M-Ary Data Transmission

* Orthogonal Functions and Signal Space Representation
* Gram-Schmidt Orthogonaliztion Procedure

* Optimum Receiver for Binary Transmission (Revisited using signal
space concept)

* Optimum Receiver for M-Ary Transmission (using signal space
representation)

* M-ary Coherent Amplitude-Shift Keying (M-ASK)

* M-ary Coherent Phase-Shift Keying (M-PSK)

* M-ary Coherent Frequency-Shift Keying (M-FSK)

* M-ary Quadrature Amplitude Modulation (M-QAM)
* Union Bound on the Symbol Probability of Error

* Comparison of the various M-ary modulation techniques



The Binary Communication System (Revisited)

ﬂh Source Coding {LJI- Modulator " Sl(i Channel
(Transmitter) | ﬂ—)S (1)
k 2
-4—— Reconstruction [<—— Demud}l lator -t /T\,.
m(r) {i-:'a-} (Receiver) r(t) \f
w(t)

@ Bits in two different time slots are statistically independent.

@ a priori probabilities: P[by = Py, Plb; :@ = P.
@ Signals si(t) and so(t) have a duration of Tb seconds and

finite energies: E4 —jo s2(t)dt, Es _fo t)dt.
@ Noise w(t) Is stationary Gaussian, zero-mean wh:te noise with

two-sided power spectral density of Njy/2 (watts/Hz):
N,
E{w(t)} =0, E{w(t)w(t +7)} = —(7).



The Binary Communication System (Revisited)

m(1)

Source Coding

Reconstruction

Modulator
(Transmitter)

b, :m(—).'r,{f]'

Channel

b, 401> s,(1)

Demodulator
(Receiver)

(M <

-}
r(t) T

w(l)

o Received signal over [(k — 1)T},, kTy]:

r(t) =s;(t — (k—1)T,) +w(t), (k—1)T, <t <EkT,.

@ Objective is to design a receiver (or demodulator) such that
the probability of making an error is minimized.

@ Shall reduce the problem from the observation of a time
waveform to that of observing a set of numbers (which are
random variables).



Geometric Representation of Signals (Signal Space Concept)

Wish to represent two arbitrary signals s1(t) and so(t) as linear
combinations of two orthonormal basis functions ¢1(t) and ¢2(%).

@ ¢1(t) and ¢, (t) are orthonormal if:

Ty
01(t)p2(t)dt = 0 (orthogonality),

0
Ty

TE';
g_‘jf(t)dt _ / qa‘jg(t)dt = 1 (normalized to have unit energy).
0 0

@ The representations are

s1(t) = s1101(t) + s1202(1),
s2(t) = s2101(t) + s2202(1).

T
where s.;;j:/ si(t)p;(t)dt, 1,5 € {1,2},
0



Geometric Representation of Signals

s1(t) = s1101(t) + s1202(t),
$9(t) = 82101 (t) + s2202(t),

Ty
= [ silt)o;(0dt, i.j € (1,2}
0

Tp
B = [ (510 - 5,0
0
= (511 — 521)°+(S12 — 522)*
si(t)¢;(t)dt is the projection of s;(t) onto ¢;(t).

@ How to choose orthonormal functions ¢1(t) and ¢2(t) to
represent s1(t) and so(t) exactly?

= (1)

T3
0

o)




Gram-Schmidt Method: Binary Case

Q Let (flll(f) = i}JEE—l Note that s11 = Vv FE1 and s12 = 0.
1

sa(t)

Q@ Project s,(t) = = onto ¢4 (t) to obtain the correlation The Gram-Schmidt method
V L2

is a procedure for
generating a set of

b s9(t) 1 /Tb orthonormal functions
o1 (t)dt = s1(t)sa(t)dt.
Jo \/Eg'l( ) vE1E> Jy 1(8)aa{t) from a set of given

@ Subtract péi(t) from s,(t) to obtain ¢, (t) = 200 po (1), functions. The original set

coefficient:

p:

. L , of functions may be
@ Finally, normalize ¢,(t) to obtain: dependent or independent,
bol) = Bq (1) _ Po(t) but the orthogonal
- \/foTb [bez(t)f dt 1 — p? functions are linearly
. | independent and
— [82(” _ ‘Osl(t)] orthonormal.
V1—p?2 [VE2 vV Er



Gram-Schmidt Method: Binary Case

9, (1) Correlation Coefficient
p = cos(a)
(.351(5) -

1 (¢

o

o —

VE:  VE:
331 = [ " sa(t)n (8)dt = py/ B,
S99 = (\/1 — ,02> \/Eg
ﬂ(f) T

do; = \/fo [s2(t) — s1(t)]2dt
= El — Qp-\HElEQ + EQ.

1_2

So(t) psl(t)] |

S
|
! .

5,(1)

-

1< p=cos(a) <1



Gram-Schmidt Method: M-Ary Case

nt) = ——2
V% st
di(t) = ¢:(t) i=23,...,N,
\/f [q’) dt
, B Sz(t) 1—1
d)z(t) \/E z::lpu(bJ
Pij = \/Q j )dt j:1,2,...,i—1.

If the waveforms {s;(t)}?, form a linearly independent set, then
N = M. Otherwise N < M.



Example: Polar Non-return to zero Binary Signals

L 2 s, (8) = —s4(0)
% For the case of binary
T antipodal signaling, i.e.,
0 T ! 0 ' whens,(t) = —s4(t), we
@ v need only one basis
function. The signals are
S represented as:
T, s1(t) = VE@4(¢)
| 5, (1) 5,(1) SZ(t) - = E¢1(t)
-1 —® | o ¢ (1)
0 T | i
L —'\/E 0 x-"rE
(b) (c)

(a) Signal set. (b) Orthonormal function. (c) Signal space representation.



Example: Orthogonal Binary Signals

4
1
0
_V -
(1)
T,
I,
L
-INT,

5, (1)

vV

(a)
@, (1)

/T,

Tp
p = j 5, ()52 (Dt = 0
0

~ For the case of binary

signaling when p =0
we need two bases
functions. The signals
are represented as:

s1(t) = VE@4(¢)
s2(t) = VE@,(t)

10



Optimum Receiver : Matched Filter and Correlators

t=1,
I r
I{-}{]r 0 L Compute
0 (5 =S4)" +(r =5,
r{t)=s.(f)+wi(r) —N, In(P) Decision
- r —
Tp @,(1) (=T, fori=1, 2
r1 = (Si(t) + W(t))ml(t)dt T - and choose
0 I{-}dr E—t : Tl
ri =51+ Ny; Ny~N(0,Ny|2); ) the smallest
Tp
ro =] (s:(t) +w(t)),(t)dt
0 @, (1) r1 and r, are independent

ry = Sip+ No; N;~N(0,Ny|2);

r1~N(s;1, Nog|2); Gaussian with mean s;1, variance Ny|2
r,~N(s;2, No|2); Gaussian with mean s;,, variance Ny|2
The receiver computes the coordinates of the received signal in the ¢, (t) — ¢, (t) plane

and makes a decision according to the closeness of these coordinates from those of the
transmitted signals as illustrated on the next slide. 11



The likelihood Ratio Test

* The probability of error is minimized when the following decision rule
is employed:

f(r1ra|bi=1) _ P
f(ryrz2|bi=0) P1'
f(ryrz|bi=1) < Py
f(rir2|b;i=0)

s f(r, by =1) = f(ry |b; = D)f (| b; = 1); due to independence

* f(ry, rp|b; =0) = f(ry |b; = 0)f (r,|b; = 0); due to independence
* f(ry [b; =1)~N (511» ) f(ry by =1)~N (512,1\;0)
* f(ry [b; = 0)~N (521» ) f(ry |b; =0)~N (Szz»NO),

 Substituting into (1), and simplifying, we get

* Decide l/)\l = 1 when (1)

- Decide b; = 0 when




Optimum Receiver: Binary Case

@ Simplified decision rule when the noise w(t) is zero-mean,
white and Gaussian:

(?“1 — 811)2 -+ (?‘Q — 812)2 (T’l — 821)2 -+ (?“2 — 822 —|— Npln (%)

SAIVE

@ For the special case of P, = P, (signals are equally likely):

1D e °
(r1 — s11)* + (r2 — s12)° % (11 — 521)2 + (19 — 599)2. The.h{IInlmum Distance
0p Decision Rule

The probability of error for Equally-probable signals is given by:

T 2
P: = Q dy; —Q fo b(sl(t) _ SZ(t)) dt As derived earlier
b A/ ZNO \ ZNO
Tp
di, = (51(t) — s2(0))*dt = (511 — S21)*+(S12 — S22)



Optimum Receiver : Matched Filter and Correlators

rir)=s(1)+wir)
-

t=T1,

a?a I{-ku N,

@,(1)

a:?—» I{-ku N,

@, (1)

- h](r):@[(ﬂ, —1)

Compute

‘ ’i' _‘gl.l _:_ +: Ir: - _1||-|1 .,_

—N, In(P)
fori=1, 2
and choose

the smallest

Decision
o=

——»111,(1) = 9,(T), — 1) —OM

Decision
Circuit

Decision

The receiver can be
implemented in terms
of correlators and can,
as well, be implemented
in terms of the matched
filters. Here, matched
means that the filters at
the receiver are
matched to the bases
functions used in the
transmission process.
The two figures on this
slide are equivalent in
terms of performance.



M-Ary Transmission

There are benefits to be gained when M-ary (M = 4)
signaling methods are used rather than straightforward binary

signaling.
o For each
In general, M-ary communication is used when one needs to  odulation

design a communication system that is bandwidth efficient.  gcheme, we will

Unlike QPSK and its variations, the gain in bandwidth 1s consider the

accomplished at the expense of error performance. transmitter, the
optimum receiver,

To use M-ary modulation, the bit stream 1s blocked into -~
the probability of

groups of \ bits = the number of bit patterns is M = 2*.
error, the power

The symbol transmission rate i1s rg = 1/Ts = 1/(ATy,) = 13,/ A spectral density
symbols/sec = there is a bandwidth saving of 1/\ compared 3nd the bandwidth
to binary modulation.

Shall consider M-ary ASK, PSK, QAM (quadrature amplitude
modulation) and FSK.

15



Optimum Receiver for M-Ary Transmission

" s.(1) r(z) i
: Modul i D | f
Source [——» odulator ,,,/T\ 5| Demodulator
(Transmitter) ﬂ/ (Receiver) I

w(r)

@ w(t) I1s zero-mean white Gaussian noise with power spectral
density of =2 (watts/Hz).

@ Recelver needs to make the decision on the transmitted signal
based on the received signal r(t) = s;(t) + w(?).

@ The determination of the optimum receiver (with minimum
error) proceeds in a manner analogous to that for the binary
case.

16



Optimum Receiver for M-Ary Transmission

@ Represent M signals by an orthonormal basis set, {¢,, ()},

N < M:
— Here, we are given M signals.

. ; .- However, thereare N < M
Si(t) - Sﬂ@l(t) T Siwg(t) L Si‘f\r@‘f\r(t)’ bases functions which can be

T . i
S = s; ()b (t)dt. obtained using the Gram
" /D (D)9 (t) Schmidt orthogonalization

_ _ _ _ procedure. Each one of the M
@ Expand the received signal r(¢) into the series signals, can be represented as a

linear combination of the N
r(t) = s;(t) +w(t) bases functions

= 1101(f) +1202(t) + - +rNnON(E) +TN1ON£1(E) + -+

@ For £ > N, the coefficients r;. can be discarded.

@ Need to partition the N-dimensional space formed by
r = (r1,r9,...,ry) Into M regions so that the message error

probability 1s minimized.
17



Optimum Receiver for M-Ary Transmission

N —dimensional observation space

r=(r.r.....T)

Choose s, (1) or m,,

%
Choose 5,(1) or m,

R,

Choose s, (t) or m,

The optimum receiver is also the minimum-distance receiver.

N
k=1

Choose m; if

(rk — sie)? < gy (e — sj8)?;
i=1,2,...,M; j#i

The observation space is to be
partitioned into M regions, such
that if the set of measurements
fall into region Ry, signal sy is
declared true.

It is assumed here that all signals
are equally probable.

The receiver collects the
measurements from the N
correlators (r vector) and
calculates the distance to each of
the N signals.

It decides in favor of the signal
closest to the (r vector).



M-ary Coherent Amplitude-Shift Keying (M-ASK)

/| 2
gl = W -]Tcos(Zﬂ'fct), 0<i<T,

In this case, we have
M signals. However,
we need only one
base function. Every
signal can be
expressed in terms
of this base
function.

S

The receiver consists
one correlator
(multiplier followed
by an integrator), a
sampler, and a

. , 2

= [i—=1)Alp1(t), ¢1(t) = \/7(:05(27#4), OLELT

S
o= 2.
$,(1) 5,(1) 54(1) : B0 85:(t)
5 2 3 i = ¢(1)
0 A 2A (k—DA (M-2)A (M -1A
5;(1) r(z) . m
(1) Dec1§10n |

* ? " Device
w(1) @,(1)

N
WGN, strength 7“ watts/Hz

—_—

decision device (set of
comparators).



Minimum-Distance Decision Rule for M-ASK

sp(t), if (k—%)&c(ﬁc((k—%)&,k:253,..._,ﬂd’—1
Choose < si(t), If r <
Sfu(t) if ry > (ﬂf — —) A

(nlse (1)

0 A (k—1)A

Choose s,(1) <

Choose s, (1)



Minimum-Distance Decision Rule for M-ASK
sp(t), if (k—2)A<r<(k—3)A, k=23,...,M—1
Choose s1(t), if r < o3
S\ (t:], if r > (f‘.-’f — %) A
Flrls.(n)
d

| | "
* - . e ,
0 (k—DA
Choose 5,(t) < v / =» Choose s, ()
Choose s, (1)
M
Plerror] = > P[si(t)]Plerror|si(t)]
i=1
Plerror|s;(t)] = 2Q (&/\I,?Nq) , 1=2,3,...,M -1
Plerror|s;(t)] = Q (a/dzm}) i=1,M
2(M -1
Plerror] = %Q (&fﬁf?N[}) :

For a given M, P[error| depends on the noise power (N ) and the minimum distance 6. This -

means that moving the origin of the signal constellation does not affect the performance!



Modified M-ASK Constellation

The maximum and average transmitted energies can be reduced, withot
any sacrifice in error probability, by changing the signal set to one whict
includes the negative version of each signal.

A /2
si(t) = (20 = 1= M)/ =cos(2mfet), 0 St < Toy i =1,2,..., M.

Ty "

Vi
(a) ] e ® | . e ° = @,(1)
. e _3A A 0 A 3A oo
2 2 2 2
(b) ® e ® e ® = @,(1)
. —2A ~A 0 A 2A . o
M . Es: Average Energy
Mg A2 | , (M2 —1)A?
E, = = = — 2t—1— M) = :
M AN ;( ! ) 12 per Symbol
Eb: Average
B — Es (M? —1)A? NN \/(lmugg M)E} Energy pegr bit
" logo M 12logy M N M? -1 22



Probability of Symbol Error for M-ASK

~2(M —1) 6E- C2(M—1) 6log, M E, Symbol error
Plerror] = IV (\/(M? — 1)%) S VAR (\/ M2 — 1 ND) ' probability

1 2(M — 1 6log, M E i
P[bit error] = IP[symbol error| = f‘.f’l “ler (\/ ﬂff‘z : \_b) (with Gray mapping) Bit error
0gs | < —1 INg R
probability

10"

=

Two comments:

Error probability: for a given
Eb/NO, increasing M results in an
increase in the error probability.

10}

M=16
(W=1/4T,)
10

M=8
(W=1/3T,

10 '}

Plsymbol error]

107} Bandwidth: Increasing M results

in a reduction in the bandwidth
by a factor of A = log, (M).

10 '}

10 - A
0 5 10 15 20 5
E /N (dB)

W is obtained by using the WT, = 1 rule-of-thumb. Here 1/T}, is the bit rate (bits/s). .



Example of 2-ASK (BPSK) and 4-ASK Signals

Baseband information signal

—
-
I

Binary sequence:
1101101100

| | ] | | |
2Tb 3Th 4Tb 5Th 6Tb 7Th 8Tb 9Tb 10Tb

1 - cos(2mfy)t
0 - —cos(2mfy)t
(similar to BPSK)

4-ASK Signalling 11 - COS(ZTl'fO) t
01 - —cos(2mfy)t
10 - 2cos(2nfy) t
00 » —2cos(2mfy)t

0 Tb
BPSK Signalling
2 -
0
_2 -
| | 1 | ] | ] | 1 |
0 Tb 2Tb 3Th 4Th 5Th 6Thb 7Th 8Tb 9Th 10Tb
2 -
0
_2 -
! ! !

1
2Th 4Tb 6Th 8Thb 10Tb 24



M-ary Phase-Shift Keying (M-PSK)

oo, (E—1)2m] . 1 2 e
si(t) = Vcos |2mfet — v, ,0<t<Ts;1=1,2,...,.M; Es =V~Ts/2
(2 — 1)27 — 1)2
= Vcos ( j‘-.f) T} cos(2m fet) + V sin [(E ﬂf) ﬂ.} sin(2m f.t).

—1)2 —1)2
Si1 = .-":TSc:::-s[(1 H) ﬂ.]_, sig:w‘Esraill[(I 'u') W}.

@, (1) 4
Signal Energy E; = V2T, /2 54(1) €011

010 € 5,(1) 5, (1) &> 001

110 > 5,(1) .v]:rﬁfj{]{}{}
@ (1)
L1« 5401) 55(1) <> 100

5, (1) <3101

Here, the amplitude of the carrier
remains constant, however the
phase takes on one of M possible
values.

Two base functions are needed to
represent all signals in the two-
dimensional signal space.

The spacing between adjacent
signals is A@ = 2w /M radians.

In this example, M=8 and AQ =

% = 45 degrees.
To minimize error, gray coding is
used.

The signals lie on a circle of radius /Es, and are spaced every 27 /M radians around

the circle.

25



r(r)

—H?—r jl-(-}d: ——O

@ (1)

;1)

Optimum Receiver for M-PSK

=T

Compute Compute d?, for all i and choose
(i=sy) +(n=s2)" | 1 the signal corresponding to the
ori=12..... ] - .
fori=1,2,....M smallest signal.

_ __F : g and choose
4.(?_» ]'[.}d; _&.M' the smallest
Plerror] = Plerror|si(t)] — P[correct|s1(t)]

Region 2
Choose 5,(1)

0

Region |
Choose s,(r)

= // f(ri,rals1(t))dridrs .

rl T2 € Region 1

P[correct| s1(t)]

Need two correlators, since we have two base functions.
The two correlators compute the coordinates of the
received signal in the two-dimensional space. The
minimum distance rule is employed. The signal with the
smallest distance to the received (rl, r2) coordinates is
selected. The shaded regions in the figure specify the
decision region for each signal. 26



Probability of Error in M-PSK

OThe distance between two neighboring symbols is
- 7T
dmin — 2\/ Es Slﬂ(mj

QEach symbol has 2 neighbor symbols.

QAn approximation for the probability of symbol error is

4 A
A/Esin(”)
o e 4T

2N 2N o

PQPSK ~ 2 Es
When M=4, we have QPSK. The symbol error probability is: .~ 2Q N

\ y



Symbol and Bit Error Probability of M-PSK

* When Gray coding is used, the symbol and bit error probabilities are

1
log, (M) Ps;

* Moreover, the symbol energy is related to the bit energy by

related by: P, =

* The performance of digital communication systems is usually taken as
. E

the error probability versus N—b.

0

* The next figure depicts the symbol probability of error for M-PSK



Plsymbol error]
o

Performance of M-PSK

- = = Upper bound

—— Lower bound

5

10 15 20 25
E,/N, (dB)

As M increases, the
symbol probability of
error increases.

Note that as M
increases, the spacing
between signals
around the perimeter
of the unit circle
becomes smaller, and
this results in a higher
probability of error

29



M-ary Coherent Frequency-Shift Keying (M-FSK)

Si(t)

|

V cos(27mf;t),

B A
0, elsewhere

where f; are chosen to have orthogonal signals over [0, T].

@, (t)

® VE

|

VE
o

(k + 3) (%) ,
(k £ 1)

o

(%)

@4 (t)

|
y -

@, (1)

(coherently orthogonal)

(noncoherently orthogonal)

@, (1)

® 5,(7)
JE,
0 \/E Sit5)

| & =@, (1)
S3(f?,fﬂ;;/2§:

Signal space representation for M=3

i=1,2,...

M,

Orthogonality condition:

Ts
j Sl(t)S](t) dt = 0,i :/:j
0

All signals have the same energy
2

T
s V2T
J s;(t)? dt = ——=
0 2

As a result of this condition, there
will be M base functions

si(t) 2

VE

E

2
—cos(27itf;t

@;(t) = T

30



Minimum-Distance Receiver of M-FSK

Choose m; if
M

k=1 =
G=1,2,...,M; j#1i,

r(r) 6 (1)
—> 4(1) =

5

8§, (1)

Oy (1) = \/E

M
> (ri—sin)® < D (r = sjx)”
k=1

Choose m; if

The receiver consists of

j=1,2,...,M; j#i. M correlators

—
ry > Ty,
t=T,
T, . I,
I(-]dr O
0
. Choose
: the
largest
T
I(-)d.f

(corresponding to the
M base functions)
followed by the
decision maker.

The decision maker
employs the minimum

Decision di
istance rule.
—h..

Receiver computes d?, d5, ..., d%

Decide s; when

di < ds, di <d3,.., di <dy
Or, equivalently when

rq > rip, 71 > rs, .., rq > ry
Exercise: Prove the latter
equivalency condition



Union Bound on the Symbol Error Probability of M-FSK
Plerror] = P[(r; <rg) or (ry <rs)or,---,or (ry <rp)lsi(t)].

@ Since the events are not mutually exclusive, the error The error bound is tight

probability is bounded by: fo:.high signal to noise
ratio.

Plerror] < P[(r; < ro)|si(t)]+
P[(ry <r3)ls1(t)] + -~ + Pl(r1 <rar)lsi(?)].

o But P[(r; < r;)|s1(t) <\/E8/No) j=34,.. M.
Then

Plerror] < (M—-1)Q (\/Es /NO) < MQ (\/ES /NO) < MeEs/(2No).

where the bound Q(z) < exp{ } has been used.

32



An Upper Bound on Q(x)

R P

S

((x) and its simple upper bound

S

-10|

|
on
—

o

33



Interpretations of P[error] < Me=E:/(2No)

Q Let M =2 =e*2 and E, = AE,. Then
Unlike M-ASK and M-PSK,
Plerror] < e*n2e=AEs/(2No) — o= AlEy/No—2In2)/2, this slide shows that the
symbol error probability

As A — oo, or equivalently, as M — oo, the probability of —decreases as M increases.

error approaches zero exponentially, provided that

Rb: is the data rate below which

B, the probability of error can be
~ >2In2 =1.39 = 1.42 dB. made arbitrarily small using M-FSK
0
This results shows
Q Since E, = \E, = VQTS/Q, then that it is possible to
make the probability
Plerror| < A2, V2T /(4No) _ —Ts[-75In2+V2/(4Ny)] of error arbitrarily

small even for a fixed

If —ryIn2 + V2/(4Ng) > 0, or 7 < q5iry the probability or  S'E"? to noise ratio-

error tends to zero as T, or M becomes larger and larger.

34



Symbol Error Probability of M-FSK

Plerror] = Plerror|sq(t)] = 1 — P|[correct|s(t)].

Plcorrect|si(t)] = P[(ra <ri)and --- and (rp; < rip)|si(t) sent].

_ /m__ P[(ra < 1) and---and (ray < 71)|{r1 = r1, s1()}F(r1|s1(2))dr.

M

P[(I‘Q < ?"1) and - "and(rﬂf < ?"1)|{1‘1 = T‘ljsl(t)}] — H P[(I‘j < :-'“1)|{I‘1 = ’rl?sl(t)}].
j=2

Plrj <ri[{r1 =r1,s1()} = /;1 : exp {—/\—Q}d)\-

TNy No

oo ™ 1 J’\Q q M—1
P|correct = —— A X
wret) = [7 [0 _mmer{-m)e)
T2
! exp {— (11 E) } drq.

wINo N

35



Symbol Error Probability of M-FSK

2
1 o0 1 y 2 . M—1 1 2log, ME,
Plerror] = 1 — e Izd-r} exp | —— | v — 2 dy.
| ] V2w ./;x [VEW ./;x 2 / Ny Y

Iﬂ_ T T T T

Plsymbol error]
=)

-2 0 2 4 6 8 10 12 14 16
E/N, (dB)
With M-FSK, the required Ej/Np to achieve a given error probability decreases as M
increases. Since increasing M means increasing transmission bandwidth. Thus
M-FSK is a power-efficient, not bandwidth-efficient modulation scheme! 36



Bandwidth Requirements of M-FSK

 Let M = 2% and let the M signals be orthogonal. The minimum frequency
separation between adjacent signals Af = %.

* The bandwidth B.W = (M — 1) () + 2R,
* For the case when M = 2,B.W = (%) + 2R, = gRb.

'ForthecasewhenM=4,B.W=(—)+2RS=5RS=— = —R,.




Bit Error Probability of M-FSK

Due to the symmetry of M-FSK constellation, all mappings from sequences of A
bits to signal points yield the same bit error probability.

For equally likely signals, all the conditional error events are equiprobable and
occur with probability Pr[symbol error] /(M — 1) = Pr[symbol error] /(2" — 1).

There are (i‘) ways in which k bits out of A may be in error = The average
number of bit errors per A-bit symbol is

A

P bol -
Z ( ) r[sym o error = A Pr[symbol error].
k—1 —1 22 — 1

The probability of bit error is simply the above quantity divided by A:

oA—1
Pr|bit error| =

Pr|symbol error].
] sy |
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M-ary Quadrature Amplitude Modulation (M-QAM)

> M-QAM are two-dim constellations and they involve inphase (1) and quadrature
(Q) carriers:

5 In M-QAM, the messages are
¢1(t) = |7 cos(@nfet), 0<t<T:  encoded into both the amplitude
_ and phase of the carrier.
dot) = jTi sin(2nf.t), 0<t<T,, QAMisatwo-dimensional encoding
s scheme and requires two base
o The ith transmitted M-QAM signal is: functions.
B L2 .12 . 0<t<Ts
si(t) = Vi, T cos(2mfet) + Vg i/ ™ sin(2m f.t), i—192 ... M
2 . — (.- .
— \/E — cas(?wfc_t — 6'1-) Sl(t) al¢1 ;I_ bl¢2
V Ts E; = a;* + b;” (prove)

Vr.i and Vg ; are the information-bearing discrete amplitudes of the two
quadrature carriers, FE; = If? + Vé_i and 6; =tan" ' (Vo.i/Vr1.i).
2 In general, QAM symbols have different energies. The average symbol energy is
calculated as:
M

M
Es = ZEE'P[SE'[:t)] — ZT for equally-likely signals .
i=1 !



M-Ary Quadrature Amplitude Modulation

A A
Rectangle (1.3)
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Criteria for Selecting a Given Constellation

* Probability of Error: In signaling over AWGN, the most likely
errors are those which confuse a signal with its neighbors. To
maintain the same symbol error probability, the distance
between the nearest neighbors are kept the same.

* Average Transmitted Energy: The most efficient signal
constellation is the one that has the smallest average
transmitted energy.

e Simplicity in Modulation and Demodulation.
* Bandwidth Requirement.



A Simple Comparison of M-QAM Constellations

With the same minimum distance of all the constellations, a more
efficient signal constellation i1s the one that has smaller average

transmitted energy. ,
1.125A2 1.1834

1.5A2 1.162A%? " Triangle L (44)

I
Rectangle (1,7)

| . m
. * . U
44% + 4(24%)

Eyp = 3

E for the rectangular, triangular, (1,7) and (4,4) constellations are
found to be 1.50A%, 1.125A?, 1.162A% and 1.183A?Z, respectively.

M

I
e 3]

= 1.54%



Rectangular M-QAM

@, (1)
M=64
F L - L L L 3 L "'
+ . * . . . . .
: M =16 M=32 |
$-—————- - - - - *— - .
i M=8 | |
] ] L] [ ] . i: ] »
. . O — e e ¢ . .
: i M=4 | ,
L L - L O FR— - S— -
. . . . . . . +
L — > A e . S |

@ Signal components belong to the set of discrete values {(2: — 1 — M)A /2},

i=1,2,..., 4.
@ Each group of A = log, M bits can be divided into Ar inphase bits and A¢ quadrature bits,

where A1 + Ag = A.
2 Inphase bits and quadrature bits modulate the inphase and quadrature carriers independently.
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Implementatlon of Rectangular M-QAM

V, 0, (1) +V,, 0, (1) = 5,
_r.-_r u_v_

Q nphase ;1%]_(/_)—

i

|'

---:f___ .-.:rm— [% cos(2z f.1)

This is an integrator

|4, bits Select || -H“m ,_ ¢ Matche N A, bits
: :;LL II', ) o g ) [.-.fll.h-u.i | ¥ Slicer |-
I "-.~ | filter Tlr,-_, +w,
A bits E ¥ Siil) ¢ i A bits
< i - I' = -
—» A W NP, N 3
5 . t=T, !
A, bits{ Select _ Matched | ‘a A, bits
Vv — - —0 Slicer —®
] 0. filter v W, ]
Transmitter 9(1) = [ sin2x £1) %) Receiver
Quadrature ASK @, (1) T A Rectangular QAM  Each group of A = logzM
M,=2%=4 | 2 M=2"=32  can be divided into 4; in-
tUYTYTUTYTYT YT phase bits and 4, quadrature
R S, St S S St ettt bits where 1 = 4, + A,.
X x * 2| * X ¥—=>a (1) .
] I I | i I I | e ol -
I R St S e T S S N In-phase and quadrature bits
bbb DLl nphase ASK modulate the in-phase and
— M, =2% =8 qguadrature carriers
=2 . 44
2 independently.



In-phase ASK, Quadrature ASK and QAM Waveforms

Inphase 8-ASK signal

10 : : : .
011 101 11 ' 001 | 100 | 000 110 - 010
5_
0
_5—
~10 | | - | | | |
0 | 2 3 4 5 6 7
t/T,
Quadrature 4-ASK signal
10
00 0l ' 01 ! 10 ' 1 00 1] ! 00
5 -
D_
_5 | —
_10 | | | | | | |
0 1 2 3 4 5 6 7
t/ T,
32-QAM signal
10
01100 10101 L1101 L 00110 L0011 " 000 00 110 11 01000
5 -
D .
_5 | —
_10 | | | | | | |
0 1 2 3 4 5 6 7

t/ Ty



Symbol Error Probability of M-QAM

@ For square constellations:

2
Plerror] =1 — P|correct] =1 — (1 - Pm[errorD ' See the full derivation

1 = in Appendix 1.
P rrlerror] =2 (1 - \/_A'—[) @ (\/(1\[ — f)N()) |

where E /Ny is the average SNR per symbol.

@ For general rectangular constellations:

] =
3E;
Plerror] < 1-]1-2Q (\/(]\[ — 1)N0)

SAE
< 4Q (\/([\[ — 13N0>

where Ej, /Ny is the average SNR per bit. 46




P[symbol error]

107"

Symbol Error Probability of M-QAM

| | —— Exact performance
- | = = = Upper bound

0 5
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Performance Comparison of M-ASK, M-PSK, M-QAM

10 = — ~ T -
10_25 x\' x\' ]
— \
E 10_3 i / \\ \\ \\
D \ \ vV
—'—g 4—-QAM or QPSK - ‘]
; » I ".IIII \\
= 10 ' Y ";
\ 3
_ M=4,8, 16, 32 ‘,‘
10} ]
T M-ASK
| == -M-PSK
lﬂ_ﬁ M_QAM I ) |
0 5 10 15 20

EJ:IN{} (dB)
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Comparison of M-ary Signaling Techniques

@ A compact and meaningful comparison of different M-ary techniques is based on
the bit rate—to bandwidth ratio, r, /W (bandwidth efficiency) versus the SNR per
bit, E,/No (power efficiency) required to achieve a given P|error].

9 To reduce bandwidth, AM-ASK can be transmitted with a single-sideband (SSB)
only. Thus the bandwidth can be approximated as W ~ 1/(27s) and

b :
et = 2log, M (bits/s/Hz).
(W)SSB-ASK St ( oz

o M-PSK and M-QAM (M > 2) must be transmitted with double sidebands,
hence W =~ 1/Ts and

Tp :
— =3 M bit H
(W)PSK ogy M, (bits/s/Hz),

9 For M-FSK with the minimum frequency separation of 1/(27%),
~ 2T — 2(\/rp) ~— 2logy M 'b»

( Tb ) _ 2logo M
W/Fsk M



rb;’W (bits/s/Hz)

Power-Bandwidth Plane (At P[error] =10)
10: | ] 1 1 1 1 1 :
i M=64 i
5 -
3 =
2 -
Bandwidth—limited
—9 region: rhfW:‘?l
1, . ' .
i M=8
] - Power—limited
0.5 i M=16 region: r /W<l |
0.3} M=32 i
0.2 M=64 | —e—PSK |
—=— (QAM and ASK (SSB)
——FSK
G-l B | | I I ] ] i
-10 -5 -1.60 5 10 15 20 25 30

SNR per bit, E,/N, (dB) .



Adaptive Modulation

The probability of error (bit of symbol) has been obtained for various pass-band modulation
schemes in terms of SNR per bit, E; /Np.

Such probability analysis was obtained under the simplest channel model, namely AWGN.
This channel model ignores any attenuation by the transmission medium /environment and
only takes into account AWGN.

In reality, there is always channel attenuation, even the attenuation is varying over time
(think about wireless channels). Usually the received signal power is usually much smaller
than the transmitted signal power.

When considering channel attenuation, it is important to understand that it is the received
SNR per bit, E;, /Ny, measured at the receiver side that determines the error probability.

Consider bandwidth-efficient applications such as cellular phone or cable TV systems, in
which the channel quality changes dynamically. There are two design options:

Q In order to maintain the same transmission rate (i.e., stay with the same constellation
size M) at the same quality of service (i.e., same error probability), the transmitted
power should be adjusted according to the channel condition: higher transmit power
when the channel quality is poor and vice versa.

Q [f the transmit power is held fixed, in order to maintain the same quality of service (i.e.,
same error probability), the transmitter needs to adapt the modulation scheme
according to the channel condition: lower constellation size (smaller /), which also
means slower transmission rate, when the channel quality is poor and vice versa.

Many practical systems operate with constant transmit power (easier for circuit design) and
exercise adaptive modulation.

To enable adaptive modulation, the information about the channel quality, usually measured
at the receiver, needs to be sent back to the transmitter on a reverse channel.

For example, the latest DOCSIS 3.1 standard for cable TV specifies 14 modulation choices:
BPSK, QPSK, 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM, 512-QAM,
1024-QAM, 2048-QAM, 4096-QAM, 8192-QAM, and 16384-QAM.
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Union Bound

. )
Union bound
The probability of a finite union of events is upper bounded
by the sum of the probabilities of the individual events. Y

* Let A;; denote that the observation vector Z is closer to
the symbol vector s, than s; ,whens; istransmitted.

* P(4y;) = P,(sg, s;) depends only on s, and s; .

* Applying Union bounds yields

M Assume all signals are equally likely. Therefore,
D89 p@) = Am)
It

Recall that:
P(AUB) = P(A) + P(B) — P(AN B) < P(A) + P(B)
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Union Bound

P,(sy,s;) = P(Z is closer to s; than s; when s; is sent

=l nl (_ _) du = Q(m)

kii k=i
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Example on the Union Bound: M-FSK

M M d
1k
Po(m) < ) Pa(sis) = ) Q( e )
k=1 k=1 ZNg
k+i k+i

Example: If all (M-1) signals are of the same distance d from s; (as in M-FSK), the error
probability of error is approximately

P(m.)<iQ<dik>z(M—1)Q< ‘ )
YT & T\ 2N, J2N,

k+i

where, d = /2E. Therefore,

- o Y — - ol B
P.(m) ~ (M 1)Q<m - 0r-ve| [
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P.(m) ~ i Q( iy ) a0 |
o = \V2No
k+i
nimo = 050 () (3
RENE M

Note that since

P.(m;) = 2Q<
\

2Q<\/5:Z>+Q<

Example on the Union Bound: 4-PSK

\//T'i_'\//TS’— =} -

di, =diy =V2E
di3 = 2VE
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Example on the Union Bound: M-QAM

* In M-QAM, each signal has 4 signals at a distance A and 4 at a distance

AV?2.

 The probability of error can be approximated by:

P,(m;) = 4Q (F) 40 (F) By ignoring the second term, we get
P(ml) ~4‘Q( AZ)

2N,

 The average energy per signal is (See Appendix 1)
2(M 1)A2
Es = ; (2)

e Substituting for A (in 2), into (1), we get
P.(m;) =~ 4Q (J i ); as was found earlier

(M—-1)Ng



