Solution of Homework 5

Problem 1:

s ⁵	1	4	3
s ⁴	-1	-4	-2
s ³	arepsilon	1	0
s ²	$\frac{\varepsilon}{1-4\varepsilon}$	-2	0
s ¹	$\frac{2\varepsilon^2 + 1 - 4\varepsilon}{1 - 4\varepsilon}$	0	0
s ⁰	-2	0	0

3 rhp, 2 lhp

Problem 2:

s ⁵	1	3	2
s ⁴	-1	-3	- 2
s ³	-2	-3	ROZ
s^2	-3	-4	
s ¹	-1/3		
s ⁰	-4		

Even (4): 4 jω; Rest(1): 1 rhp; Total (5): 1 rhp; 4 jω

Problem 3:

s ⁶	1	-6	1	-6
s ⁵	1	0	1	
s ⁴	-6	0	-6	
s ³	-24	0	0	ROZ
s ²	3	-6		
s ¹	-144/ε	0		
s ⁰				

Even (4): 2 rhp; 2 lhp; Rest (2): 1 rhp; 1 lhp; Total: 3 rhp; 3 lhp

Problem 4:

$$T(s) = \frac{1}{4s^4 + 4s^2 + 1}$$

s4	4	4	1	
S 3	16	8	0	ROZ
s2	2	1	0	
g1	4	0	0	ROZ
s0	1	0	0	

Even (4): 4 jω

Problem 5:

The characteristic equation is:

$$1 + K \frac{(s+2)}{s(s-1)(s+3)} = 0$$
 or

$$s(s-1)(s+3) + K(s+2) = 0$$
 or

$$s^3 - 2s^2 + (K - 3)s + 2K = 0$$

The Routh array is:

s ³	1	K-3
s ²	2	2 <i>K</i>
s	-3	
1	2 <i>K</i>	

The first column will always have a sign change regardless of the value of K. There is no value of K that will stabilize this system.

Problem 6:

 $T(s) = \frac{8}{s^7 - 2s^6 - s^5 + 2s^4 + 4s^3 - 8s^2 - 4s + 8}$

s ⁷	1	-1	4	-4	
s ⁶	-2	2	-8	8	
s ⁵	-12	8	-16	0	ROZ
s ⁴	0.6667	-5.333	8	0	
s ³	-88	128	0	0	
s ²	-4.364	8	0	0	
s ¹	-33.33	0	0	0	
s ⁰	8	0	0	0	

Even (6): 3 rhp, 3 lhp; Rest (1): 1 rhp; Total: 4 rhp, 3 lhp

Problem7:

Even (6): 1 rhp, 1 lhp, 4 jω; Rest (1): 1 lhp; Total: 1 rhp, 2 lhp, 4 jω

Problem 8:

a.

$$T(s) = \frac{K(s+6)}{s^3 + 5s^2 + (K+4)s + 6K}$$

s ³	1	4 + K
s ²	5	6K
s¹	20 -K	0
s ⁰	6K	0

Stable for $0 \le K \le 20$

b.

 $T(s) = \frac{K(s+1)}{s^5 + 2s^4 + Ks + K} \ . \ Always \ unstable \ since \ s^3 \ and \ s^2 \ terms \ are \ missing.$

c.

$$T(s) = \frac{Ks^3 + 7Ks^2 + 2Ks - 40K}{Ks^3 + (7K + 1)s^2 + 2Ks + (12 - 40K)}$$

s ³	K	2K
S ²	7 <i>K</i> +1	12 – 40 <i>K</i>
sl	$\frac{54K^2 - 10K}{7K + 1}$	0
S ₀	12-40K	

For stability,
$$\frac{10}{54} < K < \frac{12}{40}$$

Problem 9:

$$T(s) = \frac{K(s+2)}{s^4 + 3s^3 - 3s^2 + (K+3)s + (2K-4)}$$

s ⁴	1	- 3	2K - 4
s ³	3	K+3	0
s ²	- (K+12) 3	2K - 4	0
sl	K(K+33) K+12	0	0
s ⁰	2K - 4	0	0

Conditions state that $K \le -12$, $K \ge 2$, and $K \ge -33$. These conditions cannot be met simultaneously. System is not stable for any value of K.

Problem 10:

$$T(s) = \frac{5K(s+4)}{5s^3 + 16s^2 + (12+5K)s + 20K}$$

Making a Routh table,

s ³	5	12+5K
s ²	16	20 <i>K</i>
s ¹	192 - 20 <i>K</i>	0
s ⁰	20 <i>K</i>	0

- a. For stability, $0 \le K \le 9.6$.
- b. Oscillation for K = 9.6.
- c. From previous row with K=9. 6, $16s^2+192=0$. Thus $s=\pm j\sqrt{12}$, or $\omega=\sqrt{12}$ rad/s.

Problem 11:

$$T(s) = \frac{K}{s^4 + 8s^3 + 17s^2 + 10s + K}$$

s ⁴	1	17	K
s ³	8	10	0
s ²	126 8	K	0
sl	$-\frac{32}{63}$ K + 10	0	0
s ⁰	K	0	0

- a. For stability $0 \le K \le 19.69$.
- **b.** Row of zeros when K = 19.69. Therefore, $\frac{126}{8}$ s² + 19.69. Thus, s = \pm j $\sqrt{1.25}$, or
- $\omega = 1.118 \text{ rad/s}.$

Problem 12:

$$T(s) = \frac{K(s+2)}{s^4 + 3s^3 - 3s^2 + (K+3)s + (2K-4)}$$

s ⁴	1	- 3	2K-4
s ³	3	K+3	0
s ²	- K+12 3	2K-4	0
sl	K(K+33) K+12	0	0
s ⁰	2K-4	0	0

For $K \le -33$: 1 sign change; For $-33 \le K \le -12$: 1 sign change; For $-12 \le K \le 0$: 1 sign change; For $0 \le K \le 2$: 3 sign changes; For $K \ge 2$: 2 sign changes. Therefore, $K \ge 2$ yields two right-half-plane poles.

Problem 13:

	1	K ₂	1
s ³	K ₁	5	0
s ²	$\frac{K_1K_2 - 5}{K_1}$	1	0
sl	$\frac{{K_1}^2 - 5K_1K_2 + 25}{5 - K_1K_2}$	0	0
s ⁰	1	0	0

For stability, $K_1K_2 >$ 5; $K_1^2 + 25 <$ 5 K_1K_2 ; and $K_1 >$ 0 . Thus 0 < $K_1^2 <$ 5 K_1K_2 - 25, or 0 < $K_1 <$ $\sqrt{5K_1K_2 - 25}$.