

MATLAB®/Simulink®

for
Digital Communication

Won Y. Yang, Yong S. Cho, Won G. Jeon, Jeong W. Lee, Jong H. Paik

Jae K. Kim, Mi-Hyun Lee, Kyu I. Lee, Kyung W. Park, Kyung S. Woo

ii

Copyright © 2009 by A-Jin Publishing Co

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher. Requests for permission or further information should be addressed to the Publisher,
A-Jin.

Limits of Liability and Disclaimer of Warranty of Software

The authors and publisher of this book have used their best efforts and knowledge in preparing
this book as well as developing the computer programs in it. However, they make no warranty
of any kind, expressed or implied, with regard to the programs or the documentation contained
in this book. Accordingly, they shall not be liable for any incidental or consequential damages in
connection with, or arising out of, the readers’ use of, or reliance upon, the material in this book.

The reader is expressly warned to consider and adopt all safety precautions that might be
indicated by the activities herein and to avoid all potential hazards. By following the
instructions contained herein, the reader willingly assumes all risks in connection with such
instructions.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. and are used with
permission. The MathWorks does not warrant the accuracy of the text or exercises in this book.
This book’s use or discussion of MATLAB® and Simulink® does not constitute endorsement or
sponsorship by The MathWorks of a particular pedagogical approach or particular use of the
MATLAB® and Simulink®. For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098, USA

☎: 508-647-7000, Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

Questions about the contents of this book can be mailed to wyyang53@hanmail.net.

Program files in this book can be down-loaded from the following website:

http://wyyang53.com.ne.kr/

ISBN 0

Printed in Korea by A-Jin Publishing Co., Korea

Contents iii

To our parents and families

who love and support us

and

to our teachers and students

who enriched our knowledge

iv

v

Table of Contents
PREFACE iii

CHAPTER 1: FOURIER ANALYSIS 1
1.1 CONTINUOUS-TIME FOURIER SERIES (CTFS) ... 2
1.2 PROPERTIES OF CTFS .. 6

1.2.1 Time-Shifting Property ... 6
1.2.2 Frequency-Shifting Property ... 6
1.2.3 Modulation Property ... 6

1.3 CONTINUOUS-TIME FOURIER TRANSFORM (CTFT) .. 7
1.4 PROPERTIES OF CTFT ... 13

1.4.1 Linearity .. 13
1.4.2 Conjugate Symmetry ... 13
1.4.3 Real Translation (Time Shifting) and Complex Translation (Frequency Shifting) 14
1.4.4 Real Convolution and Correlation .. 14
1.4.5 Complex Convolution – Modulation/Windowing .. 14
1.4.6 Duality ... 17
1.4.7 Parseval Relation - Power Theorem .. 18

1.5 DISCRETE-TIME FOURIER TRANSFORM (DTFT) .. 18
1.6 DISCRETE-TIME FOURIER SERIES - DFS/DFT .. 19
1.7 SAMPLING THEOREM ... 21

1.7.1 Relationship between CTFS and DFS ... 21
1.7.2 Relationship between CTFT and DTFT .. 27
1.7.3 Sampling Theorem .. 27

1.8 POWER, ENERGY, AND CORRELATION .. 29
1.9 LOWPASS EQUIVALENT OF BANDPASS SIGNALS ... 30
Problems .. 36

CHAPTER 2: PROBABILITY AND RANDOM PROCESSES 39
2.1 PROBABILITY .. 39
 2.1.1 Definition of Probability .. 39
 2.1.2 Joint Probability and Conditional Probability .. 40
 2.1.3 Probability Distribution/Density Function ... 41
 2.1.4 Joint Probability Density Function ... 41
 2.1.5 Condtional Probability Density Function ... 41
 2.1.6 Independence .. 41
 2.1.7 Function of a Random Variable ... 42
 2.1.8 Expectation, Covariance, and Correlation ... 43
 2.1.9 Conditional Expectation ... 47
 2.1.10 Central Limit Theorem - Normal Convergence Theorem .. 47
 2.1.11 Random Processes ... 49
 2.1.12 Stationary Processes and Ergodic Processes ... 51
 2.1.13 Power Spectral Density (PSD) .. 53
 2.1.14 White Noise and Colored Noise .. 53
2.2 LINEAR FILTERING AND PSD OF A RANDOM PROCESS .. 57
2.3 FADING EFFECT OF A MULTI-PATH CHANNEL .. 59
Problems .. 62

vi Contents

CHAPTER 3: ANALOG MODULATION 71
3.1 AMPLITUDE MODULATION (AM) ... 71
 3.1.1 DSB (Double Sideband)-AM (Amplitude Modulation) .. 71
 3.1.2 Conventional AM (Amplitude Modulation) .. 75
 3.1.3 SSB (Single Sideband)-AM(Amplitude Modulation) .. 78
3.2 ANGLE MODULATION - FREQUENCY/PHASE MODULATIONS 82
Problems ………………………………… …………………………………………………… 86

CHAPTER 4: ANALOG-TO-DIGITAL CONVERSION 87
4.1 QUANTIZATION .. 87
 4.1.1 Uniform Quantization .. 88
 4.1.2 Non-uniform Quantization ... 89
 4.1.3 Non-uniform Quantization Considering Relative Errors ... 91
4.2 Pulse Code Modulation (PCM) .. 95
4.3 Differential Pulse Code Modulation (DPCM) ... 97
4.4 Delta Modulation (DM) ... 100
Problems …………………………………………………… …………………………………103

CHAPTER 5: BASEBAND DIGITAL TRANSMISSION 107
5.1 RECEIVER (RCVR) and SNR .. 107
 5.1.1 Receiver of RC Filter Type .. 109
 5.1.2 Receiver of Matched Filter Type ... 110
 5.1.3 Signal Correlator .. 112
5.2 SIGNALING AND ERROR PROBABILITY ... 114
 5.2.1 Antipodal (Bipolar) Signaling .. 114
 5.2.2 OOK(On-Off Keying)/Unipolar Signaling .. 118
 5.2.3 Orthogonal Signaling ... 119
 5.2.4 Signal Constellation Diagram .. 121
 5.2.5 Simulation of Binary Communication ... 123
 5.2.6 Multi-level(amplitude) PAM Signaling ... 127
 5.2.7 Multi-dimensional Signaling .. 129
 5.2.8 Bi-orthogonal Signaling ... 133
Problems ……………………………………………………………………………………… 136

CHAPTER 6: BANDLIMITED CHANNEL AND EQUALIZER 139
6.1 BANDLIMITED CHANNEL .. 139
 6.1.1 Nyquist Bandwidth ... 139
 6.1.2 Raised-Cosine Frequency Response .. 141
 6.1.3 Partial Respone Signaling - Duobinary Signaling ... 143
6.2 EQUALIZER .. 148
 6.2.1 Zero-Forcing Equalizer (ZFE) ... 148
 6.2.2 MMSE Equalizer (MMSEE) .. 151
 6.2.3 Adaptive Equalizer (ADE) ... 154
 6.2.4 Decision Feedback Equalizer (DFE) .. 155
Problems ……………………………………………………………………………………… 159

CHAPTER 7: BANDPASS DIGITAL TRANSMISSION 169
7.1 AMPLITUDE MODULATION - AMPLITUDE SHIFT KEYING (ASK) 169
7.2 FREQUENCY MODULATION - FREQUENCY SHIFT KEYING (FSK) 178
7.3 PHASE MODULATION - PHASE SHIFT KEYING (PSK) ... 187
7.4 DIFFERENTIAL PHASE SHFT KEYING (DPSK) ... 190
7.5 QUADRATURE AMPLITUDE MODULATION (QAM) - PAM/PSK 195

Contents vii

7.6 COMPARISON OF VARIOUS SIGNALINGS .. 200
Problems …………………………………………………………………………………… … 205

CHAPTER 8: CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION 225
8.1 INTRODUCTION .. 225
8.2 PLL (PHASE-LOCKED LOOP) ... 226
8.3 ESTIMATION OF CARRIER PHASE USING PLL .. 231
8.4 CARRIER PHASE RECOVERY .. 233
 8.4.1 Carrier Phase Recovery Using a Squaring Loop for BPSK Signals 233
 8.4.2 Carrier Phase Recovery Using Costas Loop for PSK Signals 235
 8.4.3 Carrier Phase Recovery for QAM Signals ... 238
8.5 SYMBOL SYNCHRONIZATION (TIMING RECOVERY) ... 241
 8.5.1 Early-Late Gate Timing Recovery for BPSK Signals ... 241
 8.5.2 NDA-ELD Synchronizer for PSK Signals ... 244
Problems …………………………………………………………… …………………………247

CHAPTER 9: INFORMATION AND CODING 255
9.1 MEASURE OF INFORMATION - ENTROPY .. 255
9.2 SOURCE CODING .. 256
 9.2.1 Huffman Coding ... 256
 9.2.2 Lempel-Zip-Welch Coding .. 259
 9.2.3 Source Coding vs. Channel Coding ... 262
9.3 CHANNEL MODEL AND CHANNEL CAPACITY ... 263
9.4 CHANNEL CODING .. 268
 9.4.1 Waveform Coding .. 269
 9.4.2 Linear Block Coding .. 270
 9.4.3 Cyclic Coding ... 279
 9.4.4 Convolutional Coding and Viterbi Decoding .. 284
 9.4.5 Trellis-Coded Modulation (TCM) .. 293
 9.4.6 Turbo Coding ... 297
 9.4.7 Low-Density Parity-Check (LDPC) Coding .. 308
 9.4.8 Differential Space-Time Block Coding (DSTBC) ... 313
9.5 CODING GAIN ... 316
Problems ……………………………………………………………………………………… 318

 CHAPTER 10: SPREAD-SPECTRUM SYSTEM 337
10.1 PN (Pseudo Noise) Sequence .. 337
10.2 DS-SS (Direct Sequence Spread Spectrum) ... 345
10.3 FH-SS (Frequency Hopping Spread Spectrum) .. 350
Problems ……………………………………………………………………………………… 354

CHAPTER 11: OFDM SYSTEM 357

11.1 OVERVIEW OF OFDM .. 357
11.2 FREQUENCY BAND AND BANDWIDTH EFFICIENCY OF OFDM 361
11.3 CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION 362
11.4 CHANNEL ESTIMATION AND EQUALIZATION ... 379
11.5 INTERLEAVING AND DEINTERLEAVING ... 382
11.6 PUNCTURING AND DEPUNCTURING .. 384
11.7 IEEE STANDARD 802.11A - 1999 .. 386
Problems ………………………………………………………………………………… …… 393

viii Contents

APPENDICIES 407
Appendix A: Fourier Series/Transform .. 407
Appendix B: Laplace Transform and z -Transform .. 412
Appendix C: Differentiation w.r.t. a Vector ... 414
Appendix D: Useful Formulas .. 415
Appendix E: MATLAB Introduction .. 417
Appendix F: Simulink ... 421

REFERENCES 425

INDEX 427

ix

Preface

This book has been designed as a reference book for students or engineers studying
communication systems possibly in the curriculum of Electrical Engineering program rather
than a text book for any course on communication. Readers are supposed to have taken at least
two junior-level courses, one on signals and systems and another one on probability and random
processes. In other words, readers should have a basic knowledge about the linear system,
Fourier transform, Laplace transform, z -transform, probability, and random processes although
the first two chapters of this book provide a brief overview of some background topics to
minimize the necessity of the prerequisite courses and to refresh their memory if nothing else.

It is not the aim of this book to provide any foundation in the basic theory of digital
communication since the authors do not have such a deep knowledge as to do it. The first aim of
this book is to help the readers understand the concepts, techniques, terminologies, equations,
and block diagrams appearing in the existing books on communication systems while using
MATLAB® to simulate the various communication systems most of which are described by
block diagrams and equations. Needless to say, the readers are recommended to learn some
basic usage of MATLAB® that is available from the MATLAB help function or the on-line
documents at the web site <http://www.mathworks.com/matlabcentral/>. However, they are not
required to be so good at MATLAB® since most programs in this book have been composed
carefully and completely so that they can be understood in connection with related/referred
equations and/or block diagrams. The readers are expected to get used to MATLAB software
while trying to modify/use the MATLAB® codes and Simulink® models in this book for solving
the end-of-chapter problems or their own problems. The second and main aim of this book is to
make even a novice at both MATLAB® and communication systems become acquainted, at least
comfortable, with MATLAB® as well as communication systems while running the MATLAB
programs on his/her computer and trying to understand what is going on in the systems
simulated by the programs. Is it too much to expect that a novice will become interested in
communications and simultaneously fall in love with MATLAB®, which is a universal language
for engineers and scientists after having read this book through? Is it just the authors’
imagination that the readers would think of this book describing and explaining many concepts
in MATLAB® rather than in English? In any case, the authors have no intention to hide their
hope that this book will be one of the all-the-time-reserved books in most libraries and can be
found always on the desks of most communication engineers. The features of this book can be
summarized as follows:

1. This book presents more MATLAB programs for the simulation of communication systems
than any existent books with the same or similar titles as an approach to explain most things
using MATLAB® and figures rather than English and equations.

 2. Most MATLAB programs are presented in a complete form so that the readers can run them
instantly with no programming skill and focus on understanding the behavior and
characteristic of the simulated systems and making interpretations based on the tentative
and final simulation results.

3. Many programs have a style of on-line processing rather than batch processing so that the
readers can easily understand the whole system and the underlying algorithm in details
block by block and operation by operation. Furthermore, the on-line processing style of the
programs is expected to let the readers develop their insight into the real system.

4. Authors never think that this book can replace the existent books made by many great
authors to whom they are not comparable to. They neither expect that this book can take the
place of the MATLAB manual. Instead, this book is designed to play a role of bridge

x Preface

between MATLAB® software and the theory, block diagrams, and equations appearing in
the field of communications so that the readers can feel free to utilize MATLAB® software
for studying communication systems and become much more interested in communications
than before reading this book.

The contents of this book are derived from the works of many (known or unknown) great
scientists, scholars, and researchers, all of whom are deeply appreciated. We would like to thank
the reviewers for their valuable comments and suggestions, which contribute to enriching this
book.

We also thank the people of the School of Electronic & Electrical Engineering, Chung-Ang
University for giving us an academic environment. Without affections and supports of our
families and friends, this book could not be written. Special thanks should be given to Senior
Researcher Yong-Suk Park for his invaluable help in correction. We gratefully acknowledge the
editorial and production staff of A-Jin Publishing Company for their kind, efficient, and
encouraging guide.

Program files can be downloaded from <http://wyyang53.com.ne.kr/>. Any questions,
comments, and suggestions regarding this book are welcome and they should be mailed to
wyyang53@hanmail.net.

Won Young Yang et al.

7.5 Quadrature Amplitudee Modulation (QAM) 195

7.5 QUADRATURE AMPLITUDE MODULATION (QAM)

The passband 2bM = -ary QAM signaling uses the waveforms which have different amplitudes and
phases depending on what data they are carrying and therefore, it can be viewed as a kind of APK
(amplitude-phase keying), which combines amplitude modulation and phase modulation. Each of
the passband 2bM = -ary QAM signal waveforms can be written as

2() () () Re () cj t
mc msm mc uc ms us

s
s t A s t A s t A j A e

T
ω= + = + for 0, 1, , 1m M= −

2 2cos() sin()mc msc c
s s

A t A t
T T

ω ω= − for sTt <≤0

2 2 12 cos() with and tan ms
m mm c mc ms m

mcs

AA t A AT
A Aω θ θ −= + = + = (7.5.1)

where
2 2() cos(), () sin() : Basis signal waveformsuc c us c
s s

s t t s t t
T T

ω ω= = − (7.5.2)

: Bit time or bit duration, : Symbol timeor symbolduration

: Signal energy per symbol
b s b

s b

T T bT

E bE

=

=

196 Chapter 7 Passband Digital Communication

The QAM signal waveforms are illustrated in Fig. 7.1(a4) and each of them can be represented as a
vector of length mA

[] []cos sinm mmc msm mA A A θ θ= =s (7.5.3)

and depicted in the signal space as Fig. 7.1(b4) or Fig. 7.11 where the (orthonormal) bases of the
signal space are the unit vectors representing ()ucs t and ()uss t defined by Eq. (7.5.2).

Suppose the amplitudes/phases of the 2bM = -ary QAM signal waveforms are designed in such a
way that they can be represented by a rectangular constellation in the signal space as Fig. 7.11(a)
and the minimum distance among the signal points is 2A . Then, the average ,s avE of signal powers
(represented by the squared distance between signal points and the origin) and the average number

bN of adjacent signal points for a signal point vary with the modulation order 2bM = or the
number b of bits per symbol as

2 21
2 2 22

,
1

1 4 (1) 2 2(1) 42 4 : 2 , 2 4
4 3 2

M

s av m b
m

A MM E A
M M

A A N
−

=

× × −
= = = = = = = = −

=
2 2 21

4 2 22
,

1

2

2

1 4 (1 3) 4 2(1)2 16 : 10
16 3

4 ((2 1) 4 (4 2) 3 2) 4 3 4
4 4

M

s av m
m

b

A MM E A
M

M

A A

N

−

=

× + × −= = = = = =

× − × + − × +
= = = −

=
2 2 2 2 2

4 2 2
,

2

2

4 (1 3 5 7) 8 2(1)4 2 64 : 42
64 3

4 ((4 1) 4 (8 2) 3 2) 7 4 4
28 8

s av

b

A MM E
M

M

A A

N

× + + + × −= = = = =
=

× − × + − × +
= = = −

=

×

2
,

2(1) Average signal energy per symbol
3

:s av
ME A−= (7.5.4a)

44 : Average number of adjacent signal pointsb M
N = − (7.5.4b)

7.5 Quadrature Amplitudee Modulation (QAM) 197

A half of the minimum distance mind among the 2bM = -ary QAM signal points in the signal space
can be expressed in terms of the average signal energy ,b avE per bit as

(7.5.4a)min
, ,

3 / 2 3/ 2
2 1 1s av b av

d A E bE
M M

= = =
− −

 (7.5.5)

Note that if we use the circular constellation as in Fig. 7.11(b), we may have a larger minimum
distance with the same average energy ,b avE , but the difference is very small for 16M ≥ . Besides,
an 2 (2 : an even number)bM b m= = -ary QAM signaling with rectangular signal constellation can
easily be implemented by two independent 2/2b -ary PAM signaling, each of which uses one of the
quadrature carriers)cos(tcω and)sin(tcω , respectively (see Fig. 7.12). This is why QAM signaling
with rectangular signal constellation is widely used.

For an 2bM L N= = -ary QAM signaling implemented by combining an L -ary PAM signaling
and an N -ary PAM signaling, the symbol error probability can be found as

, , ,probability of correct detection() 1 () 1 (1 ())(1 ())e s e s e sP M L N P P L P N= = − = − − −

(7.1.5)
, ,2 2

2(1) 3 / 2 2(1) 3 / 21 1 1
1 1r b r b

L b N bQ SNR Q SNR
L NL N
− −= − − −

− −
 (7.5.6)

,
4(1) 3 / 2 with

1 r b
L bQ SNR L N
L M
−

≤ ≥
−

(7.5.7)

where the upperbound on the RHS coincides with what is obtained by substituting Eqs. (7.5.4b) and
(7.5.5) into Eq. (5.2.41). How about the bit error probability? Under the assumption that the
information symbols are Gray-coded so that the codes for adjacent signal points differ in only one
bit, the most frequent symbol errors contain just one of the b bits mistaken and the relationship
between the symbol and bit errors can be written as

sebe P
b

P ,,
1

= (7.5.8)

Now, let us think about the structure of the 22 2 (2 : an even number)b mM b m= = = -ary QAM
communication system depicted in Fig. 7.12 where the XMTR divides the b bits of a message
symbol data into two parts of 2/bm = bits, converts them to analog signals, and modulates them
with the quadrature carriers that are the basis signal waveforms

2 2() cos() () sin()anduc c us c
s s

s t t s t t
T T

ω ω= = − , (7.5.10)

respectively. This QAM scheme is basically equivalent to performing two independent quadrature
PAMs in parallel. The RCVR has two quadrature correlators, each of which computes a
correlation of the received signal)(tr with)(tsuc and)(tsus to make the sampled outputs

(5.1.27)
, 0

() ((1))
sT

sc k ucy s t r t k T td= + − and
(5.1.27)

, 0
() ((1))

sT

ss k usy s t r t k T td= + − , (7.5.11)

198 Chapter 7 Passband Digital Communication

respectively. The DTR judges the received signal to be the one represented by the signal point
which is the closest to the point , ,(,)c k s ky y in the signal space as

2 2
* , , , ,Arg Min ||[] []|| Arg Min{() () }c k s k mc ms c k mc s k msm m

m y y A A y A y A= − = − + − (7.5.12)

or combines two independent quadrature PAM demodulation results

,* 1,...,
Arg Min | (2 1) |c ki M

i y i M A
=

= − − − (7.5.13a)

,* 1,...,
Arg Min (2 1)s k

l M
l y l M A

=
= − − − (7.5.13b)

to judge the received signal to be the one represented by the * *)(,i l th signal point from the left-
lower corner in the signal space.

The objective of the following MATLAB program “sim_QAM_passband.m” is to simulate the
passband 42 2bM = = -ary QAM signaling depicted in Fig. 7.12 and plot the bit error probability vs.

, 10 010 log (/(/ 2))r b bSNRdB E N= for checking the validity of theoretical derivation results (7.5.8).

7.5 Quadrature Amplitudee Modulation (QAM) 199

%sim_QAM_passband.m
% simulates a digital communication system in Fig.7.13
% with QAM signal waveforms in Fig.7.11
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
b=4; M=2^b; L=2^(b/2); % # of bits per symbol and the modulation order
SNRbdBt=0:0.1:15; SNRbt=10.^(SNRbdBt/10);
Pm=2*(1-1/L)*Q(sqrt(3/2*b*SNRbt/(M-1))); % Eq.(7.1.5)
pobet= (1-(1-Pm).^2)/b; % Eq.(7.5.8) with (7.5.6)
Tb=1; Ts=b*Tb; % Bit/Symbol time
Nb=16; Ns=b*Nb; % # of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
ssc=[0 0; 0 1; 1 1; 1 0]; sss=ssc;
wc=8*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T;
su=sqrt(2/Ts)*[cos(wc*t); -sin(wc*t)]; suT=su*T; % Basis signals
Esum= 0;
% 16-QAM signal waveforms corresponding to rectangular constellation
for i=1:L

for l=1:L
 s(i,l,1)=2*i-L-1; s(i,l,2)=2*l-L-1; %In-phase/quadrature amplitude
 Esum= Esum +s(i,l,1)^2 +s(i,l,2)^2;
 ss(L*(l-1)+i,:)=[ssc(i,:) sss(l,:)];
 sw(L*(l-1)+i,:)=s(i,l,1)*su(1,:)+s(i,l,2)*su(2,:);

end
end
Eav=Esum/M, Es_av=2*(M-1)/3 % Eq.(7.5.4a): Average signal energy (A=1)
Es=2; % Energy of signal waveform
A=sqrt(Es/Eav); sw=A*sw; levels=A*[-(L-1):2:L-1];
SNRdBs=[1:15]; MaxIter=10000; % Range of SNRbdB and # of iterations
for iter=1:length(SNRdBs)
 SNRbdB= SNRdBs(iter); SNR=10^(SNRbdB/10);
 sigma2=(Es/b)/SNR; sgmsT=sqrt(sigma2/T);
 yr= zeros(2,LB); nobe= 0; % Number of bit errors to be accumulated

for k=1:MaxIter
 im= ceil(rand*L); in= ceil(rand*L);
 imn= (in-1)*L+im; % Index of signal to transmit
 s=ss(imn,:); % Data bits to transmit

for n=1:Ns % Operation per symbol time
 wct= wcT*(n-1); bp_noise= randn*cos(wct)-randn*sin(wct);
 rn= sw(imn,n) + sgmsT*bp_noise;
 yr= [yr(:,2:LB) suT(:,n)*rn]; % Multiplier

end
 ycsk=sum(yr(:,LBN1:LB)'); % Sampled correlator output - DTR input

%Detector(DTR)
 [dmin_i,mi]= min(abs(ycsk(1)-levels));

 [dmin_l,ml]= min(abs(ycsk(2)-levels));
 d= ss((ml-1)*L+mi,:); % Detected data bits
 nobe = nobe+sum(s~=d); if nobe>100; break; end

end
 pobe(iter)= nobe/(k*b);
end
subplot(222), semilogy(SNRbdBt, pobet, 'k-', SNRdBs, pobe, 'b*')
title('Probability of Bit Error for 16-ary QAM Signaling')

200 Chapter 7 Passband Digital Communication

Fig. 7.14 shows the BER (bit error rate) curves, i.e. the bit error probabilities versus the average
SNR per bit for 2 4 62 2 , 2 , 2bM = = -ary QAM signalings where the error probability tends to
increase as the modulation order M increases. This tendency can be anticipated from the signal
constellation diagram where the signal points get denser in the two-dimensional space and
consequently, the minimum distance among the signal points gets shorter as M increases.

7.6 COMPARISON OF VARIOUS SIGNALINGS

There are several criteria to consider in deciding the signaling/modulation methods. For example,

 BER (bit error rate) performance: How low is the bit error probability for the same SNR?
 Data rate: How high is the data transmission rate[bits/sec]?
 Power efficiency: How low is the SNR required for keeping the same BER?
 Bandwidth efficiency: How narrow is the bandwidth required to keep the same data transmission

rate?
 PAR (peak-to-average power ratio), interference, and out-of-band radiation
 Structural simplicity and cost: How simple is the structure and how cheap is the cost for

construction and maintenance?

Table 7.1 shows the BERs for various signalings that have been discussed so far. The following
MATLAB routine “prob_error(SNRbdB,signaling,b)” computes the error probability for SNRbdB
value(s), signaling method, and number of bits per symbol. The MATLAB built-in function
‘berawgn(EbN0dB,signaling,M)’ is more powerful and convenient to use. The BERTool GUI
(graphic user interface) can be invoked by typing ‘bertool’ into the MATLAB Command Window.

7.6 Comparison of Various Signalings 201

Table 7.1 Bit error probabilities for various signalings (2
, 0/ (/) /(/ 2)r b sbSNR E E b Nσ= =)

2bM = Signaling Coherent (synchronous) detection Noncoherent detection

 Binary
 case

2bM =
 (1=b)

 OOK =
42/

4/

0

rs SNR
Q

N
E

Q (7.1.24) / 41

2
rSNRe− (7.1.22)

 FSK =
22/

2/

0

rs SNR
Q

N
E

Q (7.2.9) / 41

2
rSNRe− (7.2.20)

 PSK ()r
s SNRQ

N
E

Q =
2/0

 (7.3.5) DPSK: / 21

2
rSNRe− (7.4.9)

2bM =
-ary
 (1>b)

 ASK ,
2

32(1)
1
r bb SNRM

Q
Mb M

−
−

 (7.1.5/6) -

 FSK { }2

-

/ 2 11 ()
1

yM
q y dy

M
e

π
∞ −
∞

−
−

 (7.2.8/9)

with

()1
,() 2 M

r bq y Q y b SNR−= − −

1
1

2(1)
0

1/ 2
1 1

1(1)
rM mb SNRm

m
m

M
e

M m
M

m
−

+ −
+

=− +
−−

 (7.2.19)

 PSK (),
2

 sinr bQ b SNR
Mb
π (7.3.8) (),

2
 / 2 sinr bQ b SNR

Mb
π (7.4.8)

 QAM ,
4(1) 3 / 2

1
with ()

r b
L bQ SNR
b L M

M LN L N

≤
−

−
= >

(7.5.8) -

Now, let us look over the bandwidth efficiency, which is defined to be the ratio of the data bit
(transmission) rate bR [bits/s] over the required system bandwidth B [Hz], for 2bM = -ary
ASK/PSK/QAM/FSK signalings. Note the following:

- The rectangular pulse of duration D [s] in Fig. 1.1(a1) can be viewed as a signal carrying the data
with symbol rate D/1 [symbol/s] and the null-to-null bandwidth of the rectangular pulse is

D/4π [rad/s] D/2= [Hz] as can be seen from the spectrum in Fig. 1.1(a1). Thus it may be
conjectured that, if a series of data with symbol rate sR [symbol/s] is modulated with a carrier
frequency cω and transmitted, the bandwidth is sR2 [Hz].

- The interval between adjacent discrete spectra in Fig. 1.1(a1) is D/π [rad/s] D2/1= [Hz], which
implies that the gap between the carrier frequencies in FSK signaling is / 2sR [Hz].

Therefore we can write the bandwidths and bandwidth efficiencies of ASK/PSK/QAM and
(coherent) FSK signalings as

2
//

//2

2 log22 ;
log 2

b b
QAMASK PSK s b

QAMASK PSK

R R b MB R R
b b M B

=
= = = =

=
 (7.6.1)

2 2
,

,

(3) / log 2log
2 (1) ;

2 2 3
s b b

coh FSK s
coh FSK

R M R M R MB R M
B M

+
= + − = =

+
 (7.6.2)

202 Chapter 7 Passband Digital Communication

function p=prob_error(SNRbdB,signaling,b,opt1,opt2)
% Finds the symbol/bit error probability for given SNRbdB (Table 7.1)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<5, opt2='coherent'; end % opt2='coherent' or 'noncoherent'
if nargin<4, opt1='SER'; end % opt1='SER' or 'BER'
M=2^b; SNRb=10.^(SNRbdB/10); NSNR=length(SNRb);
if signaling(1:3)=='ASK' % ASK (PAM)

if lower(opt2(1))=='c' % ASK coherent --> Eq.(7.1.5)
for i=1:NSNR, p(i)=2*(M-1)/M*Q(sqrt(3*b*SNRb(i)/(M^2-1))); end
if lower(opt1(1))=='b', p = p/b; end

else % ASK noncoherent --> Eq.(7.1.22)
if b==1, for i=1:NSNR, p(i)=exp(-SNRb(i)/4)/2; end; end

end
elseif signaling(1:3)=='FSK'
 tmp=M/2/(M-1);
 f5251_=inline('Q(-sqrt(2)*x-sqrt(b*SNRb)).^(2^b-1)','x','SNRb','b');
if lower(opt2(1))=='c' % FSK coherent

if b==1
for i=1:NSNR, p(i)=Q(sqrt(SNRb(i)/2)); end %Eq.(7.2.9)

else
for i=1:NSNR

 p(i) = 1-Gauss_Hermite(f5251_,10,SNRb(i),b)/sqrt(pi);
end

end
else % FSK noncoherent

for i=1:NSNR
 p(i)=(M-1)/2*exp(-b*SNRb(i)/4); tmp1=M-1;

for m=2:M-1
 tmp1=-tmp1*(M-m)/m;
 p(i)=p(i)+tmp1/(m+1)*exp(-m*b*SNRb(i)/2/(m+1)); % Eq.(7.2.19)

end
end

end
if lower(opt1(1))=='b'&b>1, p = p*tmp; end

elseif signaling(1:3)=='PSK' % Eq.(7.3.7)
for i=1:NSNR, p(i)=(1+(b>1))*Q(sqrt(b*SNRb(i))*sin(pi/M)); end
if lower(opt1(1))=='b'&b>1, p = p/b; end

elseif signaling(1:3)=='DPS' % DPSK
if b==1 % Eq.(7.4.8)

for i=1:NSNR, p(i)=2*Q(sqrt(b*SNRb(i)/2)*sin(pi/M)); end
else
for i=1:NSNR, p(i)=exp(-SNRb(i)/2)/2; end %Eq.(7.4.9)
if lower(opt1(1))=='b', p = p/b; end

end
elseif signaling(1:3)=='QAM'

 L=2^(ceil(b/2)); N = M/L;
for i=1:NSNR

 tmpL = 1-2*(L-1)/L*Q(sqrt(3*b/2/(L^2-1)*SNRb(i)));
 tmpN = 1-2*(N-1)/N*Q(sqrt(3*b/2/(N^2-1)*SNRb(i)));
 p(i) = 1-tmpL*tmpN; % Eq.(7.5.6)

end
if lower(opt1(1))=='b'&b>1, p = p/b; end

end

7.6 Comparison of Various Signalings 203

Table 7.2 Power efficiency and bandwidth efficiency with signaling

The number of
bits per symbol

<Power efficiency>
, 01010 log (/(/ 2))r b bSNRdB E N= [dB]

for 5
, 10e bP −=

<Bandwidth efficiency>
/bR B [bits/s/Hz]

 ASK PSK FSK QAM ASK/PSK FSK QAM
 1=b 12.6 12.6 15.6 - 0.5000 0.4000 -
 2=b 16.8 12.9 13.1 12.9 1.0000 0.5714 1.0000
 3=b 21.3 16.5 11.6 - 1.5000 0.5455 -
 4=b 26.1 21.1 10.7 17.1 2.0000 0.4211 2.0000
 5=b 31.2 26.1 9.9 - 2.5000 0.2857 -
 6=b 36.5 31.3 9.4 21.6 3.0000 0.1791 3.0000
 7=b 41.8 36.7 8.9 - 3.5000 0.1069 -
 8=b 47.3 42.1 8.5 26.4 4.0000 0.0618 4.0000

%dc07t02.m
% fills in Table 7.2 with SNRdB for BER=1e-5 and bandwidth efficiency
clear, clf
tol=1e-14; bs=[1:8];
% Define a nonlinear equation to be solved for SNRdB using fsolve()
nonlinear_eq=inline('prob_error(x,signaling,b)-1e-5','x','signaling','b');
% For PSK signaling
for i=1:length(bs)
 b=bs(i); RB_PSK(i)=b/2; % Bandwidth efficiency

if i==1, x0=10; else x0=SNRbdBs_PSK(i-1); end
 SNRbdBs_PSK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'PSK',b);
end
disp('PSK'), [bs; SNRbdBs_PSK; RB_PSK]
% For FSK signaling
for i=1:length(bs)
 b=bs(i); RB_FSK(i)=2*b/(2^b+3);

if i==1, x0=10; else x0=SNRbdBs_FSK(i-1); end
 SNRbdBs_FSK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'FSK',b);
end
disp('FSK'), [bs; SNRbdBs_FSK; RB_FSK]
% For QAM signaling
bs_QAM=[2:2:8];
for i=1:length(bs_QAM)
 b=bs_QAM(i); RB_QAM(i)=b/2;

if i==1, x0=10; else x0=SNRbdBs_QAM(i-1); end
 SNRbdBs_QAM(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'QAM',b);
end
disp('QAM'), [bs_QAM; SNRbdBs_QAM; RB_QAM]
% For ASK signaling
for i=1:length(bs)
 b=bs(i); RB_ASK(i)=b/2;

if i==1, x0=10; else x0=SNRbdBs_ASK(i-1); end
 SNRbdBs_ASK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'ASK',b);
end
disp('ASK'), [bs; SNRbdBs_ASK; RB_ASK]

204 Chapter 7 Passband Digital Communication

Table 7.2 shows the power efficiency, i.e. the SNR[dB] required to achieve the BER of 10-5 and
the bandwidth efficiency, i.e. the ratio of data transmission rate[bits/s] over bandwidth[Hz], that are
also depicted in Fig. 9.7. As the modulation order M or the number b of bits per symbol increases,
FSK tends to have higher power efficiency and lower bandwidth efficiency while PSK tends to
have lower power efficiency and higher bandwidth efficiency, as can also be seen from Figs. 7.5
and 7.10. The above MATLAB program “dc07t02.m” can be used to compute the values of

,r bSNRdB at which PSK/FSK/QAM/ASK signalings achieve the BER of 10-5.
Before ending this section, it would be well worth to see the usage of the BER computing

function ‘berawgn()’ in the MATLAB Help manual:

ber = berawgn(EbNo,'PAM',M)
Ber = berawgn(EbNo,'QAM',M)
Ber = berawgn(EbNo,'PSK',M,dataenc) with dataenc='diff'/'nondiff' for differential/non-differential
ber = berawgn(EbNo,'OQPSK',dataenc) for OQPSK (offset QPSK) (see Problem 7.4)
ber = berawgn(EbNo,'DPSK',M)
ber = berawgn(EbNo,'FSK',M,coh) with coh='coherent'/'noncoherent' for coherent/noncoherent
ber = berawgn(EbNo,'FSK',2,coh,rho) with rho=the complex correlation coefficient
ber = berawgn(EbNo,'MSK',dataenc) with dataenc='diff'/'nondiff' for differential/non-differential
ber = berawgn(EbNo,'MSK',dataenc,coherence)
berlb = berawgn(EbNo,'CPFSK',M,modindex,kmin) % gives the BER lowerbound

Problems 205

Problems

7.1 Linear Combination of Gaussian Noises
Suppose we have a zero-mean white Gaussian noise)(tn of mean and variance as

{ ()} 0E n t = (P7.1.1)

2cov{ (), ()} { () ()} ()n n t E n n t tτ τ σ δ τ= = − (P7.1.2)

Also, consider another noise

1 0() () ()sT
un t n t s dτ τ τ= + (P7.1.3)

which is obtained from taking the crosscorrelation of a zero-mean white noise)(tn with a unit
energy signal)(tsu such that

2
 0 () 1sT

us dτ τ = (P7.1.4)

It is claimed that this is also a zero-mean Gaussian noise with variance 2σ .
(a) To verify this, check the following derivation of the mean and covariance of)(1 tn . Note that a

linear combination of Gaussian processes is also Gaussian.

%dc07p01.m
% See if a linear convolution of Gaussian noises
% with a unit signal waveform is another Gaussian noise
clear, clf
K=10000; % # of iterations for getting the error probability
Ts=1; N=40; T=Ts/N; % Symbol time and Sample time
N4=N*4; % Buffer size of correlator
wc=10*pi/Ts; t=[0:N-1]*T; wct=wc*t;
su=sqrt(2/Ts)*cos(wct); % Unit energy signal
signal_power=su*su'*T % Signal energy
sigma2=2; sigma=sqrt(sigma2); sqT=sqrt(T);
noise= zeros(1,N4); % Noise buffer
for k=1:K

for n=1:N % Operation per symbol time
 noise0= sigma*randn;
 noise=[noise(2:N4) noise0/sqT]; % Bandpass noise
 noise1= su*noise(3*N+1:N4)'*T;

end
 noise0s(k)=noise0; noise1s(k)=noise1;
end
phi0=xcorr1(noise0s); phi1=xcorr1(noise1s);
plot(phi0), hold on, pause, plot(phi1,'r')

206 Chapter 7 Passband Digital Communication

 (proof)

{ } (P7.1.1)
1 0 0

{ ()} () () { ()} () 0
ss

TT
u uE n t E n t s d E n t s dτ τ τ τ τ τ= + = + = (P7.1.5)

{ }2
1 0 0

{ ()} () () () ()s sT T
u uE n t E n t s d n v t s v dvτ τ τ= + +

{ }
0 0

() () () ()s sT T
u u v n t n v t ds s E dvτ τ τ= + +

(P7.1.2) (E1.6.1) (P7.1.4)2 2 2 2
0 0 0

() () () () s s sT T T
u u us v v d ds dv sσ σ στ δ τ τ τ τ= − = = (P7.1.6)

(b) As an alternative for verification, the above program “dc07p01.m” is composed to generate a
noise)(tn with Gaussian distribution 2(0, 2)N m σ= = and take the sampled crosscorrelation
between)(tn and a unit energy signal)(tsu to make another noise)(1 tn . Plot the
autocorrelation of these two noises (noise0 and noise1) and make a comment on their
closeness or similarity of their statistical properties such as the mean and variance.

7.2 Coherent/Noncoherent Detection with Time Difference between XMTR and RCVR
(a) In order to feel how seriously the time difference between XMTR and RCVR affects the BER

performance of a communication system, use the following statements to modify the MATLAB
program “sim_FSK_passband_coherent.m” so that it can accommodate some delay time or
time difference (td) between XMTR and RCVR clocks. Then run the modified program to see
the changed BER curve. Does it stay away from the theoretical BER curve?

nd=2; % Number of delay samples
sws=zeros(1,LB);
sws=[sws(2:LB) sw(i,n)];
r=[r(2:LB) sws(end-nd)+sgmsT*bp_noise]; % Received signal

(b) In order to see that noncoherent detection is of relative advantage over coherent detection in
facing the time diffference between XMTR and RCVR, replace nd=0 by nd=2 in the 14th line
of the program “sim_FSK_passband_noncoherent.m” (Sec. 7.2) and run the modified program
to see the changed BER curve. Does it still touch the theoretical BER curve?

(c) Modify the 19th line of the QPSK simulation program “sim_PSK_passband.m” (Sec. 7.3) into
nd=1 and run the program to see the changed constellation diagram and BER curve. Modify the
16th line of the QDPSK simulation program “sim_DPSK_passband.m” (Sec. 7.4) into nd=1 and
run the program to see the BER curve. What is implied by the simulation results?

7.3 22M = -ary QAM (Quadrature AM) and -/4π QPSK(Quadrature PSK)
From the QAM signal constellation diagrams in Fig. 7.11, it can be seen that 22M = -ary QAM is
the same as -/4π QPSK, whose signal constellation diagram is a rotation of the QPSK signal
constellation diagram (Fig. 7.1(b3)) by /4π =45o as depicted in Fig. P7.5(a2). Is it also supported
by the conformity of the error probabilities (between the standard QPSK and the -/4π QPSK) that
turned out to be Eq. (7.3.7) and Eq. (7.5.7), respectively? You can substitute 2=b , / 22 2bL = = ,
and 22M = into both of the equations and check if they conform with each other.

Problems 207

7.4 OQPSK (Offset Quadrature PSK) or SQPSK (Staggered QPSK)
As depicted in Fig. P7.4, OQPSK is a slight modification of QPSK (Fig. 7.12) in such a way that
the Q(uadrature)-channel bit stream is offset w.r.t. the I(n-phase)-channel by a bit duration (Fig.
P7.4(b2)). Compared with QPSK, it allows no simultaneous change of two bits to prevent any state
transition accompanying the phase change of 180o (Fig. P7.4(c2)) (in the teeth of making more
frequent state transitions possibly every bit time) and consequently, the envelope variation becomes
less severe so that the transmitted signal bandwidth can be limited more strictly.

208 Chapter 7 Passband Digital Communication

%sim_OQPSK.m
% simulates a digital communication system
% with O(ffset)QPSK signal waveforms in Fig.P7.4
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
b=2; M=2^b;
SNRbdBt=0:0.1:10; SNRbt=10.^(SNRbdBt/10);
pobet=prob_error(SNRbdBt,'PSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/symbol time
Nb=16; Ns=Nb*b; % # of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
Es=2; sqEb=sqrt(Es/b); % Energy of signal waveform
% QPSK signal waveforms
ss=[0 0; 0 1; 1 1; 1 0];
wc=2*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T;
su=sqrt(2/Ts)*[cos(wc*t); ??????????]; suT=su*T;
sw=sqEb*su;
SNRdBs=[1:3:10]; MaxIter=10000; % Range of SNRdB, # of iterations
for iter=1:length(SNRdBs)

SNRbdB=SNRdBs(iter); SNRb=10^(SNRbdB/10);
 N0=2*(Es/b)/SNRb; sigma2=N0/2; sgmsT=sqrt(sigma2/T);
 yr= zeros(2,LB); yc=zeros(1,2); ys=zeros(1,2);
 iq=0; % Initialize the quadrature bit arbitrarily
 nobe=0; % Number of bit errors to be accumulated

for k=1:MaxIter
 i=ceil(rand*M); s=ss(i,:); wct=-wcT;

for n=1:b % Operation per symbol time
if n==1, ii=2*ss(i,1)-1; % In-phase bit
else iq=2*ss(i,2)-1; % Quadrature bit

end
mn=0;
for m=1:Nb % Operation per bit time
 wct= wct+wcT; mn=mn+1;
 bp_noise= randn*cos(wct)-randn*sin(wct);
 rn=ii*sw(1,mn)+iq*sw(2,mn)+sgmsT*bp_noise;
 yr=[yr(:,2:LB) suT(:,mn)*rn]; % Multiplier
end
if n==2 % sampled at t=2k*Tb

 yc=[yc(2) sum(yr(?,LBN1:LB))]; % Correlator output
else % sampled at t=(2k-1)*Tb
ys=[ys(2) sum(yr(?,LBN1:LB))]; % Correlator output

end
end

 d=([yc(?) ys(?)]>0); % Detector(DTR)
if k>1, nobe=nobe+sum(s0~=d); end
if nobe>100, break; end

 s0= s;
end
pobe(iter)= nobe/(k*b);

end
pobe
semilogy(SNRbdBt,pobet,'k-', SNRdBs,pobe,'b*')
title('Probability of Bit Error for (4-ary) QPSK Signaling')

Problems 209

The above MATLAB program “sim_OQPSK.m” is a modification of the program
“sim_PSK_passband.m” (QPSK) (in Sec. 7.3) to simulate the OQPSK communication system,
whose block diagram is depicted in Fig. P7.4, but it is unfinished. Finish it up by replacing the three
parts of ?’s with appropriate statements or just indices and run it to see the BER curve.

7.5 /4π -Shifted QPSK (Quadrature PSK)

/4π -shifted QPSK is another way of lowering envelope fluctuations than OQPSK discussed in
Problem 7.4. It assigns one of the signal points in the (non-offset) QPSK (Fig. P7.5(a1)) and /4π -
QPSK (Fig. P7.5(a2)) signal constellations to even and odd-number indexed data symbols as
depicted in Fig. P7.5(b) and therefore, it virtually uses the dual signal constellation diagram shown
in Fig. P7.5(a3) where the modulation causes no state transition path through the origin as in
OQPSK. Compared with OQPSK, it has the maximum phase change of 3 /4π± , which is larger
than that (/2π±) of OQPSK; On the other hand, differential encoding/decoding with noncoherent
detection can be implemented in /4π -shifted QPSK signaling, since it has four possible phase-
shifts of /4θ πΔ = ± and 3 /4π± (as can be seen from Fig. P7.5(b)) while OQPSK has only two
possible phase-shifts of /2θ πΔ = ± .

Table P7.5 Message data dibits and the corresponding phase-shifts in /4π -shifted QDPSK
(Gray-coded) message dibits Phase-shifts 0 1 2 3 4 5 6 7ks s s s s s s s s=

2 1 2 00k kd d− = /4θ πΔ = + (1)mod8 1 2 3 4 5 6 7 0ks s s s s s s s s+ =
2 1 2 01k kd d− = 3 /4θ πΔ = + (3)mod8 3 4 5 6 7 0 1 2ks s s s s s s s s+ =
2 1 2 11k kd d− = 3 /4θ πΔ = − (5)mod8 5 6 7 0 1 2 3 4ks s s s s s s s s+ =
2 1 2 10k kd d− = /4θ πΔ = − (7)mod8 7 0 1 2 3 4 5 6ks s s s s s s s s+ =

210 Chapter 7 Passband Digital Communication

(a) Modify the (standard) QPSK simulation program “sim_PSK_passband.m” into a /4π -shifted
QPSK simulation program named, say, “sim_S_QPSK.m” and run it to see the BER curve.
Does it conform with the theoretical BER curve?

(b) Referring to Table P7.5, modify the (standard) QDPSK (quadrature differential phase shift
keying) simulation program “sim_DPSK_passband.m” into a /4π -shifted QDPSK simulation
program named, say, “sim_S_QDPSK.m” and run it to see the BER curve. Does it conform
with the theoretical one? If you have no idea, start with the following unfinished program:

%sim_S_QDPSK.m
% simulates the pi/4-shifted QDPSK signaling (Table P7.5)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
b=2; M=2^b; M2=M*2;
SNRbdBt=0:0.1:10; SNRbt=10.^(SNRbdBt/10);
pobet=prob_error(SNRbdBt,'DPSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/symbol time
Nb=16; Ns=b*Nb; % Numbers of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
Es=2; % Energy of signal waveform
% QDPSK signal waveforms
ss=[0 0; 0 1; 1 1; 1 0];
wc=8*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T; nd=1;
for m=1:M2, sw(m,:)=sqrt(2*Es/Ts)*cos(wc*t+(m-1)*pi/M); end
su= sqrt(2/Ts)*[cos(wc*t); -sin(wc*t)]; suT=su*T;
SNRdBs =[1:3:10]; MaxIter=10000; %Range of SNRbdB, # of iterations
for iter=1:length(SNRdBs)
 SNRbdB=SNRdBs(iter); SNRb=10^(SNRbdB/10);
 N0=2*(Es/b)/SNRb; sigma2=N0/2; sgmsT=sqrt(sigma2/T);
 sws=zeros(1,LB); yr=zeros(2,LB);
 nobe=0; % Number of bit errors to be accumulated
 is0=1; % Initial signal index
 th0=1; % Initial guess (possibly wrong)

for k=1:MaxIter
 i= ceil(rand*M); s=ss(i,:); % Data bits to transmit
 is= mod(is0+?????,M2)+1; % Signal to transmit (Table P7.5)

for n=1:Ns % Operation per symbol time
 sws=[sws(2:LB) sw(is,n)];
 wct=wcT*(n-1); bp_noise= randn*cos(wct)-randn*sin(wct);
 rn= sws(end-nd) + sgmsT*bp_noise;
 yr=[yr(:,2:LB) suT(:,n)*rn]; % Multiplier

end
 ycsk=sum(yr(:,LBN1:LB)')'; % Sampled correlator output

%Detector(DTR)
 th=atan2(ycsk(2),ycsk(1)); dth=th-th0;

if dth<0, dth=dth+2*pi; end
 [themin,lmin]=min(abs(dth-[?????]*2*pi/M));
 d= ss(lmin,:); % Detected data bits
 nobe= nobe+sum(s~=d); if nobe>100, break; end
 is0=is; th0=th; % update the previous signal and theta

end
 pobe(iter)= nobe/(k*b);
end
semilogy(SNRbdBt,pobet,'k', SNRdBs,pobe,'b*')

Problems 211

7.6 Minimum-Shift Keying (MSK)
Minimum-shift keying is a type of continuous phase frequency shift keying (CP-FSK). It encodes
each data bit into a half sinusoid

2() cos(())b
c

b

Es t t t
T

ω θ= + (P7.6.1)

with its phase changed continuously as

() () () with (0) 0
2b b

b
t kT t kT

T
πθ θ θ= ± − = (P7.6.2)

where the second term has a plus or minus sign for each bit interval depending on whether the value
of message data bit is 1 or 0 (see Fig. P7.6). As a consequence, the phase of the signal waveform at
the boundaries between two consecutive bit intervals becomes

(2) or ((2 1))
2b bkT m k T mπθ π θ π= ± + = ± ± (P7.6.3)

and the instantaneous frequency, which is obtained by differentiating the angular argument of ()s t
w.r.t. t , becomes

1 0or
2 2c c

b bT T
π πω ω ω ω= + = − (P7.6.4)

Note that the difference of these two frequencies is / bTπ and it is the same as the minimum
frequency gap required to keep the orthogonality between two frequency components for a bit
duration bT (see the discussion just below Eq. (7.2.4)).

To find two (orthogonal) basis signal waveforms that can be used to detect the phase of the
received signal, we rewrite Eq. (P7.6.1) as

()(P7.6.1)

(D.20)

2() cos ()cos sin ()sinb
c c

b

Es t t t t t
T

θ ω θ ω= − () cos () sinI c Q cs t t s t tω ω= − (P7.6.5)

where

(P7.6.2)

(D.20)

2() cos () with () (2) (2)
2

2 cos (2)cos (2) sin (2)sin (2)
2 2

2 cos (2) cos for (2 1) (2 1)
2

b
I b b

bb

b
b b b b

b bb

b
b b b

bb

Es t t t kT t kT
TT

E kT t kT kT t kT
T T T

E kT t k T t k T
T T

πθ θ θ

π πθ θ

πθ

= = ± −

= ± − − ± −

= ± − < ≤ +

2 cos if (2) 0
2

2 cos if (2)
2

b
b

bb

b
b

bb

E t kT
T T
E t kT

T T

π θ

π θ π

+ =
=

− = ±
 (P7.6.6a)

212 Chapter 7 Passband Digital Communication

(P7.6.2)

(D.19)

2() sin () with () ((2 1)) ((2 1))
2

sin ((2 1))cos ((2 1))
22

cos ((2 1))sin ((2 1))
2

2 sin ((2 1)) sin
2

b
Q b b

bb

b b
bb

b
b b

b

b
b

bb

Es t t t k T t k T
TT

k T t k T
TE

T
k T t k T

T

E k T t
T T

πθ θ θ

πθ

πθ

πθ

= = + ± − +

+ ± − +
=

± + ± − +

= + ± for 2 2(1)b bkT t k T< ≤ +

2 sin if ((2 1))
2 2

2 sin if ((2 1))
2 2

b
b

bb

b
b

bb

E t k T
T T
E t k T

T T

π πθ

π πθ

+ + = +
=

− + = −
 (P7.6.6b)

Substituting these two equations (P7.6.6a) and (P7.6.6b) into Eq. (P7.6.5) yields

2 2() cos cos sin sin
2 2

b b
c c

b bb b

E Es t t t t t
T T T T

π πω ω= ± (P7.6.7)

This implies that the basis signal waveforms to be used for detection at RCVR are

2() cos cos
2 cuc

bb
s t t t

T T
π ω= (P7.6.8a)

2() sin sin
2 cus

bb
s t t t

T T
π ω= (P7.6.8b)

Therefore, RCVR computes the correlation between the received signal ()r t and these two basis
signal waveforms and samples it at 2 bt kT= and (2 1) bk T+ to get

()

(5.1.27)

(P7.6.1)

(P7.6.8a)

(D.25)

((2 1)) () (2) () (2)

22 cos cos cos((2)
2

cos cos(2 (2)) cos (2)
2

b b

b b

b

b

T T
b b cc b uc ucT T

T
b

c c cbT bb b

b
c b b

bb

y k T s t r t kT dt s t s t kT dt n

E t t t kT dt n
T T T

E
t t kT kT

T T

π ω ω θ

π ω θ θ

− −

−

+ = + = + +

= + +

= + +

(D.25)
cos 2 (2) cos 2 (2)

2 2
2

cos (2) cos (2)
2 2

cos((2))

b

b

b

b

T

cT

c cb bT b bb
cTb

b b
b b

bb c

dt n

t kT t t kT t
E T T

dt n
T

kT t kT t
T T

E kT n

π πω θ ω θ

π πθ θ

θ

−

−

+

+ + + + −
= +

+ + + −

= +

(P7.6.9a)

Problems 213

2 2(5.1.27)

0 0

2(P7.6.1)

0(P7.6.8b)

(D.24)

(2) () ((2 1)) () ((2 1))

2 2 sin sin cos(((2 1)))
2

sin sin(2 ((2 1))) s
2

b b

b

T T
b bs b us us s

T
b

c c b s
bb b

b
c b

bb

y kT s t r t k T dt s t s t k T dt n

E t t t k T dt n
T T T

E
t t k T

T T

π ω ω θ

π ω θ

= + − = + − +

= + − +

= + − −()
2

0

2(D.22)

0

in ((2 1))

cos 2 ((2 1)) cos 2 ((2 1))
2 2

2
cos ((2 1)) cos ((2 1))

2 2

sin(((2 1)))

b

b

T
b s

c cb b
T b bb

s
b

b b
b b

bb s

k T dt n

t k T t t k T t
E T T

dt n
T

k T t k T t
T T

k T nE

θ

π πω θ ω θ

π πθ θ

θ

− +

+ − − − + − +
= +

+ − + − − −

= − − +

(P7.6.9b)

Depending on the sign of these sampled values of correlator outputs, the phase estimates are
determined as

0 if ((2 1)) 0(2) (close to ((2 1))) if ((2 1)) 0
c b

b
b c b

y k TkT k T y k Tθ π θ
+ >= ± − + < (P7.6.10a)

/ 2 if (2) 0((2 1)) / 2 if (2) 0
s b

b
s b

y kTk T y kT
πθ π

− >− = + < (P7.6.10b)

so that the maximum difference between the phase estimates at successive sampling instants is
/2π± . Then the detector judges the value of transmitted data bit to be 1 or 0 depending on whether

θ turns out to have increased or decreased.
Noting that the sampled values of correlator outputs ((2 1))c by k T+ and (2)s by kT will be

distributed around (, 0)bE+ and (, 0)bE− in the signal space and thus the (minimum) distance
between signal points is min 2 bd E= , the (symbol or bit) error probability is

()(5.2.35) min
,,

00

/ 2
/ 2/ 2
b

r be b
EdP Q Q Q SNR

NNσ
= = =

=
(P7.6.11)

214 Chapter 7 Passband Digital Communication

%sim_MSK.m
% simulates a digital communication system with MSK signaling
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
b=1; M=2^b; % # of bits per symbol and modulation order
SNRbdBt=0:0.1:12; SNRbt=10.^(SNRbdBt/10);
pbe_PSK= prob_error(SNRbdBt,'PSK',b,'bit');
pbe_FSK= prob_error(SNRbdBt,'FSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/Symbol time
Nb=16; Ns=Nb*b; % # of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN2=LB-2*Ns+1; % Sample time and Buffer size
Es=2; % Energy of signal waveform
% QPSK signal waveforms
ds=[0 1];
wc=2*pi; wcT=wc*T;
t=[0:2*Nb-1]*T; pihTbt=pi/2/Tb*t;
su=sqrt(2/Tb)*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

??????????????????????]; % Eq.(P7.6.8)
su=[fftshift(su(1,:)); su(2,:)]; suT=su*T;
ik=[1 2 1 2 1 1 2 2 2 1];
sq2EbTb=sqrt(2*Es/b/Tb); pihTbT=pi/2/Tb*T;
SNRdBs=[1 3 10]; % Range of SNRbdB
MaxIter=10000; % Number of iterations
for iter=1:length(SNRdBs)
 SNRbdB=SNRdBs(iter); SNR=10^(SNRbdB/10);
 N0=2*(Es/b)/SNR; sigma2=N0/2; sgmsT=sqrt(sigma2/T);
 yr=zeros(2,LB); yc=0; ys=0; th0=0; t=0; wct=0; tht=th0; mn=1;
 nobe= 0; % Number of bit errors to be accumulated

for k=1:MaxIter
i=ceil(rand*M); s(k)=ds(i); sgn=s(k)*2-1;
for m=1:Nb % Operation per bit time

 bp_noise= randn*cos(wct)-randn*sin(wct);
 rn= sq2EbTb*cos(wct+tht) + sgmsT*bp_noise;
 yr=[yr(:,2:LB) suT(:,mn)*rn]; % Correlator output - DTR input
 t=t+T; wct=wct+wcT; tht=tht+sgn*pihTbT; mn=mn+1;

end
if tht<-pi2, tht=tht+pi2; elseif tht>pi2, tht=tht-pi2; end
thtk(k+1)=tht;
if mn>size(su,2), mn=1; end
if mod(k,2)==1

yc=sum(yr(?,LBN2:LB));
th_hat(k)=??*(yc<0);
% if k>1&th_hat(k-1)<0, th_hat(k)=-th_hat(k); end

else
ys=sum(yr(?,LBN2:LB));
th_hat(k)=????*(2*(ys<0)-1);

end
if k>1 % Detector(DTR)

 d=(dth_hat>0); if abs(dth_hat)>=pi, d=~d; end
 nobe = nobe+(d~=s(???)); if nobe>100; break; end

end
end

 pobe(iter)= nobe/((k-1)*b);
end
semilogy(SNRbdBt,pbe_PSK,'k', SNRbdBt,pbe_FSK,'k:', SNRdBs,pobe,'b*')

Problems 215

Compared with Eq. (7.2.9), which is the error probability for BFSK signaling, the SNR has
increased by two times, which is attributed to the doubled integration period 2 bT of the correlators.
(a) Complete the above incomplete program “sim_MSK.m” so that it can simulate the MSK

modulation and demodulation process.
(b) Consider the in-phase/quadrature symbol shaping functions

2 cos for() 2
0 elsewhere

b
b b

c bb

E t T t Tg t T T
π − ≤ ≤= (P7.6.12a)

2 sin for 0 2() 2
0 elsewhere

b
b

s bb

E t t Tg t T T
π ≤ ≤= (P7.6.12b)

Verify that their CTFTs and ESDs (energy spectral densities) can be obtained as

()

(1.3.2a)

(P7.6.12a)

/ 2 / 2

(/ 2) (/ 2)

2() { ()} cos
2

2

2 (/ 2) (/ 2)

2sin(/ 2) 2sin(
2 / 2

b

b

b b b

b

bb b

b

T j tb
c c T

bb

T j t T j t T j tb
T

b
Tj T t j T t

b

b bb T

b bb

bb

EG g t t e dt
T T

E e e e dt
T

E e e
T j T j T

E T T
T T

ω

π π ω

π ω π ω

πω

π ω π ω

π ω π
π ω

−
−

− −
−

− − +

−

= =

= +

= −
− +

−= +
−

F

2 2

2 2

/ 2)
/ 2

(/)sin(/ 2)cos 2 cos(/ 2)sin2
(/ 2)

(/)cos2
(/ 2)

b b

b

b b bb

bb

b bb

bb

T T
T

T T TE
T T

T TE
T T

ω
π ω

π π ω ω π ω
π ω

π ω
π ω

+
+

−
=

−

=
−

 (P7.6.13a)

(1.3.2a) 2

0(P7.6.12b)

()

(P7.6.13a)
2 2

2() { ()} sin
2

2 sin ()
2

2 cos
2

(/)cos2
(/ 2)

b

b b

b

b b

b

b

T j tb
s s

bb

T j t Tb
bT

bb

T j Tj tb
T

bb

j Tb bb

bb

EG g t t e dt
T T

E t T e dt
T T
E e dt e

T T
T TE e

T T

ω

ω

ωω

ω

πω

π

π

π ω
π ω

−

− +
−

−−
−

−

= =

= +

=

=
−

F

 (P7.6.13b)

;
2 22 2
3 2 2 2

2 cos
() () () ()

((/ 2))
bb

gc gsgc gs
bb

E T
G G

T T
π ωω ω ω ω

π ω
Φ = Φ = = =

−
(P7.6.14)

216 Chapter 7 Passband Digital Communication

7.7 Simulation of FSK Using Simulink
Fig. P7.7.1 shows a Simulink model (“FSK_passband_sim.mdl”) to simulate a BFSK (binary
frequency shift keying) passband communication system and Fig. P7.7.2 shows the subsystem for
the demodulator and detector where the following parameters are to be set in the workspace:

b=1; M=2^b; % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
dw=2*pi/Ts; wc=10*dw; % Frequency spacing and Carrier freq[rad/s]
EbN0dB=10 % Eb/N0[dB]
Target_no_of_error=50; % Simulation stopping criterion

Problems 217

%do_FSK_sim.m
clear, clf
b=1; M=2^b; % Number of bits per symbol and Modulation order
Nbsps=b*2^3; % # of samples per symbol in baseband
Nos=5; Ns=Nbsps*Nos; % # of samples per symbol in passband
Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
dw=2*pi/Ts; % Frequency separation [rad/s]
wc=10*dw; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=50; SNRdBs=[5 10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)
 SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
 sim('FSK_passband_sim',1e5*Ts); SERs(i)=ser(end,1);
end
SNRdBt=0:0.1:13;
poset = prob_error(SNRdBt,'FSK',b,'sym','noncoherent');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 1/Ts;
Received_Signal_Power = ...
Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function d=detector_FSK(z2s)
[z2max,ind]=max(z2s); d=ind-1; % Fig. 7.4.2

Once the Simulink model named “FSK_passband_sim.mdl” is opened, it can be run by clicking
on the Run button on the tool bar or by using the MATLAB command ‘sim()’ as in the above
program “do_FSK_sim.m”. You can disconnect the Display Block for signal power measurement
to increase the running speed.

218 Chapter 7 Passband Digital Communication

(cf) Note that the receive delay in the Error Rate Calculation block is set to 1 due to the sample
difference between the transmitted data and detected data observed through the Scope.

(a) After having composed and saved the Simulink model “FSK_passband_sim.mdl” (with no
delay) and two MATLAB programs “do_FSK_sim.m” and “detector_FSK.m” (that can be
substituted by an Embedded MATLAB Function Block), run the MATLAB program
“do_FSK_sim.m” to get the SERs (SER: symbol error rate) for a BFSK communication system
with SNRdBs=[5 10]. Does the simulation result conform with that in Fig. 7.5 (for 1b =) or
7.6.2?

(b) Change the 7th statement of the MATLAB program “do_FSK_sim.m” into ‘dw=pi/Ts’ or
‘dw=3*pi/Ts’ and run the program to get the SER. How are the SERs compared with those
obtained in (a)? What does the difference come from?

(c) Insert the delay of 1~5 samples and discuss the sensitivity of the system w.r.t. such a delay in
terms of the SER performance in connection with coherence or noncoherence of the
communication system.

(d) Referring to Fig. 7.4.2, extend the Simulink model into “FSK4_passband_sim.mdl” so that it
can simulate an 22 4M = = -ary FSK communication system and run it to get the SER curve.

(e) To understand how large the power of noise added by the AWGN Block is, connect the Signal
power Subsystem together with the Display Block into the input of the AWGN block, click on
the Run button, and read the displayed value of the channel input signal power. Then connect
the Signal power Subsystem together with the Display Block into the output of the AWGN
Block, click on the Run button, and read the displayed value of the channel output signal power
that will be the sum of the input signal power and noise power (variance). Do the channel input
and output powers measured through the Simulink simulation conform with those obtained
using the last two statements in the above program “do_FSK_sim.m”:
Transmitted_Signal_Power = 1/Ts;
Received_Signal_Power = ...

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

Why is 3 added to EbN0dBs(end) in the above statement?
(cf) Visit the webpage <http://www.mathworks.com/access/helpdesk/help/helpdesk.html> and refer

to the explanation about the function of AWGN Block that can be found in the user manual for
Communications Blockset, according to which the SNR is defined to be

10
SignalPowerdB 10 log

NoiseVariance
SNR =

10 10 10
0

10 10 10
0

/10log 0dB 10log 0dB 10log
/

for a complex-valuedsignal

/ 210log 0dB 10log 0dB 10log 3
(/2)

for a real-valuedsignal

s s

s s

s s

s s

E T T TEsN EbN b
N T T T

E T T TEsN EbN b
N T T T

= + = +

=
= + = + +

(P7.7.1)

;
0 /10

(0 3) /10

(/)10 for a complex-valuedsignalSignalPower
NoiseVariance (/)10 for a real-valued signal

EbN dB
s

EbN dB
s

T bT
T bT

−

− +
= (P7.7.2)

Problems 219

7.8 Simulation of PSK Using Simulink
Fig. P7.8.1 shows a Simulink model to simulate a PSK (phase shift keying) passband
communication system where the following parameters are to be set in the workspace:

b=1; M=2^b; % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier freq[rad/s]
EbN0dB=7; % Eb/N0[dB]
Target_no_of_error=20; % Simulation stopping criterion

220 Chapter 7 Passband Digital Communication

%do_PSK_sim.m
clear, clf
b=1; M=2^b; % Number of bits per symbol and Modulation order
Nbsps=b*2^3; % # of samples per symbol in baseband
Nos=5; Ns=Nbsps*Nos; % # of samples per symbol in passband
Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=20;
SNRdBs=[5 10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)

SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
sim('PSK_passband_sim',1e5*Ts);
SERs(i) = ser(end,1);

end
SNRdBt=0:0.1:13;
poset = prob_error(SNRdBt,'PSK',b,'sym');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 1/Ts;
Received_Signal_Power = ...

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function d=detector_PSK(th,M)
%th=atan2(ycsk(2),ycsk(1));
if th<-pi/M, th=th+2*pi; end
[thmin,ind]=min(abs(th-2*pi/M*[0:M-1])); % Eq.(7.3.9) or Fig. 7.7
d=ind-1;

(a) After having composed and saved the Simulink model “PSK_passband_sim.mdl” and two
MATLAB programs “do_PSK_sim.m” and “detector_PSK.m”, run the MATLAB program
“do_PSK_sim.m” to get the SERs for a BPSK communication system with SNRdBs=[5 10].
Does the simulation result conform with that in Fig. 7.10 (for 1b =)?

(b) Modify the MATLAB program “do_PSK_sim.m” (possibly together with) Simulink model
“PSK_passband_sim.mdl” to simulate an 22 4M = = -ary PSK (QPSK) communication system
and run it to get the SER curve.

(c) Rename the Simulink model “PSK_passband_sim.mdl” “DPSK_passband_sim.mdl” and
modify it to simulate an 22 4M = = -ary DPSK (QDPSK) communication system. You can refer
to the MATLAB program “sim_DPSK_passband.m” and Fig. P7.8.2. Run it to get the SERs
with SNRdBs=[5 10].

Problems 221

7.9 Simulation of QAM Using Simulink
Fig. P7.9 shows a Simulink model to simulate a QAM (quadrature amplitude modulation) passband
communication system where the following parameters are to be set in the workspace:

b=4; M=2^b; L=2^(b/2); % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier freq[rad/s]
EbN0dB=10; % Eb/N0[dB]
Target_no_of_error=100; % Simulation stopping criterion

222 Chapter 7 Passband Digital Communication

%do_QAM_sim.m
clear, clf
b=4; M=2^b; L=2^(b/2); % # of bits per symbol and Modulation order
Ns=b*10; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=100;
SNRdBs=[5 10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)

SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
sim('QAM_passband_sim',1e5*Ts); SERs(i) = ser(end,1);

end
SNRdBt=0:0.1:13; poset = prob_error(SNRdBt,'QAM',b,'sym');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 2*(M-1)/3/Ts;
Received_Signal_Power = ...

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function a=slice(x,A)
[Am,Im]=min(abs(A-x)); a=A(Im);

(a) After having composed and saved the Simulink model “QAM_passband_sim.mdl” and two
MATLAB programs “do_QAM_sim.m” and “slice.m” (that can be substituted by an Embedded
MATLAB Function Block), run the MATLAB program “do_QAM_sim.m” to get the SERs for
SNRdBs=[5 10]. Does the simulation result conform with the theoretical symbol error
probability that can be obtained using the MATLAB routine “prob_error()” in Sec. 7.6?

(b) Modify the program “do_QAM_sim.m” and/or Simulink model “QAM_passband_sim.mdl” to
simulate an 62 64M = = -ary QAM communication system and run it to get the SER curve.

%do_MSK_sim.m
clear, clf
SNRdBt=[0:0.1:10]; SNRdBs=[5 10]; EbN0dBs= SNRdBs-3;
b=1; M=2^b; % Number of bits per symbol and Modulation order
Tb=1; Nb=16; T=Tb/Nb; Ts=b*Tb; % Bit duration and Sample time
wc=4*pi/Tb; % Carrier frequency[rad/s]
t=[0:2*Nb-1]*T; pihTbt=pi/2/Tb*t;
suT=sqrt(2/Tb)*T*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

sin(pihTbt).*sin(wc*t)]; % Eq. (7.6.8a,b)
M_filter1=fliplr(suT(1,:)); M_filter2=fliplr(suT(2,:));
Target_no_of_error = 50;
Simulink_mdl='MSK_passband_sim';
for i=1:length(SNRdBs)
 SNRdB = SNRdBs(i); EbN0dB = SNRdB-3;
 sim(Simulink_mdl,1e5*Tb), BERs(i) = ber(end,1);
end
pobet_PSK=prob_error(SNRdBt,'PSK',b,'bit');
pobet_FSK=prob_error(SNRdBt,'FSK',b,'bit');
semilogy(SNRdBt,pobet_PSK,'k', SNRdBt,pobet_FSK,'k:', ...

SNRdBs,BERs,'b*')

function d=detector_MSK(dth)
if dth>0, d=1; else d=0; end
if abs(dth)>pi, d=1-d; end

Problems 223

7.10 Simulation of MSK Using Simulink

224 Chapter 7 Passband Digital Communication

Fig. P7.10 shows a Simulink model to simulate an MSK (minimum shift keying) passband
communication system where the following parameters are to be set in the workspace. Note that the
demodulator is implemented using matched (FIR) filters (whose coefficient vectors or impulse
responses are the reversed and delayed versions of the basis signal waveforms (P7.6.8a,b)) instead
of correlators. Having composed and saved the Simulink model “MSK_passband_sim.mdl” and
two MATLAB programs “do_MSK_sim.m” and “detector_MSK.m”, run the MATLAB program
“do_MSK_sim.m” to get the BERs for SNRdBs=[5 10]. Does the simulation result go into between
the theoretical symbol error probabilities for FSK and PSK?

b=1; M=2^b; % Number of bits per symbol and Modulation order
Nb=16; Ns=b*Nb;
Tb=1e-5; Ts=b*Tb; T=Ts/Ns; % Symbol/Bit time and Sample time
wc=2*pi*10/Tb; % Carrier freq[rad/s]
t=[0:2*Nb-1]*T; pihTbt=pi/2/Tb*t;
suT=sqrt(2/Tb)*T*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

sin(pihTbt).*sin(wc*t)];
M_filter1=fliplr(suT(1,:)); M_filter2=fliplr(suT(2,:));
EbN0dB=7; % Eb/N0[dB]
Target_no_of_error=20; % Simulation stopping criterion

280 Chapter 9 Information and Coding

9.4.3 Cyclic Coding

A cyclic code is a linear block code having the property that a cyclic shift (rotation) of any codeword
yields another codeword. Due to this additional property, the encoding and decoding processes can be
implemented more efficiently using a feedback shift register. An),(KN cyclic code can be described
by an)(KN − th-degree generator polynomial

KN
KN xgxgxggx −

−++++= 2
210)(g (9.4.24)

The procedure of encoding a K -bit message vector 0 1 1[]Km m m −=m represented by a
(1)K − th-degree polynomial

1
1

2
210)(−

−++++= K
K xmxmxmmxm (9.4.25)

into an N -bit codeword represented by an (1)N − th-degree polynomial is as follows:

1. Divide)(xx KN m− by the generator polynomial)(xg to get the remainder polynomial ()m xr .

2. Subtract the remainder polynomial)(xmr from)(xx KN m− to obtain a codeword polynomial

() () () () ()N K
mx x x x x x−= ⊕ =c m r q g (9.4.26)

1 1 1
0 1 1 0 1 1

N K N K N K N
N K Kr r x r x m x m x m x− − − − + −

− − −= + + + + + + +

which has the generator polynomial)(xg as a (multiplying) factor. Then the first)(KN −
coefficients constitute the parity vector and the remaining K coefficients make the message
vector. Note that all the operations involved in the polynomial multiplication, division,
addition, and subtraction are not the ordinary arithmetic ones, but the modulo-2 operations.

(Example 9.6) A Cyclic Code

With a (7,4) cyclic code represented by the generator matrix

2 3 2 3
0 1 2 3() 1 1 0 1x g g x g x g x x x x= + + + = + ⋅ + ⋅ + ⋅g (E9.6.1)

find the codeword for a message vector =m [1 0 1 1].
Noting that 4,7 == KN , and 3=− KN , we divide ()N Kx x− m by)(xg as

3 2 3 6 5 3() (1 0 1 1) () () ()N K
mx x x x x x x x x x x x− = + ⋅ + ⋅ + ⋅ = + + = +m q g r

3 2 3(1)(1) 1x x x x x= + + + + + + (modulo-2 operation) (E9.6.2)

to get the remainder polynomial () 1m x =r and add it to 3() ()N Kx x x x− =m m to make the codeword
polynomial as

654323 1101001)()()(xxxxxxxxxx m ⋅+⋅+⋅+⋅+⋅+⋅+=+= mrc (E9.6.3)

parity | message
 [1 0 0 1 0 1 1]→ =c

The codeword made in this way has the 3N K− = parity bits and 4K = message bits.

9.4 Channel Coding 281

Now, let us consider the procedure of decoding a cyclic coded vector. Suppose the RCVR has
received a possibly corrupted code vector = +r c e where c is a codeword and e is an error. Just as
in the encoder, this received vector, being regarded as a polynomial, is divided by the generator
polynomial)(xg

 () () () () () () '() () ()x x x x x x x x x= + = + = +r c e q g e q g s (9.4.27)

to yield the remainder polynomial)(xs . This remainder polynomial s may not be the same as the
error vector e , but at least it is supposed to have a crucial information about e and therefore, may
well be called the syndrome. The RCVR will find the error pattern e corresponding to the
syndrome s , subtract it from the received vector r to get hopefully the correct codeword

 = ⊕c r e (9.4.28)

and accept only the last K bits (in ascending order) of this corrected codeword as a message.
The polynomial operations involved in encoding/decoding every block of message/coded

sequence seem to be an unbearable computational load. However, we fortunately have divider
circuits which can perform such a modulo-2 polynomial operation. Fig. 9.9 illustrates the two
divider circuits (consisting of linear feedback shift registers) each of which carries out the modulo-2
polynomial operations for encoding/decoding with the cyclic code given in Example 9.6. Note that
the encoder/decoder circuits process the data sequences in descending order of polynomial.

The encoder/decoder circuits are cast into the MATLAB routines ‘cyclic_encoder()’ and
‘cyclic_decoder0()’, respectively, and we make a program “do_cyclic_code.m” that uses the two
routines ‘cyclic_encoder()’ and ‘cyclic_decoder()’ (including ‘cyclic_encoder0()’) to simulate the
encoding/decoding process with the cyclic code given in Example 9.6. Note a couple of things
about the decoding routine ‘cyclic_decoder()’:

- It uses a table of error patterns in the matrix E, which has every correctable error pattern in its
rows. The table is searched for a suitable error pattern by using an error pattern index vector epi,
which is arranged by the decimal-coded syndrome and therefore, can be addressed efficiently by
a syndrome just like a decoding hardware circuit.

- If the error pattern table E and error pattern index vector epi are not supplied from the calling
program, it uses ‘cyclic_decoder0()’ to supply itself with them.

% do_cyclic_code.m
% tries with a cyclic code.
clear
N=7; K=4; % N=15; K=7; % Codeword (Block) length and Message size
%N=31; K=16;
g=cyclpoly(N,K); g_=fliplr(g);
lm=5*K; msg= randint(1,lm);
% N=7; K=4; g_=[1 1 0 1]; g=fliplr(g_); msg=[1 0 1 1];
coded = cyclic_encoder(msg,N,K,g_); lc=length(coded);
no_transmitted_bit_errors=ceil(lc*0.05);
errors=randerr(1,lc,no_transmitted_bit_errors);
r = rem(coded+errors,2); % Received sequence
decoded = cyclic_decoder(r,N,K,g_); nobe=sum(decoded~=msg)
coded1 = encode(msg,N,K,'cyclic',g); % Use the Communication Toolbox
r1 = rem(coded1+errors,2); % Received sequence
decoded1 = decode(r1,N,K,'cyclic',g); nobe1=sum(decoded1~=msg)

282 Chapter 9 Information and Coding

function coded= cyclic_encoder(msg_seq,N,K,g)
% Cyclic (N,K) encoding of input msg_seq m with generator polynomial g
Lmsg=length(msg_seq); Nmsg=ceil(Lmsg/K);
Msg= [msg_seq(:); zeros(Nmsg*K-Lmsg,1)];
Msg= reshape(Msg,K,Nmsg).';
coded= [];
for n=1:Nmsg
 msg= Msg(n,:);

for i=1:N-K, x(i)=0; end
for k=1:K

 tmp= rem(msg(K+1-k)+x(N-K),2); % msg(K+1-k)+g(N-K+1)*x(N-K)
for i=N-K:-1:2, x(i)= rem(x(i-1)+g(i)*tmp,2); end

 x(1)=g(1)*tmp;
end

 coded= [coded x msg]; % Eq.(9.4.26)
end

function [decodes,E,epi]=cyclic_decoder(code_seq,N,K,g,E,epi)
% Cyclic (N,K) decoding of received code_seq with generator polynml g
% E: Error Pattern matrix or syndromes
% epi: error pattern index vector
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<6
 nceb=ceil((N-K)/log2(N+1)); % Number of correctable error bits
 E = combis(N,nceb); % All error patterns

for i=1:size(E,1)
 syndrome=cyclic_decoder0(E(i,:),N,K,g);

synd_decimal=bin2deci(syndrome);
 epi(synd_decimal)=i; % Error pattern indices

end
end
if (size(code_seq,2)==1) code_seq=code_seq.'; end
Lcode= length(code_seq); Ncode= ceil(Lcode/N);
Code_seq= [code_seq(:); zeros(Ncode*N-Lcode,1)];
Code_seq= reshape(Code_seq,N,Ncode).';
decodes=[]; syndromes=[];
for n=1:Ncode
 code= Code_seq(n,:);
 syndrome= cyclic_decoder0(code,N,K,g);
 si= bin2deci(syndrome); % Syndrome index

if 0<si&si<=length(epi) % Syndrome index to error pattern index
 m=epi(si); if m>0, code=rem(code+E(m,:),2); end % Eq.(9.4.28)

end
 decodes=[decodes code(N-K+1:N)]; syndromes=[syndromes syndrome];
end
if nargout==2, E=syndromes; end

function x=cyclic_decoder0(r,N,K,g)
% Cyclic (N,K) decoding of an N-bit code r with generator polynomial g
for i=1:N-K, x(i)=r(i+K); end
for n=1:K
 tmp=x(N-K);

for i=N-K:-1:2, x(i)=rem(x(i-1)+g(i)*tmp,2); end
 x(1)=rem(g(1)*tmp+r(K+1-n),2);
end

9.4 Channel Coding 283

284 Chapter 9 Information and Coding

Table 9.1 Communication Toolbox functions for block coding
Block coding Related Communication Toolbox functions and objects

Linear block encode, decode, gen2par, syndtable
Cyclic encode, decode, cyclpoly, cyclgen, gen2par, syndtable
BCH (Bose-Chaudhuri-Hocquenghem) bchenc, bchdec, bchgenpoly
LDPC (Low-Density Parity Check) fec.ldpcenc, fec.ldpcdec
Hamming encode, decode, hammgen, gen2par, syndtable
Reed-Solomon rsenc, rsdec, rsgenpoly, rsencof, rsdecof

Table 9.1 shows a list of several Communication Toolbox functions that can be used to simulate
various block coding techniques where the block codings are classfied as follows (see the
MATLAB Help on Communication Toolbox - block coding):

Note the following about the functions ‘encode’ and ‘decode’ (use MATLAB Help for details):

 - They can be used for any linear block coding by putting a string ‘linear’ and a K N× generator
matrix as the fourth and fifth input arguments, respectively.

- They can be used for Hamming coding by putting a string ‘hamming’ as the fourth input
argument or by providing them with only the first three input arguments.

The following example illustrates the usages of ‘encode()’/‘decode()’ for cyclic coding and
‘rsenc()’ and ‘rsdec()’ for Reed-Solomon coding. Note that the RS (Reed-Solomon) codes are
nonbinary BCH codes, which has the largest possible minimum distance for any linear code with
the same message size K and codeword length N , yielding the error correcting capability of

() / 2cd N K= − .

%test_encode_decode.m to try using encode()/decode()
N=7; K=4; % Codeword (Block) length and Message size
g=cyclpoly(N,K); % Generator polynomial for a cyclic (N,K) code
Nm=10; % # of K-bit message vectors
msg=randint(Nm,K); % Nm x K message matrix
coded = encode(msg,N,K,'cyclic',g); % Encoding
% Add bit errors with transmitted BER potbe=0.1
potbe=0.1; received=rem(coded+randerr(Nm,N,[0 1;1-potbe potbe]),2);
decoded=decode(received,N,K,'cyclic',g); % Decoding
% Probability of message bit errors after decoding/correction
pobe=sum(sum(decoded~=msg))/(Nm*K) % BER
% Usage of rsenc()/rsdec()
M=3; % Galois Field integer corresponding to the # of bits per symbol
N=2^M-1; K=3; dc=(N-K)/2; % Codeword length and Message size
msg=gf(randint(Nm,K,2^M),M); % Nm x K GF(2^M) Galois Field msg matrix
coded = rsenc(msg,N,K); % Encoding
noise = randerr(Nm,N,[1 dc+1]).*randint(Nm,N,2^M);
received = coded+noise; % Add a noise
[decoded,numerr]=rsdec(received,N,K); % Decoding
[msg decoded], numerr, pose=sum(sum(decoded~=msg))/(Nm*K) % SER

9.4 Channel Coding 285

9.4.4 Convolutional Coding and Viterbi Decoding

In the previous sections, we discussed the block coding that encodes every K -bit block of message
sequence independently of the previous message block (vector). In this section, we are going to see
the convolutional coding that converts a K -bit message vector into an N -bit channel input
sequence dependently of the previous KL)1(− -bit message vector (L : constraint length). The
convolutional encoder has a structure of finite-state machine whose output depends on not only the
input but also the state.

Fig. 9.10 shows a binary convolutional encoder with a (2)K = -bit input, an (3)N = -bit output, and
1(3)L− = 2-bit registers that can be described as a finite-state machine having (1) 3 22 2 64L K− ⋅= =

states. This encoder shifts the previous contents of every stage register except the right-most one
into its righthand one and receives a new K -bit input to load the left-most register at an iteration,
sending an N -bit output to the channel for transmission where the values of the output bits depends
on the previous inputs stored in the 1L − registers as well as the current input.

A binary convolutional code is also characterized by N generator sequences 1 2, , , Ng g g each
of which has a length of LK . For example, the convolutional code with the encoder depicted in Fig.
9.10 is represented by the (3)N = generator sequences

1

2

3

[0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]

=
=
=

g
g
g

 (9.4.29a)

which constitutes the generator (polynomial) matrix

1

2

3

0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

N LKG × = =
g
g
g

 (9.4.29b)

where the value of the j th element of ig is 1 or 0 depending on whether the j th one of the LK bits
of the shift register is connected to the i th output combiner or not. The shift register is initialized to
all-zero state before the first bit of an input (message) sequence enters the encoder and also
finalized to all-zero state by the (1)L K− zero-bits padded onto the tail part of each input sequence.
Besides, the length of each input sequence (to be processed at a time) is made to be MK (an integer
M times K) even by zero-padding if necessary. For the input sequence made in this way so that its
total length is (1)M L K+ − including the zeros padded onto it, the length of the output sequence is
(1)M L N+ − and consequently, the code rate will be

 for
(1)

M
c

MK KR M L
M L N N

→∞
= →

+ −
 (9.4.30)

286 Chapter 9 Information and Coding

function [output,state]=conv_encoder(G,K,input,state,termmode)
% generates the output sequence of a binary convolutional encoder
% G : N x LK Generator matrix of a convolutional code
% K : Number of input bits entering the encoder at each clock cycle.
% input: Binary input sequence
% state: State of the convolutional encoder
% termmode='trunc' for no termination with all-0 state
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if isempty(G), output=input; return; end
tmp= rem(length(input),K);
input=[input zeros(1,(K-tmp)*(tmp>0))];
[N,LK]=size(G);
if rem(LK,K)>0
 error('The number of column of G must be a multiple of K!')
end
%L=LK/K;

if nargin<4|(nargin<5 & isnumeric(state))
 input= [input zeros(1,LK)]; %input= [input zeros(1,LK-K)]; end
end
if nargin<4|~isnumeric(state)
 state=zeros(1,LK-K);
end
input_length= length(input);
N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol);
output=[];
for l=1:N_msgsymbol % Convolution output=G*input
 ub= input1(:,l).';
 [state,yb]= state_eq(state,ub,G);
 output= [output yb];
end

function [nxb,yb]=state_eq(xb,u,G)
% To be used as a subroutine for conv_encoder()
K=length(u); LK=size(G,2); L1K=LK-K;
if isempty(xb), xb=zeros(1,L1K);
else

N=length(xb); %(L-1)K
if L1K~=N, error('Incompatible Dimension in state_eq()'); end

end
A=[zeros(K,L1K); eye(L1K-K) zeros(L1K-K,K)];
B=[eye(K); zeros(L1K-K,K)];
C=G(:,K+1:end); D=G(:,1:K);
nxb=rem(A*xb'+B*u',2)';
yb=rem(C*xb'+D*u',2)';

Given a generator matrix N LKG × together with the number K of input bits and a message
sequence m , the above MATLAB routine ‘conv_encoder()’ pads the input sequence m with zeros
as needed and then generates the output sequence of the convolutional encoder. Communication
Toolbox has a convolutional encoding function ‘convenc()’ and its usage will be explained together
with that of a convolutional decoding function ‘vitdec()’ at the end of this section.

9.4 Channel Coding 287

<Various Representations of a Convolutional Code>

There are many ways of representing a convolutional code such as the schematic diagram like Fig.
9.10, the generator matrix like Eq. (9.4.29b), the finite-state machine (state transition diagram), the
transfer function, and the trellis diagram. Fig. 9.11 illustrates the various equivalent representations
of a simple convolutional code with 1K = , 2N = , and 3L= . Especially, Fig. 9.11(c1) shows the
state diagram that has 4 states corresponding to all possible contents { 00, 01, 10, 11}a b c d= = = = of
the lefthand (1)L K− registers in the schematic diagram (Fig. 9.11(a)) where solid/dashed branches
between two states represent the state transitions in the arrow direction in response to input 0/1,
respectively. Fig. 9.11(c2) is an augmented state diagram where the all-zero state a in the original
state diagram (Fig. 9.11(c1)) is duplicated to make two all-zero states, one (a) with only out-ward
branches and the other ('a) with only in-ward branches. Note that the self-loop at the all-zero state
is neglected so that the gains of all the paths starting from the all-zero state and coming back to the
all-zero state can be obtained in a systematic way as follows. If we assign the gain D I Jα β (α : the
Hamming weight (number of 1’s) of the output sequence assigned to the branch, β : the Hamming
weight of the input sequence causing the state change designated by the branch) as in Fig. 9.11(c2),
we can regard the state diagram as a signal flow graph and apply the Mason’s gain formula[P-3] to
get the overall gain from the input all-zero state a to the output all-zero state 'a as

1(, ,) ii iT D I J M= Δ
Δ

All products of the forward gain and for the diagram without forward path
1 All loop gains All products of 2 nontouching loop gains

iiM iΔ
=

− + −
5 3 6 2 4 5 3

2 2 2 3 2 2 3 2
(1)

1 1 ()
D I J DI J D I J D I J

DIJ DIJ D I J D I J DIJ DIJ
− += =

− − − + − +
 (9.4.31)

This can be expanded into a power series as

5 3 2 2 2(, ,) {1 () () }T D I J D I J DIJ DIJ DIJ DIJ= + + + + +

++++= 53752642635 JIDJIDJIDIJD (9.4.32)

Each term D I Jα β γ of this equation denotes the gain of each forward path starting from the all-zero
state and going back to the all-zero state where α is the Hamming weight of the codeword
represented by the path, β is the Hamming weight of the input sequence causing the ouput
sequence to be generated, and γ is the number of branches contained in the path. In this context,
the first term 5 3D I J of Eq. (9.4.32) implies that the convolutional encoder in Fig. 9.11(a) may
generate a codeword of Hamming weight (5)α and 3 2 6Nγ ⋅ = ⋅ = bits for the input sequence of
Hamming weight (1)β :

5 3
Input: [1] [0] [0] ---- =1
State: (00) (10) (01) (00) ---- =3
Output: 11 01 11 ---- =5

a c b e D I J
β
γ
α

→ → →

The two codewords corresponding to the terms 6 2 4D I J and 7 3 5D I J are

Input: [1] [1] [0] [0]
State: (00) (10) (11) (01) (00)
Output: 11 10 10 11

a c d b e→ → → →
 [1] [1] [1] [0] [0]

(00) (10) (11) (11) (01) (00)
 11 10 01 10 11
a c d d b e→ → → → →

288 Chapter 9 Information and Coding

9.4 Channel Coding 289

The minimum degree in D of the transfer function, that is min 5d = in the case of Eq. (9.4.32), is the
free distance of the convolutional code, which is the minimum (Hamming) distance among the
codewords in the code. Note that the free distance as well as the decoding algorithm heavily affects
the BER performance of a convolutional code.

Fig. 9.11(d) shows another representation of the convolutional code called a trellis, which can be
viewed as a plot of state diagram being developed along the time. This diagram consists of the
columns of KL)1(2 − state nodes per clock cycle and the solid/dashed branches representing the state
transition caused by input 0/1 as depicted in the state diagram (Fig. 9.11(c)) where the)2(N -bit
output of the encoder to the input is attatched to each branch. In this trellis diagram, each path
starting from the initial all-zero state and ending at another all-zero state represents a codeword.
From the trellis shown in Fig. 9.11, we can see the shortest two codewords as

Input: [1] [0] [0]
State: (00) (10) (01) (00)
Output: 11 01 11

a c b a→ → →
Input: [1] [1] [0] [0]
State: (00) (10) (11) (01) (00)
Output: 11 10 10 11

a c d b a→ → → →

These correspond to the first two terms 5 3D I J and 6 2 4D I J of Eq. (9.4.32), respectively.

<Viterbi Decoding of a Convolutional Coded Sequence>

As a way of decoding a convolutional coded sequence, an ML (maximum-likelihood) decoding
called the Viterbi algorithm (VA)[F-1] is most widely used where an ML decoding finds the code
sequence that is most likely to have been the input to the encoder at XMTR yielding the received
code sequence. Given a received (DTR output or decoder input) sequence c= +r m e (cm : a
convolutional coded sequence, e : an error), the Viterbi algorithm with soft-decision searches the
trellis diagram for an all-zero-state-to-all-zero-state path whose (encoder) output sequence is closest
to r in terms of Euclidean distance and takes the encoder input sequence corresponding to the
‘optimal’ path to be the most likely message sequence, while the Viterbi algorithm with hard-
decision first slices r to make qr consisting of 0 or 1 and then finds an all-zero-state-to-all-zero-
state path whose (encoder) output sequence is closest to qr in terms of Hamming distance.

The procedure of the Viterbi algorithm is as follows (see Fig. 9.12):
0. To each set of nodes (states), assign the depth level index starting from 0l = for the leftmost stage.

Divide the decoder input sequence qr (hard, i.e. sliced to 0/1) or r (soft) into N -bit subsequences
and distribute each N -bit subsequence to the stages between the node sets.

1. To each branch, attach the (Hamming or Euclidean) distance between the N -bit encoder ouput and
the N -bit subsequence of r or qr (distributed to the stage that the branch belongs to) as the
branch cost (metric).

2. With the level index initialized to 0l = , assign 0 to the initial all-zero state node as its node cost
(metric).

3. Move right by one stage by increasing the level index by one. To every node (at the level) that is
connected via some branch(es) to node(s) at the previous level, assign the node cost that is
computed by adding the branch cost(s) to the left-hand node cost(s) and taking the minimum if
there are multiple branches connected to the node. In the case of multiple branches connected to a
node, remove other branches than the survivor branch yielding the minimum path cost.

4. If all the N -bit subsequence of r or qr are not processed, go back to step 3 to repeat the
procedure; otherwise, go to the next step 5.

5. Starting from the final all-zero state or the best node with minimum cost, find the optimal path
consisting of only the survivor paths and take the encoder input sequence supposedly having caused
the output sequence (associated with the optimal path) to be the ML decoded message sequence.

290 Chapter 9 Information and Coding

Fig. 9.12 illustrates a typical decoding procedure using the trellis based on the Viterbi algorithm
(VA) stated above where the detector output (code) sequence is [11011010101100]. Note that the
removed branches other than the survivor branches are crossed and the optimal path denoted by a
series of thick solid/dotted lines (with encoder input 0/1) corresponds to the encoder input sequence
[1011000], which has been taken as the decoded result.

Given the generator polynomial matrix G together with the number K of input bits and the
channel-DTR output sequence ‘detected’ as its input arguments, the MATLAB routine
‘vit_decoder(G,K,detected)’ constructs the trellis diagram and applies the Viterbi algorithm to find
the maximum-likelihood decoded message sequence. The following MATLAB program
“do_vitdecoder.m” uses the routine ‘conv_encoder()’ to make a convolutional coded sequence for a
message and uses “vit_decoder()” to decode it to recover the original message.

%do_vitdecoder.m
% Try using conv_encoder()/vit_decoder()
clear, clf
msg=[1 0 1 1 0 0 0]; % msg=randint(1,100)
lm=length(msg); % Message and its length
G=[1 0 1;1 1 1]; % N x LK Generator polynomial matrix
K=1; N=size(G,1); % Size of encoder input/output
potbe=0.02; % Probability of transmitted bit error
% Use of conv_encoder()/vit_decoder()
ch_input=conv_encoder(G,K,msg) % Self-made convolutional encoder
notbe=ceil(potbe*length(ch_input));
error_bits=randerr(1,length(ch_input),notbe);
detected= rem(ch_input+error_bits,2); % Received/modulated/detected
decoded= vit_decoder(G,K,detected)
noe_vit_decoder=sum(msg~=decoded(1:lm))

9.4 Channel Coding 291

function decoded_seq=vit_decoder(G,K,detected,opmode,hard_or_soft)
% performs the Viterbi algorithm on detected to get the decoded_seq
% G: N x LK Generator polynomial matrix
% K: Number of encoder input bits
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
detected = detected(:).';
if nargin<5|hard_or_soft(1)=='h', detected=(detected>0.5); end
[N,LK]=size(G);
if rem(LK,K)~=0, error('Column size of G must be a multiple of K'); end
tmp= rem(length(detected),N);
if tmp>0, detected=[detected zeros(1,N-tmp)]; end
b=LK-K; % Number of bits representing the state
no_of_states=2^b; N_msgsymbol=length(detected)/N;
for m=1:no_of_states

for n=1:N_msgsymbol+1
 states(m,n)=0; % inactive in the trellis
 p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
 y=detected((n-1)*N+1:n*N); % Received sequence
 n1=n+1;
for m=1:no_of_states
if states(m,n)==1 % active

 xb=deci2bin1(m-1,b);
for m0=1:K2

 u=deci2bin1(m0-1,K);
 [nxb(m0,:),yb(m0,:)]=state_eq(xb,u,G);
 nxm0=bin2deci(nxb(m0,:))+1;
 states(nxm0,n1)=1;
 dif=sum(abs(y-yb(m0,:)));
 d(m0)=cost(m,n)+dif;

if p_state(nxm0,n1)==0 % Unchecked state node?
 cost(nxm0,n1)=d(m0);
 p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1;

else
 [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);

if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end
end

end
end

end
end
decoded_seq=[];
if nargin>3 & ~strncmp(opmode,'term',4)
 [min_dist,m]=min(cost(:,n1)); % Trace back from best-metric state
else m=1; % Trace back from the all-0 state

end
for n=n1:-1:2
 decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
 m=p_state(m,n);
end

292 Chapter 9 Information and Coding

The following program “do_vitdecoder1.m” uses the Communication Toolbox functions
‘convenc()’ and ‘vitdec()’ where ‘vitdec()’ is used several times with different input argument
values to show the readers its various usages. Now, it is time to see the usage of the function
‘vitdec()’.

%do_vitdecoder1.m
% shows various uses of Communication Toolbox function convenc()
% with KxN Code generator matrix Gc - octal polynomial representation
clear, clf
%msg=[1 0 1 1 0 0 0];
msg=randint(1,100)
lm=length(msg); % Message and its length
potbe=0.02; % Probability of transmitted bit error
Gc=[5 7]; % 1 0 1 -> 5, 1 1 1 -> 7 (octal number)
Lc=3; % 1xK constraint length vector for each input stream
[K,N]=size(Gc); % Number of encoder input/output bits
trel=poly2trellis(Lc,Gc); % Trellis structure
ch_input1=convenc(msg,trel); % Convolutional encoder
notbe1=ceil(potbe*length(ch_input1));
error_bits1=randerr(1,length(ch_input1),notbe1);
detected1= rem(ch_input1+error_bits1,2); % Received/modulated/detected
% with hard decision
Tbdepth=3; % Traceback depth
decoded1= vitdec(detected1,trel,Tbdepth,'trunc','hard')
noe_vitdec_trunc_hard=sum(msg~=decoded1(1:lm))
decoded2= vitdec(detected1,trel,Tbdepth,'cont','hard');
noe_vitdec_cont_hard=sum(msg(1:end-Tbdepth)~=decoded2(Tbdepth+1:end))
% with soft decision
ncode= [detected1+0.1*randn(1,length(detected1)) zeros(1,Tbdepth*N)];
quant_levels=[0.001,.1,.3,.5,.7,.9,.999];
NSDB=ceil(log2(length(quant_levels))); % Number of Soft Decision Bits
qcode= quantiz(ncode,quant_levels); % Quantized
decoded3= vitdec(qcode,trel,Tbdepth,'trunc','soft',NSDB);
noe_vitdec_trunc_soft=sum(msg~=decoded3(1:lm))
decoded4= vitdec(qcode,trel,Tbdepth,'cont','soft',NSDB);
noe_vitdec_cont_soft=sum(msg~=decoded4(Tbdepth+1:end))

% Repetitive use of vitdec() to process the data block by block
delay=Tbdepth*K; % Decoding delay depending on the traceback depth
% Initialize the message sequence, decoded sequence,
% state metric, traceback state/input, and encoder state.
msg_seq=[]; decoded_seq=[];
m=[]; s=[]; in=[]; encoder_state=[];
N_Iter=100;
for itr=1:N_Iter
 msg=randint(1,1000); % Generate the message sequence in a random way
 msg_seq= [msg_seq msg]; % Accumulate the message sequence

if itr==N_Iter, msg=[msg zeros(1,delay)]; end % Append with zeros
 [coded,encoder_state]=convenc(msg,trel,encoder_state);
 [decoded,m,s,in]=vitdec(coded,trel,Tbdepth,'cont','hard',m,s,in);
 decoded_seq=[decoded_seq decoded];
end
lm=length(msg_seq);
noe_repeated_use=sum(msg_seq(1:lm)~=decoded_seq(delay+[1:lm]))

9.4 Channel Coding 293

<Usage of the Viterbi Decoding Function ‘vitdec()’ with ‘convenc()’ and ‘poly2trellis()’>

To apply the MATLAB functions ‘convenc()’/‘vitdec()’, we should first use ‘poly2trellis()’ to build
the trellis structure with an ‘octal code generator’ describing the connections among the inputs,
registers, and outputs. Fig. 9.13 illustrates how the octal code generator matrix cG as well as the
binary generator matrix G and the constraint length vector cL is constructed for a given
convolutional encoder. An example of using ‘poly2trellis()’ to build the trellis structure for
‘convenc()’/’vitdec()’ is as follows:

trellis=poly2trellis(Lc,Gc);

Here is a brief introduction of the usages of the Communication Toolbox functions ‘convenc()’ and
‘vitdec()’. See the MATLAB Help manual or The Mathworks webpage[W-7] for more details.

(1) coded=convenc(msg,trellis);
msg: A message sequence to be encoded with a convolutional encoder described by ‘trellis’.

(2) decoded=vitdec(coded,trellis,tbdepth,opmode,dectype,NSDB);

coded : A convolutional coded sequence possibly corrupted by a noise. It should consist of
binary numbers (0/1), real numbers between 1(logical zero) and -1(logical one), or
integers between 0 and 2NSDB-1 (NSDB: the number of soft-decision bits given as the
optional 6th input argument) corresponding to the quantization level depending on
which one of {‘hard’, ‘unquant’, ‘soft’} is given as the value of the fifth input argument
‘dectype’ (decision type).

trellis : A trellis structure built using the MATLAB function ‘poly2trellis()’.
tbdepth: Traceback depth (length), i.e., the number of trellis branches used to construct each

traceback path. It should be given as a positive integer, say, about five times the
constraint length. In case the fourth input argument ‘opmode’ (operation mode) is ‘cont’
(continuous), it causes the decoding delay, i.e., the number of zero symbols preceding
the first decoded symbol in the output ‘decoded’ and as a consequence, the decoded
result should be advanced by tbdepth∗ K where K is the number of encoder input bits.

opmode: Operation mode of the decoding prosess. If it is set to ‘cont’ (continuous mode), the
internal state of the decoder will be saved for use with the next frame. If it is set to
‘trunc’ (truncation mode), each frame will be processed independently, and the
traceback path starts at the best-metric state and always ends in the all-zero state. If it is
set to ‘term’ (termination mode), each frame is treated independently, and the traceback
path always starts and ends in the all-zero state. This mode is appropriate when the
uncoded message signal has enough zeros, say, K∗ Max(Lc)-1) zeros at the end of each
frame to fill all memory registers of the encoder.

dectype: Decision type. It should be set to ‘unquant’, ‘hard’, or ‘soft’ depending on the
characteristic of the input coded sequence (coded) as follows:
- ‘hard’ (decision) when the coded sequence consists of binary numbers 0 or 1.
- ‘unquant’ when the coded sequence consists of real numbers between -1(logical 1) and

+1(logical 0).
- ‘soft’ (decision) when the optional 6th input argument NSDB is given and the coded

sequence consists of integers between 0 and 2NDSB-1 corresponding to the quantization
level.

NSDB : Number of software decision bits used to represent the input coded seqeuence. It is
needed and active only when dectype is set to ‘soft’.

294 Chapter 9 Information and Coding

(3) [decoded,m,s,in]=vitdec(code,trellis,tbdepth,opmode,dectype,m,s,in)

This format is used for a repetitive use of ‘vitdec()’ with the continuous operation mode where
the state metric ‘m’, traceback state ‘s’, and traceback input ‘in’ are supposed to be initialized to
empty sets at first and then handed over successively to the next iteration.

See the above program “do_vitdecoder1.m” or the MATLAB help manual for some examples of
using ‘convenc()’ and ‘vitdec()’.

9.4.5 Trellis-Coded Modulation (TCM)

By channel coding discussed in the previous sections, additional redundant bits for error control are
transmitted in the code and as a consequence, wider bandwidth is needed to keep the same data rate
while lower BER can be obtained with the same SNR or the SNR to obtain the same BER can be
decreased. This shows a trade-off between bandwidth efficiency and power efficiency. As an
approach to mediate between these two conflicting factors, TCM (trellis-coded modulation) was
invented by Gottfried Ungerboeck[U-1, U-2] . It is just like a marriage between modulation residing on
the constellation and coding living on the trellis toward a more effective utilization of bandwidth
and power. A (code) rate-2/3 TCM encoder combining an (,)N K = (3,2) convolutional coding and
an 23=8-PSK modulation is depicted in Fig. 9.14(a). In this encoder, the 8-PSK signal mapper
generates one of the eight PSK signals depending on the 3-bit symbol 1 2 3[]k k k kx x x=x that
consists of two (uncoded) message bits 1kx and 2kx and an additional coded bit that is the output of
the FSM (finite-state machine). Since the encoding scheme can be described by a trellis, the Viterbi
algorithm can be used to decode the TCM coded signal. There are a couple of things to mention
about TCM:

- The number of signal points in the constellation is larger compared with the uncoded case. For
example, the constellation size or modulation order used by the TCM scheme of Fig. 9.14(a) is

12 8K + = . This is two times as large as that of QPSK modulation that would be used to send the
message by 2K = -bit symbols with no coding. Note that a larger modulation order with the
same SNR decreases the minimum distance among the codewords so that the BER may suffer.

- TCM has some measures to combat the possible BER performance degradation problem:
 The convolutional coding allows only certain sequences (paths) of signal points so that the

free distance among different signal paths in the trellis can be increased.

9.4 Channel Coding 295

 The TCM decoder uses soft-decision decoding to find the path with minimum (squared)
Euclidean distance through the trellis. This makes the trellis code design trying to maximize
the Euclidean distance among the codewords.

 As illustrated in Fig. 9.14(b1) and (b2), the set partioning let the more significant message
bit(s) have a larger Euclidean distance from its complement so that there are less likely errors
in the uncoded message bits than in the coded bit(s).

 The FSM of TCM encoder has some inputs added to the adders between the shift registers.
Therefore it seems that TCM encoding/decoding can not be implemented using the general
convolutional encoder/decoder, requiring its own encoder/decoder rountines of every TCM
encoder/decoder.

296 Chapter 9 Information and Coding

The following program “sim_TCM.m” uses the two subroutines “TCM_encoder()” and
“TCM_decoder()” to simulate the TCM encoding (shown in Fig. 9.14(a)) and the corresponding
TCM decoding.

%sim_TCM.m
% simulates a Trellis-coded Modulation
clear, clf
lm=1e4; msg=randint(1,lm);
K=2; N=K+1; Ns=3; % Size of encoder input/output/state
M=2^N; Constellation=exp(j*2*pi/M*[0:M-1]); % Constellation
ch_input=TCM_encoder('TCM_state_eq0',K,Ns,N,msg,Constellation);
lc= length(ch_input);
SNRbdB=5; SNRdB=SNRbdB+10*log10(K); % SNR per K-bit symbol
sigma=1/sqrt(10^(SNRdB/10));
noise=sigma/sqrt(2)*(randn(1,lc)+j*randn(1,lc)); % Complex noise
received = ch_input + noise; var(received)
received = awgn(ch_input,SNRdB); var(received) % Alternative
decoded_seq=TCM_decoder('TCM_state_eq0',K,Ns,received,Constellation);
ber_TCM8PSK = sum(decoded_seq(1:lm)~=msg)/lm
ber_QPSK_theory = prob_error(SNRbdB,'PSK',K,'BER')

function [output,state]
=TCM_encoder(state_eq,K,Ns,N,input,state,Constellation,opmode)

% Generates the output sequence of a binary TCM encoder
% Input: state_eq = External function for state eqn saved in an M-file
% K = Number of input bits entering the encoder at each cycle
% Nsb = Number of state bits of the TCM encoder
% N = Number of output bits of the TCM encoder
% input= Binary input message seq.
% state= State of the conv_encoder
% Constellation= Signal sets for signal mapper
% Output: output= Sequence of signal points on Contellation
% state = Updated state
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
tmp= rem(length(input),K);
input= [input zeros(1,(K-tmp)*(tmp>0))];
if nargin<6, state=zeros(1,Nsb);
elseif length(state)==2^N, Constellation=state; state=zeros(1,Nsb);

end
input_length= length(input); N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol).';
outputs= [];
for l=1:N_msgsymbol
 ub= input1(l,:);
 [state,output]=feval(state_eq,state,ub,Constellation);
 outputs= [outputs output];
end

function [s1,x]=TCM_state_eq0(s,u,Constellation)
% State equation for the TCM_encoder in Fig. 9.14(a)
% Input: s= State, u= Input, Constellation
% Output: s1= Next state, x= Output
s1= [s(3) rem([s(1)+u(1) s(2)+u(2)],2)];
x= Constellation(bin2deci([u(1) u(2) s(3)])+1);

9.4 Channel Coding 297

function decoded_seq
=TCM_decoder(state_eq,K,Nsb,received,Constellation,opmode)

% Performs the Viterbi algorithm on the PSK demodulated signal
% Input: state_eq = External function for state eqn saved in an M-file
% K = Number of input bits entering the encoder at each cycle.
% Nsb = Number of state bits of the TCM encoder
% received = received sequence
% Constellation: Signal sets for signal mapper
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
N_states=2^Nsb;
N_msgsymbol=length(received);
for m=1:N_states

for n=1:N_msgsymbol+1
 states(m,n)=0; %inactive in the trellis diagram
 p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
 y=received(n); %received sequence
 n1=n+1;
for m=1:N_states

if states(m,n)==1 %active
 xb=deci2bin1(m-1,Nsb);

for m0=1:K2
 u=deci2bin1(m0-1,K);
 [nxb(m0,:),yb(m0)]=feval(state_eq,xb,u,Constellation);
 nxm0=bin2deci(nxb(m0,:))+1; states(nxm0,n1)=1;

% Accumulated squared Euclidean distance as path-to-node cost
 difference=y-yb(m0);
 d(m0)=cost(m,n)+difference*conj(difference);

if p_state(nxm0,n1)==0
 cost(nxm0,n1)=d(m0);

 p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1;
else

 [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);
if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end

end
end

end
end

end
decoded_seq=[];
if nargin<6 | ~strncmp(opmode,'term',4)

% trace back from the best-metric state (default)
[min_cost,m]=min(cost(:,n1));
else m=1; % trace back from the all-0 state

end
for n=n1:-1:2
 decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
 m=p_state(m,n);
end

298 Chapter 9 Information and Coding

9.4.6 Turbo Coding

In order for a linear block code or a convolutional code to approach the theoretical limit imposed by
Shannon’s channel capacity (see Eq. (9.3.16) or Fig. 9.7) in terms of bandwidth/power efficiency,
its codeword or constraint length should be increased to such an intolerable degree that the
maximum likelihood decoding can become unrealizable. Possible solutions to this dilemma are two
classes of powerful error correcting codes, each called turbo codes and LDPC (lower-density
parity-check) codes, that can achieve a near-capacity (or near-Shannon-limit) performance with a
reasonable complexity of decoder. The former is the topic of this section and the latter will be
introduced in the next section.

Fig. 9.15(a) shows a turbo encoder consisting of two recursive systematic convolutional (RSC)
encoders and an interleaver where the interleaver permutes the message bits in a random way
before input to the second encoder. (Note that the modifier ‘systematic’ means that the uncoded
message bits are imbedded in the encoder output stream as they are.) The code rate will be 1/2 or
1/3 depending on whether the puncturing is performed or not. (Note that puncturing is to omit
transmitting some coded bits for the purpose of increasing the code rate beyond that resulting from
the basic structure of the encoder.) Fig. 9.15(b) shows a demultiplexer, which classifies the coded
bits into two groups, one from encoder 1 and the other from encoder 2, and applies each of them to
the corresponding decoder. Fig. 9.15(c) shows a turbo decoder consisting of two decoders
concatenated and separated by an interleaver where one decoder processes the systematic (message)
bit sequence sy and the parity bit sequence 1 2/p py y together with the extrinsic information ejL
(provided by the other decoder) to produce the information eiL and provides it to the other decoder
in an iterative manner. The turbo encoder and the demultiplexer are cast into the MATLAB routines
‘encoderm()’ and ‘demultiplex()’, respectively. Now, let us see how the two types of decoder, each
implementing the log-MAP (maximum a posteriori probability) algorithm and the SOVA (soft-out
Viterbi algorithm), are cast into the MATLAB routines ‘logmap()’ and ‘sova()’, respectively.

<Log-MAP (Maximum a Posteriori Probability) Decoding cast into ‘logmap()’>

To understand the operation of the turbo decoder, let us begin with the definition of priori LLR
(log-likelihood ratio), called a priori L-value, which is a soft value measuring how high the
probability of a binary random variable u being +1 is in comparison with that of u being 1− :

(1)
() ln

(1)
P u

L u
P u

=+
=

=−
u

u
u

 with ()P uu : the probability of u being u (9.4.33)

This is a priori information known before the result y caused by u becomes available. While the
sign of LLR

1 (1) (1)ˆ sign{ ()} 1 (1) (1)
P u P uu L u P u P u

+ =+ > =−= = − =+ < =−
u u

u
u u

 (9.4.34)

is a hard value denoting whether or not the probability of u being +1 is higher than that of u being
1− , the magnitude of LLR is a soft value describing the reliability of the decision based on û .

Conversely, (1)P u = +u and (1)P u = −u can be derived from ()L uu :

()(1) (1) 1(9.4.33) ()
() ()

1(1) (1) (1) and (1)
1 1

L uP u P uL u
L u L u

eP u e P u P u P u
e e

=+ + =− =
= + = = − = + = = − =

+ +
→u u u u

9.4 Channel Coding 299

function y = demultiplex(r,map,puncture)
%Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% map: Interleaver mapping
Nb = 3-puncture; lu = length(r)/Nb;
if puncture==0 % unpunctured

for i=1:lu, y(:,2*i) = r(3*i-[1 0]).'; end
else % punctured

for i=1:lu
 i2 = i*2;

if rem(i,2)>0, y(:,i2)=[r(i2); 0]; else y(:,i2)=[0; r(i2)]; end
end

end
sys_bit_seq = r(1,1:Nb:end); % the systematic bits for both decoders
y(:,1:2:lu*2) = [sys_bit_seq; sys_bit_seq(map)];

300 Chapter 9 Information and Coding

function x = rsc_encode(G,m,termination)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% encodes a binary data block m (0/1) with a RSC (recursive systematic
% convolutional) code defined by generator matrix G, returns the output
% in x (0/1), terminates the trellis with all-0 state if termination>0
if nargin<3, termination = 0; end
[N,L] = size(G); % Number of output bits, Constraint length
M = L-1; % Dimension of the state
lu = length(m)+(termination>0)*M; % Length of the input
lm = lu-M; % Length of the message
state = zeros(1,M); % initialize the state vector
% To generate the codeword
x = [];
for i = 1:lu

if termination<=0 | (termination>0 & i<=L_info)
 d_k = m(i);
elseif termination>0 & i>lm
d_k = rem(G(1,2:L)*state.',2);

end
 a_k = rem(G(1,:)*[d_k state].',2);
 xp = rem(G(2,:)*[a_k state].',2); % 2nd output (parity) bits
 state = [a_k state(1:M-1)]; % Next sttate
 x = [x [d_k; xp]]; % since systematic, first output is input bit
end

function x = encoderm(m,G,map,puncture)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% map: Interleaver mapping
% If puncture=0(unpunctured), it operates with a code rate of 1/3.
% If puncture>0(punctured), it operates with a code rate of 1/2.
% Multiplexer chooses odd/even-numbered parity bits from RSC1/RSC2.
[N,L] = size(G); % Number of output pits, Constraint length
M = L-1; % Dimension of the state
lm = length(m); % Length of the information message block
lu = lm + M; % Length of the input sequence
% 1st RSC coder output
x1 = rsc_encode(G,m,1);
% interleave input to second encoder
mi = x1(1,map); x2 = rsc_encode(G,mi,0);
% parallel to serial multiplex to get the output vector
x = [];
if puncture==0 % unpunctured, rate = 1/3;

for i=1:lu
 x = [x x1(1,i) x1(2,i) x2(2,i)];

end
else % punctured into rate 1/2
for i=1:lu

if rem(i,2), x = [x x1(1,i) x1(2,i)]; % odd parity bits from RSC1
else x = [x x1(1,i) x2(2,i)]; % even parity bits from RSC2

end
end

end
x = 2*x - 1; % into bipolar format (+1/-1)

9.4 Channel Coding 301

This can be expressed as

(1) () / 2 () ()

() ()
/(1) for 1()

1 1/(1) for 1

u L u L u L u

L u L u
e e e uP u

e e u

+ + =+= =
+ + =−u (9.4.35)

Also, we define the conditioned LLR, which is used to detect the value of u based on the value of
another random variable y affected by u , as the LAPP (Log A Posteriori Probability):

(2.1.4)
|

(1|) (| 1) (1) / () (1)(| 1)(|) ln ln ln ln
(1|) (| 1) (1) / () (| 1) (1)

P u y P y u P u P y P uP y uL u y
P u y P y u P u P y P y u P u

=+ =+ =+ =+=+= = = +
=− =− =− =− =−

u u u
u y

u u u
(9.4.36)

Now, let y be the output of a fading AWGN (additive white Gaussian noise) channel (with fading
amplitude a and SNR per bit 0/bE N) given u as the input. Then, this equation for the conditioned
LLR can be written as

2
0

| 2
00

exp((/)()) (1)
(|) ln ln 4 () ()

(1)exp((/)())
b b

c
b

E N y a P u E
L u y a y L u L L u

P u NE N y a
y− − =+

= + = + = +
=−− +

u
u uu y

u
 (9.4.37)

 with
0

4 b
c

E
L a

N
= : the channel reliability

The objective of BCJR (Bahl-Cocke-Jelinek-Raviv) MAP (Maximum A posteriori Probability)
algorithm proposed in [B-1] is to detect the value of the k th message bit ku depending on the sign
of the following LAPP function:

1(',)

1(',)

(', ,) / ()(1|)
() ln ln

(1|) (', ,) / ()

k ks s Sk
A k

k k ks s S

p s s s s pP u
L

P u p s s s s p
u

+

−

+∈

+∈

= ==+
= =

=− = =
u

u

y yy
y y y

1(',)

1(',)

(', ,)
ln

(', ,)

k ks s S

k ks s S

p s s s s

p s s s s

+

−

+∈

+∈

= =
=

= =

y

y
 (9.4.38)

with S + / S − : the set of all the encoder state transitions from 's to s caused by 1ku = + / 1−

Note that P and p denote the probability of a discrete-valued random variable and the probability
density of a continuous-valued random variable. The numerator/denominator of this LAPP function
are the sum of the probabilities that the channel output to 1/ 1ku = + − will be { , , }j k k j ky< >=y y y
with the encoder state transition from 's to s where each joint probability density

1(', ,) (', ,)k kp s s p s s s s+= = =y y can be written as

1 1(', ,) (', ,) (',) (, | ') (|) (') (',) ()k k j k k j k k kkp s s p s s s s p s p s y s p s s s s sα γ β+ < > −= = = = =y y y y (9.4.39)

where 1(') (',)j kk s p sα <− = y is the probability that the state ks at the k th depth level (stage) in the
trellis is 's with the output sequence j k<y generated before the k th level, (',) (, | ')k ks s p s y sγ = is
the probability that the state transition from 'ks s= to 1ks s+ = is made with the output ky
generated, and () (|)k j ks p sβ >= y is the probability that the state 1ks + is s with the output sequence

302 Chapter 9 Information and Coding

j k>y generated after the k th level. The first and third factors 1(')k sα − / ()k sβ can be computed in a
forward/backward recursive way:

1 '() (,) (', , ,) (',) (, | ')j kj k j kk k ks Ss p s p s s y p s p s y sα << + < ∈= = =y y y

1' (') (',)k ks S s s sα γ−∈= with 0 0(0) 1, () 0sα α= = for 0s ≠ (9.4.40)

11(') (| ') (', , , | ') (, | ') (|)j kj k j kk k ks Ss p s p s y s s p s y s p sβ >> − >− ∈= = =y y y

' (',) ()k ks S s s sγ β∈= (9.4.41a)

with
(0) 1 and () 0 0 if terminated at all-zero state

()
() 1/ otherwise

K K
K

sK

s s
s

s N s
β β

β
β

= = ∀ ≠
=

= ∀
 (9.4.41b)

where 12L
sN −= (L : the constraint length) is the number of states and K is the number of decoder

input symbols. The second factor (',)k s sγ can be found as

(2.1.4)

1 1

(', ,) (',) (| ',)
(',) (, | ')

(') (')
' '(|) (| ,) () (|) () (, | , ())

k k
kk

p ps
k k k kk k k k k k kk k k

p s s y p s s p y s s
s s p s y s

p s p s
p s s p y s s p u p y u p u p y y u x u

γ

+ +

= = =

= = =

0

(1) () / 2(9.4.35) 2 2
()WGNchannel with fadingamplitude 0 0andSNR per bit /

(1) () / 2
2

()
0

exp () (())
1

exp 2 (()) where 1
1

b

u L u
s p pb b

k kk k kL uA a
E N

u L u
s p pb

k kk k k k kL u

e E Ey au y a x u
N Ne

e EA a y u y x u u
Ne

+

+

= − − − −
+

= + =
+

(1) () / 2

()
1exp []

()21

u L u
ks p

k c k pkL u
kk

ue A L y y
x ue

+

=
+

 (9.4.42)

with ()2 2 2 2 2 2

0
exp () () (())s p pb

kk k k k k
EA y a u y a x u
N

= − + + + and
0

4 b
c

E
L a

N
= (channel reliability)

Note a couple of things about this equation:
- To compute kγ , we need to know the channel fading amplitude a and the SNR per bit 0/bE N .
- kA does not have to be computed since it will be substituted directly or via kα (Eq. (9.4.40)) or

kβ (Eq. (9.4.41)) into Eq. (9.4.39), then substituted into both the numerator and the denominator
of Eq. (9.4.38), and finally cancelled.
The following MATLAB routine ‘logmap()’ corresponding to the block named ‘Log-MAP or

SOVA’ in Fig. 9.15(c) uses these equations to compute the LAPP function (9.4.38). Note that in the
routine, the multiplications of the exponential terms are done by adding their exponents and that is
why Alpha and Beta (each representing the exponent of kα and kβ) are initialized to a large
negative number as –Infty= –100 (corresponding to a nearly-zero 100 0e − ≈) under the assumption
of initial all-zero state and for the termination of decoder 1 in all-zero state, respectively. (Q: Why
is Beta initialized to ln Ns− (-log(Ns)) for non-termination of decoder 2?)

9.4 Channel Coding 303

function L_A = logmap(Ly,G,Lu,ind_dec)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% Log_MAP algorithm using straightforward method to compute branch cost
% Input: Ly = scaled received bits Ly=0.5*L_c*y=(2*a*rate*Eb/N0)*y
% G = code generator for the RSC code a in binary matrix
% Lu = extrinsic information from the previous decoder.
% ind_dec= index of decoder=1/2 (assumed to be terminated/open)
% Output: L_A = ln (P(x=1|y)/P(x=-1|y)), i.e., Log-Likelihood Ratio
% (soft-value) of estimated message input bit at each level
lu=length(Ly)/2; Infty=1e2; EPS=1e-50; % Number of input bits, etc
[N,L] = size(G);
Ns = 2^(L-1); % Number of states in the trellis
Le1=-log(1+exp(Lu)); Le2=Lu+Le1; % ln(exp((u+1)/2*Lu)/(1+exp(Lu)))
% Set up the trellis
[nout, ns, pout, ps] = trellis(G);
% Initialization of Alpha and Beta
Alpha(1,2:Ns) = -Infty; % Eq.(9.4.40) (the initial all-zero state)
if ind_dec==1 % for decoder D1 with termination in all-zero state
 Beta(lu+1,2:Ns) = -Infty; % Eq.(9.4.41b) (the final all-zero state)
else % for decoder D2 without termination

 Beta(lu+1,:) = -log(Ns)*ones(1,Ns);
end
% Compute gamma at every depth level (stage)
for k = 2:lu+1
 Lyk = Ly(k*2-[3 2]); gam(:,:,k) = -Infty*ones(Ns,Ns);

for s2 = 1:Ns % Eq.(9.4.42)
 gam(ps(s2,1),s2,k) = Lyk*[-1 pout(s2,2)].' +Le1(k-1);
 gam(ps(s2,2),s2,k) = Lyk*[+1 pout(s2,4)].' +Le2(k-1);

end
end
% Compute Alpha in forward recursion
for k = 2:lu

for s2 = 1:Ns
 alpha = sum(exp(gam(:,s2,k).'+Alpha(k-1,:))); % Eq.(9.4.40)

if alpha<EPS, Alpha(k,s2)=-Infty; else Alpha(k,s2)=log(alpha); end
end

 tempmax(k) = max(Alpha(k,:)); Alpha(k,:) = Alpha(k,:)-tempmax(k);
end
% Compute Beta in backward recursion
for k = lu:-1:2

for s1 = 1:Ns
 beta = sum(exp(gam(s1,:,k+1)+Beta(k+1,:))); % Eq.(9.4.41)

if beta<EPS, Beta(k,s1)=-Infty; else Beta(k,s1)=log(beta); end
end

 Beta(k,:) = Beta(k,:) - tempmax(k);
end
% Compute the soft output LLR for the estimated message input
for k = 1:lu

for s2 = 1:Ns % Eq.(9.4.39)
 temp1(s2)=exp(gam(ps(s2,1),s2,k+1)+Alpha(k,ps(s2,1))+Beta(k+1,s2));
 temp2(s2)=exp(gam(ps(s2,2),s2,k+1)+Alpha(k,ps(s2,2))+Beta(k+1,s2));

end
 L_A(k) = log(sum(temp2)+EPS) - log(sum(temp1)+EPS); % Eq.(9.4.38)
end

304 Chapter 9 Information and Coding

function [nout,nstate,pout,pstate] = trellis(G)
% copyright 1998, Yufei Wu, MPRG lab, Virginia Tech for academic use
% set up the trellis with code generator G in binary matrix form.
% G: Generator matrix with feedback/feedforward connection in row 1/2
% e.g. G=[1 1 1; 1 0 1] for the turbo encoder in Fig. 9.15(a)
% nout(i,1:2): Next output [xs=m xp](-1/+1) for state=i, message in=0
% nout(i,3:4): next output [xs=m xp](-1/+1) for state=i, message in=1
% nstate(i,1): next state(1,...2^M) for state=i, message input=0
% nstate(i,2): next state(1,...2^M) for state=i, message input=1
% pout(i,1:2): previous out [xs=m xp](-1/+1) for state=i, message in=0
% pout(i,3:4): previous out [xs=m xp](-1/+1) for state=i, message in=1
% pstate(i,1): previous state having come to state i with message in=0
% pstate(i,2): previous state having come to state i with message in=1
% See Fig. 9.16 for the meanings of the output arguments.
[N,L] = size(G); % Number of output bits and Consraint length
M=L-1; Ns=2^M; % Number of bits per state and Number of states
% Set up next_out and next_state matrices for RSC code generator G
for state_i=1:Ns
 state_b = deci2bin1(state_i-1,M); % Binary state

for input_bit=0:1
d_k = input_bit;
a_k=rem(G(1,:)*[d_k state_b]',2); % Feedback in Fig.9.15(a)
out(input_bit+1,:)=[d_k rem(G(2,:)*[a_k state_b]',2)]; % Forward
state(input_bit+1,:)=[a_k state_b(1:M-1)]; % Shift register

end
 nout(state_i,:) = 2*[out(1,:) out(2,:)]-1; % bipolarize
 nstate(state_i,:) = [bin2deci(state(1,:)) bin2deci(state(2,:))]+1;
end
% Possible previous states having reached the present state
% with input_bit=0/1
for input_bit=0:1
 bN = input_bit*N; b1 = input_bit+1; % Number of output bits = 2;

for state_i=1:Ns
 pstate(nstate(state_i,b1),b1) = state_i;
 pout(nstate(state_i,b1),bN+[1:N]) = nout(state_i,bN+[1:N]);

end
end

9.4 Channel Coding 305

<SOVA (Soft-In/Soft-Output Viterbi Algorithm) Decoding cast into ‘sova()’’> [H-2]

The objective of the SOVA-MAP decoding algorithm is to find the state sequence ()is and the
corresponding input sequence ()iu which maximizes the following MAP (maximum a posteriori
probability) function:

()(2.1.4) proportional() () () ()()(|) (|) ~ (|) ()
()

i
i i i iPP p p P

p
=

ss y y s y s s
y

 for given y (9.4.43)

This probability would be found from the multiplications of the branch transition probabilities
defined by Eq. (9.4.42). However, as is done in the routine ‘logmap()’, we will compute the path
meric by accumulating the logarithm or exponent of only the terms affected by ()i

ku as follows:

()
() () ()

1 ()

() 1() (') []
2 2 ()

i
ki i s pi

kk k c k k p i
kk

uL u uM M L y y
ux

−= + +s s (9.4.44)

The decoding algorithm cast into the routine ‘sova(Ly,G,Lu,ind_dec)’ proceeds as follows:

(Step 0) Find the number of the []s p
k ky y ’s in Ly given as the first input argument: ul =length(Ly)/2.

Find the number N of output bits of the two encoders and the constraint length L from
the row and column dimensions of the generator matrix G . Let the number of states be

12L
sN −= , the SOVA window size 30δ = , and the depth level 0k = . Under the assumption

of all-zero state at the initial stage (depth level zero), initialize the path metric to
0() 0kM s = ln1= (corresponding to probability 1) only for the all-zero state 0s and to

()k jM s = −∞ ln 0= (corresponding to probability 0) for the other states js (0j ≠).
(Step 1) Increment k by one and determine which one of the hypothetical encoder input (message)

1 0ku − = or 1 1ku − = would result in larger path metric ()ikM s (computed by Eq. (9.4.44))
for every state (0 : 1)sis i N= − at level k and chooses the corresponding path as the
survivor path, storing the estimated value of 1ku − (into ‘pinput(i,k)’) and the relative path
metric difference ‘DM(i,k)’ of the survivor path over the other (non-surviving) path

11() (| 0 /1) (| 1/ 0)i i i kkk k ku uM s M s M s −−Δ = = − = (9.4.45)

for every state at the stage. Repeat this step (in the forward direction) till uk l= .
(Step 2) Depending on the value of the fourth input argument ‘ind_dec’, determine the all-zero state

0s or any state belonging to the most likely path (with Max ()ikM s) to be the final state
ˆ()s k (sh(k)).

(Step 3) Find ˆ()u k (uhat(k)) from ‘pinput(i,k)’ (constructed at Step 1) and the corresponding
previous state ˆ(1)s k − (shat(k-1)) from the trellis structure. Decrement k by one. Repeat
this step (in the backward direction) till k = 0 .

(Step 4) To find the reliability of ˆ()u k , let LLR= ˆ(())kM s kΔ . Trace back the non-surviving paths
from the optimal states ˆ()s k i+ (for 1 :i δ= such that uk i l+ ≤), find the nearly-optimal
input ˆ ()iu k . If ˆ ˆ() ()iu k u k≠ for some i , let LLR=Min{LLR, ˆ(())k iM s k i+Δ + }. In this way,
find the LLR estimate and multiply it with the bipolarized value of ˆ()u k to determine the
soft output or L-value:

ˆ ˆ(()) (2 () 1) LLRAL u k u k= − (9.4.46)

306 Chapter 9 Information and Coding

function L_A = sova(Ly,G,Lu,ind_dec)
% Copyright: Yufei Wu, 1998, MPRG lab, Virginia Tech for academic use
% This implements Soft Output Viterbi Algorithm in trace back mode
% Input: Ly : Scaled received bits Ly=0.5*L_c*y=(2*a*rate*Eb/N0)*y
% G : Code generator for the RSC code in binary matrix form
% Lu : Extrinsic information from the previous decoder.
% ind_dec: Index of decoder=1/2
% (assumed to be terminated in all-zero state/open)
% Output: L_A : Log-Likelihood Ratio (soft-value) of
% estimated message input bit u(k) at each stage,
% ln (P(u(k)=1|y)/P(u(k)=-1|y))
lu = length(Ly)/2; % Number of y=[ys yp] in Ly
lu1 = lu+1; Infty = 1e2;
[N,L] = size(G); Ns = 2^(L-1); % Number of states
delta = 30; % SOVA window size
%Make decision after 'delta' delay. Tracing back from (k+delta) to k,
% decide bit k when received bits for bit (k+delta) are processed.
% Set up the trellis defined by G.
[nout,ns,pout,ps] = trellis(G);
% Initialize the path metrics to -Infty
Mk(1:Ns,1:lu1)=-Infty; Mk(1,1)=0; % Only initial all-0 state possible
% Trace forward to compute all the path metrics
for k=1:lu
 Lyk = Ly(k*2-[1 0]); k1=k+1;

for s=1:Ns % Eq.(9.4.44), Eq.(9.4.45)
 Mk0 = Lyk*pout(s,1:2).' -Lu(k)/2 +Mk(ps(s,1),k);
 Mk1 = Lyk*pout(s,3:4).' +Lu(k)/2 +Mk(ps(s,2),k);

if Mk0>Mk1, Mk(s,k1)=Mk0; DM(s,k1)=Mk0-Mk1; pinput(s,k1)=0;
else Mk(s,k1)=Mk1; DM(s,k1)=Mk1-Mk0; pinput(s,k1)=1;

end
end

end
% Trace back from all-zero state or the most likely state for D1/D2
% to get input estimates uhat(k), and the most likely path (state) shat
if ind_dec==1, shat(lu1)=1; else [Max,shat(lu1)]=max(Mk(:,lu1)); end
for k=lu:-1:1
 uhat(k)=pinput(shat(k+1),k+1); shat(k)=ps(shat(k+1),uhat(k)+1);

end
% As the soft-output, find the minimum DM over a competing path
% with different information bit estimate.
for k=1:lu
 LLR = min(Infty,DM(shat(k+1),k+1));

for i=1:delta
if k+i<lu1

 u_=1-uhat(k+i); % the information bit
 tmp_state = ps(shat(k+i+1),u_+1);

for j=i-1:-1:0
 pu=pinput(tmp_state,k+j+1); tmp_state=ps(temp_state,pu+1);

end
if pu~=uhat(k), LLR = min(LLR,DM(shat(k+i+1),k+i+1)); end

end
end

 L_A(k) = (2*uhat(k)-1)*LLR; % Eq.(9.4.46)
end

9.4 Channel Coding 307

%turbo_code_demo.m
% simulates the classical turbo encoding-decoding system.
% 1st encoder is terminated with tails bits. (lm+M) bits are scrambled
% and passed to 2nd encoder, which is left open without termination.
clear
dec_alg = 1; % 0/1 for Log-MAP/SOVA
puncture = 1; % puncture or not
rate = 1/(3-puncture); % Code rate
lu = 1000; % Frame size
Nframes = 100; % Number of frames
Niter = 4; % Number of iterations
EbN0dBs = 2.6; %[1 2 3];
N_EbN0dBs = length(EbN0dBs);
G = [1 1 1; 1 0 1]; % Code generator
a = 1; % Fading amplitude; a=1 in AWGN channel
[N,L]=size(G); M=L-1; lm=lu-M; % Length of message bit sequence
for nENDB = 1:N_EbN0dBs
 EbN0 = 10^(EbN0dBs(nENDB)/10); % convert Eb/N0[dB] to normal number
 L_c = 4*a*EbN0*rate; % reliability value of the channel
 sigma = 1/sqrt(2*rate*EbN0); % standard deviation of AWGN noise
 noes(nENDB,:) = zeros(1,Niter);

for nframe = 1:Nframes
 m = round(rand(1,lm)); % information message bits
 [temp,map] = sort(rand(1,lu)); % random interleaver mapping
 x = encoderm(m,G,map,puncture); % encoder output [x(+1/-1)
 noise = sigma*randn(1,lu*(3-puncture));
 r = a.*x + noise; % received bits
 y = demultiplex(r,map,puncture); % input for decoder 1 and 2
 Ly = 0.5*L_c*y; % Scale the received bits

for iter = 1:Niter
% Decoder 1
if iter<2, Lu1=zeros(1,lu); % Initialize extrinsic information
else Lu1(map)=L_e2; % (deinterleaved) a priori information

end
if dec_alg==0, L_A1=logmap(Ly(1,:),G,Lu1,1); % all information
else L_A1=sova(Ly(1,:),G,Lu1,1); % all information

end
 L_e1= L_A1-2*Ly(1,1:2:2*lu)-Lu1; % Eq.(9.4.47)

% Decoder 2
 Lu2 = L_e1(map); % (interleaved) a priori information

if dec_alg==0, L_A2=logmap(Ly(2,:),G,Lu2,2); % all information
else L_A2=sova(Ly(2,:),G,Lu2,2); % all information

end
 L_e2= L_A2-2*Ly(2,1:2:2*lu)-Lu2; % Eq.(9.4.47)
 mhat(map)=(sign(L_A2)+1)/2; % Estimate the message bits
 noe(iter)=sum(mhat(1:lu-M)~=m); % Number of bit errors

end % End of iter loop
% Total number of bit errors for all iterations

 noes(nENDB,:) = noes(nENDB,:) + noe;
 ber(nENDB,:) = noes(nENDB,:)/nframe/(lu-M); % Bit error rate

 fprintf('\n');
for i=1:Niter, fprintf('%14.4e ', ber(nENDB,i)); end

end % End of nframe loop
end % End of nENDB loop

308 Chapter 9 Information and Coding

Now, it is time to take a look at the main program “turbo_code_demo.m”, which uses the routine
‘logmap()’ or ‘sova()’ (corresponding to the block named ‘Log-MAP or SOVA’ in Fig. 9.15(c)) as
well as the routines ‘encoderm()’ (corresponding to Fig. 9.15(a)), ‘rsc_encode()’, ‘demultiplex()’
(corresponding to Fig. 9.15(b)), and ‘trellis()’ to simulate the turbo coding system depicted in Fig.
9.15. All of the programs listed here in connection with turbo coding stem from the routines
developed by Yufei Wu in the MPRG (Mobile/Portable Radio Research Group) of Virginia Tech.
(Polytechnic Institute and State University). The following should be noted:

- One thing to note is that the extrinsic information eL to be presented to one decoder i by the
other decoder j should contain only the intrinsic information of decoder j that is obtained from
its own parity bits not available to decoder i . Accordingly, one decoder should remove the
information about sy (avaiable commonly to both decoders) and the priori information ()L u
(provided by the other decoder) from the overall information AL to produce the information that
will be presented to the other decoder. (Would your friend be glad if you gave his/her present
back to him/her or presented him/her what he/she had already got?) To prepare an equation for
this information processing job of each encoder, we extract only the terms affected by 1ku = ±
from Eqs. (9.4.44) and (9.4.42) (each providing the basis for the path metric (Eq. (9.4.45)) and
LLR (Eq. (9.4.38)), respectively,) to write

() () () ()
() ()

() 1 () 1 ()
2 2 2 21 1

si i i is s
k kk kc ck k c ki i

k k

L u L uu u u uL y L y L u L y
u u

+ − + = +
=+ =−

which conforms with Eq. (9.4.37) for the conditioned LLR | (|)L u yu y . To prepare the extrinsic
information for the other decoder, this information should be removed from the overall
information ()AL u produced by the the routine ‘logmap()’ or ‘sova()’ as

() () () s
e A c kL u L u L u L y= − − (9.4.47)

- Another thing to note is that as shown in Fig. 9.15(c), the basis for the final decision about u is
the deinterleaved overall information 2AL that is attributed to decoder 2. Accordingly, the turbo
decoder should know the pseudo-random sequence ‘map’ (that has been used for interleaving by
the transmitter) as well as the fading amplitude and SNR of the channel.

- The trellis structure and the output arguments produced by the routine ‘trellis()’ are illustrated in
Fig. 9.16.

Interest readers are invited to run the program “turbo_code_demo.m” with the value of the
control constant ‘dec_alg’ set to 0/1 for Log-MAP/SOVA decoding algorithm and see the BER
becoming lower as the decoding iteration proceeds. How do the turbo codes work? How are the
two decoding algorithms, Log-MAP and SOVA, compared? Is there any weakpoint of turbo
codes? What is the measure against the weakpoint, if any? Unfortunately, to answer such
questions is difficult for the authors and therefore, is beyond the scope of this book. As can be
seen from the simulation results, turbo codes have an excellent BER performance close to the
Shannon limit at low and medium SNRs. However, the decreasing rate of the BER curve of a
turbo code can be very low at high SNR depending on the interleaver and the free distance of the
code, which is called the ‘error floor’ phenomenon. Besides, turbo codes needs not only a large
interleaver and block size but also many iterations to achieve such a good BER performance,
which increases the complexity and latency (delay) of the decoder.

Problems 321

(d) Why don’t we make the code for the above set of four symbols as follows?

Symbol 00 01 10 11

Codeword 0 1 10 11

With this code, we could have the average codeword length as

L = 0.81× 1+0.09× 1+0.09× 2+0.01× 2 = 1.1[bits/symbol]

which is shorter than that with the code obtained in (a) or (b). To answer this question, think
about the decoding of a coded sequence {1011} based on the above table.

9.4 Channel Capacity and Hamming Codes
Recall that the MATLAB function ‘Hammgen(n)’ can be used to generate the n N× parity-check
matrix for an (,)N K Hamming code where n2 1N = − and nK N= − . Suppose the message
sequence is coded with the (7,4) or (15,11) Hamming code, BPSK(Binary Phase Keying)-
modulated, and then transmitted through a BSC (Binary Symmetric Channel).
(a) Compute the crossover (channel bit transmission error) probability of BPSK signaling with each

of these two codings for SNRdB 0~13= [dB] by

()(7.3.5)
r cQ SNR Rε = with (Code rate)c

KR
N

= (P9.4.1)

and substitute this into Eq. (9.3.13) to get the channel capacity

(9.3.13)
2 21 (1) log (1) log 1 ()t bC Hε ε ε ε ε= + − − + = − [bits/symbol] (P9.4.2)

Plot the channel capacity tC vs. SNRdB 0~13= and use the graph to find the rough value of
SNRdB at which the inequality (9.3.8) is marginally satisfied:

1
BPSK

b
c c tcb R b R C== = ≤ [bits/symbol] (P9.4.3)

(b) Referring to the lower part of the MATLAB routine ‘do_Hamming_code74()’ (Sec. 9.4.2), use
Eq. (9.4.11) to compute the theoretical (approximate) probabilities of message bit error for
SNRdB 0~13= [dB] with no code, (7,4) Hamming code, and (15,11) Hamming code and plot
them versus SNRdB. Use the theoretical BER curves to find the rough values of SNRdB at
which the two codings have the same BER as that with no coding.

(c) Modify the MATLAB routine ‘do_Hamming_code74()’ so that it can simulate the BPSK
signaling with (7,4) Hamming code and (15,11) Hamming code for SNRdB = 5, 7, 9, and
11[dB]. Run it to plot the BERs versus SNRdB on the theoretical BER curves obtained in (b).

 Table P9.4 BERs of BPSK signaling with (7,4) or (15,11) Hamming code
 SNRdB=5[dB] SNRdB=7[dB] SNRdB=9[dB] SNRdB=11[dB]

No code 0.037679 0.002413
(7,4) Hamming code 0.012422

(0.010996)
0.000118

(0.000080)
(15,11) Hamming code 0.060606

(0.038549)
0.001196

(0.000830)

322 Chapter 9 Information and Coding

9.5 Effect of Coding on BER
To understand why the BER of simulation result is much higher than the theoretical value of Eq.
(9.4.11) (Sec. 9.4.2), insert the following statements at the appropriate places in the MATLAB
routine ‘do_Hamming_code74()’ (Sec. 9.4.2).
notbe1= sum(r_sliced~=coded); notbec1= sum(r_c~=coded);
si= bin2deci(s); % syndrome
if notbe1>0 & iter<30
fprintf('\n # of transmitted bit errors %d -> ',notbe1);
fprintf('%d after correction (syndrome= %d)',notbec1,si);

end

Then run the routine with SNRbdB=5 to answer the following questions:
(i) Is a single bit error in a codeword always corrected?
(ii) Is there any case where the number of bit errors is increased by a wrong correction?
What do you think is the reason for the big gap between the two BERs that are obtained from
simulation and theoretical formula (9.4.11)?

9.6 BCH (Bose-Chaudhuri-Hocquenghem) Codes with Simulink
BCH codes constitute a powerful class of cyclic codes that provides a large selection of block
lengths, code rates, alphabet sizes, and error-correcting capability as listed in Table 5.2 of [S-3].
Accroding to the table, the =),(KN (15,7) and (31,16) BCH codes are represented by the generator
polynomial coefficient vectors

1 721(octal) [1 1 1 0 1 0 0 0 1]= =g (P9.6.1)

2 107657(octal) [1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1]= =g (P9.6.2)

and their error correcting capabilities are 2 and 3, rspectively. Suppose the message sequence is
coded with these two BCH codes, BPSK(binary phase-shift keying)-modulated, and then
transmitted through a BSC (binary symmetric channel).
(a) Let us try to make use of the MATLAB built-in function ‘bchgenpoly()’ to make the generator

polynomial vectors for the (31,16) BCH code:
N=31; K=16;
gBCH=bchgenpoly(N,K); % Galois row vector in GF(2) representing
 % the (N,K) BCH code
g=double(gBCH.x) % Extracting the elements from a Galois array

Does the resulting vector conform with 2g ?
(b) It may take a long time to use the MATLAB built-in routine ‘decode()’ with such a big BCH

code as 2g . If we prepare the syndrome table using ‘E=syndtable(H)’ beforehand and then use
‘decode(coded,N,K,‘cyclic’,g,E)’ with the prepared syndrome table E, it will save a lot of
decoding time. Likewise, if we prepare the error pattern matrix E and the corresponding error
pattern index vector epi using ‘cyclic_decoder0’ (Sec. 9.4.3) beforehand and then use
‘cyclic_decoder(coded,N,K,g,E,epi)’, it will save the decoding time, too. Complete the
following MATLAB program “do_cyclic_codes.m” so that it can simulate a BPSK
communication system with each of the above two BCH codes and plot the BERs for
SNRdBs1=[2 4 10] together with the throretical BER curves for SNRdBs=[0:0.01:14] obtained
from Eq. (9.4.11). Run the completed program to get the BER curves.

Problems 323

%do_cyclic_codes.m
clear, clf
gsymbols=['bo';'r+';'kx';'md';'g*'];
% Theoretical BER curves
SNRdBs=0:0.01:14; SNRs=10.^(SNRdBs/10); pemb_uncoded=Q(sqrt(SNRs));
semilogy(SNRdBs,pemb_uncoded,':'), hold on
use_decode = 0; % Use encode()/decode or not
MaxIter=1e5; Target_no_of_error=100; SNRdBs1=2:4:10;
for iter=1:2

if iter==1, N=15; K=7; nceb=2; %(15,7) BCH code generator
else N=31; K=16; nceb=3; % (31,16) BCH code generator

end
 gBCH=bchgenpoly(N,K); %Galois row vector representing (N,K) BCH code
 g=double(gBCH.x);

clear('S')
if use_decode>0, H=cyclgen(N,g); E=syndtable(?);
else

 E= combis(N,nceb); % All error patterns
for i=1:size(E,1)

 S(i,:) = cyclic_decoder0(E(i,:),N,K,g); % Syndrome
 epi(bin2deci(S(i,:))) = ?; % Error pattern indices

end
end

 Rc = K/N; %code rate
 SNRcs=SNRs*Rc; sqrtSNRcs=sqrt(SNRcs);
 ets=Q(sqrt(SNRcs)); % transmitted bit error probability Eq.(7.3.5)
 pemb_t=prob_err_msg_bit(ets,N,nceb);

semilogy(SNRdBs,pemb_t,gsymbols(iter,1),'Markersize',5)
for iter1=1:length(SNRdBs1)

 SNRdB = SNRdBs1(iter1); SNR = 10.^(SNRdB/10);
 SNRc = SNR*Rc; sqrtSNRc = sqrt(SNRc);
 et=Q(sqrt(SNRc)); % transmitted bit error probability Eq.(7.3.5)
 K100 = K*100;
 nombe = 0;

for iter2=1:MaxIter
 msg=randint(1,K100); % Message vector

if use_decode==0, coded=cyclic_???????(msg,N,K,g);
else msg=reshape(msg,length(msg)/K,K);

coded=??????(msg,N,K,'cyclic',g);
end

 r= 2*coded-1 + randn(size(coded))/sqrtSNRc; % Received vector
 r_sliced= 1*(r>0); % Sliced

if use_decode==0
decoded= cyclic_???????(r_sliced,N,K,g,E,epi);
else decoded= ??????(r_sliced,N,K,'cyclic',g,E);

end
 nombe= nombe + sum(sum(decoded~=msg));

if nombe>Target_no_of_error, break; end
end

 lm=iter2*K100; pemb=nombe/lm; % Message bit error probability
 semilogy(SNRdB,pemb,gsymbols(iter,:),'Markersize',5)

end
end

324 Chapter 9 Information and Coding

(c) Referring to the Simulink model “BCH_BPSK_sim.mdl” depicted in Fig. P9.6 and the
following program “do_BCH_BPSK_sim.m”, use Simulink to simulate a BPSK communication
system with the (31,16) BCH code for error correction and find the BERs for 0/bE N = -1, 3, and
7dB. Noting that SNRbdB=EbN0dB+3 since 0/(/ 2)b bSNR E N= , list the BERs together with
those obtained using ‘encode()’/‘decode()’ in (b).

%do_BCH_BPSK_sim.m
clear, clf
K=16; % Number of input bits to the BCH encoder (message length)
N=31; % Number of output bits from the BCH encoder (codeword length)
Rc=K/N; % Code rate to be multiplied with the SNR in AWGN channel block
b=1; M=2^b; % Number of bits per symbol and modulation order
T=0.001/K; Ts=b*T; % Sample time and Symbol time
SNRbdBs=[2:4:10]; EbN0dBs=SNRbdBs-3;
EbN0dBs_t=0:0.1:10; EbN0s_t=10.^(EbN0dBs_t/10);
SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'PSK',b,'BER');
for i=1:length(EbN0dBs)
 EbN0dB=EbN0dBs(i);
 sim('BCH_BPSK_sim');
 BERs(i)=BER(1); % just ber among {ber, # of errors, total # of bits}
 fprintf(' With EbN0dB=%4.1f, BER=%10.4e=%d/%d\n', EbN0dB,BER);
end
semilogy(EbN0dBs,BERs,'r*', EbN0dBs_t,BER_theory,'b')
xlabel('Eb/N0[dB]'); ylabel('BER');
title('BER of BCH code with BPSK');

Problems 325

%dc09p07.m
% To practice using convenc() and vitdec() for channel coding
clear, clf
Gc=[4 5 11;1 4 2]; % Octal code generator matrix
K=size(Gc,1); % Number of encoder input bits
% Constraint length vector
Gc_m=max(Gc.');
for i=1:length(Gc_m), Lc(i)=length(deci2bin1(oct2dec(Gc_m(i)))); end
trel=poly2trellis(Lc,Gc);
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
lm=1e5; msg=randint(1,lm);
transmission_ber=0.02;
notbe=round(transmission_ber*lm); % Number of transmitted bit errors
ch_input=convenc([msg zeros(1,delay)],trel);
% Received/modulated/detected signal
ch_output= rem(randerr(1,length(ch_input),notbe)+ch_input,2);
decoded_trunc= vitdec(ch_output,trel,Tbdepth,'trunc','hard');
ber_trunc= sum(msg~=decoded_trunc(????))/lm;
decoded_cont= vitdec(ch_output,trel,Tbdepth,'cont','hard');
ber_cont=sum(msg~=decoded_cont(????????????))/lm;
% It is indispensable to use the delay for the decoding result
% obtained using vitdec(,,,'cont',)
nn=[0:100-1];
subplot(221), stem(nn,msg(nn+1)), title('Message sequence')
subplot(223), stem(nn,decoded_cont(nn+1)), hold on
stem(delay,0,'rx')
decoded_term= vitdec(ch_output,trel,Tbdepth,'term','hard');
ber_term=sum(msg~=decoded_term(????))/lm;
fprintf('\n BER_trunc BER_cont BER_term')
fprintf('\n %9.2e %9.2e %9.2e\n', ber_trunc,ber_cont,ber_term)

326 Chapter 9 Information and Coding

9.7 A Convolutional Code and Viterbi Decoding
Fig. P9.7 shows a convolutional encoder (described by two kinds of schematic) and the two
corresponding generator matrices where one is a binary generator matrix that is used by the
‘conv_encoder()’/‘conv_decoder()’ and the other is an octal generator matrix that is used by the
MATLAB built-in functions ‘convenc()’/‘vitdec()’. Let the convolutional encoder and the
corresponding Viterbi decoder be used for channel coding where there happens a 2%-error in the
100,000 transmitted bits. Complete the above program “dc09p07.m” to simulate this situation and
run it to find the BER.

9.8 A Convolutional Code and Viterbi Decoding with Simulink
Fig. P9.8.1 shows a convolutional encoder described by the octal code generator matrix

[133 171]cG = . Fig. P9.8.2 shows the Simulink model “Viterbi_QAM_sim.mdl” that can be used to
simulate a QAM communication with a given convolutional encoder and the corresponding Viterbi
decoder. The following MATLAB function ‘Viterbi_QAM()’ can also be used to simulate a QAM
communication with a given convolutional encoder and the corresponding Viterbi decoder.
Complete the following MATLAB program “do_Viterbi_QAM”, which uses the MATLAB
function ‘Viterbi_QAM()’ and the Simulink model “Viterbi_QAM_sim.mdl” to simulate a 16-
QAM communication system with the convolutional encoder of Fig. P9.8.1 and the corresponding
Viterbi decoder. Run it to find the BERs for EbN0=3, 6, and 9dB.

 EbN0dB=3[dB] EbN0dB=6[dB] EbN0dB=9[dB]
MATLAB ‘Viterbi_QAM.m’ 0.006684

Simulink ‘Viterbi_QAM_sim.mdl’ 0.466403 0.000079

function [pemb,nombe,notmb]=Viterbi_QAM(Gc,b,SNRbdB,MaxIter)
if nargin<4, MaxIter=1e5; end
if nargin<3, SNRbdB=5; end
if nargin<2, b=4; end
[K,N]=size(Gc); Rc=K/N; Gc_m=max(Gc.');
% Constraint length vector
for i=1:length(Gc_m), Lc(i)=length(deci2bin1(oct2dec(Gc_m(i)))); end
Nf=144; % Number of bits per frame
Nmod=Nf*N/K/b; % Number of QAM symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc; sqrtSNRbc=sqrt(SNRbc);
sqrtSNRc=sqrt(2*b*SNRbc); % Complex noise for b-bit (coded) symbol
trel=poly2trellis(Lc,Gc);
Tbdepth=5; delay=Tbdepth*K;
nombe=0; Target_no_of_error=100;
for iter=1:MaxIter
 msg=randint(1,Nf); % Message vector
 coded= convenc(msg,trel); % Convolutional encoding
 modulated= QAM(coded,b); % 2^b-QAM-Modulation
 r= modulated +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc;
 demodulated= QAM_dem(r,b); % 2^b-QAM-Demodulation
 decoded= vitdec(demodulated,trel,Tbdepth,'trunc','hard');
 nombe = nombe + sum(msg~=decoded(1:Nf)); %

if nombe>Target_no_of_error, break; end
end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability

Problems 327

328 Chapter 9 Information and Coding

%do_Viterbi_QAM.m
clear, clf
Nf=144; Tf=0.001; Tb=Tf/Nf; % Frame size, Frame and Sample/Bit time
Gc=[133 171];
[K,N]=size(Gc); Rc=K/N; % Message/Codeword length and Code rate
% Constraint length vector
Gc_m=max(Gc.');
for i=1:length(Gc_m)

Lc(i)=length(deci2bin1(oct2dec(Gc_m(i))));
end
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
b=4; M=2^b; % Number of bits per symbol and Modulation order
Ts=b*Rc*Tb; % Symbol time
N_factor=sqrt(2*(M-1)/3); % Eq.(7.5.4a)
EbN0dBs_t=0:0.1:10; SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'QAM',b,'BER');
EbN0dBs=[3 6]; Target_no_of_error=50;
for i=1:length(EbN0dBs)
 EbN0dB=EbN0dBs(i); SNRbdB=EbN0dB+3;
 randn('state', 0);
 [pemb,nombe,notmb]=???????_QAM(Gc,b,SNRbdB,Target_no_of_error);

pembs(i)=pemb;
 sim('Viterbi_QAM_sim'); pembs_sim(i)=BER(1);
end
[pembs; pembs_sim]
semilogy(EbN0dBs,pembs,'r*', EbN0dBs_t,BER_theory,'b')
xlabel('Eb/N0[dB]'); ylabel('BER');

function qamseq=QAM(bitseq,b)
bpsym = nextpow2(max(bitseq)); % no of bits per symbol
if bpsym>0, bitseq = deci2bin(bitseq,bpsym); end
if b==1, qamseq=bitseq*2-1; return; end % BPSK modulation
% 2^b-QAM modulation
N0=length(bitseq); N=ceil(N0/b);
bitseq=bitseq(:).'; bitseq=[bitseq zeros(1,N*b-N0)];
b1=ceil(b/2); b2=b-b1; b21=b^2; b12=2^b1; b22=2^b2;
g_code1=2*gray_code(b1)-b12+1; g_code2=2*gray_code(b2)-b22+1;
tmp1=sum([1:2:2^b1-1].^2)*b21; tmp2=sum([1:2:b22-1].^2)*b12;
M=2^b; Kmod=sqrt(2*(M-1)/3);
%Kmod=sqrt((tmp1+tmp2)/2/(2^b/4)) % Normalization factor
qamseq=[];
for i=0:N-1
 bi=b*i; i_real=bin2deci(bitseq(bi+[1:b1]))+1;
 i_imag=bin2deci(bitseq(bi+[b1+1:b]))+1;
 qamseq=[qamseq (g_code1(i_real)+j*g_code2(i_imag))/Kmod];
end
function [g_code,b_code]=gray_code(b)
N=2^b; g_code=0:N-1;
if b>1, g_code=gray_code0(g_code); end
b_code=deci2bin(g_code);

function g_code=gray_code0(g_code)
N=length(g_code); N2=N/2;
if N>=4, N2=N/2; g_code(N2+1:N)=fftshift(g_code(N2+1:N)); end
if N>4, g_code=[gray_code0(g_code(1:N2))
gray_code0(g_code(N2+1:N))]; end

Problems 329

function bitseq=QAM_dem(qamseq,b,bpsym)
%BPSK demodulation
if b==1, bitseq=(qamseq>=0); return; end
%2^b-QAM demodulation
N=length(qamseq);
b1=ceil(b/2); b2=b-b1;
g_code1=2*gray_code(b1)-2^b1+1; g_code2=2*gray_code(b2)-2^b2+1;
tmp1=sum([1:2:2^b1-1].^2)*2^b2;
tmp2=sum([1:2:2^b2-1].^2)*2^b1;
Kmod=sqrt((tmp1+tmp2)/2/(2^b/4)); % Normalization factor
g_code1=g_code1/Kmod; g_code2=g_code2/Kmod;
bitseq=[];
for i=1:N
 [emin1,i1]=min(abs(real(qamseq(i))-g_code1));
 [emin2,i2]=min(abs(imag(qamseq(i))-g_code2));
 bitseq=[bitseq deci2bin1(i1-1,b1) deci2bin1(i2-1,b2)];
end
if (nargin>2)
 N = length(bitseq)/bpsym; bitmatrix = reshape(bitseq,bpsym,N).';

for i=1:N, intseq(i)=bin2deci(bitmatrix(i,:)); end
 bitseq = intseq;
end

9.9 Ungerboeck TCM (Trellis-Coded Modulation) Codes
Figs. P9.9.1(a) and (b) show two Ungerboeck TCM encoders and Fig. P9.9.2 shows a Simulink
model “TCM_sim.mdl” that simulates the TCM encoding-decoding with the TCM encoder of Fig.
P9.9.1.

function [pemb,nombe,notmb]=...
TCM(state_eq,K,Nsb,N,Constellation,SNRbdB,Target_no_of_error)

M=2^N; Rc=K/N;
Nf=288; % Number of bits per frame
Nmod=Nf/K; % Number of symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc;
sqrtSNRc=sqrt(2*N*SNRbc); % Complex noise per K=Rc*N-bit symbol
nombe=0; MaxIter=1e6;
for iter=1:MaxIter

msg=randint(1,Nf); % Message vector
coded = TCM_encoder(state_eq,K,Nsb,N,msg,Constellation);
r= coded +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc;
decoded= TCM_decoder(state_eq,K,Nsb,r,Constellation);
nombe = nombe + sum(msg~=decoded(1:Nf));
if nombe>Target_no_of_error, break; end

end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability

function [s1,x]=TCM_state_eq1(s,u,Constellation)
% State equation for the TCM encoder in Fig. P9.9.1(a)
% Input: s= State, u= Input
% Output: s1= Next state, x= Output
s1 = [u(2) s(1)];
x= Constellation(bin2deci([u(1) rem(u(2)+s(2),2) s(1)])+1);

330 Chapter 9 Information and Coding

(a) Run the following program “do_TCM_8PSK.m” to use the above MATLAB routine “TCM()”
and the Simulink model “TCM_sim.mdl” for finding the BERs of the TCM system with the
encoder-modulator of Fig. P9.9.1(a) where the SNR is given as 0/ 2[dB]bE N = . Set the 8PSK
constellation for “TCM_sim.mdl” to 1C or 3C (Gray code).

1

2

3

2exp , 0,1,2,3,4,5,6,7
8

2exp , 0,4,2,6,1,5,3,7
8

2exp , 0, 1,3,2,6,7,5,4
8

kC j k

kC j k

kC j k

π

π

π

= =

= =

= =

 (P9.9.1)

What difference will be made to the BER? Set the 8PSK constellation for “TCM.m” to 2C or
3C . What difference will be made to the BER? Fill in the following table.

Problems 331

Table P9.9 BER of TCM systems

0/bE N
BER

QPSK - no code
(Theoretical)

TCM-8PSK
(Fig. P9.9.1(a))

TCM-8PSK
(Fig. P9.9.1(b))

2dB 0.038

TCM with 1C
TCM1 with 1C
TCM with 2C
TCM1 with 2C
TCM with 3C
TCM1 with 3C

0.0018

0.059

0.018

0.0020

0.016

0.015
Simulink with 2C
Simulink with 1C
Simulink with 3C

0.020

0.064
0.049

(b) Modify the program “do_TCM_8PSK.m” and make a routine “TCM_state_eq2()” so that the
TCM system with the encoder of Fig. P9.9.1(b) can be simulated. Run the modified program
“do_TCM_8PSK.m” to find the BERs for 0/ 2[dB]bE N = and fill in the corresponding blanks
of Table P9.9.

%do_TCM_8PSK.m
clear
Nf=144; Tf=0.001; Tb=Tf/Nf; % Frame size, Frame and Sample/Bit times
Gc=[1 0 0; 0 5 2]; state_eq='TCM_state_eq1'; Ns=2; % Fig. P9.9.1(a)
%Gc=[1 2 0; 4 1 2]; state_eq='TCM_state_eq2'; Ns=3; % Fig. P9.9.1(b)
[K,N]=size(Gc); Rc=K/N; % Message/Codeword length and Code rate
% Constellation for TCM Simuklink block
Constellation2=exp(j*2*pi/8*[0 4 2 6 1 5 3 7]);
% Constellation good for TCM() MATLAB function
Constellation1=exp(j*2*pi/8*[0:7]);
% Constraint length vector
Gc_m=max(Gc.');
for i=1:length(Gc_m), Lc(i)=length(deci2bin(oct2dec(Gc_m(i)))); end
%trel=poly2trellis(Lc,Gc);
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
Ts=K*Tb; % or N*Rc*Tb % Symbol time
EbN0dBs_t=0:0.1:10; SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'PSK',K,'BER');
EbN0dBs=2; %[3 6];
Target_no_of_error=50;
for i=1:length(EbN0dBs)

EbN0dB=EbN0dBs(i); SNRbdB=EbN0dB+3;
 pemb=TCM(state_eq,K,Ns,N,Constellation1,SNRbdB,Target_no_of_error);
pembs_TCM8PSK(i)=pemb
sim('TCM_sim'); pembs_TCM8PSK_sim(i)=BER(1);

end
figure(1), clf
semilogy(EbN0dBs_t,BER_theory,'b'), hold on
semilogy(EbN0dBs,pembs_TCM8PSK_sim,'r*', EbN0dBs,pembs_TCM8PSK,'m*')

332 Chapter 9 Information and Coding

(c) For the TCM encoder with no input bit inserted into between the flip-flops (registers), the
routines ‘TCM()’, ‘TCM_encoder(), and ‘TCM_decoder()’ can be modified as ‘TCM1()’,
‘TCM_encoder1(), and ‘TCM_decoder1()’ (listed below) so that they can accommodate any
(convolutional) encoder using the (octal) code generator instead of a function representing the
state equation for the TCM encoder. Run the program “do_TCM_8PSK.m” with ‘TCM()’
replaced by ‘TCM1()’ and check if the routines work properly. Fill in the corresponding blanks
of Table P9.9.

(d) With reference to the set partitioning shown in Fig. 9.14 (Sec. 9.4.5), why do you think the BER
is affected by different constellations? Why is the TCM system of Fig. P9.9.1(b) less affected
by different constellations than that of Fig. P9.9.1(a)?

function [outputs,state]=TCM_encoder1(Gc,input,state,Constellation)
% generates the output sequence of a binary TCM encoder
% Input: Gc = Code generator matrix consisting of octal numbers
% K = Number of input bits entering the encoder
% Nsb = Number of state bits of the TCM encoder
% N = Number of output bits of the TCM encoder
% input = Binary input message sequence
% state = State of the TCM encoder
% Constellation = Signal sets for signal mapper
% Output: output = a sequence of signal points on Contellation
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
[K,N]=size(Gc);
for k=1:K, nsb(k)=length(de2bi(oct2dec(max(Gc(k,:)))))-1; end
Nsb=sum(nsb);
tmp= rem(length(input),K);
input= [input zeros(1,(K-tmp)*(tmp>0))];
if nargin<3, state=zeros(1,Nsb);
elseif length(state)==2^N

 Constellation=state; state=zeros(1,Nsb);
end
input_length= length(input);
N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol).';
outputs= [];
for l=1:N_msgsymbol
 ub= input1(l,:);
 is=1; nstate=[];
 output=zeros(1,N);

for k=1:K
 tmp = [ub(k) state(is:is+nsb(k)-1)];
 nstate = [nstate tmp(1:nsb(k))]; is=is+nsb(k);

for i=1:N
 output(i) = output(i) + ...

deci2bin1(oct2dec(Gc(k,i)),nsb(k)+1)*tmp';
end

end
 state = nstate;

output = Constellation(bin2deci(rem(output,2))+1);
 outputs = [outputs output];
end

Problems 333

function decoded_seq=TCM_decoder1(Gc,demod,Constellation,opmode)
% performs the Viterbi algorithm on the PSK demodulated signal
% Inpit: state_eq = External function for state equation saved
% in an M-file
% K = Number of input bits entering encoder at each cycle.
% Nsb = Number of state bits of TCM encoder
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
[K,N]=size(Gc);
for k=1:K, nsb(k)=length(de2bi(oct2dec(max(Gc(k,:)))))-1; end
Nsb=sum(nsb);
N_states=2^Nsb;
N_msgsymbol=length(demod);
for m=1:N_states

for n=1:N_msgsymbol+1
 states(m,n)=0; % inactive in the trellis diagram
 p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
 y=demod(n); %received sequence
 n1=n+1;
for m=1:N_states

if states(m,n)==1 %active
 xb=deci2bin1(m-1,Nsb);

for m0=1:K2
 u=deci2bin1(m0-1,K);
 is=1; nstate=[]; output=zeros(1,N);

for k=1:K
 tmp = [u(k) xb(is:is+nsb(k)-1)];
 nstate = [nstate tmp(1:nsb(k))]; is=is+nsb(k);

for i=1:N
 output(i) = output(i) +

deci2bin1(oct2dec(Gc(k,i)),nsb(k)+1)*tmp';
end

end
 nxb(m0,:) = nstate;

yb(m0) = Constellation(bin2deci(rem(output,2))+1);
nxm0=bin2deci(nxb(m0,:))+1;
states(nxm0,n1)=1;

 difference=y-yb(m0);
 d(m0)=cost(m,n)+difference*conj(difference);

if p_state(nxm0,n1)==0
 cost(nxm0,n1)=d(m0);
 p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1;

else
 [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);

if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end
end

end
end

end
end

334 Chapter 9 Information and Coding

decoded_seq=[];
if nargin<4 | ~strncmp(opmode,'term',4)

% trace back from the best-metric state (default)
[min_cost,m]=min(cost(:,n1));
else m=1; %trace back from the all-0 state

end
for n=n1:-1:2
 decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
 m=p_state(m,n);
end

function [pemb,nombe,notmb]=
TCM1(Gc,Constellation,SNRbdB,Target_no_of_error)

if nargin<4, Target_no_of_error=50; end
[K,N]=size(Gc); M=2^N; Rc=K/N;
Nf=288; % Number of bits per frame
Nmod=Nf/K; % Number of symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc;
sqrtSNRc=sqrt(2*N*SNRbc); % Complex noise per K=Rc*N-bit symbol
nombe=0; MaxIter=1e6;
for iter=1:MaxIter

msg=randint(1,Nf); % Message vector
coded = TCM_encoder1(Gc,msg,Constellation); % TCM encoding
r= coded +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc;
decoded= TCM_decoder1(Gc,r,Constellation);
nombe = nombe + sum(msg~=decoded(1:Nf)); %
if nombe>Target_no_of_error, break; end

end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability

9.10 DSTBC (Differential Space-Time Block Coding) with Four Transmit Antennas
The DSTBC with two transmit antennas (Sec. 9.4.8) can be extended into the DSTBC with four
transmit antennas as follows:

The transmission matrix for sending 0 1 2 3 0 3 1 3 2 3 3 1 3 2[]n n nx x x x x x x x x+ + + + + to the receiver
is constructed as

4(1) 4 3n n nXS S+ = with 4 40S I ×= (P9.10.1)
where

Time
* * *

3 3 1 3 2 3 2
* * *

3 1 3 3 2 3 2
Space3

3 2 3 2 3 , 3 1, 3 1, 3 ,

3 2 3 2 3 1, 3 , 3 , 3 1,

/ 2 / 2
/ 2 / 2 1

/ 2 / 2 3
/ 2 / 2

n n n n

n n n n
n

n n n R n I n R n I

n n n R n I n R n I

x x x x
x x x x

X
x x x jx x jx
x x x jx x jx

+ + +

+ + +

+ + + +

+ + + +

=

→
−

−
− + − +

− + − −

↓ (P9.10.2)

Each row of this transmission matrix is transmitted through each antenna and each column is sent
during each one of four consecutive periods. Then the signal received through a noise-free channel
having frequency response 1 2 3 4[]h h h h=h can be described as

(P9.10.1)
4(1) 4(1) 1 4(1) 2 4(1) 34(1) 4(1) 4 4 4 4n n n nn n n n n nr r r r S S X XR R+ + + + + + ++ += = = =h h (P9.10.3)

Problems 335

The receiver uses the following decoding rule[W-10] to estimate the message sequence { nx }:

3
3 13 2 2 2 2

4 4 1 4 2 4 33 2

ˆ
ˆ ˆ

| | | | | | | |ˆ
3n

nn
n n n nn

x
x

r r r rx
+

+ + ++

=
+

=
+ +

x (P9.10.4)

()* * * * * *
4 4(1) 4 1 4(1) 1 4 2 4 3 4(1) 2 4(1) 3 4 2 4 3 4(1) 2 4(1) 3
* * * * *
4 1 4(1) 4 4(1) 1 4 2 4 3 4(1) 2 4(1) 3 4 2 4 3 4(1) 2 4(

()() ()() / 2
()() ()(

n n n n n n n n n n n n

n n n n n n n n n n n n

r r r r r r r r r r r r
r r r r r r r r r r r r

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + − − + − + +
− + − + + + − +× ()

()
*

1) 3
* * * *
4 2 4(1) 4(1) 1 4 3 4(1) 4(1) 1 4 4 1 4(1) 2 4 4 1 4(1) 3

) / 2
() () () () / 2n n n n n n n n n n n nr r r r r r r r r r r r

+ +

+ + + + + + + + + + + + + ++ + − + + + −

Complete the following program “test_DSTBC_H4_PSK.m” and run it to see if this scheme works.

%test_DSTBC_H4_PSK.m
clear, clf
ITR=10; MaxIter=100;
sq2= sqrt(2); sq3= sqrt(3); sq6=sqrt(6);
M=4; phs= 2*pi*[0:M-1]/M; MPSKs= exp(j*phs); % 4-PSK symbols
h=[0.95*exp(j*0.5) exp(-j*0.4) 1.02*exp(-j*0.2) 0.98*exp(j*0.1)]; % Channel
dh= 0.01*[exp(-j*0.1) -exp(j*0.2) exp(j*0.1) -exp(-j*0.2)]; % Channel variation
Amp_noise = 0.2; % Amplitude of additive Gaussian noise
ner=0;
for itr1=1:ITR

S= eye(4); % S0=I;
r= h*S + Amp_noise*[randn(1,4)+j*randn(1,4)]; % Eq.(P9.10.3)
x=[]; xh=[]; % Initialize the sequence of transmitted signal
nn=[-3:0];
for n=1:MaxIter
 nn= nn+4;
 xn= MPSKs(randint(1,3,M)+1); % +-1+-j

x= [x xn]; % Sequence of transmitted symbols
 x1=xn(1)/sq3; x2=xn(2)/sq3; x3=xn(3)/sq6; x3c=x3';
 x1R=real(x1); x1I=imag(x1); x2R=real(x2); x2I=imag(x2);
 X=[x1 -x2' x3c x3c; x2 x1' x3c -x3c;
 x3 x3 -x1R+j*x2I x2R+j*x1I; x3 -x3 -x2R+j*x1I -x1R-j*x2I]; %Eq.(P9.10.2)
 S = S*X; % Encoded signal Eq.(P9.10.1)
 r0=r; % Previously received signal
 rs = (h+dh*n)*S; % Received signal Eq.(P9.10.3)
 noise = Amp_noise*[randn(1,4)+j*randn(1,4)]; % Noise components
 r = rs + noise; % Received signal
 r034_=(r0(?)-r0(?))'; r034_r3=r034_*r(3); r034_r4=r034_*r(4);
 r034 = r0(?)+r0(?); r034r3=r034*r(3)'; r034r4=r034*r(4)';
 xhn1= r0(?)'*r(?)+r0(2)*r(2)'+(-r034_r3+r034_r4-r034r3-r034r4)/2;
 xhn2= r0(2)'*r(?)-r0(?)*r(2)'+(r034_r3+r034_r4-r034r3+r034r4)/2;
 xhn3= (r0(3)'*(r(?)+r(2))+r0(4)'*(r(?)-r(2))...

+(r0(?)+r0(2))*r(3)'+(r0(?)-r0(2))*r(4)')/sq2;
 xhns= [xhn1 xhn2 xhn3]*(sq3/(r0*r0')); % Decoded signal Eq.(P9.10.4)
 xhn= PSK_slicer(xhns,M);
 xh= [xh xhn];
end
ner= ner + sum(abs(x-xh)>0.1);

end
SER = ner/(MaxIter*3*ITR) % Symbol error rate

362 Chapter 11 OFDM System

- Accordingly, we can use the complex convolution or modulation property (1.4.11) of CTFT to find
the spectrum of a sinusoidal pulse () cos()D kr t tω of frequency 2 /k Bk Tω π= and duration BD T= as

(11.2.1),(11.2.2)

(1.4.11)

sin(/ 2)1() cos() { () ()}
2 / 2

B
BD k k k

B

Tr t t T
T
ωω π δ ω ω δ ω ω

π ω
→ − + + ∗

{ }sin(() / 2) sin(() / 2) sinc(()) sinc(()) ,
2 2() / 2 () / 2
B Bk B k B

k B k B k
Bk B k B

T T kT T f f T f f T f
TT T

ω ω ω ω
ω ω ω ω

− += + = − + + =
− +

(11.2.3)

Fig. 11.3(b) based on these facts shows that the bandwidth of an N -subcarrier DFT-based
OFDM signal is (1) / BN T+ [Hz] where N is the DFT size. If each carrier is loaded with b bits of
data, the data transmission bit rate is

gB

N b
T T+

[bits/s](BT : block interval, gT : guard interval , i.e., cyclic prefix duration) (11.2.4)

so that the bandwidth efficiency is

/()
(1) / 1

gB B

gB B

N b T T TN b
N T N T T

+
=

+ + +
[bits/s/Hz] (11.2.5)

which becomes closer to the bandwidth efficiency b of the single-carrier communication as the
number N of OFDM subcarriers increases and the guard interval gT gets shorter.

11.3 CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION

This topic was discussed in Chapter 8. To address the issue of carrier recovery and symbol timing
on OFDM systems, let us begin with observing the effects of STO (symbol time offset) and CFO
(carrier frequency offset). With this objective, we modify the MATLAB program “do_OFDM0.m”
(in Section 11.1) by increasing the value of SNRbdB (in the 19th line) to 20 and activating the 11th

line so that the STO amounting to one sample time is introduced. Running the modified program
will yield a received signal constellation diagram like Fig. 11.4(a) and a much worse BER than that
with neither STO nor CFO. Also, to take a look at the effect of CFO, activate the 14th line from the
bottom (with the 11th line inactivated and SNRbdB=20) so that the CFO of 0.1 is introduced. This
will yield a received signal constellation diagram like Fig. 11.4(b) and a worse BER. These effects
of STO and CFO, called the ISI (inter-symbol interference) and ICI (inter-carrier interference), on
the received signal can be observed and analyzed through the following expression of a time-
domain received OFDM symbol:

1() () 2 ()() /
0

1[] Nl l j k n N
k kky n G X e noise

N
π ε δ− + +

== + (11.3.1)

where ()[]ly n denotes a (time-domain) received sequence for the l th OFDM symbol, kG the
channel frequency response (at the k th frequency index), ()l

kX the l th (frequency-domain)
transmitted OFDM symbol, ε the CFO, δ the STO, and N the DFT size.

11.3 Carrier Recovery and Symbol Synchronization 363

364 Chapter 11 OFDM System

function [short_preamble,Xs]=short_train_seq(Nfft)
if nargin<1, Nfft=64; end
sqrt136 = sqrt(13/6)*(1+i); Xs=zeros(1,53);
Xs([3 11 23 39 43 47 51]) = sqrt136; % Frequency domain for k=-26:26
Xs([7 15 19 31 35]) = -sqrt136;
xs = ifft([Xs(27:53) zeros(1,11) Xs(1:26)]); % Time domain
short_preamble = [xs xs xs(1:Nfft/2)];

function [long_preamble,Xl]=long_train_seq(Nfft)
if nargin<1, Nfft=64; end
Xl([1:26 28:53]) = 1; % Frequency domain for k=-26:26
Xl([3 4 7 9 16 17 20 22 29 30 33 35 37:41 44 45 47 49])=-1;
xl = ifft([Xl(27:53) zeros(1,11) Xl(1:26)]); % Time domain
long_preamble= [xl(Nfft/2+1:Nfft) xl xl];

11.3 Carrier Recovery and Symbol Synchronization 365

function phase_estimate=phase_from_pilot(outofFFT,pm)
% To estimate the phase offset based on the received pilot symbol
% outofFFT: OFDM symbol obtained from FFT at the RCVR
% pm : the sign of pilot signals for each OFDM symbol
% determined by the PN sequence
phase_estimate = angle(outofFFT([8 22 44 58])*[pm;-pm;pm;pm]);

function y=compensate_phase(x,phase)
% To compensate the received OFDM symbol x by phase deviation
y = x*exp(-j*phase);

Many carrier recovery schemes to overcome the carrier phase distortion and frequency offset and
many symbol synchronization schemes to overcome the STO effect are implemented with the
correlator, PLL, narrow-band filter, and/or tuner using the pilot symbol, phase reference symbol,
training symbol (called a preamble), cyclic prefix (CP), and/or null symbol. For example, Fig.
11.5(a) shows the structure of the short and long OFDM training symbols (preambles) that is used
in the IEEE Standard 802.11a[W-8, Sec. 17.3.3] where the short preamble consists of 10 repetitions
of a (16-sample) ‘short training sequence’ and the long one consists of 2.5 repetitions of a (64-
sample) ‘long training sequence’. The above MATLAB routines ‘short_train_seq()’ and
‘long_train_seq()’ can be used to generate the short and long preambles in the time/frequency
domain, respectively. Figs. 11.5(b1) and (b2) show the real parts of the short and long preambles
that have been generated using each of the two routines, respectively. Figs. 11.6(a) and (b) show the
frequency-domain short and long preambles, respectively, from which it can be seen that the energy
of the frequency-domain long preamble ()lX k is 52 and the frequency-domain short preamble

()sX k has nonzero values of 13/ 6(1)j+ only for 12 subcarriers so that its energy is also
212 (13/ 6 |1 |) 52j× + = . On the other hand, Fig. 11.6(c) shows that the pilot symbols (in the IEEE

Standard 802.11a) are inserted in the {8th, 22th, 44th, 58th} subcarriers (each corresponding to
frequency indices {7, 21, 21, 7}k = − − , respectively,) of OFDM symbols. The above routines
‘phase_from_pilot()’ and ‘compensate_phase()’ estimate the phase offset based on the received
pilot symbols and compensate the phase of the received signal by the phase estimate, respectively.

Not only the phase compensation but also the CFO (carrier frequency offset) compensation is
needed for successful carrier recovery. In the IEEE Standard 802.11a, the fixed-lag correlation of
the short training sequence is used for the coarse estimation of CFO and the fixed-lag correlation of
the long training sequence is used for the fine estimation of CFO as follows:

Coarse CFO estimate: { }*
1ˆ [] []

2
gN

gc s sng

N x n N x n
N

ε
π == ∠ + (11.3.2a)

Fine CFO estimate: { }*
1

1ˆ [] []
2

N
f l ln x n N x nε

π == ∠ + (11.3.2b)

where sx is the (time-domain) short preamble, lx the (time-domain) long preamble, N the FFT
size and also the period of lx , and gN the length of the guard interval or cyclic prefix and also the
period of sx . Note that the estimable CFO ranges of the coarse and fine CFO estimations are

64[,] [,] [2, 2]
2 2 16g

N
N

π π π π
π π

− + = − + = − +
×

 and 1 [,] [0.5, 0.5]
2

π π
π

− + = − + (11.3.3)

respectively, where the latter estimate can be represented with less error by the same number of
bits.

366 Chapter 11 OFDM System

A question about the phase estimator (11.3.2) may arise in your mind. How can the information
about the frequency offset be extracted from the time-domain correlation of the signal? To find the
answer to this question, let us use Eq. (11.1.3) to write the values of, say, the short preamble []sx n
at two points apart from each other by 16gN = samples as

() 16 111.1.3 2 (4) / 64
0with CFO of

1[] (4) j m n
s sm

x n X m e
N

π ε

ε

− +
=

=

and
() 16 111.1.3 2 (4)(16) / 64

0with CFO of

1[16] (4) j m n
s sm

x n X m e
N

π ε

ε

− + +
=

+ = (11.3.4)

where we have taken into consideration that the spectrum ()sX k of the short preamble []sx n has
nonzero values only for 4k m= (see Fig. 11.6(a)). Multiplying one with the other’s conjugate yields

16 1 16 12 (4)(16) / 64 * 2 (4) / 64*
0 0

1 1[16] [] (4) (4)j m n j i n
s s s sm i

x n x n X m e X i e
N N

π ε π ε− −+ + − +
= =

+ =

 (The cross multiplication terms for m i≠ disappears due to their orthogonality.)
16 1 * 2 (4)(16) / 64 2 (4) / 64

2 0

1 (4) (4) j m n j m n
s sm

X m X m e
N

π ε π ε− + + − +
=

=

2 (4)16/ 64
2

16 13 13(1)(1) (2)
12 64 2 26

j mj j e m K
N

π ε π ππ ε ε+×
= + − = ∠ + = ∠

×
 (11.3.5)

which presents the basis of the coarse CFO estimator Eq. (11.3.2a). Similarly, the correlation of the
long preamble yields

1 12 ()() / * 2 () /*
0 0

1 1[] [] () ()
N Nj m n N N j i n N

l l l sm i
x n N x n X m e X i e

N N
π ε π ε− −+ + − +

= =
+ =

(The cross multiplication terms for m i≠ disappears due to their orthogonality.)
1 * 2 ()() / 2 () /

2 0

1 () ()
N j m n N N j m n N

l lm
X m X m e

N
π ε π ε− + + − +

=
=

2 ()1 1 1(2 2) 2j me m
N N N

π ε π π ε π ε+= = ∠ + = ∠ (11.3.6)

which presents the basis of the fine CFO estimator Eq. (11.3.2b). Note from Eqs. (11.3.2a) and
(11.3.2b) that the phase is taken for the sum of the multiplication terms instead of the average.
Why? Because the phase of a complex number does not depend on its magnitude. That is also why
the average is not taken for the sum of the four pilot symbol terms in the routine
‘phase_from_pilot()’.

The following routines ‘coarse_CFO_estimate()’ and ‘fine_CFO_estimate()’ can be used to get
the coarse and fine CFO estimates via Eqs. (11.3.2a) and (11.3.2b), respectively. Note that the two
routines differ in the frequency range to estimate, but not in the accuracy and therefore we can get a
good CFO estimate using only the first one. However, to emphasize the quantitative difference
between the two routines, it is assumed that an 8-bit number representation with relative resolution

82− is used for storing the CFO estimation result. The next MATLAB program “do_CFO.m” uses
the routines ‘short_train_seq()’/‘long_train_seq()’ to generate the short/long preambles, uses the
routine ‘set_CFO()’ to set up a CFO, uses ‘coarse_CFO_estimate()’ and ‘fine_CFO_estimate()’ to
estimate the CFO, and then uses ‘compensate_CFO()’ to compensate the CFO.

11.3 Carrier Recovery and Symbol Synchronization 367

function coarse_CFO_est = coarse_CFO_estimate(tx,NB,Nw,STO)
% Input:
% tx = Received signal
% NB = Which block of size Nw to start computing correlation with?
% Nw = Correlation window size
% STO= Symbol Time Offset
% Output: coarse_CFO_est = Estimated carrier frequency offset
if nargin<4, STO = 0; end
if nargin<3, Nw = 16; end
if nargin<2, NB = 6; end
for i=1:2
 nn = STO + Nw*(NB+i) + [1:Nw];
 CFO_est(i) = angle(tx(nn+Nw)*tx(nn)'); % Eq.(11.3.2a)
end
CFO_est = sum(CFO_est)/pi; % Average
coarse_CFO_est = CFO_est - mod(CFO_est,4/128); % Stored with 8 bits

function fine_CFO_est = fine_CFO_estimate(tx,coarse_CFO_est,Nfft,STO)
% Input : tx = Received signal
% coarse_CFO_est = coarse CFO estimate
% Nfft = FFT size
% STO = Symbol Time Offset
% Output: fine_CFO_est = Estimated carrier frequency offset
if nargin<4, STO = 0; end
if nargin<3, Nfft = 64; end
if nargin<2, coarse_CFO_est = 0; end
tx1 = CFO_compensation(tx,coarse_CFO_est,Nfft,STO);
nn = STO + Nfft/2 + [1:Nfft];
cfo_est = angle(tx1(nn+Nfft)*tx1(nn)')/(2*pi); % Eq.(11.3.2b)
fine_CFO_est = CFO_est - mod(CFO_est,1/128); % Stored with 8 bits

%do_CFO.m
clear, clf
Nfft = 64; Ng = 16;
CFO = 1.7; phase = 0; STO = -1; % CFO/Phase Offset/STO
NB = 6; % Which block to start computing the correlation with?
Nw = Ng; % Correlation window size
[short_preamble,S] = short_train_seq(Nfft);
[long_preamble,L] = long_train_seq(Nfft);
% Time-domain training symbol
tx = [short_preamble long_preamble];
% Set up a pseudo CFO
tx_offset = set_CFO(tx,CFO,phase,Nfft);
% Coarse CFO estimation
coarse_CFO = coarse_CFO_estimate(tx_offset(1:160),NB,Nw,STO);
% Fine CFO estimation
fine_CFO = fine_CFO_estimate(tx_offset(161:320),coarse_CFO,Nfft);
% Overall CFO estimate
CFO_estimate = coarse_CFO + fine_CFO;
form1 = '\n For CFO=%10.8f, CFO estimate(%10.8f) = ';
form2 = 'coarse estimate(%10.8f)+fine estimate(%10.8f)\n';
fprintf([form1 form2],CFO,CFO_estimate,coarse_CFO,fine_CFO);
% CFO compensated symbols
tx_compensated = compensate_CFO(tx_offset,CFO_estimate,Nfft,STO);
discrepancy = norm(tx-tx_compensated)/length(tx)

368 Chapter 11 OFDM System

function tx_with_CFO = set_CFO(tx,CFO,phase,Nfft,STO)
% CFO/phase = pseudo Carrier frequency/phase offset (pretended)
% STO = Symbol Time Offset
if nargin<5, STO = 0; end % Symbol Time Offset
if nargin<4, Nfft = 64; end
if nargin<3, phase = 0; end
n = -STO + [0:length(tx)-1];
tx_with_CFO = tx.*exp(j*(2*pi*CFO/Nfft*n+phase));

function CFO_compensated = compensate_CFO(tx,CFO_est,Nfft,STO)
% CFO_est = Estimated carrier frequency offset
% STO = Symbol Time Offset
if nargin<4, STO = 0; end
if nargin<3, Nfft = 64; end
n = -STO + [0:length(tx)-1]; %m = -STO+m0 +[0:length(tx)-1];
CFO_compensated = tx.*exp(-j*2*pi*CFO_est/Nfft*n);

11.3 Carrier Recovery and Symbol Synchronization 369

Fig. 11.7 shows the three Simulink subsystems that can be used to estimate and compensate the
CFO in a Simulink model for OFDM system simulation. Note the following about the subsystems:

- The subsystem of Fig. 11.7(a) is equivalent to the MATLAB routine ‘set_CFO()’, but it can be
made to work like ‘compensate_CFO()’ by negating the CFO input as can be seen in Fig. 11.8.

- The subsystem of Fig. 11.7(b) is equivalent to the MATLAB routine ‘coarse_CFO_estimate()’,
which uses Eq. (11.3.2a) to make a coarse CFO estimation based on the two correlation values,
one between the 8th (16-sample) block and the 9th block and the other between the 9th block and
the 10th block of the received sequence corresponding to the (160-sample) short preamble.

- The subsystem of Fig. 11.7(c) is equivalent to ‘fine_CFO_estimate()’, which uses Eq. (11.3.2b)
to make a fine CFO estimation based on the correlation value between the 1st (64-sample) block
and the 2nd block of the received sequence corresponding to the (160-sample) long preamble.

Fig. 11.8 shows a Simulink model named “CFO_sim.mdl”, which demonstrates the CFO
estimation and compensation using the short and long preambles and the three subsystems depicted
in Fig. 11.7. About this Simulink model, note the following:

- The coarse CFO estimate is computed by the (subsystem) block ‘coarse CFO estimate’ and then
is used to compensate the CFO of the long preamble through the block ‘compensate_CFO’.

- The fine CFO estimate (obtained from the correlation value of the coarse-CFO-compensated
long preamble by the block ‘fine CFO estimate’) and the coarse CFO estimate are negated, fed
into the block ‘compensate_CFO1’, and then used to compensate the CFO of a general signal.

Interested readers are invited to compose the Simulink model “CFO_sim.mdl” and run it to see if
the CFO is well tracked for different values of CFO and consequently, the mean square error
between the original signal and the CFO-inserted-and-compensated one (computed by the block
‘MSE’) is very small.

370 Chapter 11 OFDM System

%do_STO_estimation.m
% To estimate the STO (Symbol Time Offset)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
Cor_thd = 0.93; % Threshold of correlation for peak detection
Nfft=64; Ng=16; % FFT/Guard interval size
Nsym=Nfft+Ng; Nw=Ng; % Symbol/Window size
Nd=65; % Remaining period of the last symbol in the previous frame
% Make a pseudo frame to transmit
t_frame = rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5);
N_Symbols = 3; % Number of OFDM symbols to be generated for simulation
for i=1:N_Symbols
 symbol = rand(1,Nfft)-0.5+j*(rand(1,Nfft)-0.5); % An arbitrary data

symbol_cp = [symbol(end-Ng+1:end) symbol]; % OFDM Symbol with CP
 t_frame = [t_frame symbol_cp]; % Append a frame by a symbol with CP
end
L_frame = length(t_frame); nn=0:L_frame-1;
noise = 0.2*(rand(1,L_frame)-0.5 +j*(rand(1,L_frame)-0.5));
r = t_frame + noise;
sig_w = zeros(2,Nw); % Initialize the two sliding window buffers
STOs = [0]; % Initialize the STO buffer
for n=1:L_frame
 sig_w(1,:) = [sig_w(1,2:end) r(n)]; % Update signal window 1
 m = n-Nfft;

if m>0
 sig_w(2,:)=[sig_w(2,2:end) r(m)]; % Update signal window 2

den = norm(sig_w(1,:))*norm(sig_w(2,:));
 corr(n) = abs(sig_w(1,:)*sig_w(2,:)')/den;

if corr(n)>Cor_thd & m>STOs(end)+Nsym-15
 STOs=[STOs m]; % List the estimated STO
end

end
end
Estimated_STOs = STOs(2:end)
True_STOs = Nd+Ng + [0:N_Symbols-1]*Nsym
subplot(311)
stem(nn,real(r)), ylim([-0.6 1.1])
hold on, stem(True_STOs,0.8*ones(size(True_STOs)),'k*')
stem(Estimated_STOs,0.6*ones(size(Estimated_STOs)),'rx')
title('Estimated Starting Times of OFDM Symbols')
subplot(312)
plot(nn+1,corr), ylim([0 1.2]), hold on,
stem(Estimated_STOs+Nfft,corr(Estimated_STOs+Nfft),'r:^')
% The points at which the correlation is presumably maximized,
% yielding the STO estimates.
stem(Estimated_STOs,0.9*ones(size(Estimated_STOs)),'rx')
title('Correlation between two sliding windows across Nfft samples')
set(gca,'XTick',sort([Estimated_STOs Estimated_STOs+Nfft]))

11.3 Carrier Recovery and Symbol Synchronization 371

The above program “do_STO_estimation.m” demonstrates how the correlation value can be used
to estimate the STO of an OFDM symbol consisting of gN (guard interval size) cyclic prefix (CP)
samples and N (FFT size) signal samples. As shown in Fig. 11.9(a), it keeps updating a 2 gN×
matrix ‘sig_w’ that contains the gN samples of two sliding windows in each of its two rows, finds
the (local) peak times of the crosscorrelation value between two row vectors 1, (1 :)gn x n N n= − +x
and 2, (1 :)gn x n N N n N= − − + −x (corresponding to two sliding windows), and sets the times (m=n-
Nfft) of N samples before the local peak times to the STO estimates (to be stored in the vectors
named ‘STOs’ and ‘Estimated_STOs’). In Fig. 11.9(b), the measured peak times of the correlation
value and the corresponding STO estimates are denoted by dotted lines and solid lines, respectively.
Note that the on-line detection of local maxima or minima of a noisy signal is not so simple since
there may be spurious peaks around true peaks due to the noise. That is why the correlation value is
divided by the product of the norms of the two vectors for normalization as

*
1

2 2
1 1

[] [] sig_w(1,:)sig_w(2,:)'
[]

||sig_w(1,:)||||sig_w(2,:)||| []| | []|

g

g g

n
m n N

y n n
m n N m n N

x m x m N
n

x m x m N
φ

= − +

= − + = − +

−
= =

−
 (11.3.7)

()'(apostrophe): theMATLABoperator representing theconjugate transpose, i.e., Hermitian

and a threshold of, say, Cor_thd=0.93 is used to determine if the presumable peak time has been
reached or not. The additional condition (m>STOs(end)+ 15symN −) to determine peak times has
been required not to let another (most probably wrong) peak reported within 15symN −
(gsymN N N= + : OFDM symbol duration) samples after a peak is reported.

372 Chapter 11 OFDM System

Table 11.1 Transmission modes of the EUREKA-147 DAB system

Now, let us consider the synchronization scheme that is used in the EUREKA-147 standard for
DAB (digital audio broadcasting). It consists of the four processes working in coordination, i.e. the
coarse frame synchronization, the IFO (integral frequency offset) estimation, the fine frame
synchronization, and the FFO (fractional frequency offset) estimation, as depicted by the block
diagram of Fig. 11.10(a). Fig. 11.10(b) shows the EUREKA-147 transmission frame structure of
96ms for transmission mode I where the null symbol and PRS (phase reference symbol) symbol
preceding the frame can be used for the frame synchronization.

11.3 Carrier Recovery and Symbol Synchronization 373

1. Coarse Frame Synchronization

The tactics to estimate the starting points of a null symbol and a frame based on the energy ratio
between the two adjacent windows of size wN can be expressed by the following equations:

Null time estimate:
*

1
*

1

ˆ Arg Min w

w
w ww

n
m mm n N

N nn N
m N m Nm n N

r r
n

r r
= − +

−
− −= − +

= (11.3.8a)

Frame time estimate:
*

1
*

1

ˆ Arg Max w

w
w ww

n
m mm n N

F nn N
m N m Nm n N

r r
n

r r
= − +

−
− −= − +

= (11.3.8b)

The estimated null symbol period ˆ ˆ()F Nn n− can be used to detect the transmission mode since it
depends on the transmission mode (see Table 11.1).

The following program “do_sync_w_double_window.m” simulates the process of catching the
starting points of a null symbol and the frame (preceded by the null symbol) based on the energy
ratio between two successive blocks of size nullN . It also simulates the process of estimating the
starting points of each OFDM symbol based on the correlation value between two blocks of size

gN spaced fftN samples apart (fftN : FFT size). To minimize the number of computations as well
as to save the memory, we maintain several windows (buffers) to store some duration of signal
samples, powers, energies, and correlations as follows: (see Fig. 11.11)

(1) *power_w[] [] []n r n r n= with size of 1nullN +

(2) 1energy_w1[] power_w[] energy_w1[1]+power_w[] power_w[]null
n

nullm n Nn m n n n N= − += = − − −

energy_w1[1]+power_w[end] power_w[1]n= − − with size of 1nullN +
(3) sig_w[] []n r n= with size of 1fftN +

(4) **corr_w[] [] [] sig_w[end] sig_w[1]fftn r n r n N= − = with size of 1gN +

(5) 1energy_w2[] power_w[] energy_w2[1] + power_w[] power_w[]g
n

gm n Nn m n n n N= − += = − − −

with size of 1fftN +

374 Chapter 11 OFDM System

%do_sync_w_double_window.m
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
Cor_thd=0.988; % The threshold to determine the peak of correlation
Nfft=64; Ng=16; Nsym=Nfft+Ng; Nsym1=Nsym+1;
Nnull=Nsym; Nw=Nnull; Nw1=Nw+1; Nw2=Nw*2; Ng1=Ng+1; Nfft1=Nfft+1;
Nd=90; % Remaining period of the last symbol in the previous frame
N_OFDM=3; % One Null + N_OFDM symbols
Max_energy_ratio=0; Min_energy_ratio=1e10;
r = [rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5) zeros(1,Nnull)];
for i=1:N_OFDM
 symbol=rand(1,Nfft)-0.5 +j*(rand(1,Nfft)-0.5);
 r = [r symbol(end-Ng+1:end) symbol];
end
L_frame = length(r);
r = r + 0.1*(rand(1,L_frame)-0.5+j*(rand(1,L_frame)-0.5));
energy_w1=zeros(1,Nw1); power_w=zeros(1,Nw1);
sig_w=zeros(1,Nfft1); energy_w2=zeros(1,Nfft1); corr_w=zeros(1,Ng1);
OFDM_start_points = [0]; corr=0;
for n=1:L_frame

sig_w = [sig_w(2:end) r(n)]; % Signal window
power_n = r(n)'*r(n); % Current signal power
power_w = [power_w(2:end) power_n]; % Power window
energy_w1=[energy_w1(2:end) energy_w1(end)+power_n]; %Energy window
if n>Nw, energy_w1(end)=energy_w1(end)-power_w(1); end %of size Nw
energy_w2=[energy_w2(2:end) energy_w2(end)+power_n]; %Energy window
if n>Ng, energy_w2(end)=energy_w2(end)-power_w(end-Ng); end
corr_w(1:end-1) = corr_w(2:end);
if n>Nfft

%Correlation between signals at 2 points spaced Nfft samples apart
 corr_w(end)=abs(sig_w(end)'*sig_w(1)); corr=corr+corr_w(end);

end
if n>Nsym, corr=corr-corr_w(1); end %Correlation window of Ng pts
% Null Symbol detection based on energy ratio
if n>=Nw2

 energy_ratio = energy_w1(end)/energy_w1(1);
 energy_ratios(n) = energy_ratio;

if energy_ratio<Min_energy_ratio % Eq.(11.3.8a)
 Min_energy_ratio = energy_ratio; Null_start_point = n-Nw+1;

end
if energy_ratio>Max_energy_ratio % Eq.(11.3.8b)

 Max_energy_ratio = energy_ratio; F_start = n-Nw+1;
end

end
% CP-based Symbol Time estimation
if n>Nsym

% Normalized, windowed correlation across Nfft samples for Ng pts
 correlation=corr/sqrt(energy_w2(end)*energy_w2(1)); % Eq.(11.3.9)
 correlations(n) = correlation;

if correlation>Cor_thd&n-Nsym>OFDM_start_points(end)+Nfft
 OFDM_start_points = [OFDM_start_points n-Nsym+1];

end
end

end

11.3 Carrier Recovery and Symbol Synchronization 375

Estimated_start_points=
 [Null_start_point F_start OFDM_start_points(2:end)]
True_start_points=[Nd+1:Nsym:L_frame]
N_True_start_points=length(True_start_points);
subplot(311), stem(real(r)), set(gca,'XTick',True_start_points)
hold on, stem(True_start_points,0.9*ones(1,N_True_start_points),'k*')
N_Sym=length(Estimated_start_points);
stem(Estimated_start_points,1.1*ones(1,N_Sym),'rx')
title('Estimated Starting Points of Symbols')
subplot(312),semilogy(energy_ratios),set(gca,'XTick',True_start_points)
title('Ratio of 2 Successive Windowed Energies for Nw samples')
subplot(313), plot(correlations)
hold on, title('Correlation across Nfft samples')

At every instant when a sampled signal arrives, the normalized and windowed correlation value

?1corr_w[]
correlation[] Threshold

energy_w2[]energy_w2[]
g

n
m n N

fft

m
n

n n N
= − += >

−
 (11.3.9)

is computed to determine if it is the correlation value between the CP and the last gN samples of an
OFDM symbol, i.e. if the current sample is the end of an OFDM symbol or not. If the normalized
correlation value is found to exceed some threshold, say, 0.988 at n , the starting point of the
detected OFDM symbol is determined to be 1symn N− + (one OFDM symbol duration before the
detection time) where g fftsymN N N= + is the OFDM symbol duration. Compared with this symbol
timing process, catching the starting points of a null symbol and a frame based on the energy ratio
between two successive blocks is very misty since there can be no normalization of energy ratio
and accordingly, the appropriate threshold values to determine the maximum and minimum of the
energy ratio are difficult to fix. Let us run the MATLAB program “do_sync_w_double_window.m”
to get Fig. 11.12 together with the following result:

376 Chapter 11 OFDM System

>> do_sync_w_double_window

Estimated_start_points = 91 171 171 248 330
True_start_points = 91 171 251 331

The detection of the starting points of a null, the frame preceded by the null symbol, and successive
OFDM symbols seems to be successful. That is right as far as the OFDM symbol starting points are
concerned. However, the maximum/minimum points of the energy ratio for estimating the starting
points of a null/frame (shown in Fig. 11.12(b)) have not been detected on-line since they could be
recognized only after a considerable time span. In this aspect, the above program has a room for
improvement towards more practical detection of the starting points of a null and the frame
preceded by the null symbol, possibly in concert with the OFDM symbol starting point detection.

2. Integral Frequency Offset Estimation

The CFO (carrier frequency offset) that may be caused by the mismatch of the oscillators in the
transmitter and receiver can be regarded as the sum of the IFO (integral frequency offset) and the
FFO (fractional frequency offset) where the IFO and the FFO are an integer and a fraction times the
subcarrier frequency interval 0 2 / fftNπΩ = , respectively. The IFO can be estimated based on the
correlation between the received PRS(phase reference symbol)-FFT signal ()PRSY k and the local
(frequency-domain) PRS signal ()PRSX k at the receiver by applying one of the following three
methods:

APRS (Algorithm using PRS):

1 *
0

ˆ ArgMax () ()fftN
PRS PRSi k

d
f Y k X k d−

=Δ = − (11.3.10a)

ACIR (Algorithm using the channel impulse response):

{ }{ }*ˆ ArgMax Max [] IFFT () ()PRS PRSi nd
f z n Y k X k dΔ = = − (11.3.10b)

AIDC (Algorithm using the intercarrier differential correlation):

1 *
0

ˆ ArgMax () ()fftN
PRS PRSi k

d
f Y k X k d−

=Δ = − (11.3.10c)

where
*() () (1)Y k Y k Y k= − , *() () (1)X k X k X k= − (11.3.10d)

3. Fine Frame Synchronization

The fine frame synchronization can be performed by taking the peak point of the correlation
between the received signal []PRSy n and the time-domain PRS []PRSx n where the (time-domian)
correlation can equivalently be computed from the IFFT of the (frequency-domain) product of the
received FFT signal ()Y k and the IFO-compensated PRS * ˆ()PRS iX k f− Δ :

{ }{ }* ˆˆ Arg Max [] IFFT () ()if n
n z n Y k X k f= = −Δ (11.3.11)

11.3 Carrier Recovery and Symbol Synchronization 377

4. Fractional Frequency Offset Estimation

With the same idea as Eq. (11.3.2b), the fractional frequency offset (FFO) estimate can be obtained
from 1/ 2π times the phase difference between the two (fine frame-synchronized) blocks of size

wN spaced fftN samples apart:

{ }*
1

1ˆ ˆ ˆ[] []
2

wN
fftf ff nf y n N y nτ τ

π =Δ = ∠ + + + (11.3.12)

where the two blocks are supposed to agree with each other without CFO and noise and the window
size wN is often set equal to the guard interval or cyclic prefix (CP) size gN . Note that a large
window size will help increasing the accuracy of the FFO estimation.

function IFO_est=IFO_estimate(y,X,IFO_range)
% To estimate the IFO (Integral Frequency Offset)
% y: A received time-domain signal, supposedly containing ifft(PRS)
% X: (frequency-domain) Phase Reference Symbol
% IFO_range : Range of possible IFOs to be searched
M=3; Max=zeros(1,M); IFO_est=zeros(1,M); % 3 methods to estimate IFO
Nfft=length(X); Y = fft(y,Nfft);
Ybar=Y.*conj(Y([Nfft 1:Nfft-1])); % Eq.(11.3.10)
Xbar=X.*conj(X([Nfft 1:Nfft-1]));
for i=1:length(IFO_range)
 d=IFO_range(i); YX = Y.*conj(rotate_r(X,d));
 Mag(1) = abs(sum(YX)); % Eq.(11.3.10a) APRS
 Mag(2) = max(abs(ifft(YX))); % Eq.(11.3.10b) ACIR
 Mag(3) = abs(Ybar*rotate_r(Xbar,d)'); % Eq.(11.3.10c) AIDC

for m=1:M
if Mag(m)>=Max(m), Max(m)=Mag(m); IFO_est(m)=d; end

end
end

function PRS=phase_ref_symbol()
% Nfft=Nsd+Nvc=1536+512=2048;
Nfft=1536+512; %Nsd(# of data subcarriers)+Nvc(# of virtial carrier)
h= ...
[0 2 0 0 0 0 1 1 2 0 0 0 2 2 1 1 0 2 0 0 0 0 1 1 2 0 0 0 2 2 1 1;
 0 3 2 3 0 1 3 0 2 1 2 3 2 3 3 0 0 3 2 3 0 1 3 0 2 1 2 3 2 3 3 0;
 0 0 0 2 0 2 1 3 2 2 0 2 2 0 1 3 0 0 0 2 0 2 1 3 2 2 0 2 2 0 1 3;
 0 1 2 1 0 3 3 2 2 3 2 1 2 1 3 2 0 1 2 1 0 3 3 2 2 3 2 1 2 1 3 2;
0 2 0 0 0 0 1 1 2 0 0 0 2 2 1 1 0 2 0 0 0 0 1 1 2 0 0 0 2 2 1 1];
n=[1 2 0 1 3 2 2 3 2 1 2 3 1 2 3 3 2 2 2 1 1 3 1 2 ...
 3 1 1 1 2 2 1 0 2 2 3 3 0 2 1 3 3 3 3 0 3 0 1 1];
jpi2 = j*pi/2;
for p=1:12 %12*4*32=1536

for i=1:4
if p<=6, i1=i; else i1=6-i; end
for k=1:32

 temp_seq((p-1)*128+(i-1)*32+k)=exp(jpi2*(h(i1,k)+n((p-1)*4+i)));
end

end
end
PRS = [zeros(1,256) temp_seq(1:768) 0 temp_seq(769:end) zeros(1,255)];

378 Chapter 11 OFDM System

%do_sync_for_DMB.m
clear, clf
Nfft=2048; Ng=504; Nnull=2656;
CFO = -1.7; phase = 0; % A pseudo Carrier Frequency/Phase Offset
nF = 1 % A pseudo Frame Time Offset (delay)
PRS = phase_ref_symbol;
prs = ifft(PRS,Nfft); % Time-domain PRS
tx = [prs(Nfft-Ng+1:Nfft) prs]; % Add Cyclic Prefix
L_tx=length(tx);
% Set up the (pseudo) CFO (pretended)
Nd = 100; % Delay tolerance
y = set_CFO(tx,CFO,phase,Nfft); A=0.05;
y = [A*(rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5)) y];
y = [y A*(rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5))];
if nF>0
y=[A*(rand(1,nF)-0.5+j*(rand(1,nF)-0.5)) y(1:end-nF)]; %Delayed
elseif nF<0
y=[y(1-nF:end) A*(rand(1,-nF)-0.5+j*(rand(1,-nF)-0.5))]; %Advanced

end
% IFO (Integral Frequency Offset) estimation
IFO_range = [-3:3];
y_ifft = y(Nd+Ng+[1:Nfft]);
IFO_est = IFO_estimate(y_ifft,PRS,IFO_range); % Eq.(11.3.10a,b,c)
%In order to realize how critical the IFO estimate is for FFS,
% activate the following statement even with a very short delay nF=1;
% IFO_est = zeros(1,3);
% FFS (fine frame synchronization)
Y = fft(y_ifft,Nfft);
YX = Y.*conj(rotate_r(PRS,IFO_est));
[Max,nF_] = max(abs(ifft(YX))); % Eq.(11.3.11)
if nF_>Nfft/2, nF_=nF_-Nfft; end % Periodicity of FFT/IFFT
nF_h = (nF_-1)
% FFO (Fractional Frequency Offset) estimation
nn = Nd+[1:Ng]; nn1 = Nfft + nn;
% To realize the importance of reflecting the FFS into FFO estimation,
% activate the following statement with a delay nF=2;
% nF_h = 0;
FFO_est = angle(y(nF_h+nn1)*y(nF_h+nn)')/(2*pi) % Eq.(11.3.12)
% FFO estimate without incorporating the FFS result
FFO_est0 = angle(y(nn1)*y(nn)')/(2*pi) % Eq.(11.3.12) without nF_h
% Overall CFO estimate
CFO_est = IFO_est + FFO_est;
fprintf('\n For CFO=%10.8f,\n', CFO);
form = ' CFO_estimate(%10.8f) = IFO(%10.8f)+FFO(%10.8f)\n';
for i=1:3
 fprintf(form, CFO_est(i), IFO_est(i), FFO_est);
end
% CFO compensated symbols
y_compensated = compensate_CFO(y,CFO_est(3),Nfft);
% Discrepancy between the CFO compensated symbols and original ones
discrepancy = norm(tx-y_compensated(Nd+[1:L_tx]))/L_tx

11.4 Channel Estimation and Equalization 379

The above program “do_sync_for_DMB.m” simulates the synchronization scheme depicted in
Fig. 11.10(a) where the routines ‘IFO_estimate()’ and ‘phase_ref_symbol()’ are used to compute
the IFO estimates by Eqs. (11.3.10a~c) and to generate the frequency-domain PRS (phase reference
symbol), respectively.

11.4 CHANNEL ESTIMATION AND EQUALIZATION

A frequency-domain training sequence () () ()R IX k X k j X k= + with the corresponding channel
output () () ()R IY k Y k jY k= + can be used for channel estimation as

() ()*

* 2 2

() () () () () () () ()() () ()ˆ ()
() () () () ()

R R I I R I I R

R I

X k Y k X k Y k j X k Y k X k Y kY k X k Y kH k
X k X k X k X k X k

+ + −
= = =

+
 (11.4.1)

where ()X k and ()Y k are the FFTs of the (long preamble) input and the corresponding output of
the channel, respectively, ()RX k and ()RY k are the real parts, and ()IX k and ()IY k are the
imaginary parts of ()X k and ()Y k , respectively. Noting that in the IEEE Standard 802.11a, the
long preamble used for channel estimation is () () () 1R IX k X k j X k= + = or 1− (with () 0IX k =) as
shown in Fig. 11.6(b), the channel estimator (11.4.1) can be simplified as

()()ˆ () () () () () ()
() R IR

Y kH k X k Y k jY k X k Y k
X k

= = + = (11.4.2)

Since the long preamble contains two repeated training sequences, the average of the FFTs (1()Y k
and 2()Y k) of the channel outputs to the two consecutive training sequences can be taken for better
channel estimation:

()21
1ˆ () () () ()
2

H k X k Y k Y k= + (11.4.3)

This estimation scheme is cast into the MATLAB routine ‘channel_estimate()’. The following
program “do_channel_estimation.m” uses this routine to estimate a channel based on the frequency-
domain long preamble ()X k and the FFT ()Y k of the output of the channel to the (time-domain)
long preamble. It also uses another routine ‘equalizer_in_freq()’ to equalize the output to the
unknown input by compensating the channel effect:

()ˆ () ˆ ()
Y kX k
H k

= (11.4.4)

function H_est=channel_estimate(X,y)
% X = Known frequency-domain training symbol
% y = Time-domain output of the channel
% H_est = Estimate of the channel (frequency) response
if length(X)>52, X = X([1:26 28:53]); end % for k=[-26:-1 1:26]
y1 = y(32+[1:64]); y2 = y(96+[1:64]);
Y1 = fft(y1); Y1 = Y1([39:64 2:27]); % Arranged in the -/+ frequency
Y2 = fft(y2); Y2 = Y2([39:64 2:27]); % Arranged in the -/+ frequency
H_est = X.*(Y1+Y2)/2; % Eq.(11.4.3)

380 Chapter 11 OFDM System

%do_channel_estimation.m
clear, clf
% Read the time-domain channel response stored in a 64x2 matrix
load ch_complex.dat;
h=(ch_complex(:,1)+j*ch_complex(:,2)).'; % Time-domain channel response
Nfft=64; Ng=16; Nsym=Nfft+Ng; Nnull=Nsym; Nw=2*Ng; Tsym=4e-6;
A_sig=0.5; A_noise=0.01; % Amplitudes of signal and noise
Nd=120; % Remaining period of the last symbol in the previous frame
[s_preamble,Short] = short_train_seq(Nfft);
[l_preamble,Long] = long_train_seq(Nfft);
% Make a pseudo received sequence
t_frame=[A_sig*(rand(1,Nd)-0.5) zeros(1,Nnull) s_preamble l_preamble];
symbol=A_sig*(rand(1,Nd)-0.5); symbol=[symbol(end-Ng+1:end) symbol];
t_frame = [t_frame symbol]; L_frame = length(t_frame);
noise = A_noise*(rand(1,L_frame)-0.5 +j*(rand(1,L_frame)-0.5));
r_frame = channel(t_frame,h) + noise;
True_STO = Nd+Nnull+Nsym*2+1 % Starting point of the long preamble
STO = True_STO
% STO estimation is critical to the performance of channel estimation
% To realize this, change the above line into STO=True_STO+1 or -1
H_est = channel_estimate(Long,r_frame(STO+[0:159]));
% The true frequency-domain channel response is obtained from the FFT
% of the time-domain channel (impulse) response.
H = fft(h,Nfft); % k=0(1):26(27) 27(28):37(38) 38(39):63(64)
H_true = H([39:64 2:27]); % Arranged in -/+ frequency k=-26:-1 1:26
discrepancy_H_est_and_H_true = norm(H_est-H_true)/norm(H_true)
% Let's see how the channel equalizer with the estimated channel
% response (H_est) works.
X = rand(1,52)-0.5+j*(rand(1,52)-0.5); % for k=[-26:-1 1:26]
X_arranged = [0 X(27:end) zeros(1,11) X(1:26)]; % in +/- frequency
x = ifft(X_arranged); x_CP = [x(49:64) x]; % IFFT and add CP
y = channel(x_CP,h); % Channel output to an arbitrary input with CP
Y = fft(y(17:80)); % Remove CP and FFT
Y=Y([39:64 2:27]); % Arranged in -/+ frequency for k=[-26:-1 1:26]
Yeq = equalizer_in_freq(Y,H_est);
discrepancy_X_and_Y = norm(X-Y)/norm(X) % With no channel compensation
discrepancy_X_and_Yeq = norm(X-Yeq)/norm(X) % With channel equalizer

function [y,ch_buf] = channel(x,h,ch_buf)
L_x = length(x); L_h = length(h); h=h(:);
if nargin<3, ch_buf = zeros(1,L_h);
else L_ch_buf = length(ch_buf);

if L_ch_buf<L_h, ch_buf = [ch_buf zeros(1,L_h-L_h)];
else ch_buf = ch_buf(1:L_h);

end
end
for n=1:L_x, ch_buf=[x(n) ch_buf(1:end-1)]; y(n)=ch_buf*h; end

function Y_eq = equalizer_in_freq(Y,H_est)
H_est(find(abs(H_est)<1e-6))=1; Y_eq = Y./H_est; % Eq.(11.4.4)

% ch_complex.dat
0.4923667628304478349754 -0.3721824742433228472294

-0.5175114648028624753096 -0.3043313718301440817804
..................

11.4 Channel Estimation and Equalization 381

Index

427

INDEX

A
adaptive equalizer (ADE), 154-155
address decoding circuit, 277
Alamouti, 313
A -law, 92

analog frequency, 20
analytic signal, 30, 33
angle modulation, 82
antipodal (bipolar) signaling, 114, 122
ASK (amplitude shift keying), 169
asynchronous, 78
autocorrelation, 29, 30, 50, 55, 58
autocorrelation function, 50
autocovariance function, 50
average signal energy of QAM symbol, 196
AWGN (additive white Gaussian noise), 108, 136

B
balance property (of PN), 340
bandpass Gaussian noise, 49, 62
bandwidth efficiency, 200, 203, 268
Bayes’ rule, 40
BCJR (Bahl-Cocke-Jelinek-Raviv), 301
BCH (Bose-Chaudhuri-Hocquenghem) code,

284, 322
belief propagation algorithm, see BPA
Bessel function, 24, 26, 50
BFSK (binary phase shift keying) signal, 22
binary symmetric channel (BSC), 264, 321
bi-orthogonal signaling, 133-134
bit error probability, 129, 131
bit error rate (BER), see bit error probability
block coding, 271, 284
Blockset, 423
 Communication ~, 424
 Signal Processing ~, 423
BPA (belief propagation algorithm), 310
branch cost (metric), 289
BSC, see binary symmetric channel

C
capacity boundary, 268
carrier frequency offset (CFO), 362-363, 376
carrier phase recovery, 225, 233, 248-252

 ~ for BPSK, 248
 ~ for PSK, 251-252
 ~ for QAM, 238-242, 250

 ~ for QPSK, 249
carrier recovery, 225, 236, 239-240
carrier timing recovery, 252-253
Carson’s (bandwidth) rule, 36, 83
CDMA (code division multiple access), 354
central limit theorem (CLT), 47, 48
centroid, 87
CFO (carrier frequency offset), 362-363, 376

~ estimation, 365-369, 398-405
channel capacity, 265-269, 319, 321
channel coding, 263, 269
channel estimation, 379, 381, 405
channel reliability, 300, 309
Chebyshev inequality, 43
check node (c-node), 310-313
chip interval, 347
circular correlation, 69
coarse CFO estimate, 365-366, 404
coarse frame synchronization, 373
coarse frequency offset (CFO), 362-363, 376
code division multiple access (CDMA), 354
code efficiency, 257
code rate, 265, 285
code vector, 273, 309
codeword, 257, 265, 270-276, 279-281, 287
codeword matrix, 270, 273
coding gain, 317-318
co-error function, see complementary error function
coherent, 75, 82, 171, 180-183, 190, 206
colored noise, 53
Communication Blockset, 424
Communication Toolbox, 284
compansion, 93
complementary error (co-error) function, 43, 118
complex envelope, 33
conditional entropy, 264
conditional expectation, 47
conditional probability, 40
conditional probability density function, 41
conjugate symmetry, 13
constraint length, 285, 286
constraint length vector, 292, 293, 325, 326, 328
controlled ISI signaling, 143
conventional AM, 75
convolution, 14
convolutional code, 285, 287
convolutional coding, 285
convolutional encoder, 285, 289, 325

Index 428

correlation, 14, 29, 44, 375
 circular ~, 69
correlation coefficient, 44
correlation property (of PN), 340
correlator, 112-113
Costas loop, 236-237, 244, 249
covariance, 44
covariance matrix, 45
CP (cyclic prefix), 358, 365, 371, 377, 393
crosscorrelation, 50, 52, 58, 111, 270
crosscorrelation function, 50
crosscovariance, 45
crosscovariance function, 50
crossover probability, 271, 272, 277
CTFS (continuous-time Fourier series), 1, 407, 408
CTFT (continuous-time Fourier transform),

7, 27, 407, 409-411
cycle, 310
cyclic code, 280, 284
cyclic decoder, 282, 283
cyclic encoder, 282, 283
cyclic prefix (CP), 358, 365, 371, 377, 393

D
debugging (MATLAB), 419
decision-feedback equalizer (DFE), 155-158
deinterleaving, 382
delta modulation (DM), 100-101
delta-sigma modulation, 105
depuncturing, 384
despreading, 346,347
deviation, 43
DFE (decision-feedback equalizer), 155-158
DFS (discrete Fourier series), 19
DFT (discrete Fourier transform), 19
differential PSK (DPSK), 190-195
differential PCM (DPCM), 97-99
differential space-time block code, see DSTBC
differentiation w.r.t. a vector, 414
digital frequency, 20
discrete memoryless channel (DMC), 263
DM (delta modulation), 100-101
DMC (discrete memoryless channel), 264
Doppler effect, 61
DPCM (differential pulse code modulation), 97-99
DS(direct sequence)-SS, 345-349
DSB(double sideband)-AM, 71
DSB-AMSC, 71-72
DSM (delta-sigma modulation), 105
DSTBC (differential space-time block code),

314, 333
DTFS (discrete-time Fourier series), 19
DTFT (discrete-time Fourier transform), 18, 27
duality, 11, 17

duobinary precoding, 146
duobinary signaling, 143-144, 146-147, 165-167

E
early-late gate timing recovery, 241-243
energy-type signal, 29
entropy, 256, 319-320
envelope detector, 76, 173, 182
equalizer, 148-158, 167
 adaptive ~ , 154

decision-feedback ~, 155
 minimum mean-square error (MMSE) ~ , 151
 zero-forcing ~ (ZFE), 148
equalization 379
ergodic, 52
error correcting capability, 272, 284, 322
error detecting capability, 272
error floor, 308
error function, 43
error pattern, 274-275, 281-282, 322-323
error probability, 122, 123, 201, 202
 ~ for antipodal signaling, 117
 ~ for BASK with coherent detection, 178
 ~ for BASK with non-coherent detection, 174
 ~ for bi-orthogonal signaling, 134-135
 ~ for BPSK, 187
 ~ for DPSK (differential PSK), 193
 ~ for FSK with coherent detection, 179
 ~ for FSK with non-coherent detection, 182-183
 ~ for multidimensional signaling, 130-131
 ~ for multi-level signaling, 128-129
 ~ for OOK signaling, 118
 ~ for orthogonal signaling, 121
 ~ for PAM, 171
 ~ for PSK, 188
 ~ for QAM, 197
ESD (energy spectral density), 29
EUREKA-147 DAB, 372
expectation, 43
extended Golay code, 279
extrinsic information, 308

F
fading, 60
 ~ amplitude, 301
 fast ~, 61
 (frequency-)flat ~, 61
 (frequency-)selective ~, 61
 Raleigh ~, 60
 Rician ~, 60
 slow ~, 61
fast FH-SS, 350-352
feedback shift register, 280, 281, 283, 337-341

Index

429

FFO (fractional frequency offset), 376, 377
FH(frequency hopping)-SS, 350-353
 fast ~, 350-352
 slow ~, 350-351, 355
filtering, 57
fine CFO estimate, 365-366, 405
fine frame synchronization, 376
finite pulsewidth sampler, 15
flat fading, 61
FM (frequency modulation), 82-83
fractional frequency offset (FFO), 376, 377
frame synchronization, 373, 376
free distance, 289
frequency aliasing, 28
frequency deviation ratio, 36
frequency modulation (FM), 82-83
frequency offset, 376-377
frequency response, 7, 14, 18, 58, 63
 ~ of a discrete-time LTI system, 63
frequency-selective fading, 61
frequency shifting, 6, 14
FSK (frequency shift keying), 170, 178-186
function of a random variable, 42
fundamental frequency, 20

G
Gallager, 309
Gaussian, 43-46, 49, 205, 235
Gaussian noise, 49, 205

 sampled ~, 57
generator matrix, 272-274, 278, 285, 325, 327
generator polynomial, 280, 285
generator sequence, 285
Golay code, 279
Gold code, 340-343
Gold sequence, see Gold code
gradient, 154, 414
granular (idling) noise, 100-101
guard interval, 358, 362, 365, 387, 398

H
Hadamard matrix, 270
Hamming code, 278, 284, 321
Hamming distance, 272
Hamming weight, 272, 287
hard value, 298
hard decision, 289, 292
Hermitian symmetry, 13
Hilbert transform, 32, 37, 78
Huffman code, 257-259, 320

I
ideal LPF (lowpass filter), 140

ideal sampler, 15
IEEE Standard 802.11a, 386-388
 timing-related parameters, 387
IFO (integral frequency offset), 376
impulse function, 5
impulse sequence, 6
impulse train, 5
independent, 41-42, 45
inner (or dot or scalar) product, 121
in-phase component, 33, 49
instant sampler, 15
integral frequency offset (IFO), 376
interleaving, 382
ISI (intersymbol interference), 139
ISI free condition, 141-142

J
Jacobian, 42, 43, 49, 412
jamming 347
jointly normal distribution, 44
joint probability, 40
joint probability density function, 41

K
Kasami sequence, 341-342

L
L-value, 298, 305
Laplace transform, 412
LAPP (log a posteriori probability), 301
LDPC (low-density parity-check)

~ code, 284, 309
~ decoding, 310
~ encoding, 309

least mean square (LMS), 154
Lempel-Ziv-Welch (LZW) coding, 260
Lempel-Ziv-Welch (LZW) decoding, 261-262
LF (loop filter), 226-230
LFSR, see linear feedback shift register
line code, 65
linear block coding, 271, 284
linear feedback shift register (LFSR),

281, 283, 337-338, 340-341
Lloyd-Max, 89-90
LLR (log-likelihood ratio), 298, 301, 305
 conditioned ~, 301, 308, 310
LMS (least mean square), 154
log-MAP decoding, 298
long preamble, 363-365
long training sequence, see long preamble
loop filter (LF), 226-230
lowpass equivalent, 33
LSSB (lower single sideband), 80

Index 430

LZW (Lempel-Ziv-Welch) coding, 260
LZW (Lempel-Ziv-Welch) decoding, 262

M
m -sequence (maximal length sequence), 339

~ generator, 339
preferred pairs of ~s, 340

MAP (maximum a posteriori probability), 298, 301
marginal probability density function, 41
Mason’s gain formula, 287
matched filter, 110-111
MATLAB Command Window, 418
MATLAB Editor Window, 418
MATLAB introduction, 417
maximal length sequence (m -sequence), 339
maximum a posteriori probability (MAP), 298
maximum likelihood estimate (MLE), 231
mean, 43, 55
mean function, 50
mean square quantization error (MSQE), 87
message passing algorithm (MPA), 310
minimum distance, 123, 271, 272, 289
minimum mean-square error equalizer, see MMSEE
minimum-shift keying (MSK), 211-215
minimum tone spacing, 179, 181
MLE (maximum likelihood estimate), 231
MMSEE (minimum mean-square error equalizer),

151, 153
modified duobinary signaling, 147-148
modulation, 6, 14, 71
modulation order, 127, 204
modulation efficiency, 76
MPA (message passing algorithm), 310
MSK (minimum-shift keying), 211-215
MSQE (mean square quantization error), 87
μ -law, 92
multi-amplitude, 127, 132
multi-dimensional (orthogonal), 129, 132
multi-level (multi-amplitude), 127, 132
multi-path channel, 59
mutual information, 265

N
NDA-ELD (nondata-aided early-late delay),

244-246
node cost (metric), 289
noise power (or variance), 123
noise PSD, 55
noncoherent, 78, 171-173, 181-183, 190, 193, 206
nondata-aided early-late delay (NDA-ELD),

244-246
nonuniform quantization, 89-91, 94
normal convergence theorem, 47

 (see also central limit theorem)
normal distribution, 43, 44
Nyquist band, 143, 144
Nyquist bandwidth constraint, 140
Nyquist frequency, 28

O
OFDM, 357-358
OFDM receiver, 392
OFDM symbol, 358, 362, 388, 394
OFDM symbol duration, 371, 375, 388
OFDM transmitter, 392
offset QPSK (OQPSK), 207-208
on-off keying (OOK), 118, 122
OOK (on-off keying), 118
OQPSK (offset QPSK), 207-208
orthogonal, 45, 119, 121, 122, 129, 179
orthogonal signaling, 119-121, 126, 132
orthogonality, 397, 398

P
PAM (pulse amplitude modulation), 15, 17, 127
parity check matrix, 274, 278, 279, 309
Parseval,s relation, 18
partial response signaling, 143
path metric, 305, 308
PCM (pulse code modulation), 95-97
perfect (code), 279
phase-locked loop, see PLL
phase modulation (PM), 82-83
phase offset, 73
phase shift keying (PSK), 170, 187-190
phase tracker, 403
physically realizable, 141

/4π -shifted QPSK (quadrature PSK), 209-210
pilot, 365, 387, 388
pilot polarity sequence, 387-388
PLCP (physical layer convergence procedure),

386
PLL (phase-locked loop), 226-232, 247
PM (phase modulation), 82-83
PN (pseudo or pseudo-random noise), 337-338
posteriori probability, 40, 231
power efficiency, 200, 203
power spectral density (PSD), 29, 53, 57-58
power theorem, 18
power-type signal, 29
PPDU (PHY packet data unit), 386
PRBS (pseudo-random binary sequence), 337
preamble, 365
precoding, 146
predictor, 98
pre-envelope signal, 30

Index

431

prefix, see CP
principal frequency range, 21
priori information, 298, 307, 308, 310
priori probability, 40
probability, 39
probability density function, 41
probability distribution function, 41
probability transition matrix, 264
processing gain, 347, 350
PSD (power spectral density), 29, 53, 57-58
pseudo noise (PN), 337-338, 387
PSK (phase shift keying), 170, 187-190
pulse amplitude modulation (PAM), 15, 17, 127
pulse code modulation (PCM), 95-97
puncturing, 298, 384

Q
QAM (quadrature amplitude modulation), 195-200
QPSK (quadrature PSK), 189-190

/4π -shifted ~, 209-210
offset ~ (OQPSK), 207-208
staggered ~, see OQPSK

quadrature amplitude modulation (QAM), 195-200
quadrature carrier, 197
quadrature component, 33, 49
quadrature correlator, 197
quantization, 87-91, 94

R
raised-cosine (RC) filter, 160-164
raised-cosine frequency response, 141-142, 159
raised-cosine impulse response, 142, 160
random process, 49
Rayleigh fading, 60
Rayleigh probability density function, 50, 174, 182
RC filter, 109-110
real convolution, 14
rectangular pulse, 8
rectangular wave, 2
recursive systematic convolutional encoder, 298
Reed-Solomon (RS) code, 284
resolution frequency, 20
Rice probability density function, 50, 62, 174, 182
Rician fading, 60
roll-off factor, 141
RSC encoder, 298
run property (of PN), 340

S
sampling frequency, 27
sampling theorem, 27, 28
scrambler, 387, 388
Shannon-Hartley channel capacity theorem, 267

Shannon limit, 268
short preamble, 363-365
short training sequence, see short preamble
sigma-delta modulation, see delta-sigma modulation
signal constellation diagram, 122
signal correlator, 112
Signal Processing Blockset, 423
signal space, 121, 122
signal-to-quantization noise ratio (SQNR), 87
Simulink Library Browser Window, 422
sinusoidal FM (frequency-modulation) signal, 24
slope overload distortion, 100-101
slow fading, 61
slow FH-SS, 355
soft value, 297
soft-decision, 289, 293
soft-in/soft-output Viterbi algorithm, see SOVA
source coding, 257, 263
SOVA (soft-in/soft-output Viterbi algorithm), 305
SPA (sum-product algorithm), 310, 311
space-time block code (STBC), 313
spread-spectrum (SS), 337
spreading, 346, 347
SQNR (signal-to-quantization noise ratio), 87
square-root raised-cosine (SRRC) filter, 162-164
square-root raised-cosine impulse response, 163
squaring loop, 233-235, 248
squaring timing recovery, 252
SS (spread-spectrum), 337
 DS(direct sequence)-~, 345-349
 FH(frequency hopping)-~, 350-353, 355
SSB(single-sideband)-AM, 78
staggered QPSK, see OQPSK
state diagram for convolution encoder, 288
stationary, 51-52
STBC (space-time block code), 313
steepest descent method, 154
STO (symbol time offset), 362-363
 ~ estimation, 370-372, 382, 393, 399
stochastic process, 49
strict-sense stationary, 51
subcarrier, 358
sum-product algorithm, see SPA
suppressed carrier, 71
symbol error probability, 128, 130, 131
symbol error rate (SER),

see symbol error probability
symbol synchronization, 225, 241
symbol time offset (STO), 362-363
synchronous, 75, 82
synchronization, 241, 365, 372, 393
syndrome, 274-277, 281-282, 309, 322
systematic, 274, 298

Index 432

T
Tanner graph, 310
TCM, 294-297, 329-334
time shifting, 6, 14
timing recovery, 241-245
traceback depth, 292, 293
transmission bandwidth, 75, 80
transmission mode, 372
transmitted carrier, 75
trellis, 288-290, 293, 304
trellis-coded modulation, see TCM
triangular pulse, 8
triangular wave, 2
turbo code, 298-308
turbo decoding, see log-MAP or SOVA

U
uncorrelated, 44, 45
Ungerboeck TCM encoder, 329-330
uniform distribution, 43, 46
uniform number, 46
uniform quantization, 88
unit signal waveform, 108

USSB (upper single sideband), 78

V
variable node (v-node), 310, 311, 312
variance, 43, 55
VCO, 226-232, 247
vector quantization, 103-104
Viterbi

~ (decoding) algorithm, 289-293
~ decoding, 325

voltage-controlled oscillator, see VCO

W
waveform coding, 270
weight, 271
white noise, 53, 55, 62, 108, 136, 205
wide-sense stationary, 51

Z
z -transform, 412-413
zero-forcing equalizer (ZFE), 148, 151

Index for MATLAB Routines (*: MATLAB built-in function)

MATLAB routine name Description Page
number

ADC()
ade()
Alaw()
Alaw_inv()
awgn()*

awgn_()
bchgenpoly()*
berawgn()*
bercoding()*
bilinear()*

channel()
channel_estimate()
coarse_CFO_estimate()
combis()
compensate_CFO()
compensate_phase()
conv_encoder()
convenc()*
corr_circular()
CTFS()
CTFT()
cyclic_decoder()
cyclic_encoder()
cyclpoly()*

Analog-to-digital conversion
tunes the adaptive equalizer
A -law (Eq. (4.1.8a))

1−A -law (Eq. (4.1.8b))
Additive white Gaussian noise
Additive white Gaussian noise
makes the BCH code generator polynomial for given (N,K)
Probability of bit error for various modulation schemes
Probability of bit error for various coding schemes
bilinear transformation (optionally with prewarping)
simulates the channel effect using convolution
finds the estimate of channel (frequency) response
finds the coarse estimate of CFO
makes an error pattern matrix
compensate the CFO
compensate the carrier phase
convolutional encoding
convolutional encoding
Circular (or cyclic or periodic) correlation
CTFS coefficients together with the reconstruction
CTFT spectrum together with the inverse CTFT
Cyclic decoder
Cyclic encoder
makes the cyclic code generator polynomial for given (N,K)

93
154
92
92
136
136
321
202
279
228-229
380
379
367
275
368
365
286
293, 325
69, 343
4, 5
9
282
282
281, 284

Index

433

MATLAB routine name Description Page
number

dc01e01
dc01e03
dc01e16
dc01e17
dc01p02
dc0109_1
dc0109_2
dc02e02a
dc02e02b
dc02e03
de02e05
dc02f05
dc02p01
dc04e03
dc0501
dc05f17
dc07p01
dc07t02
dc09e05
dc09p07
deci2bin1()
decode()*
decoder()
deinterleaving()
dem_PSK_or_QAM()
depuncture()
detector_FSK()
detector_MSK()
detector_PSK()
dfe()
do_ade
do_BCH_BPSK_sim
do_CFO
do_CFO_PHO_STO
do_channel_estimation
do_cyclic_code
do_cyclic_codes
do_dfe
do_FSK_sim
do_Hamming_code74
do_interleaving
do_mmsee
do_MSK_sim
do_OFDM0
do_OFDM1
do_PLL
do_PNG

plots the CTFS spectra of rectangular/triangular waves
plots the CTFT spectra of rectangular/triangular pulses
plots the FFT spectrum of a FSK signal
plots the spectrum of a sinusoidal-modulated FM signal
Lowpass equivalent of a bandpass signal
plots the Hilbert transform of a sinusoidal wave
Lowpass equivalent of a bandpass signal
plots the distribution of a uniform noise
plots the distribution of a Gaussian noise
checks the validity of central limit theorem (CLT)
plots the autocorrelation and histogram of a white noise
plots a white noise together with its correlation and PSD
plots the distribution of a bandpass noise with Rice pdf
Nonuniform quantization considering relative errors
simulates binary communications with RC /matched filters
plots the theoretical BER curve for orthogonal signaling
simulates a linear combination of Gaussian noises
Table 7.2 (SNRdB for each signaling to achieve BER=10-5)
constructs the codeword matrix for a linear block code
shows some examples of using convenc() and vitdec()
Decimal-to-binary conversion
Decoding
Decoding of a signal value by the given code table
Deinterleaving
performs the PSK or QAM demodulation
Depuncturing
Detection of FSK signals
Detection of MSK signals
Detection of PSK signals
tunes the decision feedback equalizer (DFE)
simulates the adaptive-equalizer (ADE)
runs the Simulink model “BCH_BPSK_sim”
simulates the CFO estimation and compensation
simulates the CFO/PHO/STO estimation and compensation
tries using channel_estimate() for channel estimation
tries with a cyclic code
tries with cyclic codes
simulates the decision feedback equalizer (DFE)
runs the Simulink model “FSK_passband_sim”
finds the BER performance of the Hamming (7,4) code
tests the MATLAB routines interleaving() and deinterleaving()
simulates the minimum mean-square error equalizer
runs the Simulink model “MSK_passband_sim”
simulates a basic OFDM system
simulates an OFDM system (IEEE Std 802.11a)
simulates a PLL (phase-locked loop) system
uses MATLAB program ‘png()’ and runs Simulink model

“PN_generator_sim.mdl” to generate a PN sequence

4
9
23
25
38
31
35
46
47
48
56
54
62
93
113
131
205
203
273
324
272
284
96
383
390
384
217
222
220
156
155
323
367
399-401
380
281
323
156
217
276
383
152
222
359
389
229
343

Index 434

MATLAB routine name Description Page
number

do_PSK_sim
do_puncture
do_QAM_carrier

_recovery
do_QAM_sim
do_QPSK_Costas
do_QPSK_Costas_

earlylate
do_rcos1
do_rcos2
do_square_filter_clock
do_squaring_loop
do_STO
do_STO_estimation
do_sym_sync_earlylate
do_sync_for_DMB
do_sync_w_double

_window
do_TCM_8PSK
do_vector_quantization
do_vitdecoder
do_vitdecoder1
do_Viterbi_QAM

do_zfe
DS_SS
encode()*
equalizer_in_freq()
FH_SS
FH_SS2
fine_CFO_estimate()
freqz()*
Gauss_Hermite()
GI_and_orthogonality
gm2gM()
gray_code()
Hamm_gen()
Hammgen()*
hilbert()*
hist()*
Huffman_code()
IFO_estimate()
interleaving()
Jkb()
LDPC_decoder()
LDPC_demo
logmap()
long_train_seq()

runs the Simulink model “PSK_passband_sim”
tests the MATLAB functions puncture() and depuncture()
simulates QAM with decision-feedback carrier recovery

runs the Simulink model “QAM_passband_sim”
simulates QPSK using Costas loop for carrier phase recovery
simulates QPSK using Costas loop and Early-Late algorithm
 for carrier phase recovery and timing recovery, respectively
draws the impulse/frequency responses of a raised cosine filter
performs the two cascaded square-root raised-cosine filtering
Square-law bit synchronizer
simulates a squaring loop to get a reference signal from BPSK
detects the OFDM symbol start points
simulates the STO estimation/compensation
simulates the early late sampling time control for symbol sync
simulates the frame synchronization and CFO estimation
simulates the estimation of OFDM frame and

symbol start times using the double sliding window
runs MATLAB routine ‘TCM’ and Simulink model
simulates the vector quantization
tries using vit_decoder() and vitdec()
tries the various usages of vitdec()
runs MATLAB routine ‘Viterbi_QAM.m’ together with
 Simulink model ‘Viterbi_QAM_sim.mdl’
simulates the zero forcing equalizer (ZFE)
simulates BPSK with DS-SS(spread spectrum)
Encoding
simulates the frequency-domain equalizer
simulates BFSK with fast FH-SS(spread spectrum)
simulates BFSK with slow FH-SS(spread spectrum)
finds the fine estimate of CFO
Frequency response of a discrete-time system
Integration using the Gauss-Hermite quadrature
tests the orthogonality of an OFDM signal
PNG polynomial into one used by Simulink
Gray coding
makes the parity-check/generator matrices for Hamming code
makes the parity-check/generator matrices for Hamming code
analytic signal with Hilbert transform as the imaginary part
plots a histogram
Huffman code generator for a given symbol probability vector
finds the estimate of IFO (integral frequency offset)
Interleaving
The first kind of kth-order Bessel function
Low-density parity-check (LDPC) decoder
simulates an LDPC coding and decoding
Log-MAP algorithm for turbo coding
generates the long training sequence for 802.11a

220
385
239

222
237
244-245

161
162
68
234
393-395
371
243
378
374

330
103
290
292
327

150
348
284
380
352
355
367
63
132
398
344
327
278
278
76-77, 83
46-48, 56
258
377
382
25
311
312
302
364

Index

435

MATLAB routine name Description Page
number

LZW_coding()
LZW decoding()
mmsee()
mod_PSK_or_QAM()
mulaw()
mulaw_inv()
nextpow2 ()*
OFDM_parameters()
phase_from_pilot()
phase_ref_symbol()
plot_ds_ss
plot_MOD()
PNG()
poly2trellis()*
prdctr()
prob_err_msg_bit()
prob_error()
PSK_slicer()
puncture()
Q()
QAM()
QAM_dem()
quantize_nonuniform
quantize_uniform
rand()*

randerr()*
randint()*
randn()*
rcosflt()*
rcosine()*

rD()
rD_wave()
Rice_pdf()
rsdec()*
rsenc()*
set_CFO()
set_parameter_11a
short_train_seq()
sim_antipodal
sim_ASK_passband_
 coherent
sim_ASK_passband_
 noncoherent
sim_biorthogonal
sim_Delta_Sigma
sim_DM
sim_DPCM
sim_DPSK_passband

performs the LZW coding on an input symbol sequence
performs the LZW decoding on an input coded sequence
tunes the mimimum mean-square error equalizer (MMSEE)
performs the PSK or QAM modulation
μ -law (Eq. (4.1.7a))

1−μ -law (Eq. (4.1.7b))
nextpow2(N) returns the first P such that 2^P >= abs(N)
set the OFDM parameters for IEEE Std 802.11a
finds the OFDM carrier phase estimate based on the pilot
generates the PRS for EUREKA-147 DAB
plots the signals in a DS-SS(spread spectrum) system
plots the signals appearing in a specified modulation process
Pseudo-noise generator
makes a trellis structure for a given generator polynomial
One-step-ahead predictor based on RLSE
Theoretical message bit error probability by Eq. (9.4.11)
Probability of error for various signaling
slices each of PSK signals into the regular constellation points
Puncturing
Complementary error (co-error) function
QAM (quadrature amplitude modulation) modulation
QAM demodulation
Lloyd-Max nonuniform quantization
Uniform quantization
generates an array of uniformly-distributed random numbers
generates a binary matrix having 0 or 1 at random positions
generates a matrix consisting of random integers
generates an array of Gaussian-distributed random numbers
designs and implements a raised-cosine filter
designs a raised-cosine filter
Rectangular pulse
Rectangular wave
Rice probability density function
RS (Reed-Solomon) decoding
RS (Reed-Solomon) encoding
set up the CFO
set the parameters for running “ieee_11a_CFO_est.mdl”
generates the short training sequence for 802.11a
simulates an antipodal (bipolar) signaling (in baseband)
simulates the coherent BASK in passband

simulates the non-coherent BASK in passband

simulates a bi-orthogonal signaling (in baseband)
simulates the delta-sigma (ΔΣ) modulation
Delta modulation
Differential pulse code modulation
simulates the QDPSK (differential QPSK) in passband

260
262
152
390
92
92
74, 77, 82
388
365
377
345
74
338
292-293
99
276
202
316
385
125
327
328
90
89
47
281, 284
284
47
160-163
161-163
9
4
62
284
284
368
402
364
125
176

177

135
105
101
99
194

Index 436

MATLAB routine name Description Page
number

sim_DSB_AMSC
sim_DSB_AMTC
sim_FM
sim_FSK_passband_
 coherent
sim_FSK_passband_
 noncoherent
sim_MSK
sim_OQPSK
sim_orthogonal
sim_PCM
sim_PSK_passband
sim_QAM_passband
sim_S_QDPSK
sim_SSB_AM
sim_TCM
slice()
source_coding()
source_decoding()
sova()
state_eq()
TCM()
TCM1()
TCM_decoder()
TCM_decoder1()
TCM_encoder()
TCM_encoder1()
TCM_state_eq1()
test_corr_circular
test_DSTBC_G2_PSK
test_DSTBC_H4_PSK
test_Rayleigh_fading
test_unwrap
trellis()
tri()
tri_wave()
turbo_code_demo
unwrap()*
vector_quantization()
vit_decoder()
vitdec()*

Viterbi_QAM
xcorr()*
xcorr_my()
zfe()

simulates the DSB-AM
simulates the conventional AM (DSB-AMTC)
simulates the FM (frequency modulation)
simulates the coherent FSK in passband

simulates the noncoherent FSK in passband

simulates the passband MSK communication
simulates the offset QPSK (OQPSK)
simulates an orthogonal signaling (in baseband)
Pulse code modulation
simulates the QPSK in passband
simulates the QAM in passband
simulates the /4π -shifted QPSK
simulates the USSB/LSSB (upper/lower single sideband)-AM
simulates 8PSK with the trellis-coded modulation
slices a received signal according to the given constellation
performs the source coding on an input symbol sequence
performs the source coding on an input coded sequence
Soft-output Viterbi algorithm for turbo coding
State equation used in conv_encoder()
Trellis-coded modulation
TCM using TCM_encoder1() and TCM_decoder1()
TCM decoder with a convolutional encoder touched by input
TCM decoder w. a convolutional encoder untouched by input
TCM encoder with a convolutional encoder touched by input
TCM encoder w. a convolutional encoder untouched by input
State equation used in TCM()
tests the MATLAB routine ‘corr_circular()’
applies the DSTBC with 3 transmit antennas for 4PSK
applies the DSTBC with 4 transmit antennas for 4PSK
Rayleigh fading effect
tests the function of unwrap()
Trellis structure
Triangular pulse
Triangular wave
demonstrates turbo coding/decoding with logmap() or sova()
undo the radian phase wrapped into (π− ,π]
Vector quantization
Viterbi decoding
Viterbi decoding
QAM with convolutional encoding and Viterbi decoding
correlation
correlation
zero-forcing equalizer

74
77
84
184

185

214
208
126
96
189
199
210
82
296
222
259
259
306
286
329
334
297
333
296
332
329
69
316
335
60
84
304
9
4
307
83-84
104
290, 291
292, 293
326
53
52
149

Index

437

Index for Simulink Models
Simulink model name Description Page

number
BCH_BPSK_sim
BPSK_squaring
CFO_sim
channel_estimation_sim
Delta_Sigma_sim
do_OFDM0_sim
do_OFDM1_sim
DS_SS_sim
DS_SS2_sim
FSK_passband_sim
ieee_11a_CFO_est
interleaving_sim
MSK_passband_sim
PLL_sim
PN_generator_sim
PSK_carrier_phase_

timing_recovery
PSK_passband_sim
puncture_sim
QAM_carrier_recovery
QAM_passband_sim
QPSK_Costas
scrambling_sim
SRRC_filter
TCM_sim
Viterbi_QAM_sim

simulates BPSK with BCH coding
simulates BPSK with squaring loop for carrier phase recovery
simulates the CFO estimation and compensation
simulates the channel estimation for OFDM system
simulates the delta-sigma (ΔΣ) modulation
simulates a basic OFDM system
simulates an OFDM system (IEEE Std 802.11a)
simulates QAM with DS-SS(spread spectrum)
simulates QAM with 2-user DS-SS (CDMA) system
simulates the passband FSK (frequency-shift keying)
simulates 802.11a system with CFO estimation/compensation
tries the interleaving and deinterleaving
simulates the passband MSK (minimum-shift keying)
simulates a PLL (phase-locked loop) system
tries generating the PN/Gold/Kasami sequences
simulates PSK with carrier phase and timing recovery

simulates the passband PSK (phase-shift keying)
tries puncturing and depuncturing
simulates QAM with decision-feedback carrier phase recovery
simulates the passband QAM
simulates BPSK with Costas loop for carrier phase recovery
tries using Scarmbler and Descrambler blocks
performs the cascaded square-root raised-cosine filtering
simulates a Ungerboeck TCM (trellis-coded modulation)
QAM with convolutional encoding and Viterbi decoding

324
248
369
381
105
360
392
349
354
216
403-404
384
223
247
342
251

219
385
250
221
249
388
164
330
327

	dc_excerpt.pdf
	dc00(A-Jin).pdf
	dc07_excerpt.pdf
	dc09_excerpt.pdf
	dc09_excerpt1.pdf
	dc11_excerpt.pdf

	dc_Index.pdf

