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Network Functions
From the book:

The analysis and design of linear circuits

By: Thomas, Rosa and Toussaint

Chapter 11
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DEFINITION OF A NETWORK FUNCTION

• A network function is defined as the ratio of a zero-state response
(forced response) transform (output) to the excitation (input)
transform.

• this definition specifies zero initial conditions and implies only one input.

• To study the role of network functions in determining circuit
responses, we write the s-domain input-output relationship as:

• where T(s) is a network function, X(s) is the input signal transform, and Y(s) is 
a zero-state response or output.
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DEFINITION OF A NETWORK FUNCTION

• In an analysis problem, the circuit and input [X(s) or x(t)] are
specified. We determine T(s) from the circuit, use to
find the response transform Y(s), and use the inverse transformation
to obtain the response waveform y(t).

• In a design problem the circuit is unknown. The input and output are
specified, or their ratio T(s) is given. The objective is to devise a circuit
that realizes the specified input-output relationship.

• A linear circuit analysis problem has a unique solution, but a design
problem may have one, many, or even no solutions.
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DEFINITION OF A NETWORK FUNCTION

• the poles of the response Y(s) come from either the network function 
T(s) or the input signal X(s). 

• When there are no repeated poles, the partial-fraction expansion of 
the right side of this equation takes the form:

• where pj (j=1, 2, . . . ,N) are the poles of T(s) and s = pl (l=1, 2, . . . ,M) 
are the poles of X(s).
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DEFINITION OF A NETWORK FUNCTION

• The inverse transform of this expansion is:

• The poles of T(s) lead to the natural response.

• In a stable circuit, the natural poles are all in the left half of the s
plane, and all of the exponential terms in the natural response
eventually decay to zero.

• The poles of X(s) lead to the forced response.

• In a stable circuit, those elements in the forced response that do not
decay to zero are called the steady-state response.
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DEFINITION OF A NETWORK FUNCTION

• The complex frequencies in the natural response are determined by
the circuit and do not depend on input.

• Conversely, the complex frequencies in the forced response are
determined by the input and do not depend on the circuit.

• However, the amplitude of its part of the response depends on the
residues in the partial-fraction expansion. These residues are
influenced by all of the poles and zeros, whether forced or natural.

• Thus, the amplitudes of the forced and natural responses depend on
an interaction between the poles and zeros of T(s) and X(s).
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DEFINITION OF A NETWORK FUNCTION

Example 1:

A simple series RC circuit shown in is driven by
a charging exponential source. If R=10 kΩ and
C=0.01 µF, the network function is

Find the zero-state response v2(t) when the
input is v1(t)=10(1-e-5000t)u(t) V. Identify the
natural and forced components of your answer.
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DEFINITION OF A NETWORK FUNCTION

• SOLUTION:

• The transform of the input signal is

• the transform of the response is

• Expanding by partial fractions,

• The two forced poles came from the input charging exponential, while 
the natural pole came from the RC circuit via the network function.
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DEFINITION OF A NETWORK FUNCTION

• Collectively the residues depend on all of the poles
and zeros. The inverse transform yields the zero-state
response as:

• The natural pole is s=-10,000 and is located in the left-
half of the s plane causing the natural response to
decay to zero.

• The forced poles are at zero and at s=-5000. The pole
at s=-5000 will decay to zero leaving a steady-state
response of 10 u(t).
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DEFINITION OF A NETWORK FUNCTION

TEST SIGNALS

Impulse input impulse response

Step input step response

sinusoidal input frequency response

The impulse response is of great

importance because it contains all of the

information needed to calculate the response

due to any other input.

The step response is important because it

describes how a circuit response transitions

from one state to another.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• The two major types of network functions are driving-point 
impedance and transfer functions.

• A driving-point impedance relates the voltage and current at a pair of 
terminals called a port. 

• The driving-point impedance Z(s) of the one-port circuit is defined as

A one-port circuit.

The term driving point means that the 

circuit is driven at one port and the
response is observed at the same port.

driving-point impedance

input impedance 

equivalent impedance
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• When the one port is driven by a current source, the response is
V(s)=Z(s)I(s) and the natural frequencies in the response are the poles
of impedance Z(s).

• When the one port is driven by a voltage source, the response is
I(s)=[Z(s)]-1V(s) and the natural frequencies in the response are the
poles of 1/Z(s); that is, the zeros of Z(s).

• In other words, the driving-point impedance is a network function
whether upside down or right side up.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• The driving-point impedance seen at a pair of terminals determines
the loading effects that result when those terminals are connected to
another circuit.

• When two circuits are connected together, these loading effects can
alter the responses observed when the same two circuits operated in
isolation.

• In an analysis situation it is important to be able to predict the
response changes that occur when one circuit loads another.

• In design situations it is important to know when the circuits can be
designed separately and then interconnected without encountering
loading effects that alter their designed performance.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• A transfer function (sometimes called forward transfer function) relates an input
and response (or output) at different ports in the circuit.

dimensionless

dimensionless

ohms

siemens
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• There are, of course, reverse transfer functions that relate inputs at
port 2 to outputs at port 1.

• It is important to realize that a transfer function is valid only for a
specified input port and output port. For example, the voltage
transfer function TV(s)=V2(s)/V1(s) relates the input voltage applied at
port 1 to the voltage response observed at the output port. The
reverse voltage transfer function for signal transmission from output
to input is not 1/TV(s).

• Unlike driving-point impedance, transfer functions are not network
functions when they are turned upside down.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

DETERMINING NETWORK FUNCTIONS

• Therefore, the voltage transfer function of a voltage divider circuit is

• By series equivalence, the driving-point impedance at the input of
the voltage divider is ZEQ(s)=Z1(s)+Z2(s).
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

DETERMINING NETWORK FUNCTIONS

• By parallel equivalence the driving-point impedance at the input of
the current divider is ZEQ(s)=1/(Y1(s)+Y2(s)).
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

DETERMINING NETWORK FUNCTIONS

• The voltage transfer function

• The driving-point impedance at the input to the inverting circuit is

• But VA(s)=V1(s) and VB(s)=0; hence the input impedance is ZIN(s)=Z1(s), and 
should be a loading consideration.

Inverting amplifier
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

DETERMINING NETWORK FUNCTIONS

• The voltage transfer function

• The ideal OPAMP draws no current at its input terminals, so
theoretically the input impedance of the noninverting circuit is
infinite making it useful to solve loading issues.

Noninverting amplifier
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

Example 2:

a) Find the transfer functions of the following circuits.

b) Find the driving-point impedances seen by the input sources in 
these circuits.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

Example 3:

a) Find the input impedance seen by the voltage source.

b) Find the voltage transfer function TV(s)=V2(s)/V1(s) of the circuit.

c) Locate the poles and zeros of TV(s) for R1=10 kΩ, R2=20 kΩ, C1=0.1 
µF, and C2=0.05 µF.
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

Example 4: (Design Example)

Find the driving-point impedance seen by the voltage source in the
following circuit. Find the voltage transfer function TV(s)=V2(s)/V1(s) of
the circuit. The poles of TV(s) are located at p1=-1000 rad/s and p2=-
5000 rad/s. If R1=R2=20 kΩ, what values of C1 and C2 are required?
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• where TV1,TV2,…,TVk are the voltage
transfer functions of the individual
stages when operated separately.

• It is important to understand when the
chain rule applies since it greatly
simplifies the analysis and design of
cascade circuits.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS
THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• However, in Example 11–5, the overall
transfer function of this circuit was
found to be

• which disagrees with the chain rule
result in

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• The reason for the discrepancy is that when
they are connected in cascade, the second
circuit ‘‘loads’’ the first circuit.

• That is, the voltage-divider rule requires
that the interface current I2(s) be zero.

• The no-load condition I2(s) = 0 applies
when the stages operate separately, but
when connected in cascade, the interface
current is not zero.

• The chain rule does not apply here because
loading caused by the second stage
changes the transfer function of the first
stage.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• the loading problem goes away
when an OP AMP voltage
follower is inserted between the
RC circuit stages.

• With this modification the chain
rule applies because the voltage
follower isolates the two circuits,
thereby solving the loading
problem.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• In the s domain, loading causes the transfer
function of a circuit to change when it drives the
input of another circuit.

• In a cascade connection, loading does not occur
at an interface if:

1. The output (Thevenin) impedance of the
driving stage is zero, or

2. The input impedance of the driven stage is
infinite.

• The voltage follower is an example of a stage
that meets both criteria (1) and (2).

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• In general, an inverting OP AMP stage meets
criterion (1) but not criterion (2), while a
voltage-divider stage meets neither criteria.

• When analyzing or designing a cascade
connection, it is important to recognize
situations in which the chain rule applies.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

EVALUATION EXAMPLE 7:

The two cascade connections 
involving the same two stages 
but with their positions 
reversed. Do either of these 
connections involve loading? If 
not, use the chain rule to find 
the overall transfer function.

THE CASCADE CONNECTION AND THE CHAIN RULE

30



20-Mar-18

16

NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

SOLUTION:
Both circuits involve a cascade
connection of a voltage-divider
stage and an inverting amplifier
stage.
The version in Figure 11–17(a)
does not involve loading
because the output impedance
of the first stage is zero. Hence,
connecting the second-stage
voltage divider does not load the
first stage and the chain rule
applies.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

The transfer function of the inverting amplifier
stage is

The second stage is a voltage divider whose
transfer function is

and the chain rule yields the overall transfer
function as

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

The cascade connection in Figure 11–17(b)
interchanges the positions of the two stages.
The loading occurs in this case because the
first stage is a voltage divider with a nonzero
output (Thevenin) impedance of

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

and the inverting amplifier in the second stage
has a finite input impedance of

This results in a voltage transfer function of

THE CASCADE CONNECTION AND THE CHAIN RULE

which is not equal to TV1(s) X TV2(s). The chain rule does not apply to this 

connection since the second stage loads the first stage. 34
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

• if R1=R2=R3=10 kΩ, C1=10 µF and C2=1 µF. the
transfer function for the circuit in Figure 11–
17(a) is

• For the circuit in Figure 11–17(b), the transfer
function is

• The locations of the poles are quite different for
the two circuits. Avoiding unintentional loading
is a sign of experienced circuit designers.

THE CASCADE CONNECTION AND THE CHAIN RULE
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NETWORK FUNCTIONS OF ONE- AND TWO-PORT 
CIRCUITS

Evaluation Exercise 11–8

Figure 11–18 shows two cascade
connections involving the same two
stages but with their positions reversed.
Does either of these connections involve
loading? Find their voltage transfer
functions and, if loading is present,
determine the condition necessary to
minimize the effect.

THE CASCADE CONNECTION AND THE CHAIN RULE
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 11–3 NETWORK FUNCTIONS AND IMPULSE 
RESPONSE 

 11–4 NETWORK FUNCTIONS AND STEP 
RESPONSE

 11–5 NETWORK FUNCTIONS AND SINUSOIDAL 
STEADY-STATE RESPONSE

 11–6 IMPULSE RESPONSE AND CONVOLUTION
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