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Appendix

E Bode Diagrams

As we have seen, the frequency response plot is a very important tool for
analyzing a circuit’s behavior. Up to this point, however, we have shown
qualitative sketches of the frequency response without discussing how to
create such diagrams. The most efficient method for generating and plot-
ting the amplitude and phase data is to use a digital computer; we can rely
on it to give us accurate numerical plots of |H (jw)| and 6(jw) versus w.
However, in some situations, preliminary sketches using Bode diagrams
can help ensure the intelligent use of the computer.

A Bode diagram, or plot, is a graphical technique that gives a feel
for the frequency response of a circuit. These diagrams are named in
recognition of the pioneering work done by H. W. Bode.! They are most
useful for circuits in which the poles and zeros of H(s) are reasonably
well separated.

Like the qualitative frequency response plots seen thus far, a Bode
diagram consists of two separate plots: One shows how the amplitude of
H(jw) varies with frequency, and the other shows how the phase angle
of H(jw) varies with frequency. In Bode diagrams, the plots are made on
semilog graph paper for greater accuracy in representing the wide range
of frequency values. In both the amplitude and phase plots, the frequency
is plotted on the horizontal log scale, and the amplitude and phase angle
are plotted on the linear vertical scale.

E.1 Real, First-Order Poles and Zeros

To simplify the development of Bode diagrams, we begin by considering
only cases where all the poles and zeros of H(s) are real and first order.
Later we will present cases with complex and repeated poles and zeros.
For our purposes, having a specific expression for H(s) is helpful. Hence
we base the discussion on

_ K(S + Zl)
H(s) = TR (E.1)
from which
. K(jo + z1)
H = E.2
U= ot + po =2

The first step in making Bode diagrams is to put the expression for
H(jw) in a standard form, which we derive simply by dividing out the
poles and zeros:

Kz (1 + jo/z1)
pi(jo)(1 + jo/py)’

H(jo) = (E3)

1See H. W. Bode, Network Analysis and Feedback Design (New York: Van Nostrand, 1945).
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TABLE E.1 Actual Amplitudes and Their
Decibel Values

Adg
0

10
15
20

A

1.00
1.41
2.00
3.16
5.62
10.00

Agp

30
40
60
80
100
120

A

31.62
100.00
103
104
10°
10°

Next we let K, represent the constant quantity Kz;/p;, and at the
same time we express H (jw) in polar form:

KL+ jo/zi| /i

H(jo) = . :
(o) = (oI 79011 + o/ pil /81
K1 + jo/z]
= LT - 90° — By). E.4
o+ jo/ | A2 = (E4
From Eq. E 4,
. o Koll + jw/le
|H (jw)| = PSR (E.5)
0(w) = ¢y — 90" — By (E.6)

By definition, the phase angles ¢, and B, are

tan w/z;; (E.7)

U1

B: = tan w/p. (E.8)

The Bode diagrams consist of plotting Eq. E.5 (amplitude) and Eq. E.6
(phase) as functions of w.

E.2 Straight-Line Amplitude Plots

The amplitude plot involves the multiplication and division of factors
associated with the poles and zeros of H (s). We reduce this multiplication
and division to addition and subtraction by expressing the amplitude of
H(jw) in terms of a logarithmic value: the decibel (dB).2 The amplitude
of H(jw) in decibels is

Agp = 20 logo|H (jo)|- (E.9)

To give you a feel for the unit of decibels, Table E.1 provides a translation
between the actual value of several amplitudes and their values in deci-
bels. Expressing Eq. E.5 in terms of decibels gives

K|l + jo/zi
Agg = 201 P EE——
w4 o/ pil
=20 loglo KU + 20 lOglgll + jw/le
- 20 logmw - 20 logm|1 + ](l)/pll (E.10)

2 See Appendix D for more information regarding the decibel.



The key to plotting Eq. E.10 is to plot each term in the equation sepa-
rately and then combine the separate plots graphically. The individual fac-
tors are easy to plot because they can be approximated in all cases by
straight lines.

The plot of 20 log;, K, is a horizontal straight line because K, is not a
function of frequency. The value of this term is positive for K, > 1, zero
for K, = 1, and negative for K, < 1.

Two straight lines approximate the plot of 20 logg|1 + jw/z;|. For small
values of o, the magnitude |1 + jw/z;| is approximately 1, and therelore

20logoll + jo/z1]—0 asw—0. (E.11)

For large values of o, the magnitude |1 + jo/z;| is approximately w/z;,
and therefore

20 logg|1 + jo/zi| — 20 logo(w/z;) as @ —> oo, (E.12)

On a log frequency scale, 20 log;o(w/z;) is a straight line with a slope of
20 dB/decade (a decade is a 10-to-1 change in frequency). This straight
line intersects the 0 dB axis at w = z;. This value of w is called the
corner frequency. Thus, on the basis of Egs. E.11 and E.12, two straight
lines can approximate the amplitude plot of a first-order zero, as
shown in Fig. E.1.

The plot of —20logyw is a straight line having a slope of
—20 dB/decade that intersects the 0 dB axis at @ = 1. Two straight lines
approximate the plot of —20 log;g|1 + jw/p;|. Here the two straight lines

25

20

20 logy (fﬁ)

2

15

10

L1120 dB/decade

21 1011

Decade

1 2 3 4 5678910 20 30 40 50
w (rad/s)

Figure E.1 A A straight-line approximation of the amplitude plot of a
first-order zero.

E.2

Straight-Line Amplitude Plots
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intersect on the 0 dB axis at w = p;. For large values of w, the straight line
20 logjy(w/py) has a slope of —20 dB/decade. Figure E.2 shows the
straight-line approximation of the amplitude plot of a first-order pole.

5
0 P1 2201 o 10p,
N 0 logyg 7]
= ~NA
Ads N
-10
—20 dB/decade —\ﬁ'\
-15 -
=20
1 2 3 4 5678910 20 30 40 50
o (rad/s)

Figure E.2 A A straight-line approximation of the amplitude plot of a first-order pole.

Figure E.3 shows a plot of Eq. E.10 for K, = V10, z; = 0.1 rad/s,
and p; = 5 rad/s. Each term in Eq. E.10 is labeled on Fig. E.3, so you can
verify that the individual terms sum to create the resultant plot, labeled
20 logylH (jw)|-

Example E.1 illustrates the construction of a straight-line amplitude
plot for a transfer function characterized by first-order poles and zeros.

0 T T 1T
\'/ 20 lOgl() |11(](1))| 'A_ZO 10g10|1 +]z_l|
40 N <
\ N f
\\ \\ /'
N \ /|
30 ~T 7
3 =201 1 1
\\‘ v/ 0gqow ,,/ \</ 20 logm |[[(]w)|
20 N B N
Ads SN 200 210 K, \\
Y I A Y A I dise -3 (1 epal R Nl I SN 1 P R N R
10 P < ] \\
',, \\\ |
OF==F1-ATthE--r1-1"7 "V\"“ (
™ 201 o
\\ S 0g10|1 +]p1|
—-10 1 N7
N N
\\ ~
-20 : :
0.050.1 0.5 1.0 5 10 50 100 500
o (rad/s)

Figure E.3 A A straight-line approximation of the amplitude plot for Eq. E.10.



Example E.1

For the circuit in Fig. E.4:

a) Compute the transfer function, H (s).

b) Construct a straight-line approximation of the
Bode amplitude plot.

¢) Calculate 20 logo|H (jw)| at @ = 50 rad/s and
o = 1000 rad/s.

d) Plot the values computed in (c) on the straight-
line graph; and

e) Suppose that v;(t) = 5cos (500t + 15°) V, and
then use the Bode plot you constructed to pre-
dict the amplitude of v,(¢) in the steady state.

Solution

a) Transforming the circuit in Fig. E.4 into the
s-domain and then using s-domain voltage divi-
sion gives

(R/L)s
s>+ (R/L)s + %c

H(s) =

Substituting the numerical values from the cir-
cuit, we get

110s B 110s
2+ 110s + 1000 (s + 10)(s + 100)°

H(s) =

b) We begin by writing H(jw) in standard form:

011 jo

HG) = o + j@100)]

The expression for the amplitude of H(jw) in
decibels is

Agp = 20 log;o|H (jw)|

= 2010g1(0.11 + 20 log;jw]

- 20 lOgl()

» ®
1+ j—|-201 1+ j—
J 10‘ 0810 J 100‘
Figure E.5 shows the straight-line plot.

Each term contributing to the overall amplitude
is identified.

E.2  Straight-Line Amplitude Plots 743

100 mH 10| r/nF

Y'Y\

N ‘
" 1030,
Figure E.4 A The circuit for Example E.1.
¢) We have
0.11(j50
H(j50) = 11050)
(1 + jS)(1 + j0.5)
=0.9648/—-15.25",
= —0.311dB;
0.11(;j1000)
H(j1000) =
(1000) = 47100y (1 + 710)
=0.1094/—-83.72";
2010g(0.1094 = —19.22 dB.
40 5
30 7
20 <Z
10 LT 20 logyg | jeol
0 ez ~ <|2l\(\”0gm |T!l(]w)!‘
A S Ml S -12.5
As —10 _1{20log;, 0 11\ R 0st .§\( (—)1922)'
_20 —— -v-n-o-n————-l}l-ul:———-— \—l—— =t |
[T IIIILIl ~o SN
-30 - 0 IS
lons ! PTHIT TR
—40 ! S
-50 =20 logy |1 +flﬂ|""_'-
~60 Liiim 1l b
1 5 10 50 100 500 1000
w (rad/s)

Figure E.5 A The straight-line amplitude plot for the transfer function of
the circuit in Fig. E.4.
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d) See Fig. E.5.

e) As we can see from the Bode plot in Fig. E.5, the
value of Agg at @ = 500 rad/s is approximately
—12.5 dB. Therefore,

|A| = 10012520 = 0.24
and

Vmo

|AIV,; = (0.24)(5) = 1.19 V.

We can compute the actual value of |H(jw)|
by substituting @ = 500 into the equation for

|H (jo)|:
05000 e
HUS00) = sy 4 75— V241054

Thus, the actual output voltage magnitude for
the specified signal source at a frequency of
500 rad/s is

Vo = AV, = (0.22)(5) = 1.1 V.

E.3 More Accurate Amplitude Plots

We can make the straight-line plots for first-order poles and zeros more
accurate by correcting the amplitude values at the corner frequency, one
half the corner frequency, and twice the corner frequency. At the corner
frequency, the actual value in decibels is

AdBC +20 lOglOll + ]1|

= +201log;yV2

~ +3 dB. (E.13)

The actual value at one half the corner frequency is

Agp,, = £201ogy

145

+20 loglO V 5/4
+1dB. (E.14)

%

At twice the corner frequency, the actual value in decibels is

14,“32c = +20 logw|1 + ]2|

+20 logw\/§

Q

+7 dB. (E.15)

In Egs. E.13-E.15, the plus sign applies to a first-order zero, and the minus
sign applies to a first-order pole. The straight-line approximation of the
amplitude plot gives 0 dB at the corner and one half the corner frequencies,
and +6 dB at twice the corner frequency. Hence the corrections are +£3 dB
at the corner frequency and £1 dB at both one half the corner frequency
and twice the corner frequency. Figure E.6 summarizes these corrections.

A 2-to-1 change in frequency is called an octave. A slope of
20 dB/decade is equivalent to 6.02 dB/octave, which for graphical pur-
poses is equivalent to 6 dB/octave. Thus the corrections enumerated cor-
respond to one octave below and onc octave above the corner frequency.



25
20 A
A
15
, /
10 A5
3dB / i
> 1dB~| LH ) 1 dIB
A 0 —I’l".—’ |
B TN -
_s —-1dB e _lldB
~3dB \‘.%
-10 AN
N
-15 B N
\\
=20
-25
c c 2c
2

Figure E.6 A Corrected amplitude plots for a first-order zero
and pole.

If the poles and zeros of H(s) are well separated, inserting these
corrections into the overall amplitude plot and achieving a reasonably
accurate curve is relatively casy. However, if the poles and zeros arc
close together, the overlapping corrections are difficult to evaluate, and
you’re better off using the straight-line plot as a first estimate of the
amplitude characteristic. Then use a computer to refine the calculations
in the frequency range of interest.

E.4 Straight-Line Phase Angle Plots

We can also make phase angle plots by using straight-line approximations.
The phase angle associated with the constant K, is zero, and the phase
angle associated with a first-order zero or pole at the origin is a constant
+ 90°. For a first-order zero or pole not at the origin, the straight-line
approximations are as follows:

« For frequencies less than one tenth the corner frequency, the phase
angle is assumed to be zero.

- For frequencies greater than 10 times the corner frequency, the phase
angle is assumed to be +90°.

« Between one tenth the corner frequency and 10 times the corner fre-
quency, the phase angle plot is a straight line that goes through 0° at
one-tenth the corner frequency, + 45° at the corner frequency, and
+90° at 10 times the corner frequency.

In all these cases, the plus sign applies to the first-order zero and the minus
sign to the first-order pole. Figure E.7 depicts the straight-line approxima-
tion for a first-order zero and pole. The dashed curves show the exact vari-
ation of the phase angle as the frequency varies. Note how closely the

E.4

Straight-Line Phase Angle Plots
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90° —=
///fb - tan™! (w/z;)
A 1 < |
60° [ Actual |
7 I~ Straight-line approximation
. L WL L
30 P dd
i [RAIL
0 (w) 0 ":_~\\\ —B; = —tan" ! (wip,)
MU L Actual [T [T
—30° \«\: Straight-line approximation
AN
N
—60° ?\\
\\
-90°

Z|/10 pl/l() 21 P1 101] 10[71
w (rad/s)

Figure E.7 A Phase angle plots for a first-order zero and pole.

straight-line plot approximates the actual variation in phase angle. The
maximum deviation between the straight-line plot and the actual plot is
approximately 6°.

Figure E.8 depicts the straight-line approximation of the phase angle of
the transfer function given by Eq. B.1. Equation B.6 gives the equation for
the phase angle; the plot corresponds to z; = 0.1 rad/s, and p; = 5 rad/s.

An illustration of a phase angle plot using a straight-line approxima-
tion is given in Example E.2.

90° 44 L|HH =+ 4 HHH

60°

30°

0@ 0 F—-HHHE=-HHAEF-FF

4
=
=
|
|
N
o
=
L
~~
g
S
~

N
-30°
e NN o)

—60° 0(w) - ;

AV
/

_900 o [ ] [ o o] e [ [ | | ] | e e |

0.01 0.1 0.51.0 5 10 50
o (rad/s)

Figure E.8 A A straight-line approximation of the phase angle plot for Eq. B.1.
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147

a) Make a straight-line phase angle plot for the and
transfer function in Example E.1. 6(j1000) = —83.72°.
b) Compute the phase angle 6(w) at @ = 50, 500, ]
and 1000 rad/s. ¢) See Fig. E.9.
c) Plot the values of (b) on the diagram of (a). d) We have
d) Using the results from Example E.1(e) and (b) .
of this example, compute the steady-state out- Vino = [H(jS00)[V,p;
put voltage if the source voltage is given by _
v;(t) = 10 cos (500 — 25°) V. = (0.22)(10)
=22V,
. and
Solution
0, = 0(w) + 0;
a) From Example E.1, = —7754° — 25°
Jw) = . X
[+ j(w/10)][1 + j(w/100)] Thus,
0.11]jo| V,(t) = 2.2 cos(500t — 102.54°) V.
L+ 10} + j(wy100)] AB—BL=Fa)
Therefore,
0(w) = ¢ = B1 — B, 90° TTTTT
N ¥ =90°
where ; = 90°, B; = tan"'(0/10), and B, = 60° o P
tan~'(w/100). Figure E.9 depicts the straight-line K 6(w) =i = B1 — B>
approximation of (). 30°
b) We have 0° < —15.25
) ) ) G(w) \\ \.> \I‘ ( )
H(j50) = 0.96/—15.25", 30 \/: N
_ — -1 \ N
H(j500) = 0.22/-77.54", —60° ?za i i(ai)/il(i)ﬂ)ii\\\ 72 ST (—83.72) ]
—p1 -~ —tan (10) 7T VRRU
H(j1000) = 0.11/=83.72". -90° i 5
—120°
Thus, 1 510 50100 5001000
0(j50) = —15.25°, o (rad/s)
6(j500) = —77.54°, Figure E.9 A A straight-line approximation of 6(w) for Example E.2.

E.5 Bode Diagrams: Complex Poles
and Zeros

Complex poles and zeros in the expression for H(s) require special atten-
tion when you make amplitude and phase angle plots. Let’s focus on the
contribution that a pair of complex poles makes to the amplitude and
phase angle plots. Once you understand the rules for handling complex
poles, their application to a pair of complex zeros becomes apparent.
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The complex poles and zeros of H(s) always appear in conjugate
pairs. The first step in making either an amplitude or a phase angle plot of
a transfer function that contains complex poles is to combine the conju-
gate pair into a single quadratic term. Thus, for

K

H(s) = - —, (E.16)
O GTa= BT atip)
we lirst rewrite the product (s + a — jB)(s + a + jB) as
(s + @) + B2 = s>+ 2as + o* + B2 (E.17)

When making Bode diagrams, we write the quadratic term in a more con-
venient form:

s+ 2as + & + B2 =52+ 2w,s + o (E.18)
A direct comparison of the two forms shows that
w2 =ad>+ p? (E.19)
and
{w, = a. (E.20)

The term w,, is the corner frequency of the quadratic factor, and ¢ is the
damping coefficient of the quadratic term. The critical value of ¢ is 1. If
¢ < 1, the roots of the quadratic factor are complex, and we use Eq. E.18
to represent the complex poles. If { = 1, we factor the quadratic factor
into (s + py)(s + p,) and then plot amplitude and phase in accordance
with the discussion previously. Assuming that { < 1, we rewrite Eq. E.16 as

K
2+ 2w,s + 0

H(s) =

We then write Eq. E.21 in standard form by dividing through by the poles
and zeros. For the quadratic term, we divide through by w,,, so

(E.21)

K 1
T T o + 205 ) =2
from which
H(jo) = > ZK” . , (E.23)
1 = (07/w;) + j(2w/w,)
where
K, = g

Before discussing the amplitude and phase angle diagrams associated
with Eq. E.23, for convenience we replace the ratio w/w, by a new vari-
able, u. Then

H(jo) = —3 o (E-24)
w) = . .
/ 1—u?+ j2tu
Now we write H(jw) in polar form:
K
H(jw) = (E.25)

|1 — ) + j2{u|[_§l’



from which

Agg = 20logo|H (jw)|

= 201log;oK, — 20 logo|(1 — u?) + j2¢ul, (E.26)
and
2
B(w) = —B; = — tan_l%. (E.27)
—u

E.6 Amplitude Plots

The quadratic factor contributes to the amplitude of H (jw) by means of the
term —20 logyg|l — u? + j2¢ul. Because u = w/w,,u—0 as o —0, and
1 — 00 as w—> 0. To see how the term behaves as w ranges from 0 to oo,
we note that

—201logl(1 — u?) + j2ul = —201og;y V(1 — ud)? + 4742

= —10logo[u* + 2u*(28% — 1) + 1],  (E.28)

asu—0,
—10 logolu* + 26?22 — 1) + 1] —0, (E.29)
and as u —> 00,
—10logo[u* + 2u?(2¢% — 1) + 1] — — 40 logu. (E.30)

From Eqgs. E.29 and E.30, we conclude that the approximate amplitude plot
consists of two straight lines. For w < w,, the straight line lies along the
0 dB axis, and for @ > w,, the straight line has a slope of —40 dB/decade.
These two straight lines join on the 0 dB axis at u = 1 or w = w,.
Figure E.10 shows the straight-line approximation for a quadratic factor
with ¢ < 1.

20

10

0 - :

0 AN
Agp \

-20 <
—40 dB/decadel N
_30 L4
N
N

—40 \\
=50

w, 10w,

o (rad/s)

Figure E.10 A The amplitude plot for a pair of complex poles.

E.6

Amplitude Plots

749



750

Bode Diagrams

E.7 Correcting Straight-Line
Amplitude Plots

Correcting the straight-line amplitude plot for a pair of complex poles
is not as easy as correcting a first-order real pole, because the correc-
tions depend on the damping coefficient {. Figure E.11 shows the
cffect of ¢ on the amplitude plot. Note that as { becomes very small, a
large peak in the amplitude occurs in the neighborhood of the corner
frequency w,(u = 1). When ¢ = 1/V?2, the corrected amplitude plot
lies entirely below the straight-line approximation. For sketching pur-
poses, the straight-line amplitude plot can be corrected by locating
four points on the actual curve. These four points correspond to
(1) one half the corner [requency, (2) the [requency at which the ampli-
tude reaches its peak value, (3) the corner frequency, and (4) the fre-
quency at which the amplitude is zero. Figure E.12 shows these
four points.
At one half the corner frequency (point 1), the actual amplitude is

AdB(wn/z) = —10 lOgl()(gz + 05625) (E.31)

The amplitude peaks (point 2) at a frequency of
w,=w,V1 - 202, (E.32)

and it has a peak amplitude of
Agp(wp) = =101log [42*(1 = &), (E.33)
At the corner [requency (point 3), the actual amplitude is
Agp(w,) = =20 logo2{. (E.34)

The corrected amplitude plot crosses the 0 dB axis (point 4) at
0, = 0,V2(1 = 28%) = V2o, (E.35)

The derivations of Egs. E.31, E.34, and E.35 follow from Eq. E.28.
Evaluating Eq. E.28 at u = 0.5 and u = 1.0, respectively, yields Egs. E.31
and E.34 Equation E.35 corresponds to finding the value of u that makes
u* + 2u*(2¢* — 1) + 1 = 1.The derivation of Eq. E.32 requires differen-
tiating Eq. E.28 with respect to « and then finding the value of « where the
derivative is zero. Equation E.33 is the evaluation of Eq. E.28 at the value
of u found in Eq. E.32.

Example E.3 illustrates the amplitude plot for a transfer function with
a pair of complex poles.
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Figure E.11 A The effect of { on the amplitude plot.

w,/2 w, @,

o (rad/s)

Figure E.12 A Four points on the corrected amplitude plot for a pair of
complex poles.

E.7

Correcting Straight-Line Amplitude Plots
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Example E.3

Compute the transfer function for the circuit shown
in Fig. E.13.

a) What is the value of the corner frequency in radi-
ans per second?

b) What is the valuc of K,?

¢) What is the value of the damping coefficient?

d) Make a straight-line amplitude plot ranging from
10 to 500 rad/s.

e) Calculate and sketch the actual amplitude in
decibels at w,/2, @), w,, and ,.

f) From the straight-line amplitude plot, describe
the type of filter represented by the circuit in
Fig. E.13 and estimate its cutoff frequency, w,.

50 mH 10
Y'Y Y\ 'VV\'
+
v; 8 mF —~ v,

Figure E.13 A The circuit for Example E.3.

Solution

Transform the circuit in Fig. E.13 to the s-domain
and then use s-domain voltage division to get

H(s) = ——oc——.
) 2+ (B)s+ &

Substituting the component values,

2500
H(s) = 57— ——_—.
s+ 20s + 2500

a) From the expression for H(s), w2 = 2500; there-
fore, w,, = 50 rad/s.

b) By definition, K,, is 2500/w2, or 1.

¢) The coefficient of s equals 2{w,, ; therefore

r=2% _ 00,

B 2w,

d) See Fig. E.14.

¢) The actual amplitudes are

Agp(@,/2) = —10log;(0.6025) = 2.2 dB,

€
I

p = S0V0.92 = 47.96 rad/s,

Ags(®,) = —1010g;4(0.16)(0.96) = 8.14 dB,
AdB(wn) = =20 10g10(04) = 7.96 dB,
w, = V2w, = 67.82rad/s,

Agp(w,) = 0dB.

Figure E.14 shows the corrected plot.

f) It is clear from the amplitude plot in Fig. E.14
that this circuit acts as a low-pass filter. At the
cutoff frequency, the magnitude of the transfer
function, |H (jw.)|, is 3 dB less than the maximum
magnitude. From the corrected plot, the cutoff
frequency appears to be about 55 rad/s, almost
the same as that predicted by the straight-line
Bode diagram.

1 T 1]
10 (8.14) 7177 96)
— O
ol==E (0)

W

—10
Agg —15 <

0 N\
—25

—40
—45

@, Wy o
2
o (rad/s)

Figure E.14 A The amplitude plot for Example E.3.




E.8 Phase Angle Plots

The phase angle plot for a pair of complex poles is a plot of Eq. E.27. The
phase angle is zero at zero frequency and is —90° at the corner frequency.
It approaches —180° as w(u) becomes large. As in the case of the ampli-
tude plot, ¢ is important in determining the exact shape of the phase angle
plot. For small values of ¢, the phase angle changes rapidly in the vicinity
of the corner frequency. Figure E.15 shows the effect of { on the phase
angle plot.

We can also make a straight-line approximation of the phase angle plot
for a pair of complex poles. We do so by drawing a line tangent to the phase
angle curve at the corner frequency and extending this line until it inter-
sects with the 0° and —180° lines. The line tangent to the phase angle curve
at —90° has a slope of —2.3/¢ rad/decade (—132/¢ degrees/decade), and it
intersects the 0° and —180° lines at u; = 4.817¢ and u, = 4.81%, respec-
tively. Figure E.16 depicts the straight-line approximation for { = 0.3 and
shows the actual phase angle plot. Comparing the straight-line approxima-
tion to the actual curve indicates that the approximation is reasonable in
the vicinity of the corner frequency. However, in the neighborhood of u;
and u,, the error is quite large. In Example E.4, we summarize our discus-
sion of Bode diagrams.
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0(w) —90°
440°/decade | ||
(7.67 rad/dec) ||
—-120° \\
—150°
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1.6 = 4.81¢
1.0 2.0
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Figure E.16 A A straight-line approximation of the phase

Figure E.15 A The effect of £ on the phase angle plot. angle for a pair of complex poles.
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Example E.4

a) Compute the transfer function for the circuit
shown in Fig. E.17.

b) Make a straight-line amplitude plot of
20 logo|H (joo)|.

c) Use the straight-line amplitude plot to deter-
mine the type of filter represented by this circuit
and then estimate its cutoff frequency.

d) What is the actual cutoff frequency?
e) Make a straight-line phase angle plot of H (jw).

f) What is the value of 6(w) at the cutoff frequency
from (c)?

g) What is the actual value of 6(w) at the cutoff
frequency?

<+> 103
Vi _ Uy

Figure E.17 A The circuit for Example E.4.

Solution

a) Transform the circuit in Fig. E.17 to the s-domain
and then perform s-domain voltage division to get

R 1

H(s) = — L LC

§T+ 78+

1

R
L LC

Substituting the component values from the cir-
cuit gives

A(s + 25)

H(s) = 872
)= 45+ 100

b) The first step in making Bode diagrams is to put
H(jw) in standard form. Because H(s) contains
a quadratic factor, we first check the value of ¢.
We find that { = 0.2 and »,, = 10, s0

~ /25 + 1
1+ (s/10)% + 0.4(s/10)”

H(s)

from which

[T+ jo/25/4,
[1 = (0/10)* + j0.4(w/10)| /B

H(jo) =

Note that for the quadratic factor, u = w/10.
The amplitude of H (jw) in decibels is

AdB =20 logm|1 + ](1)/25'

SORZOT

and the phase angle is

- 20 10g10|:

0(w) = ¢ — By,

where

¥ = tan"'(w/25),
3 _, 04(w/10)
B, = tan 71 — (w/10)

Figure E.18 shows the amplitude plot.

¢) From the straight-line amplitude plot in Fig. E.18,
this circuit acts as a low-pass filter. At the cutoff
frequency, the amplitude of H(jw) is 3 dB less
than the amplitude in the passband. From the
plot, we predict that the cutoff frequency is
approximately 13 rad/s.

60
40 ~
20 logyq 1+ jor25|~Lu| LIHIT
20 pe
0 g
Ads N s = 20 Tog;ol (o)
-20 <
—40 o
[CAVINS IR >‘\
20 logo [ [1=(75 )"+ /0415 1] N
—60 N
N
-80

1 5 10 50100 500 1000
o (rad/s)

Figure E.18 A The amplitude plot for Example E.4.



d) To solve for the actual cutoff frequency, replace s
with jo in H(s), compute the expression for
|H(jw)l. set [H(jo)| = (1/V2) Huax = 1/V2,

and solve for w,.. First,

) 4(jw) + 100
H(jo) = —— ) .
(jo)” + 4(jw) + 100
Then,
\V4 (4wc)2 + 1002 1
|H(jwc)| = =5

V(100 — 2 + (doy)? V2
Solving for w, gives us

. = 16rad/s.

e) Figure E.19 shows the phase angle plot. Note
that the straight-line segment of 6(w) between
1.0 and 2.5 rad/s does not have the same slope as
the segment between 2.5 and 100 rad/s.

f) From the phase angle plot in Fig. E.19, we esti-
mate the phase angle at the cutoff frequency of
16 rad/s to be —65°.

g) We can compute the exact phase angle at the
cutoff frequency by substituting s = j16 into the
transfer function H(s):

3 4(j16 + 25)
(j16)* + 4(j16) + 100

H(j16)

0 (@)
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Computing the phase angle, we see
0(w.) = 6(j16) = —125.0°.

Note the large error in the predicted angle. In
general, straight-line phase angle plots do not
give satisfactory results in the frequency band
where the phase angle is changing. The straight-
line phase angle plot is useful only in predicting
the general behavior of the phase angle, not in
estimating actual phase angle values at particu-
lar frequencies.
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90° -
U v ()
45° P
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—45° R Sy
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Figure E.19 A The phase angle plot for Example E.4.




