Solutions to Skill-Assessment
Exercises

CHAPTER 2
2.1

1
The Laplace transform of ¢ is o using Table 2.1, Item 3. Using Table 2.2, Item 4,

1
F(s) = 5
(s+9)
2.2
Expanding F(s) by partial fractions yields:
F(s)—é+ B + < + b
s s+2 (54372 (s+3)
where,
1 1
(s+2)(s+3) S0 9 s(s+3) P
10 10 B » dF(s) 40
arre 3,andD—(s—&-3) as | "9
Taking the inverse Laplace transform yields,
S o 105 40
f(t)—9 Se +3te +9e
2.3

Taking the Laplace transform of the differential equation assuming zero initial
conditions yields:

sC(s) 4+ 3s*C(s) + 7sC(s) + 5C(s) = s*R(s) + 4sR(s) + 3R(s)
Collecting terms,
(s + 35> + 75 +5)C(s) = (s* + 4s + 3)R(s)
Thus,

C(s)  s*+45+3
R(s) $3+3s2+7s+5
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2.4
_C(s) 2541
Gls) " R(s) s24+65s+2
Cross multiplying yields,
d’c _dc d
2.5
1 s 1 A B C
() =ROGCO) = G 618 6+ a618) 5 618 613
where
1 1 1 1 1 1
(s+4)(s+8)]s_o 32 s(s+8)|sy 167 and e s(s+4)s_g 32
Thus,
1y 8t
C( ) —ﬁ—ﬁe +§€
2.6

Mesh Analysis

Transforming the network yields,

0000
1 Io(s) Vi(s) 1
vis) (F = -
C’D = S vys)
- = -
Li(s) Iy(s)
Now, writing the mesh equations,
(s 4+ DI (s) — sla(s) — I3(s) = V(s)
—sli(s) + (2s + D) Ia2(s) — I5(s) =0
—11(s) = I(s) + (s +2)I3(s) = 0
Solving the mesh equations for 5(s),
(s+1) V(i) -1
—s 0 -1
1(s) -1 0 (s+2) (s> +25+1)V(s)
s) = =
: (s+1) —s -1 s(s2+55+2)

- (2s+1) -1
-1 1 (s+2)
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But, V.(s) = sl,(s)
Hence,

(s> +2s5+1)V(s)
(s2+ 55 +2)

VL (S) =

or
Vi(s) s +2s+1
V(s) s2+55+2

Nodal Analysis

Writing the nodal equations,

(% + 2) Vi(s) = Vi(s) = V(S)
—Vi(s) + <§ + 1> VL(s) = %V(S)

Solving for V;(s),

or
Vi(s) s*+2s+1
V(s) s2+5s+2
2.7
Inverting
Gls) = — Z5(s) _ —100000
21 (10s)
Noninverting
S
[Z1(s) + Z(5)] <1(S)+105>
Z1(s)+ Z(s
G(s) = = =s5+1
A 10
s
2.8
Writing the equations of motion,
(s* +3s+1)Xi(s) — (3s + 1) Xa(s) = F(s)
—Bs+1)Xi(s) + (s* +4s+ 1) Xao(s) =0
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Solving for X5(s),

(s*+3s+1) F(s)
—(3s+1) 0

(s*+3s+1) —(3s+1)
—(Bs+1) (s +4s+1)

(Bs+1)F(s)

X = =
2(s) s(s3+7s2+5s5+1)

Hence,
Xo(s) (Bs+1)
F(s)  s(s®+7s2+5s5+1)

2.9

Writing the equations of motion,
(s* +s+1)01(s) — (s + 1)02(s) = T(s)
—(s+1)01(s) + (25 +2)62(s) =0

where 6 (s) is the angular displacement of the inertia.
Solving for 6,(s),

(s*+s+1) T(s)
—(s+1) 0 _ (s+1)F(s)
(s*+s+1) (s+1)‘ 283 +3s2 425 +1

“s+1) (2542)

@2 (S) =

From which, after simplification,

1

02(s) T2 fs+1

2.10

Transforming the network to one without gears by reflecting the 4 N-m/rad spring to
the left and multiplying by (25/50)%, we obtain,

®
01(2) IN-m-s/rad ¢ (1)

i L+ T

1 N-m/rad

Writing the equations of motion,

(s +5)01(s) — $64(s) = T(s)
—501(s) + (s +1)0,(s) =0

where 6;(s) is the angular displacement of the 1-kg inertia.
Solving for 6,(s),

(s +s) T(s)
—s 0 ~ sT(s)
(s*+s) = ‘s3+s2—|—s

—s (s+1)

0a(s) =
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From which,

1
But, 6,(s) = Eea(s).
Thus,

2.11
First find the mechanical constants.

11\ 1
Jm:.]a+JL(5*4> :1+400(400):2

D,, =D, + D, L 2—5+800 1Y 5
m— Pa T HEN\sT ) T 400/

Now find the electrical constants. From the torque-speed equation, set wy, = 0 to
find stall torque and set 7',, = 0 to find no-load speed. Hence,

Tstall =200
Onpo—load = 25
which,
&: Tstall:@:2
R, E, 100
E 100
Kb — a = — = 4

Wno—Iload 25
Substituting all values into the motor transfer function,
Kr
em (S) RaJ m 1

A D

where 6,,(s) is the angular displacement of the armature.

Now 6,.(s) = 21—09,,, (s). Thus,

Or(s)  1/20
Edls) s (s + %)
2.12
Letting
01(s) = wi(s)/s
02(s) = wa(s)/s



Solutions to Skill-Assessment Exercises

in Egs. 2.127, we obtain
K K
<J1S + Dy + ?) w1(s) — ?a)z(s) =T(s)
K K
- (s) + <J2s + D)+ s) wy(s)

From these equations we can draw both series and parallel analogs by considering
these to be mesh or nodal equations, respectively.

Jy D, Jr

0000 0000

1) > -~ > D,
,(t) (1)

Series analog

1
(1) X o0

0000
1

(1) o~ Sp, 2,

x|~

Parallel analog

2.13
Writing the nodal equation,
dv . .
CE—l—z,—Z:l(I)
But,
c=1
V=1V, + v

i, =er=¢" = eVotdv

Substituting these relationships into the differential equation,

d(vy + 8v)

G T -2=i (1)

We now linearize e".
The general form is

v

Vo

1) 1) =~

Substituting the function, f(v) = e”, with v = v, + év yields,

_de”
T dv

Vot+dv ev,, Sy

Vo

e
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Solving for e**?”,

v

evg+5v _ evo =+

Substituting into Eq. (1)

% +e" + ey —2 =) (2)

Setting i(¢) = 0 and letting the circuit reach steady state, the capacitor acts like an
open circuit. Thus, v, = v, with i, = 2. But, i, = €' or v, = Ini,.
Hence, v, = In2 = 0.693. Substituting this value of v, into Eq. (2) yields

% +28v =i(r)

Taking the Laplace transform,
(s +2)8v(s) = 1(s)

Solving for the transfer function, we obtain

dv(s) 1
I(s) s+2
or
Vv 1 e
% =2 about equilibrium.
CHAPTER 3
3.1
Identifying appropriate variables on the circuit yields
C, R
€ A
— = — ip .
(1) 1=y L
= -
i, ic,
Writing the derivative relations
dve, .
G ~ia
diy,
ZL 1
di VL (1)
ch2
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Using Kirchhoff’s current and voltage laws,

iC1 =i +ig=1iL +E(VL_VC2)

v = —Vv¢, + Vi

icz = iR = E(VL — VCz)

Substituting these relationships into Egs. (1) and simplifying yields the state
equations as

dve, 1 L. L o1
dt RC, T C™" T RC, T RC,
dir 1

P A A

dVCZ_ 1 1 1

=— ve, — v Vi
dt RC, ' RC, “RG,
where the output equation is
Vo =V,

Putting the equations in vector-matrix form,

[ N
RC1 C1 RC1 RCl
1 1
= . + — it
X 7 0 0 X 12 vi(t)
Loy L b
L RC, RC; | LRC, |
y=[0 0 1]x
3.2
Writing the equations of motion
(s> +s+1)X1(s) —sX>(s) = F(s)
—sX1(s) + (s + 5+ 1) Xa(s) —Xi(s) =0

—Xo(s) + (*+5+1)X3(s)=0

Taking the inverse Laplace transform and simplifying,

)'C'l = —X1 — X1 JerJrf
).6'2:).61 — X2 — X3 + X3

X3 = —X3—X3+X
Defining state variables, z;,

21 = X1;22 = X1;23 = X2; 24 = X2, 25 = X3; 26 = X3
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Writing the state equations using the definition of the state variables and the inverse
transform of the differential equation,

21 =22
L=¥=-X-—-x+t+f=—2-u+z+f
23:552:14

=Xy =X1—Xo—Xo+X3=20— 24 — 23+ 25
5 = X3 = Z6

6 =X3=—X3—X3+X=—2¢6— 25+ 23

The output is zs. Hence, y = zs. In vector-matrix form,

o 1 0 0 0 07 r0
-1 -1 0 1 0 O 1
. 0 0 0 1 0 0 0
2=\ 1 1 1 1 ol|*|o|f@y=00000 1 O
o o0 o0 o0 o0 1 0
L 0 0 1 0 -1 —-1] 10 |
3.3
First derive the state equations for the transfer function without zeros.

X(s) 1
R(s) s2+7s+9

Cross multiplying yields
(s* +7s +9)X(s) = R(s)
Taking the inverse Laplace transform assuming zero initial conditions, we get
X+7x+%=r
Defining the state variables as,

X1 =

Xy = X
Hence,

jC] = X2

Xp=X=-Tx—-9x+r=-9%1—Tx,+r
Using the zeros of the transfer function, we find the output equation to be,
c=2x+x=x1+2x

Putting all equation in vector-matrix form yields,

0 1
X =
—9 -7

c=[1 2]x

0
1

X + r
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34
The state equation is converted to a transfer function using
G(s)=C(sI— A)"'B (1)

where

—4 -15 2
A_{ ],B_[ ],andC_[l.S 0.625].
4 0 0

Evaluating (sI — A) yields

(51— A) = {s+4 1.5}
L -4 s
Taking the inverse we obtain
1 s =15
I-A) '=——
(s ) s2+4s+6{4 s+4]

Substituting all expressions into Eq. (1) yields

3s+5

G(S):SZ+45+6

3.5
Writing the differential equation we obtain
d’x

ot 262 =10 + 8f (1) (1)

Letting x = x, + dx and substituting into Eq. (1) yields

2
w +2(x, 4 8x)* = 10+ 5f (1) (2)
Now, linearize x°.
d(x?
(xo + 8x)* — X2 = Eix) xuéx = 2x,8x
from which
(X0 + 6x)* = x2 + 2x,6x (3)

Substituting Eq. (3) into Eq. (1) and performing the indicated differentiation gives
us the linearized intermediate differential equation,

d*sx

— by = —2x2 + 10+ 5f(0) (4)

The force of the spring at equilibrium is 10 N. Thus, since F = 2x?,10 = 2x2 from

which
xo =5
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Substituting this value of x, into Eq. (4) gives us the final linearized differential
equation.

2
ddix +4v55x = 8f (1)

Selecting the state variables,

X1 = 6x

Xy = 6x

Writing the state and output equations

X] = X2
X =8x = —4/5x + 8f (1)
y=x1

Converting to vector-matrix form yields the final result as

X = [_40\/3 Hx+ {?}Bf(t)

y=[1 0}
CHAPTER 4
4.1
For a step input
Cls) = 10(s +4)(s + 6) 7é+ B N C N D N E
s HEDH)(s+8)(s+10) s s+1 s+7 s+8 s+10

Taking the inverse Laplace transform,

c(t)=A+Be'+ Ce " 4+ De ¥ 4 Ee ¥

4.2
1 1 4 4
Slncezaz— 52 2T = =5= 0.02s; Ty = S50 0.08s; and
r=—=% =0.044s.
4.3

a. Since poles are at —6 +;19.08, c(t) = A + Be cos(19.08t + ¢).

b. Since poles are at —78.54 and —11.46, ¢(t) = A + Be /834 4 Ce™ 114,

c. Since poles are double on the real axis at —15¢(t) = A + Be 1 + Cte ™.
d. Since poles are at +725, ¢(t) = A + B cos(25¢ + ¢).

4.4

a. w, = /400 = 20 and 2¢w, = 12; .".z = 0.3 and system is underdamped.
w, = v/900 = 30 and 2¢w, = 90; .".¢ = 1.5 and system is overdamped.
wp, = V225 = 15 and 2¢w, = 30; .".¢ = 1 and system is critically damped.
wn = V625 =25and 2¢tw, =0; ..¢=0and system is undamped.

o0 F

1
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4.5

wn = /361 = 19 and 2¢w, = 16; ¢ = 0.421.

4
Now, Ty = — =055 and T = ——— = 0.182s.
oy w1 — &2

From Figure 4.16, w, T, = 1.4998. Therefore, T, = 0.079s.

—im
Finally, %os — V1 — & % 100 = 23.3%
4.6

a. The second-order approximation is valid, since the dominant poles have a real
part of —2 and the higher-order pole is at —15, i.e. more than five-times further.
b. The second-order approximation is not valid, since the dominant poles have a real
part of —1 and the higher-order pole is at —4, i.e. not more than five-times further.

4.7

. . . . 1 0.8942 1.5918 0.3023
a. Expanding G(s) by partial fractions yields G(s) = B + 5120 5+10 5465
But —0.3023 is not an order of magnitude less than residues of second-order terms

(term 2 and 3). Therefore, a second-order approximation is not valid.
1 09782 1.9078 0.0704
b. Expanding G(s) by partial fractions yields G(s) = 5 + 5120 5410 5565
But 0.0704 is an order of magnitude less than residues of second-order terms

(term 2 and 3). Therefore, a second-order approximation is valid.

4.8

See Figure 4.31 in the textbook for the Simulink block diagram and the output responses.

4.9

. N -2 -1 1 s+5 2
a. Since sI—A= ,(SI—A) =—0—"7—— . Also,
3 s+5 s>+55+6| -3 s
0
BU(s) = .
1/(s+1)
The state vector is X(s) = (sI — A)"'[x(0) + BU(s)] = T j_ D6 13) X
2(s*+7s+7) ) 552 +25s — 4
R . The output is Y(s)=[1 3]X(s) = T 6013

0.5 12 L 17.5
s+1 s+2 s+3
—0.5¢7" —12e% 4+ 17.5¢73.
b. The eigenvalues are given by the roots of |sI — A| = s> + 55 + 6, or —2 and —3.

4.10

Taking the inverse Laplace transform yields y(f) =

s =2 1 1 s+5 2
. Si I-A)= I-A) =—0—— . Taking th
Laplace transform of each term, the state transition matrix is given by
4 1 2 2
ge—t -3 —4t ge_t _ ge_4t
(1) =
__eft+%ef4t __eft+_ef4l‘
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ge—(t—r) _ %6—40—1:) %e—(t—r) _ %e—él(t—t)
b. Since ®(r— 1) = ) ) 1 4 and
_ 7ef(tft) + —4(t—7) 7ef(t7'r) + *674“71)
3 3 3 3
2 -1 ,—t 2t ,—4t

Bu(7) = Lf;],¢@——ﬂBu@): 3

Thus, x(f) = ®(1)x(0) + [, O(r — 7)
10 —t -2t 4 4t

—e —e " —=e
BU(7)dr = 3 3
_§e—t + e—zz + §e—4t
3 3

c.yt)=[2 1]x=5"—e?*
CHAPTER 5

5.1

1
Combine the parallel blocks in the forward path. Then, push 5 to the left past the
pickoff point.

Cls)

Y
@ =

Combine the parallel feedback paths and get 2s. Then, apply the feedback formula,

. s+ 1
Slmphfy, and get, T(S) = m
5.2

. . B G(s) B 16
Find the closed-loop transfer function, 7'(s) = T GWHE) a1 16 where

1
and G(s) = 6 and H(s) = 1. Thus, o, = 4 and 2¢{w, = a, from which ¢ = a4
s(s+a) 8
%
~"\i00 a

But, for 5% overshoot, ¢ = = 0.69. Since, ¢ = 3 a=15.52.

%
2 20 =
7% +In (100)

13
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5.3
Label nodes.

R(s) + @ R R C(S)‘
5N G N, (s) Ny(s)[ S
1
N. 5 (s) s
N7 (s)
Draw nodes.
R(s)  Ny(s) Ny(s) Ny(s)  C(s)
(o] (@) (0] (o]
N5(s)
(@]
N7(S)
(o]

Connect nodes and label subsystems.

R(s) 4 N (5) s

)

N, (s) s

M)

Eliminate unnecessary nodes.

R(s)

1

|
N3 Ny 5 )
) ) O



Chapter 5 Solutions to Skill-Assessment Exercises

54

Forward-path gains are G1G,G5 and G1Gs.

Loop gains are —G1G2H, —GyH, and —G3Hs.
Nontouching loops are [—G1GyH4][—G3H3] = G1G2,G3sH 1 H3 and
[—Gsz][—G3H3] = G,GsH,H;.

Also, A =1+ G1G,H + GoH, + G3H; + G1G,GsH1Hs + G,G3H,H5.
Finally, A; =1 and A, = 1.

C(s) Zk: Tyl

Substituting these values into 7'(s) = RG) A

G1(5)G3(s)[1 + Ga(s)]

yields

") = 15 6,00 H0) + Gi () GOV ()T + G () H )]
5.5
The state equations are,
X1 = =2x1 +x
Xy = —3x + x3
X3 = —3x1 —4x, —Sx3+r
y=Xx3

Drawing the signal-flow diagram from the state equations yields

5.6

100(s + 5
From Gfs) :ﬁ

and add the feedback.

we draw the signal-flow graph in controller canonical form

100

15
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Writing the state equations from the signal-flow diagram, we obtain

1
0

X+

—105 —506
X = r

1 0
y=1[100 500]x

5.7
From the transformation equations,
P1:{3 2]
1 —4
Taking the inverse,
04 -02
P:
[0.1 —0.3}
Now,
3 2|1 3 04 -02 6.5 -85
P AP = =
1 —-4||-4 —6|(01 -03 95 —11.5
3 =211 -3
P 'B= =
1 4|3 -11
04 -02
CP=[1 4] =[0.8 —1.4]
0.1 —-03
Therefore,
6.5 -85 -3
= z+ u
95 —115 —11
y=[08 —14]z
5.8

First find the eigenvalues.

- Al = 20 N | L B E "
S 1l0 A —4 —6|| | 4 r+6|

From which the eigenvalues are —2 and —3.
Now use Ax; = Lx; for each eigenvalue, A.

e

3x14+3x =0
—4.761 — 4.7(2 = 0

For A = -2,
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Thus x; = —x,
For A = -3
dx1 +3x, =0
—4X1 — 3X2 =0
Thus x; = —x, and x; = —0.75x,; from which we let
[ 0.707 -0.6
- 1-0.707 0.8

Taking the inverse yields
pl_ [5.6577 4.2433]

5 5
Hence,
5.6577 4.2433 1 3 0.707 —-0.6 -2 0
D=P 'AP = -
5 5 -4 —61||-0.707 0.8 0 -3
5.6577 4.24337[1 18.39
P 'B= =
5 5 3 20
0.707 —-0.6
CP=[1 4] =[-2121 2.6]
-0.707 0.8
Finally,
-2 0 18.39
7= z+ u
0 -3 20
y=[-2121 2.6]z
CHAPTER 6

6.1
Make a Routh table.
s’ 3 6 7 2
s° 9 4 8 6
$ 4.666666667 4333333333 0 0
st —4.35714286 8 6 0
s 12.90163934 6.426229508 0 0
§? 10.17026684 6 0 0
st —1.18515742 0 0 0
0 6 0 0 0

Since there are four sign changes and no complete row of zeros, there are four right
half-plane poles and three left half-plane poles.

6.2

Make a Routh table. We encounter a row of zeros on the s> row. The even polynomial
is contained in the previous row as —6s* + 0s® 4 6. Taking the derivative yields

17
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—24s* 4 0s. Replacing the row of zeros with the coefficients of the derivative yields
the s° row. We also encounter a zero in the first column at the s> row. We replace the
zero with ¢ and continue the table. The final result is shown now as

s° 1 -6 -1 6
s 1 0 -1 0
st 6 0 6 0
5 —24 0 0 0 ROZ
s2 £ 6 0 0
st 144/¢ 0 0 0
s° 6 0 0 0

There is one sign change below the even polynomial. Thus the even polynomial
(4™ order) has one right half-plane pole, one left half-plane pole, and 2 imaginary
axis poles. From the top of the table down to the even polynomial yields one sign
change. Thus, the rest of the polynomial has one right half-plane root, and one left
half-plane root. The total for the system is two right half-plane poles, two left half-
plane poles, and 2 imaginary poles.

6.3
K(s+20) o Gls) K(s +20)
s(s+2)(s+3)’ (s)_1+G(S)_S3+5S2+(6—|—K)S—|—20K

Form the Routh table.

Since G(s) =

s 1 (6+K)
52 5 20K
’ 30 — 15K
s V- DA
5
50 20K

From the s' row, K < 2. From the s° row, K > 0. Thus, for stability, 0 < K < 2.

6.4
First find
s 00 2 1 1 (s—2) -1 -1
SI—Al=[[0 s 0] -] 1 7 1 = -1 (s=17) -1
0 0 s -3 4 -5 3 —4 (s+5)

=5 — 45> — 335+ 51

Now form the Routh table.

s 1 -33
5 —4 51
st —20.25

s° 51

There are two sign changes. Thus, there are two rhp poles and one lhp pole.
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CHAPTER 7

71
a. First check stability.
G(s) 10s% + 500s + 6000 10(s + 30) (s + 20)

T(s) = = =
(5) 1+ G(s) s3+70s2+ 13755+ 6000 (s + 26.03)(s + 37.89)(s + 6.085)

Poles are in the lhp. Therefore, the system is stable. Stability also could be checked
via Routh-Hurwitz using the denominator of 7(s). Thus,

15 15
1 . Ste = - = =
Sult) - esep(o0) [+lmG(s)  1+00 0
15 15
15tu(t) :  eramp(00) = Gl ~ 1072050 2.1875
o 2535
15 30 30
152u(t) :  eparabola(00) = ——=—— = — = o0, since L[154] = =
Q parabola (5F) lin&szG(s) 0 > [ ] 53
b. First check stability.
T(s) = G(s) 10s% + 500s + 6000
1+ G(s) 85+ 110s* + 387553 + 4.37¢04s2 + 500s + 6000
10(s + 30)(s + 20)

(5 + 50.01)(s + 35)(s + 25)(s2 — 7.18% — 04s + 0.1372)

From the second-order term in the denominator, we see that the system is unstable.
Instability could also be determined using the Routh-Hurwitz criteria on the
denominator of 7(s). Since the system is unstable, calculations about steady-state
error cannot be made.

7.2
a. The system is stable, since
T(s) = G(s) 1000(s + 8) ~1000(s + 8)
S 1+G(s) (s+9)(s+7)+1000(s +8) 52+ 10165 + 8063
and is of Type 0. Therefore,
. 1000"8 .
K, = EILI(} G(s) = g = 127; K, = llir(}sG(s) = 0;
and K, = lin(l)szG(s) =0
b.
1 1
eslep(oo) 1 n llII(} G(S) =7 127 =7.8¢ — 03
eranp(09) = s = 5 =
ramp\OQ) = III%SG(S) = 0 =0
1 1
eparabola(oo) ==&

" lim s°G(s) 0

s—0

19
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7.3
System is stable for positive K. System is Type 0. Therefore, for a step input

. . . 12K
Estep(00) = 4K, 0.1. Solving for K, yields K, =9 = 1133 G(s) = 18 from
which we obtain K = 189.
7.4
2

System is stable. Since Gi(s) = 1000, and G,(s) = (s + ),

(s+4)

ep(o0) = ! S S 9.98¢ — 04
r limL—i—limG (s)_2+1000_ .
s—0 Gz (S) Sﬂ%)
7.5
1 —s

System is stable. Create a unity-feedback system, where H,(s) = 1 1= ST

The system is as follows:

Rs) Y EJs) | 100 C(s)
_ s+4

=

s+1
Thus,

100
Gals) = G(s) B (s+4) ~100(s +-1)
WETE G Hes) 100§ 95514

(s+1)(s+4)

Hence, the system is Type 0. Evaluating K|, yields
100
K,=—=2
) 5
The steady-state error is given by
€step(00) = o1 = 3.846e — 02
W\ T YK, 1425
7.6
. K(s+17) 1 1 10
Sinee G0 = o100 ) TR, T K T 1047k
10
Calculating the sensitivity, we get
K Oe K (—=10)7 7K

Se:K

T e 0K 10 (10+7K)2:_10+7K
10+ 7K
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7.7

Given

Using the final value theorem,

(00) = Ii R()[1 C(sl A)*B} fim [1-11 17]° L]
Cgiep(00) = limsR(s) |1 — C(sI — =1lim |1 —
“r s s—0 3 546 1
s+6 W
_ 35 s||0 . 245542 2
_Elg(} 1-[1 1]s2+6s+3 11 T2 +6s+3 3

Using input substitution,

o 171'To
sep(00) =1+ CA'B=1-1 1][ 6] H

-3 - 1
5
1
3 0 0 2
=1+[1 1] [ ]:1+[1 1][ 3}:
3 1 0 3
CHAPTER 8
8.1
& F(—74j9) = (=7+/9+2)(=7+j9+4)0.0339 _  (=5+j9)(-3+/9)
(=T +iN(=T+j9+3)(=T+/9+6) (=7+j9)(—4+/9) (=1 +j9)

(=66 — j72) . .
209 7T72) 0339 — 0.0899 — 0.096 < —110.7
(944 —j378) ] <

b. The arrangement of vectors is shown as follows:

Jjo

(=74j9)

s-plane

21
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From the diagram,

o MoMy o (=3+j9)(=5+9) (=66 —j72)
FT 400 = 3iioms ~ T 9 (4 + 9 (-7 +9) (944 —378)

= —0.0339 — j0.0899 = 0.096 <; —110.7°

8.2
a. First draw the vectors.

jo
X 3
J2
s-plane
Jj1
<) o
-3 -2 -1 0

—j1

-2

X 3

From the diagram,

-3 3
> angles = 180° — tan ™! <—1> —tan~! (T) = 180° — 108.43° + 108.43° = 180°.

b. Since the angle is 180°, the point is on the root locus.

_ IIpolelengths (\/12 + 32) (\/12 + 32)
~ Ilzerolengths 1

=10

C.

8.3
First, find the asymptotes.

__>_poles — > zeros (-2—-4-6)—(0) _ 4

~ #7poles — # zeros 3-0

2k +1)m
3

a

Sm

T
ea: =550 5
3773
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Next draw root locus following the rules for sketching.

Imag Axis

Real Axis

b. Using the Routh-Hurwitz criteria, we first find the closed-loop transfer function.
T(s) = G(s) K(s+2)
1+G(s) s2+ (K —4)s+ (2K +13)

Using the denominator of 7(s), make a Routh table.

52 1 2K +13
st K — 40 0
50 2K +13 0

We get a row of zeros for K = 4. From the s> row with K = 4, s*> 421 = 0. From
which we evaluate the imaginary axis crossing at v/21.

c¢. From part (b), K = 4.

d. Searching for the minimum gain to the left of —2 on the real axis yields —7 at a
gain of 18. Thus the break-in point is at —7.
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e. First, draw vectors to a point ¢ close to the complex pole.

jo
s-plane
Jj3
o
) 0 2
-3 X

At the point ¢ close to the complex pole, the angles must add up to zero. Hence,

angle from zero —angle from pole in 4™ quadrant — angle from pole in 1 quadrant =
3 .

180°, or tan~! (4_1) —90° — 0 =180°. Solving for the angle of departure,

0 = —233.1.

8.5

=05 jo

4
s-plane

X 4
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b. Search along the imaginary axis and find the 180° point at s = +j4.06.

c. For the result in part (b), K = 1.
d. Searching between 2 and 4 on the real axis for the minimum gain yields the break-in
ats = 2.89.
e. Searching along ¢ = 0.5 for the 180° point we find s = —2.42 4 j4.18.
f. For the result in part (e), K = 0.108.
g. Using the result from part (c¢) and the root locus, K < 1.
8.6
a.
jo
£=0.591
s-plane
X X X o
-6 —4 -2 0
b. Searching along the ¢ = 0.591 (10% overshoot) line for the 180° point yields
—2.028 + j2.768 with K = 45.55.
4 4 b4 b4
c. ——==197s5;T) =+ 1.13s; w, T, = 1.8346 from the

T = = = = = =
' |Re| 2.028 [Im| 2.768
rise-time chart and graph in Chapter 4. Since w,, is the radial distance to the pole,

wn = V/2.028% +2.768> = 3.431. Thus, T, = 0.53s; since the system is Type 0,

K 45.55
p = m = W - 0949 ThLlS,

1

= e =0.51.

step(00)

. Searching the real axis to the left of —6 for the point whose gain is 45.55, we find
—7.94. Comparing this value to the real part of the dominant pole, —2.028, we find
that it is not five times further. The second-order approximation is not valid.

8.7

Find the closed-loop transfer function and put it the form that yields p; as the root
locus variable. Thus,

100
G(s) 100 100 24100

() = 1+G(s) 24ps+100 (2+100) +ps 14 _ P8
s +100

25
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Hence, KG(s)H(s) = 2 i ’i 00 The following shows the root locus.
jo
s-plane X 10
14
- oO—>o
0
X-j10

8.8

Following the rules for plotting the root locus of positive-feedback systems, we
obtain the following root locus:

Jjo
b
s-plane
»
- o— X—X—1t— oo
i -4 —; -2 -1 0
8.9
K(s+1)

The closed-loop transfer function is 7'(s) = Differentiating the

2+ (K+2)s+K
denominator with respect to K yields

Os Os 0s
. Os Js  —(s+1) _Kos  —K(s+1)
Solving for K we get K m Thus, S,.x = SR m
o . —10(s + 1)
K=2 1 K= ——————".
Substituting 0 yields Ss.x So10)

Now find the closed-loop poles when K = 20. From the denominator of 7'(s),
s12 = —21.05, —0.95, when K = 20.
For the pole at —21.05,

AK ( —10(—21.05 + 1)

A — P _— —12
s = 5(Ssx) K 05 —21.05(-21.05 + 11)

)0.05 = —0.9975.
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For the pole at —0.95,

AK ~10(—0.95 + 1)
As = 5(Syx) ~ = 0.95 0.05 = —0.0025.
s = 8(Sok) 3= = 09 (-0.95(—0.95+11)>
CHAPTER 9

9.1

a. Searching along the 15% overshoot line, we find the point on the root locus at
—3.5+4j5.8 at a gain of K =45.84. Thus, for the uncompensated system,
K, = lin(} sG(s) = K/7=45.84/7 = 6.55.

s

Hence, eramp_uncompensated(oo) = 1/Kv = 0.1527.
b. Compensator zero should be 20x further to the left than the compensator pole.
(s4+0.2)
(s +0.01)
c. Insert compensator and search along the 15% overshoot line and find the root
locus at —3.4 + j5.63 with a gain, K = 44.64. Thus, for the compensated system,
v = % = 127.5 and eump_compensated(00) = Kiv = 0.0078.

d €ramp _uncompensated __ 0.1527 — 1958

Arbitrarily select G.(s) =

emmp,compensaled 0~0078

9.2

a. Searching along the 15% overshoot line, we find the point on the root locus at
—3.5+j5.8 at a gain of K = 45.84. Thus, for the uncompensated system,

4 4

b. The real part of the design point must be three times larger than the un-
compensated pole’s real part. Thus the design point is 3(—3.5)+ j3(5.8) =
—10.5 +j17.4. The angular contribution of the plant’s poles and compensator
zero at the design point is 130.8°. Thus, the compensator pole must contribute
180° — 130.8° = 49.2°. Using the following diagram,

jo

j17.4

s-plane

49.2°

_p(‘ *105

we find = tan49.2°, from which, p, = 25.52. Adding this pole, we find

17.4
P.—105
the gain at the design point to be K = 476.3. A higher-order closed-loop pole is
found to be at —11.54. This pole may not be close enough to the closed-loop zero
at —10. Thus, we should simulate the system to be sure the design requirements
have been met.

27
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9.3

a. Searching along the 20% overshoot line, we find the point on the root locus at
—3.5+6.83 at a gain of K = 58.9. Thus, for the uncompensated system,

4 4
Ty=— = —1143s.
*~|Re| 35 S

b. For the uncompensated system, K, = lin& sG(s) = K/7 =58.9/7 = 8.41. Hence,
§—

eramp_uncompensated(oo) = 1/Kv = 0.1189.

c. In order to decrease the settling time by a factor of 2, the design point is twice the
uncompensated value, or —7 +j 13.66. Adding the angles from the plant’s poles
and the compensator’s zero at —3 to the design point, we obtain —100.8°. Thus,
the compensator pole must contribute 180° — 100.8° = 79.2°. Using the following
diagram,

jo

j13.66

s-plane

79.2°
1 > O

—Pe -7

P.—-7
gain at the design point to be K = 204.9.
Evaluating K, for the lead-compensated system:

we find

= tan79.2°, from which, p. = 9.61. Adding this pole, we find the

K, = lim sG(s)Geaa = K(3)/[(7)(9.61)] = (204.9)(3)/[(7)(9.61)] = 9.138.

s—0

K, for the uncompensated system was 8.41. For a 10x improvement in steady-state
error, K, must be (8.41)(10) = 84.1. Since lead compensation gave us K, = 9.138,
we need an improvement of 84.1/9.138 = 9.2. Thus, the lag compensator zero
should be 9.2x further to the left than the compensator pole. Arbitrarily select
(s +0.092)
Gels) =5 001)
Using all plant and compensator poles, we find the gain at the design point to
be K =205.4. Summarizing the forward path with plant, compensator, and gain
yields

2054(s +3)(s + 0.092)
~ s(s+7)(9.61)(s +0.01)

Ge(s)

Higher-order poles are found at —0.928 and —2.6. It would be advisable to simulate
the system to see if there is indeed pole-zero cancellation.
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9.4

The configuration for the system is shown in the figure below.

R(s) + @ © + ®_> 1 C(s)
s(s+ 7)(s +10)

Minor-Loop Design:

Ky
(s+7)(s + 10)
find that the minor-loop root locus intersects the 0.7 damping ratio line at
—8.5 +j 8.67. The imaginary part was found as follows: @ = cos~!¢ = 45.57°. Hence,

Im = tan45.57°, from which Im = 8.67.

For the minor loop, G(s)H(s) = . Using the following diagram, we

8.5
jo
=07
N (-8.5 +j8.67)
Im
s-plane
- 0
< 3 c
10 -85 -7

The gain, Ky, is found from the vector lengths as

Kr = V1.5 +867°V1.5% +8.67° = 77.42

Major-Loop Design:
Using the closed-loop poles of the minor loop, we have an equivalent forward-path
transfer function of

K K

Ge = . - .
(5) s(s +8.5+78.67)(s +85—j8.67) s(s2+17s+ 147.4)

Using the three poles of G.(s) as open-loop poles to plot a root locus, we search
along ¢ = 0.5 and find that the root locus intersects this damping ratio line at —4.34 +
j7.51 at a gain, K = 626.3.
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9.5
a. An active PID controller must be used. We use the circuit shown in the following
figure:
Zy(s)
~— Iy
z
v O v
/\/\/\/ I—> - V0<‘Y)
L(s) ol5) .

where the impedances are shown below as follows:

C
R, G
o - ANAE
Z,(s) Zy(s)

Matching the given transfer function with the transfer function of the PID
controller yields

2
Gels) = (s+0.1)(s+5) _ 5 +51s+0.5 :s+5.1+§
s s 8
1
RZ Cl R1C2
=—||=4+—=]+RC
(R1+C2> + oC1s + p
Equating coefficients
1
=05 1
RG 1)
RCp =1 (2)
R, C;
—+—]=51 3
<R1 - C2) ®)

In Eq. (2) we arbitrarily let C; = 107>, Thus, R, = 10°. Using these values along with

Egs. (1) and (3) we find C; = 100uF and Ry = 20 kQ.

b. The lag-lead compensator can be implemented with the following passive net-
work, since the ratio of the lead pole-to-zero is the inverse of the ratio of the lag
pole-to-zero:




Chapter 10 Solutions to Skill-Assessment Exercises

Matching the given transfer function with the transfer function of the passive lag-lead
compensator yields

Gels) = (s+01)(s+2)  (s+0.1)(s+2)
N (s 40.01) (s +20)  s2+20.01s +0.2

s+ ! S+ !
R Cy R, Gy

s2 + ! + ! + L s+ !
R1C1 R2C2 R2C1 R1R2C1C2

Equating coefficients

R11C1 =01 (1)
R21C2 =01 (2)
(R11C1 - R21C2 - Rlel) = 2001 (3)
Substituting Egs. (1) and (2) in Eq. (3) yields
Rlel =1791 (4)

Arbitrarily letting C; = 100 uF in Eq. (1) yields Ry = 100 k€.
Substituting C; = 100 wF into Eq. (4) yields R, = 558 kQ.
Substituting R, = 558 kQ) into Eq. (2) yields C; = 900 uF.

CHAPTER 10
10.1

1 , 1
e T Er e e

M(@) = /(8 — ) + (60)°

For w < V8, ¢(w) = —tanl( b )

8 —w?

For o < V8, ¢(w) = — <71 + tan~! [8 Ewwz] )
b.

Bode Diagrams

Phase (deg); Magnitude (dB)

107! 100 10! 10
Frequency (rad/sec)
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C.
Nyquist Diagrams
T T T T
oosf e e e ]
ool AU J S ]
ooaf e T e ]

P SR SRR R S S

2 : ‘ ‘ : ‘ :

< : :

= Of - e R LR TR ERREE

E ‘ :

& . .

B 002 P
004 R
~0.06 |- rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
008f TS T TR

-0.05 0 0.05 0.1 0.15 0.2
Real Axis
10.2
Asymptotic
T~ —20dB/dec | | |
40 fad \§\
SN —40 dB/dec
0 Actual ~20 dB/dec
~
5! BA
2 80 N L
= —40 dB/dec
[\
-100 J
\\\
-120
0.1 1 10 100 1000
Frequency (rad/s)
\#fj/dec
7 ¥ N Q"/deo
Eb 45 dec
S -100 [-90%/dec
2 —45%/dec 7“”‘1
£ 150 2 =S -
1 ~THE —45°/dec
Asymptotic L
200 [ L1 | 1T
0.1 1 10 100 1000

Frequency (rad/s)
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10.3

The frequency response is 1/8 at an angle of zero degrees at w = 0. Each pole rotates
90° in going from w =0 to w = oo. Thus, the resultant rotates —180° while its
magnitude goes to zero. The result is shown below.

Im

10.4

a. The frequency response is 1/48 at an angle of zero degrees at w = 0. Each pole
rotates 90° in going from w = 0 to w = oo. Thus, the resultant rotates —270° while
its magnitude goes to zero. The result is shown below.

I

m
wm/\ |

0= col—O‘ Re
__1 0 ry
480

1 1
(s+2)(s+4)(s+6) s+ 1252 + 445 + 48
(48 — 12a)2) —j(44a) — a)3)
® + 560* + 7840? + 2304
crosses the real axis when the imaginary part of G(jw) is zero. Thus, the Nyquist

diagram crosses the real axis at v’ = 44, or v = V44 = 6.63 rad/s. At this fre-
1

480

b. Substituting jo into G(s) = and

simplifying, we obtain G (jo) = The Nyquist diagram

quency G(jw) = Thus, the system is stable for K < 480.

33



10.5
If K =100, the Nyquist diagram will intersect the real axis at —100/480. Thus,
480

Gy =20 logm = 13.62 dB. From Skill-Assessment Exercise Solution 10.4, the
180° frequency is 6.63 rad/s.
10.6
a.

-80 e

100 \\

- \\\\

-120 \

~140

-160

-180

1 10 100 1000




10.8

For both parts find that G(jw) =

*
27
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160 (6750000 — 101250?) + j1350(? — 1350)w

® +2925w* 4+ 10725002 + 25000000

For a range of values for w, superimpose G(jw) on the a. M and N circles, and on the

b. Nichols chart.

Open-Loop Phase (deg)

a.
Im
3 [
G-plane
@ =20°
2 M=13 . — s
.
14
1 s - -H&“ R " M=0.7
R e 4T T e
.“-.§ ‘-' '
NN
2 =N/ 4 L
v in!
N
Qam=7///a: -
; aiE> /A eIk
Ee AR Nl
‘ 2300
250
B ~ 200
3 L
- - -2 -1 1 2
b.
Nichols Charts
| ' R T e
B m PN
: 20 dB
~ 40 dB
c i 60 dB
5 80 dB
5 A
& -l00 it 100 dB
—]Z 120 dB
gh -1507i o -140 dB
P -160 dB
R -180 dB
200F 2200 dB
‘ 2220 dB
O R R e R R
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Plotting the closed-loop frequency response from a. or b. yields the following plot:

20 log M

10.9

Phase (degrees)

0
-20
—40

-300

\\

-100
-150
-200 —

-250 ——

1 10 100 1000

Frequency (rad/s)

1 10 100 1000

Frequency (rad/s)

The open-loop frequency response is shown in the following figure:

Phase (deg); Magnitude (dB)

-100

-120

—-140

-160

Bode Diagrams

Frequency (rad/sec)
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The open-loop frequency response is —7 at w = 14.5rad/s. Thus, the estimated
bandwidth is wwp = 14.5rad/s. The open-loop frequency response plot goes
through zero dB at a frequency of 9.4 rad/s, where the phase is 151.98°.
Hence, the phase margin is 180° — 151.98° = 28.02°. This phase margin corre-
sponds to

¢ =0.25. Therefore, %O0S = ef({”/ Vi-g) x 100 = 44.4%

T, = 4 (1 —28%) + /4 — 482 +2 = 1.64sand
wpw{

T
Ty =————\/(1-28) + V4c" =4 +2= 0335
! wgww“—?\/( )

10.10
The initial slope is 40 dB/dec. Therefore, the system is Type 2. The initial slope
intersects 0 dB at w = 9.5rad/s. Thus, K, = 9.5 = 90.25 and K, =K, = .

10.11

a. Without delay, G(jw) = - ,10 = 10 —, from which the zero dB fre-
jolo+1)  o(-o+))

——— = 1. Solving for v, wvw? +1 = 10, or
ovVa? +1

after squaring both sides and rearranging, o* + »?> — 100 = 0. Solving for the
roots, w® = —10.51, 9.51. Taking the square root of the positive root, we find the
0 dB frequency to be 3.08 rad/s. At this frequency, the phase angle, ¢ =
—/(—w+j) = —/(—3.084j) = —162°. Therefore the phase margin is 180°
—162° =18°.

b. With a delay of 0.1 s,

quency is found as follows: M =

¢p=—l~w+]))—oT = —/(—3.08+) — (3.08)(0.1)(180/pi)
= 162 — 17.65 = —179.65°

Therefore the phase margin is 180° — 179.65° = 0.35°. Thus, the system is table.
c. With a delay of 3 s,

¢p=—/(—w+])—oT =—-/(-3.08+j) — (3.08)(3)(180/pi) = —162° — 529.41°
= —691.41° = 28.59 deg.

Therefore the phase margin is 28.59 — 180 = —151.41 deg. Thus, the system is
unstable.

10.12

Drawing judicially selected slopes on the magnitude and phase plot as shown below
yields a first estimate.
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Experimental

20

—~ ]
L T

R

T~

/]
/1

/
/

Gain(dB)
|
S

-70 AN

Phase(deg)

1 2 3 4567810 20 30 40 50 70 100 200 300 500 1000

Frequency (rad/sec)

We see an initial slope on the magnitude plot of —20 dB/dec. We also see a final

—20 dB/dec slope with a break frequency around 21 rad/s. Thus, an initial estimate is
1

Gi(s) = S0 Subtracting G (s) from the original frequency response yields the

frequency response shown below.

Experimental Minus 1/s(s+21)
90 -

80

70 =

Gain(dB)

60 —
50 =

40

100

80

60

A\

Phase(deg)
\
\

|

20

1 2 3 4567810 20 30 4050 70 100 200 300 500 1000
Frequency (rad/sec)
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Drawing judicially selected slopes on the magnitude and phase plot as shown

yields a final estimate. We see first-order zero behavior on the magnitude and

phase plots with a break frequency of about 5.7 rad/s and a dc gain of about

44 dB = 20log(5.7K), or K =27.8. Thus, we estimate G(s) =27.8(s+ 7). Thus,
27.8(s +5.7)

G(s) = G1(5)Ga(s) = Ser2) It is interesting to note that the original problem
~ 30(s +5)
was developed from G(s) = 51 20)
CHAPTER 11

11.1
The Bode plot for K =1 is shown below.

Bode Diagrams

-120

~140

-160

-180

—100f R ne ST LT T R TP EET RS R R -

Phase (deg); Magnitude (dB)

R T I SO .

200 R N -

Frequency (rad/sec)

%
~log <100>

72 + log? %
100

phase margin of 48.10, which is obtained when the phase angle = —1800 + 48.10
= 131.9°. This phase angle occurs at w = 27.6 rad/s. The magnitude at this frequency

1
= 194,200,
5.15 x 10

A 20% overshoot requires ¢ = = 0.456. This damping ratio implies a

is 5.15 x 107, Since the magnitude must be unity K =

11.2

To meet the steady-state error requirement, K = 1,942, 000. The Bode plot for this
gain is shown below.
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Bode Diagrams

T T T
60 - T e T E
GOf - T e L R RREEEEEEEEEE .
DO - rmm e TR e REEEETE PR 4
Of - e B
B 20 PN .
= :
B O N .
2 ‘
= I 1 I
£
=
) T T T
S -100 |- ‘ .
()
=
A : : :
—150'*"""""""""“ """""""""" """""""""" """""""""" |
] P T  CLETTREPEPPPPS 4
D50 | e e R O R D B
1 1 1
107! 10° 10! 107 103

Frequency (rad/sec)

%
—log ﬁ

%
2 2
7% + log (10())

implies a phase margin of 48.1°. Adding 10° to compensate for the phase angle
contribution of the lag, we use 58.1°. Thus, we look for a phase angle of
—180° +58.1° = —129.9°. The frequency at which this phase occurs is 20.4 rad/s.
At this frequency the magnitude plot must go through zero dB. Presently, the
magnitude plot is 23.2 dB. Therefore draw the high frequency asymptote of the lag
compensator at —23.2 dB. Insert a break at 0.1(20.4) = 2.04 rad/s. At this frequency,
draw —23.2 dB/dec slope until it intersects 0 dB. The frequency of intersection
will be the low frequency break or 0.141 rad/s. Hence the compensator is

(s +2.04)
Gels) = Ke (7 0.141)
or K. =0.141/2.04 = 0.0691. In summary,

(s+2.04)
(s +0.141)

A 20% overshoot requires ¢ = = 0.456. This damping ratio

, where the gain is chosen to yield 0 dB at low frequencies,

B 1,942,000
(s +50)(s + 120)

G.(s) = 0.0691 and G(s)

11.3

%
—log| 159
= 0.456. The required bandwidth

%
2 2
% + log <100>

4 \/(1 —28%) + 45t — 422 +2 = 57.9 rad/s. In order

Ty

A 20% overshoot requires { =

is then calculated as wpw =

K
to meet the steady-state error requirement of K, =50 = W’ we calculate

K =300,000. The uncompensated Bode plot for this gain is shown below.
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Bode Plot for K = 300000

S100 | R R .

Phase (deg); Magnitude (dB)

Ssof o S N ]

200 R R LN .

Frequency (rad/sec)

The uncompensated system’s phase margin measurement is taken where the
magnitude plot crosses 0 dB. We find that when the magnitude plot crosses 0 dB,
the phase angle is —144.8°. Therefore, the uncompensated system’s phase margin is
—180° + 144.8° = 35.2°. The required phase margin based on the required damping
2¢

\/72§2+ 1442

required phase margin is 58.1°. Hence, the compensator must contribute

ratio is ®,; = tan! = 48.1°. Adding a 10° correction factor, the

. .1 1-p8 1 —sing
=58.1° = 352° =22.9°. = 1 = max _ ()44,
Prmax = 38 35 9°. Using ¢max = Sin 17 p 1 sing 0
The compensator’s peak magnitude is calculated as My = \/LB = 1.51. Now find

the frequency at which the uncompensated system has a magnitude 1/Mpay, OF
—3.58 dB. From the Bode plot, this magnitude occurs at wmax = S0rad/s. The

1 1
compensator’s zero is at z. = 7+ Omax = TV Therefore, z. = 33.2.
1
The compensator’s pole is at P, = BT :%: 75.4. The compensator gain is

chosen to yield unity gain at dc.
Hence, K,=75.4/33.2=227. Summarizing, G.(s) =227

300,000

G) 57 50) (5 + 120)

11
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11.4
%
A 10% overshoot requires ¢ = = 0.591. The required bandwidth
%
2 22
7% + log ( 10 0)
is then calculated as wpy = — \/(1 —28%) + /45t — 422 +2 =7.53rad/s.
Ty\/1-10
In order to meet the steady-state error requirement of K, =10 = %, we

calculate K = 2400. The uncompensated Bode plot for this gain is shown below.

Bode Diagrams

—-100

Phase (deg); Magnitude (dB)

-150

—200

-250

107! 100 10! 102 103
Frequency (rad/sec)

Let us select a new phase-margin frequency at 0.8wpw = 6.02rad/s. The

required phase margin based on the required damping ratio is ®, = tan~!
2

\/ =202 +4/1+ 4
margin is 63.6°. At 6.02 rad/s, the new phase-margin frequency, the phase angle
is—which represents a phase margin of 180° — 138.3° = 41.7°. Thus, the lead com-
pensator must contribute ¢, = 63.6° —41.7° =21.9°.
1 1- ,3 1- Sin¢max

1+8 F=1 + SiNPa 0.436.
We now design the lag compensator by first choosing its higher break frequency one
decade below the new phase-margin frequency, that is, z;,, = 0.602 rad/s. The lag
compensator’s pole is p;,, = Bziag = 0.275. Finally, the lag compensator’s gain is
Kiqe = B = 0.456.

= 58.6°. Adding a 5° correction factor, the required phase

Using ¢, = sin™
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Now we design the lead compensator. The lead zero is the product of the new
Zlead

p

phase margin frequency and /B, Or Zjuq = 0.8wpw /B = 4.07. Also, pi.. =
1
= 8.93. Finally, Kepq = ,E = 2.19. Summarizing,

(s +0.602)

v = (5) = 0.456 >0
Glag = () = 0436 1 —5575)

and k£ = 2400.

CHAPTER 12

121
We first find the desired characteristic equation. A 5% overshoot requires
) — 0.69. Also, , = ——

—lo Yo
&\ 100
% T,/1-2¢
72 + log? 2 P ¢
100
acteristic equation is s* + 2¢w,s + w? = s> + 19.97s + 209.4. Adding a pole at —10 to
cancel the =zero at —10 yields the desired characteristic equation,
(s* +19.97s +209.4) (s + 10) = s> +29.97s* + 409.1s -+ 2094. The compensated sys-
tem matrix in phase-variable form is

= = 14.47 rad/s. Thus, the char-

0 1 0
A -BK = 0 0 1 . The characteristic equation for this
—(k1) —(B6+ky) —(15+ks)
system is |sI — (A — BK)| = s> + (15 + k3)s? + (36 + ky)s + (k;). Equating coeffi-
cients of this equation with the coefficients of the desired characteristic equation
yields the gains as

K=k k ki]=[2094 373.1 14.97].

12.2
2 1 1

The controllability matrix is Cy=[B AB A’B|= |1 4 —9|. Since
1 -1 16

|Cm| = 80, Cyis full rank, that is, rank 3. We conclude that the system is controllable.

12.3

First check controllability. The controllability matrix is Cm; = [B AB A’B]| =
0 0 1
0 1 —17].Since |Cy;| = —1, Cyy, is full rank, that is, rank 3. We conclude that
1 -9 81

the system is controllable. We now find the desired characteristic equation. A 20%

%
log( >
4
100 = 0.456. Also, w, = T, = 4.386 rad/s.

% s
2 202
m* + log (100)

overshoot requires ¢ =

43
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Thus, the characteristic equation is s* + 2¢w,s + w? = s* + 4s + 19.24. Adding a pole
at —6 to cancel the zero at —6 yields the resulting desired characteristic equation,

(% + 45 +19.24) (s +6) =" + 105> + 43.24s + 115.45.

. s+6 5s+6 .
Since G(s) = o 7)ES n 8; ) = 5 24 - 1915 1 504 we can write the phase-
0 1 0 0
variable  representation as A, =| 0 0 1 [;By=1(0]:C, =
-504 —191 -24 1
[6 1 0]. The compensated system matrix in phase-variable form is A, — B, K, =
0 1 0
0 0 1 . The characteristic equation for this

—(504 + ki) —(191+ky) —(24+ k3)
system is |sT — (Ap — BpK,)| =57 + (24 + k3)s* + (191 + k»)s + (504 + k). Equat-
ing coefficients of this equation with the coefficients of the desired characteristic
equation yields the gains as K, = [k; k» k3] =[-388.55 —147.76 —14]. We
now develop the transformation matrix to transform back to the z-system.

0 0 1
Cw.= |[B. AB. A’B_|=|0 1 -17|and
1 -9 81
0o 0 1
Cwp= By ABy AjB,|=|0 1 24
1 —24 385
Therefore,
0 0 1 7[191 24 1 1 0 0
P=Cw,Cy.= |0 1 17|24 1 0|=|7 1 0
1 -9 81| 1 0 0 56 15 1
1 0 0
Hence, K, = K,P~' =[-388.55 —147.76 —14]|-7 1 0
49 15 1
—[—40.23 6224 —14].
12.4
—(24+04L) 1.0
For the given system ey = (A — LC)ex = | —(191 4+ /) 0 1 |ey. The characteristic
—(50441) 0 0

polynomial is given by |[[sI - (A —LC)]|=s>+ (24+14)s> + (191 +L)s +
(504 + I3). Now we find the desired characteristic equation. The dominant poles
from Skill-Assessment Exercise 12.3 come from (s* + 4s + 19.24). Factoring yields
(=2 +/3.9) and (—2 —j3.9). Increasing these poles by a factor of 10 and adding a
third pole 10 times the real part of the dominant second-order poles yields the
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desired characteristic polynomial, (s 4 20 + j39)(s + 20 — j39)(s + 200) = s> + 240s>
+9921s + 384200. Equating coefficients of the desired characteristic equation to the

216
system’s characteristic equation yields L = | 9730
383696 |
12,5
C [ 4 6 8
The observability matrix is Oy=| CA | =|—-64 —-80 -78|, where
CA’ | 674 848 814
25 28 32
A>=|-7 —4 —11|. The matrix is of full rank, that is, rank 3, since
77 95 94
|Om| = —1576. Therefore the system is observable.
12.6

The system is represented in cascade form by the following state and output
equations:

-7 1 0 0
Z= 0 -8 1|z+|0]u
0o 0 -9 1
y=[1 0 0]z
C, 1 0 0
The observability matrix is Oy, = | C,AL | = | =7 1 0],
C,A? 499 —15 1
49 -15 1 .
here A2=| 0 64 —17].Si —
where A, Since G(s) ORI
0 0 81
1

we can write the observable canonical form as

4+ 2452 + 1915 + 504’

-24 1 0 0
x=1|-191 0 1|x+ |0 ]|u
=504 0 O 1
y=[1 0 OJx
Cy 1 0 0
The observability matrix for this form is Oy = | CxAx | = | -24 1 0,

CAZ 385 24 1

45
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where

385 24
AZ=| 4080 —191 0
12096 504 0

We next find the desired characteristic equation. A 10% overshoot requires

—log( % )
.= 100 = 0.591. Also, w,, = 4

% gTs
2 4 loe? [ ==
- + log <100>

equation is s> + 2¢w,s + w? = s* + 80s + 4578.42. Adding a pole at —400, or 10 times
the real part of the dominant second-order poles, yields the resulting desired character-
istic equation, (s? + 80s + 4578.42)(s + 400) = s>+ 480s? + 36580s + 1.831x10°. For
the system represented in observable canonical form ey = (Ayx — LyCy) ex =
—(24+0h) 1 0
—(191+15) O 1|ex. The characteristic  polynomial is given by
—(504+14) 0 0
ST — (Ax — LyCy)]| = s> + (24 + 11)s* + (191 + L»)s + (504 + I3). Equating coeffi-
cients of the desired characteristic equation to the system’s characteristic equation
456
yields Ly = | 36,389
1,830,496
Now, develop the transformation matrix between the observer canonical and
cascade forms.

= 67.66 rad/s. Thus, the characteristic

1 o0o0]'[ 1 00

P=0,0mx=|-7 1 0 24 10

49 15 1 385 24 1
1 0 0 1 0 0

= 7 1 0|24 1 0
56 15 1 385 -24 1

1 00
=|-17 1 0
81 -9 1
Finally,
1 00 456 456 456
L,=PLy=|-17 1 0 36,389 | = | 28,637 | =~ | 28,640

81 -9 1] [1,830,496 1,539,931 1,540,000
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12.7
We first find the desired characteristic equation. A 10% overshoot requires
—log< %o >
= 100 =0.591
72 + log? %
& \100
T
Also, w, = ———————=1.948rad/s. Thus, the characteristic equation is s>+
e / ’

2¢wys + w2 =s* +2.3s +3.79. Adding a pole at —4, which corresponds to the
original system’s zero location, yields the resulting desired characteristic equation,
(s> +23s+3.79)(s +4) = 5* + 6.35> + 135 + 15.16.

o ] (429 5 [l o]

XN —C 0 XN 1 XN
where
0 1 0 0 1 0 0
S A R R A )
B 0 1
| -(T+k) —9+k)
C=[4 1]
0 0
= [y o= [
Thus,
X1 0 1 0 X1 0 X1
X | = —(7—|—k1) —(9—|—k2) k, X7 +[1}r;y:[4 1 0] X2
x}v -4 -1 0 XN XN

Finding the characteristic equation of this system yields

s 0 0 0 1 0
(A —BK) BK,
sI — C 0 =0 s Of— —(7+k1) -9+ ky) k.
0 0 s —4 -1 0
s -1 0
= || (T+k) s+0O9+k) —ke||=54+ky)s*+ (7+ki +ke)s + 4k,
4 1 s

Equating this polynomial to the desired characteristic equation,
§3 46357 + 135 +15.16 = s° + (9 + ka)s* + (7 + k1 + ke)s + 4k,
Solving for the £’s,
K=1[221 -2.7] andk, =3.79.

47
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CHAPTER 13

13.1
F(t) = sin(@kT); f5(1) = 3 sin(wkT)8(t — kT);
k=0

& o0 (,jwkT _ ,—jwkTY ,—kTs
Fr(s) = Zsin(a)kT)e’kTs = Z (e ¢ - )e
k=0 k=0 2
_1 T(s—jw)) % _ (Tt} T
LS ) )
But i x k= !
=i 1—xt
Thus,
= B 1 1 1 B 1 efTseij _ efTseij
(s) = 21— T6do) 1 _ e T6to)| 2 |1 (e Toelol — ¢~TsegioT) 1 ¢2Ts
T sin(wT) B z sin(wT)
N 1 — e T2cos(wT) + e 2Ts| 1 -2z 'cos(wT) + 772
13.2
2(z+1)(z +2)
F =
) = =05z = 07z —0.9)
F(z) _ 2(z+1)(z+2)
Z (z—=0.5)(z—0.7)(z — 0.9)
z 1 b4
= 46.875 —114.75——— 4 68.875
205 07" z-009
z z z
F(z) =46.875 —11475——— 4+ 68.875 ——
2 205 —07 " z-09’
F(kT) = 46.875(0.5)" — 114.75(0.7)% + 68.875(0.9)¢
13.3
Since G(s) = (1 — e ™) _8
s(s+4)
8 z—1 [A B z—1 (2 2
G = 1 — -1 frng J— — — .
0= 0= el e e )
2 2
Let Gy(s) = stoea Therefore, g,(t) =2 —2e™¥, or g,(kT) = 2 — 2¢e~#T.
2z 2z 2z(1—e™*7)

Hence, G(z) = o1 T o =Dz —c)
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z—1 2(1—e*T)
Therefore, G(z) = Ga(2) =7+
erefore, G(z) e 2(2) (z — e-47)
1 1.264
For T = 25 G(z) = 2203679

13.4

Add phantom samplers to the input, feedback after H(s), and to the output. Push
G1(s5)Gx(s), along with its input sampler, to the right past the pickoff point and obtain
the block diagram shown below.

C
R »  + G (5)Gy(s) —(S)/—’

- k—'

N H($)G,(5)G(s) ]

B G1G1(2)
Hence, T'(z) = 14+ HG G (z)

13.5

20 G 20 4 4 . .
Let G(S) = H—S Let Gz(s) = iS) = m = E — H—S Taklng the inverse
Laplace transform and letting t = kT, g,(kT) = 4 — 4e~>kT_ Taking the z-transform

. 4z 4z 4z(1—e>")
ylelds Gz(Z) = -1 - 7 — 5T - (Z _ 1)(2 _ e—ST).
z—1 4(1—e")
N — — = —
ow, G(z) Ga(z) (z —e57)

_ Gl _ 41—
1+G(z) z—5eT+4
The pole of the closed-loop system is at Se=>7 — 4. Substituting values of 7, we find

that the pole is greater than 1 if 7 > 0.1022s. Hence, the system is stable for
0<T<0.1022s.

13.6

Finally, 7(z)

Substituting z =

St 1 into D(z) = z° — z2 — 0.5z + 0.3, we obtain D(s) = s> — 85>
—27s — 6. The Routh table for this polynomial is shown below.

s 1 —27
5 -8 —6
st —27.75 0
s° -6 0

Since there is one sign change, we conclude that the system has one pole outside the
unit circle and two poles inside the unit circle. The table did not produce a row of
zeros and thus, there are no jo poles. The system is unstable because of the pole
outside the unit circle.
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13.7
Defining G(s) as Gy(s) in cascade with a zero-order-hold,

_ _Ts (s+3) - e [3/20 0 174 2/5
G =201 - ™) [ g | =0 - M P g )

Taking the z-transform yields

3/20)z N (1/4)z (2/5)z ] 3 5z—-1) 8(z—1)

z—1  z—e* z—eT z—e T z—eT

G(z) =20(1 -z ") {(

1
Hence for 7' = 0.1 second, K, = lin} G(z) =3,and K, = Tlim (z=1)G(z) =0, and
—

Z*)l
1
K, = Flirr% (z —1)*G(z) = 0. Checking for stability, we find that the system is
—

B . ~ G(z)  1.5z-1.109
stable for T = 0.1 second, since T(z) = 156~ 2+02222 - 0703 has poles
inside the unit circle at —0.957 and + 0.735. Again, checking for stability, we find that
the system is wunstable for 7T =0.5 second, since T7T(z)= _G@) =

14+ G(2)
= i.gzgzogzo.éf)ggzn has poles inside and outside the unit circle at +0.208 and

—3.01, respectively.

13.8

Draw the root locus superimposed over the ¢ = 0.5 curve shown below. Searching
along a 54.3° line, which intersects the root locus and the ¢ = 0.5 curve, we find the
point 0.587/54.3° = (0.348 +j0.468) and K = 0.31.

z-Plane Root Locus

0.5

Imag Axis
(=]

I
-3 25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Real Axis

13.9
Let

100K 2.38(s +25.3) 342720(s 4 25.3)

T (5 +36)(s +100) (s+602)  s(s+36)(s + 100)(s + 60.2)"

G.(s) = G(5)G,(s)
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The following shows the frequency response of G, (jw).

Bode Diagrams

100 i e -

Phase (deg); Magnitude (dB)

150 LR N s

-200

Frequency (rad/sec)

We find that the zero dB frequency, wg,,, for G,(jw) is 39 rad/s. Using Astrom’s
guideline the value of 7 should be in the range, 0.15/wq, = 0.0038 second to
0.5/we,, = 0.0128 second. Let us use 7 =0.001 second. Now find the Tustin

Az—1) into G.(s) =

transformation for the compensator. Substituting s :ﬁ
7 —

2. 25.
M with 7 = 0.001 second yields

(s +60.2)
(z —0.975)
(z) =234 22
Gel2) = 23415 oa16)
13.10
_ X(z) 1899z% — 3761z + 1861 . i
G.(z) = E(z) 22— 1908z +0.9075 Cross-multiply and obtain (z? — 1.908z +

0.9075X (z) = (1899z% — 3761z + 1861) E(z). Solve for the highest power of z
operating on the output, X(z), and obtain z°X(z) = (1899z* — 3761z + 1861)
E(z) — (—1.908z + 0.9075) X (z). Solving for X(z) on the left-hand side yields

51
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X(z) = (1899 —3761z7! + 1861z 72) E(z)— (—1.908z7! +0.9075z %) X(z). Finally,
we implement this last equation with the following flow chart:

U 1899 u
Delay Delay
0.1 second 0.1 second

+
e¢0.D 3761 —>@§>_>® 21908 20D
+ + -
+ —

Delay Delay
0.1 second 0.1 second
“(1-0.2 X(t-0.2)

Iu» 1861 0.9075
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