Control Theory Assignment – Reduction of Multiple Subsystems

Sima Rishmawi, Birzeit University

15/10/2016

1 Reduce the following block diagram to a single transfer function, $T(s) = \frac{C(s)}{R(s)}$.

5 Reduce the system in the figure to a single transfer function $T(s) = \frac{C(s)}{R(s)}$.

2 Find the closed loop transfer function, $T(s) = \frac{C(s)}{R(s)}$ using block diagram reduction.

3 Find the equivalent transfer function $T(s) = \frac{C(s)}{R(s)}$ for the system shown in the figure.

4 Reduce the system in the figure to a single transfer function $T(s) = \frac{C(s)}{R(s)}$.

6 Reduce the system in the figure to a single transfer function $T(s) = \frac{C(s)}{R(s)}$.

7 Reduce the system in the figure to a single transfer function $T(s) = \frac{C(s)}{R(s)}$.

Assignment № 1

8 Reduce the system in the figure to a single transfer function $T(s) = \frac{C(s)}{R(s)}$.

9 Using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$ for the system shown in the Figure.

10 Using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$ for the system shown in the Figure.

11 Convert the Block Diagram in the Figure to a Signal Flow Graph, then, using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$.

12 Using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$ for the system shown in the Figure.

13 Using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$ for the system shown in the Figure.

14 Convert the Block Diagram in the Figure to a Signal Flow Graph, then, using Mason's Rule find the Transfer Function $T(s) = \frac{C(s)}{R(s)}$.

