

Faculty of Information Technology

Electrical Engineering Department

ANALOG ELECTRONICS

ENEE 236_Q1

Name: Anas Nimer.

• ID#: 1180180.

• Instructor: Dr. Nasser Ismail.

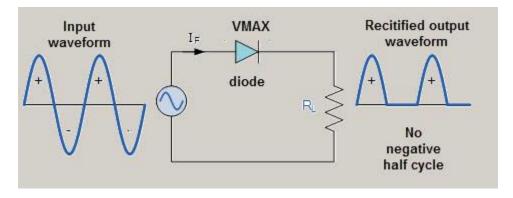
• Section: 2.

❖Table of Contents:

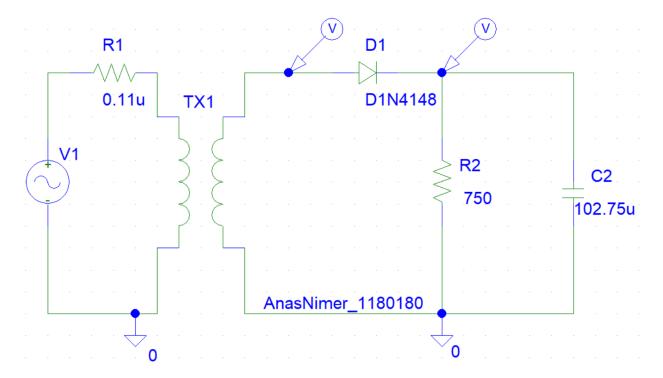
*	Question1	3
*	The Work:	4
1	. Half Wave rectifier:	4
2	2. Bridge Full Wave rectifier:	7
3	Center tapped Full Wave rectifier:	10
*	Reference:	13

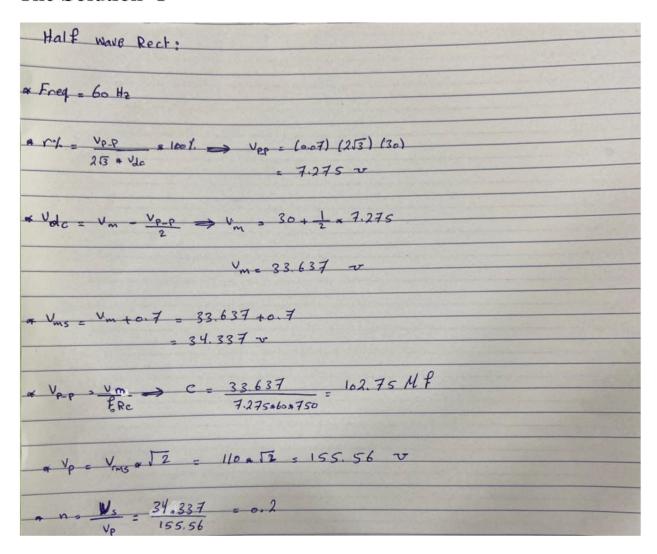
Question1:

Design a rectifier with filter to provide a load (RL=0.75 kohm) with an average voltage equal to 30 Vdc with a ripple factor = ~7%, Input voltage Vin is sinusoidal with 110Vrms, f=60 Hz: assume practical diodes perform the design using all three rectifier types:

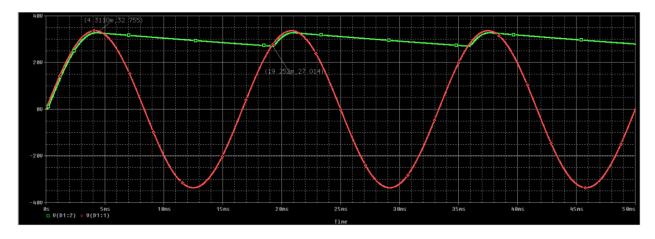

- 1. Half Wave rectifier
- 2. Bridge Full wave rectifier
- 3. Center tapped transformer full wave rectifier

Simulate the designed circuits usin Pspice student edition


❖ The Work:


1. Half Wave rectifier:

In Half wave rectifier during the positive half cycle, the diode is under forwarding bias condition and it conducts current to RL (Load resistance). A voltage is developed across the load, which is the same as the input AC signal of the positive half cycle [1].



Design →

Simulate →

$$\frac{32.755}{5.741} = \frac{32.755}{2.741} = \frac{32.755}{2.73} = \frac{27.014}{2.13}$$

$$\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} = \frac{5.741}{2.13} = \frac{1.657}{2} = \frac{5.741}{2}$$

$$\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} = \frac{32.755}{2} = \frac{5.741}{2}$$

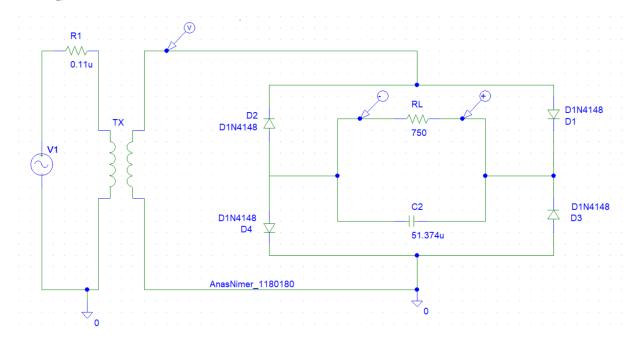
$$= 29.88 = 0$$

Suppose
$$\frac{1}{\sqrt{2}} \leq \frac{N_1}{\sqrt{2}} \leq \frac{1}{\sqrt{2}}$$

$$\frac{V_1}{\sqrt{2}} \leq \frac{N_1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{L_2}}$$

$$\frac{1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_2}{\sqrt{2}}$$

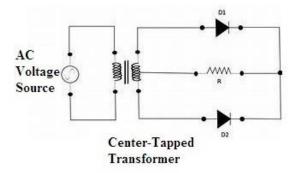

$$\frac{1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_2}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_2}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_2}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L_2}{\sqrt{2}} \leq \frac{L_1}{\sqrt{2}} \leq \frac{L$$

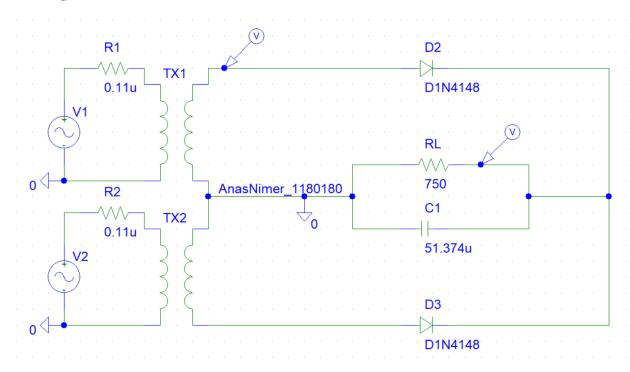
2. Bridge Full Wave rectifier:


A diode bridge is an arrangement of four (or more) diodes in a bridge circuit configuration that provides the same polarity of output for either polarity of input.

When used in its most common application, for conversion of an alternating-current (AC) input into a direct-current (DC) output, it is known as a bridge rectifier. A bridge rectifier provides full-wave rectification from a two-wire AC input [2].

Design →


Simulate →


3. Center tapped Full Wave rectifier:

A rectifier that utilizes both the cycles during rectification is said to be a full wave rectifier. If the rectification is done by the usage of the center tapped transformer in the full wave. It is said to be a center tapped full wave rectifier [3].

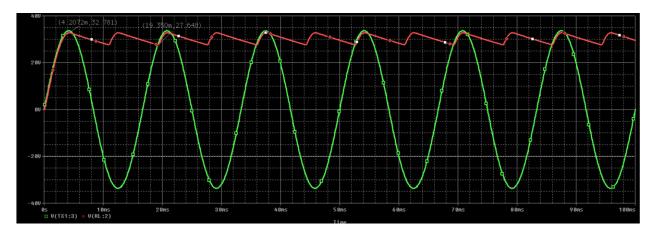
A full wave rectifier based on center tap consists of two diodes in it as well as a center tapped transformer along with that a resistive load is connected across it [3].

Design →

The Solution \rightarrow

Center tapped full wave rectifier:

a freq = 60 H 7


a V_p = 7.275 v

a V_m = 33.637 v

a V_m = 33.637 to 7 = 34.337 v

a V_p = V_m = C = 33.637 so 7.275 so 7.275

Simulate →

$$\frac{1}{32.781} - \frac{1}{27.640}$$

$$= \frac{32.781}{213} - \frac{27.640}{27.5}$$

$$= \frac{\sqrt{2}}{213} = \frac{5.141}{2\sqrt{3}} = \frac{1.484}{2} = \frac{5.141}{2}$$

$$= \frac{30.21}{2}$$

$$= \frac{\sqrt{2}}{2} = \frac{1.484}{30.21} = \frac{4.912}{2} = \frac{4$$

* Reference: [1]: https://www.elprocus.com/half-wave-rectifier-circuit-working-principle-and-characteristics-2/. [2]: https://en.wikipedia.org/wiki/Diode bridge. [3]: https://www.watelectronics.com/center-tapped-full-wave-rectifier-circuit-working-equations/.