

Dr. Ashraf Al-Rimawi

Control Systems

Chapter 6: Stability

Introduction

$$c(t) = c_{\text{forced}}(t) + c_{\text{natural}}(t)$$
(6.1)

Using these concepts, we present the following definitions of stability, instability, and marginal stability:

- A linear, time-invariant system is *stable* if the natural response approaches zero as time approaches infinity.
- A linear, time-invariant system is *unstable* if the natural response grows without bound as time approaches infinity.
- A linear, time-invariant system is *marginally stable* if the natural response neither decays nor grows but remains constant or oscillates as time approaches infinity.

Introduction

Let us summarize our definitions of stability for linear, time-invariant systems. Using the natural response:

- 1. A system is stable if the natural response approaches zero as time approaches infinity.
- A system is unstable if the natural response approaches infinity as time approaches infinity.
- A system is marginally stable if the natural response neither decays nor grows but remains constant or oscillates.

Using the total response (BIBO):

- 1. A system is stable if every bounded input yields a bounded output.
- 2. A system is unstable if *any* bounded input yields an unbounded output.

Introduction

FIGURE 6.1 Closed-loop poles and response: **a.** stable system; **b.** unstable system

6.2 Routh-Hurwitz Criterion

FIGURE 6.3 Equivalent closed-loop transfer function

a_2 a_1	<i>a</i> ₀
a_1	0
	0
•	

6.2 Routh-Hurwitz Criterion

TABLE 6.2 Completed Routh table

$$\begin{vmatrix} s^{4} & a_{4} & a_{2} & a_{0} \\ s^{3} & a_{3} & a_{1} & 0 \\ & -\frac{a_{4} & a_{2}}{a_{3} & a_{1}} & -\frac{a_{4} & a_{0}}{a_{3} & 0} & -\frac{a_{4} & 0}{a_{3} & 0} \\ s^{2} & -\frac{a_{3} & a_{1}}{a_{3}} & -\frac{a_{4} & a_{0}}{a_{3} & 0} & -\frac{a_{4} & 0}{a_{3} & 0} \\ & & -\frac{a_{3} & a_{1}}{b_{1} & b_{2}} & -\frac{a_{3} & 0}{b_{1} & 0} & -\frac{a_{3} & 0}{b_{1} & 0} \\ & & & -\frac{b_{1} & b_{2}}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_{1} & 0} \\ & & & & & -\frac{b_{1} & 0}{c_{1} & 0} & -\frac{b_{1} & 0}{c_$$

6.2 Routh-Hurwitz Criterion

Example 6.1

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(*a*).

FIGURE 6.4 a. Feedback system for Example 6.1; b. equivalent closed-loop system

TABLE 6.3 Completed Routh table for Example 6.1

	_	-	
s^3 s^2	1	31	0
s^2	10 1	.1 03 0 103	0
s^1	$\frac{-\begin{vmatrix} 1 & 31 \\ 1 & 103 \end{vmatrix}}{1} = -72$	$\frac{-\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}}{1} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$
s^0	$\frac{-\begin{vmatrix} 1 & 103 \\ -72 & 0 \end{vmatrix}}{-72} = 103$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$	$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$

Two special cases can occur: (1) The Routh table sometimes will have a zero *only in the first* column of a row, or (2) the Routh table sometimes will have an *entire row* that consists of zeros. Let us examine the first case.

Zero Only in the First Column

Example 6.2

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$
 (6.2)

SOLUTION:

Example 6.2 Completed Routh table for					
s ⁵	1	3	5		
s^4	2	6	3		
s^3	⊕ €	$\frac{7}{2}$	0		
s^2	$\frac{6\epsilon - 7}{\epsilon}$	3	C		
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	0	C		
s^0	3	0	0		

TABLE 6.5 Determining signs in first column of a Routh table with zero as first element in a row

Label	First column	$\epsilon = +$	$\epsilon = -$
s ⁵	1	+	+
s^4	2	+	+
s^3	₽ €	+	_
s^2	$\frac{6\epsilon - 7}{\epsilon}$	-	+
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	+	+
s^0	3	+	+

Another method that can be used when a zero appears only in the first column of a row is derived from the fact that a polynomial that has the reciprocal roots of the original polynomial has its roots distributed the same—right half-plane, left half-plane, or imaginary

Assume the equation

$$s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} = 0$$
(6.3)

If s is replaced by 1/d, then d will have roots which are the reciprocal of s. Making this substitution in Eq. (6.3),

$$\left(\frac{1}{d}\right)^n + a_{n-1}\left(\frac{1}{d}\right)^{n-1} + \dots + a_1\left(\frac{1}{d}\right) + a_0 = 0$$
 (6.4)

Factoring out $(1/d)^n$,

$$\left(\frac{1}{d}\right)^{n} \left[1 + a_{n-1} \left(\frac{1}{d}\right)^{-1} + \dots + a_{1} \left(\frac{1}{d}\right)^{(1-n)} + a_{0} \left(\frac{1}{d}\right)^{-n}\right]$$

$$= \left(\frac{1}{d}\right)^{n} \left[1 + a_{n-1}d + \dots + a_{1}d^{(n-1)} + a_{0}d^{n}\right] = 0$$
(6.5)

Example 6.3

Stability via Reverse Coefficients

PROBLEM: Determine the stability of the closed-loop transfer function

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$
 (6.6)

SOLUTION: First write a polynomial that has the reciprocal roots of the denominator of Eq. (6.6). From our discussion, this polynomial is formed by writing the denominator of Eq. (6.6) in reverse order. Hence,

$$D(s) = 3s^5 + 5s^4 + 6s^3 + 3s^2 + 2s + 1$$
(6.7)

TABLE 6.6 Routh table for Example 6.3

Exam	ple 6.3		
s ⁵	3	6	2
s^4	5	3	1
s^3	4.2	1.4	
s^2	1.33	1	
s^1	-1.75		
s^0	1		

Entire Row is Zero

Example 6.4

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop transfer function

$$T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$
 (6.8)

TABLE	E 6.7	Rout	table	for Exan	nple 6.4	ļ.			
s ⁵			1			6			8
s^4		7	1		42	6		-56	8
s ³	-0-	4	1	-0	12	3	-0	0	0
s^2			3			8			0
s^1			$\frac{1}{3}$			0			0
s^0			8			0			0

$$P(s) = s^4 + 6s^2 + 8 (6.9)$$

Next we differentiate the polynomial with respect to s and obtain

$$\frac{dP(s)}{ds} = 4s^3 + 12s + 0 \tag{6.10}$$

Example 6.5

Pole Distribution via Routh Table with Row of Zeros

PROBLEM: For the transfer function

$$T(s) = \frac{20}{s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20}$$
(6.11)

tell how many poles are in the right half-plane, in the left half-plane, and on the $j\omega$ -axis.

TABLE	6.8 Routh table for	Example 6.5			
s ⁸	1	12	39	48	20
s ⁷	1	22	59	38	0
s^6	-40-1	20 - 2	40 1	.20 2	0
s ⁵	20 1	. 60 3	40 2	0	0
s^4	1	3	2	0	0
s^3	+ + 2	4 6 3	& & 0	0	0
s^2	$\frac{3}{2}$ 3	2 4	0	0	0
s^1	$\frac{1}{3}$	0	0	0	0
s^0	4	0	0	0	0

$$P(s) = s^4 + 3s^2 + 2 (6.12)$$

$$\frac{dP(s)}{ds} = 4s^3 + 6s + 0 \tag{6.13}$$

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial						
Location	Even (fourth-order)	Other (fourth-order)	Total (eighth-order)			
Right half-plane	0	2	2			
Left half-plane	0	2	2			
$j\omega$	4	0	4			

Example 6.6

Standard Routh-Hurwitz

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system of Figure 6.6.

FIGURE 6.6 Feedback control system for Example 6.6

SOLUTION: First, find the closed-loop transfer function as

$$T(s) = \frac{200}{s^4 + 6s^3 + 11s^2 + 6s + 200}$$
 (6.14)

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For clarity, we leave most zero cells blank. At the s^1 row there is a negative coefficient; thus, there are two sign changes. The system is unstable, since it has two right-half-plane poles and two left-half-plane poles. The system cannot have $j\omega$ poles since a row of zeros did not appear in the Routh table.

TABLE 6.10 Routh table for Example 6.6

s^4		1	11	200
s^3	-6	1	-6 1	
s^2	10	1	.200 20)
s^1	_	-19		
s^{0}		20		

Example 6.7

Routh-Hurwitz with Zero in First Column

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system of Figure 6.7.

FIGURE 6.7 Feedback control system for Example 6.7

SOLUTION: The closed-loop transfer function is

$$T(s) = \frac{1}{2s^5 + 3s^4 + 2s^3 + 3s^2 + 2s + 1}$$
 (6.15)

$$s^5 + 2s^4 + 3s^3 + 2s^2 + 3s + 2 (6.16)$$

TABLE 6.11	Routh table for Example 6.7		
s ⁵	2	2	2
s^4	3	3	1
s^3	\cdot O ϵ	4 3	
s^2	$\frac{3\epsilon - 4}{\epsilon}$	1	
s^1	$\frac{12\epsilon - 16 - 3\epsilon^2}{9\epsilon - 12}$		
s^0	1		

We also can use the alternative approach, where we produce a polynomial whose roots are the reciprocal of the original. Using the denominator of Eq. (6.15), we form a polynomial by writing the coefficients in reverse order,

$$s^5 + 2s^4 + 3s^3 + 2s^2 + 3s + 2$$
 (6.16)

The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in this case we also produce a zero only in the first column at the s^2 row. However, the table is easier to work with than Table 6.11. Table 6.12 yields the same results as Table 6.11: three poles in the left half-plane and two poles in the right-half-plane. The system is unstable.

TABLE 6.12 Alternative Routh table for Example 6.7

s ⁵	1	3	3
s4	2	2	2
s^3	2	2	
s^2	Ar €	2	
s^1	2e-4		
	€		
s ⁰	2		

Example 6.8

Routh-Hurwitz with Row of Zeros

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system of Figure 6.8. Draw conclusions about the stability of the closed-loop system.

FIGURE 6.8 Feedback control system for Example 6.8

Trylt 6.2

Use MATLAB, The Control System Toolbox, and the following statements to find the closed-loop transfer function, T(s), for Pigure 6.8 and the closed-loop poles.

numg=128; deng=[1 3 10 24 . . . 48 96 128 192 0]; G=tf(numg, deng); T=feedback(G, 1) poles=pole(T) SOLUTION: The closed-loop transfer function for the system of Figure 6.8 is

$$T(s) = \frac{128}{s^8 + 3s^7 + 10s^6 + 24s^5 + 48s^4 + 96s^3 + 128s^2 + 192s + 128}$$
(6.17)

Using the denominator, form the Routh table shown as Table 6.13. A row of zeros appears in the s^5 row. Thus, the closed-loop transfer function denominator must have an even polynomial as a factor. Return to the s^6 row and form the even polynomial:

$$P(s) = s^6 + 8s^4 + 32s^2 + 64 (6.18)$$

TABLE 6.13 Routh table for Example 6.8

1740	LE 0.13 Routh ta	tie for Example 0.8					
5 ^{[6}	1	10		48		128	128
57	<i>-</i> ₹ 1	24 8	96	32	192	64	
500	- 2 1	46 8	64	32	128	64	
52	ਰ € 3	-er 32 16	- 0 " - 6 1	32	- o r - o r	0	
s ⁴	8 1	64 8	-64	24			
53	_8 -1	⊸40 − 5					
s^2	→ 1	24 8					
s^1	3						
50	8						

Differentiate this polynomial with respect to s to form the coefficients that will replace the row of zeros:

$$\frac{dP(s)}{ds} = 6s^5 + 32s^3 + 64s + 0 \tag{6.19}$$

poles. Since the even polynomial is of sixth order, the two remaining poles must be on the $j\omega$ -axis.

There are no sign changes from the beginning of the table down to the even polynomial at the s^6 row. Therefore, the rest of the polynomial has no right-half-plane poles. The results are summarized in Table 6.14. The system has two poles in the right half-plane, four poles in the left half-plane, and two poles on the $j\omega$ -axis, which are of unit multiplicity. The closed-loop system is unstable because of the right-half-plane poles.

TABLE 6.14 Summary of pole locations for Example 6.8

Polynomial							
Location	Even (sixth-order)	Other (second-order)	Total (eighth-order)				
Right half-plane	2	0	2				
Left half-plane	2	2	4				
jω	2	0	2				

Example 6.9

Stability Design via Routh-Hurwitz

PROBLEM: Find the range of gain, K, for the system of Figure 6.10 that will cause the system to be stable, unstable, and marginally stable. Assume K > 0.

FIGURE 6.10 Feedback control system for Example 6.9

SOLUTION: First find the closed-loop transfer function as

$$T(s) = \frac{K}{s^3 + 18s^2 + 77s + K}$$
(6.20)

Next form the Routh table shown as Table 6.15.

 TABLE 6.15
 Routh table for Example 6.9

 s^3 1
 77

 s^2 18
 K

 s^1 $\frac{1386 - K}{18}$
 s^0 K

Since K is assumed positive, we see that all elements in the first column are always positive except the s^1 row. This entry can be positive, zero, or negative, depending upon the value of K. If K < 1386, all terms in the first column will be positive, and since there are no sign changes, the system will have three poles in the left half-plane and be *stable*.

If K > 1386, the s^1 term in the first column is negative. There are two sign changes, indicating that the system has two right-half-plane poles and one left-half-plane pole, which makes the system *unstable*.

If K = 1386, we have an entire row of zeros, which could signify $j\omega$ poles. Returning to the s^2 row and replacing K with 1386, we form the even polynomial

$$P(s) = 18s^2 + 1386 (6.21)$$

Differentiating with respect to s, we have

$$\frac{dP(s)}{ds} = 36s + 0\tag{6.22}$$

Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the Routh-Hurwitz table shown as Table 6.16 for the case of K = 1386.

 TABLE 6.16
 Routh table for Example 6.9 with K = 1386

 s^3 1
 77

 s^2 18
 1386

 s^1 -0°
 36

Example 6.10

Factoring via Routh-Hurwitz

PROBLEM: Factor the polynomial

$$s^4 + 3s^3 + 30s^2 + 30s + 200$$
 (6.23)

SOLUTION: Form the Routh table of Table 6.17. We find that the s^1 row is a row of zeros. Now form the even polynomial at the s^2 row:

$$P(s) = s^2 + 10 (6.24)$$

TABLE 6.17 Routh table for Example 6.10

s4		1		30	200
83	-3"	1	36	10	
s^2	26	1	,296*	10	
s^1	- 0 *	2	-0	0	
s ⁰		10			

This polynomial is differentiated with respect to s in order to complete the Routh table. However, since this polynomial is a factor of the original polynomial in Eq. (6.23), dividing Eq. (6.23) by (6.24) yields ($s^2 + 3s + 20$) as the other factor. Hence,

$$s^{4} + 3s^{3} + 30s^{2} + 30s + 200 = (s^{2} + 10)(s^{2} + 3s + 20)$$

$$= (s + j3.1623)(s - j3.1623)$$

$$\times (s + 1.5 + j4.213)(s + 1.5 - j4.213)$$
 (6.25)

Skill-Assessment Exercise 6.3

PROBLEM: For a unity feedback system with the forward transfer function

$$G(s) = \frac{K(s+20)}{s(s+2)(s+3)}$$

find the range of *K* to make the system stable.

ANSWER: 0 < K < 2

The complete solution is at www.wiley.com/college/nise.