CHAPTER]|I3

MAGNETICALLY COUPLED CIRCUITS

People want success but keep running away from problems, and yet it is
only in tackling problems that successis achieved.
— Josiah J. Bonire

Enhancing Your Career

Career in Electromagnetics Electromagnetics is the

branch of electrical engineering (or physics) that deals with
the analysis and application of electric and magnetic fields
In electromagnetics, electric circuit analysisis applied atlow |
frequencies. T 3

The principles of electromagnetics (EM) are applied \
in various allied disciplines, such as electric machines,
electromechanical energy conversion, radar meteorology
remote sensing, satellite communications, bioelectromag
netics, electromagnetic interference and compatibility, plas
mas, and fiber optics. EM devices include electric motor:
and generators, transformers, electromagnets, magnetic leg
itation, antennas, radars, microwave ovens, microwavd
dishes, superconductors, and electrocardiograms. The d
sign of these devices requires a thorough knowledge of thg
laws and principles of EM.

EM is regarded as one of the more difficult disci-
plines in electrical engineering. One reason is that EM
phenomena are rather abstract. But if one enjoys working
with mathematics and can visualize the invisible, one should
consider being a specialist in EM, since few electrical
engineers specialize in this area. Electrical engineers whg i -
specialize in EM are needed in microwave indUStrieS'TeIemetryreceiving Station for space satellites. Source: T. J. Mal-
radio/TV broadcasting stations, electromagnetic researclyney, Modern Industrial Electronics, 3rd ed. Englewood Cliffs, NJ:
laboratories, and several communications industries. Prentice Hall, 1996, p. 718.
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Figure 13. Magnetic flux produced
by a single coil with N turns.

PART 2 AC Circuits

13.1 INTRODUCTION

The circuits we have considered so far may be regardedrasictively
coupled, because one loop affects the neighboring loop through current
conduction. When two loops with or without contacts between them
affect each other through the magnetic field generated by one of them,
they are said to beagnetically coupled.

The transformer is an electrical device designed on the basis of
the concept of magnetic coupling. It uses magnetically coupled coils to
transfer energy from one circuit to another. Transformers are key circuit
elements. They are used in power systems for stepping up or stepping
down ac voltages or currents. They are used in electronic circuits such as
radio and television receivers for such purposes as impedance matching,
isolating one part of a circuit from another, and again for stepping up or
down ac voltages and currents.

We will begin with the concept of mutual inductance and introduce
the dot convention used for determining the voltage polarities of induc-
tively coupled components. Based on the notion of mutual inductance,
we then introduce the circuit element known asttiaesformer. We will
consider the linear transformer, the ideal transformer, the ideal autotrans-
former, and the three-phase transformer. Finally, among their important
applications, we look at transformers as isolating and matching devices
and their use in power distribution.

13.2 MUTUAL INDUCTANCE

When two inductors (or coils) are in a close proximity to each other,
the magnetic flux caused by current in one coil links with the other caoill,
thereby inducing voltage in the latter. This phenomenon is known as
mutual inductance.

Let usfirst consider a single inductor, a coil with N turns. When
current ¢ flows through the coil, a magnetic flux ¢ is produced around it
(Fig. 13.1). According to Faraday’s law, the voltage v induced in the coil
is proportional to the number of turns N and the time rate of change of
the magnetic flux ¢; that is,

d¢

=N— 13.1
v it (131

But the flux ¢ is produced by current i so that any changein ¢ is caused
by a change in the current. Hence, Eqg. (13.1) can be written as

do di
v=N—1— (13.2)
di dt
or
Ldi 13.3
v=L— '
ar (13.3)

which is the voltage-current relationship for the inductor. From Egs.
(13.2) and (13.3), theinductance L of the inductor is thus given by
d¢

L=N— 13.4
di (134)
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This inductance is commonly called self-inductance, because it relates
the voltage induced in a coil by atime-varying current in the same coil.

Now consider two coilswith self-inductances L1 and L, that arein
close proximity with each other (Fig. 13.2). Cail 1 has N; turns, while
coil 2 has N, turns. For the sake of simplicity, assume that the second
inductor carries no current. The magnetic flux ¢, emanating from coil 1
has two components: one component ¢,; links only coil 1, and another
component ¢1» links both coils. Hence,

¢1 = P11 + ¢12

Although the two coils are physically separated, they are said to be mag-
netically coupled. Sincetheentireflux ¢, linkscoil 1, thevoltageinduced
incoil 1is

(135)

d¢1
=N1— 13.6
V1 1 (13.6)
Only flux ¢12 links coil 2, so the voltage induced in coil 2is
doi12
= No,—— 13.
v2 2= (13.7)

Again, as the fluxes are caused by the current i1 flowing in cail 1, Eq.
(13.6) can be written as

(13.8)

where L1 = Ny d¢1/diq isthe self-inductance of coil 1. Similarly, Eq.
(13.7) can be written as

2di, dr dt

d di di
Uy = Prodiy _, di (139)

where

drz
diy
M1 is known as the mutual inductance of coil 2 with respect to coil 1.
Subscript 21 indicatesthat theinductance M, relatesthe voltageinduced
in coil 2 to the current in coil 1. Thus, the open-circuit mutual voltage
(or induced voltage) across cail 2is

My = N>

(13.10)

v = My —

1311
i (1311)

Suppose we now let current i, flow in coil 2, while coil 1 carriesno
current (Fig. 13.3). Themagneticflux ¢, emanating from coil 2 comprises
flux ¢, that links only coil 2 and flux ¢»; that links both coils. Hence,

@2 = P21 + P2

The entire flux ¢, links coil 2, so the voltage induced in coil 2is

(13.12)

— —

. (13.13)
dt diy dt
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Mutual inductance M1, of
coil 1 with respect to coil 2.
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where L, = N, d¢,/di isthe self-inductance of coil 2. Since only flux
¢21 links cail 1, the voltage induced in coil 1is

d¢a dgordi  dip

=N —= = —2 = Mpp—= 13.14
=My Vi, ar T %y (13149
where
d
My = N1—¢.21 (13.15)
dlz

which isthe mutual inductance of coil 1 with respect to coil 2. Thus, the
open-circuit mutual voltage across coil 1is

vy = Mp— 13.16
1 2 ( )

We will seein the next section that M1, and M»; are equd, that is,
My =My =M (13.17)

and we refer to M as the mutual inductance between the two coils. Like
self-inductance L, mutual inductance M ismeasured in henrys (H). Keep
in mind that mutual coupling only exists when the inductors or coils are
in close proximity, and the circuits are driven by time-varying sources.
We recall that inductors act like short circuitsto dc.

From thetwo casesin Figs. 13.2 and 13.3, we conclude that mutual
inductance results if a voltage is induced by a time-varying current in
another circuit. It isthe property of an inductor to produce a voltage in
reaction to atime-varying current in another inductor near it. Thus,

Mutual inductance is the ability of one inductor to induce a voltage
across a neighboring inductor, measured in henrys (H).

Although mutual inductance M is always a positive quantity, the
mutual voltage M di/dt may be negative or positive, just like the self-
induced voltage L di/dt. However, unlike the self-induced L di/dt,
whose polarity isdetermined by the reference direction of the current and
the reference polarity of the voltage (according to the passive sign con-
vention), the polarity of mutual voltage M di /dt isnot easy to determine,
becausefour terminalsareinvolved. Thechoice of the correct polarity for
M di /dt ismade by examining the orientation or particular way in which
both coils are physically wound and applying Lenz's law in conjunction
with theright-hand rule. Sinceit isinconvenient to show the construction
details of coilson acircuit schematic, we apply the dot conventionin cir-
cuit analysis. By this convention, adot is placed in the circuit at one end
of each of the two magnetically coupled coils to indicate the direction of
the magnetic flux if current entersthat dotted terminal of the coil. Thisis
illustrated in Fig. 13.4. Given acircuit, the dotsare already placed beside
the coils so that we need not bother about how to place them. The dots
are used along with the dot convention to determine the polarity of the
mutual voltage. The dot convention is stated as follows:
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Figure [34  niustration of the dot convention.

=

If a current enters the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is positive
at the dotted terminal of the second coil.

Alternatively,

=

If a current leaves the dotted terminal of one coil, the reference
polarity of the mutual voltage in the second coil is negative
at the dotted terminal of the second coil.

Thus, the reference polarity of the mutual voltage depends on the refer-
ence direction of the inducing current and the dots on the coupled coils.
Application of the dot convention is illustrated in the four pairs of mu-
tually coupled coilsin Fig. 13.5. For the coupled coils in Fig. 13.5(a),
the sign of the mutual voltage v, is determined by the reference polarity
for v, and the direction of i1. Sincei; enters the dotted terminal of coil
1 and v, is positive at the dotted terminal of coil 2, the mutual voltageis
+M diy/dt. For the coilsin Fig. 13.5(b), the current i; enters the dot-
ted terminal of coil 1 and v, is negative at the dotted terminal of coil 2.
Hence, the mutual voltageis —M di;/dt. The same reasoning appliesto
the coilsin Fig. 13.5(c) and 13.5(d). Figure 13.6 shows the dot conven-
tion for coupled coils in series. For the coils in Fig. 13.6(a), the total
inductanceis

L=L{+L,+2M (Series-aiding connection) (13.18)

For the cail in Fig. 13.6(b),

L=L,+L,—2M

(Series-opposing connection) | (13.19)

Now that we know how to determine the polarity of the mutual
voltage, we are prepared to analyze circuitsinvolving mutual inductance.
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Figure 3.5 Examples
illustrating how to apply the
dot convention.
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M M
Y Y
o—° mn—"° o o— e —= 2 o
Ll (+) L2 Ll () L2
@ (b)

Figure 3.6 Dot convention for coils in series; the sign indicates the polarity of the mutual
voltage: (a) series-aiding connection, (b) series-opposing connection.

Asthefirst example, consider the circuit in Fig. 13.7. Applying KVL to

coil 1 gives
vi =i1R1 + Llﬂ + M@ (13.209)
dt dt
For cail 2, KVL gives
vo = ipRy + LZ@ + Mﬂ (13.20b)
dt dt

We can write Eq. (13.20) in the frequency domain as

Vi=(R1+ joL)l1+ joMl, (13.21a)
Vo = joMl1+ (R2+ joL))l, (13.21b)

As a second example, consider the circuit in Fig. 13.8. We analyze this
in the frequency domain. Applying KVL to coil 1, we get

V=(Z1+ joL)l1— joMl, (13.223)
For cail 2, KVL yields
O=—joMl1+ (ZL + joLy)ls (13.22b)
Equations(13.21) and (13.22) are solved in the usual manner to determine
the currents.
M . joM
R. R 1
wi— X Y
L] [ ] ° L]
v () ud Eu () @w v@® () wud i (1) [z
Figure 3.7 Time-domain analysisof acircuit containing Figure 13.8 Frequency-domain analysis of acircuit
coupled cails. containing coupled coils.

At thisintroductory level we are not concerned with the determi-
nation of the mutual inductances of the coils and their dot placements.
Like R, L, and C, calculation of M would involve applying the theory
of electromagnetics to the actual physical properties of the coils. In this
text, we assumethat the mutual inductance and the dots placement arethe
“givens’ of the circuit problem, like the circuit components R, L, and C.
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MH.I

Calculate the phasor currents |1 and |, in the circuit of Fig. 13.9. @

. i3Q
-j4Q

||
I
[ ]
12/0°V @ i5Q i6Q @ 120

Figure 139 For Example 13.1.

Solution:
For cail 1, KVL gives

—12+ (—j4+ j5I1—j3,=0
or

jli—j3l, =12 (13.1.1)
For coil 2, KVL gives
—j3li+ 12+ j6)l, =0
or
12+ j6)l;
Jj3

Substituting thisin Eq. (13.1.1), we get

(j2+4— 3= (4— jly=12

I, =2—-jdl, (13.1.2)

or
12

From Egs. (13.1.2) and (13.1.3),
l1=(2— jd)l, = (4472 / — 63.43°)(2.91 /14.04°)

=13.01/ —49.39° A

I2 =291/14.04° A (13.1.3)

PRACTICE PROBLEMMBEE

Determine the voltage V,, in the circuit of Fig. 13.10.

i1Q

40
a9 { Y
J +
6,/90° V @ i8Q i5Q @ 10Q V,

Figure [3.10  For Practice Prob. 13.1.

Answer: 0.6/ —90° V.
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Figure 13.12 For Example 13.2;
redrawing the relevant portion of the
circuit in Fig. 13.11 to find mutual
voltages by the dot convention.

Calculate the mesh currents in the circuit of Fig. 13.11.

-i3Q 80
1 21

I .y.
100202 v @) @ jGQ§ @ 50

4Q

Figure [3.11 For Example 13.2.

Solution:

The key to analyzing a magnetically coupled circuit is knowing the po-
larity of the mutual voltage. We need to apply the dot rule. InFig. 13.11,
suppose cail 1 is the one whose reactance is 6 €2, and cail 2 is the one
whose reactance is 8 Q2. To figure out the polarity of the mutual voltage
incoil 1 dueto current | », we observethat | » |leaves the dotted terminal of
coil 2. Sincewe are applying KVL in the clockwise direction, it implies
that the mutual voltage is negative, that is, —j2I,.

Alternatively, it might be best to figure out the mutual voltage by
redrawing the relevant portion of the circuit, as shown in Fig. 13.12(a),
where it becomes clear that the mutual voltageisVi = —2jl,.

Thus, for mesh 1in Fig. 13.11, KVL gives

—100+ 11(4— j3+ j6) — jBlo — j2l, =0
or
100 = (4+ j3)l1 — j8lI> (13.2.1)

Similarly, to figure out the mutual voltage in coil 2 due to current |4,
consider the relevant portion of the circuit, as shown in Fig. 13.12(b).
Applying the dot convention gives the mutual voltage asV, = —2jl;.
Also, current 1, seesthe two coupled coilsin seriesin Fig. 13.11; sinceit
leaves the dotted terminalsin both coils, Eqg. (13.18) applies. Therefore,
for mesh 2, KVL gives

0=—-2jl;—j6l1+ (j6+ j8+ j2x 2+ D)l
or
0=—j8l.+ 5+ j18)l, (13.2.2)
Putting Egs. (13.2.1) and (13.2.2) in matrix form, we get

100]  [4+j3 —j8 ][l
0|7 | —j8 5+j18||l,
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The determinants are

_ |4+ )3 —-j8 | _ .
A_' _i8 5+j18’_30+]87
100 —j8 | .
A= ‘ 0 5+j18’ = 100(5+ j18)
|4+ j3 100 .

Ay = _i8 0 = j800

Thus, we obtain the mesh currents as
Ay 1005+ ,18) 1868.2,/74.5°

= 2t J0 —=203/35° A
A 30+ ;87 92.03/71°
: 800 /90°
= B2 80 /%0 — 8.693/19° A

A 30+j87 g203 /710

PRACTICE PROBLEMMNEIN
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Determine the phasor currents |1 and I, in the circuit of Fig. 13.13.

50 j20Q
——AM— T
[ ]
j3Q

12@v<’:> @ gjeg @ — -j40

Figure 13.13  For Practice Prob. 13.2.

Answer: 2.15/86.56°, 3.23 /86.56° A.

13.3 ENERGY IN A COUPLED CIRCUIT

In Chapter 6, we saw that the energy stored in an inductor is given by

1,
w = ELZ (13.23)

We now want to determine the energy stored in magnetically coupled
coils.

Consider the circuit in Fig. 13.14. We assume that currents i; and
ip are zero initially, so that the energy stored in the coilsis zero. If welet
i1 increase from zero to I; while maintaining i, = 0O, the power in coil 1
is

di
pa(t) = vyiy = i1 Ly (13.24)
dt
and the energy stored in the circuit is

Iy 1
w1 = /Pldt = L1/ irdiy = éLllf (13.25)
0

(e}
+ O

Figure 1314 The circuit
for deriving energy stored in
a coupled circuit.



536

PART 2 AC Circuits

If we now maintain i; = /; and increase i, from zero to I, the mutual
voltageinduced in coil 1is M1, di,/dt, whilethe mutual voltage induced
in coil 2 iszero, since i; does not change. The power in the coilsis now

p2(t) = i1M12@ +i2v2 = 11M12@ + iszﬁ (13.26)
dt dt dt
and the energy stored in the circuit is
I I
Wy = /pzdt = Mlzll/ dip + L2/ iodio
0 0 (13.27)

1 5
= Mplil, + §L212

The total energy stored in the coils when both i; and i, have reached
constant valuesis

1 1
w=wi+ wy = ELlIlz + §L2122 + M1, (13.28)

If we reverse the order by which the currents reach their final values, that
is, if wefirstincrease i, from zero to I, and later increase i1 from zero to
I, thetotal energy stored in the coilsis

1 2 1 2
w = ELlIl + §L212 + Mo 111, (13.29)

Since the total energy stored should be the same regardless of how we
reach the final conditions, comparing Egs. (13.28) and (13.29) leads us
to conclude that

Mp=My=M (13.30a)
and
1 -, 1 5
w = ELl]l + ELQIZ + MI I, (13.30b)

This equation was derived based on the assumption that the coil currents
both entered thedotted terminals. If onecurrent entersonedotted terminal
whiletheother current |leavesthe other dotted terminal, themutual voltage
isnegative, so that the mutual energy M 111, isalso negative. Inthat case,

1 2 1 2
w = ELlIl + §L212 —MI I (13.32)
Also, since I; and I, are arbitrary values, they may be replaced by i; and
i2, which gives the instantaneous energy stored in the circuit the general
expression

1, 1, .
w = ELlll + §L212 + Miqio (13.32)

The positive sign is selected for the mutual term if both currents enter
or leave the dotted terminals of the coails; the negative sign is selected
otherwise.

We will now establish an upper limit for the mutual inductance M.
The energy stored in the circuit cannot be negative because the circuit is
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passive. This means that the quantity 1/2L1i% + 1/2L,i5 — Mi1ip must
be greater than or equal to zero,

1 1
ELﬂf+§Lj§—AﬁﬂzzO (13.39)
To complete the square, we both add and subtract theterm iqi«/L1L, On

the right-hand side of Eq. (13.33) and obtain

1
E(il\/ L1 — izy/L2)? + iria(v/L1iLy — M) > 0 (13.34)

The squared term is never negative; at its least it is zero. Therefore, the
second term on the right-hand side of Eq. (13.34) must be greater than

zero; that is,
VLiL,— M >0
or

M <\ LiL; (13.35)

Thus, the mutual inductance cannot be greater than the geometric mean
of the self-inductances of the coils. The extent to which the mutual
inductance M approaches the upper limit is specified by the coefficient
of coupling &, given by
M
k= (13.36)

VLiL,

or

M =ky/LiL, (13.37)

where 0 < k < 1lorequivdently 0 < M < /LiL,. The coupling
coefficient is the fraction of the total flux emanating from one coil that
links the other coil. For example, in Fig. 13.2,

p=f2_ P (13.39)
$1  fu+ o
andin Fig. 13.3,
P (13.39)
¢2 P+ o2

If the entire flux produced by one coil links another coil, then £ = 1
and we have 100 percent coupling, or the coils are said to be perfectly
coupled. Thus,

The coupling coefficient k is a measure of the magnetic
coupling between two coils; 0 < k < I.

For k < 0.5, coils are said to be loosely coupled; and for k& > 0.5, they
are said to be tightly coupled.

We expect k to depend on the closeness of the two cails, their core,
their orientation, and their windings. Figure 13.15 showsloosely coupled

537

Air or ferrite core

@ (b)

Figure 13.15  Windings: () loosely coupled,
(b) tightly coupled; cutaway view demonstrates
both windings.
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windings and tightly coupled windings. The air-core transformers used
in radio frequency circuits are loosely coupled, whereas iron-core trans-
formersused in power systemsaretightly coupled. Thelinear transform-
ers discussed in Section 3.4 are mostly air-core; the ideal transformers
discussed in Sections 13.5 and 13.6 are principally iron-core.

Sl

For Example 13.3.

Consider the circuit in Fig. 13.16. Determine the coupling coefficient.
Calculate the energy stored in the coupled inductors at time ¢t = 1 sif
v = 60cos(4t + 30°) V.

Solution:
The coupling coefficient is
M 25
=———=——=056
~LiLy /20

indicating that theinductorsaretightly coupled. Tofindtheenergy stored,
we need to obtain the frequency-domain equivalent of the circuit.

60 cos(4z + 30°) — 60,/30°, w =4radls
5H — joLy = j20Q
256H =  joM=j10Q
4H — joLz = j16 Q

e L _ g
16 joc =

The frequency-domain equivalent is shown in Fig. 13.17. We now apply
mesh analysis. For mesh 1,

(10 + j20)I1 + j101, = 60,/30° (13.3.2)
For mesh 2,
j10I1 + (j16 — j4l2 =0
or
I, =-12l», (13.3.2)
Substituting thisinto Eq. (13.3.1) yields
[,(—=12 — j14) = 60 /30° - I, =3.254/ — 160.6° A
and
l; = —1.21, = 3.905/— 19.4° A
In the time-domain,
i1 = 3.905cos(4t — 19.4°), ir = 3.254 cos(4t — 199.4°)
Attimet = 1s, 4t = 4rad = 229.2°, and
i1 = 3.905c0s(229.2° — 19.4°) = —3.389 A
iz = 3.254¢0s(229.2° + 160.6°) = 2.824 A
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Thetotal energy stored in the coupled inductorsis

1, 1 5 .
w = ELlll + ELzlz + Miqis

= %(5)(—3.389)2 + %(4)(2.824)2 + 2.5(—3.389)(2.824) = 20.73J

j10

10Q
we
°
60,30°V @ j20Q j16 Q @ = -j4Q
L]
Figure 13.17 Frequency-domain equivalent of the circuit in Fig. 13.16.

PRACTICE PROBLEMMEEE
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For the circuit in Fig. 13.18, determine the coupling coefficient and the
energy stored in the coupled inductorsatr = 1.5s.

20 cos 2tV 2H 1H 2Q

Figure [3.18  For Practice Prob. 13.3.

Answer: 0.7071, 9.85J.

13.4 LINEAR TRANSFORMERS

Hereweintroducethetransformer asanew circuit element. A transformer
is a magnetic device that takes advantage of the phenomenon of mutual
inductance.

A transformer is generally a four-terminal device comprising
two (or more) magnetically coupled coils.

Asshown in Fig. 13.19, the coail that is directly connected to the voltage
source is called the primary winding. The coil connected to the load is
called the secondary winding. The resistances R; and R, are included
to account for the losses (power dissipation) in the coils. The trans-
former issaid to be linear if the coils are wound on amagnetically linear
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Alinear transformer may also be regarded as one

whose flux is proportional to the currents in its
windings.

material—a material for which the magnetic permeability is constant.
Such materialsinclude air, plastic, Bakelite, and wood. In fact, most ma-
terials are magnetically linear. Linear transformers are sometimes called
air-core transformers, although not all of them are necessarily air-core.

They areusedinradio and TV sets. Figure 13.20 portrays different types
of transformers.

M
R, R,
AW V/_\V VWA
[ ] (]
\ ﬁ]) Ly L, @ Z
Primary coil Secondary coil

Figure 13.19 A linear transformer.

—
.

@ (b)

Figure [320 Different types of transformers: (a) copper wound dry power transformer, (b) audio transformers.
(Courtesy of: (a) Electric Service Co., (b) Jensen Transformers.)

We would like to obtain the input impedance Zj,, as seen from the
source, because Z;,, governsthebehavior of theprimary circuit. Applying
KVL to the two meshesin Fig. 13.19 gives

V = (R1+ja)L1)|1—ja)M|2 (13.40a)
O=—joMli1+ (R + jwLa+2Zp)l, (13.40b)
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In Eqg. (13.40b), we express |, in terms of |, and substitute it into Eq.
(13.40a). We get the input impedance as
Z v Ri+ joLi+ —szz (13.41)
in=—= w .
" L ek R+ jol,+ 27,
Notice that the input impedance comprises two terms. The first term,
(R1 + jwL3), isthe primary impedance. The second term is due to the
coupling between the primary and secondary windings. Itisasthoughthis
impedance is reflected to the primary. Thus, it is known as the reflected
impedance Z, and

wZMZ

= 13.42
K Ro+ jol,+2Zp ( )

It should be noted that the result in Eq. (13.41) or (13.42) is not affected
by the location of the dots on the transformer, because the same result is
produced when M isreplaced by — M.

The little bit of experience gained in Sections 13.2 and 13.3 in
analyzing magnetically coupled circuitsisenoughto convinceanyonethat
analyzing thesecircuitsisnot aseasy ascircuitsin previous chapters. For
thisreason, it is sometimes convenient to replace amagnetically coupled
circuit by an equivalent circuit with no magnetic coupling. We want to
replacethelinear transformerin Fig. 13.19 by anequivalent T or IT circuit,
acircuit that would have no mutual inductance. Ignore the resistances of
the coils and assume that the coils have a common ground as shown in
Fig. 13.21. The assumption of a common ground for the two coilsis a
maj or restriction of the equivalent circuits. A common ground isimposed
on the linear transformer in Fig. 13.21 in view of the necessity of having
a common ground in the equivalent T or IT circuit; see Figs. 13.22 and
13.23.

The voltage-current relationships for the primary and secondary
coils give the matrix equation

Vl _ ]a)Ll JCL)M |1
[VJ = [ oM ijz] [lz] (1343)

By matrix inversion, this can be written as

Lo -M
[I 1] jo(LiLy — M?)  jo(LiL, — M?) [Vl}
= (13.44)
I2 -M Ly Vo

jo(LiLy — M?)  jo(LiL, — M?)

Our goa is to match Egs. (13.43) and (13.44) with the corresponding
equations for the T and IT networks.

For the T (or Y) network of Fig. 13.22, mesh analysis providesthe
terminal equations as

V4 _ ja)(La + L.) joL, 11
[Vz] = [ joLe  jo(Ly+ LCJ [| 2] (1349
If the circuitsin Figs. 13.21 and 13.22 are equivalents, Egs. (13.43) and
(13.45) must be identical. Equating terms in the impedance matrices of
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Some authors call this the coupled impedance.

M
| |
1 m 2
o o
+ . . +
A L LV,
o o

Figure [3.2]  Determining
the equivalent circuit of a
linear transformer.

Figure 1322 An equivalent T circuit.

Figure 1323 An equivalent T circuiit.
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Egs. (13.43) and (13.45) leads to

L,=Li—M, Ly=L,—M, L.=M | (1349

For the IT (or A) network in Fig. 13.23, nodal analysis gives the
terminal equations as

1 n 1 1
[I 1} JoLsy  joLc JoLc [Vl}
= (13.47)
I, 1 1 N 1 Vo
jowLce joLp jwLc

Equating terms in admittance matrices of Egs. (13.44) and (13.47), we
obtain

LiLy, — M? LiLy — M?
La=—""—"u B= " —m
2 1 (13.48)
LiLy — M?
Le=—""= "
M

Note that in Figs. 13.23 and 13.24, the inductors are not magnetically
coupled. Also note that changing the locations of the dotsin Fig. 13.21
can cause M to become —M. As Example 13.6 illustrates, a negative
value of M is physically unrealizable but the equivalent model is still
mathematically valid.

i5Q
ZZ

Zl
|| V/\V ||
1 1
[ ] [ ]
50,/60° V @ j20Q j40 Q @ z

Figure 1324 For Example 13.4.

In the circuit of Fig. 13.24, calculate the input impedance and current | ;.
TakeZ; = 60— j100 2, Z, =30+ j40 2, and Z;, = 80+ ;60 €.
Solution:
From Eg. (13.41),
(5)?

ja0+2Z,+ 27,

25
110+ ;140

=60—- ;804 0.14/ — 51.84°

= 60.09 — j80.11 = 100.14 / — 53.1° Q

Zin=21+ j20+

= 60— j100 + j20+
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Thus,
v 50,/60°
Zin  100.14/ —53.1°

PRACTICE PROBLEMMNERK

=0.5/113.1° A

I1

543

Find theinput impedance of the circuit of Fig. 13.25 and the current from
the voltage source.

10/0° V (’:) isQ j100

Figure [3.25  For Practice Prob. 13.4.

Answer: 8.58,58.05° @2, 1.165/ — 58.05° A.

MH.S

Determinethe T-equivalent circuit of thelinear transformer in Fig. 13.26(a).

2H
) 8H 2H
a Cc a Cc
° °
10H 4H 2H
b d b d
@ (b)

Figure [326  For Example 13.5: (@) alinear transformer,
(b) its T-equivalent circuit.

Solution:
Giventhat Ly = 10, L, = 4, and M = 2, the T equivalent network has
the following parameters:
L,=L1—M=10-2=8H
Ly=L,—M=4—2=2H, L.=M=2H
The T-equivalent circuit isshownin Fig. 13.26(b). We have assumed that
reference directionsfor currents and voltage polaritiesin the primary and

secondary windings conform to those in Fig. 13.21. Otherwise, we may
need to replace M with —M, as Example 13.6 illustrates.
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PRACTICE PROBLEMMNKR
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5

For thelinear transformer in Fig. 13.26 (a), find the IT equival ent network.
Answer: L, =18H,Ly =45H, L, = 18H.

MI3.6

ji1Q
| |
. Y <2
o o
+ +
L]
\2 i8Q i5Q v,
L]
o o
@
j9Q j6Q

(b)

Figure 1328 For Example 13.6:
(@) circuit for coupled coils of Fig.
13.27, (b) T-equivalent circuit.

Solveforly, 12, andV, inFig. 13.27 (the samecircuit asfor Practice Prob.
13.1) using the T-equivalent circuit for the linear transformer.

j10

40
e R
L +
60,/90° V @ i8Q i5Q @ V, 210Q

Figure 13.27  For Example 13.6.

Solution:

Noticethat thecircuitin Fig. 13.27 isthe sameasthat in Fig. 13.10 except
that the reference direction for current |, has been reversed, just to make
thereference directionsfor the currentsfor the magnetically coupled coils
conform with thosein Fig. 13.21.

We need to replace the magnetically coupled coils with the T-
equivalent circuit. The relevant portion of the circuit in Fig. 13.27 is
shownin Fig. 13.28(a). Comparing Fig. 13.28(a) with Fig. 13.21 shows
that there are two differences. First, due to the current reference direc-
tions and voltage polarities, we need to replace M by —M to make Fig.
13.28(a) conform with Fig. 13.21. Second, the circuitin Fig. 13.21isin
the time-domain, whereas the circuit in Fig. 13.28(a) isin the frequency-
domain. Thedifferenceisthefactor jw; thatis, L in Fig. 13.21 hasbeen
replaced with jowL and M with joM. Since w is not specified, we can
assume w = 1 or any other value; it really does not matter. With these
two differencesin mind,

L,=L1—(—M)=8+1=9H
L,=L,—(—M)=5+1=6H, L.=—-M=-1H
Thus, the T-equivalent circuit for the coupled coils is as shown in Fig.

13.28(b).
Inserting the T-equivalent circuit in Fig. 13.28(b) to replacethetwo

coilsinFig. 13.27 givesthe equivalent circuit in Fig. 13.29, which can be
solved using nodal or mesh analysis. Applying mesh analysis, we obtain

Jj6=11(4+j9— ;1 +12(=j1) (136.1)
and

0=I1(—j1) + 1,10+ j6 — j1) (136.2)
From Eq. (13.6.2),

_ (1045,

I, 2= (5—-j10)l, (13.6.3)
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Substituting Eg. (13.6.3) into Eq. (13.6.1) gives
j6=(4+ j8(5— jl0)l, — jl, = (100 — j)l, ~ 100l ,

Since 100 is very large compared to 1, the imaginary part of (100 — j)
can beignored so that 100 — j ~ 100. Hence,
_J% _ 006 .
I, = 100 = j0.06 = 0.06,/90° A
From Eg. (13.6.3),

I, = (5— j10)j0.06 = 0.6+ jO.3 A
and
V,=-10l, = —-j0.6=06/—90"V

This agrees with the answer to Practice Prob. 13.1. Of course, the direc-
tion of 1, in Fig. 13.10 is opposite to that in Fig. 13.27. This will not
affect V,,, but the value of 1, in this example is the negative of that of 1,
in Practice Prob. 13.1. The advantage of using the T-equivalent model
for the magnetically coupled coilsisthat in Fig. 13.29 we do not need to
bother with the dot on the coupled coails.

i 40 joo s

—

6V

Figure [3.29  For Example 136.

PRACTICE PROBLEMMEI
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Solvethe problem in Example 13.1 (see Fig. 13.9) using the T-equivalent
model for the magnetically coupled coils.

Answer: 13/ —49.4° A,2.91 /14.04° A.

13.5 [IDEAL TRANSFORMERS

An ideal transformer is one with perfect coupling (k = 1). It consists of
two (or more) coils with a large number of turns wound on a common
core of high permeability. Because of this high permeability of the core,
the flux links al the turns of both coails, thereby resulting in a perfect
coupling.

To see how an ideal transformer is the limiting case of two cou-
pled inductors where the inductances approach infinity and the coupling
is perfect, let us reexamine the circuit in Fig. 13.14. In the frequency
domain,

V1= joLili+ joMl; (13.492)
Vo= joMli1+ joLal; (13.49b)
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@
Ny % H % N
(b)
Figure 13.30  (a) Ideal transformer,
(b) circuit symbol for ideal transformers.

Figure [3.3]  Relating primary and
secondary quantities in an ideal transformer.

PART 2 AC Circuits

From Eq. (13.49a), |; = (V1 — joMI,)/jwL1. Substituting thisin Eq.
(13.49b) gives
MVi  joM?l;

L, L,

Vo= joLzlz +

But M = /L1L, for perfect coupling (k = 1). Hence,

~L1LoV jwLq Lol [ L
Vo= jwLals + 1h2Va  JoRiz2i2 = L—2V1=I’ZV1
1

Ly Ly

wheren = \/Ly/L, andiscalledtheturnsratio. ASLi, Lo, M — o0
such that n remains the same, the coupled coils become an idea trans-
former. A transformer issaid to beideal if it hasthefollowing properties:

1. Coilshave very large reactances (L1, L2, M — o0).
2. Coupling coefficient is equal to unity (k = 1).
3. Primary and secondary coils arelossdess (R = 0 = Ry).

An ideal transformer s a unity-coupled, lossless transformer in which the
primary and secondary coils have infinite self-inductances.

Iron-core transformers are close approximations to ideal transformers.
These are used in power systems and electronics.

Figure 13.30(a) shows atypical ideal transformer; the circuit sym-
bol isin Fig. 13.30(b). The vertical lines between the coils indicate an
iron core as distinct from the air core used in linear transformers. The
primary winding has N; turns; the secondary winding has N, turns.

When a sinusoidal voltage is applied to the primary winding as
shown in Fig. 13.31, the same magnetic flux ¢ goes through both wind-
ings. According to Faraday’slaw, the voltage acrossthe primary winding
is

N dé 13.50
V] = — .
1 1 ( a)
while that across the secondary winding is
do
= No— 13.50b
v2 2 ( )
Dividing Eg. (13.50b) by Eq. (13.50a), we get
v2 _ Ne =n (13.51)
V1 N1

wheren is, again, theturnsratio or transformation ratio. We can usethe
phasor voltages V1 and V;, rather than the instantaneous values v1 and v;.
Thus, Eq. (13.51) may be written as

Vz_Nz_

== 1352
Vi M n (13.52)
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For the reason of power conservation, the energy supplied to the primary
must equal the energy absorbed by the secondary, sincethereare nolosses
in an ideal transformer. Thisimplies that

v1i1 = V2ip (13.53)
In phasor form, Eq. (13.53) in conjunction with Eq. (13.52) becomes
I Y
1_Tz_, (1354)
I, Vi

showing that the primary and secondary currents are related to the turns
ratio in the inverse manner as the voltages. Thus,

| N 1
z_1_ = (13.55)
|1 N2 n

Whenn = 1, we generally call the transformer an isolation transformer.
The reason will become obvious in Section 13.9.1. If n > 1, we have
a step-up transformer, as the voltage is increased from primary to sec-
ondary (V2 > V3). On the other hand, if n < 1, the transformer is a
step-down transformer, since the voltage is decreased from primary to
secondary (Vo < V).

A step-down transformer is one whose secondary voltage
is less than its primary voltage.
A step-up transformer is one whose secondary voltage
is greater than its primary voltage.

Theratingsof transformersare usually specified as V1 / V». A transformer
with rating 2400/120 V should have 2400V onthe primary and 120inthe
secondary (i.e., a step-down transformer). Keep in mind that the voltage
ratingsarein rms.

Power companies often generate at some convenient voltage and
use astep-up transformer to increase the voltage so that the power can be
transmitted at very high voltage and low current over transmission lines,
resulting in significant cost savings. Near residential consumer premises,
step-down transformers are used to bring the voltage down to 120 V.
Section 13.9.3 will elaborate on this.

It isimportant that we know how to get the proper polarity of the
voltagesand the direction of the currentsfor thetransformer in Fig. 13.31.
If the polarity of V1 or V; or thedirection of | or |, ischanged, n in Egs.
(13.51) to (13.55) may need to be replaced by —n. Thetwo simplerules
tofollow are:

1. If V; and V, are both positive or both negative at the dotted
terminals, use +n in Eq. (13.52). Otherwise, use —n.

2. If I and |, both enter into or both |eave the dotted terminals,
use —n in EQ. (13.55). Otherwise, use +n.

The rules are demonstrated with the four circuitsin Fig. 13.32.
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o 0
[ ] L ]
L *
Vi E Ve
o o
Vi N I N
@

I NN I
1 N, 2
o o
2 %

Vi 2 E Vs
o o
Vi Nl N
Vi N I N
(b)

L NeNs 2
— 172 -
o o

[ )
+ *
Vi S E Ve
[ ]
o o
Voo N 12 _ Ny
Vi Ny It N
(©
Iy Nq:N I>
— 172
o o
[ ]
£ +
Vi 2| EV,
[ ]
o o
Vil N N
Vi N I N,

(d)

Figure 1332 Typical
circuits illustrating proper
voltage polarities and
current directions in an
ided transformer.
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Notice that an ideal transformer reflects an im-
pedance as the square of the turns ratio.

PART 2 AC Circuits

Using Egs. (13.52) and (13.55), we can always express V; interms
of Vo and | intermsof |5, or vice versa:

V
Vi=-2 o Vy=nV; (1356)
n
I
I, =nl, or lo = — (13.57)

n
The complex power in the primary winding is

* V2 * *
S]_=V1|1= 7(I’l|2) =V2|2:SZ (23.58)

showing that thecomplex power supplied totheprimary isdeliveredtothe
secondary without loss. The transformer absorbs no power. Of course,
we should expect this, since the ideal transformer islossless. The input
impedance as seen by the sourcein Fig. 13.31 isfound from Egs. (13.56)

and (13.57) as
\% 1V
Zn=—=--2 (13.59)
|1 n2 |2
Itisevident from Fig. 13.31 that V, /I, = Z;, so that

Z;

Zin=— (1360)
n

The input impedance is @ so called the reflected impedance, since it ap-
pearsasif theload impedanceisreflected to the primary side. Thisability
of thetransformer to transform agiven impedanceinto another impedance
provides us a means of impedance matching to ensure maximum power
transfer. The idea of impedance matching is very useful in practice and
will be discussed more in Section 13.9.2.

Inanalyzing acircuit containing an ideal transformer, it iscommon
practiceto eliminatethetransformer by refl ecting impedancesand sources
from one side of the transformer to the other. In the circuit of Fig. 13.33,
suppose we want to reflect the secondary side of the circuit to the primary
side. We find the Thevenin equivalent of the circuit to the right of the
terminalsa-b. Weobtain V1, asthe open-circuit voltage at terminalsa-b,
asshown in Fig. 13.34(a). Sinceterminalsa-b areopen, |y = 0 =1, s0
that V, = V,,. Hence, from Eq. (13.56),

Vih=Vi=—= (13.61)

Vo

Figure [3.33  Ideal transformer circuit whose equivalent circuits are
to be found.
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@

|
5 - e a A
+ 2 % L
Vh Vi | V2 Vo 1LO°V Vi | Va Z;
b

()

Figure 13.34 (a) Obtaining V1, for the circuit in Fig. 13.33, (b) obtaining Z1, for the circuit in Fig. 13.33.

To get Z1,, we remove the voltage source in the secondary winding and
insert aunit sourceat terminalsa-b, asinFig. 13.34(b). From Egs. (13.56)
and (13.57), I, =nl, and V= Vz/n, S0 that

V \Y VA

Zm=— = Va/n _ 22V, =27, (13.62)

| 1 nl 2 n2
which iswhat we should have expected from Eq. (13.60). Once we have
V1, and Z,, we add the Thevenin equivalent to the part of the circuit in
Fig. 13.33 to the left of terminals a-b. Figure 13.35 shows the result.

The general rule for eliminating the transformer and reflecting the secondary circuit
to the primary side is: divide the secondary impedance by n?, divide the secondary
voltage by n, and multiply the secondary current by n.

We can also reflect the primary side of the circuit in Fig. 13.33 to
the secondary side. Figure 13.36 shows the equivalent circuit.

The rule for eliminating the transformer and reflecting the primary circuit to the
secondary side is: multiply the primary impedance by n, multiply the primary
voltage by n, and divide the primary current by n.

Accordingto Eq. (13.58), the power remainsthe same, whether cal cul ated
on the primary or the secondary side. But realize that this reflection
approach only applies if there are no external connections between the
primary and secondary windings. When we have external connections
between the primary and secondary windings, we simply use regular
mesh and nodal analysis. Examples of circuits where there are external
connections between the primary and secondary windings are in Figs.
13.39 and 13.40. Also note that if the locations of the dotsin Fig. 13.33
are changed, we might have to replace n by —n in order to obey the dot
rule, illustrated in Fig. 13.32.

Figure 13.35  Equivalent circuit for Fig. 13.33
obtained by reflecting the secondary circuit to
the primary side.

2
n<Z
1 c

Z,
F—o—
nVgy Vs, Ve

rd
d

Figure 13.36  Equivalent circuit for Fig. 13.33
obtained by reflecting the primary circuit to the
secondary side.

MI3.7

An ideal transformer is rated at 2400/120 V, 9.6 kVA, and has 50 turns
on the secondary side. Calculate: (a) the turnsratio, (b) the number of



550 PART 2 AC Circuits

turns on the primary side, and (c) the current ratings for the primary and
secondary windings.

Solution:
(a) Thisisastep-down transformer, since V3 = 2400V > V, = 120 V.
Vo 120
=—=——=0.05
"=V, T 2400
(b)
No 50
== 0.05="—
n N - N
or
50
N1 = 008 = 1000 turns
(C) S =WVl =V, =96 kVA. Hence,
L 9600= 9600=4A
%1 2400
9600 9600 I 4
L = =——=80A L =—=——=80A
2= 7y, T 120 o =T 0,

PRACTICE PROBLEMMEEN

The primary current to an ideal transformer rated at 3300/110 V is3 A.
Calculate: (a) theturnsratio, (b) thekVA rating, (c) thesecondary current.

Answer: (@) 1/30, (b) 9.9 kVA, (c) 90 A.

mu.s

For theideal transformer circuit of Fig. 13.37, find: (a) the source current
I1, (b) the output voltage V,,, and (c) the complex power supplied by the
source.

i 4q ~i6Q l2

120/0° V rms Vi S[[Ev, 20Q 2y,

Figure [3.37  For Example 13.8.

Solution:
(a) The 20-2 impedance can be reflected to the primary side and we get
20 20

=—=5Q

Zrp = —
R 2 4

Thus,
Zn=4-j6+Zp=9— j6=1082/—336% Q
120,/0° 120,/0°

- —11.09,/33.69° A
Zin 10.82 / — 33.69°

1
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(b) Since both 1, and |, leave the dotted terminals,

1
I, = ——11=-5545/33.69° A
n

V, = 20l, = 110.9 /213.69° V
(c) The complex power suppliedis
S=V,l; = (120&)(11.09{ — 33.69°) = 1330.8/ — 33.69° VA

PRACTICE PROBLEMBEER

551

In the ideal transformer circuit of Fig. 13.38, find V,, and the complex
power supplied by the source.

20 i 12160
M— 14 AN
+ + +
100/0° V rms v, 2| E v, Vo == -j240Q

Figure 13.38  For Practice Prob. 13.:8.

Answer: 178.9,/116.56° V, 2981.5/ — 26.56° VA.

MI3.9

Calculate the power supplied to the 10-2 resistor in theideal transformer
circuit of Fig. 13.39.

200
AN, 2:1
+ +
Vl_ | _Vz
120£Vrms<"_> @ . @ §1OQ
300Q

Figure [3.39  For Example 13.9.

Solution:

Reflection to the secondary or primary side cannot be done with this
circuit: there is direct connection between the primary and secondary
sides due to the 30-2 resistor. We apply mesh analysis. For mesh 1,

~120+ (20+30)I; — 30l, +V; =0
or

501; — 301, +V; =120 (139.1)
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For mesh 2,
-V, + (104 30)I, — 301, =0
or
—301;, +40l1, —V,=0 (13.9.2)
At the transformer terminals,
1
Vo =—=V; (13.9.3)
2
lo =-2I1 (13.9.4)

(Note that n = 1/2.) We now have four eguations and four unknowns,
but our goal isto get 1,. So we substitute for V1 and |1 in terms of V,
and I, in Egs. (13.9.1) and (13.9.2). Equation (13.9.1) becomes

—-551, — 2V, =120 (13.9.5)
and Eq. (13.9.2) becomes
151, +40l, —V, =0 o V, = 55I, (13.9.6)
Substituting Eq. (13.9.6) in Eq. (13.9.5),

120
—165l, = 120 = I, = T —0.7272 A

The power absorbed by the 10-Q2 resistor is
P = (=0.7272)%(10) = 5.3W

PRACTICE PROBLEMMNKIE

FindV, inthecircuit in Fig. 13.40.

8Q
A
AV
4Q 2Q
12 AN
[ ]
60/0° V I %SQ
[ ]

Figure 1340 For Practice Prob. 13.9.

Answer: 24V.

13.6 IDEAL AUTOTRANSFORMERS

Unlike the conventional two-winding transformer we have considered so
far, an autotransformer hasasinglecontinuouswindingwith aconnection
point called a tap between the primary and secondary sides. Thetap is
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often adjustable so as to provide the desired turns ratio for stepping up
or stepping down the voltage. Thisway, avariable voltageis provided to
the load connected to the autotransformer.

An autotransformer is a transformer in which both the primary
and the secondary are in a single winding.

Figure 13.41 shows a typical autotransformer. As shown in Fig.
13.42, the autotransformer can operate in the step-down or step-up mode.
The autotransformer is atype of power transformer. Its major advantage
over the two-winding transformer isits ability to transfer larger apparent
power. Example 13.10 will demonstrate this. Another advantage is that
an autotransformer is smaller and lighter than an equivalent two-winding
transformer. However, since both the primary and secondary windings
are one winding, electrical isolation (no direct electrical connection) is
lost. (We will see how the property of electrical isolation in the conven-
tional transformer is practically employed in Section 13.9.1.) The lack
of electrical isolation between the primary and secondary windingsis a
major disadvantage of the autotransformer.

Some of the formulas we derived for idea transformers apply to
ideal autotransformersaswell. For the step-down autotransformer circuit
of Fig. 13.42(a), Eq. (13.52) gives

\ N1+ N N
1M+ 2_q.

— = = 13.63
Vo No N, (1369

As an ideal autotransformer, there are no losses, so the complex power
remains the same in the primary and secondary windings:

S =Vili =S =V} (13.64)
Equation (13.64) can aso be expressed with rms values as

Vi1 = Vol
or
V. 1
21 (13.65)
i Db
Thus, the current relationship is
I N
12 (13.66)
P N1+ N>
For the step-up autotransformer circuit of Fig. 13.42(b),
ViV
Ny - N1+ N>
or
Vq N1
— = 13.6
Vo N1+ N> (1367
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Figure 1341 A typical atotransformer.

(Courtesy of Todd Systems, Inc.)

N
@ v =
Vs
@
2
N
| .1
1. N,
~ Bl
v Vv,

|-

Q)

Figure 1342 (a) Step-down autotransformer,
(b) step-up autotransformer.
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The complex power given by Eq. (13.64) also appliesto the step-up auto-
transformer so that Eq. (13.65) again applies. Hence, the current rel ation-
shipis

li N1+ N2 N

LN 1+ N (13.68)

A magjor difference between conventional transformers and auto-

transformers is that the 