
M-Ary Data Transmission
• Orthogonal Functions and Signal Space Representation

• Gram-Schmidt Orthogonaliztion Procedure

• Optimum Receiver for Binary Transmission (Revisited using signal 
space concept)

• Optimum Receiver for M-Ary Transmission (using signal space 
representation)

• M-ary Coherent Amplitude-Shift Keying (M-ASK)

• M-ary Coherent Phase-Shift Keying (M-PSK)

• M-ary Coherent Frequency-Shift Keying (M-FSK)

• M-ary Quadrature Amplitude Modulation (M-QAM)

• Union Bound on the Symbol Probability of Error

• Comparison of the various M-ary modulation techniques
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The Binary Communication System (Revisited)
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The Binary Communication System (Revisited)
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Geometric Representation of Signals (Signal Space Concept) 
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Geometric Representation of Signals 
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𝒅𝟏𝟐
𝟐 = න

𝟎

𝑻𝒃

(𝒔𝟏 𝒕 − 𝒔𝟐 𝒕 )𝟐𝒅𝒕

= (𝒔𝟏𝟏 − 𝒔𝟐𝟏)
𝟐+(𝒔𝟏𝟐 − 𝒔𝟐𝟐)

𝟐



Gram-Schmidt Method: Binary Case 
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The Gram-Schmidt method 
is a procedure for 
generating a set of 
orthonormal functions  
from a set of given 
functions. The original set 
of functions may be 
dependent or independent, 
but the orthogonal 
functions are linearly 
independent and 
orthonormal.



Gram-Schmidt Method: Binary Case 
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Correlation Coefficient

𝝆 = 𝐜𝐨𝐬 𝜶



Gram-Schmidt Method: M-Ary Case 
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Example: Polar Non-return to zero Binary Signals
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𝑠2 𝑡 = −𝑠1 𝑡

For the case of binary 
antipodal signaling, i.e., 
when 𝒔𝟐 𝒕 = −𝒔𝟏 𝒕 , we 
need only one basis 
function. The signals are 
represented as:

𝒔𝟏 𝒕 = 𝑬𝝓𝟏 𝒕

𝒔𝟐 𝒕 = − 𝑬𝝓𝟏 𝒕



Example: Orthogonal Binary Signals
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𝜌 = න
0

𝑇𝑏

𝑠1 𝑡 𝑠2 𝑡 𝑑𝑡 = 0

For the case of binary  
signaling when 𝝆 =0  
we need two bases 
functions. The signals 
are represented as:

𝒔𝟏 𝒕 = 𝑬𝝓𝟏 𝒕

𝒔𝟐 𝒕 = 𝑬𝝓𝟐 𝒕



Optimum Receiver : Matched Filter and Correlators
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The receiver computes the coordinates of the received signal in the 𝜙1 𝑡 − 𝜙1 𝑡 plane 
and makes a decision according to the closeness of these coordinates from those of the 
transmitted signals as illustrated on the next slide.

𝒓𝟏~𝑵(𝒔𝒊𝟏, 𝑵𝟎|𝟐); Gaussian with mean 𝑠𝑖1, variance 𝑁0|2
𝒓𝟐~𝑵(𝒔𝒊𝟐, 𝑵𝟎|𝟐); Gaussian with mean 𝑠𝑖2, variance 𝑁0|2

𝒓𝟏 = න
𝟎

𝑻𝒃

𝒔𝒊 𝒕 + 𝒘 𝒕 ∅𝟏 𝒕 𝒅𝒕

𝒓𝟏 = 𝒔𝒊𝟏 + 𝑵𝟏; 𝑵𝟏~𝑵(𝟎,𝑵𝟎|𝟐); 

𝒓𝟐 = න
𝟎

𝑻𝒃

𝒔𝒊 𝒕 + 𝒘 𝒕 ∅𝟐 𝒕 𝒅𝒕

𝒓𝟏 = 𝒔𝒊𝟐 + 𝑵𝟐; 𝑵𝟐~𝑵(𝟎,𝑵𝟎|𝟐); 
𝒓𝟏 𝒂𝒏𝒅 𝒓𝟐 are independent 



The likelihood Ratio Test

• The probability of error is minimized when the following decision rule 
is employed:

• Decide ෡𝑏𝑖 = 1 𝑤ℎ𝑒𝑛
𝒇(𝒓𝟏,𝒓𝟐|𝒃𝒊=𝟏)

𝒇(𝒓𝟏,𝒓𝟐|𝒃𝒊=𝟎)
≥

𝑷𝟐

𝑷𝟏
; (1)

• Decide ෡𝑏𝑖 = 0 𝑤ℎ𝑒𝑛
𝒇(𝒓𝟏,𝒓𝟐|𝒃𝒊=𝟏)

𝒇(𝒓𝟏,𝒓𝟐|𝒃𝒊=𝟎)
<

𝑷𝟐

𝑷𝟏
; 

• 𝑓 𝑟1, 𝑟2 𝑏𝑖 = 1 = 𝑓 𝑟1 𝑏𝑖 = 1 𝑓 𝑟2 𝑏𝑖 = 1 ; due to independence

• 𝑓 𝑟1, 𝑟2 𝑏𝑖 = 0 = 𝑓 𝑟1 𝑏𝑖 = 0 𝑓 𝑟2 𝑏𝑖 = 0 ; due to independence

• 𝑓 𝑟1 𝑏𝑖 = 1 ~𝑁 𝑠11,
𝑁0

2
; 𝑓 𝑟2 𝑏𝑖 = 1 ~𝑁 𝑠12,

𝑁0

2
; 

• 𝑓 𝑟1 𝑏𝑖 = 0 ~𝑁 𝑠21,
𝑁0

2
; 𝑓 𝑟2 𝑏𝑖 = 0 ~𝑁 𝑠22,

𝑁0

2
;

• Substituting into (1), and simplifying, we get

12



Optimum Receiver: Binary Case

The probability of error for Equally-probable signals is given by:

𝑷𝒃
∗ = 𝑸

𝒅𝟏𝟐

𝟐𝑵𝟎

= 𝑸
𝟎׬
𝑻𝒃 𝒔𝟏 𝒕 − 𝒔𝟐 𝒕

𝟐
𝒅𝒕

𝟐𝑵𝟎

The Minimum Distance 
Decision Rule

As derived earlier

𝒅𝟏𝟐
𝟐 = න

𝟎

𝑻𝒃

(𝒔𝟏 𝒕 − 𝒔𝟐 𝒕 )𝟐𝒅𝒕 = (𝒔𝟏𝟏 − 𝒔𝟐𝟏)
𝟐+(𝒔𝟏𝟐 − 𝒔𝟐𝟐)

𝟐



Optimum Receiver : Matched Filter and Correlators
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The receiver can be 
implemented in terms 
of correlators and can, 
as well, be implemented 
in terms of the matched 
filters. Here, matched 
means that the filters at 
the receiver are 
matched to the bases 
functions used in the 
transmission process. 
The two figures on this 
slide are equivalent in 
terms of performance. 



M-Ary Transmission

15

For each 
modulation 
scheme, we will 
consider the 
transmitter, the 
optimum receiver, 
the probability of 
error, the power 
spectral density 
and the bandwidth



Optimum Receiver for M-Ary Transmission
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Optimum Receiver for M-Ary Transmission
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Here, we are given M signals. 
However, there are 𝑵 ≤ 𝑴
bases functions which can be 
obtained using the Gram 
Schmidt orthogonalization
procedure. Each one of the M 
signals, can be represented as a 
linear combination of the N 
bases functions



Optimum Receiver for M-Ary Transmission
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The observation space is to be 
partitioned into M regions, such 
that if the set of measurements 
fall into region 𝑹𝒌 signal 𝒔𝒌 is 
declared true. 

It is assumed here that all signals 
are equally probable.

The receiver collects the 
measurements from the N 
correlators  (r vector) and 
calculates the distance to each of 
the N signals. 

It decides in favor of the signal 
closest to the (r vector).



M-ary Coherent Amplitude-Shift Keying (M-ASK)

In this case, we have 
M signals. However, 
we need only one 
base function. Every 
signal can be 
expressed in terms 
of this base 
function.

The receiver consists 
one correlator 
(multiplier followed 
by an integrator), a 
sampler, and a 
decision device (set of 
comparators).



Minimum-Distance Decision Rule for M-ASK

20



Minimum-Distance Decision Rule for M-ASK

21



Modified M-ASK Constellation

22

Es: Average Energy 
per Symbol

Eb: Average 
Energy per bit



Probability of Symbol Error for M-ASK
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Symbol error 
probability

Bit error 
probability

Two comments:
Error probability: for a given 
Eb/N0, increasing M results in an 
increase in the error probability.

Bandwidth: Increasing M results 
in a reduction in the bandwidth 
by a factor of 𝝀 = 𝒍𝒐𝒈𝟐(𝑴).



Example of 2-ASK (BPSK) and 4-ASK Signals

24

𝟏𝟏 → 𝐜𝐨𝐬 𝟐𝝅𝒇𝟎 𝒕
𝟎𝟏 → −𝒄𝒐𝒔 𝟐𝝅𝒇𝟎 𝒕
𝟏𝟎 → 𝟐𝒄𝒐𝒔 𝟐𝝅𝒇𝟎 𝒕
𝟎𝟎 → −𝟐𝒄𝒐𝒔 𝟐𝝅𝒇𝟎 𝒕

𝟏 → 𝒄𝒐𝒔 𝟐𝝅𝒇𝟎 𝒕
𝟎 → −𝒄𝒐𝒔 𝟐𝝅𝒇𝟎 𝒕
(similar to BPSK)

Binary sequence:
1101101100



M-ary Phase-Shift Keying (M-PSK)
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Here, the amplitude of the carrier 
remains constant, however the 
phase takes on one of M possible 
values.
Two base functions are needed to 
represent all signals in the two-
dimensional signal space.
The spacing between adjacent 
signals is ∆𝜽 = 𝟐𝝅/𝑴 radians.
In this example, M=8 and ∆𝜽 =
𝝅

𝟒
= 𝟒𝟓 𝒅𝒆𝒈𝒓𝒆𝒆𝒔.

To minimize error, gray coding is 
used.

Signal Energy 𝐸𝑠 = 𝑉2𝑇𝑠/2



Optimum Receiver for M-PSK

26

Need two correlators, since we have two base functions. 
The two correlators compute the coordinates of the 
received signal in the two-dimensional space. The 
minimum distance rule is employed. The signal with the 
smallest distance to the received (r1, r2) coordinates is 
selected. The shaded regions in the figure specify the 
decision region for each signal.

Compute 𝒅𝒊
𝟐, for all i and choose 

the signal corresponding to the 
smallest signal.



Probability of Error in M-PSK

The distance between two neighboring symbols is

Each symbol has 2 neighbor symbols. 

An approximation for the probability of symbol error is
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When M=4, we have QPSK. The symbol error probability is: 



Symbol and Bit Error Probability of M-PSK
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• When Gray coding is used, the symbol and bit error probabilities are 

related by: 𝑷𝒃 =
𝟏

𝒍𝒐𝒈𝟐(𝑴)
𝑷𝑺;

• Moreover, the symbol energy is related to the bit energy by

• 𝑬𝒃 =
𝟏

𝒍𝒐𝒈𝟐(𝑴)
𝑬𝑺

• The performance of digital communication systems is usually taken as 

the error probability versus 
𝐸𝑏

𝑁0
.

• The next figure depicts the symbol probability of error for M-PSK



Performance of M-PSK
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As M increases, the 
symbol probability of 
error increases.
Note that as M 
increases, the spacing 
between signals 
around the perimeter 
of the unit circle 
becomes smaller, and 
this results in a higher 
probability of error 



M-ary Coherent Frequency-Shift Keying (M-FSK)

30

Orthogonality condition:

න
𝟎

𝑻𝒔

𝒔𝒊(𝒕)𝒔𝒋(𝒕) 𝒅𝒕 = 𝟎, 𝒊 ≠ 𝒋

All signals have the same energy

𝑬 = න
𝟎

𝑻𝒔

𝒔𝒊(𝒕)
𝟐 𝒅𝒕 =

𝑽𝟐𝑻𝒔
𝟐

As a result of this condition, there 
will be M base functions 

∅𝒊 𝒕 =
𝒔𝒊 𝒕

𝑬
=

𝟐

𝑻𝒔
𝐜𝐨𝐬(𝟐𝝅𝒇𝒊𝒕

Signal space representation for M=3

∅1 𝑡

∅2 𝑡

𝐸

𝐸



Minimum-Distance Receiver of M-FSK

31

The receiver consists of 
M correlators 
(corresponding to the 
M base functions) 
followed by the 
decision maker. 
The decision maker 
employs the minimum 
distance rule. 

Receiver computes 𝒅𝟏
𝟐, 𝒅𝟐

𝟐, …, 𝒅𝑴
𝟐

Decide 𝒔𝟏 when 

𝒅𝟏
𝟐 < 𝒅𝟐

𝟐, 𝒅𝟏
𝟐 < 𝒅𝟑

𝟐, … , 𝒅𝟏
𝟐 < 𝒅𝑴

𝟐

Or, equivalently when 
𝒓𝟏 > 𝒓𝟐, 𝒓𝟏 > 𝒓𝟑, … , 𝒓𝟏 > 𝒓𝑴
Exercise: Prove the latter 
equivalency condition



Union Bound on the Symbol Error Probability of M-FSK
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The error bound is tight 
for high signal to noise 
ratio.



An Upper Bound on Q(x)

33



Interpretations of P[error] <

34

Unlike M-ASK and M-PSK, 
this slide shows that the 
symbol error probability 
decreases as M increases.

Rb: is the data rate below which 
the probability of error can be 
made arbitrarily small using M-FSK

This results shows 
that it is possible to 
make the probability 
of error arbitrarily 
small even for a fixed 
signal to noise ratio.



Symbol Error Probability of M-FSK
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Symbol Error Probability of M-FSK
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Bandwidth Requirements of M-FSK
• Let 𝑀 = 2𝜆 and let the M signals be orthogonal. The minimum frequency 

separation between adjacent signals Δ𝑓 =
𝑅𝑠

2
.

• The bandwidth 𝐵.𝑊 = (𝑀 − 1)
𝑅𝑠

2
+ 2𝑅𝑠.

• For the case when 𝑀 = 2, 𝐵.𝑊 =
𝑅𝑠

2
+ 2𝑅𝑠 =

5

2
𝑅𝑏.

• For the case when 𝑀 = 4, 𝐵.𝑊 =
3𝑅𝑠

2
+ 2𝑅𝑠 =

7

2
𝑅𝑠 =

7

2

𝑅𝑏

log(4)
=

7

4
𝑅𝑏.

37



Bit Error Probability of M-FSK
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M-ary Quadrature Amplitude Modulation (M-QAM)

39

In M-QAM, the messages are 
encoded into both the amplitude 
and phase of the carrier.
QAM is a two-dimensional encoding 
scheme and requires two base 
functions.

𝒔𝒊 𝒕 = 𝒂𝒊𝝓𝟏 + 𝒃𝒊𝝓𝟐

𝑬𝒊 = 𝒂𝒊
𝟐 + 𝒃𝒊

𝟐 (prove)



M-Ary Quadrature Amplitude Modulation

40



Criteria for Selecting a Given Constellation

• Probability of Error: In signaling over AWGN, the most likely 
errors are those which confuse a signal with its neighbors. To 
maintain the same symbol error probability, the distance 
between the nearest neighbors are kept the same.

• Average Transmitted Energy: The most efficient signal 
constellation is the one that has the smallest average 
transmitted energy.

• Simplicity in Modulation and Demodulation.

• Bandwidth Requirement.

41



A Simple Comparison of M-QAM Constellations

42

𝑬𝒂𝒗 =
𝟒𝜟𝟐 + 𝟒(𝟐𝜟𝟐)

𝟖
= 𝟏. 𝟓𝜟𝟐

1.162∆2
1.125∆2 1.183∆2

1.5∆2



Rectangular M-QAM

43



Implementation of Rectangular M-QAM

44

Each group of 𝝀 = 𝒍𝒐𝒈𝟐𝑴
can be divided into 𝝀𝑰 in-
phase bits and 𝝀𝑸 quadrature 

bits where 𝝀 = 𝝀𝑰 + 𝝀𝑸.

In-phase and quadrature bits 
modulate the in-phase and 
quadrature carriers 
independently.

This is an integrator

ReceiverTransmitter



In-phase ASK, Quadrature ASK and QAM Waveforms
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Symbol Error Probability of M-QAM
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See the full derivation 
in Appendix 1.



Symbol Error Probability of M-QAM

47



Performance Comparison of M-ASK, M-PSK, M-QAM
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Comparison of M-ary Signaling Techniques

49



Power-Bandwidth Plane (At P[error] =10-5)
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Adaptive Modulation

51
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Union Bound

• Let 𝐴𝑘𝑖 denote that the observation vector Z   is closer to 
the symbol vector  𝑠𝑘 than  𝑠𝑖 , when 𝑠𝑖 is transmitted.

• P(𝐴𝑘𝑖) = 𝑃2(𝑠𝑘 , 𝑠𝑖) depends only on  𝑠𝑘 and 𝑠𝑖 .

• Applying Union bounds yields

Union bound

The probability of a finite union of events is upper bounded 

by the sum of the probabilities of the individual events.






M

ik
k

ikie PmP
1

2 ),()( ss
Assume all signals are equally likely. Therefore,
𝑃 𝐸 = 𝑃𝑒(𝑚𝑖)
Recall that:
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵 ≤ 𝑃 𝐴 + 𝑃(𝐵)
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Union Bound

𝑷𝒆 𝒎𝒊 ≤ ෍
𝒌=𝟏
𝒌≠𝒊

𝑴

𝑷𝟐 𝒔𝒌, 𝒔𝒊 = ෍
𝒌=𝟏
𝒌≠𝒊

𝑴

𝑸
𝒅𝒊𝒌

𝟐𝑵𝟎

𝑷𝟐 𝒔𝒌, 𝒔𝒊 = 𝑷(𝒁 𝒊𝒔 𝒄𝒍𝒐𝒔𝒆𝒓 𝒕𝒐 𝒔𝒌 𝒕𝒉𝒂𝒏 𝒔𝒊𝒘𝒉𝒆𝒏 𝒔𝒊 𝒊𝒔 𝒔𝒆𝒏𝒕

= 𝒅𝒊𝒌׬
∞ 𝟏

𝝅𝑵𝟎
𝐞𝐱𝐩 −

𝒖𝟐

𝑵𝟎
𝒅𝒖 = 𝑸(

𝒅𝒊𝒌

𝟐𝑵𝟎
)

𝒅𝒊𝒌 = | 𝒔𝒊 − 𝒔𝒌 |
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Example on the Union Bound: M-FSK

𝑷𝒆 𝒎𝒊 ≤ ෍
𝒌=𝟏
𝒌≠𝒊

𝑴

𝑷𝟐 𝒔𝒌, 𝒔𝒊 = ෍
𝒌=𝟏
𝒌≠𝒊

𝑴

𝑸
𝒅𝒊𝒌

𝟐𝑵𝟎

Example: If all (M-1) signals are of the same distance d from 𝑠𝑖 (as in M-FSK), the error 
probability of error is approximately 

𝑃𝑒 𝑚𝑖 ≤ ෍
𝑘=1
𝑘≠𝑖

𝑀

𝑄
𝑑𝑖𝑘

2𝑁0
≈ (𝑀 − 1)𝑄

𝑑

2𝑁0

where, 𝑑 = 2𝐸𝑠. Therefore,

𝑃𝑒 𝑚𝑖 ≈ 𝑀 − 1 𝑄
2𝐸𝑠

2𝑁0
= 𝑀 − 1 𝑄

𝐸𝑠
𝑁0
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Example on the Union Bound: 4-PSK

)(1 t

)(2 t

1s3s

2s

4s

2,1d

4,3d

3,2d

4,1d
sEsE

sE

sE

4,...,1    ,  iEE siis
𝑃𝑒 𝑚𝑖 ≈ ෍

𝑘=1
𝑘≠𝑖

𝑀

𝑄
𝑑𝑖𝑘

2𝑁0

𝑃𝑒 𝑚𝑖 ≈ 𝑄
𝑑12

2𝑁0
+𝑄

𝑑14

2𝑁0
+𝑄

𝑑14

𝑁0

𝑃𝑒 𝑚𝑖 ≈ 2𝑄
2𝐸

2𝑁0
+𝑄

2 𝐸

2𝑁0

𝑃𝑒 𝑚𝑖 ≈ 2𝑄
𝐸𝑠

𝑁0
+ 𝑄

2𝐸𝑠

𝑁0

Note that since 𝑄
2𝐸𝑠

𝑁0
≪ 2𝑄

𝐸𝑠

𝑁0

𝑃𝑒 𝑚𝑖 ≈ 2𝑄
𝐸𝑠
𝑁0

𝑑12 = 𝑑14 = 2𝐸

𝑑13 = 2 𝐸
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Example on the Union Bound: M-QAM

• In M-QAM, each signal has 4 signals at a distance ∆ and 4 at a distance 

∆ 2. 
• The probability of error can be approximated by:  

𝑃𝑒 𝑚𝑖 ≈ 4𝑄
∆

2𝑁0
+4𝑄

∆ 2

2𝑁0
; By ignoring the second term, we get

𝑃𝑒 𝑚𝑖 ≈ 4𝑄
∆2

2𝑁0
; 

• The average energy per signal is (See Appendix 1)

𝐸𝑠 =
2(𝑀−1)∆2

12
; (2)

• Substituting for ∆ (in 2), into (1), we get

𝑃𝑒 𝑚𝑖 ≈ 4𝑄
3𝐸𝑠

(𝑀−1)𝑁0
; as was found earlier


