore the adjoint of the coefficient matrix is

(A.97)adj A = BT
= cG + 2sC sC

sC G + 2sC
d .

B = cG + 2sC sC

sC G + 2sC
d ,

¢11 = (-1)2[G + 2sC] = G + 2sC,
¢12 = (-1)3(-sC) = sC,
¢21 = (-1)3(-sC) = sC,
¢22 = (-1)4[G + 2sC] = G + 2sC.

V = A-1I.

 V = cV1

V2
d , and I = c GVg

sCVg
d .

 A = cG + 2sC -sC

-sC G + 2sC
d ,

AV = I ,

 -sCV1 + (G + 2sC)V2 = sCVg.

 (G + 2sC)V1 - sCV2 = GVg,

V2V1

G = 1>R

V1 - Vg

R
+ V1sC + (V1 - V2)sC = 0,

V2

R
+ (V2 - V1)sC + (V2 - Vg)sC = 0.

V2V1

The determinant of A is

(A.98)

det A = 2G + 2sC sC

sC G + 2sC
2 = G2

+ 4sCG + 3s2C2.

Example A.4

vg v1

�

�

v2

�

�

1

1
sC

1
sC

1
sCR

R
�

�

The inverse of the coefficient matrix is

(A.99)

It follows from Eq. A.95 that

(A.100)

Carrying out the matrix multiplication called for in
Eq. A.100 gives

cV1

V2
d =

cG + 2sC sC

sC G + 2sC
d  c GVg

sCVg
d

(G2
+ 4sCG + 3s2C2)

 .

A-1
=

cG + 2sC sC

sC G + 2sC
d

(G2
+ 4sCG + 3s2C2)

 .

cV1

V2
d =

1

(G2
+ 4sCG + 3s2C2)

 c(G2
+ 2sCG + s2C2)Vg

(2sCG + 2s2C2)Vg
d .

(A.101)

Now the expressions for and can be written
directly from Eq. A.101; thus

(A.102)

and

(A.103)V2 =

2(sCG + s2C2)Vg

(G2
+ 4sCG + 3s2C2)

 .

V1 =

(G2
+ 2sCG + s2C2)Vg

(G2
+ 4sCG + 3s2C2)

 ,

V2V1

Figure A.1 � The circuit for Example A.4.
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In our final example, we illustrate how matrix algebra can be used to
analyze the cascade connection of two two-port circuits.

Show by means of matrix algebra how the input
variables and can be described as functions of
the output variables and in the cascade con-
nection shown in Fig. 18.10.

Solution
We begin by expressing, in matrix notation, the
relationship between the input and output variables
of each two-port circuit. Thus

(A.104)

and

(A.105)

Now the cascade connection imposes the constraints

(A.106)V2
œ

= V1
œ and I2

œ

= -I1
œ .

 cV1
œ

I1
œ
d = ca11

fl

-a12
fl

a21
fl

-a22
fl
d  cV2

I2
d ,

 cV1

I1
d = ca11

œ

-a12
œ

a21
œ

-a22
œ
d  cV2

œ

I2
œ
d ,

I2V2

I1V1

These constraint relationships are substituted into
Eq. A.104. Thus

(A.107)

The relationship between the input variables ( , )
and the output variables ( , ) is obtained by
substituting Eq. A.105 into Eq. A.107. The result is

(A.108)

After multiplying the coefficient matrices, we have

cV1

I1
d = ca11

œ a12
œ

a21
œ a22

œ
d  ca11

fl

-a12
fl

a21
fl

-a22
fl
d  cV2

I2
d .

I2V2

I1V1

 = ca11
œ a12

œ

a21
œ a22

œ
d  cV1

œ

I1
œ
d .

 cV1

I1
d = ca11

œ

-a12
œ

a21
œ

-a22
œ
d  c V1

œ

-I1
œ
d

Example A.5

cV1

I1
d = c(a11

œ a11
fl

+ a12
œ a21

fl ) -(a11
œ a12

fl

+ a12
œ a22

fl )
(a21

œ a11
fl

+ a22
œ a21

fl ) -(a21
œ a12

fl

+ a22
œ a22

fl )
d  cV2

I2
d .

(A.109)

Note that Eq.A.109 corresponds to writing Eqs. 18.72
and 18.73 in matrix form.
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Complex numbers were invented to permit the extraction of the square roots
of negative numbers. Complex numbers simplify the solution of problems
that would otherwise be very difficult. The equation ,
for example, has no solution in a number system that excludes complex
numbers.These numbers, and the ability to manipulate them algebraically,
are extremely useful in circuit analysis.

B.1 Notation
There are two ways to designate a complex number: with the cartesian, or
rectangular, form or with the polar, or trigonometric, form. In the
rectangular form, a complex number is written in terms of its real and
imaginary components; hence

(B.1)

where a is the real component, b is the imaginary component, and j is by
definition .1

In the polar form, a complex number is written in terms of its magni-
tude (or modulus) and angle (or argument); hence

(B.2)

where c is the magnitude, is the angle, e is the base of the natural loga-
rithm, and, as before, . In the literature, the symbol is fre-
quently used in place of ; that is, the polar form is written

(B.3)

Although Eq. B.3 is more convenient in printing text material, Eq. B.2 is of
primary importance in mathematical operations because the rules for
manipulating an exponential quantity are well known. For example, because

then because then and
so forth.

Because there are two ways of expressing the same complex number,
we need to relate one form to the other. The transition from the polar to
the rectangular form makes use of Euler’s identity:

(B.4)e ;  ju
=  cos  u ;  j sin  u.

e-ju
= 1>e ju;y-x

= 1>yx,(e ju)n
= e jnu;(yx)n

= yxn,

n = clu°.

e ju
lu°j = 1-1

u

n = ce  

ju

1-1

n = a + jb,

x2
+ 8x + 41 = 0

Complex NumbersBAppendix

1 You may be more familiar with the notation . In electrical engineering, i is used
as the symbol for current, and hence in electrical engineering literature, j is used to denote
1-1.

i = 1-1
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A complex number in polar form can be put in rectangular form by writing

(B.5)

The transition from rectangular to polar form makes use of the geom-
etry of the right triangle, namely,

(B.6)

where

(B.7)

It is not obvious from Eq. B.7 in which quadrant the angle lies. The ambi-
guity can be resolved by a graphical representation of the complex number.

B.2 The Graphical Representation 
of a Complex Number

A complex number is represented graphically on a complex-number
plane, which uses the horizontal axis for plotting the real component and
the vertical axis for plotting the imaginary component. The angle of the
complex number is measured counterclockwise from the positive real axis.
The graphical plot of the complex number , if we
assume that a and b are both positive, is shown in Fig. B.1.

This plot makes very clear the relationship between the rectangular and
polar forms.Any point in the complex-number plane is uniquely defined by
giving either its distance from each axis (that is, a and b) or its radial dis-
tance from the origin (c) and the angle of the radial measurement .

It follows from Fig. B.1 that is in the first quadrant when a and b are
both positive, in the second quadrant when a is negative and b is positive,
in the third quadrant when a and b are both negative, and in the fourth
quadrant when a is positive and b is negative. These observations are
illustrated in Fig. B.2, where we have plotted , , ,
and .

Note that we can also specify as a clockwise angle from the positive
real axis. Thus in Fig. B.2(c) we could also designate as

. In Fig. B.2(d) we observe that . It is
customary to express in terms of negative values when lies in the third
or fourth quadrant.

The graphical interpretation of a complex number also shows the
relationship between a complex number and its conjugate. The conjugate
of a complex number is formed by reversing the sign of its imaginary
component. Thus the conjugate of is , and the conjugate of

is . When we write a complex number in polar form, we
form its conjugate simply by reversing the sign of the angle . Therefore
the conjugate of is . The conjugate of a complex number iscl -u°clu°

u

-a - jb-a + jb
a - jba + jb

uu

5l323.13° = 5l -36.87°5l -143.13°
-4 - j3

u

4 - j3
-4 - j3-4 + j34 + j3

u

u

n = a + jb = c lu°

u

 tan u = b>a.

 = ce ju,

 a + jb = ¢2a2
+ b2≤e ju

ce ju
=  c(cos u + j sin u)
=  c cos u + jc sin u)
=  a + jb.

b

0

c

a

u

u

3

4

36.87�5 143.13�5

323.13�5216.87�5

3

�4

�4
�3

4
�3

(a) (b)

(c) (d)

36.87�4� j3 � 5

323.13�4� j3 � 5

143.13��4� j3 � 5

216.87��4� j3 � 5

uu

u

Figure B.2 � The graphical representation of four
complex numbers.

Figure B.1 � The graphical representation of 
when a and b are both positive.

a + jb
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designated with an asterisk. In other words, is understood to be the
conjugate of n. Figure B.3 shows two complex numbers and their conju-
gates plotted on the complex-number plane.

Note that conjugation simply reflects the complex numbers about the
real axis.

B.3 Arithmetic Operations

Addition (Subtraction)
To add or subtract complex numbers, we must express the numbers in rec-
tangular form. Addition involves adding the real parts of the complex
numbers to form the real part of the sum, and the imaginary parts to form
the imaginary part of the sum. Thus, if we are given

and

then

Subtraction follows the same rule. Thus

If the numbers to be added or subtracted are given in polar form, they are
first converted to rectangular form. For example, if

and

then

and

 = 14.966 l50.42°.

 = 9.535 + j11.535

 n1 - n2 = 6 + j8 - (-3.535 - j3.535)

n1 + n2 = 6 + j8 - 3.535 - j3.535
=  (6 - 3.535) + j(8 - 3.535)
=  2.465 + j4.465 = 5.10 l61.10°,

 n2 = 5l -135° ,

 n1 = 10l53.13°

 n2 - n1 = (12 - 8) + j(-3 - 16) = 4 - j19.

 n1 + n2 = (8 + 12) + j(16 - 3) = 20 + j13.

 n2 = 12 - j3,

 n1 = 8 + j16

n*
u2n2 � �a�jb�c

�u2n*
2 � �a�jb�c �u1n*

1 � a�jb�c

u1n1 � a�jb�c

�a a

b

�b

u2
u1

�u1
�u2

Figure B.3 � The complex numbers and amd their
conjugates and .n2

*n1
*

n2n1
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Multiplication (Division)
Multiplication or division of complex numbers can be carried out with the
numbers written in either rectangular or polar form. However, in most
cases, the polar form is more convenient. As an example, let’s find the
product when and . Using the rectangular
form, we have

If we use the polar form, the multiplication becomes

The first step in dividing two complex numbers in rectangular form is to
multiply the numerator and denominator by the conjugate of the denomi-
nator. This reduces the denominator to a real number. We then divide the
real number into the new numerator. As an example, let’s find the value of

, where and .We have

In polar form, the division of by is

B.4 Useful Identities
In working with complex numbers and quantities, the following identities
are very useful:

(B.8)

(B.9)

(B.10) j =

1
-j

 ,

 (-j)( j) = 1,

 ; j  2
= < 1,

 = 1.5 + j1.5.

 
n1

n2
=

6.71 l26.57°

3.16 l -18.43°
= 2.12 l45°

n2n1

 = 2.12 l45°.

 =

15 + j15
10

= 1.5 + j1.5

 =

18 + j6 + j9 - 3
9 + 1

 
n1

n2
=

6 + j3
3 - j1

=

(6 + j3)(3 + j1)
(3 - j1)(3 + j1)

n2 = 3 - j1n1 = 6 + j3n1>n2

 = 80 + j18.

 = 82 l12.68°

 n1n2 = (12.81 l51.34° )(6.40 l -38.66° )

n1n2

 = 82l12.68°.

 = 80 + j18

 n1n2 = (8 + j10)(5 - j4) = 40 - j32 + j50 + 40

n2 = 5 - j4n1 = 8 + j10n1n2
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(B.11)

(B.12)

Given that , it follows that

(B.13)

(B.14)

(B.15)

(B.16)

B.5 The Integer Power 
of a Complex Number

To raise a complex number to an integer power k, it is easier to first write
the complex number in polar form. Thus

For example,

and

B.6 The Roots of a Complex Number
To find the kth root of a complex number, we must recognize that we are
solving the equation

(B.17)

which is an equation of the kth degree and therefore has k roots.
To find the k roots, we first note that

(B.18)ce ju
= ce j(u+ 2p)

= ce j(u+4p)
=

Á .

xk 
-

 ce ju
= 0,

 = -527 - j336.

 = 625e j212.52°

 (3 + j4)4
= (5e j53.13°)4

= 54e j212.52°

 = 16 + j27.71,

 (2e j12°)5
= 25e j60°

= 32e j60°

 = ck( cos ku + j sin ku).

 = (ce ju)k
= cke jku

 nk
= (a + jb)k

 n>n*
= 1l2u°.

 n - n*
= j  2b,

 n + n*
= 2a,

 nn*
=  a2

+ b2
= c2,

n = a + jb = clu°

 e ; jp> 2
= ; j.

 e ; jp
= -1,
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It follows from Eqs. B.17 and B.18 that

(B.19)

(B.20)

(B.21)

.

We continue the process outlined by Eqs. B.19, B.20, and B.21 until the
roots start repeating. This will happen when the multiple of is equal to
2k. For example, let’s find the four roots of . We have

Here, is the same as , so the roots have started to repeat.Therefore we
know the four roots of are the values given by , , , and .

It is worth noting that the roots of a complex number lie on a circle in
the complex-number plane. The radius of the circle is . The roots are
uniformly distributed around the circle, the angle between adjacent roots
being equal to radians, or degrees.The four roots of are
shown plotted in Fig. B.4.

81e j60°360>k2p>k
c1>k

x4x3x2x181e j60°
x1x5

x1 = 811>4e j60>4
= 3e j15°,

x2 = 811>4e j(60 +360)>4
= 3e j105°,

x3 = 811>4e j(60 +720)>4
= 3e j195°,

x4 =  811>4e j(60 +1080)>4 = 3e j285°,
x5 =  811>4e j(60 +1440)>4 = 3e j375° = 3e j15°.

81e j60°
p

 o

 x3 = [ce j(u+4p)]1>k
= c1>ke j(u+4p)>k,

 x2 = [ce j(u+2p)]1>k
= c1>ke j(u+2p)>k,

 x1 = (ce ju)1>k
= c1>ke ju>k,

105�3

285�3

195�3

15�3

Figure B.4 � The four roots of .81e j60°
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C.1 Equivalent Circuits for Magnetically
Coupled Coils

At times, it is convenient to model magnetically coupled coils with an
equivalent circuit that does not involve magnetic coupling. Consider the
two magnetically coupled coils shown in Fig. C.1. The resistances and

represent the winding resistance of each coil. The goal is to replace the
magnetically coupled coils inside the shaded area with a set of inductors
that are not magnetically coupled. Before deriving the equivalent circuits,
we must point out an important restriction:The voltage between terminals
b and d must be zero. In other words, if terminals b and d can be shorted
together without disturbing the voltages and currents in the original cir-
cuit, the equivalent circuits derived in the material that follows can be
used to model the coils. This restriction is imposed because, while the
equivalent circuits we develop both have four terminals, two of those four
terminals are shorted together. Thus, the same requirement is placed on
the original circuits.

We begin developing the circuit models by writing the two equations
that relate the terminal voltages and to the terminal currents and

For the given references and polarity dots,

(C.1)

and

(C.2)

The T-Equivalent Circuit
To arrive at an equivalent circuit for these two magnetically coupled coils,
we seek an arrangement of inductors that can be described by a set of
equations equivalent to Eqs. C.1 and C.2. The key to finding the arrange-
ment is to regard Eqs. C.1 and C.2 as mesh-current equations with and 
as the mesh variables. Then we need one mesh with a total inductance of

H and a second mesh with a total inductance of H. Furthermore, the
two meshes must have a common inductance of M H. The T-arrangement
of coils shown in Fig. C.2 satisfies these requirements.

L2L1

i2i1

 v2 =  M
di1

dt
+ L2

di2

dt
 .

 v1 =  L1
di1

dt
+ M

di2

dt

i2.
i1v2v1

R2

R1

More on Magnetically
Coupled Coils and Ideal
Transformers

CAppendix

i1

R1

L1

M

L2 v2

�

�

v1

�

�

a

b

c

d

R1

i2

i1

R1 L2�ML1�M

M

i2
v1

�

�

v2

�

�

a

b

c

d

R2

Figure C.1 � The circuit used to develop an equivalent
circuit for magnetically coupled coils.

Figure C.2 � The T-equivalent circuit for the magneti-
cally coupled coils of Fig. C.1.
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You should verify that the equations relating and to and 
reduce to Eqs. C.1 and C.2. Note the absence of magnetic coupling between
the inductors and the zero voltage between b and d.

The -Equivalent Circuit
We can derive a -equivalent circuit for the magnetically coupled coils
shown in Fig. C.1. This derivation is based on solving Eqs. C.1 and C.2 for
the derivatives and and then regarding the resulting expres-
sions as a pair of node-voltage equations. Using Cramer’s method for solv-
ing simultaneous equations, we obtain expressions for and :

(C.3)

(C.4)

Now we solve for and by multiplying both sides of Eqs. C.3 and C.4 by
and then integrating:

(C.5)

and

(C.6)

If we regard and as node voltages, Eqs. C.5 and C.6 describe a circuit
of the form shown in Fig. C.3.

All that remains to be done in deriving the -equivalent circuit is to
find , , and as functions of , , and M. We easily do so by writ-
ing the equations for and in Fig. C.3 and then comparing them with
Eqs. C.5 and C.6. Thus

i2i1

L2L1LCLBLA

p

v2v1

i2 = i2(0) -

M

L1L2 - M2L

t

0
 v1 dt +

L1

L1L2 - M2L

t

0
 v2 dt.

i1 = i1(0) +

L2

L1L2 - M2L

t

0
 v1 dt -

M

L1L2 - M2L

t

0
 v2 dt

dt
i2i1

 
di2

dt
=

2L1  v1

M v2

2
L1L2 - M2 =

-M

L1L2 - M2 v1 +

L1

L1L2 - M2 v2 .

 
di1

dt
=

2 v1  M
v2  L2

2
2L1  M
M L2

2
=

L2

L1L2 - M2 v1 -

M

L1L2 - M2 v2 ;

di2>dtdi1>dt

di2>dtdi1>dt

p

p

i2i1v2v1

LA

LB

i2(0) v2

�

�

v1

�

�

c

d

a

b

LCi1(0)

i1 i2

Figure C.3 � The circuit used to derive the -equivalent circuit for
magnetically coupled coils.

p
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(C.7)

and

(C.8)

Then

(C.9)

(C.10)

(C.11)

When we incorporate Eqs. C.9–C.11 into the circuit shown in Fig. C.3, the
-equivalent circuit for the magnetically coupled coils shown in Fig. C.1 is

as shown in Fig. C.4.
Note that the initial values of and are explicit in the -equivalent

circuit but implicit in the T-equivalent circuit. We are focusing on the sinu-
soidal steady-state behavior of circuits containing mutual inductance, so
we can assume that the initial values of and are zero. We can thus
eliminate the current sources in the -equivalent circuit, and the circuit
shown in Fig. C.4 simplifies to the one shown in Fig. C.5.

The mutual inductance carries its own algebraic sign in the T- and 
-equivalent circuits. In other words, if the magnetic polarity of the cou-

pled coils is reversed from that given in Fig. C.1, the algebraic sign of M
p

p

i2i1

pi2i1

p

 
1

LC
=

L1 - M

L1L2 - M2 .

 
1

LA
=

L2 - M

L1L2 - M2 ,

 
1

LB
=

M

L1L2 - M2 ,

 = i2(0) +

1
LBL

t

0
 v1 dt + a 1

LB
+

1
LC
b
L

t

0
 v2 dt.

 i2 = i2(0) +

1
LCL

t

0
 v2 dt +

1
LBL

t

0
 (v2 - v1) dt

 = i1(0) + a 1
LA

+

1
LB
b
L

t

0
v1 dt -

1
LBL

t

0
 v2 dt

 i1 = i1(0) +

1
LAL

t

0
 v1 dt +

1
LBL

t

0
 (v1 - v2) dt

L1L2�M2

M

L1L2�M2

L2�M

L1L2�M2

L1�M

R1

i2(0)v1

�

�

a

b

i1(0)
i1

R2

v2

�

�

c

d

i2

Figure C.4 � The -equivalent circuit for the magnetically coupled coils of Fig. C.1.p

i1

R1 R2

i2
v1

�

�

v2

�

�

a

b

c

d

L1L2 � M2

L1 � M

L1L2 � M2

L2 � M

L1L2 � M2

M

Figure C.5 � The -equivalent circuit used for
sinusoidal steady-state analysis.

p
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a) Use the T-equivalent circuit for the magnetically
coupled coils shown in Fig. C.6 to find the phasor
currents and . The source frequency is

.

b) Repeat (a), but with the polarity dot on the sec-
ondary winding moved to the lower terminal.

Solution
a) For the polarity dots shown in Fig. C.6, M carries

a value of H in the T-equivalent circuit.
Therefore the three inductances in the equiva-
lent circuit are

Figure C.7 shows the T-equivalent circuit, and
Fig. C.8 shows the frequency-domain equivalent
circuit at a frequency of .

Figure C.9 shows the frequency-domain
circuit for the original system.

Here the magnetically coupled coils are
modeled by the circuit shown in Fig. C.8. To find
the phasor currents and , we first find the
node voltage across the inductive reac-
tance. If we use the lower node as the reference,
the single node-voltage equation is

Solving for yields

Then

V = 136 - j8 = 136.24 l -3.37° V (rms).

V

V - 300
700 + j2500

+

V
j1200

+

V
900 - j2100

= 0.

1200 Æ
I2I1

400 rad>s

 M = 3 H .

 L2 - M = 4 - 3 = 1 H ;

 L1 - M = 9 - 3 = 6 H ;

+3

400 rad>s I2I1

I1

j1200 �

V1

�

�

V2

�

�

a

b

300  0� V j2500 �j1600 �j3600 �

800 �500 � 200 �j100 � 100 �

I2
�

�

Figure C.6 � The frequency-domain equivalent circuit for Example C.1.

6 H 1 H

3 H

Figure C.7 � The T-equivalent circuit for the magnetically
coupled coils in Example C.1.

j2400 j400

j1200

Figure C.8 � The frequency-domain model of the equivalent
circuit at .400 rad>s

500 � 200 � 100 �

j1200 �

j400 �j 2400 �j 100 �

300  0� V
800 �

�j2500 �

I1
I2

�

�

Figure C.9 � The circuit of Fig. C.6, with the magnetically
coupled coils replaced by their T-equivalent circuit.

Example C.1

reverses. A reversal in magnetic polarity requires moving one polarity dot
without changing the reference polarities of the terminal currents and
voltages.

Example C.1 illustrates the application of the T-equivalent circuit.

I1 =

300 - (136 - j8)
700 + j2500

= 63.25 l -71.57° mA (rms)

and

b) When the polarity dot is moved to the lower ter-
minal of the secondary coil, M carries a value of

in the T-equivalent circuit. Before carrying
out the solution with the new T-equivalent cir-
cuit, we note that reversing the algebraic sign of
M has no effect on the solution for and shifts

by . Therefore we anticipate that180 �I2

I1

-3 H

I2 =

136 - j8
900 - j2100

= 59.63 l63.43° mA (rms).
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j4800 � j 2800 �

�j1200 �

Then

and

 = 59.63 l -116.57° mA (rms).

 I2 =

-8 - j56
900 + j300

 = 63.25 l -71.57° mA (rms)

 I1 =

300 - (-8 - j56)
700 + j4900

500 � 200 � 100 �

�j1200 �

j2800 �j4800 �j100 �

800 �

�j2500 �

I1 I2

300  0� V
�

�

and

We now proceed to find these solutions
by using the new T-equivalent circuit. With

, the three inductances in the equiv-
alent circuit are

At an operating frequency of , the
frequency-domain equivalent circuit requires two
inductors and a capacitor, as shown in Fig. C.10.

The resulting frequency-domain circuit for
the original system appears in Fig. C.11.

As before, we first find the node voltage
across the center branch, which in this case is a
capacitive reactance of . If we use the
lower node as reference, the node-voltage
equation is

Solving for V gives

 = 56.57 l -98.13° V (rms).

 V = -8 - j56

V - 300
700 + j4900

+

V
-j1200

+

V
900 + j300

= 0.

-j1200 Æ

400 rad>s
 M = -3 H .

 L2 - M = 4 - (-3) = 7 H ;

 L1 - M = 9 - (-3) = 12 H ;

M = -3 H

I2 = 59.63 l -116.57° mA (rms).

I1 = 63.25 l -71.57° mA (rms)

Figure C.11 � The frequency-domain equivalent circuit for
Example C.1(b).

Figure C.10 � The frequency-domain equivalent circuit for
and v = 400 rad>s.M = -3 H

C.2 The Need for Ideal Transformers in
the Equivalent Circuits

The inductors in the T- and -equivalent circuits of magnetically cou-
pled coils can have negative values. For example, if 

and the T-equivalent circuit requires an induc-
tor of , and the -equivalent circuit requires an inductor of

These negative inductance values are not troublesome when
you are using the equivalent circuits in computations. However, if you
are to build the equivalent circuits with circuit components, the negative
inductors can be bothersome. The reason is that whenever the frequency
of the sinusoidal source changes, you must change the capacitor used to
simulate the negative reactance. For example, at a frequency of

a inductor has an impedance of . This imped-
ance can be modeled with a capacitor having a capacitance of If
the frequency changes to , the inductor impedance
changes to At , this requires a capacitor with a capaci-
tance of Obviously, in a situation where the frequency is varied0.8 mF.

25 krad>s-j50 Æ.
-2 mH25 krad>s 0.2 mF.

-j100 Æ-2 mH50 krad>s,

-5.5 mH.
p-2 mH

M = 5 mH,L2 = 12 mH,
L1 = 3 mH,

p
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a2 �

Figure C.13 � The circuit of Fig. C.12(a) with and 
defined.

v0i0

Figure C.12 � The four ways of using an ideal transformer in the T- and -equivalent circuit for magnetically coupled coils.p

continuously, the use of a capacitor to simulate negative inductance is
practically worthless.

You can circumvent the problem of dealing with negative inductances
by introducing an ideal transformer into the equivalent circuit.This doesn’t
completely solve the modeling problem, because ideal transformers can
only be approximated. However, in some situations the approximation is
good enough to warrant a discussion of using an ideal transformer in the
T- and -equivalent circuits of magnetically coupled coils.

An ideal transformer can be used in two different ways in either the 
T-equivalent or the -equivalent circuit. Figure C.12 shows the two arrange-
ments for each type of equivalent circuit.

Verifying any of the equivalent circuits in Fig. C.12 requires showing
only that, for any circuit, the equations relating and to and

are identical to Eqs. C.1 and C.2. Here, we validate the circuit shown
in Fig. C.12(a); we leave it to you to verify the circuits in Figs. C.12(b), (c),
and (d). To aid the discussion, we redrew the circuit shown in Fig. C.12(a)
as Fig. C.13, adding the variables and .

From this circuit,

(C.12)

and

. (C.13) v0 = ¢L2

a2
-

M
a
≤  

di0

dt
+

M
a

 
d

dt
  (i0 + i1)

 v1 = ¢L1 -

M
a
≤  

di1

dt
+

M
a

 
d

dt
  (i1 + i0)

v0i0

di2>dt
di1>dtv2v1

p
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The ideal transformer imposes constraints on and :

(C.14)

(C.15)

Substituting Eqs. C.14 and C.15 into Eqs. C.12 and C.13 gives

(C.16)

and

(C.17)

From Eqs. C.16 and C.17,

(C.18)

and

(C.19)

Equations C.18 and C.19 are identical to Eqs. C.1 and C.2; thus, insofar as
terminal behavior is concerned, the circuit shown in Fig. C.13 is equivalent
to the magnetically coupled coils shown inside the box in Fig. C.1.

In showing that the circuit in Fig. C.13 is equivalent to the magneti-
cally coupled coils in Fig. C.1, we placed no restrictions on the turns
ratio a. Therefore, an infinite number of equivalent circuits are possible.
Furthermore, we can always find a turns ratio to make all the inductances
positive. Three values of a are of particular interest:

(C.20)

(C.21)

and

(C.22)

The value of a given by Eq. C.20 eliminates the inductances 
and from the T-equivalent circuits and the inductances

and from the
-equivalent circuits. The value of a given by Eq. C.21

eliminates the inductances and from the 
T-equivalent circuits and the inductances and

from the -equivalent circuits.
Also note that when , the circuits in Figs. C.12(a) and (c)

become identical, and when , the circuits in Figs. C.12(b) and (d)
become identical. Figures C.14 and C.15 summarize these observations.

a = L2>M
a = M>L1

pa2(L1L2 - M2)>(L2 - aM)
(L1L2 - M2)>(L2 - aM)

L2 - aM(L2>a2) - (M>a)
p

a2(L1L2 - M2)>(a2L1 - aM)(L1L2 - M2)>(a2L1 - aM)
a2L1 - aM

L1 - M>a

 a = C
L2

L1
 .

 a =

L2

M
 ,

 a =

M

L1
 ,

 v2 = M
di1

dt
+ L2

di2

dt
 .

 v1 = L1
di1

dt
+ M

di2

dt

 
v2

a
=

L2

a2  
d

dt
 (ai2) +

M
a

 
di1

dt
 .

 v1 = L1
di1

dt
+

M
a

 
d

dt
 (ai2)

 i0 = ai2 .

 v0 =

v2

a
 ;

i0v0

Ideal

1 : a

v1

�

�

v2

�

�

i1 i2

L1

L1 � 1
k2
1

(a)
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�
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1 : a

k2L2
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jvL1 jvL2

Figure C.16 � Experimental determination of the 
ratio M>L1.

Figure C.15 � Two equivalent circuits when
a = L2>M.

Figure C.14 � Two equivalent circuits when
a = M>L1.
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In deriving the expressions for the inductances there, we used the
relationship . Expressing the inductances as functions of
the self-inductances and and the coefficient of coupling k allows the
values of a given by Eqs. C.20 and C.21 not only to reduce the number of
inductances needed in the equivalent circuit, but also to guarantee that all
the inductances will be positive. We leave to you to investigate the conse-
quences of choosing the value of a given by Eq. C.22.

The values of a given by Eqs. C.20–C.22 can be determined experi-
mentally.The ratio is obtained by driving the coil designated as hav-
ing turns by a sinusoidal voltage source. The source frequency is set
high enough that , and the coil is left open. Figure C.16
shows this arrangement.

With the coil open,

(C.23)

Now, as , the current is

(C.24)

Substituting Eq. C.24 into Eq. C.23 yields

(C.25)

in which the ratio is the terminal voltage ratio corresponding to
coil 2 being open; that is, .

We obtain the ratio by reversing the procedure; that is, coil 2 is
energized and coil 1 is left open. Then

(C.26)

Finally, we observe that the value of a given by Eq. C.22 is the geo-
metric mean of these two voltage ratios; thus

(C.27)

For coils wound on nonmagnetic cores, the voltage ratio is not the
same as the turns ratio, as it very nearly is for coils wound on ferromagnetic
cores. Because the self-inductances vary as the square of the number of
turns, Eq. C.27 reveals that the turns ratio is approximately equal to the
geometric mean of the two voltage ratios, or

(C.28)C
L2

L1
=

N2

N1
= Ca

V2

V1
b

I2 =0
aV2

V1
b

I1 = 0
 .

Ca
V2

V1
b

I2 = 0
aV2

V1
b

I1 =0
= C

M

L1
 
L2

M
= C

L2

L1
 .

L2

M
= ¢V2

V1
≤

I1 =0
 .

L2>M
I2 = 0

M>L1

¢V2

V1
≤

I2 =0
=

M

L1
 ,

I1 =

V1

jvL1 
 .

I1jvL1 W R1

V2 = jvMI1 .

N2

N2vL1 W R1

N1

M>L1

L2L1

M = k1L1L2



Telephone engineers who were concerned with the power loss across the
cascaded circuits used to transmit telephone signals introduced the deci-
bel. Figure D.1 defines the problem.

There, is the power input to the system, is the power output of
circuit A, is the power output of circuit B, and is the power output
of the system. The power gain of each circuit is the ratio of the power out
to the power in. Thus

The overall power gain of the system is simply the product of the individ-
ual gains, or

The multiplication of power ratios is converted to addition by means of
the logarithm; that is,

This log ratio of the powers was named the bel, in honor of Alexander
Graham Bell. Thus we calculate the overall power gain, in bels, simply by
summing the power gains, also in bels, of each segment of the transmission
system. In practice, the bel is an inconveniently large quantity. One-tenth
of a bel is a more useful measure of power gain; hence the decibel. The
number of decibels equals 10 times the number of bels, so

When we use the decibel as a measure of power ratios, in some situa-
tions the resistance seen looking into the circuit equals the resistance
loading the circuit, as illustrated in Fig. D.2.

When the input resistance equals the load resistance, we can convert
the power ratio to either a voltage ratio or a current ratio:

or

 
po

pi
=

i2
outRL

i2
inRin

= ¢ iout

iin
≤ 2

.

 
po

pi
=

v2
out>RL

v2
in>Rin

= ¢vout

vin
≤ 2

Number of decibels = 10 log10 
po

pi
 .

log10
po

pi
= log10sA + log10sB + log10sC .

po

pi
=

p1

pi
 
p2

p1
 
po

p2
= sAsBsC .

sA =

p1

pi
 , sB =

p2

p1
 , and sC =

po

p2
 .

pop2

p1pi

The Decibel
Appendix

737

D
pi pop1 p2A B C

iin

Rin RL

Rin � RL

vin

�

�
vout

�

�
A

iout

Figure D.1 � Three cascaded circuits.

Figure D.2 � A circuit in which the input resistance
equals the load resistance.
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These equations show that the number of decibels becomes

(D.1)

The definition of the decibel used in Bode diagrams (see Appendix E)
is borrowed from the results expressed by Eq. D.1, since these results
apply to any transfer function involving a voltage ratio, a current ratio, a
voltage-to-current ratio, or a current-to-voltage ratio.You should keep the
original definition of the decibel firmly in mind because it is of fundamen-
tal importance in many engineering applications.

When you are working with transfer function amplitudes expressed in
decibels, having a table that translates the decibel value to the actual value
of the output/input ratio is helpful. Table D.1 gives some useful pairs. The
ratio corresponding to a negative decibel value is the reciprocal of the pos-
itive ratio. For example, corresponds to an output/input ratio of

, or 0.707. Interestingly, corresponds to the half-power fre-
quencies of the filter circuits discussed in Chapters 14 and 15.

The decibel is also used as a unit of power when it expresses the ratio
of a known power to a reference power. Usually the reference power is
1 mW and the power unit is written dBm, which stands for “decibels rela-
tive to one milliwatt.” For example, a power of 20 mW corresponds to

AC voltmeters commonly provide dBm readings that assume not only
a 1 mW reference power but also a reference resistance (a value
commonly used in telephone systems). Since a power of 1 mW in 
corresponds to 0.7746 V (rms), that voltage is read as 0 dBm on the meter.
For analog meters, there usually is exactly a 10 dB difference between
adjacent ranges. Although the scales may be marked 0.1, 0.3, 1, 3, 10, and
so on, in fact 3.16 V on the 3 V scale lines up with 1 V on the 1 V scale.

Some voltmeters provide a switch to choose a reference resistance (50,
135, 600, or ) or to select dBm or dBV (decibels relative to one volt).900 Æ

600 Æ
600 Æ

;13 dBm.

-3 dB1>1.41
-3 dB

 = 20 log10 
iout

iin
 .

 Number of decibels = 20 log10 
vout

vin

TABLE D.1 Some dB-Ratio Pairs 

dB Ratio dB Ratio

0 1.00 30 31.62

3 1.41 40 100.00

6 2.00 60 10

10 3.16 80 10

15 5.62 100 10

20 10.00 120 106

5

4

3
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As we have seen, the frequency response plot is a very important tool for
analyzing a circuit’s behavior. Up to this point, however, we have shown
qualitative sketches of the frequency response without discussing how to
create such diagrams. The most efficient method for generating and plot-
ting the amplitude and phase data is to use a digital computer; we can rely
on it to give us accurate numerical plots of and versus .
However, in some situations, preliminary sketches using Bode diagrams
can help ensure the intelligent use of the computer.

A Bode diagram, or plot, is a graphical technique that gives a feel
for the frequency response of a circuit. These diagrams are named in
recognition of the pioneering work done by H. W. Bode.1 They are most
useful for circuits in which the poles and zeros of are reasonably
well separated.

Like the qualitative frequency response plots seen thus far, a Bode
diagram consists of two separate plots: One shows how the amplitude of

varies with frequency, and the other shows how the phase angle 
of varies with frequency. In Bode diagrams, the plots are made on
semilog graph paper for greater accuracy in representing the wide range
of frequency values. In both the amplitude and phase plots, the frequency
is plotted on the horizontal log scale, and the amplitude and phase angle
are plotted on the linear vertical scale.

E.1 Real, First-Order Poles and Zeros
To simplify the development of Bode diagrams, we begin by considering
only cases where all the poles and zeros of are real and first order.
Later we will present cases with complex and repeated poles and zeros.
For our purposes, having a specific expression for is helpful. Hence
we base the discussion on

(E.1)

from which

(E.2)

The first step in making Bode diagrams is to put the expression for
in a standard form, which we derive simply by dividing out the

poles and zeros:

(E.3)H(  jv) =

Kz1(1 + jv>z1)

p1(  jv)(1 + jv>p1)
 .

H(  jv)

 H(  jv) =

K(  jv + z1)
jv(  jv + p1)

 .

 H(s) =

K(s + z1)
s(s + p1)

 ,

H(s)

H(s)

H(  jv)
H(  jv)

H(s)

vu(  jv)|H(  jv)|

Bode DiagramsEAppendix

1 See H. W. Bode, Network Analysis and Feedback Design (New York: Van Nostrand, 1945).
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Next we let represent the constant quantity , and at the
same time we express in polar form:

(E.4)

From Eq. E.4,

(E.5)

(E.6)

By definition, the phase angles and are

(E.7)

(E.8)

The Bode diagrams consist of plotting Eq. E.5 (amplitude) and Eq. E.6
(phase) as functions of .

E.2 Straight-Line Amplitude Plots
The amplitude plot involves the multiplication and division of factors
associated with the poles and zeros of . We reduce this multiplication
and division to addition and subtraction by expressing the amplitude of

in terms of a logarithmic value: the decibel (dB).2 The amplitude 
of in decibels is

(E.9)

To give you a feel for the unit of decibels, Table E.1 provides a translation
between the actual value of several amplitudes and their values in deci-
bels. Expressing Eq. E.5 in terms of decibels gives

(E.10)       - 20 log10 v - 20 log10|1 + jv>p1|.

 = 20 log10 Ko + 20 log10|1 + jv>z1|

 AdB = 20 log10 
Ko|1 + jv>z1|

v|1 + jv>p1|

AdB = 20 log10|H(  jv)|.

H(  jv)
H(  jv)

H(s)

v

 b1 = tan -1v>p1.

 c1 = tan -1v>z1;

b1c1

 u(v) = c1 - 90 �
- b1.

 |H(  jv)| =

Ko|1 + jv>z1|

v|1 + jv>p1|
 ,

 =

Ko|1 + jv>z1|

|v||1 + jv>p1|
  l(c1 - 90 �

- b1).

 H(  jv) =

Ko|1 + jv>z1| lc1

|v| l90 �
 |1 + jv>p1| lb1

H(  jv)
Kz1>p1Ko

2 See Appendix D for more information regarding the decibel.

TABLE E.1 Actual Amplitudes and Their
Decibel Values

0 1.00 30 31.62

3 1.41 40 100.00

6 2.00 60

10 3.16 80

15 5.62 100

20 10.00 120 106

105

104

103

AAdBAAdB
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The key to plotting Eq. E.10 is to plot each term in the equation sepa-
rately and then combine the separate plots graphically. The individual fac-
tors are easy to plot because they can be approximated in all cases by
straight lines.

The plot of is a horizontal straight line because is not a
function of frequency. The value of this term is positive for , zero
for , and negative for .

Two straight lines approximate the plot of . For small
values of , the magnitude is approximately 1, and therefore

(E.11)

For large values of , the magnitude is approximately ,
and therefore

(E.12)

On a log frequency scale, is a straight line with a slope of
(a decade is a 10-to-1 change in frequency). This straight

line intersects the 0 dB axis at . This value of is called the
corner frequency. Thus, on the basis of Eqs. E.11 and E.12, two straight
lines can approximate the amplitude plot of a first-order zero, as
shown in Fig. E.1.

The plot of is a straight line having a slope of
that intersects the 0 dB axis at . Two straight lines

approximate the plot of . Here the two straight lines-20 log10|1 + jv>p1|
v = 1-20 dB>decade

-20 log10 v

vv = z1

20 dB>decade
20 log10(v>z1)

20 log10|1 + jv>z1| : 20 log10(v>z1) as v: q .

v>z1|1 + jv>z1|v

20 log10|1 + jv>z1| : 0 as v: 0.

|1 + jv>z1|v

20 log10|1 + jv>z1|
Ko 6 1Ko = 1

Ko 7 1
Ko20 log10 Ko

�5

1 2 3 4 5 6 7
v (rad/s)

8 910 20 30 40 50

0

5

10
AdB

15

20

25

Decade

20 dB/decade

10z1z1

20 log10 z1
v

Figure E.1 � A straight-line approximation of the amplitude plot of a 
first-order zero.
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20 log10 1 � j z1
v

�20 log10 1 � j p1
v

�20 log10v

10

50
20 log10 |H(jv)|

20 log10 Ko

40

30

20
AdB

0

�10

�20
0.05 0.1 0.5 1.0 5

v (rad/s)
10 50 100 500

20 log10 |H(jv)|

Figure E.3 shows a plot of Eq. E.10 for ,
and Each term in Eq. E.10 is labeled on Fig. E.3, so you can
verify that the individual terms sum to create the resultant plot, labeled

.
Example E.1 illustrates the construction of a straight-line amplitude

plot for a transfer function characterized by first-order poles and zeros.

20 log10|H(  jv)|

p1 = 5 rad>s.
z1 = 0.1 rad>s,Ko =  110

1 2 3 4 5 6 7 8
v (rad/s)

910 20 30 40 50

–20

–15

–10

–5

0

5

AdB

p1 10p1–20 log10 p1
v

–20 dB/decade

Figure E.2 � A straight-line approximation of the amplitude plot of a first-order pole.

Figure E.3 � A straight-line approximation of the amplitude plot for Eq. E.10.

intersect on the 0 dB axis at . For large values of , the straight line
has a slope of . Figure E.2 shows the

straight-line approximation of the amplitude plot of a first-order pole.
-20 dB>decade20 log10(v>p1)

vv = p1
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For the circuit in Fig. E.4:

a) Compute the transfer function, .

b) Construct a straight-line approximation of the
Bode amplitude plot.

c) Calculate at and

d) Plot the values computed in (c) on the straight-
line graph; and

e) Suppose that and
then use the Bode plot you constructed to pre-
dict the amplitude of in the steady state.

Solution

a) Transforming the circuit in Fig. E.4 into the 
s-domain and then using s-domain voltage divi-
sion gives

Substituting the numerical values from the cir-
cuit, we get

b) We begin by writing in standard form:

The expression for the amplitude of in
decibels is

Figure E.5 shows the straight-line plot.
Each term contributing to the overall amplitude
is identified.

   - 20 log10 2 1 + j 
v

10
2 -20 log10 2 1 + j 

v

100
2 .

 = 20 log10 0.11 + 20 log10|jv|

 AdB = 20 log10|H(  jv)|

H(  jv)

H(  jv) =

0.11 jv
[1 + j(v>10)][1 + j(v>100)]

 .

H(  jv)

H(s) =

110s

s2
+ 110s + 1000

=

110s

(s + 10)(s + 100)
 .

H(s) =

(R>L)s

s2
+ (R>L)s +

1
LC

 .

vo(t)

vi(t) = 5 cos (500t + 15 �) V,

v = 1000 rad>s.
v = 50 rad>s20 log10|H(  jv)|

H(s)

c) We have

 20 log10 0.1094 = -19.22 dB.

 = 0.1094l -83.72 �
 ;

 H(  j1000) =

0.11(  j1000)
(1 + j100)(1 + j10)

 = -0.311 dB;

 20 log10|H(  j50)| = 20 log10 0.9648

 = 0.9648l -15.25 �
 ,

 H(  j50) =

0.11(  j50)
(1 + j5)(1 + j0.5)

11 �

100 mH

vi

�

�

vo

10 mF

�

�

Example E.1

AdB

�20

�10

�30
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Figure E.5 � The straight-line amplitude plot for the transfer function of
the circuit in Fig. E.4.

Figure E.4 � The circuit for Example E.1.
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E.3 More Accurate Amplitude Plots
We can make the straight-line plots for first-order poles and zeros more
accurate by correcting the amplitude values at the corner frequency, one
half the corner frequency, and twice the corner frequency. At the corner
frequency, the actual value in decibels is

(E.13)

The actual value at one half the corner frequency is

(E.14)

At twice the corner frequency, the actual value in decibels is

(E.15)

In Eqs. E.13–E.15, the plus sign applies to a first-order zero, and the minus
sign applies to a first-order pole. The straight-line approximation of the
amplitude plot gives 0 dB at the corner and one half the corner frequencies,
and at twice the corner frequency. Hence the corrections are 
at the corner frequency and at both one half the corner frequency
and twice the corner frequency. Figure E.6 summarizes these corrections.

A 2-to-1 change in frequency is called an octave. A slope of
is equivalent to which for graphical pur-

poses is equivalent to Thus the corrections enumerated cor-
respond to one octave below and one octave above the corner frequency.

6 dB>octave.
6.02 dB>octave,20 dB>decade

;1 dB
;3 dB;6 dB

 L ;7 dB.

 = ;20 log1015

 AdB2c
= ;20 log10|1 + j2|

 L ;1 dB.

 = ;20 log1015>4
 AdBc>2 = ;20 log10 2 1 + j 

1
2
2

 L ;3 dB.

 = ;20 log1012

 AdBc
= ;20 log10|1 + j1|

d) See Fig. E.5.

e) As we can see from the Bode plot in Fig. E.5, the
value of at is approximately

. Therefore,

and

Vmo = |A|Vmi = (0.24)(5) = 1.19 V.

|A| = 10(-12.5>20)
= 0.24

-12.5 dB
v = 500 rad>sAdB

We can compute the actual value of 
by substituting into the equation for

:

Thus, the actual output voltage magnitude for
the specified signal source at a frequency of

is

Vmo = |A|Vmi = (0.22)(5) = 1.1 V.

500 rad>s

H(  j500) =

0.11(  j500)
(1 + j50)(1 + j5)

= 0.22l -77.54 �
 .

|H(  jv)|
v = 500

|H(  jv)|
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If the poles and zeros of are well separated, inserting these
corrections into the overall amplitude plot and achieving a reasonably
accurate curve is relatively easy. However, if the poles and zeros are
close together, the overlapping corrections are difficult to evaluate, and
you’re better off using the straight-line plot as a first estimate of the
amplitude characteristic. Then use a computer to refine the calculations
in the frequency range of interest.

E.4 Straight-Line Phase Angle Plots
We can also make phase angle plots by using straight-line approximations.
The phase angle associated with the constant is zero, and the phase
angle associated with a first-order zero or pole at the origin is a constant

. For a first-order zero or pole not at the origin, the straight-line
approximations are as follows:

• For frequencies less than one tenth the corner frequency, the phase
angle is assumed to be zero.

• For frequencies greater than 10 times the corner frequency, the phase
angle is assumed to be .

• Between one tenth the corner frequency and 10 times the corner fre-
quency, the phase angle plot is a straight line that goes through at
one-tenth the corner frequency, at the corner frequency, and

at 10 times the corner frequency.

In all these cases, the plus sign applies to the first-order zero and the minus
sign to the first-order pole. Figure E.7 depicts the straight-line approxima-
tion for a first-order zero and pole.The dashed curves show the exact vari-
ation of the phase angle as the frequency varies. Note how closely the

;90 �
;  45 �

0 �

;90 �

;  90 �

Ko

H(s)

AdB

c
2

c 2 c
�25

�20

�15

�10

�5

10

15

20

25

0

5

�1 dB

1 dB1 dB
3 dB

�1 dB

�3 dB

Figure E.6 � Corrected amplitude plots for a first-order zero 
and pole.
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straight-line plot approximates the actual variation in phase angle. The
maximum deviation between the straight-line plot and the actual plot is
approximately .

Figure E.8 depicts the straight-line approximation of the phase angle of
the transfer function given by Eq. B.1. Equation B.6 gives the equation for
the phase angle; the plot corresponds to and 

An illustration of a phase angle plot using a straight-line approxima-
tion is given in Example E.2.

p1 = 5 rad>s.z1 = 0.1 rad>s,

6 �

30�

60�

90�

0 

�30�

�60�

�90�

v (rad/s)

z1/10 p1/10 z1 p1 10z1 10p1

Straight-line approximation

u (v) �b1 � �tan�1 (v/p1)
Actual

Straight-line approximation

c1 � tan�1 (v/z1)
Actual

90�

60�

30�

0 

�30�

�60�

�90�

v (rad/s)
0.01 0.1 0.5 5 10 501.0

u (v)

c1 � tan�1 (v/z1)

�b1 � �tan�1 (v/p1)

u(v)

u(v)

Figure E.7 � Phase angle plots for a first-order zero and pole.

Figure E.8 � A straight-line approximation of the phase angle plot for Eq. B.1.
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a) Make a straight-line phase angle plot for the
transfer function in Example E.1.

b) Compute the phase angle at 
and .

c) Plot the values of (b) on the diagram of (a).

d) Using the results from Example E.1(e) and (b)
of this example, compute the steady-state out-
put voltage if the source voltage is given by

Solution

a) From Example E.1,

vi(t) = 10 cos (500t - 25 �) V.

1000 rad>s v = 50, 500,u(v)

and

c) See Fig. E.9.

d) We have

and

Thus,

vo(t) = 2.2  cos(500t - 102.54 �) V.

 = -102.54 � .

 = -77.54 �
- 25 �

 uo = u(v) + ui

 = 2.2 V,

 = (0.22)(10)

 Vmo = |H(  j500)|Vmi

 u(  j1000) = -83.72 � .

Example E.2

�120�

�90�

�60�

�30�

0�

30�

60�

90�

1 10 100 1000500505

(�15.25)

(�77.54) (�83.72)

u (v)

c1 � 90�

u(v) � c1 � b1 � b2

�b2 � �tan�1 (v/100)

�b1 � �tan�1 (v/10)

v (rad/s)

Figure E.9 � A straight-line approximation of for Example E.2.u(v)

E.5 Bode Diagrams: Complex Poles 
and Zeros

Complex poles and zeros in the expression for require special atten-
tion when you make amplitude and phase angle plots. Let’s focus on the
contribution that a pair of complex poles makes to the amplitude and
phase angle plots. Once you understand the rules for handling complex
poles, their application to a pair of complex zeros becomes apparent.

H(s)

 =

0.11|jv|
|1 + j(v>10)||1 + j(v>100)|

 l(c1 - b1 - b2) .

 H(  jv) =

0.11(  jv)
[1 + j(v>10)][1 + j(v>100)]

Therefore,

where and 
Figure E.9 depicts the straight-line

approximation of .

b) We have

Thus,

 u(  j500) = -77.54 � ,

 u(  j50) = -15.25 � ,

 H(  j1000) = 0.11l -83.72 �
 .

 H(  j500) = 0.22l -77.54 �
 ,

 H(  j50) = 0.96l -15.25 �
 ,

u(v)
tan-1(v>100).

b2 =c1 = 90 � , b1 = tan-1(v>10),

u(v) = c1 - b1 - b2,
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The complex poles and zeros of always appear in conjugate
pairs. The first step in making either an amplitude or a phase angle plot of
a transfer function that contains complex poles is to combine the conju-
gate pair into a single quadratic term. Thus, for

(E.16)

we first rewrite the product as

(E.17)

When making Bode diagrams, we write the quadratic term in a more con-
venient form:

(E.18)

A direct comparison of the two forms shows that

(E.19)

and

(E.20)

The term is the corner frequency of the quadratic factor, and is the
damping coefficient of the quadratic term. The critical value of is 1. If

, the roots of the quadratic factor are complex, and we use Eq. E.18
to represent the complex poles. If , we factor the quadratic factor
into and then plot amplitude and phase in accordance
with the discussion previously.Assuming that , we rewrite Eq. E.16 as

(E.21)

We then write Eq. E.21 in standard form by dividing through by the poles
and zeros. For the quadratic term, we divide through by , so

(E.22)

from which

(E.23)

where

Before discussing the amplitude and phase angle diagrams associated
with Eq. E.23, for convenience we replace the ratio by a new vari-
able, u. Then

(E.24)

Now we write in polar form:

(E.25)H(  jv) =

Ko

|(1 - u2) + j2zu|lb1
 ,

H(  jv)

H(  jv) =

Ko

1 - u2
+ j2zu

 .

v>vn

Ko =

K

vn
2  .

 H(  jv) =

Ko

1 - (v2>vn
2) + j(2zv>vn)

 ,

 H(s) =

K

vn
2 

1

1 + (s>vn)2
+ 2z(s>vn)

 ,

vn

H(s) =

K

s2
+ 2zvns + vn

2  .

z 6 1
(s + p1)(s + p2)

z Ú 1
z 6 1

z

zvn

zvn = a.

vn
2

= a2
+ b2

s2
+ 2as + a2

+ b2
= s2

+ 2zvns + vn
2

 .

(s + a)2
+ b2

= s2
+ 2as + a2

+ b2.

(s + a - jb)(s + a + jb)

H(s) =

K

(s + a - jb)(s + a + jb)
 ,

H(s)
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from which

(E.26)

and

(E.27)

E.6 Amplitude Plots
The quadratic factor contributes to the amplitude of by means of the
term . Because as , and

as . To see how the term behaves as ranges from 0 to ,
we note that

(E.28)

as ,

(E.29)

and as ,

(E.30)

From Eqs. E.29 and E.30, we conclude that the approximate amplitude plot
consists of two straight lines. For , the straight line lies along the
0 dB axis, and for , the straight line has a slope of .
These two straight lines join on the 0 dB axis at or .
Figure E.10 shows the straight-line approximation for a quadratic factor
with .z 6 1

v = vnu = 1
-40 dB>decadev 7 vn

v 6 vn

-10 log10[u
4

+ 2u2(2z2
- 1) + 1] : - 40 log10 u.

u : q

-10 log10[u
4

+ 2u2(2z2
- 1) + 1] : 0,

u : 0

 = -10 log10[u
4

+ 2u2(2z2
- 1) + 1],

-20 log10|(1 - u2) + j2zu| = -20 log102(1 - u2)2
+ 4z2u2

qvv: qu : q

v: 0u = v>vn, u : 0-20 log10|1 - u2
+ j2zu|

H(  jv)

u(v) = -b1 = -  tan-1 2zu

1 - u2 .

 = 20 log10Ko - 20 log10|(1 - u2) + j2zu|,

 AdB = 20 log10|H(  jv)|

�50

�40

�30

�20

�10

20

0

10

�40 dB�decade

AdB

vn 10vn

v (rad/s)

Figure E.10 � The amplitude plot for a pair of complex poles.
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E.7 Correcting Straight-Line 
Amplitude Plots

Correcting the straight-line amplitude plot for a pair of complex poles
is not as easy as correcting a first-order real pole, because the correc-
tions depend on the damping coefficient . Figure E.11 shows the
effect of on the amplitude plot. Note that as becomes very small, a
large peak in the amplitude occurs in the neighborhood of the corner
frequency . When , the corrected amplitude plot
lies entirely below the straight-line approximation. For sketching pur-
poses, the straight-line amplitude plot can be corrected by locating
four points on the actual curve. These four points correspond to
(1) one half the corner frequency, (2) the frequency at which the ampli-
tude reaches its peak value, (3) the corner frequency, and (4) the fre-
quency at which the amplitude is zero. Figure E.12 shows these
four points.

At one half the corner frequency (point 1), the actual amplitude is

(E.31)

The amplitude peaks (point 2) at a frequency of

(E.32)

and it has a peak amplitude of

(E.33)

At the corner frequency (point 3), the actual amplitude is

(E.34)

The corrected amplitude plot crosses the 0 dB axis (point 4) at

(E.35)

The derivations of Eqs. E.31, E.34, and E.35 follow from Eq. E.28.
Evaluating Eq. E.28 at and , respectively, yields Eqs. E.31
and E.34 Equation E.35 corresponds to finding the value of u that makes

. The derivation of Eq. E.32 requires differen-
tiating Eq. E.28 with respect to u and then finding the value of u where the
derivative is zero. Equation E.33 is the evaluation of Eq. E.28 at the value
of u found in Eq. E.32.

Example E.3 illustrates the amplitude plot for a transfer function with
a pair of complex poles.

u4
+ 2u2(2z2

- 1) + 1 = 1

u = 1.0u = 0.5

vo = vn22(1 - 2z2) = 12vp.

AdB(vn) = -20 log102z.

AdB(vp) = -10 log10[4z
2(1 - z2)].

vp = vn21 - 2z2
 ,

AdB(vn>2) = -10 log10(z
2

+ 0.5625).

z Ú 1>12vn(u = 1)

zz

z
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�50

�40

�30

�10

0

10

20

�20

z � 0.707

z � 0.3

z � 0.1

vn

v (rad/s)

AdB

1

2 3

4

�7

�6

�5

�4

�3

�2

�1

0

1

2

3

AdB

v (rad/s)

vn/2 vp vn v0

Figure E.11 � The effect of on the amplitude plot.z

Figure E.12 � Four points on the corrected amplitude plot for a pair of 
complex poles.
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Compute the transfer function for the circuit shown
in Fig. E.13.

a) What is the value of the corner frequency in radi-
ans per second?

b) What is the value of ?

c) What is the value of the damping coefficient?

d) Make a straight-line amplitude plot ranging from
10 to .

e) Calculate and sketch the actual amplitude in
decibels at , , , and .

f) From the straight-line amplitude plot, describe
the type of filter represented by the circuit in
Fig. E.13 and estimate its cutoff frequency, .vc

vovnvpvn>2
500 rad>s

Ko

d) See Fig. E.14.

e) The actual amplitudes are

Figure E.14 shows the corrected plot.

f) It is clear from the amplitude plot in Fig. E.14
that this circuit acts as a low-pass filter. At the
cutoff frequency, the magnitude of the transfer
function, , is 3 dB less than the maximum
magnitude. From the corrected plot, the cutoff
frequency appears to be about almost
the same as that predicted by the straight-line
Bode diagram.

55 rad>s,

|H(  jvc)|

 AdB(vo) = 0 dB.

 vo = 12vp = 67.82 rad>s,

 AdB(vn) = -20 log10(0.4) = 7.96 dB,

 AdB(vp) = -10 log10(0.16)(0.96) = 8.14 dB,

 vp = 5010.92 = 47.96 rad>s,

 AdB(vn>2) = -10 log10(0.6025) = 2.2 dB,

50 mH 1 �

vi
�

�
vo

�

�

8 mF

(7.96)(8.14)

(0)

�40

�35

�30

�25

�20

�15

�10

�5

0

5 (2.2)
10

�45

AdB

15

v (rad/s)

vn

2
vn v0

Example E.3

Solution
Transform the circuit in Fig. E.13 to the s-domain
and then use s-domain voltage division to get

Substituting the component values,

a) From the expression for , ; there-
fore,

b) By definition, is , or 1.

c) The coefficient of s equals ; therefore

z =

20
2vn

= 0.20.

2zvn

2500>vn
2Ko

vn = 50 rad>s.
vn

2
= 2500H(s)

 H(s) =

2500

s2
+ 20s + 2500

 .

 H(s) =

1
LC

s2
+ ARL B  s +

1
LC

 .

Figure E.13 � The circuit for Example E.3.

Figure E.14 � The amplitude plot for Example E.3.
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E.8 Phase Angle Plots
The phase angle plot for a pair of complex poles is a plot of Eq. E.27. The
phase angle is zero at zero frequency and is at the corner frequency.
It approaches as becomes large. As in the case of the ampli-
tude plot, is important in determining the exact shape of the phase angle
plot. For small values of , the phase angle changes rapidly in the vicinity
of the corner frequency. Figure E.15 shows the effect of on the phase
angle plot.

We can also make a straight-line approximation of the phase angle plot
for a pair of complex poles.We do so by drawing a line tangent to the phase
angle curve at the corner frequency and extending this line until it inter-
sects with the and lines.The line tangent to the phase angle curve
at has a slope of and it
intersects the and lines at and , respec-
tively. Figure E.16 depicts the straight-line approximation for and
shows the actual phase angle plot. Comparing the straight-line approxima-
tion to the actual curve indicates that the approximation is reasonable in
the vicinity of the corner frequency. However, in the neighborhood of 
and , the error is quite large. In Example E.4, we summarize our discus-
sion of Bode diagrams.

u2

u1

z = 0.3
u2 =  4.81zu1 = 4.81-z

-180 �0 �

-2.3>z rad>decade (-132>z degrees>decade),-90 �

-180 �0 �

z

z

z

v(u)-180 �
-90 �

z � 0.707

�180�
0.2 0.4 1.0

u
2 4 8

�165�

�150�

�135�

�120�

�105�

�90�

�75�

�60�

�45�

�30�

�15�

0

15�

z � 0.1

z � 0.3

u (v)

1.6 � 4.81z

1.0 2.0

�180�

�150�

�120�

�90�

�60�

�30�

0

Actual curve

0.62 � 4.81�z

u (v)
440�/decade

(7.67 rad/dec)

v (rad/s)

Figure E.15 � The effect of on the phase angle plot.z

Figure E.16 � A straight-line approximation of the phase
angle for a pair of complex poles.
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vi

40 mF

1 �

�

�

vo

250 mH

�

�

Example E.4

a) Compute the transfer function for the circuit
shown in Fig. E.17.

b) Make a straight-line amplitude plot of
.

c) Use the straight-line amplitude plot to deter-
mine the type of filter represented by this circuit
and then estimate its cutoff frequency.

d) What is the actual cutoff frequency?

e) Make a straight-line phase angle plot of .

f) What is the value of at the cutoff frequency
from (c)?

g) What is the actual value of at the cutoff
frequency?

u(v)

u(v)

H(  jv)

20 log10|H(  jv)|

from which

Note that for the quadratic factor,
The amplitude of in decibels is

and the phase angle is

where

Figure E.18 shows the amplitude plot.

c) From the straight-line amplitude plot in Fig. E.18,
this circuit acts as a low-pass filter. At the cutoff
frequency, the amplitude of is 3 dB less
than the amplitude in the passband. From the
plot, we predict that the cutoff frequency is
approximately .13 rad>s

H(  jv)

 b1 =  tan-1
0.4(v>10)

1 - (v>10)2 .

 c1 =  tan-1(v>25),

u(v) = c1 - b1,

     - 20 log10B 2 1 - a v
10
b2

+ j0.4a v
10
b 2 R  ,

 AdB = 20 log10|1 + jv>25|

H(  jv)
u = v>10.

H(jv) =

|1 + jv>25|lc1

|1 - (v>10)2
+ j0.4(v>10)|lb1

 .

20 log10 �1 � jv/25�

�80

�60

�40

�20

0

20

40

60

AdB

1 10 100 100050050
v (rad/s)

5

AdB � 20 log10�H( j�)�

�20 log10   �1� � j0.4 �  10
v

10
v2

Solution

a) Transform the circuit in Fig. E.17 to the s-domain
and then perform s-domain voltage division to get

Substituting the component values from the cir-
cuit gives

b) The first step in making Bode diagrams is to put
in standard form. Because contains

a quadratic factor, we first check the value of .
We find that and , so

H(s) =

s>25 + 1

1 + (s>10)2
+ 0.4(s>10)

 ,

vn = 10z = 0.2
z

H(s)H(jv)

H(s) =

4(s + 25)

s2
+ 4s + 100

 .

H(s) =

R
Ls +

1
LC

s2
+

R
Ls +

1
LC

 .

Figure E.17 � The circuit for Example E.4.

Figure E.18 � The amplitude plot for Example E.4.
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d) To solve for the actual cutoff frequency, replace s
with in , compute the expression for

, set ,
and solve for . First,

Then,

Solving for gives us

e) Figure E.19 shows the phase angle plot. Note
that the straight-line segment of between
1.0 and does not have the same slope as
the segment between 2.5 and .

f) From the phase angle plot in Fig. E.19, we esti-
mate the phase angle at the cutoff frequency of

to be .

g) We can compute the exact phase angle at the
cutoff frequency by substituting into the
transfer function :

H(  j16) =

4(  j16 + 25)

(  j16)2
+ 4(  j16) + 100

 .

H(s)
s = j16

-65 �16 rad>s

100 rad>s2.5 rad>s u(v)

vc = 16 rad>s.

vc

|H(  jvc)| =

2(4vc)
2

+ 1002

2(100 - vc
2)2

+ (4vc)
2

=

1
12

 .

H(  jv) =

4(  jv) + 100

(  jv)2
+ 4(  jv) + 100

 .

vc

Hmax = 1>12|H(  jvc)| = (1>12 )|H(  jv)|
H(s)jv

Computing the phase angle, we see

Note the large error in the predicted angle. In
general, straight-line phase angle plots do not
give satisfactory results in the frequency band
where the phase angle is changing. The straight-
line phase angle plot is useful only in predicting
the general behavior of the phase angle, not in
estimating actual phase angle values at particu-
lar frequencies.

u(vc) = u(  j16) = -125.0 � .

c1(v)

u (v)

�b1(v)

�180�

�135�

�90�

�45�

0�

45�

90�

135�

1 10 100 100050050
v (rad/s)

u (v)

5

Figure E.19 � The phase angle plot for Example E.4.
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15. tan2a =

2 tana

1 - tan2a

tan(a ; b) =

tana ; tanb
1 < tana tanb

sin2a =

1
2

-

1
2

 cos2a

cos2a =

1
2

+

1
2

 cos2a

cos2a = 2 cos2a - 1 = 1 - 2 sin2a

sin2a = 2 sina cosa

2 sina cosb = sin(a + b) + sin(a - b)

2 cosa cosb = cos(a - b) + cos(a + b)

2 sina sinb = cos(a - b) - cos(a + b)

cosa - cosb = -2 sinaa + b

2
b  sinaa - b

2
b

cosa + cosb = 2 cosaa + b

2
b  cosaa - b

2
b

sina - sinb = 2 cosaa + b

2
b  sinaa - b

2
b

sina + sinb = 2 sin 
a + b

2
 cos 
a - b

2

cos(a ; b) = cosacosb < sinasinb

sin(a ; b) = sinacosb ; cosasinb

An Abbreviated Table of
Trigonometric IdentitiesFAppendix



This page intentionally left blank 



759

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.
L

x2 cosax dx =  
2x

a2  cosax +  
a2x2

- 2

a3  sinax

L
x2 sinax dx =

2x

a2  sinax -  
a2x2

- 2

a3  cosax

L

q

0

sinax
x

  dx = b p2  , a 7 0;
-p
2  , a 6 0

L

q

0

a dx

a2
+ x2 =  c

p
2  , a 7 0;
0, a = 0;
-p
2  , a 6 0

L
cos2ax dx =

x

2
+

 sin2ax

4a

L
sin2ax dx =

x

2
-

 sin2ax

4a

L
sinax cosbx dx = -

cos(a - b)x

2(a - b)
-

cos(a + b)x

2(a + b)
 , a2

Z  b2

L
cosax cosbx dx =

sin(a - b)x

2(a - b)
+

sin(a + b)x

2(a + b)
 , a2

Z b

L
sinax sinbx dx =

 sin(a - b)x

2(a - b)
-

sin(a + b)x

2(a + b)
 , a2

Z  b2

L
dx

(x2
+ a2)2 =

1

2a2 a x

x2
+  a2 +

1
a

 tan-1 
x
a
b

L
dx

x2
+ a2 =

1
a

 tan-1 
x
a

L
eax cosbx dx =

eax

a2
+ b2 (a cosbx + b sinbx)

L
eax sinbx dx =

eax

a2
+ b2 (a sinbx - b cosbx)

L
x cosax dx =

1

a2 cosax +

x
a

 sinax

L
x sinax dx =

1

a2 sinax -

x
a

 cosax

L
x2eax dx =

eax

a3 (a2x2
- 2ax + 2)

L
xeax dx =

eax

a2 (ax - 1)

An Abbreviated Table 
of IntegralsGAppendix
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18.

19.
L

eax cos2 bx dx =

eax

a2
+ 4b2 B(a cosbx + 2b sinbx) cosbx +  

2b2

a
R

L
eax sin2 bx dx =

eax

a2
+ 4b2 B(a sinbx - 2b cosbx) sinbx +

2b2

a
R



761

Common Standard
Component Values

AppendixH
Resistors (5% tolerance)

10 100 1.0 k 10k 100k 1.0 M

120 1.2 k 12 k 120 k

15 150 1.5 k 15 k 150 k 1.5 M

180 1.8 k 18 k 180 k

22 220 2.2 k 22 k 220 k 2.2 M

270 2.7 k 27 k 270 k

33 330 3.3 k 33 k 330 k 3.3 M

390 3.9 k 39 k 390 k

47 470 4.7 k 47 k 470 k 4.7 M

560 5.6 k 56 k 560 k

68 680 6.8 k 68 k 680 k 6.8 M

[Æ]

Capacitors

10 pF 22 pF 47 pF

100 pF 220 pF 470 pF

0.001 0.0022 0.0047 

0.01 0.022 0.047 

0.1 0.22 0.47  

1 2.2 4.7  

10 22 47  

100 220 470  mFmFmF

mFmFmF

mFmFmF

mFmFmF

mFmFmF

mFmFmF

Inductors

Value Current Rating

10 3 A

100 0.91 A

1 mH 0.15 A

10 mH 0.04A

mH

mH
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Answers to Selected Problems

Chapter 1

1.1 104.4 gigawatt-hours

1.5 0.10 mm

1.12 [a] −400 W; power is being delivered by the
box

[b] Entering

[c] Gaining

1.19 [a] 937.5 mW

[b] 1.875 mJ

1.24 [a] 223.80 W

[b] 4 J

1.34
∑

Pdel =
∑

Pabs = 2280 W

Chapter 2

2.6 [a] 20 V

[b] 8 W (absorbed)

2.12 [a] −16 mA

[b] 640 mW

[c] 16 mA; 640 mW

2.15 100 Ω resistor

2.19 [a] 1.2 A, 0.3 A

[b] 120 V

[c]
∑

Pdel =
∑

Pabs = 180 W

2.29 [a] 20 A in parallel with 5 Ω

[b] 320 W

2.33 15 V, 1.4167 W

2.42 1800 W, which is 1/2 the power for the
circuit in Fig. 2.41

Chapter 3

3.2 [a] 576 W, 288 W, 192 W, 384 W

[b] 1440 W

[c]
∑

Pdel =
∑

Pabs = 1440 W

3.5 [a] 12 kΩ, 900 Ω, 30 Ω, 120 Ω

[b] 27 mW, 810 mW, 270 W, 108 mW

3.12 [a] 66 V

[b] 1.88 W, 1.32 W

[c] 17,672 Ω, 12,408 Ω

3.14 [a] 1200 Ω, 300 Ω

[b] 1 W

3.26 [a] 150 mA

[b] 5.4 V

[c] 3.6 V

[d] 1 V

3.34 7.5 A

3.37 [a] 49,980 Ω

[b] 4980 Ω

[c] 230 Ω

[d] 5 Ω

3.51 [a] 1500 Ω

[b] 28.8 mA

[c] 750 Ω, 276.48 mW

[d] 1000 Ω, 92.16 mW

3.60 [a] 80 Ω

[b] 279 W

3.62 2.4 A, 72.576 W

3.73 [a] 0.2, 0.75

[b] 384, 200

763



Chapter 4

4.2 [a] 9

[b] 4

[c] 4

[d] Bottom left-most mesh cannot be used;
two meshes sharing dependent source
must be combined

4.5 [a] 2

[b] 5

[c] 7

[d] 1, 4, 7

4.11 [a] −6.8 A, 2.7 A, −9.5 A, 2.5 A, −12 A,

[b] 3840 W

4.13 120 V, 96 V

4.18 750 W

4.22 [a] −37.5 V, 75 W

[b] −37.5 V, 75 W

[c] Part (b), fewer equations

4.26 −20 V

4.32 [a] 0.1 A, 0.3 A, 0.2 A

[b] 0.38 A, 0.02 A, −0.36 A

4.40 2700 W

4.43 [a] 2 mA

[b] 304 mW

[c] 0.9 mW

4.49 525 W

4.54 [a] Mesh current method

[b] 4 mW

[c] No

[d] 200 mW

4.62 [a] −0.85 A

[b] −0.85 A

4.68 1 mA down in parallel with 3.75 k Ω

4.72 [a] 51.3 V

[b] −5%

4.79 150 Ω

4.88 2.5 Ω and 22.5 Ω

4.93 [a] 50 V

[b] 250 W

4.105 39.583 V, 102.5 V

Chapter 5

5.5 −1 mA

5.11 [a] 0 ≤ σ ≤ 0.40

[b] 556.25 μA

5.13 0 ≤ Rf ≤ 60 kΩ

5.20 [a] 10.54 V

[b] −4.55 V ≤ vg ≤ 4.55 V

[c] 181.76 kΩ

5.27 [a] −15.1 V

[b] 34.3 kΩ

[c] 250 kΩ

5.30 [a] 16 V

[b] −4.2 V ≤ vb ≤ 3.8 V

5.34 2994 Ω ≤ Rx ≤ 3006 Ω

5.44 [a] −19.9844

[b] 736.1 μV

[c] 5003.68 Ω

[d] −20, 0, 5000 Ω

5.49 [a] 2 kΩ

[b] 12 mΩ
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Chapter 6

6.2 [a] i = 0 t ≤ 0
i = 4tA 0 ≤ t ≤ 25 ms
i = 0.2 − 4t A 25 ≤ t ≤ 50 ms
i = 0 50 ms ≤ t

[b] v = 0 t < 0
v = 2 V 0 < t < 25 ms
v = −2 V 25 < t < 50 ms
v = 0 50 ms < t

p = 0 t ≤ 0
p = 8tW 0 ≤ t < 25 ms
p = 8t − 0.4 W 25 < t ≤ 50 ms
p = 0 50 ms ≤ t

w = 0 t ≤ 0
w = 4t2 J 0 ≤ t ≤ 25 ms
w = 4t2 − 0.4t

+ 10 × 10−3 J 25 ≤ t ≤ 50 ms
w = 0 50 ms ≤ t

6.8

t (ms) 

25020015050

v (V)

2

1.5

1

0.5

0
0

�0.5

�1.5

�2

�1

100

t (ms)

250200150100500
0

0.1

0.2

0.3

0.4

0.5

i (A)

6.16

1 32 4

i (mA)

t (s)

8

6

4

2

0

�2

�4

�8

�6

6.21 [a] −50 × 104t + 15 V

[b] 106t V

[c] 1.6 × 106t − 12 V

[d] 52 V

[e]

0
0

10
20
30
40
50
60

10 20 30 40 50

t (ms)

v (V)

6.27 5 nF with an initial voltage drop of +15 V;
10μF with an initial voltage drop of +25 V

6.31 [a] −20e−25t V, t ≥ 0

[b] −16e−25t + 21 V, t ≥ 0

[c] −4e−25t − 21 V, t ≥ 0

[d] 320 μJ

[e] 2525μJ

[f ] 2205μJ

[g] 2525 − 320 = 2205

6.39 [a] 0.2
di2
dt

+ 10i2 = −0.5
dig
dt

[b] 0.2
di2
dt

+ 10i2 = 5e−10t and

−0.5
dig
dt

= 5e−10t

[c] −53.125e−10t + 6.25e−50t V, t > 0

[d] −46.875 V

6.46 [a] 50 mH, 2.4

[b] 0.2 × 10−6 Wb/A, 0.2 × 10−6 Wb/A
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6.50 0.8 nWb/A, 1.2 nWb/A

6.53 [a] (2.1, 4.3); (3.2, 2.5); (2.1, 2.5);
(3.2, 4.3)

[b] Zoom in

[c] Zoom out

Chapter 7

7.3 [a] 0.5 A

[b] 2 ms

[c] 0.5e−500t A, t ≥ 0; −80e−500t V, t ≥ 0+;
−35e−500t V, t ≥ 0+

[d] 35.6%

7.9 [a] 0 A, 100 mA, 0 V

[b] 400 mA, 100 mA, −20 V

[c] 500 mA, 0 A, 0 V

[d] 0.1e−4000t A

[e] 0.5 − 0.1e−4000t A

[f ] −20e−4000t V

7.19 [a] −10e−5000t A t ≥ 0

[b] 80 mJ

[c] 1.498τ

7.23 [a] 80e−375t V t ≥ 0

[b] 1.6e−375t mA, t ≥ 0+

7.29 [a] 8 kΩ

[b] 0.25μF

[c] 2 ms

[d] 648μJ

[e] 1139 μs

7.36 [a] −0.8 + 2.4e−4000t A, t ≥ 0;
41.6 + 19.2e−4000t V, t ≥ 0

[b] −48 V, 60.8 V

7.47 17.33 ms

7.53 [a] 90 V

[b] −60 V

[c] 1000μs

[d] 916.3μs

7.60 3.67 ms

7.68 [a] 40 − 40e−5000t mA, t ≥ 0

[b] 10e−5000t V, t ≥ 0+

[c] 16 − 16e−5000t mA, t ≥ 0

[d] 24 − 24e−5000t mA, t ≥ 0

[e] Yes

7.72 −5.013 V

7.80 −5 V, 0 ≤ t ≤ 5 s;
−5e−0.1(t− 5) V, 5 s ≤ t < ∞

7.88 83.09 ms

7.94 [a]
1

RC

∫ t

0
(vb − va) dy

[b] Output is the integral of the difference
between vb and va, scaled by a factor of
1/RC

[c] 120 ms

7.105 73 beats per minute

Chapter 8

8.4 [a] −10,000 rad/s, −40,000 rad/s

[b] Overdamped

[c] 3125 Ω

[d] −16,000 + j12,000 rad/s,
−16,000 − j12,000 rad/s

[e] 2500 Ω

8.7 [a] 1.25 H, 125 μF, −200 V/s, 5 V

[b] (2000t − 75)e−80t mA, t ≥ 0+

8.11 100e−400t cos 300t −
800e−400t sin 300t V, t ≥ 0

8.13 −300e−250t + 400e−1000t V, t ≥ 0

8.28 2 +
1
3
e−400t − 4

3
e−1600t A, t ≥ 0

8.39 8 kΩ, 2 H, 7.5 mA, 0

8.50 20 − 10,000te−500t − 20e−500t V, t ≥ 0

766 Answers to Selected Problems



8.56 [a] 25e−30,000t sin 40,000t V

[b] 23.18μs

[c] 9.98 V

[d] 100.73e−6000t sin 49,638.7t V, 29.22μs,
83.92 V

8.63 [a] 0 ≤ t ≤ 0.5−s :

vo1 = −1.6tV, vo = 10t2 V

0.5+s ≤ t ≤ tsat :

vo1 = 0.8t − 1.2 V, vo = −5t2 + 15t − 3.75 V

[b] 3.5 s

8.67 [a] 6.33 pF

[b] 5.03 sin 4π × 109t V, t ≥ 0

Chapter 9

9.3 [a] 25 V

[b] 200 Hz

[c] 1256.64 rad/s

[d] 1.0472 rad

[e] 60◦

[f ] 5 ms

[g] 416.67μs

[h] 25 cos 400πt V

[i] 2.92 ms

9.7
Vm

2

9.11 [a] 28.38 cos(200t + 170.56◦)

[b] 141.33 cos(50t − 94.16◦)

[c] 16.7 cos(5000t + 170.52◦)

[d] 0

9.17 [a] 160 + j120 mS

[b] 160 mS

[c] 120 mS

[d] 10 A

9.29 −120 cos 8000t V

9.35 500 rad/s

9.42 2/3 Ω

9.48 6 + j4 A in parallel with −20 + j20 Ω

9.54 188.43/− 42.88◦ V

9.58 80/90◦ V

9.64 25 sin 5000t V

9.77 [a] 0.3536

[b] 2 A

9.84 [a] 247 + j7.25 V

[b] −j32 Ω, 241 + j8 V

[c] −26.90 Ω

9.88 [a] 0 A

[b] 0.436/0◦ A

[c] Yes

Chapter 10

10.1 [a] 129.41 W(abs), 482.96 VAR(abs)

[b] −11.65 W(del), 43.47 VAR(abs)

[c] −63.39 W(del), −135.95 VAR(del)

[d] 257.12 W(abs), −306.42 VAR(del)

10.2 [a] No

[b] Yes

10.7 5 mW

10.15 [a] 15.81 V(rms)

[b] 62.5 W

10.20 [a] −6.4 W, −4.8 VAR, 8 VA

[b]
∑

Pabs = 6.4 W =
∑

Pdev

[c]
∑

Qabs = 4.8 VAR =
∑

Qdev

10.30 [a] 0.96 (lag), 0.28; 0.8 (lead), −0.6;
0.6 (lead), −0.8

[b] 0.74 (lead), −0.67

10.41 [a] 2000 − j2000 Ω
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[b] 3.125 mW

[c] R = 1.8 kΩ and C = 47 nF gives 3.03 mW

10.48 [a] 360 mW

[b] 4000 Ω, 0.1 μF

[c] 443.1 mW

[d] 450 mW

[e] 4000 Ω, 66.67 nF

[f ] Yes

10.56 [a] −21/0◦ V(rms)

[b] 63 W

[c] 9.72%

10.62 [a] 125

[b] 26.28125 W

10.67 [a] 15.63 kWh

[b] 11.72 kWh

[c] 9.16 kWh

[d] 6.64 kWh

Chapter 11

11.1 [a] abc

[b] acb

11.11 [a] 15.24 A(rms)

[b] 6583.94 V(rms)

11.12 [a] 5/− 36.87◦ A(rms), 5/83.13◦ A(rms),
5/− 156.87◦ A(rms)

[b] 216.51/− 30◦ V(rms), 216.51/90◦ V(rms),
216.51/− 150◦ V(rms)

[c] 122.23/− 1.36◦ V(rms), 122.23/118.64◦

V(rms), 122.23/− 121.36◦ V(rms)

[d] 211.72/− 31.36◦ V(rms), 211.72/88.64◦

V(rms), 211.72/− 151.36◦ V(rms)

11.15 21.64/121.34◦ A(rms)

11.16 159.5/29.34◦ V(rms)

11.25 6120/36.61◦ VA

11.27 [a] 1833.46/22◦ VA

[b] 519.62 V(rms)

11.35 6990.62 V(rms)

11.45 [a] proof

[b] 2592 VAR, −2592 VAR, 3741.23 VAR,
−4172.80 VAR

11.54 [a] 16.71 μF

[b] 50.14μF

Chapter 12

12.3 [a] −3(t+5)u(t+5)+30u(t)+3(t−5)u(t−5)

[b] 5(t + 4)u(t + 4) − 10(t + 2)u(t + 2) +
10(t − 2)u(t − 2) − 5(t − 4)u(t − 4)

12.10
2
9

12.20 [a]
1

(s + a)2

[b]
ω

s2 + ω2

[c]
ω cos θ + s sin θ

s2 + ω2

[d]
1
s2

[e]
sinh θ + s[cosh θ]

(s2 − 1)

12.22 [a]
sω

s2 + ω2

[b]
−ω2

s2 + ω2

[c] 2

[d] Check

12.26
100s2

(s2 + 16s + 100)(s2 + 400)

12.40 [a] [10e−5t − 4e−8t]u(t)

[b] [15 − 6e−3t + 11e−7t]u(t)

12.41 [a] [20e−7t sin 14t]u(t)

[b] [5 + 7.2e−5t cos(8t − 146.31◦)]u(t)
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[c] [10e−6t + 5.66e−2t cos(4t + 45◦)]u(t)

[d] [9.25e−5t cos(3t − 40.05◦) +
7.21e−4t cos(2t + 168.93◦)]u(t)

12.43 [b] [10te−t cos(t−90◦)+10e−t cos(t−90◦)]u(t)

[c] 25δ(t) + [8e−6t + 12e−9t]u(t)

12.50 [a] 6, 0

[b] 20, 15

[c] 15, 0

[d] 2, 9

12.55 0.947

Chapter 13

13.4 [a]
[s2 + 32,000s + 4 × 108]

s
[b] Zeros at −16,000 + j12,000 rad/s,

−16,000 − j12,000 rad/s;
Pole at 0

13.5 [a]
16 × 109s

s2 + 2 × 106s + 64 × 1010

[b] Zero at z1 = 0;
Poles at −400 krad/s, −1600 krad/s

13.11 [a]

0.5 S

100 Ω3200
S

75
S Io

�

�

[b]
150

(s + 40)(s + 160)
[c] .25e−40t − 1.25e−160t u(t) A

13.14 [a]

R 1/sC

IL

vo

+

_

sLgC r
s

where R = 1 kΩ, C = 6.25 nF
= −240 V, L = 16 mH, = −0.24A

[b]
−240(s + 160,000)

s2 + 160,000s + 1010

[c]
0.24(s + 97,500)

(s2 + 160,000s + 1010)

[d] [400e−80,000t cos(60,000t + 126.87◦)]u(t) V

[e] [0.5e−80,000t cos(60,000t − 16.26◦)]u(t) A

13.19 [a] [1 − 1e−250t cos 250t]u(t) A

[b] 141.42e−250t cos(250t − 45◦)u(t) V

[c] Yes

13.25 [a] [35 + 5.73e−t cos(7t + 167.91◦)]u(t) V

[b] Yes

13.35 63.25e−150t cos(50t + 71.57◦)u(t) mA

13.37 [a] (−0.5e−40t + 0.5e−1600t)u(t) A

[b] (0.5e−400t − 0.5e−1600t)u(t) A

13.43 [a]
32 × 104(s + 320)

s(s + 400)(s + 600)

[b] [426.67 + 320e−400t − 746.67e−600t]u(t) V

13.52 [a]
25

s + 25
; no zeros, pole at −25 rad/s

[b]
s

s + 25
; zero at 0, pole at −25 rad/s

[c]
s

s + 2000
; zero at 0, pole at −2000 rad/s

[d]
2000

s + 2000
; no zeros, pole at −2000 rad/s

[e]
0.2s

s + 3200
; zero at 0, pole at −3200 rad/s

13.60 (1 − e)e−t V

13.77 [a]
s(s + 30,000)

(s + 5000)(s + 8000)

[b] (5e−5000t − 4.4e−8000t)u(t) V

[c] 4.42 cos(10,000t − 6.34◦) V

13.78 4.4 cos(20t − 33.57◦) V

13.88 [a] 0.8 A

[b] 0.6 A

[c] 0.2 A

[d] −0.6 A

[e] 0.6e−2×106tu(t) A
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[f ] −0.6e−2×106tu(t) A

[g] [−1.6 × 10−3δ(t)] − [7200e−2×106tu(t)] V

13.92 [a] 0 A, 25
√

2 A

[b]
1440π(122.92

√
2s − 3000π

√
2)

(s + 1475π)(s2 + 14,400π2)
+

300
√

2
s + 1475π

, 178.82
√

2e−1475πt +

122.06
√

2 cos(120πt + 6.85◦) V, 300
√

2 V

[c] 122.06
√

2 cos(120πt + 6.85◦) V

[d]
vo (V)

t (ms)

500

400

300

200

100

0

�100

�200

2.5 7.5 10 12.5 15 17.5 205

Chapter 14

14.1 [a] 3819.72 Hz

[b] 0.7071/− 45◦, 0.9923/− 7.125◦,
0.124/− 82.875◦

[c] 14.142 cos(24,000t − 45◦) V,
19.846 cos(3000t − 7.125◦) V,
2.48 cos(192,000t − 82.875◦) V

14.7 [a] 31.42 Ω

[b] 3419.98 Hz

[c] With 33 Ω resistor, 5252.11 Hz

14.13 [a] 5.305 kΩ

[b] 333.86 Hz

14.17 [a] 150 Ω

[b] 680 Ω

14.25 [a] 5 kΩ, 50 mH

[b] 3.52 kHz, 2.88 kHz

[c] 636.62 Hz

14.34 4 kΩ

14.42 [a] 397.89 Ω, 3.17 mH

[b] 4.42 kHz, 3.62 kHz

[c] 800 Hz

14.51 [a] 0.39 H, 0.1 μF

[b] |V697Hz| = |V941Hz| = 0.707|Vpeak|;
|V770Hz| = |V852Hz| = 0.948|Vpeak|

[c] 0.344|Vpeak|

Chapter 15

15.1 [a] 67.16 Ω, 212.21 Ω

[b]

212.21 �

vo

�

�

67.16 �
�

�

750 nF

vi

�

�

15.8 [a] 5.1 kΩ, 25.55 kΩ

[b]

25.55 k�

vo

�

�

5.10 k�
�

�
3.9 nF

vi

�

�

15.15 [a] 1 H, 0.05 Ω, 1 F

[b] 2.5 H, 5 kΩ, 250 pF

[c]

vo

�

�

2.5 H

vi

�

�

5 k�

250 pF
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15.23 [a] 20 mH, 2.5μF

[b] 13.42 cos(10,000t − 166.57◦) mA

15.30 38.52 Hz, 1038.52 Hz, 30.65 Ω, 826.43 Ω

15.31 RL = 21.18 kΩ, RH = 1.18 kΩ, if Ri = 1 kΩ
then Rf = 6 kΩ

15.34 [a] 3

[b] −32.65 dB

15.49 [a] R1 = 1.99 kΩ, R2 = 39.63 kΩ,
R3 = 39.79 kΩ

[b]

�

�

20 pF

20 pF

39.79 k�

39.63 k�

1.99 k�

�

�

vi

�

�

vo

15.60 [a] See component values in part (b)

[b]

�

�

�

�

39.8 �

79.6 �

77.6 �

2 �79.6 �

0.5 mF

�

�

1 mF

0.5 mF

vi

�

�

vo

[c]
s2 + 64 × 106π2

s2 + 800πs + 64 × 106π2

15.62 R1 = 100 kΩ, R2 = 900 kΩ, C1 = 2.36 nF

Chapter 16

16.1 [a] 785.4 rad/s, 78.54 krad/s

[b] 125 Hz, 12.5 Hz

[c] 25 V, 0

[d] aka =
100
πk

sin
πk

2
, bka = 0;

akb =
120
πk

sin
πk

2
for k odd, akb = 0

for k even, bkb =
120
πk

[1 − cos(kπ)]

for k odd, bkb = 0 for k even

[e] 25 +
100
π

∞∑
n=1

(
1
n

sin
nπ

2
cosnωot

)
V,

120
π

∞∑
n=1,3,5

1
n

(
sin

nπ

2
cosnωot + 2 sin nωot

)
V

16.3
75
π

+ 12.5 cos ωot −
150
π

∞∑
n=2,4,6

cos(nπ/2) cos(nωot)
(1 − n2)

V

16.11 [a] π rad/s

[b] yes

[c] no

[d] yes

16.22 [a] 10
∞∑

n=1,3,5,...

√
(nπ)2 + 4

n2
cos(nω0t − θn) A,

θn = tan−1 nπ

2
[b] 26.23 A

16.28 [a] 1.9999 cos(200t−0.48◦)+0.6662 cos(600t+
177.85◦) + 0.286 cos(1400t − 176.66◦) V

[b] Fifth harmonic

16.35 1.85 W

16.39 [a] 117.55 V(rms)

[b] −2.04%

[c] 69.2765 V(rms), −0.0081%

16.44 C0 =
Vm

2
, Cn = j

Vm

2nπ
, n = ±1,±2, . . .
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16.50 [a]

3.75An(A)

1.89

122.48

101.98 97.26
90 90 90

0.542 0.398 0.321 0.265

0.796

0 �0 2�0 3�0 4�0 5�0 6�0
n�0

0 �0 2�0 3�0 4�0 5�0 6�0
n�0

3

4

2.5

1.5

0.5

140
��

120

100

80

60

40

20

0

0

1

2

3.5

[b]

0.1325 0.161 0.199 0.1325

6 n

n

5430

0.5

1

1.5

2.5

2

3

3.5

4

1 2

0.161 0.199 0.271 0.271 
0.398

0.945 0.945

0.398

�6 �5 �4 �3 �1�2

65431 2�6 �5 �4 �3 �1�2

3.75

150

122.48

101.98 97.26

�122.48

�101.98�97.26

90 90 90100

50

�150

�100

�50

�90�90�90

|C
n
| (A)

��

16.57 [a]
400
313

, 2000 rad/s, 16 × 108 rad2/sec2

[b] −80 cos ωot − 0.50 cos(3ωot + 91.07◦) +
0.17 cos(5ωot + 90.60◦) V

Chapter 17

17.1 [a] j
2A
τ

[
ωτ cos(ωτ/2) − 2 sin(ωτ/2)

ω2

]

[b] 0

[c]

�50�100�150�200 50 100 150 200
�

0

3

2

5

4

|F(�)|

1

17.5 [a]
2(a2 − ω2)
(a2 + ω2)2

[b] −j48aω
(a2 − ω2)
(a2 + ω2)4

[c]
a

a2 + (ω − ω0)2
+

a

a2 + (ω + ω0)2

[d]
−ja

a2 + (ω − ω0)2
+

ja

a2 + (ω + ω0)2

[e] e−jωt

17.19 [a]
τ

2
· sin[(ω + ω0)τ/2]

(ω + ω0)(τ/2)
+

τ

2
· sin[(ω − ω0)τ/2]

(ω − ω0)(τ/2)
[b] F (ω) → π[δ(ω − ω0) + δ(ω + ω0)]

17.28 [a] [416.67e−20t − 250e−100t]u(t) +
166.67e100tu(−t) V

[b] 166.67 V

[c] 166.67 V

[d] (416.67e−20t − 250e−100t)u(t) V

[e] Yes

17.30 1 cos(5000t + 90◦) A
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17.40 [a] [−24e−t + 32e−t/2]u(t) + 8etu(−t) V

[b]

0 1�1�2�3�4�5 2 3 4 5

20

10

60

50

40

30

|vg(�)|

�

[c]

0�1�2�5 �4 �3 21 3 4 5

40

30

20

10

50

�

|vo(�)|

[d] 900 J

[e] 320 J

[f ] 95.95%

[g] 99.75%

Chapter 18

18.2 z11 = 13 Ω; z12 = 12 Ω;
z21 = 12 Ω; z22 = 16 Ω

18.10 a11 = −4 × 10−4; a12 = −20 Ω;
a21 = −0.5 μS; a22 = −0.02

18.13 g11 = 12.5 μS; g12 = 1.5;
g21 = −250; g22 = 50 MΩ

18.14 [a] y11 = 20 μS; y12 = 30 nS;
y21 = 5 μS; y22 = 20 nS

[b] y11 = 20μS; y12 = 30 nS;
y21 = 5 μS; y22 = 20 nS

18.21 a11 = 3; a12 = 40 Ω; a21 = 80 + j60 mS;
a22 = 2.4 + j0.8

18.31 [a] 28 V(rms)

[b] 11.20 mW

[c] 2.88 μW

18.33 12.5

18.38 3.75 V
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A
a-, b-, and c-phase voltage, 398–399, 403, 417
Active circuit element, 27
Active filter circuits, 556–601

bandpass filters, 564–568, 583–586, 592–593
bandreject filters, 568–571, 583, 586–589, 592–593
bass volume control, 557, 589–591
block diagrams, 565–566
Bode plots, 558–561
broadband filters, 565–571, 592
Butterworth filters, 576–584, 592–593
cascading, 564–574, 592
first-order, 558–571
frequency response plots, 558–561
higher-order, 571–584, 592–593
high-pass filters, 560–561, 583, 592
low-pass filters, 522–530, 548, 558–560, 572–574,

576–580, 592–593
narrowband filters, 584–589, 593
op amp filters, 556–601
prototype filters, 559–564, 592
scaling, 562–564, 592

Adjoint of a matrix, 713–714
Admittance (Y), 322, 345
Ammeter, 66–67, 76
Amplifier circuits, 98–99, 105–106, 118–119, 144–173,

241–244, 246, 289–293, 295, 677, 695
analysis of, 98–99, 105–106, 118–119, 241–244, 289–293
black box, 677, 695
integrating, 241–244, 246, 289–293, 295
mesh-current method for, 105–106
node-voltage method for, 98–99
operational (op amp), 144–173
responses and, 241–244, 246, 289–293, 295
Thévenin equivalent in, 118–119

Amplitude modulation, 657
Amplitude plots, 740–745, 749–752
Amplitude spectrum, 628–630, 645–646
Analog meters, 67, 76
Aperiodic functions, 644–646
Apparent power, 368, 384
Appliance ratings, 365
Arcing, 176
Asterisk (*) notation, 489
Attenuation, 520
Average power (P), 361–365, 371–373, 378, 384, 408–409,

413–415, 417, 621–624, 633
appliance ratings, 365
capacitive circuits, 363

equations for, 371–373
Fourier series analysis for, 621–624, 633
inductive circuits, 362–363
instantaneous, 362
maximum power ( ) transfer, 378
measurement of, 413–415, 417
periodic functions, calculations with, 621–624, 633
power factor (pf), 363, 384
resistive circuits, 362
root-mean-square (rms) value, 366–367
sinusoidal steady-state calculations of, 361–365,

371–373, 384
balanced three-phase circuits, 408–409, 413–415, 417
two-wattmeter method, 413–415, 417
wye (Y) connected loads, 408–409

B
Balanced three-phase circuits, 396–425

average power in, 413–415, 417
circuit symbols for, 399–400, 405
complex power in, 409
conditions for, 401
delta ( ) connected loads, 409–410
electrical power, transmission and distribution of,

396–397, 416–417
instantaneous power in, 410
Kirchhoff’s laws for, 402–403, 406
line current, 403, 406–407
line voltage, 402–404
neutral terminal for, 399
phase current, 403, 405–407
phase voltage, 398, 402–404
power calculations in, 408–413, 417
single-phase equivalent circuits, 402–403, 417
sinusoidal voltage phases for, 398–399, 417
sources of three-phase voltage, 399–400
two-wattmeter method for power measurement,

413–415, 417
unspecified loads, 412
voltages ( ), 398–405, 417
wye (Y) connected loads, 408–409
wye-delta (Y- ) circuit analysis, 405–407
wye-wye (Y-Y) circuit analysis, 400–405, 417

Bandpass filters, 523, 534–543, 549, 564–568,
583–586, 592–593

active filter circuits, 564–568, 583–586, 592–593
bandwidth ( ), 535, 537, 549
Bode plot, components from, 564–565
broadband, 565–571, 592

b

¢

v

¢

Pmax
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Bandpass filters (Continued)
Butterworth, 583, 593
cascading, 564–568
center (resonant) frequency ( ), 534–537, 549
cutoff frequency ( ), 537, 549
frequency response plots, 523, 535
high-Q filters, 584–586, 603, 630–632
narrowband, 584–586
operational amplifier (op amp), 564–568, 583–586,

592–593
passive filter circuits, 523, 534–543, 549
qualitative analysis, 535–536
quality factor (Q), 535, 538, 549, 584–585
quantitative analysis, 536–538
relationship between frequency and time domains, 543
RLC circuits as, 535–543
transfer function H(s) for, 542, 549, 569, 584

Bandreject filters, 523, 543–547, 549, 568–571, 583,
586–589, 592–593

active filter circuits, 568–571, 583, 586–589, 592–593
bandwidth ( ), 545–546
Bode plot, components from, 568–569
Butterworth filters, 583, 593
center (resonant) frequency ( ), 545–546
cutoff frequency ( ), 545–546
frequency response plots, 523, 544
high-Q filters, 586–589
narrowband filters, 586–589
operational amplifier (op amp) filters, 568–571, 583
passive filter circuits, 523, 543–547, 549
qualitative analysis, 544
quantitative analysis, 544–547
quality factor (Q), 545
series RLC circuit as, 543–547
transfer function H(s) for, 544–545, 547, 549, 569
twin-T notch filter, 586–589

Bandwidth ( ), 535, 537, 545–546, 549
Bass volume control, 557, 589–591
Black box amplifier, 677, 695
Black box concept, 58
Bode plots, 558–561, 564–565, 572, 739–755

active filter analysis using, 558–561, 564–565
amplitude, 740–745, 749–752
cascading identical filters, 572
complex poles and zeros, 747–749
correcting, 750–752
frequency response, 558–561
op-amp filter components from, 564–565
phase angle, 745–474, 753–755
real, first order poles and zeros, 739–740
straight-line amplitude, 740–744, 750–752
straight-line phase angle, 745–747

Branch, defined, 90–91
Broadband filters, 565–571, 592
Butterworth filters, 576–574, 592–593

bandpass, 583, 593
bandreject, 583, 593

b

vc

vc

b

vc

vo

design of circuits, 577–579
high-pass, 583, 592–593
low-pass, 576–582, 594–595
order of cascading, 580–582
transfer function H(s), 576–579, 583, 592

C
Capacitance (C), 174, 182, 187–189, 200–203

circuit parameter of, 174, 182, 202
displacement current, 182
equivalent initial voltage, 188
series-parallel combinations, 187–189, 203
terminal equations for, 182–186, 203
touch screens, 200–202

Capacitive circuits, power calculations for, 363
Capacitors, 174, 182–189, 202–203, 286–287, 317–318,

467–468, 496–497, 504, 761
behavior of, 174
circuit symbol for, 182
component values, 761
current (i), 182–185, 202–203
current to voltage (i- ) relationships, 182–183, 318
displacement current, 182
energy (w) in, 184–186, 202
frequency domain, 317–318
impulse function (I) in, 496–497
Laplace transform used for, 467–468, 496–497, 504
power (p) in, 183–186, 202
s-domain, 467–468, 504
series-parallel combinations, 187–189, 203
series RLC voltage step response, 286–287
switching operation, 496–497
terminal equations for, 182–186, 203, 467–468
touch screens, 175, 200–202
voltage ( ), 183–186, 202–203
voltage to current ( -i) relationships, 183, 317–318

Cascade connections, 289–293, 295, 564–568, 572–575,
578–584, 592–593, 692–694

active filters, 564–568, 572–575, 578–584, 592–593
bandpass filters, 564–568
Butterworth filters, 578–584, 592–593
first-order filters, 564–568
higher-order filters, 572–575
identical filters, 572–575
integrating amplifiers, 289–293, 295
low-pass filters, 572–575, 592
order of filters, 573–574, 580–582, 592–593
transfer function H(s) and, 572–575
two-port circuits, 692–694

Center frequency ( ), 534–537, 545–546, 549
Characteristic determinant, 704
Characteristic equation, 267, 269–270, 286, 295

defined, 267
parallel RLC circuits, 267, 267–270, 295
roots of, 267, 269–270, 286, 295
series RLC circuits, 286, 295

vo

v
v

v
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Circuit analysis, 10–11, 30–33, 37–45, 48, 64–66,
71–73, 75–76, 88–143, 159–162, 319–332, 342–345,
464–519, 687–691

amplifiers, 98–99, 105–106, 118–119
conceptual model, 10–11
current-division, 64–66, 75–76
delta to wye ( to Y) transformations, 71–73, 76,

324–326
dependant-source circuits, 42–45, 95–96, 102–103,

116, 118
frequency domain, 319–332, 345
ideal circuit components, 11
impedance (Z) in series and parallel, 320–324
impulse function in, 496–502, 504
independent-source circuits, 117–118
inverting-amplifier, 160
Kirchhoff’s laws, 37–41, 48, 319–320, 469
Laplace transform in, 464–519
maximum power transfer, 120–122, 129
mesh-current method, 90, 99–109, 129, 331–332
node-voltage method, 90, 93–99, 106–109, 129, 330–331
noninverting-amplifier, 160–161
nonplanar circuits, 90–91
Norton equivalent, 113, 115, 129, 327
Ohm’s law, 30–33, 48, 468–469
operational amplifier (op amp) models, 159–162
phasor diagrams for, 342–344
physical prototype, 11
planar circuits, 90–91
resistive circuits, 71–73, 76
s-domain, 468–502, 504
sensitivity, resistors, 89, 125–128
simultaneous equations for, 91–93
sinusoidal steady-state, 319–332, 342–345
source transformations, 109–113, 115–116, 129, 327–328
superposition for, 122–125, 129, 480–482
terminology for, 90–91
Thévenin equivalent, 113–119, 129, 327–329, 477–478
transfer function H(s) in, 482–495, 504
two-port circuits, 687–691
voltage-division, 64–66, 75

Circuit theory, 6–7
Circuit transformations, 71–73, 76, 109–113, 115–116, 129,

327–329
equivalent circuits, 71–73, 76
Norton equivalent circuits, 115, 327
source, 109–113, 115–116, 129
Thévenin equivalent circuit, 115–116, 327–329

Circuits, 2–87, 212–303, 305, 344, 396–475, 427, 440–442,
456–457, 466–468, 486–487, 504, 520–601, 676–701.
See also Amplifier circuits; Circuit analysis;
Equivalent circuits; Ideal basic circuit elements

active filter, 556–601
balanced three-phase, 398–427
clock for computer timing, 265, 293–294
constant (dc) sources, 56
current (i), 11–13, 26–33, 37–42

Kd(t)

¢

dependent sources, 26–27, 29, 42–45, 48
electric radiators, 25, 46–74
electrical engineering and, 2–8
electrical resistance, 30–33
energy and, 14–17
first-order, 212–263
frequency-selective, 520–601
household distribution, 305, 344
ideal basic elements, 12–14, 24–55
International System of Units (SI) for, 8–10
Kirchhoff’s laws, 37–41, 48
Laplace transforms and, 466–468, 486–487, 504
lumped-parameter, 440–442, 457
models of, 10–11, 17–18, 34–36
Ohm’s law, 30–31, 48
open, 35
parallel-connected (in parallel), 59–61, 75
passive filter, 520–555
passive sign convention, 13
power (p) and, 14–17
resistive, 56–87
responses of, 212–303
s domain, 466–468, 504
second-order, 264–303
series-connected (in series), 39, 48, 58, 75
short, 35
time-invariant, 486–487, 504
transient effects on, 427, 456–457
two-port, 676–701
variables of, 2–23
voltage ( ), 11–13, 26–29, 32–33

Clock for computer timing, 265, 293–294
Closed loop (path), 38, 48
Coefficient of coupling, 197, 203
Cofactor, 705–706
Column matrix, 708
Common mode input, 156–157, 164
Common mode rejection ratio (CMRR), 157–159, 164
Communication systems, 4
Complex numbers, 723–728

arithmetic operators, 725–726
graphical representation of, 724–725
integer power of, 727
notation, 723–724
roots of, 727–728
useful identities of, 726–727

Complex poles and zeros, 747–749
Complex power (S), 368–372, 384, 409

apparent power (magnitude of), 368, 384
equations for, 369–372
impedance (Z) and, 371–372
sinusoidal steady-state calculations of, 368–372, 384
three-phase circuits, 409

Computer systems, 4
Conductance (G), 31, 60, 322
Conjugate of complex numbers, 724–725
Constant (dc) sources, 56

v
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Control systems, 4–5
Controlled sources, 27
Convolution, 487–493, 504, 657–658

Fourier operational transforms for, 657–658
integral for transfer function and, 487–493, 504

Corner frequency, 741
Cosine functions, 615–616, 652–653
Cramer’s method, 704
Critically damped responses, 269, 277–278, 283,

286, 295–296
natural response equations, 277–278, 295
parallel RLC circuits, 269, 277–278, 283, 295
series RLC circuits, 286, 295
step response equations, 286, 296

Current (i), 11–13, 18, 26–33, 37–42, 48, 66–69, 76, 100,
146–150, 164, 177–179, 182–185, 187–188, 202–203,
214–216, 286, 306–307, 319–320, 338–340, 403,
405–407, 417

ammeters, 66–67, 76
capacitors, 182–185, 202–203
defined, 12, 18
determination of, 177–179
displacement, 182
electric charge and, 11–13
equivalent inductance in, 188
frequency domain, 319–320, 338–340, 345
inductors, 177–179, 187–188, 202–203, 215
input constraints, 148–149, 164
Kirchhoff’s law (KCL), 37–41, 48, 319–320, 406
line, 403, 406–407
measurement of, 66–69, 76
mesh, 100
natural response and, 214–216, 286
Ohm’s law, 30–31, 48
operational amplifiers (op amps), 146–150, 164
phase, 403, 405–407
polarity of, 339–340
power in a resistor, 32–33, 48
RC circuit expression for, 214–216
reference direction, 13
RLC circuit expression for, 286
sinusoidal source, 306–307, 345
sources, 26–29, 48
terminal variable characteristics, 146–150, 164
three-phase, 403, 405–407, 417
transformer ratio, 338–340, 345
voltage ( ) and, 11–13, 177–179
wye-delta (Y- ) circuit analysis and, 405–407

Current coil, 413
Current-divider circuits, 63, 75
Current-division circuit analysis, 64–66, 75–76
Current to voltage (i- ) relationships, 177–178,

182–183, 318
Cutoff frequency ( ), 522–523, 525–526, 531, 533,

537, 545–546, 548
bandpass filters, 537

vc

v

¢

v

bandreject filters, 545–546
bandwidth, relationship to, 537, 546
center frequency, relationship to, 537, 546
defined, 522–523, 548
half-power frequency, 526
high-pass filters, 531, 533
low-pass filters, 525–526

D
Damped radian frequency, 274
Damping factor (coefficient), 275
d’Arsonval meter movement, 67–68
dc (constant) sources, 56
Decibels (dB), 737–738
Delta ( ) interconnection, 71
Delta ( ) connected loads, power in, 409–410
Delta ( ) source configurations, 399–400
Delta to wye ( to Y) equivalent circuit, 71–73, 76
Delta-to-wye ( to Y) transformations, 324–326
Dependent sources, 26–27, 29, 42–45, 48, 95–96,

102–103, 116, 118
analysis of circuits with, 95–96, 102–103, 116, 118
ideal circuit elements of, 26–27, 48
interconnections of, 29
mesh-current method for, 102–103 
node-voltage method for, 95–96 
Thévenin equivalent of circuits with, 116, 118

Derived units, 9
Determinants, 708, 704–708

characteristic, 704
defined, 708
evaluation for simultaneous equations, 705–707
numerator, 704–705

Difference-amplifier circuit, 155–159, 164
analysis of, 155–156, 164
common mode input, 156–157, 164
common mode rejection ratio (CMRR),

157–159, 164
differential mode input, 156–157, 164

Differential mode input, 156–157, 164
Differentiation, operational transforms 

for, 436–437, 656
Digital meters, 67, 76
Digital signal filtering, 643, 669
Direct approach analysis, 281–282, 619–621

steady-state response, 619–621
step response, 281–282

Dirichlet’s conditions, 605
Displacement current, 182
Dot convention, 190–193, 195–196, 203, 339–340

ideal transformers, 339–340
mutual inductance (M), 190–193, 195–196, 203
mutually coupled coil polarity, 190, 203
procedure for, 191–192

Dual in-line package (DIP), 146

¢

¢

¢

¢

¢
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E
Effective value (eff), see Root-mean-square 

(rms) value
Electric radiator circuits, 25, 46–46
Electrical circuit, defined, 6
Electrical engineering, 2–8

circuit theory, 6–7
communication systems, 4
computer systems, 4
control systems, 4–5
overview of, 4–8
power systems, 5
problem solving, 3, 7–8
role of, 2
signal-processing systems, 5–6

Electrical power, transmission and distribution 
of, 396–397, 416–417. See also Balanced 
Three–phase circuits

Energy (w), 14–17, 179–181, 184–186, 197–200, 202–203,
662–669

capacitors, 184–186, 202
inductors, 179–181, 202
mutual inductance and storage of, 197–200, 203
Parseval’s theorem for, 662–669
power (p) and, 14–17
time domain calculations, 662–668

Equivalent circuits, 58–61, 71–73, 75–76, 113–119,
129, 159–162, 187–189, 203, 320–330, 345,
477–478, 729–736

capacitors, 187–189, 203
delta to wye ( to Y), 71–73, 76, 324–326
frequency-domain, 320–330, 345
ideal transformers for, 729–736
inductors, 187–189, 203
Laplace transform analysis of, 477–478
magnetically coupled coils and, 729–736
Norton, 115, 129, 327
operational amplifier (op amp), 159–162

-equivalent, 730–732
pi to tee ( to T), 71–73
resistors, 58–61, 75
series-parallel combinations, 58–61, 75,

187–189, 203, 320–324
sinusoidal steady-state analysis, 320–330, 345
source transformations, 115–116, 327–330
T-equivalent, 729–730
Thévenin, 113–119, 129, 327–329, 477–478
transformation of, 71–73, 76, 115–116

Equivalent resistance, 58–60, 64–65
Essential branch, 90–91, 103–104
Essential node, 90–91, 96–97
Even-function symmetry, 609–610, 632
Excitation signal x(t), 487–488
Exponential form of Fourier series, 625–627, 633
Exponential function, 431–432

p

p

¢

F
Faraday’s law, 193–194
Feedback, op amps, 147–148, 164
Feedback resistors, integrated amplifiers with, 291–293
Filtering digital signals, 643, 669
Filters, 522–524, 548–549. See also Active filter circuits;

Frequency-selective circuits; Passive filter circuits
Final-value theorem, 453–455, 458
First-order active filters, 558–571

defined, 214, 246
general solutions for, 231–236, 246
integrating amplifier, analysis of, 241–244, 246
natural response of, 212, 214–224, 231–236, 246
pacemakers, 213, 245–246
resistor-capacitor (RC), 212, 214, 220–224,

229–236, 239, 246
resistor-inductor (RL), 212, 214–220,

224–228, 231–238, 246
sequential switching, 236–240, 243, 246
steady-state response of, 217
step response of, 212, 224–236, 246
time constant ( ), 216–217, 221, 246
transient response of, 217
unbounded response of, 240–241, 246

Flashlight circuit model, 34–35
Folding operation, 489–493
Fourier series, 602–641

amplitude spectrum, 628–630
analysis, 605–606
application of, 617–621
average-power calculations, 621–624, 633
coefficients, 605–614, 632
Dirichlet’s conditions, 605
exponential form of, 625–627, 633
fundamental frequency, 605, 632
harmonic frequency, 605, 632
high-Q filters, 603, 630–632
periodic functions and, 602–605, 609–614, 617–625,

628–630, 632–633
phase spectrum, 628–630
root-mean-square (rms) value, 624–625, 633
square wave input of sinusoids, 603, 630–632
steady-state response, 617–621, 633
symmetry effects, 609–614, 632
trigonometric alternative form of, 615–616, 632
waveforms, 602–604

Fourier transform, 642–675
amplitude spectrum transition, 645–646
aperiodic functions transitions, 644–646
circuit applications, 659–661
convergence of integral, 646–648
cosine function, 652–653
defined, 644
derivation of, 644–646
elementary functions, 653

t
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Fourier transform (Continued)
filtering digital signals, 643, 669
integral and time domain functions, 646–648, 670
inverse, 645
Laplace transforms used to find, 648–651
limit process for, 651–653
mathematical properties of, 653–655
operational transforms, 655–659
Parseval’s theorem, 662–669
signum function, 651
sinusoidal steady-state response found using, 661
time-domain functions of, 646–648, 670 
transient response found using, 659–660
unit step function, 652

Frequency ( ), 7, 522–523, 525–526, 528, 531, 533–537,
548–549, 605, 632

center or resonant ( ), 534–536, 549
cutoff ( ), 522–523, 525–526, 531, 533, 537, 548
defined, 7
fundamental, 605, 632
harmonic, 605, 632
high, 524
increasing from zero, 528
infinite, 528
low, 524
passband, 522–523, 548
regions, 529
stopband, 522–523, 548
zero, 528

Frequency domain, 311–313, 315–320, 327–341, 345,
439–442, 529, 543, 657–658. See also s-domain

convolution in, 658
defined, 311
delta-to-wye ( to Y) transformations, 324–326
Fourier transforms for, 657–658
impedance (Z), 318, 320–330, 341, 345
inverse phasor transformation, 312–313, 345
Kirchhoff’s laws, 319–320
Laplace transforms for, 439–442
mesh-current method, 331–332
node-voltage method, 330–331
Norton equivalent circuit, 327
operational transforms in, 439–440, 657–658
parallel impedance combinations, 322–323
passive circuit elements in, 315–318
passive-filter circuits and, 529, 543
phasor transformation, 311, 345
reactance, 318
s-notation for Laplace functions, 441–442
series impedance combinations, 320–324
sinusoidal steady-state analysis and, 311, 315–320,

327–341, 345
source transformations and, 327–330
Thévenin equivalent circuit, 327–329
time domain relationships, 529, 543
time domain transformations, 311–313, 345

¢

vc

vo

v

transformers, 332–341, 345
translation in, 439, 657
voltage to current ( -i) relationships, 315–318

Frequency response, defined, 520
Frequency response plots, 522–525, 531, 535–536, 558–561

Bode plots, 558–561
magnitude plot, 522–523
phase angle plot, 522–523
series RC circuits, 531
series RL circuits, 524–525
series RLC circuits, 535–536

Frequency scale factor (kf), 562, 592
Frequency-selective circuits, 520–601

active filter circuits, 556–601
attenuation, 520
circuit symbols for, 523
defined, 520, 548
filter categories, 522–524, 548–549
frequency response plots for, 522–523, 560–563
passive filter circuits, 520–555
pushbutton telephones, 521, 548

Functional Laplace transforms, 429, 434–435, 457
Fundamental frequency, 605, 632

G
Gain (A), 147, 151, 157–158, 164

common mode, 157–158, 164
differential mode, 157–158, 164
op-amp voltage and, 147
open-loop, 151, 164

Graphical representation of complex numbers, 724–725

H
Half-power frequency, 526
Half-wave symmetry, 611–612, 632
Harmonic frequency, 605, 632
High frequencies, 524
High-pass filters, 522–523, 530–534, 549, 560–561,

583, 592–593
active filter circuits, 560–561, 583, 592–593
Butterworth, 583, 592–593
cutoff frequency ( ), 531, 533
frequency response plots, 522–523, 531
operational amplifier (op amp), 560–561, 583
passive filter circuits, 522–523, 530–534, 549
qualitative analysis, 530–531
quantitative analysis, 531
series RC circuits, 530–534
series RL circuits, 532–534
transfer function H(s) for, 533–534, 549

High-Q filters, 584–589, 603, 630–632
Higher-order active filters, 571–584, 592–593
Household distribution circuit, 305, 344
Hybrid parameters, 681

vc

v
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I
Ideal basic circuit elements, 12–14, 18, 24–55, 174–211

active, 27
capacitors, 174, 182–189, 203
closed loop (path), 38, 48
current (i), 13, 26–33, 37–42
defined, 12–13, 18
dot convention, 190–192, 195–196
electrical resistance, 30–33, 48
electric radiators, 25, 46–47
in-series, 39, 48
inductors, 174, 176–182, 187–200, 203
Kirchhoff’s laws, 37–41, 48
model construction, 34–36
mutual inductance, 176, 189–200, 203–204
nodes, 37–38, 48
passive sign convention, 13, 18, 176
passive, 27, 176, 203
polarity reference, 190–196
proximity switches, 175, 200–202
reference direction, 13
resistors, 30–33, 48
self-inductance, 176–182, 193–194, 196–197, 203
series-connected (in series), 39
series-parallel combinations, 187–189, 203
sources, 26–29, 42–45, 48
terminal equations for, 176–181, 182–186, 203
voltage ( ), 13, 26–29, 32–33

Ideal transformers, 333, 336–341, 345, 380–382, 729–736
defined, 336
dot convention for, 339–340
equivalent circuits in, 729–736
frequency domain, 333, 336–341, 345
impedance matching using, 341
limiting values of, 336–338
magnetically coupled coils and, 336–338, 729–736
maximum power transfer with, 381–382
polarity of voltage and current ratios, 339–340
properties of, 336
sinusoidal steady-state analysis, 333, 336–341, 345
voltage and current ratios, 338–340, 345

Identity matrix, 712–713
Impedance (Z), 318, 320–330, 341, 345, 371–372, 376–380

admittance (Y), 322, 345
combined in series and in parallel, 320–324
complex power (S) and, 371–372
defined, 318
delta-to-wye ( to Y) transformations, 324–326
equivalence of, 320–330
frequency domain source transformations, 320–332
load ( ), 376–377
matching using ideal transformers, 341
maximum power transfer and, 376–380
Norton equivalent circuit, 327
reactance and, 318

ZL

¢

v

reflected (Zr), 334, 345
self-, 333–334
sinusoidal steady-state analysis and, 320–332
sinusoidal steady-state power calculations 

and, 371–372, 376–380
source transformations and, 327–330
susceptance (B), 322
Thévenin equivalent circuit, 327–329
transformers and, 333–334

Improper rational functions, 442, 451–452
Impulse, defined, 431
Impulse function (I), 431–433, 457, 496–502, 504

capacitor circuit analysis, 496–497
circuit analysis using, 496–502, 504
circuit symbols for, 496–497
defined, 432, 457
derivatives of, 433
equations for , 431–433, 457
exponential function, 431–432
impulsive sources, 499–502
inductor circuit and, 497–499
Laplace transform and, 431–433, 457, 496–502, 504
sifting property, 432
strength (K) of, 431
switching operations for, 496–499, 504
unit , 431, 457
variable-parameter function, 431–432

In-series circuit elements, see Series-connected circuits
Independent sources, 26, 29, 48, 117–118

ideal circuit elements of, 26, 48
interconnections of, 29
Thévenin equivalent of circuits with, 117–118

Indirect approach, step response analysis, 281
Inductance (L), 174, 176, 187–200, 202–203

arcing and, 176
circuit parameter of, 174, 176, 202
equivalent initial current, 188
Faraday’s law, 193–194
mutual, 176, 189–200, 203
self-, 193–194, 196–197, 203
series-parallel combinations, 187–189, 203

Inductive circuits, power calculations for, 362–363
Inductors, 174, 176–182, 187–189, 202–203, 316–317,

466–467, 497–499, 504, 761
behavior of, 174
circuit symbol for, 176
component values, 761
current (i) in, 177–179, 202
energy (w) in, 179–181, 202
frequency domain, 316–317
impulse function (I) in, 497–499
Laplace transform for analysis of, 466–467,

497–499, 504
power (p) in, 179–181, 202
s-domain, 466–467, 504
series-parallel combinations, 187–189, 203

d(t)

Kd(t)
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Inductors (Continued)
switching operation, 497–499
terminal equations for, 176–181, 203, 466–467
voltage ( ) in, 176–177, 202
voltage to current ( -i) relationships, 176–177, 316–317

Infinite frequency, 528
Initial-value theorem, 453–455, 458
Instantaneous power, 360–361, 384
Instantaneous real power, 362
Integer power of complex numbers, 727

Integrals, 487–493, 504, 646–648, 670, 759–760
asterisk (*) notation for, 489
convergence of Fourier transforms, 646–648, 670
convolution, 487–493, 504
equations of, 761–762
folding operation, 489–493
time domain functions, 646–648, 670
transfer function H(s) and, 487–493, 504

Integrating amplifiers, 241–244, 246, 289–293, 295
cascading connections, 289–293, 295
feedback resistors and, 291–293
first-order circuits with, 241–244, 246
response analysis of, 241–244, 289–293
second-order circuits with, 289–293, 295
sequential switching and, 243

Integration, operational transforms for, 437–438, 656
Integrodifferential equations, 440–442
Interconnection of sources, 28–29
Intermittence, 680–681
International System of Units (SI), 8–10
Inverse Fourier transform, 645
Inverse Laplace transforms, 442–452, 457

distinct complex roots of D(s), 445–447
distinct real roots of D(s), 443–444
improper rational functions, 442, 451–452
partial fraction expansion, 442–452, 457
proper rational functions, 442–443, 457
rational function F(s), 442, 457
repeated complex roots of D(s), 449–451
repeated real roots of D(s), 447–449

Inverse of a matrix, 714
Inverse phasor transform, 312–314, 345
Inverting-amplifier circuit, 150–152, 160, 164

K
Kirchhoff’s laws, 37–41, 48, 58–59, 61, 319–320, 402–403,

406, 469
balanced three-phase circuits using, 402–403, 406
closed loop (path) for application of, 38, 48
current (KCL), 37–41, 48, 319–320, 406
frequency domain, 319–320
parallel-connected resistors, 59, 61
nodes, 37–38, 48
s-domain applications of, 469
series-connected resistors, 58
voltage (KVL), 38–41, 48, 319, 402–403

v
v

L
Lagging power factor, 363
Laplace transform, 426–519, 648–651

applications of, 440–442, 470–482
circuit analysis using, 464–519
complete circuit response using, 427, 456–457
concept of, 428–429
convolution integral, 487–493, 504
defined, 428, 457
final-value theorem, 453–455, 458
Fourier transforms found using, 648–651
frequency domain and, 439
functional transforms, 429, 434–435, 457
improper rational functions, 442, 451–452
impulse function , 431–433, 457, 496–502, 504
initial-value theorem, 453–455, 458
inverse, 442–452, 457
lumped-parameter circuit applications, 440–442,

457, 484
mutual inductance, analysis of a circuit with, 478–479
natural response using, 470–471
one-sided (unilateral), 428–429
operational transforms, 429, 435–440, 457
pairs, 434–435, 451
partial fraction expansion, 442–452, 457,

484–487, 504
poles (denominator polynomial), 452–453, 458, 484
proper rational functions, 442–443, 457
rational function F(s), 442–453, 457–458
s-domain, 441–455, 457–458, 466–487, 504
sinusoidal sources and, 427, 456–457
steady-state sinusoidal response, 493–495, 504
step function Ku(t), 429–430, 457
step response using, 471–476
superposition, use of in s-domain, 480–482
surge suppressors, 465, 503
Thévenin equivalent, use of in s-domain, 477–478
time domain translation in, 439–442
time-invariant circuits and, 486–487, 504
transfer function H(s), 482–495, 504
transient effects on circuits, 427, 456–457
transient response using, 473–474
unilateral (one-sided), 428–429
unit impulse function , 431, 457
unit step function Ku(t), 429, 457
zeros (numerator polynomial), 452–453, 458, 484

Leading power factor, 363
Line current, 403, 406–407
Line spectrum, 628
Line voltage, 402–404
Linear transformer, 333–336, 345
Load impedance (ZL), 376–377
Loads, 62, 408–413

balanced three-phase circuits and, 408–413
defined, 62
delta ( ) connected, 409–410¢

d(t)

Kd(t)
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power calculations for, 408–413
unspecified, 412
wye (Y) connected, 408–409

Loop, defined, 90–91
Low frequencies, 524
Low-pass filters, 522–530, 548, 558–560, 572–582,

592–593
active filter circuits, 558–560, 576–580, 592–593
Butterworth, 576–582, 594–595
cascading identical, 572–575, 592
cutoff frequency ( ), 526–527
defined, 522–530, 548
frequency regions, 528
frequency response plots, 522–525, 558–561
operational amplifier (op amp), 558–560, 576–580
passive filter circuits, 522–530, 548
qualitative analysis, 524–525
quantitative analysis, 526–527
relationship between frequency and time 

domains, 529
series RC circuits, 528–529
series RL circuits, 524–527
transfer function H(s) for, 529, 548

Lumped-parameter circuits, 440–442, 457, 484
Lumped-parameter system, 6–7

M
Magnetically coupled coils, 190, 194–196, 203,

235–236, 336–338, 729–736
equivalent circuits for, 729–736
ideal transformers and, 336–338, 729–736
mutual inductance (M) of, 190, 194–196, 203

-equivalent circuit, 730–732
step response of, 235–236
T-equivalent circuit, 729–730

Magnitude plot, 522
Magnitude scale factor ( ), 562, 592
Matrices, 707–708, 712–717

adjoint of, 713–714
column, 708
identity, 712–713
inverse of, 714
partitioned, 715–717
row, 708
simultaneous equation solutions from, 707–708,

712–717
square, 708
transpose of, 712

Matrix, defined, 707
Matrix algebra for simultaneous equation 

solutions, 708–712, 718–722
Maximum power transfer, 120–122, 129,

376–382, 384
average power (Pmax) absorbed, 378
circuit analysis and, 120–122, 129
ideal transformer, 381–382

km

p

vc

impedance (Z) restricted, 378–380
load impedance (ZL) for, 376–377
sinusoidal steady-state analysis and, 376–382, 384

Measurement, 8–10, 66–70, 76, 413–415, 417, 737–738
ammeter, 66–67, 76
analog meters, 67, 76
average power (P), 413–415, 417
current, 66–69
d’Arsonval meter movement, 67–68
decibel (dB) used for, 737–738
digital meters, 67, 76
International System of Units (SI), 8–10
power transmission, 737–738
resistance, 69–70, 76
two-wattmeter method, 413–415, 417
voltage, 66–69, 76
voltmeter, 66–67, 76
wattmeter, 413–415, 417
Wheatstone bridge, 69–70, 76

Memory and the weighting function, 492–493
Mesh, defined, 90–91
Mesh circuit, step response of, 474–477
Mesh current, defined, 100
Mesh-current method, 90, 99–109, 129, 190–192,

331–332
amplifier circuit analysis using, 105–106
circuit analysis using, 90, 99–109, 129
dependent sources and, 102–103 
equations, 99–102, 190, 192
essential branches and, 103–104
frequency-domain circuits, 331–332
mutual inductance (M) and, 190–192
node-voltage method, comparison of, 106–109
sinusoidal steady-state analysis using, 331–332
special cases of, 103–106
supermesh, 104

Meters, see Measurement
Models, 10–11, 17–18, 34–36. See also

Equivalent circuits
circuit, 17–18, 34–36
conception of, 10–11
construction of, 34–36
flashlight, 34–35
mathematical (circuit), 11
physical prototypes, 11
power balance, 17–18

Modulation, operational transforms for, 657
Mutual inductance (M), 176, 189–200, 203, 478–479

circuit parameters of, 189–190, 194–196, 203
coefficient of coupling and, 197, 203
dot convention for polarity, 190–193, 195–196, 203
energy (w) storage and, 197–200, 203
Laplace transform analysis and, 478–479
magnetically coupled coils and, 190, 194–196, 203
mesh-current equations for, 190–192
s-domain using, 478–479
self-inductance and, 193–194, 196–197, 203
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N
Narrowband filters, 584–589, 593

bandpass filters, 584–586
bandreject, 586–589
quality factor (Q) and, 584–589
twin-T notch filter, 586–589

Natural response, 212, 214–224, 231–236, 246, 266–279,
285–289, 295, 470–471

critically damped voltage, 269, 277–278, 286, 295
current (i) determined for, 214–216, 286 
defined, 212, 246
first-order circuits, 212, 214–224, 231–236, 246
forms of in RLC circuits, 270–279 
general solution for, 231–236, 246, 266–270
Laplace transform analysis and, 470–471
method of calculating, 232
overdamped voltage, 269, 271–273, 286, 295
parallel RLC circuit, 266–279, 295
resistor-capacitor (RC) circuits, 220–224, 231–236,

246, 470–471
resistor-inductor (RL) circuits, 214–220, 231–236, 246
resistor-inductor-capacitor (RLC) circuits, 266–279,

285–289, 295
series RLC circuits, 285–289, 295
time constant ( ), 216–217, 221, 246
underdamped voltage, 269, 274–277, 286–288, 295
voltage ( ) determined for, 221

Negative (acb) phase voltage sequence, 398
Neper frequency ( ) for, 268–269, 286
Neutral terminal, 399
Node-voltage equation ( ), 400–401
Node-voltage method, 90, 93–99, 106–109, 129,

330–331
amplifier circuit analysis using, 98–99
circuit analysis using, 90, 93–99, 106–109, 129
dependent sources and, 95–96 
equations, 93–94, 129
essential nodes and, 96–97
frequency-domain circuits, 330–331
mesh-current method, comparison of, 106–109
sinusoidal steady-state analysis using, 330–331
special cases for, 96–99
supernode, 97–98

Nodes, 37–38, 48, 90–91, 93–94
circuit element, 37–38, 48
defined, 37, 90–91
essential, 91
voltage, 93–94

Noninverting-amplifier circuit, 153–154, 160–161, 164
Nonplanar circuits, 90–91
Norton equivalent circuits, 115, 129, 327

analysis of, 115, 129
defined, 115
frequency-domain source transformations, 327
impedance (Z) in, 327
source transformations used for, 115

Numerator determinant, 704–705

VN

a

v

t

O
Octave, 744
Odd-function symmetry, 610–611, 614, 632
Ohm’s law, 30–31, 48, 59, 468–469

electrical resistance and, 30–31, 48, 59
s-domain applications of, 468–469

One-sided (unilateral) Laplace transform, 428–429
Open circuit, 35
Open-loop gain (A), 151, 164
Operational amplifiers (op amps), 144–173, 556–601

bandpass filters, 564–568, 583–586, 592–593
bandreject filters, 568–571, 583, 586–589, 592–593
bass volume control, 557, 589–591
broadband filters, 565–571, 592
Butterworth filters, 576–584, 592–593
cascading, 564–574, 592
circuit symbol for, 146
currents (i), 146–150
difference-amplifier circuit, 155–159, 164
dual in-line package (DIP), 146
equivalent (realistic model), 159–162, 164
negative feedback, 147–148, 164
filters, 556–601
first-order filters, 558–562
gain (A), 147, 151, 157–158, 164
high-pass filters, 560–561, 583, 592
higher-order filters, 571–584, 592–593
input constraints, 147–148,164
inverting-amplifier circuit, 150–152, 160, 164
low-pass filters, 558–560, 576–582, 592–593
noninverting-amplifier circuit, 153–154, 160–161, 164
realistic model (equivalent), 159–162, 164
resistance (R) and, 145, 162–163
scaling, design of using, 563–564
simplified, 146–159, 164
strain gages for, 145, 162–163
summing-amplifier circuit, 152–153, 164
terminals, 146–150
transfer characteristics, 147
voltages ( ), 146–150, 164

Operational transforms, 429, 435–440, 457, 655–659
addition, 436, 656
amplitude modulation, 657
convolution, 657–658
defined, 429
differentiation, 436–437, 656
Fourier, 655–659
frequency domain functions, 439, 657–658
integration, 437–438, 656
Laplace, 431, 437–442, 459
modulation, 657
multiplication by a constant, 435, 655
scale changing, 439, 657
subtraction, 436, 656
time domain functions, 438–439, 655–659
translation, 438–439, 657
types of, 440, 658

v
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Overdamped responses, 269, 271–273, 282, 286,
295–296

natural response equations, 271–273, 295
parallel RLC circuits, 269, 271–273, 282, 295
series RLC circuits, 286, 295
step response equations, 286, 296

P
Pacemaker circuits responses, 213, 245–246
Parallel-connected circuits, 59–61, 75, 187–189, 203,

322–323, 692. See also Parallel RLC circuits
capacitors, 188–189, 203
impedances combined in, 322–323
inductors, 187–188, 203
Kirchhoff’s law for, 59, 61
Ohm’s law for, 59
resistors, 59–61, 75
two-port circuits, 692

Parallel RLC circuits, 266–285, 295–296, 471–474
characteristic equation for, 267, 269–270, 295
circuit symbols for, 266, 280
critically damped responses, 269, 277–278, 283, 295
direct approach for, 281–282
general solution of differential equations, 266–270
indirect approach for, 281
Laplace transform analysis of, 471–474
natural response, 266–279, 295
Neper frequency ( ) for, 268–269
overdamped responses, 269, 271–273, 282, 295
resonant radian frequency ( ), 268–269
s-domain, 471–474
step response, 280–285, 295–296, 471–473
transient response, 473–474
underdamped responses, 269, 274–277, 283, 295

Parallel-series two-port circuit connection, 692
Parameters of two-port circuits, 679–686, 696
Parseval’s theorem, 662–669

filter applications of, 665–666
Fourier transform and, 662–669
graphic interpretation of, 663–664
rectangular voltage pulse analysis using, 666–668
time-domain energy calculations, 662–668

Partial fraction expansion, 442–452, 457,
484–487, 504

distinct complex roots of D(s), 445–447
distinct real roots of D(s), 443–444
improper rational function, 442, 451–452
inverse Laplace transforms in, 442–452, 457
Laplace transform analysis and, 484–487, 504
Laplace transform pairs for, 451
proper rational functions, 442–443, 457
repeated complex roots of D(s), 449–451
repeated real roots of D(s), 447–449
time invariant circuits, 486–487, 504
transfer function H(s) in, 484–487, 504

Partitioned matrix, 715–717
Passband frequencies, 522–523, 548

v0

a

Passive current elements, 27, 176, 202, 315–318
capacitors, 176, 202, 317–318
defined, 27
frequency domain, 315–318
ideal sources, 27
impedance (Z), 318
inductors, 176, 202, 316–317
reactance, 318
resistors, 315–316
voltage to current ( –i) relationships, 315–318

Passive filter circuits, 520–555
bandpass filters, 523, 534–543, 549
bandreject filters, 523, 543–547, 549
bandwidth ( ), 535, 537, 545–546, 549
center (resonant) frequency ( ), 534–536, 545–546, 549
cutoff frequency ( ), 522–523, 525–526, 531, 533, 537,

545–546, 548
defined, 523–524
filtering capabilities of, 523–524
frequency response and, 520,
frequency response plots, 522–523
high-pass filters, 522–523, 530–534, 549
low-pass filters, 522–530, 548
magnitude plot, 522
qualitative analysis, 524–525
quantitative analysis, 526–527
passband frequencies, 522–523, 548
phase angle plot, 522
pushbutton telephones, 521, 548
quality factor (Q), 535, 538, 545, 549
relationship between frequency and time 

domains, 529, 543
stopband frequencies, 522–523, 548
transfer function H(s) for, 522, 529, 533–534, 542,

544–545, 547–549
Passive sign convention, 13, 18
Path, defined, 90–91
Per-phase quantity ( ), 403
Period, sinusoidal sources, 306
Periodic functions, 602–605, 609–614, 617–625, 628–630,

632–633, 644–646
amplitude spectrum of, 628–630
aperiodic function transition from, 644–646
average-power calculations, 621–624, 633
defined, 602, 632
Fourier coefficients and, 605, 609–614
Fourier series application of, 617–621
Fourier series representation of, 605
Fourier transforms and, 644–646
phase spectrum of, 628–630
root-mean-square (rms) value, 624–625, 633
steady-state response using, 617–621
symmetry effects, 609–614, 632
waveforms, 602–604

Phase angle ( ), 306
Phase angle plots, 522, 745–474, 753–755
Phase current, 403, 405–407
Phase spectrum, 628–630

f

f
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vo
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v
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Phase voltage, 398, 402–404
Phasor diagrams, 342–344, 403, 406
Phasors, 310–315, 345

defined, 310
frequency domain and, 311, 345
inverse transform, 312–314, 345
sinusoidal steady-state analysis and, 310–315, 345
transform, 311, 345

Pi ( )-equivalent circuit, 730–732
Pi ( ) interconnection, 71
Pi to tee ( to T) equivalent circuit, 71–73
Planar circuits, 90–91
Polar form of complex numbers, 723–724
Polarity, 15–16, 190–192, 195–196, 203, 339–340

dot convention for, 190–192, 195–196, 203, 341–342
ideal transformers, 339–340
mutual inductance, 190–192, 195–196, 203
power references, 15–16
voltage and current ratios, 339–340

Poles (roots), 452–453, 458, 484, 739–740, 747–749
Bode plots and, 739–740, 747–749
complex, 747–749
defined, 452
rational function F(s), 452–453, 457
real, first order, 739–740
transfer function H(s), 484

Ports, 676
Positive (abc) phase voltage sequence, 398
Potential coil, 413
Power (p), 14–18, 31–32, 48, 120–122, 129, 179–181,

183–186, 202, 359, 382–383, 397, 413–415, 417, 737–738
algebraic signs of, 15–16
balancing, model for, 17–18
capacitors, 183–186, 202
defined, 15, 18
decibel (dB) used for, 737–738
electrical, transmission and distribution of, 397, 416–417
energy (w) and, 14–17
inductors, 179–181, 202
maximum transfer, 120–122, 129
measurement of, 413–715, 417, 737–738
polarity references, 15–16
resistors and, 31–32, 48
standby (vampire), 359, 382–383
wattmeter, 413–415, 417

Power calculations, 358–395, 408–413, 417, 621–624, 633
apparent power, 368, 384
appliance ratings, 365
average (real) power (P), 361–365, 371–373, 384,

408–409, 621–624, 633
balanced three-phase circuits, 408–413, 417
balancing from an ac circuit, 374–375
capacitive circuits, 363
complex power (S), 368–372, 384, 409
delta ( ) connected loads, 409–410
equations for, 369–376
inductive circuits, 362–363

¢

p

p

p

instantaneous power, 360–361, 384
maximum power transfer, 376–382, 384
parallel loads, 373–374
periodic functions and, 621–624, 633
power factor (pf), 363, 384
reactive factor (rf), 363, 384
reactive power (Q), 361–365, 371–373, 384
resistive circuits, 362
root-mean-square (rms) value, 366–367
sinusoidal steady-state analysis, 358–395
three-phase circuits, 408–413, 417
standby (vampire) power, 359, 382–383
wye (Y) connected loads, 408–409
unspecified loads, 412

Power equation, 15
Power factor (pf), 363, 384
Power systems, 5
Primary winding, transformers, 333
Problem solving strategy, 3, 7–8
Pushbutton telephone circuits, 521, 548

Q
Qualitative analysis, 524–525, 531, 535–536, 544

bandpass filters, 535–536
bandreject filters, 544
high-pass filters, 531
low-pass filters, 524–525

Quality factor (Q), 537, 539, 545, 549, 584–585
active (narrowband) filter circuits, 584–585
passive filter circuits, 537, 539, 545, 549

Quantitative analysis, 526–527, 530–531, 536–538,
544–547

bandpass filters, 536–538
bandreject filters, 544–547
high-pass filters, 530–531
low-pass filters, 526–527

Quarter-wave symmetry, 612–613, 632

R
Rational function F(s), 442–453, 457–458

defined, 442
partial fraction expansion of, 442–452, 457
poles of, 452–453, 458
zeros of, 452–453, 458

RC circuits, see Resistor-capacitor (RC) circuits
Reactance, impedance and, 318
Reactive factor (rf), 363, 384
Reactive power (Q), 361–365, 371–373, 384. See also

Power calculations
Real first-order poles and zeros, 739–740
Real models, see Equivalent circuits
Real power, see Average power
Reciprocal two-port circuits, 685–686, 696
Rectangular (Cartesian) form of complex numbers, 723
Reflected impedance (Zr), 334, 345
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Resistance (R), 30–33, 48, 69–70, 113–115,
145, 162–163

conductance (G) and, 31, 60
equivalent, 58–60, 64–65
measurement of, 69–70
Ohm’s law, 30–31, 48
operational amplifiers (op amps), 145, 162–163
resistors as models of, 30–33, 48
strain gages for, 145, 162–163
Thévenin equivalent (RTh), 113–115

Resistive circuits, 56–87, 362
constant (dc) sources, 56
current-divider, 63, 75
current-division analysis, 64–66, 75–76
delta to wye ( to Y) equivalent, 71–73, 76
load, 62
measurement of voltage and current in, 66–69, 76
parallel-connected (in parallel), 59–61, 75
pi to tee ( to T) equivalent, 71–73
power calculations for, 362
resistors, 58–61, 75
series-connected (in series), 58, 75
touch screens, 57, 73–75
voltage-divider, 61–62, 75
voltage-division analysis, 64–66, 75
Wheatstone bridge, 69–70, 76

Resistor-capacitor (RC) circuits, 212, 214, 220–224,
229–236, 239, 246, 470–471, 528–534

circuit symbols for, 214, 220
cutoff frequency, 531, 533
defined, 212
frequency response plot of, 531
general solution for responses of, 231–236, 246
high-pass filters, behavior of as, 530–534
Laplace transform analysis of, 470–471
low-pass filters, behavior of as, 528–529
natural response of, 220–224, 231–236, 246,

470–471
qualitative analysis of series, 530–531
quantitative analysis of series, 531
s-domain, 470–471
sequential switching, 236, 239
step response, 229–236, 246
time constant ( ), 221, 246
unbounded response, 240–241
voltage ( ), deriving expression for, 221

Resistor-inductor (RL) circuits, 212, 214–220, 224–228,
231–238, 246, 524–527, 532–534

circuit symbol for, 214
current (i), deriving expression for, 214–216
cutoff frequency, 525–527, 533
defined, 212
frequency response plots of, 524–525
general solution for responses of, 231–236, 246
high-pass filters, behavior of as, 5302–534
low-pass filters, behavior of as, 524–527
natural response of, 214–220, 231–236, 246
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t

p

¢

qualitative analysis of series, 524–525
quantitative analysis of series, 526–527
sequential switching, 236–238
steady-state response, 217
step response, 224–228, 231–236, 246
time constant ( ), 216–217, 246
transient response, 217

Resistor-inductor-capacitor (RLC) circuits, 264–303,
471–474, 535–547

bandpass filters, behavior of as, 535–543
bandreject filters, behavior of as, 543–547
characteristic equation for, 267, 269–270, 286, 295
circuit symbols for, 266, 285–286
critically damped voltage responses, 269, 277–278, 283,

286, 295–296
cutoff frequency ( ), 537, 545–546
clock for computer timing, 265, 293–294
frequency response plots, 535–536, 544
frequency selective circuits, 535–547
Laplace transform, analysis of using, 471–474
natural response of, 266–279, 285–289, 295
Neper frequency ( ) for, 268–269, 286
overdamped voltage responses, 269, 271–273, 282, 286,

295–296
parallel, 266–285, 295, 471–474
qualitative analysis of series, 535–536, 544
quantitative analysis of series, 536–538, 544–547
resonant radian frequency ( ), 268–269, 286
s-domain, 471–474
series, 285–289, 295–296
step response of, 280–289, 295–296, 471–473
transfer function H(s) for, 542, 544–545, 547, 549
transient response of, 473–474
underdamped voltage response, 269, 274–277, 283,

286–288, 295–296
Resistors, 30–33, 48, 58–61, 75, 89, 125–128, 291–293,

315–316, 466, 504, 761
black box, 58
circuit symbol for, 31
component values, 761
conductance (G) and, 31
defined, 30, 48
electrical resistance and, 30–33, 47–48
feedback, 291–293
frequency domain, 315–316
integrating amplifiers with, 291–293
Laplace transforms for analysis of, 466, 504
parallel-connected (in parallel), 59–61, 75
power terminals of, 31–32, 48
resistance (R) and, 30–33, 48
s-domain, 466, 504
sensitivity analysis, 89, 125–128
series-connected (in series), 58, 75
time and frequency domain elements, 466
voltage to current ( –i) relationships, 315–316

Resonant radian frequency ( ), 268–269, 286. See also
Center frequency ( )v0
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Response, 212–303, 309–310, 345, 427, 456–457, 470–482,
493–495, 503–504, 520, 659–661

clock for computer timing, 265, 293–294
complete, 427, 456–457
first-order circuits, 212–263
Fourier transform for, 659–661
frequency, 520
general solutions for, 231–236, 246
integrating amplifiers, 241–244, 246, 289–293, 295
Laplace transform used for, 427, 456–457, 470–482,

495–497, 503
multiple mesh circuits, 474–476
natural, 212, 214–224, 231–236, 246, 266–279, 285–289,

295, 470–471
pacemaker circuits, 213, 245–246
parallel RLC circuits, 266–285, 295–296, 471–474
resistor-capacitor (RC) circuits, 212, 214, 220–224,

229–236, 239, 246, 470–471
resistor-inductor (RL) circuits, 212, 214–220, 224–228,

231–238, 246
resistor-inductor-capacitor (RLC) circuits, 264–303,

471–474
second-order circuits, 264–303
sequential switching, 236–240, 243, 246
series RLC circuits, 285–289, 295–296
sinusoidal, 309–310, 345, 493–495, 503–504, 661
steady-state, 217, 427, 493–495, 503–504, 661
step, 212, 224–236, 246, 280–289, 295–296, 471–476
transfer function and, 493–495, 503–504, 661
transient, 217, 427, 473–474, 659–660
unbounded, 240–241, 246

RL circuits, see Resistor-inductor (RL) circuits
RLC circuits, see Resistor-inductor-capacitor (RLC)

circuits
Root-mean-square (rms) value, 307–309, 366–367,

624–625, 633
effective value (eff) as, 366–367
periodic functions, 624–625, 633
power calculations and, 366–367
sinusoidal sources, 307–309

Roots, 443–453, 458, 727–728
complex numbers, 443–451, 727–728
distinct complex, 445–447
distinct real, 443–444
Laplace transform pairs for, 451
partial fraction expansion of D(s), 442–451, 458
repeated complex, 449–451
poles (denominator polynomial), 452–453, 458
repeated real, 447–449
zeros (numerator polynomial), 452–453, 458

Row matrix, 708

S
s-domain, 441–455, 457–458, 466–502, 504

capacitor in, 467–468, 504
circuit analysis in, 468–482, 504
circuit symbols for, 466–467, 470–471, 475, 477, 479–480

final-value theorem, 453–455, 458
impulse function in, 496–502, 504
inductor in, 466–467, 504
initial-value theorem, 453–455, 458
inverse Laplace transform and, 442–452, 457
Kirchhoff’s laws and, 469
Laplace transform and, 441–455, 457–458, 466–487, 504
mutual inductance in, 478–479
notation of in Laplace transforms, 441–442
Ohm’s law in, 468–469
partial fraction expansion, 442–452, 457, 484–487, 504
poles (denominator polynomial), 452–453, 458
resistor in, 466, 504
responses of circuits in, 470–482
superposition, use of in, 480–482
terminal voltage-current equations in, 466–468, 504
Thévenin equivalent, use of in, 477–478
transfer function H(s) in, 482–495, 504
zeros (numerator polynomial), 452–453, 458

Scale-changing property, operational transforms, 439, 657
Scaling, 562–564, 592

frequency factor ( ), 562, 592
magnitude factor ( ), 562, 592
op-amp filter design using, 563–564

Second-order circuits, 264–303
defined, 266
general solution of differential equations, 266–270
integrating amplifiers, 289–293, 295
natural response of, 266–279, 285–289, 295
resistor-inductor-capacitor (RLC), 264–303
step response of, 280–289, 295–296

Secondary winding, transformers, 333
self-impedance (Z), 333–334
Self-inductance, 193–194, 196–197, 203
Sensitivity analysis, resistors, 89, 125–128
Sequential switching, 236–240, 243, 246

first-order circuit responses and, 236–240, 243, 246
integrating amplifier with, 243
resistor-capacitor (RC) circuits, 236, 239
resistor-inductor (RL) circuits, 236–238

Series-connected (in series) circuits, 39, 48, 58, 75,
187–189, 203, 320–324, 692. See also Series RLC
Circuits

black box concept, 58
capacitors, 188–189, 203
impedances combined in, 320–324
inductors, 187–188, 203
Kirchhoff’s current law for, 39, 48, 58
node positions, 39, 48
resistors, 58, 75
two-port circuits, 692

Series-parallel two-port circuit connection, 692
Series RLC circuits, 285–289, 295–296

capacitor voltage in, 286–287
characteristic equation of, 286, 295
circuit symbols for, 285–286
critically damped response, 286
natural response, 285–289

km

kf

Kd(t)
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Neper frequency ( ), 286
overdamped response, 286
resonant radian frequency ( ), 286
step response, 285–289, 295–296
underdamped responses, 286–288

Short circuit, 35
Sifting property, 432
Signal-processing systems, 5–6
Signed minor, 705–706
Signum function, Fourier transform of, 651
Simultaneous equations, 91–93, 703–722

characteristic determinant, 704
circuit analysis using, 91–93
Cramer’s method, 704
determinant evaluation for, 705–708
determination of number of, 91–92 
matrices for, 707–708, 712–717
matrix algebra for, 708–712, 718–722
numerator determinant, 704–705
solution of, 703–722
systematic approach using, 92–93

Sine functions, 615–616
Single-phase equivalent circuits, 402–403, 417
Sinusoidal response, 309–310, 345, 465, 495–497,

503, 506, 661
Fourier transform for, 661
Laplace transform for, 465, 495–497, 503
steady-state analysis and, 309–310, 345
steady-state component of, 310
surge suppressors, 465, 503
transfer function H(s) and, 495–497, 506
transient component of, 312

Sinusoidal sources, 306–309, 345, 427, 456–457
complete circuit response of, 427, 456–457
current (i), 306–307, 345
Laplace transforms for, 427, 456–457
period, 306
phase angle ( ), 306
root-mean-square (rms) value of, 307–309
steady-state analysis, 306–309, 345
voltage ( ), 306–308, 345

Sinusoidal steady-state analysis, 304–395
delta-to-wye ( -to-Y) transformations, 324–326
frequency domain, 311, 315–320, 327–341, 345
household distribution circuit, 305, 344
ideal transformer, 336–341, 345
impedance (Z), 318, 320–330, 334, 341, 345
Kirchhoff’s laws, 319–320
mesh-current method, 331–332
node-voltage method, 330–331
Norton equivalent circuit, 327
passive circuit elements, 315–318
phasor diagrams for, 342–344
phasors, 310–315, 345
power calculations, 358–395
reactance, 318
response, 309–310, 345
source transformations, 327–330

¢

v

f

v0

a sources, 306–309, 345
standby (vampire) power, 359, 382–383
Thévenin equivalent circuit, 327–330
transformers, 332–341, 345
voltage to current ( -i) relationships, 315–318

Source transformations, 109–113, 115–116, 129, 327–330
circuit analysis using, 109–113, 115–116, 129
defined, 110
frequency domain, 327–330
impedance (Z) and, 327–330
Norton equivalent circuits, 115, 327
Thévenin equivalent circuit, 115–116, 327–329

Sources, 26–29, 42–45, 48, 56, 306–309, 345, 399–400,
427, 456–457, 499–502

active element of, 27
complete circuit response and, 427, 456–457
constant (dc), 56
controlled, 27
delta ( ) configurations, 399–400
dependent, 26–27, 29, 42–45, 48
ideal current, 26–29, 48
ideal voltage, 26–29, 48
impulsive, 499–502
independent, 26, 29, 48
interconnection of, 28–29
Laplace transform and, 427, 456–457, 499–502
passive element of, 27
sinusoidal, 306–309, 345, 427, 456–457
three-phase voltage, 399–400
wye (Y) configurations, 399–400

Square matrix, 708
Square wave input of sinusoids, 603, 630–632
Standby (vampire) power, 359, 382–383
Steady-state analysis, see Sinusoidal steady-state analysis
Steady-state response, 217, 427, 456–457, 493–495,

503–504, 617–621, 633, 661
defined, 217
direct approach to, 619–621
first-order circuits, 217
Fourier series analysis, 617–621, 633
Fourier transform for, 661
Laplace transform analysis and, 493–495, 504
periodic functions used for, 617–621
sinusoidal, 493–495, 503–504, 661
surge suppressors and, 465, 503
transfer function H(s) and, 493–495, 504
transient effects and, 427, 456–457

Step function Ku(t), 429–430, 457
Step response, 212, 224–236, 246, 280–289, 295–296,

471–476
capacitor voltage in series RLC circuits, 286–287
critically damped voltage, 283, 295–296
defined, 212, 246
direct approach, 281–282
first-order circuits, 212, 224–236, 246
general solution for, 231–236, 246
indirect approach, 281
Laplace transform analysis and, 471–476
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v
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Step response (Continued)
magnetically coupled coils and, 235–236
method of calculating, 232
multiple mesh circuit, 474–476
overdamped voltage, 282, 295–296
parallel RLC circuits, 280–285, 295–296, 471–473
resistor-capacitor (RC) circuits, 229–236, 246
resistor-inductor (RL) circuits, 224–228, 231–236, 246
resistor-inductor-capacitor (RLC) circuits, 280–289,

295–296
series RLC circuits, 285–289, 295–296
underdamped, 283, 288, 295–296

Stopband frequencies, 522–523, 548
Straight-line amplitude plots, 740–744, 750–752
Straight-line phase angle plots, 745–747
Strain gages, 145, 162–163
Summing-amplifier circuit, 152–153, 164
Supermesh, 104
Supernode, 97–98
Superposition, 122–125, 129, 480–482

circuit analysis using, 122–125, 129
defined, 122
Laplace transform analysis and, 480–482
s-domain, 480–482

Surge suppressors, 465, 503
Susceptance (B), 322
Switches, 176, 232–240, 243, 465, 496–499, 503

arcing, 176
capacitor circuits, 496–497
inductor circuits, 176, 497–499
impulse functions created by, 496–499
integrating amplifier with, 243
Laplace transform analysis and, 465, 496–499, 503
RL and RC circuits, 232–240, 246
sequential switching, 236–240, 246
surge suppressors, 465, 503

Symmetric two-port circuits, 686, 696
Symmetry, 609–614, 632

even-function, 609–610, 632
Fourier coefficients, effects on, 609–614, 632
half-wave, 611–612, 632
odd-function, 610–611, 614, 632
quarter-wave, 612–613, 632

T
T-equivalent circuit, 729–730
Tee (T) interconnection, 71
Terminals, 31–32, 36, 146–150, 164, 182–186, 203,

466–468, 678
capacitor equations, 182–186, 203, 467–468
current (i) input constraints, 148–149, 164
inductor equations, 176–181, 203, 466–467
measurements for circuit construction, 36
operation amplifiers (op amps), 146–150, 164
resistor power at, 31–32
two-port circuits, 678

variable characteristics (voltage and current),
146–150, 164

voltage ( ) input constraints, 147–148, 164
Terminated two-port circuits, 687–691
Thévenin equivalent circuits, 113–119, 129,

327–329, 477–478
amplifier circuit using, 118–119
analysis of, 113–119, 129
defined, 113
dependent sources, 116, 118
finding equivalent of, 114–115
frequency-domain, 327–329
impedance (Z) in, 327–329
independent sources, 117–118
Laplace transform analysis and, 477–478
resistance source (RTh), 113–115
s-domain, use of in, 477–478
source transformations used for, 115–116,

327–329
voltage source (VTh), 113–115
test source for, 118

Three-phase circuits, see Balanced three-phase circuits
Time constant ( ), 216–217, 221, 246

resistor-capacitor (RC) circuits, 221, 246
resistor-inductor (RL) circuits, 216–217, 246

Time domain, 311–313, 345, 438–442, 529, 543, 646–648,
655–659, 662–668

convergence of Fourier transform integral 
and, 646–648

convolution in, 657–658
differentiation in, 656
energy calculations, 662–668
Fourier transform and, 646–648, 655–659,

664–670
frequency domain relationships, 529, 543, 657
frequency domain transformations, 311–313, 345
integration in, 656
integrodifferential equations for, 440–442
inverse phasor transformation, 312–313, 345
Laplace transform and, 438–442
operational transforms for, 438–439, 655–659
Parseval’s theorem for, 662–668
passive-filter circuits and, 529, 543
phasor transformation, 311, 345
scale change in, 657
translation in, 438–439, 657

Time-invariant circuits, 486–487, 504
Tolerance, 62
Touch screens, 57, 73–75, 175, 200–202

capacitance of, 175, 200–202
resistive circuits of, 57, 73–75

Transducers (strain gages), 145, 162–163
Transfer function H(s), 482–495, 504, 529, 533–534,

544–545, 547–549, 569, 572–579, 583–584, 592
active-filter circuits, 569, 572–577, 584, 592
bandpass filters, 542, 549, 569, 584
bandreject filters, 544–545, 547, 549
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Butterworth filters, 576–579, 583, 592
cascading identical filters and, 572–575
circuit analysis, 482–495, 504
convolution integral and, 487–493, 504
defined, 482
high-pass filters, 533–534, 549
Laplace transform circuit analysis and, 482–495, 504
low-pass filters, 529, 548
memory and, 492–493
partial fraction expansion, use of in, 484–487, 504
passive-filter circuits and, 529, 533–534, 542, 544–545,

547–549
poles of, 484
steady-state sinusoidal response and, 493–495, 504
time-invariant circuits, 486–487, 504
weighting function, 492–493
zeros of, 484

Transformations, see Circuit transformations
Transformers, 332–341, 345, 729–736

defined, 332
dot convention for, 339–340
equivalent circuits and, 729–736
frequency domain and, 332–341, 345
ideal, 333, 336–341, 345, 729–736
self-impedance (Z), 333–334
limiting values of, 336–338
linear, 333–336, 345
winding (primary and secondary), 333
reflected impedance (Zr), 334, 345
sinusoidal steady-state analysis, 332–341, 345
voltage and current ratios, 338–340, 345

Transient effects on circuits, 427, 456–457
Transient response, 217, 473–474, 659–660

defined, 217
Laplace transform for, 473–474
Fourier transform for, 659–660

Translation, operational transforms for, 438–439, 657
Transmission parameters, 681
Transpose of a matrix, 712
Trigonometric identities, 757
Twin-T notch filter, 586–589
Two-port circuits, 676–701

analysis of, 687–691
black box amplifier, 677, 695
conversion of parameters, 684–686
hybrid parameters, 681
interconnected, 692–695
intermittence, 680–681
parameter conversion for, 682–684
parameters of, 679–686, 696
ports, 676
reciprocal, 685–686, 696
symmetric, 686, 696
terminal equations for, 678
terminated, 687–691
transmission parameters, 681
z parameters, 679–680, 687–691

U
Unbounded response, 240–241, 246
Underdamped responses, 269, 274–277, 283, 286–288,

295–296
characteristics of, 276
damped radian frequency, 274
damping factor (coefficient), 275
natural response equations, 274–275, 295
parallel RLC circuits, 269, 274–277, 283, 295
series RLC circuits, 286–288, 295
step response equations, 286, 296

Unilateral (one-sided) Laplace transform, 428–429
Unit impulse function , 431, 457
Unit step function u(t), 429, 457, 652

V
Vampire (standby) power, 359, 382–383
Variable-parameter function, 431–432
Volt-amp reactive (VAR), unit of, 363, 384
Volt-amps (VA), unit of, 368, 384
Voltage ( ), 11–13, 18, 26–29, 32–33, 38, 40–41, 48, 66–69,

76, 113–115, 146–150, 164, 176–179, 183–186, 188,
202–203, 221, 286–287, 306–308, 319, 338–340, 345,
398–405, 417, 466–469, 504

a-, b-, and c-phase, 398, 417
capacitors, 183–186, 202–203, 286–287, 467–468, 504
current (i) and, 11–13, 177–179, 468–469
defined, 12, 18
determination of, 176–177
electric charge and, 11–12
equivalent capacitance in, 188
frequency domain, 319, 338–340, 345
gain (A), 147
inductors, 176–179, 202, 466–467, 504
input constraints, 147–148, 164
Kirchhoff’s law (KVL), 38–41, 48, 319, 402–403
line, 402–404
measurement of, 66–69, 76
natural response and, 221
negative (acb) phase sequence, 398
node-voltage equation (VN), 400–401
operational amplifiers (op amps), 146–150, 164
phase, 398, 402–404
polarity of, 339–340
positive (abc) phase sequence, 398
power in a resistor, 32–33, 48
RC circuits, deriving expression for, 221
reference direction, 13
resistors, 466, 504
s-domain equations for, 466–469, 504
series RLC capacitor step response, 286–287
sinusoidal phase sequences, 398–399
sinusoidal source, 306–308, 345
sources, 26–29, 48, 399–400
terminal variable characteristics, 146–150, 164
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Voltage ( ) (Continued)
Thévenin equivalent (VTh), 113–115
three-phase, 398–405, 417
transfer characteristics of, 146–147, 164
transformer ratio, 338–340, 345
wye (Y) and delta ( ) configurations, 399–400
wye-wye (Y-Y) circuit analysis and, 400–405, 417

Voltage-divider circuits, 61–62, 75
Voltage-division circuit analysis, 64–66, 75
Voltage drop, 57, 64–65
Voltage pulse analysis, 645, 666–668
Voltage to current ( –i) relationships, 176–177, 183,

315–318, 345
capacitors, 183, 317–318
frequency domain, 315–318
impedance (Z) of, 318
inductors, 176–177, 316–317
reactance of, 318
resistors, 315–316
sinusoidal steady-state analysis and, 315–316, 345

Voltmeter, 66–67, 76

W
Watt (W), unit of, 363, 384
Wattmeter, 413–415, 417

v

¢

v Waveforms, 602–604
Weighting function, memory and,

492–493
Wheatstone bridge, 69–70, 76
Winding (primary and secondary), 333
Wye (Y) connected loads, power in,

408–409
Wye (Y) interconnection, 71
Wye (Y) source configurations, 399–400
Wye-delta (Y- ) circuit analysis, 405–407
Wye-wye (Y-Y) circuit analysis,

400–405, 417

Z
z parameters, two-port circuits, 679–680,

687–691
Zero frequency, 528
Zeros (roots), 452–453, 458, 484, 739–740,

747–749
Bode plots and, 739–740, 747–749
complex, 747–749
defined, 452
rational function F(s), 452–453, 457
real, first order, 739–740
transfer function H(s), 484
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An Abbreviated List of Laplace Transform Pairs

f(t) (t > 0–) Type F(s)

(impulse) 1

(step)

(ramp)

(exponential)

(sine)

(cosine)

(damped ramp)

(damped sine)

(damped cosine)

An Abbreviated List of Operational Transforms

f(t) F(s)

L

q

s
 F(u) du

f(t)

t

(-1) 
n

 

dn F(s)

ds 
ntn

 f(t)

-

dF(s)

ds
tf(t)

1
a

 Fa s
a
bf(at), a > 0

F(s + a)e-at f(t)

e-as F(s)f(t - a)u(t - a), a > 0

F(s)

sL

t

0
f(x) dx

s 
n F(s) - s n - 1 f(0-) - s 

n -2 
df(0-)

dt
- s 

n -3 
df2(0-)

dt2 -
Á

-

dn -1 f(0-)

dtn -1

dn f(t)

dtn

s 
2F(s) - sf(0-) -

df(0-)

dt

d2 f(t)

dt2

sF(s) - f(0-)
df(t)

dt

F1(s) + F2(s) - F3(s) +
Áf1(t) + f2(t) - f3(t) +

Á

KF(s)Kf(t)

s + a

(s + a)2
+ v 

2e-at cos vt

v

(s + a)2
+ v 

2e-at sin vt

1
(s + a)2te-at

s

s 
2

+ v 
2cos vt

v

s 
2

+ v 
2sin vt

1
s + a

e-at

1
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2t
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Periodic Functions

f(t)

t

A

�A

0

Triangular Wave

T 2T

f(t)

t

A
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