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Chapter 6: Stability



Introduction

c(t) = Corced () + Cnarura (7) (6.1)

Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system 18 stable if the natural response approaches zero as time
approaches infinity.

A linear, ime-invariant system is unstable if the natural response grows without bound as
time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither decays
nor grows but remains constant or oscillates as time approaches infinity.




Introduction

Let us summarize our definitions of stability for linear, time-invariant systems. Using
the natural response:

1. A system is stable if the natural response approaches zero as time approaches infinity.

2. A system is unstable if the natural response approaches infinity as time approaches
infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.
2. A system is unstable if any bounded mput yields an unbounded output.
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6.2 Routh-Hurwitz Criterion

R(s)

N(s)

i)
—

ayst + a5 + ars” + ays + ap

FIGURE 6.3 Equivalent closed-loop transfer

function
TABLE 6.1 Initial layout for
Routh table
5 g s dy
.5'3 as a 0
2




6.2 Routh-Hurwitz Criterion

TABLE 6.2 Completed Routh table

£ 0

ay as dy

as a 0
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6.2 Routh-Hurwitz Criterion

Example 6.1

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a).

R(s) + E(s) 1000 )
FIGUR? 64 a. lli'eeﬁdllzpack A 5+ D)5+ 3)(5+5) R - o
system for Example 6.1; — |
b. equivalent closed-loop 53+ 1057 + 315 + 1030
system (a) (b)
TABLE 6.3 Completed Routh table for Example 6.1
5 1 31 0
52 1 1630 103 0
| 1 31 | 1 0 | | 1 0
5! 1 103 - 00 _ 1 0 _
| 1 103 | 1 0 | | 1 0
s =72 0| -72 0] -72 0| _
—5 = 103 72 7 0 6




6.3 Rnuth7Hurw}t; Cr_iterinn: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only in the first
column of a row, or (2) the Routh table sometimes will have an entire row that consists of

zeros. Let us examine the first case.

Zero Only in the First Column

Example 6.2

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

10
T(s) = (6.2)
£ 425+ 35 +657 + 55+ 3
50'_”'"0”» TABLE 6.4 Completed Routh table for TABLE 6.5 Determining signs in first column of a Routh table with zero as
Example 6.2 first element in a row
P 1 3 5 Label First column e=+ £=—
s 2 6 3 s 1 + +
5 o e ! 0 st 2 + "
e 2 s e + -
2 -7
3 be—7
5 - 3 0 .’TI - _ +
o 426 —49 — 667 0 0 g e —49 6 .
126 — 14 12c—14
o 3 0 0 0 3 +




6.3 Rnuth7Hurw}t; Cr_iterinn: Special Cases

Another method that can be used when a zero appears only in the first column of a row
is derived from the fact that a polynomial that has the reciprocal roots of the original
polynomial has its roots distributed the same—right half-plane, left half-plane, or imaginary

Assume the equation

St e b as+ap=0 (6.3)

If 5 is replaced by 1/d, then d will have roots which are the reciprocal of 5. Making this
substitution in Eq. (6.3),

1y AN ! =0 6.4
(E) +ﬂn—l(E) +---+al(ﬂ.—)+ﬂu- (6.4)

Factoring out (1/d)",
1 -1 1 (1-n) 1 -
1+ﬂn_] (d_) + - 4 (d_) +ﬂu(E) ]

@)

1 "
- (E) [l +auid+ -+ +a1d®" + apd"] =0 (6.5




6.3 Rnuth7Hurw}t; Cr_iterinn: Special Cases

Example 6.3

Stability via Reverse Coefficients
PROBLEM: Determine the stability of the closed-loop transfer function

10
P24 382 657+ 55 +3

Tis)= (6.6)

SOLUTION: First write a polynomial that has the reciprocal roots of the denominator of
Eq. (6.6). From our discussion, this polynomial is formed by writing the denominator
of Eq. (6.6) in reverse order. Hence,

Dis) =35 + 55" 465 4+ 35 +25+ 1 (6.7)

TABLE 6.6 Routh table for
Example 6.3

i 3 6 2
5 5 3 1
5 42 1.4

e 1.33 1

st —-1.75




6.3 Rnuth7Hurw}t; Cr_iterinn: Special Cases

Entire Row is Zero

Example 6.4

P(s) =s5"+ 657 +8

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop transfer

function

Next we differentiate the polynomial with respect to s and obtain

dP(s)
ds

=45 4+ 125+ 0

10
T{S} =
S+ T 4657 4+425T 4 Br 4+ 56

TABLE 6.7 Routh table for Example 6.4
5 1 6 8
5 1 4 6 E
5 & 4 1 & 1z 3 & & 0
5 3 8 0

1
5 3 0 0
5 8 0 0

(6.9)

(6.10)

(6.8)

10




6.3 Rnuth7Hurw}t; Cr_iterinn: Special Cases

Example 6.5

Pole Distribution via Routh Table with Row of Zeros
PROBLEM: For the transfer function

20
#4857 4+ 1255 + 2285 + 3954 + 5957 + 4857 + 3854+ 20

T(s) = (6.11)

tell how many poles are in the right half-plane, in the left half-plane, and on the jw-axis.

TABLE 6.8 Routh table for Example 6.5

5* 1 12 39 48 20

5 1 »n 59 38 0

5® ——1 —2%r -2 18 1 26 2 0

5 26 1 & 3 Ay 2 0 0

st 1 3 2 0 0

s* o 4 2 £ & 3 & & 0 0 0

3
) = 3 2 4 0 0 0 ‘ 1‘-'(3)::“+3|52 +2 (6.12)
5 % 0 0 0 0
u 4 0 0 0 0 dP{ }
§
—— =45 46540 (6.13)
ds
TABLE 6.9 Summary of pole locations for Example 6.5
Polynomial :
Even Other Total 11

Location (fourth-order) (fourth-order) (eighth-order)
Right half-plane 0 2 2
Left half-plane 0 2 2

jo 4 0 4




6.4 Routh-Hurwitz Criterion: Additional Examples

Example 6.6

Standard Routh-Hurwitz

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on
the jw-axis for the system of Figure 6.6.

R + E(s) 200 cs)
(52 + 652 + 11s + 6)

FIGURE 6.6 Feedback
control system for Example 6.6

SOLUTION: First, find the closed-loop transfer function as

200

T() = 2165 3 1152 65 + 200

(6.14)

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For clarity,
we leave most zero cells blank. At the s' row there is a negative coefficient; thus, there
are two sign changes. The system is unstable, since it has two right-half-plane poles and
two left-half-plane poles. The system cannot have jor poles since a row of zeros did not
appear in the Routh table.

TABLE 6.10 Routh table for Example 6.6

59 1 11 200
e — 1 —& 1

&2 ey 1 200~ 20

s —19

&0 20

12



6.4 Routh-Hurwitz Criterion: Additional Examples

Example 6.7

Routh-Hurwitz with Zero in First Column

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on
the jar-axis for the system of Figure 6.7.

Ris) + Eis) 1 Cis)
% 2t 432 + 252 + 35+ ) -
FIGURE 6.7 Feedback -
control system for Example 6.7

SOLUTION: The closed-loop transfer function is

1

Ti(s)= 6.1

(O 255 435 4+ 283 4+ 352 4+ 254 1 ©6.15)
S+ 3 425 435+ 2 (6.16)

TABLE 6.11 Routh table for Example 6.7

e 2 2 2

st 3 3 1

5 -£r € %

5 de—4 1 : 13

E
. 126 — 16 — 37

Qe — 12

o 1




6.4 Routh-Hurwitz Criterion: Additional Examples

We also can use the alemative approach, where we produce a polynomial whose
ropts are the reciprocal of the original. Using the denominator of Eq. (6.15), we form a
polynomial by writing the coefficients in reverse onder,

PRE N P, P P | {6.16)

The Routh table for this pelynomial is shown as Tablke 6.12. Unfortunaely, in this case
we also produce a zero only in the first column at the 5" ow. However, the tble is
easier to work with than Table 6.11. Table 6.12 yields the same results 2 Table 6.11:
three poles in the left half-plane and two poles in the right-half-plane. The system
is unstble.

TABLE 612 Alermative Rowth tahle for Example 6.7

L.I.-l

L.I'_l I'.I.l.
Lo T R -
[ T O R O T P

2c—4

"

m M.
i-a

"




6.4 Routh-Hurwitz Criterion: Additional Examples

Example 6.8

Teyk 6.2

FHGURE &8 Feedbadk
ool = y=tem for Exsmple 68

Routh-Hurwitz with Row of Zeros

PROBLEM: Find twe number of poles in the lefit haF-plane, the rght halfplane, amnd on
thee feie-axis for the sysem of Figoe &8 Draw ooncsions ahesaet e sahiling of the
elosed-laosps Systen.

Ry + Eix) 128 [
wr? + Axf = 107 + Tds? + ABxT + Ol + 1 2By + 1925

SOLUTION: The ¢losad- keop ransfer function for the systemn of Figone 6.8 is

128
T = TS T 10 T 2455 T 38 + 060 + 128F ¥ 100 + 128 16.17)

Using ihe denominains., fiorm ithe Rowih table shown as Table .13, A row of zeros appesrs
im thez &7 moowe. Thos, the closed-loop ransfeor fonction denominstor muost heave an even
poelynonial as a facis. Rotum o the 5% row and form the e ven pol ynomial:

Pis) = 55 + 87 + 327 64 (G 1R

TABLE 613 Rowmh table for Example 6.8

= 1 1ip a8 128 128
= -1 2 B =2 S = A= &4
= - ] e B o =T 54
= - ¥ 3 - FF 14 - -3 2 - a
B &4
= -j-":l ..15-"' ] #=T 24
= = ] T — 5
s - 1 2 B
= 3
= B

Drifferentiate this polymomial with respact bo 5 to fiorm the coeffi cients dhat will replace e
o Of Zeros:

%=E+3ﬁ + 645 40 (6.19)

19




6.4 Routh-Hurwitz Criterion: Additional Examples

poles. Since the even polynomial is of sxth order, the two remaining poles muost be o
the jer-axis.

Theme are no sign changes from the beginning of the @ble down to the even
polynomial at the 5° row. Therefore, e rest of the polynomial has no right-half-plane
poles. The results are summarized in Table 6.14. The system has two poles in the
right half-plane, four poles in the left half-plane, and two poles onthe ja-axis, which
are of undt multiplicity. The closed-loop system i unstable bocause of the right-half-
plane poles.

TABLE 6.14 Summary of pale hations for Example 6.8

Puly nomial
Even i Hheer Total
Laveation {5 theardier (secomd-order) #eightheorder)
Right half-plane 0
Left half-plane 2
o 0

16




6.4 Routh-Hurwitz Criterion: Additional Examples

Example 6.9

Stability Design via Routh-Hurwit=

PROBLEM: Find the range of gain, K, for the system of Figure 6_10 that will cause the
system to be stable., unstable. and marginal ly stable. Assume K = 0.

&
s+ THs + 11

s

FIGURE 46.10 Feoedback
control sy stem for Example 6.9

SOLUTIOMN: First find the closed-loop ransfer function as

e

T = F e T K

o200
MNext form the Routh table shown as Table 6_15_

TABLE 615 Routh table for Example 6.9

= 1 T
e 18 Fo
o 1386 — &K

h 18

= .

Since K is assumed positive, we see that all elements in the first column are always
positive except the ! row . This entry can be positive, zerno, or negative, depending upon
the value of K. If K = 1386, all terms in the first column will be positive, and since there
are no sign changes. the system will have three poles in the left haltf-plane and be stable.

If & = 1386, the 5 term in the first column is negative. There are two sign changes.
indicating that the system has two right-half-plane poles and one left-half-plane pole.
which makes the system wrstabde.

If K = 1386, we have an entire row of zeros. which could signify jor poles.

Remming o the &7 row and replacing K with 1386, we form the even polynomial

Pls) = 185~ 4+ 1386 (.21
Differentiating with respect to 5, we have
% — 365+ O (6.22)

Replacing the row of zeros with the coefficients of Eq. (6.22). we obtain the
Routh-Hurwitz table shown as Table .16 for the case of K = 1386,

TAEBLE 4.146 Routh table for Example &9 with K = 1386

= 1 T
Cal 18 1386
ES —Er e
= 1386

11




6.4 Routh-Hurwitz Criterion: Additional Examples

Example 6.10

Factoring via Routh-Hurwitz
PROBLEM: Facwor the polynomial

4+ 357 4 3057 + 30s + 200 6.23)

SOLUTHOM: Form the Routh table of Tahle 6.17. We find that the 5* row is a row of
zeros. Now form the even polynomial at the 5* row:

Pis)=5+10 (624)

TABLE 617 FEouth tahle for Example 610

5 1 3 200
e &1 3 10

5 24 1 T 10

5 4 2 —+r 0

F 10

This polynomial is differentiated with respect to £ in order i complete the Routh table.
However, since this polynomial s a factor of the original polynomial in Eq. (6.23),
dividing Eq. (6.23) by (6.24) yields (5* + 35 + 20) as the other factor. Hence,

4387 4300 + 305 4+ 200 = (57 + 100" + 35+ 20)
= (s +3.1623)(s — /3.1623)
®{s+ 1.5+ M.2130s+ 1.5 /4.213) (6.25)

n




6.4 Routh-Hurwitz Criterion: Additional Examples

Skill-Assessment Exercise 6.3

PROBLEM: For a unity feedback system with the forward transfer function

K(s+20)

0= 5643

find the range of K to make the system stable.

ANSWER: 0 <K <2

The complete solution is at www.wiley.com/college/nise.

17




