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C H A P T E R

MAGNETICALLY COUPLED CIRCUITS

1 3

People want success but keep running away from problems, and yet it is
only in tackling problems that success is achieved.

— Josiah J. Bonire

Enhancing Your Career
Career in Electromagnetics Electromagnetics is the
branch of electrical engineering (or physics) that deals with
the analysis and application of electric and magnetic fields.
In electromagnetics, electric circuit analysis is applied at low
frequencies.

The principles of electromagnetics (EM) are applied
in various allied disciplines, such as electric machines,
electromechanical energy conversion, radar meteorology,
remote sensing, satellite communications, bioelectromag-
netics, electromagnetic interference and compatibility, plas-
mas, and fiber optics. EM devices include electric motors
and generators, transformers, electromagnets, magnetic lev-
itation, antennas, radars, microwave ovens, microwave
dishes, superconductors, and electrocardiograms. The de-
sign of these devices requires a thorough knowledge of the
laws and principles of EM.

EM is regarded as one of the more difficult disci-
plines in electrical engineering. One reason is that EM
phenomena are rather abstract. But if one enjoys working
with mathematics and can visualize the invisible, one should
consider being a specialist in EM, since few electrical
engineers specialize in this area. Electrical engineers who
specialize in EM are needed in microwave industries,
radio/TV broadcasting stations, electromagnetic research
laboratories, and several communications industries.

Telemetry receiving station for space satellites. Source: T. J. Mal-
oney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1996, p. 718.
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13.1 INTRODUCTION
The circuits we have considered so far may be regarded asconductively
coupled, because one loop affects the neighboring loop through current
conduction. When two loops with or without contacts between them
affect each other through the magnetic field generated by one of them,
they are said to bemagnetically coupled.

The transformer is an electrical device designed on the basis of
the concept of magnetic coupling. It uses magnetically coupled coils to
transfer energy from one circuit to another. Transformers are key circuit
elements. They are used in power systems for stepping up or stepping
down ac voltages or currents. They are used in electronic circuits such as
radio and television receivers for such purposes as impedance matching,
isolating one part of a circuit from another, and again for stepping up or
down ac voltages and currents.

We will begin with the concept of mutual inductance and introduce
the dot convention used for determining the voltage polarities of induc-
tively coupled components. Based on the notion of mutual inductance,
we then introduce the circuit element known as thetransformer. We will
consider the linear transformer, the ideal transformer, the ideal autotrans-
former, and the three-phase transformer. Finally, among their important
applications, we look at transformers as isolating and matching devices
and their use in power distribution.

13.2 MUTUAL INDUCTANCE
When two inductors (or coils) are in a close proximity to each other,
the magnetic flux caused by current in one coil links with the other coil,
thereby inducing voltage in the latter. This phenomenon is known as
mutual inductance.
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Figure 13.1 Magnetic flux produced
by a single coil with N turns.

Let us first consider a single inductor, a coil with N turns. When
current i flows through the coil, a magnetic flux φ is produced around it
(Fig. 13.1). According to Faraday’s law, the voltage v induced in the coil
is proportional to the number of turns N and the time rate of change of
the magnetic flux φ; that is,

v = N
dφ

dt
(13.1)

But the flux φ is produced by current i so that any change in φ is caused
by a change in the current. Hence, Eq. (13.1) can be written as

v = N
dφ

di

di

dt
(13.2)

or

v = L
di

dt
(13.3)

which is the voltage-current relationship for the inductor. From Eqs.
(13.2) and (13.3), the inductance L of the inductor is thus given by

L = N
dφ

di
(13.4)
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This inductance is commonly called self-inductance, because it relates
the voltage induced in a coil by a time-varying current in the same coil.

Now consider two coils with self-inductances L1 and L2 that are in
close proximity with each other (Fig. 13.2). Coil 1 has N1 turns, while
coil 2 has N2 turns. For the sake of simplicity, assume that the second
inductor carries no current. The magnetic flux φ1 emanating from coil 1
has two components: one component φ11 links only coil 1, and another
component φ12 links both coils. Hence,

φ1 = φ11 + φ12 (13.5)

Although the two coils are physically separated, they are said to be mag-
netically coupled. Since the entire fluxφ1 links coil 1, the voltage induced
in coil 1 is

v1 = N1
dφ1

dt
(13.6)

Only flux φ12 links coil 2, so the voltage induced in coil 2 is

v2 = N2
dφ12

dt
(13.7)

Again, as the fluxes are caused by the current i1 flowing in coil 1, Eq.
(13.6) can be written as

v1 = N1
dφ1

di1

di1

dt
= L1

di1

dt
(13.8)

where L1 = N1 dφ1/di1 is the self-inductance of coil 1. Similarly, Eq.
(13.7) can be written as

v2 = N2
dφ12

di1

di1

dt
= M21

di1

dt
(13.9)

where

M21 = N2
dφ12

di1
(13.10)

M21 is known as the mutual inductance of coil 2 with respect to coil 1.
Subscript 21 indicates that the inductanceM21 relates the voltage induced
in coil 2 to the current in coil 1. Thus, the open-circuit mutual voltage
(or induced voltage) across coil 2 is

v2 = M21
di1

dt
(13.11)
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Figure 13.2 Mutual inductance M21 of
coil 2 with respect to coil 1.
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Figure 13.3 Mutual inductance M12 of
coil 1 with respect to coil 2.

Suppose we now let current i2 flow in coil 2, while coil 1 carries no
current (Fig. 13.3). The magnetic fluxφ2 emanating from coil 2 comprises
flux φ22 that links only coil 2 and flux φ21 that links both coils. Hence,

φ2 = φ21 + φ22 (13.12)

The entire flux φ2 links coil 2, so the voltage induced in coil 2 is

v2 = N2
dφ2

dt
= N2

dφ2

di2

di2

dt
= L2

di2

dt
(13.13)
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where L2 = N2 dφ2/di2 is the self-inductance of coil 2. Since only flux
φ21 links coil 1, the voltage induced in coil 1 is

v1 = N1
dφ21

dt
= N1

dφ21

di2

di2

dt
= M12

di2

dt
(13.14)

where

M12 = N1
dφ21

di2
(13.15)

which is the mutual inductance of coil 1 with respect to coil 2. Thus, the
open-circuit mutual voltage across coil 1 is

v1 = M12
di2

dt
(13.16)

We will see in the next section that M12 and M21 are equal, that is,

M12 = M21 = M (13.17)

and we refer to M as the mutual inductance between the two coils. Like
self-inductanceL, mutual inductanceM is measured in henrys (H). Keep
in mind that mutual coupling only exists when the inductors or coils are
in close proximity, and the circuits are driven by time-varying sources.
We recall that inductors act like short circuits to dc.

From the two cases in Figs. 13.2 and 13.3, we conclude that mutual
inductance results if a voltage is induced by a time-varying current in
another circuit. It is the property of an inductor to produce a voltage in
reaction to a time-varying current in another inductor near it. Thus,

Mutual inductance is the ability of one inductor to induce a voltage
across a neighboring inductor, measured in henrys (H).

Although mutual inductance M is always a positive quantity, the
mutual voltage M di/dt may be negative or positive, just like the self-
induced voltage Ldi/dt . However, unlike the self-induced Ldi/dt,
whose polarity is determined by the reference direction of the current and
the reference polarity of the voltage (according to the passive sign con-
vention), the polarity of mutual voltageM di/dt is not easy to determine,
because four terminals are involved. The choice of the correct polarity for
M di/dt is made by examining the orientation or particular way in which
both coils are physically wound and applying Lenz’s law in conjunction
with the right-hand rule. Since it is inconvenient to show the construction
details of coils on a circuit schematic, we apply the dot convention in cir-
cuit analysis. By this convention, a dot is placed in the circuit at one end
of each of the two magnetically coupled coils to indicate the direction of
the magnetic flux if current enters that dotted terminal of the coil. This is
illustrated in Fig. 13.4. Given a circuit, the dots are already placed beside
the coils so that we need not bother about how to place them. The dots
are used along with the dot convention to determine the polarity of the
mutual voltage. The dot convention is stated as follows:
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i1
f21

f11 f22

f12

v1

+

−

i2

Coil 1 Coil 2

v2

+

−

Figure 13.4 Illustration of the dot convention.

If a current enters the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is positive

at the dotted terminal of the second coil.

Alternatively,

If a current leaves the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is negative

at the dotted terminal of the second coil.

+

−

M
i1

v2 = M
di1
dt

(a)

+

−

M
i1

v2 = –M
di1
dt

v1 = –M
di2
dt

(b)

+

−

M

(c)

(d)

i2

v1 = M
di2
dt

+

−

M
i2

Figure 13.5 Examples
illustrating how to apply the
dot convention.

Thus, the reference polarity of the mutual voltage depends on the refer-
ence direction of the inducing current and the dots on the coupled coils.
Application of the dot convention is illustrated in the four pairs of mu-
tually coupled coils in Fig. 13.5. For the coupled coils in Fig. 13.5(a),
the sign of the mutual voltage v2 is determined by the reference polarity
for v2 and the direction of i1. Since i1 enters the dotted terminal of coil
1 and v2 is positive at the dotted terminal of coil 2, the mutual voltage is
+M di1/dt . For the coils in Fig. 13.5(b), the current i1 enters the dot-
ted terminal of coil 1 and v2 is negative at the dotted terminal of coil 2.
Hence, the mutual voltage is −M di1/dt . The same reasoning applies to
the coils in Fig. 13.5(c) and 13.5(d). Figure 13.6 shows the dot conven-
tion for coupled coils in series. For the coils in Fig. 13.6(a), the total
inductance is

L = L1 + L2 + 2M (Series-aiding connection) (13.18)

For the coil in Fig. 13.6(b),

L = L1 + L2 − 2M (Series-opposing connection) (13.19)

Now that we know how to determine the polarity of the mutual
voltage, we are prepared to analyze circuits involving mutual inductance.
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Figure 13.6 Dot convention for coils in series; the sign indicates the polarity of the mutual
voltage: (a) series-aiding connection, (b) series-opposing connection.

As the first example, consider the circuit in Fig. 13.7. Applying KVL to
coil 1 gives

v1 = i1R1 + L1
di1

dt
+M

di2

dt
(13.20a)

For coil 2, KVL gives

v2 = i2R2 + L2
di2

dt
+M

di1

dt
(13.20b)

We can write Eq. (13.20) in the frequency domain as

V1 = (R1 + jωL1)I1 + jωMI2 (13.21a)

V2 = jωMI1 + (R2 + jωL2)I2 (13.21b)

As a second example, consider the circuit in Fig. 13.8. We analyze this
in the frequency domain. Applying KVL to coil 1, we get

V = (Z1 + jωL1)I1 − jωMI2 (13.22a)

For coil 2, KVL yields

0 = −jωMI1 + (ZL + jωL2)I2 (13.22b)

Equations (13.21) and (13.22) are solved in the usual manner to determine
the currents.

v1 v2

R1 R2

+
− L1 L2i1 i2

M

+
−

Figure 13.7 Time-domain analysis of a circuit containing
coupled coils.

V ZL

Z1

+
− jvL1 jvL2I1 I2

jvM

Figure 13.8 Frequency-domain analysis of a circuit
containing coupled coils.

At this introductory level we are not concerned with the determi-
nation of the mutual inductances of the coils and their dot placements.
Like R, L, and C, calculation of M would involve applying the theory
of electromagnetics to the actual physical properties of the coils. In this
text, we assume that the mutual inductance and the dots placement are the
“givens” of the circuit problem, like the circuit components R,L, and C.
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E X A M P L E 1 3 . 1

Calculate the phasor currents I1 and I2 in the circuit of Fig. 13.9.

V 12 Ω

−j4 Ω

+
− j5 Ω j6 ΩI1 I2

j3 Ω

12   0°

Figure 13.9 For Example 13.1.

Solution:

For coil 1, KVL gives

−12 + (−j4 + j5)I1 − j3I2 = 0

or

jI1 − j3I2 = 12 (13.1.1)

For coil 2, KVL gives

−j3I1 + (12 + j6)I2 = 0

or

I1 = (12 + j6)I2

j3
= (2 − j4)I2 (13.1.2)

Substituting this in Eq. (13.1.1), we get

(j2 + 4 − j3)I2 = (4 − j)I2 = 12

or

I2 = 12

4 − j
= 2.91 14.04◦ A (13.1.3)

From Eqs. (13.1.2) and (13.1.3),

I1 = (2 − j4)I2 = (4.472 − 63.43◦)(2.91 14.04◦)

= 13.01 − 49.39◦ A

P R A C T I C E P R O B L E M 1 3 . 1

Determine the voltage Vo in the circuit of Fig. 13.10.

V 10 Ω

4 Ω

+
− j8 Ω j5 ΩI1 I2

j1 Ω

Vo

+

−
6   90°

Figure 13.10 For Practice Prob. 13.1.

Answer: 0.6 − 90◦ V.



534 PART 2 AC Circuits

E X A M P L E 1 3 . 2

Calculate the mesh currents in the circuit of Fig. 13.11.

V 5 Ω

4 Ω j8 Ω

+
− j6 Ω

j2 Ω

I1
I2

−j3 Ω

100   0°

Figure 13.11 For Example 13.2.

Solution:

The key to analyzing a magnetically coupled circuit is knowing the po-
larity of the mutual voltage. We need to apply the dot rule. In Fig. 13.11,
suppose coil 1 is the one whose reactance is 6 �, and coil 2 is the one
whose reactance is 8 �. To figure out the polarity of the mutual voltage
in coil 1 due to current I2, we observe that I2 leaves the dotted terminal of
coil 2. Since we are applying KVL in the clockwise direction, it implies
that the mutual voltage is negative, that is, −j2I2.

+

−

j2
I2

V1

(a) V1 = –2jI2

I1 j6 Ω j8 Ω

Coil 1 Coil 2

−

+

j2  Ω
I1

V2

(b) V2 = –2jI1

I2j6 Ω j8 Ω

Coil 1 Coil 2

Figure 13.12 For Example 13.2;
redrawing the relevant portion of the
circuit in Fig. 13.11 to find mutual
voltages by the dot convention.

Alternatively, it might be best to figure out the mutual voltage by
redrawing the relevant portion of the circuit, as shown in Fig. 13.12(a),
where it becomes clear that the mutual voltage is V1 = −2jI2.

Thus, for mesh 1 in Fig. 13.11, KVL gives

−100 + I1(4 − j3 + j6)− j6I2 − j2I2 = 0

or

100 = (4 + j3)I1 − j8I2 (13.2.1)

Similarly, to figure out the mutual voltage in coil 2 due to current I1,
consider the relevant portion of the circuit, as shown in Fig. 13.12(b).
Applying the dot convention gives the mutual voltage as V2 = −2jI1.
Also, current I2 sees the two coupled coils in series in Fig. 13.11; since it
leaves the dotted terminals in both coils, Eq. (13.18) applies. Therefore,
for mesh 2, KVL gives

0 = −2jI1 − j6I1 + (j6 + j8 + j2 × 2 + 5)I2

or

0 = −j8I1 + (5 + j18)I2 (13.2.2)

Putting Eqs. (13.2.1) and (13.2.2) in matrix form, we get[
100

0

]
=

[
4 + j3
−j8

−j8
5 + j18

] [
I1

I2

]
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The determinants are

� =
∣∣∣∣4 + j3 −j8

−j8 5 + j18

∣∣∣∣ = 30 + j87

�1 =
∣∣∣∣100 −j8

0 5 + j18

∣∣∣∣ = 100(5 + j18)

�2 =
∣∣∣∣4 + j3 100

−j8 0

∣∣∣∣ = j800

Thus, we obtain the mesh currents as

I1 = �1

�
= 100(5 + j18)

30 + j87
= 1868.2 74.5◦

92.03 71◦
= 20.3 3.5◦ A

I2 = �2

�
= j800

30 + j87
= 800 90◦

92.03 71◦
= 8.693 19◦ A

P R A C T I C E P R O B L E M 1 3 . 2

Determine the phasor currents I1 and I2 in the circuit of Fig. 13.13.

V

5 Ω j2 Ω

+
− j6 Ω

j3 Ω
I1 I2 −j4 Ω12   60°

Figure 13.13 For Practice Prob. 13.2.

Answer: 2.15 86.56◦, 3.23 86.56◦ A.

13.3 ENERGY IN A COUPLED CIRCUIT
In Chapter 6, we saw that the energy stored in an inductor is given by

w = 1

2
Li2 (13.23)

We now want to determine the energy stored in magnetically coupled
coils.

+

−

M
i1

v1

+

−

v2

i2

L1 L2

Figure 13.14 The circuit
for deriving energy stored in
a coupled circuit.

Consider the circuit in Fig. 13.14. We assume that currents i1 and
i2 are zero initially, so that the energy stored in the coils is zero. If we let
i1 increase from zero to I1 while maintaining i2 = 0, the power in coil 1
is

p1(t) = v1i1 = i1L1
di1

dt
(13.24)

and the energy stored in the circuit is

w1 =
∫
p1 dt = L1

∫ I1

0
i1 di1 = 1

2
L1I

2
1 (13.25)
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If we now maintain i1 = I1 and increase i2 from zero to I2, the mutual
voltage induced in coil 1 isM12 di2/dt , while the mutual voltage induced
in coil 2 is zero, since i1 does not change. The power in the coils is now

p2(t) = i1M12
di2

dt
+ i2v2 = I1M12

di2

dt
+ i2L2

di2

dt
(13.26)

and the energy stored in the circuit is

w2 =
∫
p2 dt = M12I1

∫ I2

0
di2 + L2

∫ I2

0
i2 di2

= M12I1I2 + 1

2
L2I

2
2

(13.27)

The total energy stored in the coils when both i1 and i2 have reached
constant values is

w = w1 + w2 = 1

2
L1I

2
1 + 1

2
L2I

2
2 +M12I1I2 (13.28)

If we reverse the order by which the currents reach their final values, that
is, if we first increase i2 from zero to I2 and later increase i1 from zero to
I1, the total energy stored in the coils is

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 +M21I1I2 (13.29)

Since the total energy stored should be the same regardless of how we
reach the final conditions, comparing Eqs. (13.28) and (13.29) leads us
to conclude that

M12 = M21 = M (13.30a)

and

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 +MI1I2 (13.30b)

This equation was derived based on the assumption that the coil currents
both entered the dotted terminals. If one current enters one dotted terminal
while the other current leaves the other dotted terminal, the mutual voltage
is negative, so that the mutual energyMI1I2 is also negative. In that case,

w = 1

2
L1I

2
1 + 1

2
L2I

2
2 −MI1I2 (13.31)

Also, since I1 and I2 are arbitrary values, they may be replaced by i1 and
i2, which gives the instantaneous energy stored in the circuit the general
expression

w = 1

2
L1i

2
1 + 1

2
L2i

2
2 ±Mi1i2 (13.32)

The positive sign is selected for the mutual term if both currents enter
or leave the dotted terminals of the coils; the negative sign is selected
otherwise.

We will now establish an upper limit for the mutual inductanceM .
The energy stored in the circuit cannot be negative because the circuit is
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passive. This means that the quantity 1/2L1i
2
1 + 1/2L2i

2
2 −Mi1i2 must

be greater than or equal to zero,

1

2
L1i

2
1 + 1

2
L2i

2
2 −Mi1i2 ≥ 0 (13.33)

To complete the square, we both add and subtract the term i1i2
√
L1L2 on

the right-hand side of Eq. (13.33) and obtain

1

2
(i1

√
L1 − i2

√
L2)

2 + i1i2(
√
L1L2 −M) ≥ 0 (13.34)

The squared term is never negative; at its least it is zero. Therefore, the
second term on the right-hand side of Eq. (13.34) must be greater than
zero; that is, √

L1L2 −M ≥ 0

or

M ≤
√
L1L2 (13.35)

Thus, the mutual inductance cannot be greater than the geometric mean
of the self-inductances of the coils. The extent to which the mutual
inductance M approaches the upper limit is specified by the coefficient
of coupling k, given by

k = M√
L1L2

(13.36)

or

M = k
√
L1L2 (13.37)

where 0 ≤ k ≤ 1 or equivalently 0 ≤ M ≤ √
L1L2. The coupling

coefficient is the fraction of the total flux emanating from one coil that
links the other coil. For example, in Fig. 13.2,

k = φ12

φ1
= φ12

φ11 + φ12
(13.38)

and in Fig. 13.3,

k = φ21

φ2
= φ21

φ21 + φ22
(13.39)

If the entire flux produced by one coil links another coil, then k = 1
and we have 100 percent coupling, or the coils are said to be perfectly
coupled. Thus,

The coupling coefficient k is a measure of the magnetic
coupling between two coils; 0 ≤ k ≤ 1.

For k < 0.5, coils are said to be loosely coupled; and for k > 0.5, they
are said to be tightly coupled.

(a) (b)

Air or ferrite core

Figure 13.15 Windings: (a) loosely coupled,
(b) tightly coupled; cutaway view demonstrates
both windings.

We expect k to depend on the closeness of the two coils, their core,
their orientation, and their windings. Figure 13.15 shows loosely coupled
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windings and tightly coupled windings. The air-core transformers used
in radio frequency circuits are loosely coupled, whereas iron-core trans-
formers used in power systems are tightly coupled. The linear transform-
ers discussed in Section 3.4 are mostly air-core; the ideal transformers
discussed in Sections 13.5 and 13.6 are principally iron-core.

E X A M P L E 1 3 . 3

Consider the circuit in Fig. 13.16. Determine the coupling coefficient.
Calculate the energy stored in the coupled inductors at time t = 1 s if
v = 60 cos(4t + 30◦) V.

v

10 Ω

+
− 5 H 4 H

2.5 H

F1
16

Figure 13.16 For Example 13.3.

Solution:

The coupling coefficient is

k = M√
L1L2

= 2.5√
20

= 0.56

indicating that the inductors are tightly coupled. To find the energy stored,
we need to obtain the frequency-domain equivalent of the circuit.

60 cos(4t + 30◦) 
⇒ 60 30◦, ω = 4 rad/s

5 H 
⇒ jωL1 = j20 �

2.5 H 
⇒ jωM = j10 �

4 H 
⇒ jωL2 = j16 �

1

16
F 
⇒ 1

jωC
= −j4 �

The frequency-domain equivalent is shown in Fig. 13.17. We now apply
mesh analysis. For mesh 1,

(10 + j20)I1 + j10I2 = 60 30◦ (13.3.1)

For mesh 2,

j10I1 + (j16 − j4)I2 = 0

or

I1 = −1.2I2 (13.3.2)

Substituting this into Eq. (13.3.1) yields

I2(−12 − j14) = 60 30◦ 
⇒ I2 = 3.254 − 160.6◦ A

and

I1 = −1.2I2 = 3.905 − 19.4◦ A

In the time-domain,

i1 = 3.905 cos(4t − 19.4◦), i2 = 3.254 cos(4t − 199.4◦)

At time t = 1 s, 4t = 4 rad = 229.2◦, and

i1 = 3.905 cos(229.2◦ − 19.4◦) = −3.389 A

i2 = 3.254 cos(229.2◦ + 160.6◦) = 2.824 A
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The total energy stored in the coupled inductors is

w = 1

2
L1i

2
1 + 1

2
L2i

2
2 +Mi1i2

= 1

2
(5)(−3.389)2 + 1

2
(4)(2.824)2 + 2.5(−3.389)(2.824) = 20.73 J

V

10 Ω

+
− j20 Ω j16 ΩI1 I2

j10

−j4 Ω60   30°

Figure 13.17 Frequency-domain equivalent of the circuit in Fig. 13.16.

P R A C T I C E P R O B L E M 1 3 . 3

For the circuit in Fig. 13.18, determine the coupling coefficient and the
energy stored in the coupled inductors at t = 1.5 s.

20 cos 2t V

4 Ω

+
− 2 H 1 H

1 H

2 Ω

F1
8

Figure 13.18 For Practice Prob. 13.3.

Answer: 0.7071, 9.85 J.

13.4 LINEAR TRANSFORMERS
Here we introduce the transformer as a new circuit element. A transformer
is a magnetic device that takes advantage of the phenomenon of mutual
inductance.

A transformer is generally a four-terminal device comprising
two (or more) magnetically coupled coils.

As shown in Fig. 13.19, the coil that is directly connected to the voltage
source is called the primary winding. The coil connected to the load is
called the secondary winding. The resistances R1 and R2 are included
to account for the losses (power dissipation) in the coils. The trans-
former is said to be linear if the coils are wound on a magnetically linear
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material—a material for which the magnetic permeability is constant.
Such materials include air, plastic, Bakelite, and wood. In fact, most ma-
terials are magnetically linear. Linear transformers are sometimes called
air-core transformers, although not all of them are necessarily air-core.
They are used in radio and TV sets. Figure 13.20 portrays different types
of transformers.

A linear transformer may also be regarded as one
whose flux is proportional to the currents in its
windings.

V ZL
+
− L1 L2I1 I2

M
R1 R2

Primary coil Secondary coil

Figure 13.19 A linear transformer.

(b)(a)

Figure 13.20 Different types of transformers: (a) copper wound dry power transformer, (b) audio transformers.
(Courtesy of: (a) Electric Service Co., (b) Jensen Transformers.)

We would like to obtain the input impedance Zin as seen from the
source, because Zin governs the behavior of the primary circuit. Applying
KVL to the two meshes in Fig. 13.19 gives

V = (R1 + jωL1)I1 − jωMI2 (13.40a)

0 = −jωMI1 + (R2 + jωL2 + ZL)I2 (13.40b)
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In Eq. (13.40b), we express I2 in terms of I1 and substitute it into Eq.
(13.40a). We get the input impedance as

Zin = V
I1

= R1 + jωL1 + ω2M2

R2 + jωL2 + ZL

(13.41)

Notice that the input impedance comprises two terms. The first term,
(R1 + jωL1), is the primary impedance. The second term is due to the
coupling between the primary and secondary windings. It is as though this
impedance is reflected to the primary. Thus, it is known as the reflected
impedance ZR , and

ZR = ω2M2

R2 + jωL2 + ZL

(13.42)

It should be noted that the result in Eq. (13.41) or (13.42) is not affected
by the location of the dots on the transformer, because the same result is
produced when M is replaced by −M .

Some authors call this the coupled impedance.

The little bit of experience gained in Sections 13.2 and 13.3 in
analyzing magnetically coupled circuits is enough to convince anyone that
analyzing these circuits is not as easy as circuits in previous chapters. For
this reason, it is sometimes convenient to replace a magnetically coupled
circuit by an equivalent circuit with no magnetic coupling. We want to
replace the linear transformer in Fig. 13.19 by an equivalent T or� circuit,
a circuit that would have no mutual inductance. Ignore the resistances of
the coils and assume that the coils have a common ground as shown in
Fig. 13.21. The assumption of a common ground for the two coils is a
major restriction of the equivalent circuits. A common ground is imposed
on the linear transformer in Fig. 13.21 in view of the necessity of having
a common ground in the equivalent T or � circuit; see Figs. 13.22 and
13.23.

+

−

M
I1

V1

+

−

V2

I2

L1 L2

Figure 13.21 Determining
the equivalent circuit of a
linear transformer.

+

−

I1

V1

+

−
V2

I2

Lc

La Lb

Figure 13.22 An equivalent T circuit.

+

−

I1

V1

+

−
V2

I2

LBLA

LC

Figure 13.23 An equivalent � circuit.

The voltage-current relationships for the primary and secondary
coils give the matrix equation[

V1

V2

]
=

[
jωL1 jωM

jωM jωL2

] [
I1

I2

]
(13.43)

By matrix inversion, this can be written as

[
I1

I2

]
=




L2

jω(L1L2 −M2)

−M
jω(L1L2 −M2)

−M
jω(L1L2 −M2)

L1

jω(L1L2 −M2)




[
V1

V2

]
(13.44)

Our goal is to match Eqs. (13.43) and (13.44) with the corresponding
equations for the T and � networks.

For the T (or Y) network of Fig. 13.22, mesh analysis provides the
terminal equations as[

V1

V2

]
=

[
jω(La + Lc) jωLc

jωLc jω(Lb + Lc)

] [
I1

I2

]
(13.45)

If the circuits in Figs. 13.21 and 13.22 are equivalents, Eqs. (13.43) and
(13.45) must be identical. Equating terms in the impedance matrices of
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Eqs. (13.43) and (13.45) leads to

La = L1 −M, Lb = L2 −M, Lc = M (13.46)

For the � (or �) network in Fig. 13.23, nodal analysis gives the
terminal equations as

[
I1

I2

]
=




1

jωLA
+ 1

jωLC
− 1

jωLC

− 1

jωLC

1

jωLB
+ 1

jωLC




[
V1

V2

]
(13.47)

Equating terms in admittance matrices of Eqs. (13.44) and (13.47), we
obtain

LA = L1L2 −M2

L2 −M
, LB = L1L2 −M2

L1 −M

LC = L1L2 −M2

M

(13.48)

Note that in Figs. 13.23 and 13.24, the inductors are not magnetically
coupled. Also note that changing the locations of the dots in Fig. 13.21
can cause M to become −M . As Example 13.6 illustrates, a negative
value of M is physically unrealizable but the equivalent model is still
mathematically valid.

ZL
+
− j20 Ω j40 ΩI1 I2

j5 Ω
Z1 Z2

V50   60°

Figure 13.24 For Example 13.4.

E X A M P L E 1 3 . 4

In the circuit of Fig. 13.24, calculate the input impedance and current I1.
Take Z1 = 60 − j100 �, Z2 = 30 + j40 �, and ZL = 80 + j60 �.

Solution:

From Eq. (13.41),

Zin = Z1 + j20 + (5)2

j40 + Z2 + ZL

= 60 − j100 + j20 + 25

110 + j140

= 60 − j80 + 0.14 − 51.84◦

= 60.09 − j80.11 = 100.14 − 53.1◦ �
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Thus,

I1 = V
Zin

= 50 60◦

100.14 − 53.1◦
= 0.5 113.1◦ A

P R A C T I C E P R O B L E M 1 3 . 4

Find the input impedance of the circuit of Fig. 13.25 and the current from
the voltage source.

4 Ω

+
− j8 Ω j10 Ω

j3 Ω

j4 Ω

6 Ω

−j6 Ω

V10   0°

Figure 13.25 For Practice Prob. 13.4.

Answer: 8.58 58.05◦ �, 1.165 − 58.05◦ A.

E X A M P L E 1 3 . 5

Determine the T-equivalent circuit of the linear transformer in Fig. 13.26(a).

2 H

(a)

10 H 4 H

a

b

c

d

(b)

a

b

c

d

2 H

8 H 2 H

Figure 13.26 For Example 13.5: (a) a linear transformer,
(b) its T-equivalent circuit.

Solution:

Given that L1 = 10, L2 = 4, and M = 2, the T equivalent network has
the following parameters:

La = L1 −M = 10 − 2 = 8 H

Lb = L2 −M = 4 − 2 = 2 H, Lc = M = 2 H

The T-equivalent circuit is shown in Fig. 13.26(b). We have assumed that
reference directions for currents and voltage polarities in the primary and
secondary windings conform to those in Fig. 13.21. Otherwise, we may
need to replace M with −M , as Example 13.6 illustrates.
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P R A C T I C E P R O B L E M 1 3 . 5

For the linear transformer in Fig. 13.26 (a), find the� equivalent network.

Answer: LA = 18 H, LB = 4.5 H, LC = 18 H.

E X A M P L E 1 3 . 6

Solve for I1, I2, and Vo in Fig. 13.27 (the same circuit as for Practice Prob.
13.1) using the T-equivalent circuit for the linear transformer.

+
− j8 Ω j5 ΩI1 I2

j1 Ω
4 Ω

V60   90° 10 Ω
+

−
Vo

Figure 13.27 For Example 13.6.

Solution:

Notice that the circuit in Fig. 13.27 is the same as that in Fig. 13.10 except
that the reference direction for current I2 has been reversed, just to make
the reference directions for the currents for the magnetically coupled coils
conform with those in Fig. 13.21.

+

−

j1 Ω

(a)

(b)

V1

+

−

V2
j8 Ω j5 Ω

j9 Ω j6 Ω

−j1 Ω

I1 I2

Figure 13.28 For Example 13.6:
(a) circuit for coupled coils of Fig.
13.27, (b) T-equivalent circuit.

We need to replace the magnetically coupled coils with the T-
equivalent circuit. The relevant portion of the circuit in Fig. 13.27 is
shown in Fig. 13.28(a). Comparing Fig. 13.28(a) with Fig. 13.21 shows
that there are two differences. First, due to the current reference direc-
tions and voltage polarities, we need to replace M by −M to make Fig.
13.28(a) conform with Fig. 13.21. Second, the circuit in Fig. 13.21 is in
the time-domain, whereas the circuit in Fig. 13.28(a) is in the frequency-
domain. The difference is the factor jω; that is, L in Fig. 13.21 has been
replaced with jωL and M with jωM . Since ω is not specified, we can
assume ω = 1 or any other value; it really does not matter. With these
two differences in mind,

La = L1 − (−M) = 8 + 1 = 9 H

Lb = L2 − (−M) = 5 + 1 = 6 H, Lc = −M = −1 H

Thus, the T-equivalent circuit for the coupled coils is as shown in Fig.
13.28(b).

Inserting the T-equivalent circuit in Fig. 13.28(b) to replace the two
coils in Fig. 13.27 gives the equivalent circuit in Fig. 13.29, which can be
solved using nodal or mesh analysis. Applying mesh analysis, we obtain

j6 = I1(4 + j9 − j1)+ I2(−j1) (13.6.1)

and
0 = I1(−j1)+ I2(10 + j6 − j1) (13.6.2)

From Eq. (13.6.2),

I1 = (10 + j5)

j
I2 = (5 − j10)I2 (13.6.3)
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Substituting Eq. (13.6.3) into Eq. (13.6.1) gives

j6 = (4 + j8)(5 − j10)I2 − jI2 = (100 − j)I2 � 100I2

Since 100 is very large compared to 1, the imaginary part of (100 − j)

can be ignored so that 100 − j � 100. Hence,

I2 = j6

100
= j0.06 = 0.06 90◦ A

From Eq. (13.6.3),

I1 = (5 − j10)j0.06 = 0.6 + j0.3 A

and

Vo = −10I2 = −j0.6 = 0.6 − 90◦ V

This agrees with the answer to Practice Prob. 13.1. Of course, the direc-
tion of I2 in Fig. 13.10 is opposite to that in Fig. 13.27. This will not
affect Vo, but the value of I2 in this example is the negative of that of I2

in Practice Prob. 13.1. The advantage of using the T-equivalent model
for the magnetically coupled coils is that in Fig. 13.29 we do not need to
bother with the dot on the coupled coils.

j6 V

4 Ω j9 Ω

+
− −j1 ΩI1 I2

j6 Ω

10 Ω

I1 I2

+

−
Vo

Figure 13.29 For Example 13.6.

P R A C T I C E P R O B L E M 1 3 . 6

Solve the problem in Example 13.1 (see Fig. 13.9) using the T-equivalent
model for the magnetically coupled coils.

Answer: 13 − 49.4◦ A, 2.91 14.04◦ A.

13.5 IDEAL TRANSFORMERS
An ideal transformer is one with perfect coupling (k = 1). It consists of
two (or more) coils with a large number of turns wound on a common
core of high permeability. Because of this high permeability of the core,
the flux links all the turns of both coils, thereby resulting in a perfect
coupling.

To see how an ideal transformer is the limiting case of two cou-
pled inductors where the inductances approach infinity and the coupling
is perfect, let us reexamine the circuit in Fig. 13.14. In the frequency
domain,

V1 = jωL1I1 + jωMI2 (13.49a)

V2 = jωMI1 + jωL2I2 (13.49b)
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From Eq. (13.49a), I1 = (V1 − jωMI2)/jωL1. Substituting this in Eq.
(13.49b) gives

V2 = jωL2I2 + MV1

L1
− jωM2I2

L1

But M = √
L1L2 for perfect coupling (k = 1). Hence,

V2 = jωL2I2 +
√
L1L2V1

L1
− jωL1L2I2

L1
=

√
L2

L1
V1 = nV1

where n = √
L2/L1 and is called the turns ratio. As L1, L2, M → ∞

such that n remains the same, the coupled coils become an ideal trans-
former. A transformer is said to be ideal if it has the following properties:

1. Coils have very large reactances (L1, L2, M → ∞).

2. Coupling coefficient is equal to unity (k = 1).

3. Primary and secondary coils are lossless (R1 = 0 = R2).

An ideal transformer is a unity-coupled, lossless transformer in which the
primary and secondary coils have infinite self-inductances.

Iron-core transformers are close approximations to ideal transformers.
These are used in power systems and electronics.

Figure 13.30(a) shows a typical ideal transformer; the circuit sym-
bol is in Fig. 13.30(b). The vertical lines between the coils indicate an
iron core as distinct from the air core used in linear transformers. The
primary winding has N1 turns; the secondary winding has N2 turns.

N1 N2

(a)

(b)

N1 N2

Figure 13.30 (a) Ideal transformer,
(b) circuit symbol for ideal transformers.

ZL
+
− V1 V2

1:n

V
+

−

+

−

I1 I2

Figure 13.31 Relating primary and
secondary quantities in an ideal transformer.

When a sinusoidal voltage is applied to the primary winding as
shown in Fig. 13.31, the same magnetic flux φ goes through both wind-
ings. According to Faraday’s law, the voltage across the primary winding
is

v1 = N1
dφ

dt
(13.50a)

while that across the secondary winding is

v2 = N2
dφ

dt
(13.50b)

Dividing Eq. (13.50b) by Eq. (13.50a), we get

v2

v1
= N2

N1
= n (13.51)

where n is, again, the turns ratio or transformation ratio. We can use the
phasor voltages V1 and V2 rather than the instantaneous values v1 and v2.
Thus, Eq. (13.51) may be written as

V2

V1
= N2

N1
= n (13.52)



CHAPTER 13 Magnetically Coupled Circuits 547

For the reason of power conservation, the energy supplied to the primary
must equal the energy absorbed by the secondary, since there are no losses
in an ideal transformer. This implies that

v1i1 = v2i2 (13.53)

In phasor form, Eq. (13.53) in conjunction with Eq. (13.52) becomes
I1

I2
= V2

V1
= n (13.54)

showing that the primary and secondary currents are related to the turns
ratio in the inverse manner as the voltages. Thus,

I2

I1
= N1

N2
= 1

n
(13.55)

When n = 1, we generally call the transformer an isolation transformer.
The reason will become obvious in Section 13.9.1. If n > 1, we have
a step-up transformer, as the voltage is increased from primary to sec-
ondary (V2 > V1). On the other hand, if n < 1, the transformer is a
step-down transformer, since the voltage is decreased from primary to
secondary (V2 < V1).

A step-down transformer is one whose secondary voltage
is less than its primary voltage.

A step-up transformer is one whose secondary voltage
is greater than its primary voltage.

The ratings of transformers are usually specified asV1/V2. A transformer
with rating 2400/120 V should have 2400 V on the primary and 120 in the
secondary (i.e., a step-down transformer). Keep in mind that the voltage
ratings are in rms.

Power companies often generate at some convenient voltage and
use a step-up transformer to increase the voltage so that the power can be
transmitted at very high voltage and low current over transmission lines,
resulting in significant cost savings. Near residential consumer premises,
step-down transformers are used to bring the voltage down to 120 V.
Section 13.9.3 will elaborate on this.

It is important that we know how to get the proper polarity of the
voltages and the direction of the currents for the transformer in Fig. 13.31.
If the polarity of V1 or V2 or the direction of I1 or I2 is changed, n in Eqs.
(13.51) to (13.55) may need to be replaced by −n. The two simple rules
to follow are:

1. If V1 and V2 are both positive or both negative at the dotted
terminals, use +n in Eq. (13.52). Otherwise, use −n.

2. If I1 and I2 both enter into or both leave the dotted terminals,
use −n in Eq. (13.55). Otherwise, use +n.

The rules are demonstrated with the four circuits in Fig. 13.32.

V1 V2

N1:N2

+

−

+

−

I1 I2

V2

V1

N2

N1
=

I2

I1

N1

N2
=

(a)

V1 V2

N1:N2

+

−

+

−

I1 I2

V2

V1

N2

N1
=

I2

I1

N1

N2
= −

(b)

V1 V2

N1:N2

+

−

+

−

I1

I2

V2

V1

N2

N1
= −

V2

V1

N2

N1
= −

I2

I1

N1

N2
=

(c)

V1 V2

N1:N2

+

−

+

−

I1

I2

I2

I1

N1

N2
= −

(d)

Figure 13.32 Typical
circuits illustrating proper
voltage polarities and
current directions in an
ideal transformer.
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Using Eqs. (13.52) and (13.55), we can always express V1 in terms
of V2 and I1 in terms of I2, or vice versa:

V1 = V2

n
or V2 = nV1 (13.56)

I1 = nI2 or I2 = I1

n
(13.57)

The complex power in the primary winding is

S1 = V1I∗
1 = V2

n
(nI2)

∗ = V2I∗
2 = S2 (13.58)

showing that the complex power supplied to the primary is delivered to the
secondary without loss. The transformer absorbs no power. Of course,
we should expect this, since the ideal transformer is lossless. The input
impedance as seen by the source in Fig. 13.31 is found from Eqs. (13.56)
and (13.57) as

Zin = V1

I1
= 1

n2

V2

I2
(13.59)

It is evident from Fig. 13.31 that V2/I2 = ZL, so that

Zin = ZL

n2
(13.60)

The input impedance is also called the reflected impedance, since it ap-
pears as if the load impedance is reflected to the primary side. This ability
of the transformer to transform a given impedance into another impedance
provides us a means of impedance matching to ensure maximum power
transfer. The idea of impedance matching is very useful in practice and
will be discussed more in Section 13.9.2.

Notice that an ideal transformer reflects an im-
pedance as the square of the turns ratio.

In analyzing a circuit containing an ideal transformer, it is common
practice to eliminate the transformer by reflecting impedances and sources
from one side of the transformer to the other. In the circuit of Fig. 13.33,
suppose we want to reflect the secondary side of the circuit to the primary
side. We find the Thevenin equivalent of the circuit to the right of the
terminals a-b. We obtain VTh as the open-circuit voltage at terminals a-b,
as shown in Fig. 13.34(a). Since terminals a-b are open, I1 = 0 = I2 so
that V2 = Vs2. Hence, from Eq. (13.56),

VTh = V1 = V2

n
= Vs2

n
(13.61)

+
−

Z1 Z2

Vs1
+
− Vs2

I1 I2a

b

c

d

V1 V2

+

−

+

−

1:n

Figure 13.33 Ideal transformer circuit whose equivalent circuits are
to be found.



CHAPTER 13 Magnetically Coupled Circuits 549

Z2

+
− Vs2

I1 I2a

b

a

b

V1VTh V2

+

−

+

−

1:n

(a)

+
−

I1 I2

V1 V2

+

−

+

−

1:n

(b)

+

−

Z2V1   0°

Figure 13.34 (a) Obtaining VTh for the circuit in Fig. 13.33, (b) obtaining ZTh for the circuit in Fig. 13.33.

To get ZTh, we remove the voltage source in the secondary winding and
insert a unit source at terminals a-b, as in Fig. 13.34(b). From Eqs. (13.56)
and (13.57), I1 = nI2 and V1 = V2/n, so that

ZTh = V1

I1
= V2/n

nI2
= Z2

n2
, V2 = Z2I2 (13.62)

which is what we should have expected from Eq. (13.60). Once we have
VTh and ZTh, we add the Thevenin equivalent to the part of the circuit in
Fig. 13.33 to the left of terminals a-b. Figure 13.35 shows the result.

+
−

Z1

Vs1
+
−

Vs2
n

a

b

V1

+

−

n2

Z2

Figure 13.35 Equivalent circuit for Fig. 13.33
obtained by reflecting the secondary circuit to
the primary side.

The general rule for eliminating the transformer and reflecting the secondary circuit
to the primary side is: divide the secondary impedance by n2, divide the secondary

voltage by n, and multiply the secondary current by n.

We can also reflect the primary side of the circuit in Fig. 13.33 to
the secondary side. Figure 13.36 shows the equivalent circuit.

The rule for eliminating the transformer and reflecting the primary circuit to the
secondary side is: multiply the primary impedance by n2, multiply the primary

voltage by n, and divide the primary current by n.

According to Eq. (13.58), the power remains the same, whether calculated
on the primary or the secondary side. But realize that this reflection
approach only applies if there are no external connections between the
primary and secondary windings. When we have external connections
between the primary and secondary windings, we simply use regular
mesh and nodal analysis. Examples of circuits where there are external
connections between the primary and secondary windings are in Figs.
13.39 and 13.40. Also note that if the locations of the dots in Fig. 13.33
are changed, we might have to replace n by −n in order to obey the dot
rule, illustrated in Fig. 13.32.

+
−

n2Z1 Z2

nVs1 Vs2
+
−

c

d

V2

+

−

Figure 13.36 Equivalent circuit for Fig. 13.33
obtained by reflecting the primary circuit to the
secondary side.

E X A M P L E 1 3 . 7

An ideal transformer is rated at 2400/120 V, 9.6 kVA, and has 50 turns
on the secondary side. Calculate: (a) the turns ratio, (b) the number of
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turns on the primary side, and (c) the current ratings for the primary and
secondary windings.

Solution:

(a) This is a step-down transformer, since V1 = 2400 V > V2 = 120 V.

n = V2

V1
= 120

2400
= 0.05

(b)

n = N2

N1

⇒ 0.05 = 50

N1
or

N1 = 50

0.05
= 1000 turns

(c) S = V1I1 = V2I2 = 9.6 kVA. Hence,

I1 = 9600

V1
= 9600

2400
= 4 A

I2 = 9600

V2
= 9600

120
= 80 A or I2 = I1

n
= 4

0.05
= 80 A

P R A C T I C E P R O B L E M 1 3 . 7

The primary current to an ideal transformer rated at 3300/110 V is 3 A.
Calculate: (a) the turns ratio, (b) the kVA rating, (c) the secondary current.

Answer: (a) 1/30, (b) 9.9 kVA, (c) 90 A.

E X A M P L E 1 3 . 8

For the ideal transformer circuit of Fig. 13.37, find: (a) the source current
I1, (b) the output voltage Vo, and (c) the complex power supplied by the
source.

4 Ω

+
− 20 Ω

−j6 Ω

V1 V2 Vo

1:2

+

−

+

−

I1 I2

V rms120   0°
+

−

Figure 13.37 For Example 13.8.

Solution:

(a) The 20-� impedance can be reflected to the primary side and we get

ZR = 20

n2
= 20

4
= 5 �

Thus,
Zin = 4 − j6 + ZR = 9 − j6 = 10.82 − 33.69◦ �

I1 = 120 0◦

Zin
= 120 0◦

10.82 − 33.69◦
= 11.09 33.69◦ A
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(b) Since both I1 and I2 leave the dotted terminals,

I2 = −1

n
I1 = −5.545 33.69◦ A

Vo = 20I2 = 110.9 213.69◦ V

(c) The complex power supplied is

S = VsI∗
1 = (120 0◦)(11.09 − 33.69◦) = 1330.8 − 33.69◦ VA

P R A C T I C E P R O B L E M 1 3 . 8

In the ideal transformer circuit of Fig. 13.38, find Vo and the complex
power supplied by the source.

2 Ω

+
−

16 Ω

V1 V2 Vo

1:4

+

−

+

−

I1 I2

V rms100   0°
+

−
−j24 Ω

Figure 13.38 For Practice Prob. 13.8.

Answer: 178.9 116.56◦ V, 2981.5 − 26.56◦ VA.

E X A M P L E 1 3 . 9

Calculate the power supplied to the 10-� resistor in the ideal transformer
circuit of Fig. 13.39.

20 Ω

10 Ω

V1 V2

2:1

+

−

+

−
V rms120   0°

30 Ω

+
− I1 I2

Figure 13.39 For Example 13.9.

Solution:

Reflection to the secondary or primary side cannot be done with this
circuit: there is direct connection between the primary and secondary
sides due to the 30-� resistor. We apply mesh analysis. For mesh 1,

−120 + (20 + 30)I1 − 30I2 + V1 = 0

or

50I1 − 30I2 + V1 = 120 (13.9.1)
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For mesh 2,

−V2 + (10 + 30)I2 − 30I1 = 0

or

−30I1 + 40I2 − V2 = 0 (13.9.2)

At the transformer terminals,

V2 = −1

2
V1 (13.9.3)

I2 = −2I1 (13.9.4)

(Note that n = 1/2.) We now have four equations and four unknowns,
but our goal is to get I2. So we substitute for V1 and I1 in terms of V2

and I2 in Eqs. (13.9.1) and (13.9.2). Equation (13.9.1) becomes

−55I2 − 2V2 = 120 (13.9.5)

and Eq. (13.9.2) becomes

15I2 + 40I2 − V2 = 0 
⇒ V2 = 55I2 (13.9.6)

Substituting Eq. (13.9.6) in Eq. (13.9.5),

−165I2 = 120 
⇒ I2 = −120

165
= −0.7272 A

The power absorbed by the 10-� resistor is

P = (−0.7272)2(10) = 5.3 W

P R A C T I C E P R O B L E M 1 3 . 9

Find Vo in the circuit in Fig. 13.40.

4 Ω

8 Ω

1:2

V60   0° +
−

2 Ω

8 Ω

+ −Vo

Figure 13.40 For Practice Prob. 13.9.

Answer: 24 V.

13.6 IDEAL AUTOTRANSFORMERS
Unlike the conventional two-winding transformer we have considered so
far, an autotransformer has a single continuous winding with a connection
point called a tap between the primary and secondary sides. The tap is
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often adjustable so as to provide the desired turns ratio for stepping up
or stepping down the voltage. This way, a variable voltage is provided to
the load connected to the autotransformer.

An autotransformer is a transformer in which both the primary
and the secondary are in a single winding.

Figure 13.41 A typical autotransformer.
(Courtesy of Todd Systems, Inc.)

Figure 13.41 shows a typical autotransformer. As shown in Fig.
13.42, the autotransformer can operate in the step-down or step-up mode.
The autotransformer is a type of power transformer. Its major advantage
over the two-winding transformer is its ability to transfer larger apparent
power. Example 13.10 will demonstrate this. Another advantage is that
an autotransformer is smaller and lighter than an equivalent two-winding
transformer. However, since both the primary and secondary windings
are one winding, electrical isolation (no direct electrical connection) is
lost. (We will see how the property of electrical isolation in the conven-
tional transformer is practically employed in Section 13.9.1.) The lack
of electrical isolation between the primary and secondary windings is a
major disadvantage of the autotransformer.

Some of the formulas we derived for ideal transformers apply to
ideal autotransformers as well. For the step-down autotransformer circuit
of Fig. 13.42(a), Eq. (13.52) gives

V1

V2
= N1 +N2

N2
= 1 + N1

N2
(13.63)

As an ideal autotransformer, there are no losses, so the complex power
remains the same in the primary and secondary windings:

S1 = V1I∗
1 = S2 = V2I∗

2 (13.64)

Equation (13.64) can also be expressed with rms values as

V1I1 = V2I2

or

V2

V1
= I1

I2
(13.65)

Thus, the current relationship is

I1

I2
= N2

N1 +N2
(13.66)

+
−

I1

I2

V1
N1

N2

+

−

V2

+

−

(a)

V

+
−

I1

I2

V1

N1

N2+

−

V2

+

−

(b)

ZL

ZL

V

Figure 13.42 (a) Step-down autotransformer,
(b) step-up autotransformer.

For the step-up autotransformer circuit of Fig. 13.42(b),

V1

N1
= V2

N1 +N2

or

V1

V2
= N1

N1 +N2
(13.67)
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The complex power given by Eq. (13.64) also applies to the step-up auto-
transformer so that Eq. (13.65) again applies. Hence, the current relation-
ship is

I1

I2
= N1 +N2

N1
= 1 + N2

N1
(13.68)

A major difference between conventional transformers and auto-
transformers is that the primary and secondary sides of the autotrans-
former are not only coupled magnetically but also coupled conductively.
The autotransformer can be used in place of a conventional transformer
when electrical isolation is not required.

E X A M P L E 1 3 . 1 0

Compare the power ratings of the two-winding transformer in Fig.
13.43(a) and the autotransformer in Fig. 13.43(b).

+

−

(a) (b)

240 V

+

−

12 VVsVp

0.2 A 4 A

4 A

+

−

Vs = 12 V
+

−

Vp = 240 V
+

−

+

−

+

−

240 V

+

−

252 V

4 A

0.2 A

Figure 13.43 For Example 13.10.

Solution:

Although the primary and secondary windings of the autotransformer
are together as a continuous winding, they are separated in Fig. 13.43(b)
for clarity. We note that the current and voltage of each winding of the
autotransformer in Fig. 13.43(b) are the same as those for the two-winding
transformer in Fig. 13.43(a). This is the basis of comparing their power
ratings.

For the two-winding transformer, the power rating is

S1 = 0.2(240) = 48 VA or S2 = 4(12) = 48 VA

For the autotransformer, the power rating is

S1 = 4.2(240) = 1008 VA or S2 = 4(252) = 1008 VA

which is 21 times the power rating of the two-winding transformer.

P R A C T I C E P R O B L E M 1 3 . 1 0

Refer to Fig. 13.43. If the two-winding transformer is a 60-VA,
120 V/10 V transformer, what is the power rating of the autotransformer?

Answer: 780 VA.
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E X A M P L E 1 3 . 1 1

Refer to the autotransformer circuit in Fig. 13.44. Calculate: (a) I1, I2,
and Io if ZL = 8+ j6�, and (b) the complex power supplied to the load.

+
−

I1

I2

V1

120 turns

80 turns

+

−

V2

+

−

ZL

Io

120   30° V rms

Figure 13.44 For Example 13.11.

Solution:

(a) This is a step-up autotransformer with N1 = 80, N2 = 120, V1 =
120 30◦, so Eq. (13.67) can be used to find V2 by

V1

V2
= N1

N1 +N2
= 80

200

or

V2 = 200

80
V1 = 200

80
(120 30◦) = 300 30◦ V

I2 = V2

ZL

= 300 30◦

8 + j6
= 300 30◦

10 36.87◦
= 30 − 6.87◦ A

But

I1

I2
= N1 +N2

N1
= 200

80

or

I1 = 200

80
I2 = 200

80
(30 − 6.87◦) = 75 − 6.87◦ A

At the tap, KCL gives

I1 + Io = I2

or

Io = I2 − I1 = 30 − 6.87◦ − 75 − 6.87◦ = 45 173.13◦ A

(b) The complex power supplied to the load is

S2 = V2I∗
2 = |I2|2ZL = (30)2(10 36.87◦) = 9 36.87◦ kVA
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P R A C T I C E P R O B L E M 1 3 . 1 1

In the autotransformer circuit in Fig. 13.45, find currents I1, I2, and Io.
Take V1 = 1250 V, V2 = 800 V.

I1

I2

V2

+

−

V1

+

− Io

16 kVA load

Figure 13.45 For Practice Prob. 13.11.

Answer: 12.8 A, 20 A, 7.2 A.

†13.7 THREE-PHASE TRANSFORMERS
To meet the demand for three-phase power transmission, transformer
connections compatible with three-phase operations are needed. We can
achieve the transformer connections in two ways: by connecting three
single-phase transformers, thereby forming a so-called transformer bank,
or by using a special three-phase transformer. For the same kVA rat-
ing, a three-phase transformer is always smaller and cheaper than three
single-phase transformers. When single-phase transformers are used, one
must ensure that they have the same turns ratio n to achieve a balanced
three-phase system. There are four standard ways of connecting three
single-phase transformers or a three-phase transformer for three-phase
operations: Y-Y, �-�, Y-�, and �-Y.

For any of the four connections, the total apparent power ST , real
power PT , and reactive power QT are obtained as

ST =
√

3VLIL (13.69a)

PT = ST cos θ =
√

3VLIL cos θ (13.69b)

QT = ST sin θ =
√

3VLIL sin θ (13.69c)

where VL and IL are, respectively, equal to the line voltage VLp and the
line current ILp for the primary side, or the line voltage VLs and the line
current ILs for the secondary side. Notice from Eq. (13.69) that for each of
the four connections, VLsILs = VLpILp, since power must be conserved
in an ideal transformer.

For the Y-Y connection (Fig. 13.46), the line voltage VLp at the
primary side, the line voltage VLs on the secondary side, the line current
ILp on the primary side, and the line current ILs on the secondary side
are related to the transformer per phase turns ratio n according to Eqs.
(13.52) and (13.55) as

VLs = nVLp (13.70a)

ILs = ILp

n
(13.70b)
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For the �-� connection (Fig. 13.47), Eq. (13.70) also applies for
the line voltages and line currents. This connection is unique in the sense
that if one of the transformers is removed for repair or maintenance, the
other two form an open delta, which can provide three-phase voltages at
a reduced level of the original three-phase transformer.

+

−

VLp

+

−

VLs = nVLp

ILp
ILs = 

ILp

n
1:n

Figure 13.46 Y-Y three-phase transformer connection.

+

−
VLp

+

−
VLs = nVLp

ILp
ILs = 

ILp

n
1:n

Figure 13.47 �-� three-phase transformer connection.

For the Y-� connection (Fig. 13.48), there is a factor of
√

3 arising
from the line-phase values in addition to the transformer per phase turns
ratio n. Thus,

VLs = nVLp√
3

(13.71a)

ILs =
√

3ILp
n

(13.71b)

Similarly, for the �-Y connection (Fig. 13.49),

VLs = n
√

3VLp (13.72a)

ILs = ILp

n
√

3
(13.72b)

+

−

VLp

+

−

ILp

1:n

ILs = 
3 ILp

n

VLs = 
nVLp

3

Figure 13.48 Y-� three-phase transformer connection.

+

−

VLs = n     VLp

ILp 1:n

ILs = 
ILp

3n

3

+

−

VLp

Figure 13.49 �-Y three-phase transformer connection.
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E X A M P L E 1 3 . 1 2

The 42-kVA balanced load depicted in Fig. 13.50 is supplied by a three-
phase transformer. (a) Determine the type of transformer connections.
(b) Find the line voltage and current on the primary side. (c) Determine
the kVA rating of each transformer used in the transformer bank. Assume
that the transformers are ideal.

a

b

c

A

B

C

42 kVA
Three-phase
load

240 V

1:5

Figure 13.50 For Example 13.12.

Solution:

(a) A careful observation of Fig. 13.50 shows that the primary side is
Y-connected, while the secondary side is �-connected. Thus, the three-
phase transformer is Y-�, similar to the one shown in Fig. 13.48.
(b) Given a load with total apparent power ST = 42 kVA, the turns ra-
tio n = 5, and the secondary line voltage VLs = 240 V, we can find the
secondary line current using Eq. (13.69a), by

ILs = ST√
3VLs

= 42,000√
3(240)

= 101 A

From Eq. (13.71),

ILp = n√
3
ILs = 5 × 101√

3
= 292 A

VLp =
√

3

n
VLs =

√
3 × 240

5
= 83.14 V

(c) Because the load is balanced, each transformer equally shares the
total load and since there are no losses (assuming ideal transformers), the
kVA rating of each transformer is S = ST /3 = 14 kVA. Alternatively,
the transformer rating can be determined by the product of the phase
current and phase voltage of the primary or secondary side. For the
primary side, for example, we have a delta connection, so that the phase
voltage is the same as the line voltage of 240 V, while the phase current
is ILp/

√
3 = 58.34 A. Hence, S = 240 × 58.34 = 14 kVA.

P R A C T I C E P R O B L E M 1 3 . 1 2

A three-phase �-� transformer is used to step down a line voltage of
625 kV, to supply a plant operating at a line voltage of 12.5 kV. The plant
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draws 40 MW with a lagging power factor of 85 percent. Find: (a) the
current drawn by the plant, (b) the turns ratio, (c) the current on the primary
side of the transformer, and (d) the load carried by each transformer.

Answer: (a) 2.1736 kA, (b) 0.02, (c) 43.47 A, (d) 15.69 MVA.

13.8 PSPICE ANALYSIS OF MAGNETICALLY COUPLED
CIRCUITS

PSpice analyzes magnetically coupled circuits just like inductor circuits
except that the dot convention must be followed. In PSpice Schematic, the
dot (not shown) is always next to pin 1, which is the left-hand terminal of
the inductor when the inductor with part name L is placed (horizontally)
without rotation on a schematic. Thus, the dot or pin 1 will be at the
bottom after one 90◦ counterclockwise rotation, since rotation is always
about pin 1. Once the magnetically coupled inductors are arranged with
the dot convention in mind and their value attributes are set in henries, we
use the coupling symbol K−LINEAR to define the coupling. For each
pair of coupled inductors, take the following steps:

1. Select Draw/Get New Part and type K−LINEAR.

2. Hit 〈enter〉 or click OK and place the K−LINEAR symbol on
the schematic, as shown in Fig. 13.51. (Notice that
K−LINEAR is not a component and therefore has no pins.)

3. DCLICKL on COUPLING and set the value of the coupling
coefficient k.

4. DCLICKL on the boxed K (the coupling symbol) and enter
the reference designator names for the coupled inductors as
values of Li, i = 1, 2, . . . , 6. For example, if inductors L20
and L23 are coupled, we set L1 = L20 and L2 = L23. L1 and
at least one other Li must be assigned values; other Li’s may be
left blank.

In step 4, up to six coupled inductors with equal coupling can be specified.
For the air-core transformer, the partname is XFRM−LINEAR. It

can be inserted in a circuit by selecting Draw/Get Part Name and then
typing in the part name or by selecting the part name from the analog.slb
library. As shown typically in Fig. 13.51, the main attributes of the linear
transformer are the coupling coefficient k and the inductance values L1
and L2 in henries. If the mutual inductanceM is specified, its value must
be used along with L1 and L2 to calculate k. Keep in mind that the value
of k should lie between 0 and 1.

TX2

COUPLING=0.5
L1_VALUE=1mH
L2_VALUE=25mH

Figure 13.51 Linear trans-
former XFRM LINEAR.

TX4

COUPLING=0.5
L1_TURNS=500
L2_TURNS=1000

kbreak

Figure 13.52 Ideal trans-
former XFRM NONLINEAR.

For the ideal transformer, the part name is XFRM−NONLINEAR
and is located in the breakout.slb library. Select it by clicking Draw/Get
Part Name and then typing in the part name. Its attributes are the cou-
pling coefficient and the numbers of turns associated with L1 and L2, as
illustrated typically in Fig. 13.52. The value of the coefficient of mutual
coupling must lie between 0 and 1.
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PSpice has some additional transformer configurations that we will
not discuss here.

E X A M P L E 1 3 . 1 3

Use PSpice to find i1, i2, and i3 in the circuit displayed in Fig. 13.53.

40 cos 12pt V60 cos (12pt – 10°) V 4 H

2 H
1.5 H

270 mF

3 H3 H

1 H

2 H

+
−

+
−

70 Ω

100 Ω

i2

i1 i3

Figure 13.53 For Example 13.13.

Solution:

The coupling coefficients of the three coupled inductors are determined
as follows.

k12 = M12√
L1L2

= 1√
3 × 3

= 0.3333

k13 = M13√
L1L3

= 1.5√
3 × 4

= 0.433

k23 = M23√
L2L3

= 2√
3 × 4

= 0.5774

The operating frequency f is obtained from Fig. 13.53 as ω = 12π =
2πf → f = 6 Hz.

The right-hand values are the reference designa-
tors of the inductors on the schematic.

The schematic of the circuit is portrayed in Fig. 13.54. Notice how
the dot convention is adhered to. For L2, the dot (not shown) is on pin
1 (the left-hand terminal) and is therefore placed without rotation. For
L1, in order for the dot to be on the right-hand side of the inductor, the
inductor must be rotated through 180◦. For L3, the inductor must be
rotated through 90◦ so that the dot will be at the bottom. Note that the
2-H inductor (L4) is not coupled. To handle the three coupled inductors,
we use three K−LINEAR parts provided in the analog library and set the
following attributes (by double-clicking on the symbol K in the box):

K1 - K_LINEAR
L1 = L1
L2 = L2
COUPLING = 0.3333

K2 - K_LINEAR
L1 = L2
L2 = L3
COUPLING = 0.433



CHAPTER 13 Magnetically Coupled Circuits 561

K3 - K_LINEAR
L1 = L1
L2 = L3
COUPLING = 0.5774

Three IPRINT pseudocomponents are inserted in the appropriate branches
to obtain the required currents i1, i2, and i3. As an AC single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter Total Pts = 1,
Start Freq = 6, and Final Freq = 6. After saving the schematic, we select
Analysis/Simulate to simulate it. The output file includes:

FREQ IM(V_PRINT2) IP(V_PRINT2)
6.000E+00 2.114E-01 -7.575E+01
FREQ IM(V_PRINT1) IP(V_PRINT1)
6.000E+00 4.654E-01 -7.025E+01
FREQ IM(V_PRINT3) IP(V_PRINT3)
6.000E+00 1.095E-01 1.715E+01

From this we obtain

I1 = 0.4654 − 70.25◦

I2 = 0.2114 − 75.75◦, I3 = 0.1095 17.15◦

Thus,

i1 = 0.4654 cos(12πt − 70.25◦) A

i2 = 0.2114 cos(12πt − 75.75◦) A

i3 = 0.1095 cos(12πt + 17.15◦) A

V24HL3

270u

0

L2

3H3H

L1

L4R1

2H70

R2

100

−
+ ACMAG=40V

ACPHASE=0
V1−

+ACMAG=60V
ACPHASE=-10

MAG=ok
AC=ok
PHASE=ok

K K1
K_Linear
COUPLING=0.3333
L1=L1
L2=L2

K K2
K_Linear
COUPLING=0.433
L1=L2
L2=L3

K K3
K_Linear
COUPLING=0.5774
L1=L1
L2=L3

IPRINT

IPRINT
IPRINTC1

Figure 13.54 Schematic of the circuit of Fig. 13.53.

P R A C T I C E P R O B L E M 1 3 . 1 3

Find io in the circuit of Fig. 13.55.
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20 Ω

6 H5 H 4 H8 cos (4t + 50°) V +
−

10 Ω

8 Ω

12 Ω
k = 0.4

25 mF

io

Figure 13.55 For Practice Prob. 13.13.

Answer: 0.1006 cos(4t + 68.52◦) A.

E X A M P L E 1 3 . 1 4

Find V1 and V2 in the ideal transformer circuit of Fig. 13.56 using PSpice.

80 Ω

6 ΩV1 V2

4:1

+

−

+

−
V

20 Ω

+
−120   30°

−j40 Ω

j10 Ω

Figure 13.56 For Example 13.14.

Solution:

As usual, we assume ω = 1 and find the corresponding values of capac-
itance and inductance of the elements:

j10 = jωL 
⇒ L = 10 H

−j40 = 1

jωC

⇒ C = 25 mF

Figure 13.57 shows the schematic. For the ideal transformer, we set
the coupling factor to 0.999 and the numbers of turns to 400,000 and
100,000. The two VPRINT2 pseudocomponents are connected across
the transformer terminals to obtain V1 and V2. As a single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter Total Pts =
1, Start Freq = 0.1592, and Final Freq = 0.1592. After saving the
schematic, we select Analysis/Simulate to simulate it. The output file
includes:

Reminder: For an ideal transformer, the induc-
tances of both the primary and secondary wind-
ings are infinitely large.

FREQ VM(C,A) VP(C,A)
1.592E-01 1.212E+02 -1.435E+02
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FREQ VM(B,C) VP(B,C)
1.592E-01 2.775E+02 2.789E+01

From this we obtain

V1 = −V(C,A) = 121.1 36.5◦ V

V2 = V(B,C) = 27.75 27.89◦ V

R1

V1

80

6R3

10HL1

TX1

ACMAG=120V
ACPHASE=30

AC=ok
MAG=ok
PHASE=ok

AC=ok
MAG=ok
PHASE=ok

L1_TURNS=400000
L2_TURNS=100000
COUPLING=0.999

20R2

C1
A B

C

25m

−
+

0

kbreak

Figure 13.57 The schematic for the circuit in Fig. 13.56.

P R A C T I C E P R O B L E M 1 3 . 1 4

Obtain V1 and V2 in the circuit of Fig. 13.58 using PSpice.

10 Ω
2:3

30 Ω

20 Ω

V1 V2

+

−

+

−
V +

−100   20° −j16 Ω

j15 Ω

Figure 13.58 For Practice Prob. 13.14.

Answer: 63.1 28.65◦ V, 94.64 − 151.4◦ V.

†13.9 APPLICATIONS
Transformers are the largest, the heaviest, and often the costliest of circuit
components. Nevertheless, they are indispensable passive devices in
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electric circuits. They are among the most efficient machines, 95 percent
efficiency being common and 99 percent being achievable. They have
numerous applications. For example, transformers are used:

• To step up or step down voltage and current, making them
useful for power transmission and distribution.

• To isolate one portion of a circuit from another (i.e., to transfer
power without any electrical connection).

• As an impedance-matching device for maximum power transfer.

• In frequency-selective circuits whose operation depends on the
response of inductances.

Because of these diverse uses, there are many special designs for
transformers (only some of which are discussed in this chapter): voltage
transformers, current transformers, power transformers, distribution trans-
formers, impedance-matching transformers, audio transformers, single-
phase transformers, three-phase transformers, rectifier transformers,
inverter transformers, and more. In this section, we consider three im-
portant applications: transformer as an isolation device, transformer as a
matching device, and power distribution system.

Formore information on themany kinds of trans-
formers, a good text is W. M. Flanagan, Hand-
book of Transformer Design and Applications, 2nd
ed. (New York: McGraw-Hill, 1993).

1 3 . 9 . 1 Tr an s fo rmer a s an I so l a t i on Dev i c e
Electrical isolation is said to exist between two devices when there is no
physical connection between them. In a transformer, energy is transferred
by magnetic coupling, without electrical connection between the primary
circuit and secondary circuit. We now consider three simple practical
examples of how we take advantage of this property.

First, consider the circuit in Fig. 13.59. A rectifier is an electronic
circuit that converts an ac supply to a dc supply. A transformer is often
used to couple the ac supply to the rectifier. The transformer serves two
purposes. First, it steps up or steps down the voltage. Second, it provides
electrical isolation between the ac power supply and the rectifier, thereby
reducing the risk of shock hazard in handling the electronic device.

va
+
−

1:n
Fuse

Rectifier

Isolation transformer

Figure 13.59 A transformer used to isolate an
ac supply from a rectifier.

As a second example, a transformer is often used to couple two
stages of an amplifier, to prevent any dc voltage in one stage from affecting
the dc bias of the next stage. Biasing is the application of a dc voltage to
a transistor amplifier or any other electronic device in order to produce
a desired mode of operation. Each amplifier stage is biased separately
to operate in a particular mode; the desired mode of operation will be
compromised without a transformer providing dc isolation. As shown in
Fig. 13.60, only the ac signal is coupled through the transformer from one
stage to the next. We recall that magnetic coupling does not exist with
a dc voltage source. Transformers are used in radio and TV receivers to
couple stages of high-frequency amplifiers. When the sole purpose of a
transformer is to provide isolation, its turns ratio n is made unity. Thus,
an isolation transformer has n = 1.

As a third example, consider measuring the voltage across 13.2-kV
lines. It is obviously not safe to connect a voltmeter directly to such
high-voltage lines. A transformer can be used both to electrically isolate
the line power from the voltmeter and to step down the voltage to a safe
level, as shown in Fig. 13.61. Once the voltmeter is used to measure the



CHAPTER 13 Magnetically Coupled Circuits 565

secondary voltage, the turns ratio is used to determine the line voltage on
the primary side.

1:1

Amplifier
stage 2

Amplifier
stage 1

Isolation transformer

ac onlyac + dc

Figure 13.60 A transformer providing dc isolation between
two amplifier stages.

1:n

V120 V

–

+

13,200 V
–

+
Power lines

Voltmeter

Figure 13.61 A transformer providing isolation between
the power lines and the voltmeter.

E X A M P L E 1 3 . 1 5

Determine the voltage across the load in Fig. 13.62.

Solution:

We can apply the superposition principle to find the load voltage. Let
vL = vL1 + vL2, where vL1 is due to the dc source and vL2 is due to the
ac source. We consider the dc and ac sources separately, as shown in
Fig. 13.63. The load voltage due to the dc source is zero, because a time-
varying voltage is necessary in the primary circuit to induce a voltage in
the secondary circuit. Thus, vL1 = 0. For the ac source,

V2

V1
= V2

120
= 1

3
or V2 = 120

3
= 40 V

Hence, VL2 = 40 V ac or vL2 = 40 cosωt ; that is, only the ac voltage
is passed to the load by the transformer. This example shows how the
transformer provides dc isolation.

3:1

+
−

120 V
ac

12 V
dc

RL = 5 kΩ

Figure 13.62 For Example 13.15.

3:1

6 V
dc RLV2 = 0

3:1

+
−

120 V
ac RL

+

−

+

−
V2V1

+

−

(a) (b)

Figure 13.63 For Example 13.15: (a) dc source, (b) ac source.

P R A C T I C E P R O B L E M 1 3 . 1 5

Refer to Fig. 13.61. Calculate the turns ratio required to step down the
13.2-kV line voltage to a safe level of 120 V.

Answer: 1/110.
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13 . 9 . 2 Tr an s fo rmer a s a Ma t ch i n g Dev i c e
We recall that for maximum power transfer, the load resistanceRL must be
matched with the source resistanceRs . In most cases, the two resistances
are not matched; both are fixed and cannot be altered. However, an iron-
core transformer can be used to match the load resistance to the source
resistance. This is called impedance matching. For example, to connect a
loudspeaker to an audio power amplifier requires a transformer, because
the speaker’s resistance is only a few ohms while the internal resistance
of the amplifier is several thousand ohms.

Consider the circuit shown in Fig. 13.64. We recall from Eq. (13.60)
that the ideal transformer reflects its load back to the primary with a
scaling factor of n2. To match this reflected load RL/n2 with the source
resistance Rs , we set them equal,

Rs = RL

n2
(13.73)

Equation (13.73) can be satisfied by proper selection of the turns ratio
n. From Eq. (13.73), we notice that a step-down transformer (n < 1) is
needed as the matching device when Rs > RL, and a step-up (n > 1) is
required when Rs < RL.

vs
+
−

1:n

Matching transformer
LoadSource

Rs

RL

Figure 13.64 Transformer used as a matching
device.

E X A M P L E 1 3 . 1 6

The ideal transformer in Fig. 13.65 is used to match the amplifier circuit
to the loudspeaker to achieve maximum power transfer. The Thevenin (or
output) impedance of the amplifier is 192 �, and the internal impedance
of the speaker is 12 �. Determine the required turns ratio.

Amplifier
circuit

1:n

Speaker

Figure 13.65 Using an ideal transformer to
match the speaker to the amplifier; for
Example 13.16.

Solution:

We replace the amplifier circuit with the Thevenin equivalent and reflect
the impedance ZL = 12 � of the speaker to the primary side of the
ideal transformer. Figure 13.66 shows the result. For maximum power
transfer,

ZTh = ZL

n2
or n2 = ZL

ZTh
= 12

192
= 1

16

Thus, the turns ratio is n = 1/4 = 0.25.

VTh
ZL

n2

ZTh

+
−

Figure 13.66 Equivalent circuit
of the circuit in Fig. 13.65, for
Example 13.16.

Using P = I 2R, we can show that indeed the power delivered to
the speaker is much larger than without the ideal transformer. Without
the ideal transformer, the amplifier is directly connected to the speaker.
The power delivered to the speaker is

PL =
(

VTh

ZTh + ZL

)2

ZL = 288 V2
Th µW

With the transformer in place, the primary and secondary currents are

Ip = VTh

ZTh + ZL/n2
, Is = Ip

n
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Hence,

PL = I 2
s ZL =

(
VTh/n

ZTh + ZL/n2

)2

ZL

=
(

nVTh

n2ZTh + ZL

)2

ZL = 1302V2
Th µW

confirming what was said earlier.

P R A C T I C E P R O B L E M 1 3 . 1 6

Calculate the turns ratio of an ideal transformer required to match a 100-�
load to a source with internal impedance of 2.5 k�. Find the load voltage
when the source voltage is 30 V.

Answer: 0.2, 3 V.

One may ask, How would increasing the voltage
not increase the current, thereby increasing I2R
losses? Keep in mind that I = V-/R, where V-
is the potential difference between the sending
and receiving ends of the line. The voltage that
is stepped up is the sending end voltage V, not
V-. If the receiving end is VR , then V- = V −
VR . Since V and VR are close to each other, V- is
small even when V is stepped up.

13 . 9 . 3 Power D i s t r i bu t i on
A power system basically consists of three components:generation, trans-
mission, and distribution. The local electric company operates a plant
that generates several hundreds of megavolt-amperes (MVA), typically at
about 18 kV. As Fig. 13.67 illustrates, three-phase step-up transformers
are used to feed the generated power to the transmission line. Why do
we need the transformer? Suppose we need to transmit 100,000 VA over
a distance of 50 km. Since S = V I , using a line voltage of 1000 V
implies that the transmission line must carry 100 A and this requires a
transmission line of a large diameter. If, on the other hand, we use a
line voltage of 10,000 V, the current is only 10 A. The smaller current
reduces the required conductor size, producing considerable savings as
well as minimizing transmission line I 2R losses. To minimize losses
requires a step-up transformer. Without the transformer, the majority of
the power generated would be lost on the transmission line. The ability

3f

345,000 V

3f 60 Hz ac
18,000 V
Generator

3f

Step-up
transformer

3f

Step-down
transformer

Neutral
3f 60 Hz ac 

208 V

345,000 V 345,000 V

Neutral

Neutral

NeutralTower

Tower

Insulators

Figure 13.67 A typical power distribution system.
(Source: A. Marcus and C. M. Thomson, Electricity for Technicians,
2nd ed. [Englewood Cliffs, NJ: Prentice Hall, 1975], p. 337.)



568 PART 2 AC Circuits

of the transformer to step up or step down voltage and distribute power
economically is one of the major reasons for generating ac rather than dc.
Thus, for a given power, the larger the voltage, the better. Today, 1 MV
is the largest voltage in use; the level may increase as a result of research
and experiments.

Beyond the generation plant, the power is transmitted for hundreds
of miles through an electric network called the power grid. The three-
phase power in the power grid is conveyed by transmission lines hung
overhead from steel towers which come in a variety of sizes and shapes.
The (aluminum-conductor, steel-reinforced) lines typically have overall
diameters up to about 40 mm and can carry current of up to 1380 A.

At the substations, distribution transformers are used to step down
the voltage. The step-down process is usually carried out in stages. Power
may be distributed throughout a locality by means of either overhead or
underground cables. The substations distribute the power to residential,
commercial, and industrial customers. At the receiving end, a residen-
tial customer is eventually supplied with 120/240 V, while industrial or
commercial customers are fed with higher voltages such as 460/208 V.
Residential customers are usually supplied by distribution transformers
often mounted on the poles of the electric utility company. When direct
current is needed, the alternating current is converted to dc electronically.

E X A M P L E 1 3 . 1 7

A distribution transformer is used to supply a household as in Fig. 13.68.
The load consists of eight 100-W bulbs, a 350-W TV, and a 15-kW kitchen
range. If the secondary side of the transformer has 72 turns, calculate:
(a) the number of turns of the primary winding, and (b) the current Ip in
the primary winding.

Ip

2400 V
120 V+

−

+

−

120 V
–

+

TV

Kitchen
range

8 bulbs

Figure 13.68 For Example 13.17.

Solution:

(a) The dot locations on the winding are not important, since we are only
interested in the magnitudes of the variables involved. Since

Np

Ns
= Vp

Vs
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we get

Np = Ns
Vp

Vs
= 72

2400

240
= 720 turns

(b) The total power absorbed by the load is

S = 8 × 100 + 350 + 15,000 = 16.15 kW

But S = VpIp = VsIs , so that

Ip = S

Vp
= 16,150

2400
= 6.729 A

P R A C T I C E P R O B L E M 1 3 . 1 7

In Example 13.17, if the eight 100-W bulbs are replaced by twelve 60-W
bulbs and the kitchen range is replaced by a 4.5-kW air-conditioner, find:
(a) the total power supplied, (b) the current Ip in the primary winding.

Answer: (a) 5.57 kW, (b) 2.321 A.

13.10 SUMMARY
1. Two coils are said to be mutually coupled if the magnetic flux φ

emanating from one passes through the other. The mutual induc-
tance between the two coils is given by

M = k
√
L1L2

where k is the coupling coefficient, 0 < k < 1.

2. If v1 and i1 are the voltage and current in coil 1, while v2 and i2 are
the voltage and current in coil 2, then

v1 = L1
di1

dt
+M

di2

dt
and v2 = L2

di2

dt
+M

di1

dt

Thus, the voltage induced in a coupled coil consists of self-induced
voltage and mutual voltage.

3. The polarity of the mutually induced voltage is expressed in the
schematic by the dot convention.

4. The energy stored in two coupled coils is

1

2
L1i

2
1 + 1

2
L2i

2
2 ±Mi1i2

5. A transformer is a four-terminal device containing two or more
magnetically coupled coils. It is used in changing the current, volt-
age, or impedance level in a circuit.

6. A linear (or loosely coupled) transformer has its coils wound on a
magnetically linear material. It can be replaced by an equivalent T
or � network for the purposes of analysis.

7. An ideal (or iron-core) transformer is a lossless (R1 = R2 = 0)
transformer with unity coupling coefficient (k = 1) and infinite
inductances (L1, L2,M → ∞).
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8. For an ideal transformer,

V2 = nV1, I2 = I1

n
, S1 = S2, ZR = ZL

n2

where n = N2/N1 is the turns ratio. N1 is the number of turns of
the primary winding and N2 is the number of turns of the secondary
winding. The transformer steps up the primary voltage when
n > 1, steps it down when n < 1, or serves as a matching device
when n = 1.

9. An autotransformer is a transformer with a single winding common
to both the primary and the secondary circuits.

10. PSpice is a useful tool for analyzing magnetically coupled circuits.

11. Transformers are necessary in all stages of power distribution
systems. Three-phase voltages may be stepped up or down by
three-phase transformers.

12. Important uses of transformers in electronics applications are as
electrical isolation devices and impedance-matching devices.

R E V I EW QU E S T I ON S

13.1 Refer to the two magnetically coupled coils of Fig.
13.69(a). The polarity of the mutual voltage is:
(a) Positive (b) Negative

M
i1

(b)

i2
M

i1

(a)

i2

Figure 13.69 For Review Questions 13.1 and 13.2.

13.2 For the two magnetically coupled coils of Fig.
13.69(b), the polarity of the mutual voltage is:
(a) Positive (b) Negative

13.3 The coefficient of coupling for two coils having
L1 = 2 H, L2 = 8 H, M = 3 H is:
(a) 0.1875 (b) 0.75
(c) 1.333 (d) 5.333

13.4 A transformer is used in stepping down or stepping
up:
(a) dc voltages (b) ac voltages
(c) both dc and ac voltages

13.5 The ideal transformer in Fig. 13.70(a) has
N2/N1 = 10. The ratio V2/V1 is:
(a) 10 (b) 0.1 (c) −0.1 (d) −10

N1:N2
I1

(a)

I2

+

−

+

−

N1:N2
I1

(b)

I2

V1 V2

Figure 13.70 For Review Questions 13.5 and 13.6.

13.6 For the ideal transformer in Fig. 13.70(b),
N2/N1 = 10. The ratio I2/I1 is:
(a) 10 (b) 0.1 (c) −0.1 (d) −10

13.7 A three-winding transformer is connected as
portrayed in Fig. 13.71(a). The value of the output
voltage Vo is:
(a) 10 (b) 6 (c) −6 (d) −10

50 V
+

−
Vo

2 V

8 V

+

−

(a)

50 V
+

−

Vo

2 V

8 V

+

−

(b)

Figure 13.71 For Review Questions 13.7 and 13.8.

13.8 If the three-winding transformer is connected as in
Fig. 13.71(b), the value of the output voltage Vo is:
(a) 10 (b) 6 (c) −6 (d) −10
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13.9 In order to match a source with internal impedance
of 500 � to a 15-� load, what is needed is:
(a) step-up linear transformer
(b) step-down linear transformer
(c) step-up ideal transformer
(d) step-down ideal transformer
(e) autotransformer

13.10 Which of these transformers can be used as an
isolation device?
(a) linear transformer (b) ideal transformer
(c) autotransformer (d) all of the above

Answers: 13.1b, 13.2a, 13.3b, 13.4b, 13.5d, 13.6b, 13.7c, 13.8a,
13.9d, 13.10b.

P RO B L E M S

Section 13.2 Mutual Inductance

13.1 For the three coupled coils in Fig. 13.72, calculate
the total inductance.

6 H 10 H

2 H

8 H

4 H 5 H

Figure 13.72 For Prob. 13.1.

13.2 Determine the inductance of the three series-
connected inductors of Fig. 13.73.

10 H 8 H

4 H

12 H

6 H 6 H

Figure 13.73 For Prob. 13.2.

13.3 Two coils connected in series-aiding fashion have a
total inductance of 250 mH. When connected in a
series-opposing configuration, the coils have a total
inductance of 150 mH. If the inductance of one coil
(L1) is three times the other, find L1, L2, and M .
What is the coupling coefficient?

13.4 (a) For the coupled coils in Fig. 13.74(a), show that

Leq = L1 + L2 + 2M

(b) For the coupled coils in Fig. 13.74(b), show that

Leq = L1L2 −M2

L1L2 − 2M2

M

L2L1

L1

Leq (b)

M L2

Leq (a)

Figure 13.74 For Prob. 13.4.

13.5 Determine V1 and V2 in terms of I1 and I2 in the
circuit in Fig. 13.75.

+

−

jvM
I1

V1

+

−

V2

I2

jvL1 jvL2

R1 R2

Figure 13.75 For Prob. 13.5.

13.6 Find Vo in the circuit of Fig. 13.76.

V

–j6 Ω j8 Ω

+
−

j12 Ω

10 Ω

j4 Ω
20   30°

+

−

Vo

Figure 13.76 For Prob. 13.6.
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13.7 Obtain Vo in the circuit of Fig. 13.77.

1 Ω

+
− j6 Ω j4 Ω −j3 Ω

4 Ω
j2 Ω

Vo

+

−
V10   0°

Figure 13.77 For Prob. 13.7.

13.8 Find Vx in the network shown in Fig. 13.78.

2 Ω

+
− j4 Ω j4 Ω −j1 Ω

2 Ω
j1 Ω

V8   30°

+ −Vx

A2   0°

Figure 13.78 For Prob. 13.8.

13.9 Find Io in the circuit of Fig. 13.79.

Im cos vt

L

C

L

R

io

k = 1

Figure 13.79 For Prob. 13.9.

13.10 Obtain the mesh equations for the circuit in Fig.
13.80.

V1

V2

R1

I1 I2

I3

R2

jvL1

jvL2

jvM
+
−

+ −

jvC
1

Figure 13.80 For Prob. 13.10.

13.11 Obtain the Thevenin equivalent circuit for the circuit
in Fig. 13.81 at terminals a-b.

j6 Ω

b

a

j8 Ω

2 Ω

j2 Ω

+
−V10   90° A4   0°

5 Ω −j3 Ω

Figure 13.81 For Prob. 13.11.

13.12 Find the Norton equivalent for the circuit in Fig.
13.82 at terminals a-b.

b

a
j20 Ω

j5 Ω
j10 Ω+

−V60   30°

20 Ω

Figure 13.82 For Prob. 13.12.

Section 13.3 Energy in a Coupled Circuit

13.13 Determine currents I1, I2, and I3 in the circuit of
Fig. 13.83. Find the energy stored in the coupled
coils at t = 2 ms. Take ω = 1000 rad/s.

j10 Ω j10 Ω

4 Ω

k = 0.5

+
−A3   90° V20   0°

8 Ω

−j5 Ω

I2I3

I1

Figure 13.83 For Prob. 13.13.
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13.14 Find I1 and I2 in the circuit of Fig. 13.84. Calculate
the power absorbed by the 4-� resistor.

5 Ω

4 Ω

j6 Ω j3 Ω

2 Ω

+
− I1 I2V36   30°

j1 Ω
–j4 Ω

Figure 13.84 For Prob. 13.14.

13.15∗ Find current Io in the circuit of Fig. 13.85.

j80 Ω
j30 Ωj10 Ω

j60 Ω

j20 Ω

+
−

Io

V50   0° 100 Ω

j40 Ω

–j50 Ω

Figure 13.85 For Prob. 13.15.

13.16 If M = 0.2 H and vs = 12 cos 10t V in the circuit of
Fig. 13.86, find i1 and i2. Calculate the energy
stored in the coupled coils at t = 15 ms.

0.5 H

25 mF

1 H

5 Ω

M

i1 i2

+
−vs

Figure 13.86 For Prob. 13.16.

13.17 In the circuit of Fig. 13.87,
(a) find the coupling coefficient,

(b) calculate vo,
(c) determine the energy stored in the coupled

inductors at t = 2 s.

2 Ω

+
− 4 H 2 H 1 Ω vo

1 H

12 cos 4t V
+

−
F1

4

Figure 13.87 For Prob. 13.17.

13.18 For the network in Fig. 13.88, find Zab and Io.

4 Ω

0.5 F

1 Ω

2 Ω

io

+
−12 sin 2t V 1 H 1 H 2 H

k = 0.5
3 Ωa

b

Figure 13.88 For Prob. 13.18.

13.19 Find Io in the circuit of Fig. 13.89. Switch the dot
on the winding on the right and calculate Io again.

−j30 Ω

j20 Ω j40 Ω 10 Ω50 Ω

k = 0.601
Io

A4   60°

Figure 13.89 For Prob. 13.19.

13.20 Rework Example 13.1 using the concept of reflected
impedance.

Section 13.4 Linear Transformers

13.21 In the circuit of Fig. 13.90, find the value of the
coupling coefficient k that will make the 10-�
resistor dissipate 320 W. For this value of k, find the
energy stored in the coupled coils at t = 1.5 s.

∗An asterisk indicates a challenging problem.
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10 Ω

+
− 30 mH 50 mH 20 Ω

k

165 cos 103t V

Figure 13.90 For Prob. 13.21.

13.22 (a) Find the input impedance of the circuit in Fig.
13.91 using the concept of reflected impedance.

(b) Obtain the input impedance by replacing the
linear transformer by its T equivalent.

j30 Ω j20 Ω −j6 Ω

j10 Ω
8 Ω25 Ωj40 Ω

Zin

Figure 13.91 For Prob. 13.22.

13.23 For the circuit in Fig. 13.92, find:
(a) the T -equivalent circuit,
(b) the �-equivalent circuit.

15 H 20 H

5 H

Figure 13.92 For Prob. 13.23.

13.24∗ Two linear transformers are cascaded as shown in
Fig. 13.93. Show that

Zin =
ω2R(L2

a + LaLb −M2
a )

+jω3(L2
aLb + LaL

2
b − LaM

2
b − LbM

2
a )

ω2(LaLb + L2
b −M2

b )− jωR(La + Lb)

La La

Ma

Lb Lb

Mb

R

Zin

Figure 13.93 For Prob. 13.24.

13.25 Determine the input impedance of the air-core
transformer circuit of Fig. 13.94.

j12 Ω j40 Ω −j5 Ω

j15 Ω
20 Ω10 Ω

Zin

Figure 13.94 For Prob. 13.25.

Section 13.5 Ideal Transformers

13.26 As done in Fig. 13.32, obtain the relationships
between terminal voltages and currents for each of
the ideal transformers in Fig. 13.95.

V1 V2

1:n

+

−

+

−

I1 I2

(a)

V1 V2

1:n

+

−

+

−

I1 I2

(b)

V1 V2

1:n

+

−

+

−

I1 I2

(d)

V1 V2

1:n

+

−

+

−

I1 I2

(c)

Figure 13.95 For Prob. 13.26.

13.27 A 4-kVA, 2300/230-V rms transformer has an
equivalent impedance of 2 10◦ � on the primary
side. If the transformer is connected to a load with
0.6 power factor leading, calculate the input
impedance.

13.28 A 1200/240-V rms transformer has impedance
60 − 30◦ � on the high-voltage side. If the
transformer is connected to a 0.8 10◦-� load on
the low-voltage side, determine the primary and
secondary currents.

13.29 Determine I1 and I2 in the circuit of Fig. 13.96.

2 Ω10 Ω
3:1

I1 I2

+
−V14   0°

Figure 13.96 For Prob. 13.29.
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13.30 Obtain V1 and V2 in the ideal transformer circuit of
Fig. 13.97.

10 ΩA 12 Ω2   0° A1   0°V1 V2

+

−

+

−

1:4

Figure 13.97 For Prob. 13.30.

13.31 In the ideal transformer circuit of Fig. 13.98, find
i1(t) and i2(t).

R
1:n

i1(t) i2(t)

+
− Vm cos vt

Vo
dc

Figure 13.98 For Prob. 13.31.

13.32 (a) Find I1 and I2 in the circuit of Fig. 13.99 below.
(b) Switch the dot on one of the windings. Find I1

and I2 again.

13.33 For the circuit in Fig. 13.100, find Vo. Switch the
dot on the secondary side and find Vo again.

10 Ω

2 Ω

3:1

20 mF

10 cos 5t V +
−

+

−
Vo

Figure 13.100 For Prob. 13.33.

13.34 Calculate the input impedance for the network in
Fig. 13.101 below.

13.35 Use the concept of reflected impedance to find the
input impedance and current I1 in Fig. 13.102 below.

12 Ω10 Ωj16 Ω

+
−V16   60° 10   30°

I1 I2
1:2

+
−

–j8 Ω

Figure 13.99 For Prob. 13.32.

Zin

1:5 4:1
a

b

8 Ω 24 Ω 6 Ωj12 Ω

−j10 Ω

Figure 13.101 For Prob. 13.34.

1:2 1:3
5 Ω 8 Ω 36 Ω

j18 Ω+
−

I1 –j2 Ω

V24   0°

Figure 13.102 For Prob. 13.35.
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13.36 For the circuit in Fig. 13.103, determine the turns
ratio n that will cause maximum average power
transfer to the load. Calculate that maximum
average power.

40 Ω
1:n

+
− 10 ΩV rms120   0°

Figure 13.103 For Prob. 13.36.

13.37 Refer to the network in Fig. 13.104.
(a) Find n for maximum power supplied to the

200-� load.
(b) Determine the power in the 200-� load if

n = 10.

3 Ω
1:n

200 Ω5 ΩA rms4   0°

Figure 13.104 For Prob. 13.37.

13.38 A transformer is used to match an amplifier with an
8-� load as shown in Fig. 13.105. The Thevenin
equivalent of the amplifier is: VTh = 10 V,
ZTh = 128 �.
(a) Find the required turns ratio for maximum

energy power transfer.

(b) Determine the primary and secondary currents.
(c) Calculate the primary and secondary voltages.

1:n

8 ΩAmplifier
circuit

Figure 13.105 For Prob. 13.38.

13.39 In Fig. 13.106 below, determine the average power
delivered to Zs .

13.40 Find the power absorbed by the 10-� resistor in the
ideal transformer circuit of Fig. 13.107.

2 Ω

10 Ω

1:2

V46   0°

5 Ω

+
−

Figure 13.107 For Prob. 13.40.

13.41 For the ideal transformer circuit of Fig. 13.108
below, find:
(a) I1 and I2,
(b) V1, V2, and Vo,
(c) the complex power supplied by the source.

1:10

+
−V rms120   0° Zs = 500 – j200 Ω

Zp = 3 + j4 Ω

Figure 13.106 For Prob. 13.39.

12 Ω
j3 ΩV1 V2 Vo

− −

1:2

+
−V rms60   90°

I1 I22 Ω

+ + +

−

−j6 Ω

Figure 13.108 For Prob. 13.41.
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13.42 Determine the average power absorbed by each
resistor in the circuit of Fig. 13.109.

20 Ω

100 Ω

1:5

80 cos 4t V +
−

20 Ω

Figure 13.109 For Prob. 13.42.

13.43 Find the average power delivered to each resistor in
the circuit of Fig. 13.110.

8 Ω

4 Ω

2:1

V20   0° +
−

2 Ω

Figure 13.110 For Prob. 13.43.

13.44 Refer to the circuit in Fig. 13.111 below.
(a) Find currents I1, I2, and I3.
(b) Find the power dissipated in the 40-� resistor.

13.45∗ For the circuit in Fig. 13.112 below, find I1, I2, and
Vo.

13.46 For the network in Fig. 13.113 below, find
(a) the complex power supplied by the source,
(b) the average power delivered to the 18-� resistor.

1:4 1:2
4 Ω 5 Ω

+
−

I1 I2 I3

V120   0° 40 Ω10 Ω

Figure 13.111 For Prob. 13.44.

1:5 3:4
2 Ω 14 Ω

+
−

I1 I2

V24   0° 160 Ω60 ΩVo

+

−

Figure 13.112 For Prob. 13.45.

2:5 1:3
6 Ω 8 Ω

+
−V40   0°

18 Ω

–j20 Ωj4 Ω

j45 Ω

Figure 13.113 For Prob. 13.46.
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13.47 Find the mesh currents in the circuit of Fig. 13.114
below.

Section 13.6 Ideal Autotransformers

13.48 An ideal autotransformer with a 1:4 step-up turns
ratio has its secondary connected to a 120-� load
and the primary to a 420-V source. Determine the
primary current.

13.49 In the ideal autotransformer of Fig. 13.115, calculate
I1, I2, and Io. Find the average power delivered to
the load.

+
−

I1

I2

10 + j40 Ω

2 – j6 Ω

Io

20   30° V rms
80 turns

200 turns

Figure 13.115 For Prob. 13.49.

13.50∗ In the circuit of Fig. 13.116, ZL is adjusted until
maximum average power is delivered to ZL. Find
ZL and the maximum average power transferred to
it. Take N1 = 600 turns and N2 = 200 turns.

+
−V rms

N1

N2

75 Ω j125 Ω
ZL

120   0°

Figure 13.116 For Prob. 13.50.

13.51 In the ideal transformer circuit shown in Fig. 13.117,
determine the average power delivered to the load.

+
−V rms

20 – j40 Ω

120   0°

30 + j12 Ω

1000 turns

200 turns

Figure 13.117 For Prob. 13.51.

13.52 In the autotransformer circuit in Fig. 13.118, show
that

Zin =
(

1 + N1

N2

)2

ZL

ZL

Zin

Figure 13.118 For Prob. 13.52.

Section 13.7 Three-Phase Transformers

13.53 In order to meet an emergency, three single-phase
transformers with 12,470/7200 V rms are connected
in �-Y to form a three-phase transformer which is
fed by a 12,470-V transmission line. If the
transformer supplies 60 MVA to a load, find:
(a) the turns ratio for each transformer,
(b) the currents in the primary and secondary

windings of the transformer,
(c) the incoming and outgoing transmission line

currents.

1:2 1:3
1 Ω 9 Ω7 Ω

+
−V12   0°

–j6 Ω

j18 ΩI1 I1I2

Figure 13.114 For Prob. 13.47.
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13.54 Figure 13.119 below shows a three-phase
transformer that supplies a Y-connected load.
(a) Identify the transformer connection.
(b) Calculate currents I2 and Ic.
(c) Find the average power absorbed by the load.

13.55 Consider the three-phase transformer shown in Fig.
13.120. The primary is fed by a three-phase source
with line voltage of 2.4 kV rms, while the secondary
supplies a three-phase 120-kW balanced load at pf
of 0.8. Determine:
(a) the type of transformer connections,
(b) the values of ILS and IPS ,
(c) the values of ILP and IPP ,
(d) the kVA rating of each phase of the transformer.

13.56 A balanced three-phase transformer bank with the
�-Y connection depicted in Fig. 13.121 below is
used to step down line voltages from 4500 V rms to
900 V rms. If the transformer feeds a 120-kVA load,
find:
(a) the turns ratio for the transformer,
(b) the line currents at the primary and secondary

sides.

Load
120 kW pf = 0.8

4:1

2.4 kV

ILP

ILS

IPS

IPP

Figure 13.120 For Prob. 13.55.

3:1
V450   0°

I1

I2

I3

Ic

Ib

Ia

450   120° V

450   –120° V

8 Ω

−j6 Ω

8 Ω

−j6 Ω

8 Ω

−j6 Ω

Figure 13.119 For Prob. 13.54.

1:n

4500 V 900 V 42 kVA
Three-phase
load

Figure 13.121 For Prob. 13.56.
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13.57 A Y-� three-phase transformer is connected to a
60-kVA load with 0.85 power factor (leading)
through a feeder whose impedance is 0.05 + j0.1 �
per phase, as shown in Fig. 13.122 below. Find the
magnitude of:
(a) the line current at the load,
(b) the line voltage at the secondary side of the

transformer,
(c) the line current at the primary side of the

transformer.

13.58 The three-phase system of a town distributes power
with a line voltage of 13.2 kV. A pole transformer
connected to single wire and ground steps down the
high-voltage wire to 120 V rms and serves a house
as shown in Fig. 13.123.
(a) Calculate the turns ratio of the pole transformer

to get 120 V.
(b) Determine how much current a 100-W lamp

connected to the 120-V hot line draws from the
high-voltage line.

13.2 kV 120 V

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

Figure 13.123 For Prob. 13.58.

Section 13.8 PSpice Analysis of Magnetically
Coupled Circuits

13.59 Rework Prob. 13.14 using PSpice.

13.60 Use PSpice to find I1, I2, and I3 in the circuit of Fig.
13.124.

j15 Ω

j80 Ω
j0 Ω

j100 Ω

j10 Ω

+
−V60   0°

j50 Ω –j20 Ω

20   90°+
− V

I1 I3

I2

40 Ω

80 Ω

Figure 13.124 For Prob. 13.60.

13.61 Rework Prob. 13.15 using PSpice.

13.62 Use PSpice to find I1, I2, and I3 in the circuit of Fig.
13.125.

I1 I2

I3

100 Ω

8 H

2 H

1 H

4 H 3 H

2 H 60 mF

200 Ω

70 Ω 50 mF

+
−

V120   0°
f = 100

Figure 13.125 For Prob. 13.62.

1:n

0.05 Ω j0.1 Ω

0.05 Ω j0.1 Ω

0.05 Ω j0.1 Ω

Balanced
load

60 kVA
0.85 pf
leading

2640 V

240 V

Figure 13.122 For Prob. 13.57.
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13.63 Use PSpice to find V1, V2, and Io in the circuit of
Fig. 13.126.

2 Ω
1:2

+
−

20 Ω

16 Ω

V1 V2

+

−

+

−
V40   60° +

− V30   0°

–j12 Ω–j4 Ω

j8 Ω

Io

Figure 13.126 For Prob. 13.63.

13.64 Find Ix and Vx in the circuit of Fig. 13.127 below
using PSpice.

13.65 Determine I1, I2, and I3 in the ideal transformer
circuit of Fig. 13.128 using PSpice.

j80 Ω

−j30 Ω

50 Ω

+
−

I1 I2
1:2

1:3
V440   0°

40 Ω

j50 Ω

I3 60 Ω

Figure 13.128 For Prob. 13.65.

Section 13.9 Applications

13.66 A stereo amplifier circuit with an output impedance
of 7.2 k� is to be matched to a speaker with an input
impedance of 8 � by a transformer whose primary

side has 3000 turns. Calculate the number of turns
required on the secondary side.

13.67 A transformer having 2400 turns on the primary and
48 turns on the secondary is used as an
impedance-matching device. What is the reflected
value of a 3-� load connected to the secondary?

13.68 A radio receiver has an input resistance of 300 �.
When it is connected directly to an antenna system
with a characteristic impedance of 75 �, an
impedance mismatch occurs. By inserting an
impedance-matching transformer ahead of the
receiver, maximum power can be realized. Calculate
the required turns ratio.

13.69 A step-down power transformer with a turns ratio of
n = 0.1 supplies 12.6 V rms to a resistive load. If
the primary current is 2.5 A rms, how much power is
delivered to the load?

13.70 A 240/120-V rms power transformer is rated at
10 kVA. Determine the turns ratio, the primary
current, and the secondary current.

13.71 A 4-kVA, 2400/240-V rms transformer has 250
turns on the primary side. Calculate:
(a) the turns ratio,
(b) the number of turns on the secondary side,
(c) the primary and secondary currents.

13.72 A 25,000/240-V rms distribution transformer has a
primary current rating of 75 A.
(a) Find the transformer kVA rating.
(b) Calculate the secondary current.

13.73 A 4800-V rms transmission line feeds a distribution
transformer with 1200 turns on the primary and 28
turns on the secondary. When a 10-� load is
connected across the secondary, find:
(a) the secondary voltage,
(b) the primary and secondary currents,
(c) the power supplied to the load.

1:2 2:1
1 Ω 6 Ω

2Vx

8 Ω
j2 Ω

+
−

Ix –j10 Ω

V6   0°
+

−
Vx

4 Ω
+

−

Vo

+ −

Figure 13.127 For Prob. 13.64.
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COM P R E H EN S I V E P RO B L E M S

13.74 A four-winding transformer (Fig. 13.129) is often
used in equipment (e.g., PCs, VCRs) that may be
operated from either 110 V or 220 V. This makes the
equipment suitable for both domestic and foreign
use. Show which connections are necessary to
provide:
(a) an output of 12 V with an input of 110 V,
(b) an output of 50 V with an input of 220 V.

a

b

c

d

e

f

g

h

32 V

18 V

110 V

110 V

Figure 13.129 For Prob. 13.74.

13.75∗ A 440/110-V ideal transformer can be connected to
become a 550/440-V ideal autotransformer. There

are four possible connections, two of which are
wrong. Find the output voltage of:
(a) a wrong connection,
(b) the right connection.

13.76 Ten bulbs in parallel are supplied by a 7200/120-V
transformer as shown in Fig. 13.130, where the
bulbs are modeled by the 144-� resistors. Find:
(a) the turns ratio n,
(b) the current through the primary winding.

1:n

144 Ω7200 V 120 V 144 Ω

Figure 13.130 For Prob. 13.76.
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