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Preface 

This book has been designed as a reference book for students or engineers studying 
communication systems possibly in the curriculum of Electrical Engineering program rather 
than a text book for any course on communication. Readers are supposed to have taken at least 
two junior-level courses, one on signals and systems and another one on probability and random 
processes. In other words, readers should have a basic knowledge about the linear system, 
Fourier transform, Laplace transform, z -transform, probability, and random processes although 
the first two chapters of this book provide a brief overview of some background topics to 
minimize the necessity of the prerequisite courses and to refresh their memory if nothing else.  

It is not the aim of this book to provide any foundation in the basic theory of digital 
communication since the authors do not have such a deep knowledge as to do it. The first aim of  
this book is to help the readers understand the concepts, techniques, terminologies, equations, 
and block diagrams appearing in the existing books on communication systems while using 
MATLAB® to simulate the various communication systems most of which are described by 
block diagrams and equations. Needless to say, the readers are recommended to learn some 
basic usage of MATLAB® that is available from the MATLAB help function or the on-line 
documents at the web site <http://www.mathworks.com/matlabcentral/>. However, they are not 
required to be so good at MATLAB® since most programs in this book have been composed 
carefully and completely so that they can be understood in connection with related/referred 
equations and/or block diagrams. The readers are expected to get used to MATLAB software 
while trying to modify/use the MATLAB® codes and Simulink® models in this book for solving 
the end-of-chapter problems or their own problems. The second and main aim of this book is to 
make even a novice at both MATLAB® and communication systems become acquainted, at least 
comfortable, with MATLAB® as well as communication systems while running the MATLAB 
programs on his/her computer and trying to understand what is going on in the systems 
simulated by the programs. Is it too much to expect that a novice will become interested in 
communications and simultaneously fall in love with MATLAB®, which is a universal language 
for engineers and scientists after having read this book through? Is it just the authors’ 
imagination that the readers would think of this book describing and explaining many concepts 
in MATLAB® rather than in English? In any case, the authors have no intention to hide their 
hope that this book will be one of the all-the-time-reserved books in most libraries and can be 
found always on the desks of most communication engineers. The features of this book can be 
summarized as follows: 

1. This book presents more MATLAB programs for the simulation of communication systems 
than any existent books with the same or similar titles as an approach to explain most things 
using MATLAB® and figures rather than English and equations.  

 2. Most MATLAB programs are presented in a complete form so that the readers can run them 
instantly with no programming skill and focus on understanding the behavior and 
characteristic of the simulated systems and making interpretations based on the tentative 
and final simulation results. 

3. Many programs have a style of on-line processing rather than batch processing so that the 
readers can easily understand the whole system and the underlying algorithm in details 
block by block and operation by operation. Furthermore, the on-line processing style of the 
programs is expected to let the readers develop their insight into the real system. 

4. Authors never think that this book can replace the existent books made by many great 
authors to whom they are not comparable to. They neither expect that this book can take the 
place of the MATLAB manual. Instead, this book is designed to play a role of bridge 
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between MATLAB® software and the theory, block diagrams, and equations appearing in 
the field of communications so that the readers can feel free to utilize MATLAB® software 
for studying communication systems and become much more interested in communications 
than before reading this book. 

The contents of this book are derived from the works of many (known or unknown) great 
scientists, scholars, and researchers, all of whom are deeply appreciated. We would like to thank 
the reviewers for their valuable comments and suggestions, which contribute to enriching this 
book. 

We also thank the people of the School of Electronic & Electrical Engineering, Chung-Ang 
University for giving us an academic environment. Without affections and supports of our 
families and friends, this book could not be written. Special thanks should be given to Senior 
Researcher Yong-Suk Park for his invaluable help in correction. We gratefully acknowledge the 
editorial and production staff of A-Jin Publishing Company for their kind, efficient, and 
encouraging guide. 

Program files can be downloaded from <http://wyyang53.com.ne.kr/>. Any questions, 
comments, and suggestions regarding this book are welcome and they should be mailed to 
wyyang53@hanmail.net. 

  

Won Young Yang et al. 
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7.5  QUADRATURE AMPLITUDE MODULATION (QAM) 

The passband 2bM = -ary QAM signaling uses the waveforms which have different amplitudes and 
phases depending on what data they are carrying and therefore, it can be viewed as a kind of APK 
(amplitude-phase keying), which combines amplitude modulation and phase modulation. Each of 
the passband 2bM = -ary QAM signal waveforms can be written as 

2( ) ( ) ( ) Re ( ) cj t
mc msm mc uc ms us

s
s t A s t A s t A j A e

T
ω= + = +    for 0, 1, , 1m M= −

2 2cos( ) sin( )mc msc c
s s

A t A t
T T

ω ω= − for sTt <≤0

2 2 12 cos( )  with  and  tan ms
m mm c mc ms m

mcs

AA t A AT
A Aω θ θ −= + = + = (7.5.1)

where
2 2( ) cos( ),   ( ) sin( ) :  Basis signal waveformsuc c us c
s s

s t t s t t
T T

ω ω= = −                (7.5.2) 

:  Bit time or bit duration,   :  Symbol timeor symbolduration

: Signal energy per symbol
b s b

s b

T T bT

E bE

=

=
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The QAM signal waveforms are illustrated in Fig. 7.1(a4) and each of them can be represented as a 
vector of length mA

[ ] [ ]cos sinm mmc msm mA A A θ θ= =s (7.5.3)

and depicted in the signal space as Fig. 7.1(b4) or Fig. 7.11 where the (orthonormal) bases of the 
signal space are the unit vectors representing ( )ucs t  and ( )uss t  defined by Eq. (7.5.2). 

Suppose the amplitudes/phases of the 2bM = -ary QAM signal waveforms are designed in such a 
way that they can be represented by a rectangular constellation in the signal space as Fig. 7.11(a) 
and the minimum distance among the signal points is 2A . Then, the average ,s avE of signal powers 
(represented by the squared distance between signal points and the origin) and the average number 

bN  of adjacent signal points for a signal point vary with the modulation order 2bM =  or the 
number b of bits per symbol as

2 21
2 2 22

,
1

1 4 (1 ) 2 2( 1) 42 4 :   2 ,    2 4
4 3 2

M

s av m b
m

A MM E A
M M

A A N
−

=

× × −
= = = = = = = = −

=
2 2 21

4 2 22
,

1

2

2

1 4 (1 3 ) 4 2( 1)2 16 :   10
16 3

4 ((2 1) 4 (4 2) 3 2) 4              3 4
4 4

M

s av m
m

b

A MM E A
M

M

A A

N

−

=

× + × −= = = = = =

× − × + − × +
= = = −

=
2 2 2 2 2

4 2 2
,

2

2

4 (1 3 5 7 ) 8 2( 1)4 2 64 :   42
64 3

4 ((4 1) 4 (8 2) 3 2) 7 4              4
28 8

s av

b

A MM E
M

M

A A

N

× + + + × −= = = = =
=

× − × + − × +
= = = −

=

×

2
,

2( 1) Average signal energy per symbol
3

:s av
ME A−=                               (7.5.4a) 

44 : Average number of adjacent signal pointsb M
N = −                      (7.5.4b) 
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A half of the minimum distance mind  among the 2bM = -ary QAM signal points in the signal space 
can be expressed in terms of the average signal energy ,b avE  per bit as 

(7.5.4a)min
, ,

3 / 2 3/ 2
2 1 1s av b av

d A E bE
M M

= = =
− −

                                    (7.5.5) 

Note that if we use the circular constellation as in Fig. 7.11(b), we may have a larger minimum 
distance with the same average energy ,b avE , but the difference is very small for 16M ≥ . Besides, 
an 2 ( 2 : an even number)bM b m= = -ary QAM signaling with rectangular signal constellation can 
easily be implemented by two independent 2/2b -ary PAM signaling, each of which uses one of the 
quadrature carriers )cos( tcω  and )sin( tcω , respectively (see Fig. 7.12). This is why QAM signaling 
with rectangular signal constellation is widely used. 

For an 2bM L N= = -ary QAM signaling implemented by combining an L -ary PAM signaling 
and an N -ary PAM signaling, the symbol error probability can be found as 

, , ,probability of correct detection( ) 1 ( ) 1 (1 ( ))(1 ( ))e s e s e sP M L N P P L P N= = − = − − −

(7.1.5)
, ,2 2

2( 1) 3 / 2 2( 1) 3 / 21 1 1
1 1r b r b

L b N bQ SNR Q SNR
L NL N
− −= − − −

− −
      (7.5.6) 

,
4( 1) 3 / 2 with

1 r b
L bQ SNR L N
L M
−

≤ ≥
−

(7.5.7)

where the upperbound on the RHS coincides with what is obtained by substituting Eqs. (7.5.4b) and 
(7.5.5) into Eq. (5.2.41). How about the bit error probability? Under the assumption that the 
information symbols are Gray-coded so that the codes for adjacent signal points differ in only one 
bit, the most frequent symbol errors contain just one of the b  bits mistaken and the relationship 
between the symbol and bit errors can be written as 

sebe P
b

P ,,
1

=                                                            (7.5.8) 

Now, let us think about the structure of the 22 2 ( 2 : an even number)b mM b m= = = -ary QAM 
communication system depicted in Fig. 7.12 where the XMTR divides the b  bits of a message 
symbol data into two parts of 2/bm =  bits, converts them to analog signals, and modulates them 
with the quadrature carriers that are the basis signal waveforms 

2 2( ) cos( ) ( ) sin( )anduc c us c
s s

s t t s t t
T T

ω ω= = − ,                          (7.5.10) 

respectively. This QAM scheme is basically equivalent to performing two independent quadrature 
PAMs in parallel. The RCVR has two quadrature correlators, each of which computes a 
correlation of the received signal )(tr  with )(tsuc  and )(tsus  to make the sampled outputs

(5.1.27)
,  0

( ) ( ( 1) )
sT

sc k ucy s t r t k T td= + −   and
(5.1.27)

,  0
( ) ( ( 1) )

sT

ss k usy s t r t k T td= + − ,        (7.5.11) 
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respectively. The DTR judges the received signal to be the one represented by the signal point 
which is the closest to the point , ,( , )c k s ky y  in the signal space as 

2 2
* , , , ,Arg Min ||[   ] [   ]||  Arg Min{( ) ( ) }c k s k mc ms c k mc s k msm m

m y y A A y A y A= − = − + −         (7.5.12) 

or combines two independent quadrature PAM demodulation results 

,* 1,...,
Arg Min | (2 1) |c ki M

i y i M A
=

= − − −                                       (7.5.13a) 

,* 1,...,
Arg Min (2 1)s k

l M
l y l M A

=
= − − −                                         (7.5.13b) 

to judge the received signal to be the one represented by the * * )( ,i l th signal point from the left-
lower corner in the signal space. 

The objective of the following MATLAB program “sim_QAM_passband.m” is to simulate the 
passband 42 2bM = = -ary QAM signaling depicted in Fig. 7.12 and plot the bit error probability vs. 

, 10 010 log ( /( / 2))r b bSNRdB E N=  for checking the validity of theoretical derivation results (7.5.8). 
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%sim_QAM_passband.m
% simulates a digital communication system in Fig.7.13
%  with QAM signal waveforms in Fig.7.11
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
b=4; M=2^b; L=2^(b/2); % # of bits per symbol and the modulation order
SNRbdBt=0:0.1:15;   SNRbt=10.^(SNRbdBt/10);
Pm=2*(1-1/L)*Q(sqrt(3/2*b*SNRbt/(M-1))); % Eq.(7.1.5)
pobet= (1-(1-Pm).^2)/b; % Eq.(7.5.8) with (7.5.6)
Tb=1; Ts=b*Tb; % Bit/Symbol time 
Nb=16; Ns=b*Nb; % # of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
ssc=[0 0; 0 1; 1 1; 1 0]; sss=ssc; 
wc=8*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T;
su=sqrt(2/Ts)*[cos(wc*t); -sin(wc*t)]; suT=su*T; % Basis signals
Esum= 0;
% 16-QAM signal waveforms corresponding to rectangular constellation
for i=1:L

for l=1:L
    s(i,l,1)=2*i-L-1; s(i,l,2)=2*l-L-1; %In-phase/quadrature amplitude
    Esum= Esum +s(i,l,1)^2 +s(i,l,2)^2;
    ss(L*(l-1)+i,:)=[ssc(i,:) sss(l,:)];
    sw(L*(l-1)+i,:)=s(i,l,1)*su(1,:)+s(i,l,2)*su(2,:); 

end
end
Eav=Esum/M, Es_av=2*(M-1)/3 % Eq.(7.5.4a): Average signal energy (A=1)
Es=2; % Energy of signal waveform
A=sqrt(Es/Eav); sw=A*sw; levels=A*[-(L-1):2:L-1];
SNRdBs=[1:15]; MaxIter=10000; % Range of SNRbdB and # of iterations
for iter=1:length(SNRdBs)
  SNRbdB= SNRdBs(iter);  SNR=10^(SNRbdB/10);
   sigma2=(Es/b)/SNR;  sgmsT=sqrt(sigma2/T);
   yr= zeros(2,LB);  nobe= 0; % Number of bit errors to be accumulated

for k=1:MaxIter
      im= ceil(rand*L); in= ceil(rand*L);
      imn= (in-1)*L+im; % Index of signal to transmit
      s=ss(imn,:); % Data bits to transmit

for n=1:Ns % Operation per symbol time
         wct= wcT*(n-1);  bp_noise= randn*cos(wct)-randn*sin(wct);
         rn= sw(imn,n) + sgmsT*bp_noise;
        yr= [yr(:,2:LB) suT(:,n)*rn]; % Multiplier

end
      ycsk=sum(yr(:,LBN1:LB)'); % Sampled correlator output - DTR input

%Detector(DTR)
    [dmin_i,mi]= min(abs(ycsk(1)-levels));

      [dmin_l,ml]= min(abs(ycsk(2)-levels));
      d= ss((ml-1)*L+mi,:); % Detected data bits
      nobe = nobe+sum(s~=d); if nobe>100; break; end

end
   pobe(iter)= nobe/(k*b);
end
subplot(222), semilogy(SNRbdBt, pobet, 'k-', SNRdBs, pobe, 'b*')
title('Probability of Bit Error for 16-ary QAM Signaling')
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Fig. 7.14 shows the BER (bit error rate) curves, i.e. the bit error probabilities versus the average 
SNR per bit for 2 4 62 2 ,  2 ,  2bM = = -ary QAM signalings where the error probability tends to 
increase as the modulation order M  increases. This tendency can be anticipated from the signal 
constellation diagram where the signal points get denser in the two-dimensional space and 
consequently, the minimum distance among the signal points gets shorter as M  increases. 

7.6  COMPARISON OF VARIOUS SIGNALINGS

There are several criteria to consider in deciding the signaling/modulation methods. For example, 

 BER (bit error rate) performance: How low is the bit error probability for the same SNR?
 Data rate: How high is the data transmission rate[bits/sec]? 
 Power efficiency: How low is the SNR required for keeping the same BER? 
 Bandwidth efficiency: How narrow is the bandwidth required to keep the same data transmission 

rate?
 PAR (peak-to-average power ratio), interference, and out-of-band radiation 
 Structural simplicity and cost: How simple is the structure and how cheap is the cost for 

construction and maintenance? 

Table 7.1 shows the BERs for various signalings that have been discussed so far. The following 
MATLAB routine “prob_error(SNRbdB,signaling,b)” computes the error probability for SNRbdB 
value(s), signaling method, and number of bits per symbol. The MATLAB built-in function 
‘berawgn(EbN0dB,signaling,M)’ is more powerful and convenient to use. The BERTool GUI 
(graphic user interface) can be invoked by typing ‘bertool’ into the MATLAB Command Window. 



7.6  Comparison of Various Signalings    201 

Table 7.1  Bit error probabilities for various signalings ( 2
, 0/ ( / ) /( / 2)r b sbSNR E E b Nσ= = )
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Now, let us look over the bandwidth efficiency, which is defined to be the ratio of the data bit 
(transmission) rate bR [bits/s] over the required system bandwidth B [Hz], for 2bM = -ary
ASK/PSK/QAM/FSK signalings. Note the following: 

- The rectangular pulse of duration D [s] in Fig. 1.1(a1) can be viewed as a signal carrying the data 
with symbol rate D/1 [symbol/s] and the null-to-null bandwidth of the rectangular pulse is 

D/4π [rad/s] D/2= [Hz] as can be seen from the spectrum in Fig. 1.1(a1). Thus it may be 
conjectured that, if a series of data with symbol rate sR [symbol/s] is modulated with a carrier 
frequency cω  and transmitted, the bandwidth is sR2 [Hz].

- The interval between adjacent discrete spectra in Fig. 1.1(a1) is D/π [rad/s] D2/1= [Hz], which 
implies that the gap between the carrier frequencies in FSK signaling is / 2sR [Hz].

Therefore we can write the bandwidths and bandwidth efficiencies of ASK/PSK/QAM and 
(coherent) FSK signalings as

2
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function p=prob_error(SNRbdB,signaling,b,opt1,opt2)
% Finds the symbol/bit error probability for given SNRbdB (Table 7.1)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<5, opt2='coherent'; end % opt2='coherent' or 'noncoherent'
if nargin<4, opt1='SER'; end % opt1='SER' or 'BER'
M=2^b; SNRb=10.^(SNRbdB/10);  NSNR=length(SNRb);
if signaling(1:3)=='ASK' % ASK (PAM)

if lower(opt2(1))=='c' % ASK coherent --> Eq.(7.1.5)
for i=1:NSNR, p(i)=2*(M-1)/M*Q(sqrt(3*b*SNRb(i)/(M^2-1))); end
if lower(opt1(1))=='b', p = p/b; end

else % ASK noncoherent -->  Eq.(7.1.22)
if b==1, for i=1:NSNR, p(i)=exp(-SNRb(i)/4)/2; end; end

end
elseif signaling(1:3)=='FSK'
  tmp=M/2/(M-1);
  f5251_=inline('Q(-sqrt(2)*x-sqrt(b*SNRb)).^(2^b-1)','x','SNRb','b');
if lower(opt2(1))=='c' % FSK coherent

if b==1
for i=1:NSNR, p(i)=Q(sqrt(SNRb(i)/2)); end %Eq.(7.2.9)

else
for i=1:NSNR 

         p(i) = 1-Gauss_Hermite(f5251_,10,SNRb(i),b)/sqrt(pi);
end

end
else % FSK noncoherent

for i=1:NSNR
       p(i)=(M-1)/2*exp(-b*SNRb(i)/4);  tmp1=M-1;

for m=2:M-1
          tmp1=-tmp1*(M-m)/m; 
          p(i)=p(i)+tmp1/(m+1)*exp(-m*b*SNRb(i)/2/(m+1)); % Eq.(7.2.19)

end
end

end
if lower(opt1(1))=='b'&b>1, p = p*tmp; end

elseif signaling(1:3)=='PSK' % Eq.(7.3.7)
for i=1:NSNR, p(i)=(1+(b>1))*Q(sqrt(b*SNRb(i))*sin(pi/M)); end
if lower(opt1(1))=='b'&b>1, p = p/b; end

elseif signaling(1:3)=='DPS' % DPSK
if b==1 % Eq.(7.4.8)

for i=1:NSNR, p(i)=2*Q(sqrt(b*SNRb(i)/2)*sin(pi/M)); end
else
for i=1:NSNR, p(i)=exp(-SNRb(i)/2)/2; end %Eq.(7.4.9)
if lower(opt1(1))=='b', p = p/b; end

end
elseif signaling(1:3)=='QAM'

  L=2^(ceil(b/2)); N = M/L;
for i=1:NSNR

     tmpL = 1-2*(L-1)/L*Q(sqrt(3*b/2/(L^2-1)*SNRb(i)));
     tmpN = 1-2*(N-1)/N*Q(sqrt(3*b/2/(N^2-1)*SNRb(i)));
     p(i) = 1-tmpL*tmpN; % Eq.(7.5.6)

end
if lower(opt1(1))=='b'&b>1, p = p/b; end

end
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Table 7.2  Power efficiency and bandwidth efficiency with signaling 

The number of 
bits per symbol 

<Power efficiency>
, 01010 log ( /( / 2))r b bSNRdB E N= [dB]

for 5
, 10e bP −=

<Bandwidth efficiency> 
/bR B [bits/s/Hz]

    ASK    PSK FSK QAM    ASK/PSK   FSK    QAM    
     1=b      12.6 12.6   15.6           -      0.5000 0.4000            - 
     2=b      16.8    12.9  13.1      12.9      1.0000 0.5714   1.0000 
     3=b      21.3    16.5 11.6        -      1.5000 0.5455       - 
     4=b      26.1    21.1 10.7        17.1      2.0000 0.4211   2.0000 
     5=b      31.2    26.1 9.9                -      2.5000 0.2857       - 
     6=b      36.5    31.3 9.4        21.6      3.0000 0.1791   3.0000 
     7=b      41.8    36.7 8.9                -      3.5000 0.1069       - 
     8=b      47.3    42.1     8.5 26.4      4.0000 0.0618   4.0000 

%dc07t02.m
% fills in Table 7.2 with SNRdB for BER=1e-5 and bandwidth efficiency
clear, clf 
tol=1e-14; bs=[1:8]; 
% Define a nonlinear equation to be solved for SNRdB using fsolve()
nonlinear_eq=inline('prob_error(x,signaling,b)-1e-5','x','signaling','b');
% For PSK signaling
for i=1:length(bs) 
   b=bs(i); RB_PSK(i)=b/2; % Bandwidth efficiency

if i==1, x0=10; else  x0=SNRbdBs_PSK(i-1); end
   SNRbdBs_PSK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'PSK',b);
end
disp('PSK'), [bs; SNRbdBs_PSK; RB_PSK] 
% For FSK signaling
for i=1:length(bs) 
   b=bs(i); RB_FSK(i)=2*b/(2^b+3); 

if i==1, x0=10; else  x0=SNRbdBs_FSK(i-1); end
   SNRbdBs_FSK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'FSK',b);
end
disp('FSK'), [bs; SNRbdBs_FSK; RB_FSK] 
% For QAM signaling
bs_QAM=[2:2:8];
for i=1:length(bs_QAM) 
   b=bs_QAM(i); RB_QAM(i)=b/2; 

if i==1, x0=10; else  x0=SNRbdBs_QAM(i-1); end
   SNRbdBs_QAM(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'QAM',b);
end
disp('QAM'), [bs_QAM; SNRbdBs_QAM; RB_QAM] 
% For ASK signaling
for i=1:length(bs) 
   b=bs(i); RB_ASK(i)=b/2; 

if i==1, x0=10; else  x0=SNRbdBs_ASK(i-1); end
   SNRbdBs_ASK(i)=fsolve(nonlinear_eq,x0,optimset('TolFun',tol),'ASK',b);
end
disp('ASK'), [bs; SNRbdBs_ASK; RB_ASK]
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Table 7.2 shows the power efficiency, i.e. the SNR[dB] required to achieve the BER of 10-5 and 
the bandwidth efficiency, i.e. the ratio of data transmission rate[bits/s] over bandwidth[Hz], that are 
also depicted in Fig. 9.7. As the modulation order M  or the number b of bits per symbol increases, 
FSK tends to have higher power efficiency and lower bandwidth efficiency while PSK tends to 
have lower power efficiency and higher bandwidth efficiency, as can also be seen from Figs. 7.5 
and 7.10. The above MATLAB program “dc07t02.m” can be used to compute the values of 

,r bSNRdB  at which PSK/FSK/QAM/ASK signalings achieve the BER of 10-5.
Before ending this section, it would be well worth to see the usage of the BER computing 

function ‘berawgn()’ in the MATLAB Help manual: 

ber = berawgn(EbNo,'PAM',M) 
Ber = berawgn(EbNo,'QAM',M) 
Ber = berawgn(EbNo,'PSK',M,dataenc)  with dataenc='diff'/'nondiff' for differential/non-differential
ber = berawgn(EbNo,'OQPSK',dataenc)  for OQPSK (offset QPSK)  (see Problem 7.4) 
ber = berawgn(EbNo,'DPSK',M)
ber = berawgn(EbNo,'FSK',M,coh)  with coh='coherent'/'noncoherent' for coherent/noncoherent 
ber = berawgn(EbNo,'FSK',2,coh,rho)  with rho=the complex correlation coefficient 
ber = berawgn(EbNo,'MSK',dataenc)  with dataenc='diff'/'nondiff' for differential/non-differential 
ber = berawgn(EbNo,'MSK',dataenc,coherence) 
berlb = berawgn(EbNo,'CPFSK',M,modindex,kmin) % gives the BER lowerbound
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Problems

7.1  Linear Combination of Gaussian Noises 
Suppose we have a zero-mean white Gaussian noise )(tn  of mean and variance as 

{ ( )} 0E n t =                                                             (P7.1.1) 

2cov{ ( ), ( )} { ( ) ( )} ( )n n t E n n t tτ τ σ δ τ= = −                                    (P7.1.2) 

Also, consider another noise 

1  0( ) ( ) ( )sT
un t n t s dτ τ τ= +                                             (P7.1.3) 

which is obtained from taking the crosscorrelation of a zero-mean white noise )(tn  with a unit 
energy signal )(tsu  such that 

2
 0 ( ) 1sT

us dτ τ =                                                    (P7.1.4) 

It is claimed that this is also a zero-mean Gaussian noise with variance 2σ .
(a) To verify this, check the following derivation of the mean and covariance of )(1 tn . Note that a 

linear combination of Gaussian processes is also Gaussian. 

%dc07p01.m
% See if a linear convolution of Gaussian noises
% with a unit signal waveform is another Gaussian noise
clear, clf 
K=10000; % # of iterations for getting the error probability 
Ts=1; N=40; T=Ts/N; % Symbol time and Sample time
N4=N*4; % Buffer size of correlator
wc=10*pi/Ts;  t=[0:N-1]*T;  wct=wc*t; 
su=sqrt(2/Ts)*cos(wct); % Unit energy signal 
signal_power=su*su'*T % Signal energy 
sigma2=2; sigma=sqrt(sigma2); sqT=sqrt(T); 
noise= zeros(1,N4); % Noise buffer
for k=1:K

for n=1:N % Operation per symbol time 
      noise0= sigma*randn; 
      noise=[noise(2:N4) noise0/sqT]; % Bandpass noise 
      noise1= su*noise(3*N+1:N4)'*T; 

end
   noise0s(k)=noise0; noise1s(k)=noise1; 
end
phi0=xcorr1(noise0s);  phi1=xcorr1(noise1s); 
plot(phi0), hold on, pause, plot(phi1,'r')
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 (proof) 

{ } (P7.1.1)
1 0  0
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ss
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u uE n t E n t s d E n t s dτ τ τ τ τ τ= + = + =            (P7.1.5) 
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0 0 0   
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(b) As an alternative for verification, the above program “dc07p01.m” is composed to generate a 
noise )(tn  with Gaussian distribution 2( 0, 2)N m σ= =  and take the sampled crosscorrelation 
between )(tn  and a unit energy signal )(tsu  to make another noise )(1 tn . Plot the 
autocorrelation of these two noises (noise0 and noise1) and make a comment on their 
closeness or similarity of their statistical properties such as the mean and variance.

7.2  Coherent/Noncoherent Detection with Time Difference between XMTR and RCVR 
(a) In order to feel how seriously the time difference between XMTR and RCVR affects the BER 

performance of a communication system, use the following statements to modify the MATLAB 
program “sim_FSK_passband_coherent.m” so that it can accommodate some delay time or 
time difference (td) between XMTR and RCVR clocks. Then run the modified program to see 
the changed BER curve. Does it stay away from the theoretical BER curve? 

nd=2; % Number of delay samples
sws=zeros(1,LB);
sws=[sws(2:LB) sw(i,n)];
r=[r(2:LB) sws(end-nd)+sgmsT*bp_noise]; % Received signal

(b) In order to see that noncoherent detection is of relative advantage over coherent detection in 
facing the time diffference between XMTR and RCVR, replace nd=0 by nd=2 in the 14th line 
of the program “sim_FSK_passband_noncoherent.m” (Sec. 7.2) and run the modified program 
to see the changed BER curve. Does it still touch the theoretical BER curve? 

(c) Modify the 19th line of the QPSK simulation program “sim_PSK_passband.m” (Sec. 7.3) into 
nd=1 and run the program to see the changed constellation diagram and BER curve. Modify the 
16th line of the QDPSK simulation program “sim_DPSK_passband.m” (Sec. 7.4) into nd=1 and 
run the program to see the BER curve. What is implied by the simulation results? 

7.3 22M = -ary QAM (Quadrature AM) and -/4π QPSK(Quadrature PSK) 
From the QAM signal constellation diagrams in Fig. 7.11, it can be seen that 22M = -ary QAM is 
the same as -/4π QPSK, whose signal constellation diagram is a rotation of the QPSK signal 
constellation diagram (Fig. 7.1(b3)) by /4π =45o as depicted in Fig. P7.5(a2). Is it also supported 
by the conformity of the error probabilities (between the standard QPSK and the -/4π QPSK) that 
turned out to be Eq. (7.3.7) and Eq. (7.5.7), respectively? You can substitute 2=b , / 22 2bL = = ,
and 22M =  into both of the equations and check if they conform with each other. 
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7.4  OQPSK (Offset Quadrature PSK) or SQPSK (Staggered QPSK) 
As depicted in Fig. P7.4, OQPSK is a slight modification of QPSK (Fig. 7.12) in such a way that 
the Q(uadrature)-channel bit stream is offset w.r.t. the I(n-phase)-channel by a bit duration (Fig. 
P7.4(b2)). Compared with QPSK, it allows no simultaneous change of two bits to prevent any state 
transition accompanying the phase change of 180o (Fig. P7.4(c2)) (in the teeth of making more 
frequent state transitions possibly every bit time) and consequently, the envelope variation becomes 
less severe so that the transmitted signal bandwidth can be limited more strictly.
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%sim_OQPSK.m
% simulates a digital communication system
%  with O(ffset)QPSK signal waveforms in Fig.P7.4
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf 
b=2; M=2^b; 
SNRbdBt=0:0.1:10;  SNRbt=10.^(SNRbdBt/10); 
pobet=prob_error(SNRbdBt,'PSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/symbol time 
Nb=16; Ns=Nb*b; % # of sample times in Tb and Ts 
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
Es=2; sqEb=sqrt(Es/b); % Energy of signal waveform 
% QPSK signal waveforms 
ss=[0 0; 0 1; 1 1; 1 0]; 
wc=2*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T;
su=sqrt(2/Ts)*[cos(wc*t); ??????????];  suT=su*T; 
sw=sqEb*su;
SNRdBs=[1:3:10]; MaxIter=10000; % Range of SNRdB, # of iterations
for iter=1:length(SNRdBs)

SNRbdB=SNRdBs(iter);  SNRb=10^(SNRbdB/10); 
   N0=2*(Es/b)/SNRb; sigma2=N0/2; sgmsT=sqrt(sigma2/T); 
   yr= zeros(2,LB); yc=zeros(1,2); ys=zeros(1,2); 
   iq=0; % Initialize the quadrature bit arbitrarily
   nobe=0; % Number of bit errors to be accumulated

for k=1:MaxIter
     i=ceil(rand*M); s=ss(i,:);  wct=-wcT;

for n=1:b % Operation per symbol time 
if n==1, ii=2*ss(i,1)-1; % In-phase bit 
else iq=2*ss(i,2)-1; % Quadrature bit

end
mn=0;
for m=1:Nb % Operation per bit time 
   wct= wct+wcT; mn=mn+1; 
   bp_noise= randn*cos(wct)-randn*sin(wct); 
   rn=ii*sw(1,mn)+iq*sw(2,mn)+sgmsT*bp_noise; 
   yr=[yr(:,2:LB) suT(:,mn)*rn]; % Multiplier
end
if n==2 % sampled at t=2k*Tb 

           yc=[yc(2) sum(yr(?,LBN1:LB))]; % Correlator output
else % sampled at t=(2k-1)*Tb
ys=[ys(2) sum(yr(?,LBN1:LB))]; % Correlator output

end
end

      d=([yc(?) ys(?)]>0); % Detector(DTR) 
if k>1, nobe=nobe+sum(s0~=d); end
if nobe>100, break; end

      s0= s; 
end
pobe(iter)= nobe/(k*b); 

end
pobe
semilogy(SNRbdBt,pobet,'k-', SNRdBs,pobe,'b*')
title('Probability of Bit Error for (4-ary) QPSK Signaling')
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The above MATLAB program “sim_OQPSK.m” is a modification of the program 
“sim_PSK_passband.m” (QPSK) (in Sec. 7.3) to simulate the OQPSK communication system, 
whose block diagram is depicted in Fig. P7.4, but it is unfinished. Finish it up by replacing the three 
parts of ?’s with appropriate statements or just indices and run it to see the BER curve. 

7.5 /4π -Shifted QPSK (Quadrature PSK) 

/4π -shifted QPSK is another way of lowering envelope fluctuations than OQPSK discussed in 
Problem 7.4. It assigns one of the signal points in the (non-offset) QPSK (Fig. P7.5(a1)) and /4π -
QPSK (Fig. P7.5(a2)) signal constellations to even and odd-number indexed data symbols as 
depicted in Fig. P7.5(b) and therefore, it virtually uses the dual signal constellation diagram shown 
in Fig. P7.5(a3) where the modulation causes no state transition path through the origin as in 
OQPSK. Compared with OQPSK, it has the maximum phase change of 3 /4π± , which is larger 
than that ( /2π± ) of OQPSK; On the other hand, differential encoding/decoding with noncoherent 
detection can be implemented in /4π -shifted QPSK signaling, since it has four possible phase-
shifts of /4θ πΔ = ±  and 3 /4π±  (as can be seen from Fig. P7.5(b)) while OQPSK has only two 
possible phase-shifts of /2θ πΔ = ± .

Table P7.5  Message data dibits and the corresponding phase-shifts in /4π -shifted QDPSK 
(Gray-coded) message dibits  Phase-shifts 0 1 2 3 4 5 6 7ks s s s s s s s s=

2 1 2 00k kd d− = /4θ πΔ = + ( 1)mod8 1 2 3 4 5 6 7 0ks s s s s s s s s+ =
2 1 2 01k kd d− = 3 /4θ πΔ = + ( 3)mod8 3 4 5 6 7 0 1 2ks s s s s s s s s+ =
2 1 2 11k kd d− = 3 /4θ πΔ = − ( 5)mod8 5 6 7 0 1 2 3 4ks s s s s s s s s+ =
2 1 2 10k kd d− = /4θ πΔ = − ( 7)mod8 7 0 1 2 3 4 5 6ks s s s s s s s s+ =
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(a) Modify the (standard) QPSK simulation program “sim_PSK_passband.m” into a /4π -shifted
QPSK simulation program named, say, “sim_S_QPSK.m” and run it to see the BER curve. 
Does it conform with the theoretical BER curve? 

(b) Referring to Table P7.5, modify the (standard) QDPSK (quadrature differential phase shift 
keying) simulation program “sim_DPSK_passband.m” into a /4π -shifted QDPSK simulation 
program named, say, “sim_S_QDPSK.m” and run it to see the BER curve. Does it conform 
with the theoretical one? If you have no idea, start with the following unfinished program: 

%sim_S_QDPSK.m
% simulates the pi/4-shifted QDPSK signaling (Table P7.5)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only 
b=2; M=2^b; M2=M*2;
SNRbdBt=0:0.1:10;   SNRbt=10.^(SNRbdBt/10); 
pobet=prob_error(SNRbdBt,'DPSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/symbol time 
Nb=16; Ns=b*Nb; % Numbers of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN1=LB-Ns+1; % Sample time and Buffer size
Es=2; % Energy of signal waveform
% QDPSK signal waveforms
ss=[0 0; 0 1; 1 1; 1 0]; 
wc=8*pi/Ts; wcT=wc*T; t=[0:Ns-1]*T;  nd=1;
for m=1:M2,  sw(m,:)=sqrt(2*Es/Ts)*cos(wc*t+(m-1)*pi/M); end
su= sqrt(2/Ts)*[cos(wc*t); -sin(wc*t)]; suT=su*T;
SNRdBs =[1:3:10]; MaxIter=10000; %Range of SNRbdB, # of iterations
for iter=1:length(SNRdBs) 
   SNRbdB=SNRdBs(iter);  SNRb=10^(SNRbdB/10);
   N0=2*(Es/b)/SNRb; sigma2=N0/2; sgmsT=sqrt(sigma2/T);
   sws=zeros(1,LB); yr=zeros(2,LB);
   nobe=0; % Number of bit errors to be accumulated
   is0=1; % Initial signal index
   th0=1; % Initial guess (possibly wrong)

for k=1:MaxIter
     i= ceil(rand*M); s=ss(i,:); % Data bits to transmit
      is= mod(is0+?????,M2)+1; % Signal to transmit (Table P7.5)

for n=1:Ns % Operation per symbol time
        sws=[sws(2:LB) sw(is,n)];
         wct=wcT*(n-1); bp_noise= randn*cos(wct)-randn*sin(wct);
         rn= sws(end-nd) + sgmsT*bp_noise;
         yr=[yr(:,2:LB) suT(:,n)*rn]; % Multiplier

end
      ycsk=sum(yr(:,LBN1:LB)')'; % Sampled correlator output

%Detector(DTR)
     th=atan2(ycsk(2),ycsk(1)); dth=th-th0;

if dth<0, dth=dth+2*pi; end
      [themin,lmin]=min(abs(dth-[?????]*2*pi/M));
      d= ss(lmin,:); % Detected data bits
      nobe= nobe+sum(s~=d); if nobe>100, break; end
      is0=is; th0=th; % update the previous signal and theta

end
   pobe(iter)= nobe/(k*b);
end
semilogy(SNRbdBt,pobet,'k', SNRdBs,pobe,'b*')
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7.6  Minimum-Shift Keying (MSK) 
Minimum-shift keying is a type of continuous phase frequency shift keying (CP-FSK). It encodes 
each data bit into a half sinusoid

2( ) cos( ( ))b
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Es t t t
T

ω θ= +                                              (P7.6.1) 

with its phase changed continuously as 
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where the second term has a plus or minus sign for each bit interval depending on whether the value 
of message data bit is 1 or 0 (see Fig. P7.6). As a consequence, the phase of the signal waveform at 
the boundaries between two consecutive bit intervals becomes 

(2 ) or ((2 1) )
2b bkT m k T mπθ π θ π= ± + = ± ± (P7.6.3)

and the instantaneous frequency, which is obtained by differentiating the angular argument of ( )s t
w.r.t. t , becomes 
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Note that the difference of these two frequencies is / bTπ  and it is the same as the minimum 
frequency gap required to keep the orthogonality between two frequency components for a bit 
duration bT  (see the discussion just below Eq. (7.2.4)).

To find two (orthogonal) basis signal waveforms that can be used to detect the phase of the 
received signal, we rewrite Eq. (P7.6.1) as 
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(D.19)

2( ) sin ( ) with ( ) ((2 1) ) ( (2 1) )
2

sin ((2 1) )cos ( (2 1) )
22

cos ((2 1) )sin ( (2 1) )
2

2 sin ((2 1) ) sin
2

b
Q b b

bb

b b
bb

b
b b

b

b
b

bb

Es t t t k T t k T
TT

k T t k T
TE

T
k T t k T

T

E k T t
T T

πθ θ θ

πθ

πθ

πθ

= = + ± − +

+ ± − +
=

± + ± − +

= + ± for 2 2( 1)b bkT t k T< ≤ +

2 sin if ((2 1) )
2 2

2 sin if ((2 1) )
2 2

b
b

bb

b
b

bb

E t k T
T T
E t k T

T T

π πθ

π πθ

+ + = +
=

− + = −
                                                     (P7.6.6b) 

Substituting these two equations (P7.6.6a) and (P7.6.6b) into Eq. (P7.6.5) yields 
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This implies that the basis signal waveforms to be used for detection at RCVR are 
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Therefore, RCVR computes the correlation between the received signal ( )r t  and these two basis 
signal waveforms and samples it at 2 bt kT=  and (2 1) bk T+  to get 
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Depending on the sign of these sampled values of correlator outputs, the phase estimates are 
determined as

0 if ((2 1) ) 0(2 ) (close to ((2 1) )) if ((2 1) ) 0
c b

b
b c b

y k TkT k T y k Tθ π θ
+ >= ± − + <    (P7.6.10a) 

/ 2 if (2 ) 0((2 1) ) / 2 if (2 ) 0
s b

b
s b

y kTk T y kT
πθ π

− >− = + < (P7.6.10b)

so that the maximum difference between the phase estimates at successive sampling instants is 
/2π± . Then the detector judges the value of transmitted data bit to be 1 or 0 depending on whether 

θ  turns out to have increased or decreased. 
Noting that the sampled values of correlator outputs ((2 1) )c by k T+  and (2 )s by kT  will be 

distributed around ( , 0)bE+  and ( , 0)bE−  in the signal space and thus the (minimum) distance 
between signal points is min 2 bd E= , the (symbol or bit) error probability is 
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%sim_MSK.m
% simulates a digital communication system with MSK signaling
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
b=1; M=2^b; % # of bits per symbol and modulation order
SNRbdBt=0:0.1:12;   SNRbt=10.^(SNRbdBt/10);
pbe_PSK= prob_error(SNRbdBt,'PSK',b,'bit');
pbe_FSK= prob_error(SNRbdBt,'FSK',b,'bit');
Tb=1; Ts=b*Tb; % Bit/Symbol time 
Nb=16; Ns=Nb*b; % # of sample times in Tb and Ts
T=Ts/Ns; LB=4*Ns; LBN2=LB-2*Ns+1; % Sample time and Buffer size
Es=2; % Energy of signal waveform
% QPSK signal waveforms
ds=[0 1];
wc=2*pi; wcT=wc*T; 
t=[0:2*Nb-1]*T; pihTbt=pi/2/Tb*t;
su=sqrt(2/Tb)*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

??????????????????????]; % Eq.(P7.6.8)
su=[fftshift(su(1,:)); su(2,:)];  suT=su*T;
ik=[1 2 1 2 1 1 2 2 2 1];
sq2EbTb=sqrt(2*Es/b/Tb); pihTbT=pi/2/Tb*T;
SNRdBs=[1 3 10]; % Range of SNRbdB
MaxIter=10000; % Number of iterations
for iter=1:length(SNRdBs) 
   SNRbdB=SNRdBs(iter);  SNR=10^(SNRbdB/10);
   N0=2*(Es/b)/SNR; sigma2=N0/2; sgmsT=sqrt(sigma2/T);
   yr=zeros(2,LB); yc=0; ys=0; th0=0; t=0; wct=0; tht=th0; mn=1;
   nobe= 0; % Number of bit errors to be accumulated

for k=1:MaxIter
i=ceil(rand*M); s(k)=ds(i); sgn=s(k)*2-1; 
for m=1:Nb % Operation per bit time

        bp_noise= randn*cos(wct)-randn*sin(wct);
        rn= sq2EbTb*cos(wct+tht) + sgmsT*bp_noise;
        yr=[yr(:,2:LB) suT(:,mn)*rn]; % Correlator output - DTR input
        t=t+T; wct=wct+wcT; tht=tht+sgn*pihTbT; mn=mn+1; 

end
if tht<-pi2, tht=tht+pi2; elseif tht>pi2, tht=tht-pi2; end
thtk(k+1)=tht;
if mn>size(su,2), mn=1; end
if mod(k,2)==1 

yc=sum(yr(?,LBN2:LB));
th_hat(k)=??*(yc<0);
% if k>1&th_hat(k-1)<0, th_hat(k)=-th_hat(k); end

else
ys=sum(yr(?,LBN2:LB));
th_hat(k)=????*(2*(ys<0)-1);

end
if k>1 % Detector(DTR)

       d=(dth_hat>0); if abs(dth_hat)>=pi, d=~d; end
       nobe = nobe+(d~=s(???)); if nobe>100; break; end

end
end

   pobe(iter)= nobe/((k-1)*b);
end
semilogy(SNRbdBt,pbe_PSK,'k', SNRbdBt,pbe_FSK,'k:', SNRdBs,pobe,'b*')
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Compared with Eq. (7.2.9), which is the error probability for BFSK signaling, the SNR has 
increased by two times, which is attributed to the doubled integration period 2 bT  of the correlators. 
(a) Complete the above incomplete program “sim_MSK.m” so that it can simulate the MSK 

modulation and demodulation process. 
(b) Consider the in-phase/quadrature symbol shaping functions 
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Verify that their CTFTs and ESDs (energy spectral densities) can be obtained as 
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7.7  Simulation of FSK Using Simulink 
Fig. P7.7.1 shows a Simulink model (“FSK_passband_sim.mdl”) to simulate a BFSK (binary 
frequency shift keying) passband communication system and Fig. P7.7.2 shows the subsystem for 
the demodulator and detector where the following parameters are to be set in the workspace: 

b=1; M=2^b; % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
dw=2*pi/Ts; wc=10*dw; % Frequency spacing and Carrier freq[rad/s]
EbN0dB=10 % Eb/N0[dB]
Target_no_of_error=50; % Simulation stopping criterion
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%do_FSK_sim.m
clear, clf
b=1; M=2^b; % Number of bits per symbol and Modulation order
Nbsps=b*2^3; % # of samples per symbol in baseband 
Nos=5; Ns=Nbsps*Nos; % # of samples per symbol in passband
Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
dw=2*pi/Ts; % Frequency separation [rad/s]
wc=10*dw; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=50; SNRdBs=[5  10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)
   SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
   sim('FSK_passband_sim',1e5*Ts); SERs(i)=ser(end,1);
end
SNRdBt=0:0.1:13;
poset = prob_error(SNRdBt,'FSK',b,'sym','noncoherent');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 1/Ts;
Received_Signal_Power = ... 
Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function d=detector_FSK(z2s)
[z2max,ind]=max(z2s); d=ind-1; % Fig. 7.4.2

Once the Simulink model named “FSK_passband_sim.mdl” is opened, it can be run by clicking 
on the Run button on the tool bar or by using the MATLAB command ‘sim( )’ as in the above 
program “do_FSK_sim.m”. You can disconnect the Display Block for signal power measurement 
to increase the running speed. 
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(cf) Note that the receive delay in the Error Rate Calculation block is set to 1 due to the sample 
difference between the transmitted data and detected data observed through the Scope.

(a) After having composed and saved the Simulink model “FSK_passband_sim.mdl” (with no 
delay) and two MATLAB programs “do_FSK_sim.m” and “detector_FSK.m” (that can be 
substituted by an Embedded MATLAB Function Block), run the MATLAB program 
“do_FSK_sim.m” to get the SERs (SER: symbol error rate) for a BFSK communication system 
with SNRdBs=[5  10]. Does the simulation result conform with that in Fig. 7.5 (for 1b = ) or 
7.6.2?

(b) Change the 7th statement of the MATLAB program “do_FSK_sim.m” into ‘dw=pi/Ts’ or 
‘dw=3*pi/Ts’ and run the program to get the SER. How are the SERs compared with those 
obtained in (a)? What does the difference come from?

(c) Insert the delay of 1~5 samples and discuss the sensitivity of the system w.r.t. such a delay in 
terms of the SER performance in connection with coherence or noncoherence of the 
communication system. 

(d) Referring to Fig. 7.4.2, extend the Simulink model into “FSK4_passband_sim.mdl” so that it 
can simulate an 22 4M = = -ary FSK communication system and run it to get the SER curve. 

(e) To understand how large the power of noise added by the AWGN Block is, connect the Signal 
power Subsystem together with the Display Block into the input of the AWGN block, click on 
the Run button, and read the displayed value of the channel input signal power. Then connect 
the Signal power Subsystem together with the Display Block into the output of the AWGN 
Block, click on the Run button, and read the displayed value of the channel output signal power 
that will be the sum of the input signal power and noise power (variance). Do the channel input 
and output powers measured through the Simulink simulation conform with those obtained 
using the last two statements in the above program “do_FSK_sim.m”: 
Transmitted_Signal_Power = 1/Ts; 
Received_Signal_Power = ... 

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

Why is 3 added to EbN0dBs(end) in the above statement?
(cf) Visit the webpage <http://www.mathworks.com/access/helpdesk/help/helpdesk.html> and refer 

to the explanation about the function of AWGN Block that can be found in the user manual for 
Communications Blockset, according to which the SNR is defined to be 
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7.8  Simulation of PSK Using Simulink 
Fig. P7.8.1 shows a Simulink model to simulate a PSK (phase shift keying) passband 
communication system where the following parameters are to be set in the workspace: 

b=1; M=2^b; % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier freq[rad/s]
EbN0dB=7; % Eb/N0[dB]
Target_no_of_error=20; % Simulation stopping criterion
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%do_PSK_sim.m
clear, clf 
b=1; M=2^b; % Number of bits per symbol and Modulation order
Nbsps=b*2^3; % # of samples per symbol in baseband 
Nos=5; Ns=Nbsps*Nos; % # of samples per symbol in passband
Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time
wc=2*pi*10/Ts; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=20;
SNRdBs=[5  10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)

SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
sim('PSK_passband_sim',1e5*Ts);
SERs(i) = ser(end,1);

end
SNRdBt=0:0.1:13;
poset = prob_error(SNRdBt,'PSK',b,'sym');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 1/Ts;
Received_Signal_Power = ... 

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function d=detector_PSK(th,M)
%th=atan2(ycsk(2),ycsk(1));
if th<-pi/M, th=th+2*pi; end
[thmin,ind]=min(abs(th-2*pi/M*[0:M-1])); % Eq.(7.3.9) or Fig. 7.7 
d=ind-1;

(a) After having composed and saved the Simulink model “PSK_passband_sim.mdl” and two 
MATLAB programs “do_PSK_sim.m” and “detector_PSK.m”, run the MATLAB program 
“do_PSK_sim.m” to get the SERs for a BPSK communication system with SNRdBs=[5  10]. 
Does the simulation result conform with that in Fig. 7.10 (for 1b = )?

(b) Modify the MATLAB program “do_PSK_sim.m” (possibly together with) Simulink model 
“PSK_passband_sim.mdl” to simulate an 22 4M = = -ary PSK (QPSK) communication system 
and run it to get the SER curve. 

(c) Rename the Simulink model “PSK_passband_sim.mdl” “DPSK_passband_sim.mdl” and 
modify it to simulate an 22 4M = = -ary DPSK (QDPSK) communication system. You can refer 
to the MATLAB program “sim_DPSK_passband.m” and Fig. P7.8.2. Run it to get the SERs 
with SNRdBs=[5  10]. 
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7.9  Simulation of QAM Using Simulink 
Fig. P7.9 shows a Simulink model to simulate a QAM (quadrature amplitude modulation) passband 
communication system where the following parameters are to be set in the workspace: 

b=4; M=2^b; L=2^(b/2); % Number of bits per symbol and Modulation order
Ns=40; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time 
wc=2*pi*10/Ts;           % Carrier freq[rad/s] 
EbN0dB=10;               % Eb/N0[dB] 
Target_no_of_error=100;  % Simulation stopping criterion
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%do_QAM_sim.m
clear, clf 
b=4; M=2^b; L=2^(b/2); % # of bits per symbol and Modulation order
Ns=b*10; Ts=1e-5; T=Ts/Ns; % Symbol time and Sample time 
wc=2*pi*10/Ts; % Carrier Frequency[rad/s] (such that wc*T<pi)
Target_no_of_error=100;
SNRdBs=[5  10]; EbN0dBs=SNRdBs-3;
for i=1:length(SNRdBs)

SNRdB=SNRdBs(i); EbN0dB=SNRdB-3; % Eb/(N0/2)=SNR-> Eb/N0=SNR/2
sim('QAM_passband_sim',1e5*Ts); SERs(i) = ser(end,1);

end
SNRdBt=0:0.1:13; poset = prob_error(SNRdBt,'QAM',b,'sym');
semilogy(SNRdBt,poset,'k', SNRdBs,SERs,'*'), xlabel('SNR[dB]')
Transmitted_Signal_Power = 2*(M-1)/3/Ts;
Received_Signal_Power = ... 

Transmitted_Signal_Power*(1+10^(-(EbN0dBs(end)+3)/10)*Ts/b/T)

function a=slice(x,A)
[Am,Im]=min(abs(A-x)); a=A(Im);

(a) After having composed and saved the Simulink model “QAM_passband_sim.mdl” and two 
MATLAB programs “do_QAM_sim.m” and “slice.m” (that can be substituted by an Embedded 
MATLAB Function Block), run the MATLAB program “do_QAM_sim.m” to get the SERs for 
SNRdBs=[5  10]. Does the simulation result conform with the theoretical symbol error 
probability that can be obtained using the MATLAB routine “prob_error()” in Sec. 7.6? 

(b) Modify the program “do_QAM_sim.m” and/or Simulink model “QAM_passband_sim.mdl” to 
simulate an 62 64M = = -ary QAM communication system and run it to get the SER curve. 

%do_MSK_sim.m
clear, clf
SNRdBt=[0:0.1:10]; SNRdBs=[5  10]; EbN0dBs= SNRdBs-3;
b=1; M=2^b; % Number of bits per symbol and Modulation order
Tb=1; Nb=16; T=Tb/Nb; Ts=b*Tb; % Bit duration and Sample time
wc=4*pi/Tb; % Carrier frequency[rad/s]
t=[0:2*Nb-1]*T;  pihTbt=pi/2/Tb*t;
suT=sqrt(2/Tb)*T*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

sin(pihTbt).*sin(wc*t)]; % Eq. (7.6.8a,b)
M_filter1=fliplr(suT(1,:)); M_filter2=fliplr(suT(2,:));
Target_no_of_error = 50;
Simulink_mdl='MSK_passband_sim';
for i=1:length(SNRdBs)
   SNRdB = SNRdBs(i);  EbN0dB = SNRdB-3;
   sim(Simulink_mdl,1e5*Tb),  BERs(i) = ber(end,1);
end
pobet_PSK=prob_error(SNRdBt,'PSK',b,'bit');
pobet_FSK=prob_error(SNRdBt,'FSK',b,'bit');
semilogy(SNRdBt,pobet_PSK,'k', SNRdBt,pobet_FSK,'k:', ... 

SNRdBs,BERs,'b*')

function d=detector_MSK(dth)
if dth>0, d=1; else d=0; end
if abs(dth)>pi, d=1-d; end
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7.10 Simulation of MSK Using Simulink 
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Fig. P7.10 shows a Simulink model to simulate an MSK (minimum shift keying) passband 
communication system where the following parameters are to be set in the workspace. Note that the 
demodulator is implemented using matched (FIR) filters (whose coefficient vectors or impulse 
responses are the reversed and delayed versions of the basis signal waveforms (P7.6.8a,b)) instead 
of correlators. Having composed and saved the Simulink model “MSK_passband_sim.mdl” and 
two MATLAB programs “do_MSK_sim.m” and “detector_MSK.m”, run the MATLAB program 
“do_MSK_sim.m” to get the BERs for SNRdBs=[5  10]. Does the simulation result go into between 
the theoretical symbol error probabilities for FSK and PSK? 

b=1; M=2^b; % Number of bits per symbol and Modulation order 
Nb=16; Ns=b*Nb; 
Tb=1e-5; Ts=b*Tb; T=Ts/Ns; % Symbol/Bit time and Sample time
wc=2*pi*10/Tb; % Carrier freq[rad/s]
t=[0:2*Nb-1]*T;  pihTbt=pi/2/Tb*t; 
suT=sqrt(2/Tb)*T*[cos(pihTbt-pi/2).*cos(wc*(t-Tb));

sin(pihTbt).*sin(wc*t)];
M_filter1=fliplr(suT(1,:)); M_filter2=fliplr(suT(2,:)); 
EbN0dB=7; % Eb/N0[dB]
Target_no_of_error=20; % Simulation stopping criterion
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9.4.3 Cyclic Coding 

A cyclic code is a linear block code having the property that a cyclic shift (rotation) of any codeword 
yields another codeword. Due to this additional property, the encoding and decoding processes can be 
implemented more efficiently using a feedback shift register. An ),( KN  cyclic code can be described 
by an )( KN − th-degree generator polynomial 

KN
KN xgxgxggx −

−++++= 2
210)(g                                   (9.4.24) 

The procedure of encoding a K -bit message vector 0 1 1[ ]Km m m −=m  represented by a 
( 1)K − th-degree polynomial 

1
1

2
210)( −

−++++= K
K xmxmxmmxm                                    (9.4.25) 

into an N -bit codeword represented by an ( 1)N − th-degree polynomial is as follows: 

1. Divide )(xx KN m−  by the generator polynomial )(xg  to get the remainder polynomial ( )m xr .

2. Subtract the remainder polynomial )(xmr  from )(xx KN m−  to obtain a codeword polynomial

( ) ( ) ( ) ( ) ( )N K
mx x x x x x−= ⊕ =c m r q g                                                                       (9.4.26) 

1 1 1
0 1 1 0 1 1

N K N K N K N
N K Kr r x r x m x m x m x− − − − + −

− − −= + + + + + + +

which has the generator polynomial )(xg  as a (multiplying) factor. Then the first )( KN −
coefficients constitute the parity vector and the remaining K  coefficients make the message 
vector. Note that all the operations involved in the polynomial multiplication, division, 
addition, and subtraction are not the ordinary arithmetic ones, but the modulo-2 operations. 

(Example 9.6) A Cyclic Code 

With a (7,4) cyclic code represented by the generator matrix

2 3 2 3
0 1 2 3( ) 1 1 0 1x g g x g x g x x x x= + + + = + ⋅ + ⋅ + ⋅g                            (E9.6.1) 

find the codeword for a message vector =m [1 0 1 1]. 
Noting that 4,7 == KN , and 3=− KN , we divide ( )N Kx x− m  by )(xg  as 

3 2 3 6 5 3( ) (1 0 1 1 ) ( ) ( ) ( )N K
mx x x x x x x x x x x x− = + ⋅ + ⋅ + ⋅ = + + = +m q g r

3 2 3( 1)( 1) 1x x x x x= + + + + + +  (modulo-2 operation)                             (E9.6.2)

to get the remainder polynomial ( ) 1m x =r  and add it to 3( ) ( )N Kx x x x− =m m  to make the codeword 
polynomial as 

654323 1101001)()()( xxxxxxxxxx m ⋅+⋅+⋅+⋅+⋅+⋅+=+= mrc              (E9.6.3)

parity   | message
  [ 1    0    0    1    0    1    1 ]→ =c

The codeword made in this way has the 3N K− =  parity bits and 4K =  message bits. 
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Now, let us consider the procedure of decoding a cyclic coded vector. Suppose the RCVR has 
received a possibly corrupted code vector = +r c e  where c  is a codeword and e  is an error. Just as 
in the encoder, this received vector, being regarded as a polynomial, is divided by the generator 
polynomial )(xg

                                ( ) ( ) ( ) ( ) ( ) ( ) '( ) ( ) ( )x x x x x x x x x= + = + = +r c e q g e q g s                            (9.4.27)

to yield the remainder polynomial )(xs . This remainder polynomial s  may not be the same as the 
error vector e , but at least it is supposed to have a crucial information about e  and therefore, may 
well be called the syndrome. The RCVR will find the error pattern e corresponding to the 
syndrome s , subtract it from the received vector r  to get hopefully the correct codeword 

     = ⊕c r e                                                              (9.4.28) 

and accept only the last K  bits (in ascending order) of this corrected codeword as a message. 
The polynomial operations involved in encoding/decoding every block of message/coded 

sequence seem to be an unbearable computational load. However, we fortunately have divider 
circuits which can perform such a modulo-2 polynomial operation. Fig. 9.9 illustrates the two 
divider circuits (consisting of linear feedback shift registers) each of which carries out the modulo-2 
polynomial operations for encoding/decoding with the cyclic code given in Example 9.6. Note that 
the encoder/decoder circuits process the data sequences in descending order of polynomial. 

The encoder/decoder circuits are cast into the MATLAB routines ‘cyclic_encoder()’ and 
‘cyclic_decoder0()’, respectively, and we make a program “do_cyclic_code.m” that uses the two 
routines ‘cyclic_encoder()’ and ‘cyclic_decoder()’ (including ‘cyclic_encoder0()’) to simulate the 
encoding/decoding process with the cyclic code given in Example 9.6. Note a couple of things 
about the decoding routine ‘cyclic_decoder()’: 

- It uses a table of error patterns in the matrix E, which has every correctable error pattern in its 
rows. The table is searched for a suitable error pattern by using an error pattern index vector epi, 
which is arranged by the decimal-coded syndrome and therefore, can be addressed efficiently by 
a syndrome just like a decoding hardware circuit. 

- If the error pattern table E and error pattern index vector epi are not supplied from the calling 
program, it uses ‘cyclic_decoder0()’ to supply itself with them. 

% do_cyclic_code.m
% tries with a cyclic code.
clear
N=7; K=4; % N=15; K=7; % Codeword (Block) length and Message size
%N=31; K=16;
g=cyclpoly(N,K); g_=fliplr(g);
lm=5*K; msg= randint(1,lm);
% N=7; K=4; g_=[1 1 0 1]; g=fliplr(g_); msg=[1 0 1 1];
coded = cyclic_encoder(msg,N,K,g_); lc=length(coded);
no_transmitted_bit_errors=ceil(lc*0.05);
errors=randerr(1,lc,no_transmitted_bit_errors);
r = rem(coded+errors,2); % Received sequence
decoded = cyclic_decoder(r,N,K,g_); nobe=sum(decoded~=msg) 
coded1 = encode(msg,N,K,'cyclic',g); % Use the Communication Toolbox 
r1 = rem(coded1+errors,2); % Received sequence
decoded1 = decode(r1,N,K,'cyclic',g); nobe1=sum(decoded1~=msg)
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function coded= cyclic_encoder(msg_seq,N,K,g)
% Cyclic (N,K) encoding of input msg_seq m with generator polynomial g 
Lmsg=length(msg_seq); Nmsg=ceil(Lmsg/K);
Msg= [msg_seq(:); zeros(Nmsg*K-Lmsg,1)];
Msg= reshape(Msg,K,Nmsg).';
coded= []; 
for n=1:Nmsg
   msg= Msg(n,:);

for i=1:N-K, x(i)=0; end
for k=1:K

      tmp= rem(msg(K+1-k)+x(N-K),2); % msg(K+1-k)+g(N-K+1)*x(N-K)
for i=N-K:-1:2,  x(i)= rem(x(i-1)+g(i)*tmp,2); end

      x(1)=g(1)*tmp;
end

   coded= [coded x msg]; % Eq.(9.4.26)
end

function [decodes,E,epi]=cyclic_decoder(code_seq,N,K,g,E,epi)
% Cyclic (N,K) decoding of received code_seq with generator polynml g
% E:   Error Pattern matrix or syndromes 
% epi: error pattern index vector
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if nargin<6 
  nceb=ceil((N-K)/log2(N+1)); % Number of correctable error bits
  E = combis(N,nceb); % All error patterns

for i=1:size(E,1)
     syndrome=cyclic_decoder0(E(i,:),N,K,g);

synd_decimal=bin2deci(syndrome);
     epi(synd_decimal)=i; % Error pattern indices

end
end
if (size(code_seq,2)==1)  code_seq=code_seq.'; end
Lcode= length(code_seq);  Ncode= ceil(Lcode/N);
Code_seq= [code_seq(:); zeros(Ncode*N-Lcode,1)];
Code_seq= reshape(Code_seq,N,Ncode).';
decodes=[]; syndromes=[];
for n=1:Ncode
  code= Code_seq(n,:);
  syndrome= cyclic_decoder0(code,N,K,g);
  si= bin2deci(syndrome); % Syndrome index

if 0<si&si<=length(epi) % Syndrome index to error pattern index
    m=epi(si); if m>0, code=rem(code+E(m,:),2); end % Eq.(9.4.28)

end
  decodes=[decodes code(N-K+1:N)]; syndromes=[syndromes syndrome];
end
if nargout==2, E=syndromes; end

function x=cyclic_decoder0(r,N,K,g)
% Cyclic (N,K) decoding of an N-bit code r with generator polynomial g
for i=1:N-K, x(i)=r(i+K); end
for n=1:K
   tmp=x(N-K);

for i=N-K:-1:2,  x(i)=rem(x(i-1)+g(i)*tmp,2); end
   x(1)=rem(g(1)*tmp+r(K+1-n),2);
end
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Table 9.1  Communication Toolbox functions for block coding 
Block coding  Related Communication Toolbox functions and objects 

Linear block encode, decode, gen2par, syndtable 
Cyclic encode, decode, cyclpoly, cyclgen, gen2par, syndtable 
BCH (Bose-Chaudhuri-Hocquenghem) bchenc, bchdec, bchgenpoly 
LDPC (Low-Density Parity Check) fec.ldpcenc, fec.ldpcdec 
Hamming encode, decode, hammgen, gen2par, syndtable 
Reed-Solomon rsenc, rsdec, rsgenpoly, rsencof, rsdecof 

Table 9.1 shows a list of several Communication Toolbox functions that can be used to simulate 
various block coding techniques where the block codings are classfied as follows (see the 
MATLAB Help on Communication Toolbox - block coding): 

Note the following about the functions ‘encode’ and ‘decode’ (use MATLAB Help for details): 

  - They can be used for any linear block coding by putting a string ‘linear’ and a K N×  generator 
matrix as the fourth and fifth input arguments, respectively. 

- They can be used for Hamming coding by putting a string ‘hamming’ as the fourth input 
argument or by providing them with only the first three input arguments. 

The following example illustrates the usages of ‘encode()’/‘decode()’ for cyclic coding and 
‘rsenc()’ and ‘rsdec()’ for Reed-Solomon coding. Note that the RS (Reed-Solomon) codes are 
nonbinary BCH codes, which has the largest possible minimum distance for any linear code with 
the same message size K  and codeword length N , yielding the error correcting capability of 

( ) / 2cd N K= − .

%test_encode_decode.m  to try using encode()/decode()
N=7; K=4; % Codeword (Block) length and Message size
g=cyclpoly(N,K); % Generator polynomial for a cyclic (N,K) code 
Nm=10; % # of K-bit message vectors
msg=randint(Nm,K); % Nm x K message matrix
coded = encode(msg,N,K,'cyclic',g); % Encoding
% Add bit errors with transmitted BER potbe=0.1
potbe=0.1; received=rem(coded+randerr(Nm,N,[0 1;1-potbe potbe]),2);
decoded=decode(received,N,K,'cyclic',g); % Decoding
% Probability of message bit errors after decoding/correction
pobe=sum(sum(decoded~=msg))/(Nm*K) % BER 
% Usage of rsenc()/rsdec() 
M=3; % Galois Field integer corresponding to the # of bits per symbol
N=2^M-1; K=3; dc=(N-K)/2; % Codeword length and Message size 
msg=gf(randint(Nm,K,2^M),M); % Nm x K GF(2^M) Galois Field msg matrix
coded = rsenc(msg,N,K); % Encoding
noise = randerr(Nm,N,[1 dc+1]).*randint(Nm,N,2^M); 
received = coded+noise; % Add a noise
[decoded,numerr]=rsdec(received,N,K); % Decoding
[msg decoded], numerr, pose=sum(sum(decoded~=msg))/(Nm*K) % SER 
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9.4.4 Convolutional Coding and Viterbi Decoding 

In the previous sections, we discussed the block coding that encodes every K -bit block of message 
sequence independently of the previous message block (vector). In this section, we are going to see 
the convolutional coding that converts a K -bit message vector into an N -bit channel input 
sequence dependently of the previous KL )1( − -bit message vector ( L : constraint length). The 
convolutional encoder has a structure of finite-state machine whose output depends on not only the 
input but also the state.

Fig. 9.10 shows a binary convolutional encoder with a ( 2)K = -bit input, an ( 3)N = -bit output, and 
1( 3)L− =  2-bit registers that can be described as a finite-state machine having ( 1) 3 22 2 64L K− ⋅= =

states. This encoder shifts the previous contents of every stage register except the right-most one 
into its righthand one and receives a new K -bit input to load the left-most register at an iteration, 
sending an N -bit output to the channel for transmission where the values of the output bits depends 
on the previous inputs stored in the 1L −  registers as well as the current input. 

A binary convolutional code is also characterized by N  generator sequences 1 2, , , Ng g g  each 
of which has a length of LK . For example, the convolutional code with the encoder depicted in Fig. 
9.10 is represented by the ( 3)N =  generator sequences 

1

2

3

[0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1]

=
=
=

g
g
g

                                      (9.4.29a) 

which constitutes the generator (polynomial) matrix 

1

2

3

0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

N LKG × = =
g
g
g

                                 (9.4.29b) 

where the value of the j th element of ig  is 1 or 0 depending on whether the j th one of the LK  bits 
of the shift register is connected to the i th output combiner or not. The shift register is initialized to 
all-zero state before the first bit of an input (message) sequence enters the encoder and also 
finalized to all-zero state by the ( 1)L K−  zero-bits padded onto the tail part of each input sequence. 
Besides, the length of each input sequence (to be processed at a time) is made to be MK (an integer 
M  times K ) even by zero-padding if necessary. For the input sequence made in this way so that its 
total length is ( 1)M L K+ −  including the zeros padded onto it, the length of the output sequence is 
( 1)M L N+ −  and consequently, the code rate will be 

   for  
( 1)

M
c

MK KR M L
M L N N

→∞
= →

+ −
                                    (9.4.30) 
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function [output,state]=conv_encoder(G,K,input,state,termmode) 
% generates the output sequence of a binary convolutional encoder
% G    : N x LK Generator matrix of a convolutional code
% K    : Number of input bits entering the encoder at each clock cycle.
% input: Binary input sequence
% state: State of the convolutional encoder
% termmode='trunc' for no termination with all-0 state 
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
if isempty(G), output=input; return; end
tmp= rem(length(input),K);
input=[input zeros(1,(K-tmp)*(tmp>0))];
[N,LK]=size(G);
if rem(LK,K)>0
  error('The number of column of G must be a multiple of K!')
end
%L=LK/K;

if nargin<4|(nargin<5 & isnumeric(state))
  input= [input zeros(1,LK)]; %input= [input zeros(1,LK-K)]; end
end
if nargin<4|~isnumeric(state) 
 state=zeros(1,LK-K);
end
input_length= length(input);
N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol);
output=[];
for l=1:N_msgsymbol % Convolution output=G*input
   ub= input1(:,l).';
   [state,yb]= state_eq(state,ub,G);
  output= [output yb];
end

function [nxb,yb]=state_eq(xb,u,G)
% To be used as a subroutine for conv_encoder()
K=length(u); LK=size(G,2); L1K=LK-K;
if isempty(xb), xb=zeros(1,L1K); 
else

N=length(xb); %(L-1)K
if L1K~=N, error('Incompatible Dimension in state_eq()'); end

end
A=[zeros(K,L1K); eye(L1K-K) zeros(L1K-K,K)]; 
B=[eye(K); zeros(L1K-K,K)];
C=G(:,K+1:end); D=G(:,1:K);
nxb=rem(A*xb'+B*u',2)';
yb=rem(C*xb'+D*u',2)';

Given a generator matrix N LKG ×  together with the number K  of input bits and a message 
sequence m , the above MATLAB routine ‘conv_encoder()’ pads the input sequence m  with zeros 
as needed and then generates the output sequence of the convolutional encoder. Communication 
Toolbox has a convolutional encoding function ‘convenc()’ and its usage will be explained together 
with that of a convolutional decoding function ‘vitdec()’ at the end of this section. 
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<Various Representations of a Convolutional Code>

There are many ways of representing a convolutional code such as the schematic diagram like Fig. 
9.10, the generator matrix like Eq. (9.4.29b), the finite-state machine (state transition diagram), the 
transfer function, and the trellis diagram. Fig. 9.11 illustrates the various equivalent representations 
of a simple convolutional code with 1K = , 2N = , and 3L= . Especially, Fig. 9.11(c1) shows the 
state diagram that has 4 states corresponding to all possible contents { 00, 01, 10, 11}a b c d= = = =  of 
the lefthand ( 1)L K− registers in the schematic diagram (Fig. 9.11(a)) where solid/dashed branches 
between two states represent the state transitions in the arrow direction in response to input 0/1, 
respectively. Fig. 9.11(c2) is an augmented state diagram where the all-zero state a  in the original 
state diagram (Fig. 9.11(c1)) is duplicated to make two all-zero states, one ( a ) with only out-ward 
branches and the other ( 'a ) with only in-ward branches. Note that the self-loop at the all-zero state 
is neglected so that the gains of all the paths starting from the all-zero state and coming back to the 
all-zero state can be obtained in a systematic way as follows. If we assign the gain D I Jα β (α : the 
Hamming weight (number of 1’s) of the output sequence assigned to the branch, β : the Hamming 
weight of the input sequence causing the state change designated by the branch) as in Fig. 9.11(c2), 
we can regard the state diagram as a signal flow graph and apply the Mason’s gain formula[P-3] to 
get the overall gain from the input all-zero state a  to the output all-zero state 'a as

1( , , ) ii iT D I J M= Δ
Δ

All products of the forward gain and for the diagram without forward path  
1 All loop gains All products of 2 nontouching loop gains

iiM iΔ
=

− + −
5 3 6 2 4 5 3

2 2 2 3 2 2 3 2
(1 )

1 1 ( )
D I J DI J D I J D I J

DIJ DIJ D I J D I J DIJ DIJ
− += =

− − − + − +
                                       (9.4.31) 

This can be expanded into a power series as 

5 3 2 2 2( , , ) {1 ( ) ( ) }T D I J D I J DIJ DIJ DIJ DIJ= + + + + +

++++= 53752642635 JIDJIDJIDIJD                             (9.4.32) 

Each term D I Jα β γ of this equation denotes the gain of each forward path starting from the all-zero 
state and going back to the all-zero state where α is the Hamming weight of the codeword 
represented by the path, β  is the Hamming weight of the input sequence causing the ouput 
sequence to be generated, and γ  is the number of branches contained in the path. In this context, 
the first term 5 3D I J  of Eq. (9.4.32) implies that the convolutional encoder in Fig. 9.11(a) may 
generate a codeword of Hamming weight (5)α  and 3 2 6Nγ ⋅ = ⋅ =  bits for the input sequence of 
Hamming weight (1)β :

5 3
Input:        [1]        [0]        [0] ---- =1
State: (00) (10) (01) (00) ---- =3
Output:       11         01        11 ---- =5

a c b e D I J
β
γ
α

→ → →

The two codewords corresponding to the terms 6 2 4D I J  and 7 3 5D I J  are

Input:        [1]        [1]      [0]        [0]
State: (00) (10) (11) (01) (00)
Output:       11        10        10         11

a c d b e→ → → →
     [1]       [1]       [1]       [0]      [0]

(00) (10) (11) (11) (01) (00)
       11         10        01 10        11
a c d d b e→ → → → →
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The minimum degree in D  of the transfer function, that is min 5d =  in the case of Eq. (9.4.32), is the 
free distance of the convolutional code, which is the minimum (Hamming) distance among the 
codewords in the code. Note that the free distance as well as the decoding algorithm heavily affects 
the BER performance of a convolutional code. 

Fig. 9.11(d) shows another representation of the convolutional code called a trellis, which can be 
viewed as a plot of state diagram being developed along the time. This diagram consists of the 
columns of KL )1(2 − state nodes per clock cycle and the solid/dashed branches representing the state 
transition caused by input 0/1 as depicted in the state diagram (Fig. 9.11(c)) where the )2(N -bit
output of the encoder to the input is attatched to each branch. In this trellis diagram, each path 
starting from the initial all-zero state and ending at another all-zero state represents a codeword. 
From the trellis shown in Fig. 9.11, we can see the shortest two codewords as 

Input:        [1]        [0]        [0]
State: (00) (10) (01) (00)
Output:       11         01        11

a c b a→ → →
Input:        [1]        [1]      [0]        [0]
State: (00) (10) (11) (01) (00)
Output:       11        10        10         11

a c d b a→ → → →

These correspond to the first two terms 5 3D I J  and 6 2 4D I J  of Eq. (9.4.32), respectively. 

<Viterbi Decoding of a Convolutional Coded Sequence>

As a way of decoding a convolutional coded sequence, an ML (maximum-likelihood) decoding 
called the Viterbi algorithm (VA)[F-1] is most widely used where an ML decoding finds the code 
sequence that is most likely to have been the input to the encoder at XMTR yielding the received 
code sequence. Given a received (DTR output or decoder input) sequence c= +r m e  ( cm : a 
convolutional coded sequence, e : an error), the Viterbi algorithm with soft-decision searches the 
trellis diagram for an all-zero-state-to-all-zero-state path whose (encoder) output sequence is closest 
to r  in terms of Euclidean distance and takes the encoder input sequence corresponding to the 
‘optimal’ path to be the most likely message sequence, while the Viterbi algorithm with hard-
decision first slices r  to make qr  consisting of 0 or 1 and then finds an all-zero-state-to-all-zero-
state path whose (encoder) output sequence is closest to qr  in terms of Hamming distance. 

The procedure of the Viterbi algorithm is as follows (see Fig. 9.12): 
0. To each set of nodes (states), assign the depth level index starting from 0l =  for the leftmost stage. 

Divide the decoder input sequence qr  (hard, i.e. sliced to 0/1) or r  (soft) into N -bit subsequences 
and distribute each N -bit subsequence to the stages between the node sets. 

1. To each branch, attach the (Hamming or Euclidean) distance between the N -bit encoder ouput and 
the N -bit subsequence of r  or qr  (distributed to the stage that the branch belongs to) as the 
branch cost (metric).

2. With the level index initialized to 0l = , assign 0 to the initial all-zero state node as its node cost
(metric).

3. Move right by one stage by increasing the level index by one. To every node (at the level) that is 
connected via some branch(es) to node(s) at the previous level, assign the node cost that is 
computed by adding the branch cost(s) to the left-hand node cost(s) and taking the minimum if 
there are multiple branches connected to the node. In the case of multiple branches connected to a 
node, remove other branches than the survivor branch yielding the minimum path cost. 

4. If all the N -bit subsequence of r  or qr  are not processed, go back to step 3 to repeat the 
procedure; otherwise, go to the next step 5. 

5. Starting from the final all-zero state or the best node with minimum cost, find the optimal path 
consisting of only the survivor paths and take the encoder input sequence supposedly having caused 
the output sequence (associated with the optimal path) to be the ML decoded message sequence. 
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Fig. 9.12 illustrates a typical decoding procedure using the trellis based on the Viterbi algorithm 
(VA) stated above where the detector output (code) sequence is [11011010101100]. Note that the 
removed branches other than the survivor branches are crossed and the optimal path denoted by a 
series of thick solid/dotted lines (with encoder input 0/1) corresponds to the encoder input sequence 
[1011000], which has been taken as the decoded result.

Given the generator polynomial matrix G  together with the number K  of input bits and the 
channel-DTR output sequence ‘detected’ as its input arguments, the MATLAB routine 
‘vit_decoder(G,K,detected)’ constructs the trellis diagram and applies the Viterbi algorithm to find 
the maximum-likelihood decoded message sequence. The following MATLAB program 
“do_vitdecoder.m” uses the routine ‘conv_encoder()’ to make a convolutional coded sequence for a 
message and uses “vit_decoder()” to decode it to recover the original message.

%do_vitdecoder.m
% Try using conv_encoder()/vit_decoder()
clear, clf
msg=[1 0 1 1 0 0 0]; % msg=randint(1,100)
lm=length(msg); % Message and its length
G=[1 0 1;1 1 1]; % N x LK Generator polynomial matrix
K=1; N=size(G,1); % Size of encoder input/output
potbe=0.02; % Probability of transmitted bit error
% Use of conv_encoder()/vit_decoder()
ch_input=conv_encoder(G,K,msg) % Self-made convolutional encoder
notbe=ceil(potbe*length(ch_input));
error_bits=randerr(1,length(ch_input),notbe);
detected= rem(ch_input+error_bits,2); % Received/modulated/detected
decoded= vit_decoder(G,K,detected)
noe_vit_decoder=sum(msg~=decoded(1:lm))
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function decoded_seq=vit_decoder(G,K,detected,opmode,hard_or_soft)
% performs the Viterbi algorithm on detected to get the decoded_seq 
% G: N x LK Generator polynomial matrix
% K: Number of encoder input bits
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only 
detected = detected(:).';
if nargin<5|hard_or_soft(1)=='h', detected=(detected>0.5); end
[N,LK]=size(G);
if rem(LK,K)~=0, error('Column size of G must be a multiple of K'); end
tmp= rem(length(detected),N);
if tmp>0,  detected=[detected  zeros(1,N-tmp)]; end
b=LK-K; % Number of bits representing the state
no_of_states=2^b;   N_msgsymbol=length(detected)/N;
for m=1:no_of_states

for n=1:N_msgsymbol+1
      states(m,n)=0; % inactive in the trellis
      p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
 y=detected((n-1)*N+1:n*N); % Received sequence
 n1=n+1;
for m=1:no_of_states
if states(m,n)==1 % active

    xb=deci2bin1(m-1,b);
for m0=1:K2

      u=deci2bin1(m0-1,K);
      [nxb(m0,:),yb(m0,:)]=state_eq(xb,u,G);
      nxm0=bin2deci(nxb(m0,:))+1;
      states(nxm0,n1)=1;
      dif=sum(abs(y-yb(m0,:)));
      d(m0)=cost(m,n)+dif;

if p_state(nxm0,n1)==0 % Unchecked state node?
        cost(nxm0,n1)=d(m0);
        p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; 

else
        [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);

if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end
end

end
end

end
end
decoded_seq=[];
if nargin>3 & ~strncmp(opmode,'term',4)
  [min_dist,m]=min(cost(:,n1)); % Trace back from best-metric state
else m=1; % Trace back from the all-0 state

end
for n=n1:-1:2
  decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
  m=p_state(m,n);
end
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The following program “do_vitdecoder1.m” uses the Communication Toolbox functions 
‘convenc()’ and ‘vitdec()’ where ‘vitdec()’ is used several times with different input argument 
values to show the readers its various usages. Now, it is time to see the usage of the function 
‘vitdec()’.

%do_vitdecoder1.m
% shows various uses of Communication Toolbox function convenc()
% with KxN Code generator matrix Gc - octal polynomial representation 
clear, clf
%msg=[1 0 1 1 0 0 0];
msg=randint(1,100)
lm=length(msg); % Message and its length
potbe=0.02; % Probability of transmitted bit error
Gc=[5 7]; % 1 0 1 -> 5, 1 1 1 -> 7 (octal number) 
Lc=3; % 1xK constraint length vector for each input stream 
[K,N]=size(Gc); % Number of encoder input/output bits
trel=poly2trellis(Lc,Gc); % Trellis structure
ch_input1=convenc(msg,trel); % Convolutional encoder
notbe1=ceil(potbe*length(ch_input1));
error_bits1=randerr(1,length(ch_input1),notbe1);
detected1= rem(ch_input1+error_bits1,2); % Received/modulated/detected 
% with hard decision
Tbdepth=3; % Traceback depth 
decoded1= vitdec(detected1,trel,Tbdepth,'trunc','hard')
noe_vitdec_trunc_hard=sum(msg~=decoded1(1:lm))
decoded2= vitdec(detected1,trel,Tbdepth,'cont','hard');
noe_vitdec_cont_hard=sum(msg(1:end-Tbdepth)~=decoded2(Tbdepth+1:end))
% with soft decision
ncode= [detected1+0.1*randn(1,length(detected1)) zeros(1,Tbdepth*N)]; 
quant_levels=[0.001,.1,.3,.5,.7,.9,.999];
NSDB=ceil(log2(length(quant_levels))); % Number of Soft Decision Bits
qcode= quantiz(ncode,quant_levels); % Quantized
decoded3= vitdec(qcode,trel,Tbdepth,'trunc','soft',NSDB);
noe_vitdec_trunc_soft=sum(msg~=decoded3(1:lm))
decoded4= vitdec(qcode,trel,Tbdepth,'cont','soft',NSDB);
noe_vitdec_cont_soft=sum(msg~=decoded4(Tbdepth+1:end))

% Repetitive use of vitdec() to process the data block by block
delay=Tbdepth*K; % Decoding delay depending on the traceback depth
% Initialize the message sequence, decoded sequence,
%   state metric, traceback state/input, and encoder state.
msg_seq=[]; decoded_seq=[];
m=[]; s=[]; in=[]; encoder_state=[]; 
N_Iter=100;
for itr=1:N_Iter
   msg=randint(1,1000); % Generate the message sequence in a random way
   msg_seq= [msg_seq msg]; % Accumulate the message sequence

if itr==N_Iter, msg=[msg zeros(1,delay)]; end % Append with zeros
   [coded,encoder_state]=convenc(msg,trel,encoder_state);
   [decoded,m,s,in]=vitdec(coded,trel,Tbdepth,'cont','hard',m,s,in);
   decoded_seq=[decoded_seq decoded];
end
lm=length(msg_seq);
noe_repeated_use=sum(msg_seq(1:lm)~=decoded_seq(delay+[1:lm]))
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<Usage of the Viterbi Decoding Function ‘vitdec()’ with ‘convenc()’ and ‘poly2trellis()’>

To apply the MATLAB functions ‘convenc()’/‘vitdec()’, we should first use ‘poly2trellis()’ to build 
the trellis structure with an ‘octal code generator’ describing the connections among the inputs, 
registers, and outputs. Fig. 9.13 illustrates how the octal code generator matrix cG  as well as the 
binary generator matrix G  and the constraint length vector cL is constructed for a given 
convolutional encoder. An example of using ‘poly2trellis()’ to build the trellis structure for 
‘convenc()’/’vitdec()’ is as follows: 

trellis=poly2trellis(Lc,Gc);

Here is a brief introduction of the usages of the Communication Toolbox functions ‘convenc()’ and 
‘vitdec()’. See the MATLAB Help manual or The Mathworks webpage[W-7] for more details. 

(1) coded=convenc(msg,trellis);
msg: A message sequence to be encoded with a convolutional encoder described by ‘trellis’.

(2) decoded=vitdec(coded,trellis,tbdepth,opmode,dectype,NSDB);

coded : A convolutional coded sequence possibly corrupted by a noise. It should consist of 
binary numbers (0/1), real numbers between 1(logical zero) and -1(logical one), or 
integers between 0 and 2NSDB-1 (NSDB: the number of soft-decision bits given as the 
optional 6th input argument) corresponding to the quantization level depending on 
which one of {‘hard’, ‘unquant’, ‘soft’} is given as the value of the fifth input argument 
‘dectype’ (decision type). 

trellis : A trellis structure built using the MATLAB function ‘poly2trellis()’. 
tbdepth: Traceback depth (length), i.e., the number of trellis branches used to construct each 

traceback path. It should be given as a positive integer, say, about five times the 
constraint length. In case the fourth input argument ‘opmode’ (operation mode) is ‘cont’ 
(continuous), it causes the decoding delay, i.e., the number of zero symbols preceding 
the first decoded symbol in the output ‘decoded’ and as a consequence, the decoded 
result should be advanced by tbdepth∗ K where K is the number of encoder input bits. 

opmode: Operation mode of the decoding prosess. If it is set to ‘cont’ (continuous mode), the 
internal state of the decoder will be saved for use with the next frame. If it is set to 
‘trunc’ (truncation mode), each frame will be processed independently, and the 
traceback path starts at the best-metric state and always ends in the all-zero state. If it is 
set to ‘term’ (termination mode), each frame is treated independently, and the traceback 
path always starts and ends in the all-zero state. This mode is appropriate when the 
uncoded message signal has enough zeros, say, K∗ Max(Lc)-1) zeros at the end of each 
frame to fill all memory registers of the encoder. 

dectype: Decision type. It should be set to ‘unquant’, ‘hard’, or ‘soft’ depending on the 
characteristic of the input coded sequence (coded) as follows: 
- ‘hard’ (decision) when the coded sequence consists of binary numbers 0 or 1. 
- ‘unquant’ when the coded sequence consists of real numbers between -1(logical 1) and 

+1(logical 0). 
- ‘soft’ (decision) when the optional 6th input argument NSDB is given and the coded 

sequence consists of integers between 0 and 2NDSB-1 corresponding to the quantization 
level.

NSDB : Number of software decision bits used to represent the input coded seqeuence. It is 
needed and active only when dectype is set to ‘soft’.



294 Chapter 9  Information and Coding

(3) [decoded,m,s,in]=vitdec(code,trellis,tbdepth,opmode,dectype,m,s,in)

This format is used for a repetitive use of ‘vitdec()’ with the continuous operation mode where 
the state metric ‘m’, traceback state ‘s’, and traceback input ‘in’ are supposed to be initialized to 
empty sets at first and then handed over successively to the next iteration.

See the above program “do_vitdecoder1.m” or the MATLAB help manual for some examples of 
using ‘convenc()’ and ‘vitdec()’. 

9.4.5 Trellis-Coded Modulation (TCM) 

By channel coding discussed in the previous sections, additional redundant bits for error control are 
transmitted in the code and as a consequence, wider bandwidth is needed to keep the same data rate 
while lower BER can be obtained with the same SNR or the SNR to obtain the same BER can be 
decreased. This shows a trade-off between bandwidth efficiency and power efficiency. As an 
approach to mediate between these two conflicting factors, TCM (trellis-coded modulation) was 
invented by Gottfried Ungerboeck[U-1, U-2] . It is just like a marriage between modulation residing on 
the constellation and coding living on the trellis toward a more effective utilization of bandwidth 
and power. A (code) rate-2/3 TCM encoder combining an ( , )N K = (3,2) convolutional coding and 
an 23=8-PSK modulation is depicted in Fig. 9.14(a). In this encoder, the 8-PSK signal mapper 
generates one of the eight PSK signals depending on the 3-bit symbol 1 2 3[ ]k k k kx x x=x  that 
consists of two (uncoded) message bits 1kx  and 2kx  and an additional coded bit that is the output of 
the FSM (finite-state machine). Since the encoding scheme can be described by a trellis, the Viterbi 
algorithm can be used to decode the TCM coded signal. There are a couple of things to mention 
about TCM: 

- The number of signal points in the constellation is larger compared with the uncoded case. For 
example, the constellation size or modulation order used by the TCM scheme of Fig. 9.14(a) is 

12 8K + = . This is two times as large as that of QPSK modulation that would be used to send the 
message by 2K = -bit symbols with no coding. Note that a larger modulation order with the 
same SNR decreases the minimum distance among the codewords so that the BER may suffer.

- TCM has some measures to combat the possible BER performance degradation problem: 
 The convolutional coding allows only certain sequences (paths) of signal points so that the 

free distance among different signal paths in the trellis can be increased. 



9.4  Channel Coding    295 

 The TCM decoder uses soft-decision decoding to find the path with minimum (squared) 
Euclidean distance through the trellis. This makes the trellis code design trying to maximize 
the Euclidean distance among the codewords.

 As illustrated in Fig. 9.14(b1) and (b2), the set partioning let the more significant message 
bit(s) have a larger Euclidean distance from its complement so that there are less likely errors 
in the uncoded message bits than in the coded bit(s). 

 The FSM of TCM encoder has some inputs added to the adders between the shift registers. 
Therefore it seems that TCM encoding/decoding can not be implemented using the general 
convolutional encoder/decoder, requiring its own encoder/decoder rountines of every TCM 
encoder/decoder.
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The following program “sim_TCM.m” uses the two subroutines “TCM_encoder()” and 
“TCM_decoder()” to simulate the TCM encoding (shown in Fig. 9.14(a)) and the corresponding 
TCM decoding. 

%sim_TCM.m
% simulates a Trellis-coded Modulation
clear, clf
lm=1e4; msg=randint(1,lm);
K=2; N=K+1; Ns=3; % Size of encoder input/output/state
M=2^N; Constellation=exp(j*2*pi/M*[0:M-1]); % Constellation
ch_input=TCM_encoder('TCM_state_eq0',K,Ns,N,msg,Constellation);
lc= length(ch_input);
SNRbdB=5; SNRdB=SNRbdB+10*log10(K); % SNR per K-bit symbol
sigma=1/sqrt(10^(SNRdB/10));
noise=sigma/sqrt(2)*(randn(1,lc)+j*randn(1,lc)); % Complex noise
received = ch_input + noise; var(received)
received = awgn(ch_input,SNRdB); var(received) % Alternative
decoded_seq=TCM_decoder('TCM_state_eq0',K,Ns,received,Constellation);
ber_TCM8PSK = sum(decoded_seq(1:lm)~=msg)/lm 
ber_QPSK_theory = prob_error(SNRbdB,'PSK',K,'BER')

function [output,state] 
=TCM_encoder(state_eq,K,Ns,N,input,state,Constellation,opmode)

% Generates the output sequence of a binary TCM encoder
% Input: state_eq = External function for state eqn saved in an M-file
%        K    = Number of input bits entering the encoder at each cycle
%        Nsb  = Number of state bits of the TCM encoder
%        N    = Number of output bits of the TCM encoder
%        input= Binary input message seq.
%        state= State of the conv_encoder
%        Constellation= Signal sets for signal mapper 
% Output: output= Sequence of signal points on Contellation
%         state = Updated state
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
tmp= rem(length(input),K); 
input= [input zeros(1,(K-tmp)*(tmp>0))];
if nargin<6, state=zeros(1,Nsb); 
elseif length(state)==2^N, Constellation=state; state=zeros(1,Nsb);

end
input_length= length(input);  N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol).';
outputs= []; 
for l=1:N_msgsymbol
   ub= input1(l,:);
   [state,output]=feval(state_eq,state,ub,Constellation);
   outputs= [outputs output];
end

function [s1,x]=TCM_state_eq0(s,u,Constellation)
% State equation for the TCM_encoder in Fig. 9.14(a)
% Input:  s= State, u= Input, Constellation
% Output: s1= Next state, x= Output
s1= [s(3) rem([s(1)+u(1) s(2)+u(2)],2)]; 
x= Constellation(bin2deci([u(1) u(2) s(3)])+1);
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function decoded_seq 
=TCM_decoder(state_eq,K,Nsb,received,Constellation,opmode)

% Performs the Viterbi algorithm on the PSK demodulated signal
% Input: state_eq = External function for state eqn saved in an M-file
%        K   = Number of input bits entering the encoder at each cycle.
%        Nsb = Number of state bits of the TCM encoder
%        received = received sequence
%        Constellation: Signal sets for signal mapper
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
N_states=2^Nsb;
N_msgsymbol=length(received);
for m=1:N_states

for n=1:N_msgsymbol+1
      states(m,n)=0; %inactive in the trellis diagram
      p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
  y=received(n); %received sequence
 n1=n+1;
for m=1:N_states

if states(m,n)==1 %active
      xb=deci2bin1(m-1,Nsb);

for m0=1:K2
        u=deci2bin1(m0-1,K);
        [nxb(m0,:),yb(m0)]=feval(state_eq,xb,u,Constellation);
        nxm0=bin2deci(nxb(m0,:))+1;  states(nxm0,n1)=1;

% Accumulated squared Euclidean distance as path-to-node cost 
        difference=y-yb(m0);
        d(m0)=cost(m,n)+difference*conj(difference);

if p_state(nxm0,n1)==0 
        cost(nxm0,n1)=d(m0);

          p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; 
else

          [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);
if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end

end
end

end
end

end
decoded_seq=[];
if nargin<6 | ~strncmp(opmode,'term',4)

% trace back from the best-metric state (default)
[min_cost,m]=min(cost(:,n1));
else m=1; % trace back from the all-0 state

end
for n=n1:-1:2
  decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
  m=p_state(m,n);
end
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9.4.6 Turbo Coding 

In order for a linear block code or a convolutional code to approach the theoretical limit imposed by 
Shannon’s channel capacity (see Eq. (9.3.16) or Fig. 9.7) in terms of bandwidth/power efficiency, 
its codeword or constraint length should be increased to such an intolerable degree that the 
maximum likelihood decoding can become unrealizable. Possible solutions to this dilemma are two 
classes of powerful error correcting codes, each called turbo codes and LDPC (lower-density 
parity-check) codes, that can achieve a near-capacity (or near-Shannon-limit) performance with a 
reasonable complexity of decoder. The former is the topic of this section and the latter will be 
introduced in the next section. 

Fig. 9.15(a) shows a turbo encoder consisting of two recursive systematic convolutional (RSC) 
encoders and an interleaver where the interleaver permutes the message bits in a random way 
before input to the second encoder. (Note that the modifier ‘systematic’ means that the uncoded 
message bits are imbedded in the encoder output stream as they are.) The code rate will be 1/2 or 
1/3 depending on whether the puncturing is performed or not. (Note that puncturing is to omit 
transmitting some coded bits for the purpose of increasing the code rate beyond that resulting from 
the basic structure of the encoder.) Fig. 9.15(b) shows a demultiplexer, which classifies the coded 
bits into two groups, one from encoder 1 and the other from encoder 2, and applies each of them to 
the corresponding decoder. Fig. 9.15(c) shows a turbo decoder consisting of two decoders 
concatenated and separated by an interleaver where one decoder processes the systematic (message) 
bit sequence sy  and the parity bit sequence 1 2/p py y together with the extrinsic information ejL
(provided by the other decoder) to produce the information eiL and provides it to the other decoder 
in an iterative manner. The turbo encoder and the demultiplexer are cast into the MATLAB routines 
‘encoderm()’ and ‘demultiplex()’, respectively. Now, let us see how the two types of decoder, each 
implementing the log-MAP (maximum a posteriori probability) algorithm and the SOVA (soft-out 
Viterbi algorithm), are cast into the MATLAB routines ‘logmap()’ and ‘sova()’, respectively. 

<Log-MAP (Maximum a Posteriori Probability) Decoding cast into ‘logmap()’>

To understand the operation of the turbo decoder, let us begin with the definition of priori LLR 
(log-likelihood ratio), called a priori L-value, which is a soft value measuring how high the 
probability of a binary random variable u  being +1 is in comparison with that of u  being 1− :
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   with ( )P uu : the probability of u being u                   (9.4.33) 

This is a priori information known before the result y  caused by u  becomes available. While the 
sign of LLR
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is a hard value denoting whether or not the probability of u  being +1 is higher than that of u  being 
1− , the magnitude of LLR is a soft value describing the reliability of the decision based on û .

Conversely, ( 1)P u = +u  and ( 1)P u = −u  can be derived from ( )L uu :
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function y = demultiplex(r,map,puncture)
%Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% map: Interleaver mapping 
Nb = 3-puncture; lu = length(r)/Nb;
if puncture==0 % unpunctured

for i=1:lu, y(:,2*i) = r(3*i-[1 0]).'; end
else % punctured

for i=1:lu
     i2 = i*2;

if rem(i,2)>0, y(:,i2)=[r(i2); 0]; else y(:,i2)=[0; r(i2)]; end
end

end
sys_bit_seq = r(1,1:Nb:end); % the systematic bits for both decoders
y(:,1:2:lu*2) = [sys_bit_seq; sys_bit_seq(map)];
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function x = rsc_encode(G,m,termination)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% encodes a binary data block m (0/1) with a RSC (recursive systematic 
% convolutional) code defined by generator matrix G, returns the output 
% in x (0/1), terminates the trellis with all-0 state if termination>0
if nargin<3, termination = 0; end
[N,L] = size(G); % Number of output bits, Constraint length
M = L-1; % Dimension of the state
lu = length(m)+(termination>0)*M; % Length of the input
lm = lu-M; % Length of the message
state = zeros(1,M); % initialize the state vector
% To generate the codeword
x = [];
for i = 1:lu

if termination<=0 | (termination>0 & i<=L_info) 
 d_k = m(i);
elseif termination>0 & i>lm 
d_k = rem(G(1,2:L)*state.',2);

end
   a_k = rem(G(1,:)*[d_k state].',2);
   xp = rem(G(2,:)*[a_k state].',2); % 2nd output (parity) bits
   state = [a_k state(1:M-1)]; % Next sttate
   x = [x [d_k; xp]]; % since systematic, first output is input bit
end

function x = encoderm(m,G,map,puncture)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use 
% map: Interleaver mapping
% If puncture=0(unpunctured), it operates with a code rate of 1/3.
% If puncture>0(punctured), it operates with a code rate of 1/2. 
% Multiplexer chooses odd/even-numbered parity bits from RSC1/RSC2.
[N,L] = size(G); % Number of output pits, Constraint length
M = L-1; % Dimension of the state
lm = length(m); % Length of the information message block
lu = lm + M; % Length of the input sequence
% 1st RSC coder output
x1 = rsc_encode(G,m,1);
% interleave input to second encoder
mi = x1(1,map);  x2 = rsc_encode(G,mi,0);
% parallel to serial multiplex to get the output vector
x = [];
if puncture==0 % unpunctured, rate = 1/3;

for i=1:lu
     x = [x x1(1,i) x1(2,i) x2(2,i)]; 

end
else % punctured into rate 1/2
for i=1:lu

if rem(i,2), x = [x x1(1,i) x1(2,i)]; % odd parity bits from RSC1
else  x = [x x1(1,i) x2(2,i)]; % even parity bits from RSC2

end
end

end
x = 2*x - 1; % into bipolar format (+1/-1)
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This can be expressed as 

( 1) ( ) / 2 ( ) ( )

( ) ( )
/(1 ) for 1( )

1 1/(1 ) for 1

u L u L u L u

L u L u
e e e uP u

e e u

+ + =+= =
+ + =−u                             (9.4.35) 

Also, we define the conditioned LLR, which is used to detect the value of u  based on the value of 
another random variable y  affected by u , as the LAPP (Log A Posteriori Probability):

(2.1.4)
|
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(9.4.36)

Now, let y  be the output of a fading AWGN (additive white Gaussian noise) channel (with fading 
amplitude a  and SNR per bit 0/bE N ) given u  as the input. Then, this equation for the conditioned 
LLR can be written as 
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                                   with 
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= :  the channel reliability

The objective of BCJR (Bahl-Cocke-Jelinek-Raviv) MAP (Maximum A posteriori Probability)
algorithm proposed in [B-1] is to detect the value of the k th message bit ku  depending on the sign 
of the following LAPP function: 
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with S + / S − : the set of all the encoder state transitions from 's  to s  caused by 1ku = + / 1−

Note that P and p  denote the probability of a discrete-valued random variable and the probability 
density of a continuous-valued random variable. The numerator/denominator of this LAPP function 
are the sum of the probabilities that the channel output to 1/ 1ku = + − will be { , , }j k k j ky< >=y y y
with the encoder state transition from 's  to s  where each joint probability density 

1( ', , ) ( ', , )k kp s s p s s s s+= = =y y  can be written as

1 1( ', , ) ( ', , ) ( ', ) ( , | ' ) ( | ) ( ' ) ( ', ) ( )k k j k k j k k kkp s s p s s s s p s p s y s p s s s s sα γ β+ < > −= = = = =y y y y (9.4.39)

where 1( ' ) ( ', )j kk s p sα <− = y  is the probability that the state ks at the k th depth level (stage) in the 
trellis is 's with the output sequence j k<y  generated before the k th level, ( ', ) ( , | ' )k ks s p s y sγ =  is 
the probability that the state transition from 'ks s= to 1ks s+ =  is made with the output ky
generated, and ( ) ( | )k j ks p sβ >= y  is the probability that the state 1ks + is s with the output sequence 
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j k>y  generated after the k th level. The first and third factors 1( ' )k sα − / ( )k sβ  can be computed in a 
forward/backward recursive way: 

1 '( ) ( , ) ( ', , , ) ( ', ) ( , | ')j kj k j kk k ks Ss p s p s s y p s p s y sα << + < ∈= = =y y y

1' ( ') ( ', )k ks S s s sα γ−∈=  with 0 0(0) 1, ( ) 0sα α= =  for 0s ≠                    (9.4.40) 

11( ') ( | ' ) ( ', , , | ') ( , | ') ( | )j kj k j kk k ks Ss p s p s y s s p s y s p sβ >> − >− ∈= = =y y y

' ( ', ) ( )k ks S s s sγ β∈=                                                                               (9.4.41a) 

with
(0) 1 and ( ) 0 0 if terminated at all-zero state

( )
( ) 1/ otherwise
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where 12L
sN −=  ( L : the constraint length) is the number of states and K  is the number of decoder 

input symbols. The second factor ( ', )k s sγ   can be found as 
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with ( )2 2 2 2 2 2
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= (channel reliability)

Note a couple of things about this equation: 
- To compute kγ , we need to know the channel fading amplitude a  and the SNR per bit 0/bE N .
- kA  does not have to be computed since it will be substituted directly or via kα (Eq. (9.4.40)) or 

kβ (Eq. (9.4.41)) into Eq. (9.4.39), then substituted into both the numerator and the denominator 
of Eq. (9.4.38), and finally cancelled. 
The following MATLAB routine ‘logmap()’ corresponding to the block named ‘Log-MAP or 

SOVA’ in Fig. 9.15(c) uses these equations to compute the LAPP function (9.4.38). Note that in the 
routine, the multiplications of the exponential terms are done by adding their exponents and that is 
why Alpha and Beta (each representing the exponent of kα  and kβ ) are initialized to a large 
negative number as –Infty= –100 (corresponding to a nearly-zero 100 0e − ≈ ) under the assumption 
of initial all-zero state and for the termination of decoder 1 in all-zero state, respectively. (Q: Why 
is Beta initialized to ln Ns− (-log(Ns)) for non-termination of decoder 2?)
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function L_A = logmap(Ly,G,Lu,ind_dec)
% Copyright 1998, Yufei Wu, MPRG lab, Virginia Tech. for academic use
% Log_MAP algorithm using straightforward method to compute branch cost
% Input: Ly     = scaled received bits Ly=0.5*L_c*y=(2*a*rate*Eb/N0)*y
%        G      = code generator for the RSC code a in binary matrix 
%        Lu     = extrinsic information from the previous decoder.
%        ind_dec= index of decoder=1/2 (assumed to be terminated/open)
% Output: L_A   = ln (P(x=1|y)/P(x=-1|y)), i.e., Log-Likelihood Ratio
%             (soft-value) of estimated message input bit at each level 
lu=length(Ly)/2; Infty=1e2; EPS=1e-50; % Number of input bits, etc
[N,L] = size(G); 
Ns = 2^(L-1); % Number of states in the trellis
Le1=-log(1+exp(Lu)); Le2=Lu+Le1; % ln(exp((u+1)/2*Lu)/(1+exp(Lu)))
% Set up the trellis
[nout, ns, pout, ps] = trellis(G);
% Initialization of Alpha and Beta
Alpha(1,2:Ns) = -Infty; % Eq.(9.4.40) (the initial all-zero state) 
if ind_dec==1 % for decoder D1 with termination in all-zero state
  Beta(lu+1,2:Ns) = -Infty; % Eq.(9.4.41b) (the final all-zero state)
else % for decoder D2 without termination

  Beta(lu+1,:) = -log(Ns)*ones(1,Ns);
end
% Compute gamma at every depth level (stage)
for k = 2:lu+1
   Lyk = Ly(k*2-[3 2]);  gam(:,:,k) = -Infty*ones(Ns,Ns);

for s2 = 1:Ns % Eq.(9.4.42)
      gam(ps(s2,1),s2,k) = Lyk*[-1 pout(s2,2)].' +Le1(k-1);
      gam(ps(s2,2),s2,k) = Lyk*[+1 pout(s2,4)].' +Le2(k-1);

end
end
% Compute Alpha in forward recursion
for k = 2:lu

for s2 = 1:Ns
    alpha = sum(exp(gam(:,s2,k).'+Alpha(k-1,:))); % Eq.(9.4.40)

if alpha<EPS, Alpha(k,s2)=-Infty; else Alpha(k,s2)=log(alpha); end
end

  tempmax(k) = max(Alpha(k,:)); Alpha(k,:) = Alpha(k,:)-tempmax(k);
end
% Compute Beta in backward recursion
for k = lu:-1:2

for s1 = 1:Ns
      beta = sum(exp(gam(s1,:,k+1)+Beta(k+1,:))); % Eq.(9.4.41)

if beta<EPS, Beta(k,s1)=-Infty; else Beta(k,s1)=log(beta); end
end

   Beta(k,:) = Beta(k,:) - tempmax(k);
end
% Compute the soft output LLR for the estimated message input
for k = 1:lu

for s2 = 1:Ns % Eq.(9.4.39)
    temp1(s2)=exp(gam(ps(s2,1),s2,k+1)+Alpha(k,ps(s2,1))+Beta(k+1,s2));
    temp2(s2)=exp(gam(ps(s2,2),s2,k+1)+Alpha(k,ps(s2,2))+Beta(k+1,s2));

end
  L_A(k) = log(sum(temp2)+EPS) - log(sum(temp1)+EPS); % Eq.(9.4.38)
end
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function [nout,nstate,pout,pstate] = trellis(G)
% copyright 1998, Yufei Wu, MPRG lab, Virginia Tech for academic use
% set up the trellis with code generator G in binary matrix form. 
% G: Generator matrix with feedback/feedforward connection in row 1/2 
% e.g. G=[1 1 1; 1 0 1] for the turbo encoder in Fig. 9.15(a) 
% nout(i,1:2): Next output [xs=m xp](-1/+1) for state=i, message in=0 
% nout(i,3:4): next output [xs=m xp](-1/+1) for state=i, message in=1
% nstate(i,1): next state(1,...2^M) for state=i, message input=0
% nstate(i,2): next state(1,...2^M) for state=i, message input=1
% pout(i,1:2): previous out [xs=m xp](-1/+1) for state=i, message in=0
% pout(i,3:4): previous out [xs=m xp](-1/+1) for state=i, message in=1
% pstate(i,1): previous state having come to state i with message in=0
% pstate(i,2): previous state having come to state i with message in=1
% See Fig. 9.16 for the meanings of the output arguments.
[N,L] = size(G); % Number of output bits and Consraint length
M=L-1;  Ns=2^M; % Number of bits per state and Number of states
% Set up next_out and next_state matrices for RSC code generator G
for state_i=1:Ns
   state_b = deci2bin1(state_i-1,M); % Binary state

for input_bit=0:1
d_k = input_bit;
a_k=rem(G(1,:)*[d_k  state_b]',2); % Feedback in Fig.9.15(a)
out(input_bit+1,:)=[d_k  rem(G(2,:)*[a_k  state_b]',2)]; % Forward
state(input_bit+1,:)=[a_k  state_b(1:M-1)]; % Shift register

end
   nout(state_i,:) = 2*[out(1,:) out(2,:)]-1; % bipolarize
   nstate(state_i,:) = [bin2deci(state(1,:)) bin2deci(state(2,:))]+1;
end
% Possible previous states having reached the present state
%  with input_bit=0/1
for input_bit=0:1
   bN = input_bit*N; b1 = input_bit+1; % Number of output bits = 2;

for state_i=1:Ns
      pstate(nstate(state_i,b1),b1) = state_i;
      pout(nstate(state_i,b1),bN+[1:N]) = nout(state_i,bN+[1:N]);

end
end
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<SOVA (Soft-In/Soft-Output Viterbi Algorithm) Decoding cast into ‘sova()’’> [H-2] 

The objective of the SOVA-MAP decoding algorithm is to find the state sequence ( )is  and the 
corresponding input sequence ( )iu  which maximizes the following MAP (maximum a posteriori 
probability) function: 

( )(2.1.4) proportional( ) ( ) ( ) ( )( )( | ) ( | ) ~ ( | ) ( )
( )

i
i i i iPP p p P

p
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y

 for given y               (9.4.43) 

This probability would be found from the multiplications of the branch transition probabilities 
defined by Eq. (9.4.42). However, as is done in the routine ‘logmap()’, we will compute the path 
meric by accumulating the logarithm or exponent of only the terms affected by ( )i

ku  as follows: 
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The decoding algorithm cast into the routine ‘sova(Ly,G,Lu,ind_dec)’ proceeds as follows: 

(Step 0) Find the number of the [ ]s p
k ky y ’s in Ly given as the first input argument: ul =length(Ly)/2.

Find the number N  of output bits of the two encoders and the constraint length L  from 
the row and column dimensions of the generator matrix G . Let the number of states be 

12L
sN −= , the SOVA window size 30δ = , and the depth level 0k = . Under the assumption 

of all-zero state at the initial stage (depth level zero), initialize the path metric to 
0( ) 0kM s = ln1= (corresponding to probability 1) only for the all-zero state 0s and to 

( )k jM s = −∞ ln 0= (corresponding to probability 0) for the other states js ( 0j ≠ ).
(Step 1) Increment k  by one and determine which one of the hypothetical encoder input (message) 

1 0ku − =  or 1 1ku − =  would result in larger path metric ( )ikM s (computed by Eq. (9.4.44)) 
for every state ( 0 : 1)sis i N= −  at level k  and chooses the corresponding path as the 
survivor path, storing the estimated value of 1ku −  (into ‘pinput(i,k)’) and the relative path 
metric difference ‘DM(i,k)’ of the survivor path over the other (non-surviving) path

11( ) ( | 0 /1) ( | 1/ 0)i i i kkk k ku uM s M s M s −−Δ = = − = (9.4.45)

for every state at the stage. Repeat this step (in the forward direction) till uk l= .
(Step 2) Depending on the value of the fourth input argument ‘ind_dec’, determine the all-zero state 

0s  or any state belonging to the most likely path (with Max ( )ikM s ) to be the final state 
ˆ( )s k (sh(k)).

(Step 3) Find ˆ( )u k (uhat(k)) from ‘pinput(i,k)’ (constructed at Step 1) and the corresponding 
previous state ˆ( 1)s k − (shat(k-1)) from the trellis structure. Decrement k  by one. Repeat 
this step (in the backward direction) till k = 0 . 

(Step 4) To find the reliability of ˆ( )u k , let LLR= ˆ( ( ))kM s kΔ . Trace back the non-surviving paths 
from the optimal states ˆ( )s k i+  (for 1 :i δ=  such that uk i l+ ≤ ), find the nearly-optimal 
input ˆ ( )iu k . If ˆ ˆ( ) ( )iu k u k≠  for some i , let LLR=Min{LLR, ˆ( ( ))k iM s k i+Δ + }. In this way, 
find the LLR estimate and multiply it with the bipolarized value of ˆ( )u k  to determine the 
soft output or L-value: 

ˆ ˆ( ( )) (2 ( ) 1) LLRAL u k u k= −                                             (9.4.46) 
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function L_A = sova(Ly,G,Lu,ind_dec) 
% Copyright: Yufei Wu, 1998, MPRG lab, Virginia Tech for academic use
% This implements Soft Output Viterbi Algorithm in trace back mode 
% Input: Ly     : Scaled received bits Ly=0.5*L_c*y=(2*a*rate*Eb/N0)*y
%        G      : Code generator for the RSC code in binary matrix form
%        Lu     : Extrinsic information from the previous decoder.
%        ind_dec: Index of decoder=1/2 
%                  (assumed to be terminated in all-zero state/open)
% Output: L_A  : Log-Likelihood Ratio (soft-value) of
%                   estimated message input bit u(k) at each stage, 
%                 ln (P(u(k)=1|y)/P(u(k)=-1|y))
lu = length(Ly)/2; % Number of y=[ys yp] in Ly
lu1 = lu+1; Infty = 1e2;
[N,L] = size(G); Ns = 2^(L-1); % Number of states
delta = 30; % SOVA window size
%Make decision after 'delta' delay. Tracing back from (k+delta) to k,
% decide bit k when received bits for bit (k+delta) are processed.
% Set up the trellis defined by G.
[nout,ns,pout,ps] = trellis(G);
% Initialize the path metrics to -Infty
Mk(1:Ns,1:lu1)=-Infty; Mk(1,1)=0; % Only initial all-0 state possible
% Trace forward to compute all the path metrics
for k=1:lu
  Lyk = Ly(k*2-[1 0]); k1=k+1;

for s=1:Ns % Eq.(9.4.44), Eq.(9.4.45)
    Mk0 = Lyk*pout(s,1:2).' -Lu(k)/2 +Mk(ps(s,1),k);
    Mk1 = Lyk*pout(s,3:4).' +Lu(k)/2 +Mk(ps(s,2),k);

if Mk0>Mk1, Mk(s,k1)=Mk0; DM(s,k1)=Mk0-Mk1; pinput(s,k1)=0;
else     Mk(s,k1)=Mk1; DM(s,k1)=Mk1-Mk0; pinput(s,k1)=1;

end
end

end
% Trace back from all-zero state or the most likely state for D1/D2
% to get input estimates uhat(k), and the most likely path (state) shat
if ind_dec==1, shat(lu1)=1; else [Max,shat(lu1)]=max(Mk(:,lu1)); end
for k=lu:-1:1 
 uhat(k)=pinput(shat(k+1),k+1); shat(k)=ps(shat(k+1),uhat(k)+1);

end
% As the soft-output, find the minimum DM over a competing path 
%  with different information bit estimate.
for k=1:lu
   LLR = min(Infty,DM(shat(k+1),k+1));

for i=1:delta
if k+i<lu1

         u_=1-uhat(k+i); % the information bit
         tmp_state = ps(shat(k+i+1),u_+1);

for j=i-1:-1:0
            pu=pinput(tmp_state,k+j+1); tmp_state=ps(temp_state,pu+1);

end
if pu~=uhat(k), LLR = min(LLR,DM(shat(k+i+1),k+i+1)); end

end
end

   L_A(k) = (2*uhat(k)-1)*LLR; % Eq.(9.4.46)
end
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%turbo_code_demo.m
% simulates the classical turbo encoding-decoding system.
% 1st encoder is terminated with tails bits. (lm+M) bits are scrambled 
% and passed to 2nd encoder, which is left open without termination.
clear
dec_alg = 1; % 0/1 for Log-MAP/SOVA
puncture = 1; % puncture or not 
rate = 1/(3-puncture); % Code rate 
lu = 1000; % Frame size
Nframes = 100; % Number of frames
Niter = 4; % Number of iterations
EbN0dBs = 2.6; %[1 2 3];
N_EbN0dBs = length(EbN0dBs);
G = [1 1 1; 1 0 1]; % Code generator
a = 1; % Fading amplitude; a=1 in AWGN channel
[N,L]=size(G);  M=L-1;  lm=lu-M; % Length of message bit sequence
for nENDB = 1:N_EbN0dBs
   EbN0 = 10^(EbN0dBs(nENDB)/10); % convert Eb/N0[dB] to normal number
   L_c = 4*a*EbN0*rate; % reliability value of the channel
   sigma = 1/sqrt(2*rate*EbN0); % standard deviation of AWGN noise
   noes(nENDB,:) = zeros(1,Niter);

for nframe = 1:Nframes
      m = round(rand(1,lm)); % information message bits
      [temp,map] = sort(rand(1,lu)); % random interleaver mapping
      x = encoderm(m,G,map,puncture); % encoder output [x(+1/-1)
      noise = sigma*randn(1,lu*(3-puncture));
      r = a.*x + noise; % received bits
      y = demultiplex(r,map,puncture); % input for decoder 1 and 2
      Ly = 0.5*L_c*y; % Scale the received bits

for iter = 1:Niter
% Decoder 1
if iter<2, Lu1=zeros(1,lu); % Initialize extrinsic information 
else Lu1(map)=L_e2; % (deinterleaved) a priori information

end
if dec_alg==0, L_A1=logmap(Ly(1,:),G,Lu1,1); % all information
else          L_A1=sova(Ly(1,:),G,Lu1,1); % all information

end
         L_e1= L_A1-2*Ly(1,1:2:2*lu)-Lu1; % Eq.(9.4.47)

% Decoder 2
         Lu2 = L_e1(map); % (interleaved) a priori information

if dec_alg==0, L_A2=logmap(Ly(2,:),G,Lu2,2); % all information 
else          L_A2=sova(Ly(2,:),G,Lu2,2); % all information 

end
         L_e2= L_A2-2*Ly(2,1:2:2*lu)-Lu2; % Eq.(9.4.47)
         mhat(map)=(sign(L_A2)+1)/2; % Estimate the message bits
         noe(iter)=sum(mhat(1:lu-M)~=m); % Number of bit errors

end % End of iter loop
% Total number of bit errors for all iterations

      noes(nENDB,:) = noes(nENDB,:) + noe;
      ber(nENDB,:) = noes(nENDB,:)/nframe/(lu-M); % Bit error rate

 fprintf('\n');
for i=1:Niter, fprintf('%14.4e ', ber(nENDB,i)); end

end % End of nframe loop
end % End of nENDB loop



308 Chapter 9  Information and Coding

Now, it is time to take a look at the main program “turbo_code_demo.m”, which uses the routine 
‘logmap()’ or ‘sova()’ (corresponding to the block named ‘Log-MAP or SOVA’ in Fig. 9.15(c)) as 
well as the routines ‘encoderm()’ (corresponding to Fig. 9.15(a)), ‘rsc_encode()’, ‘demultiplex()’ 
(corresponding to Fig. 9.15(b)), and ‘trellis()’ to simulate the turbo coding system depicted in Fig. 
9.15. All of the programs listed here in connection with turbo coding stem from the routines 
developed by Yufei Wu in the MPRG (Mobile/Portable Radio Research Group) of Virginia Tech. 
(Polytechnic Institute and State University). The following should be noted:

- One thing to note is that the extrinsic information eL  to be presented to one decoder i by the 
other decoder j  should contain only the intrinsic information of decoder j  that is obtained from 
its own parity bits not available to decoder i . Accordingly, one decoder should remove the 
information about sy  (avaiable commonly to both decoders) and the priori information ( )L u
(provided by the other decoder) from the overall information AL  to produce the information that 
will be presented to the other decoder. (Would your friend be glad if you gave his/her present 
back to him/her or presented him/her what he/she had already got?) To prepare an equation for 
this information processing job of each encoder, we extract only the terms affected by 1ku = ±
from Eqs. (9.4.44) and (9.4.42) (each providing the basis for the path metric (Eq. (9.4.45)) and 
LLR (Eq. (9.4.38)), respectively,) to write 

( ) ( ) ( ) ( )
( ) ( )

( ) 1 ( ) 1 ( )
2 2 2 21 1

si i i is s
k kk kc ck k c ki i

k k

L u L uu u u uL y L y L u L y
u u

+ − + = +
=+ =−

which conforms with Eq. (9.4.37) for the conditioned LLR | ( | )L u yu y . To prepare the extrinsic 
information for the other decoder, this information should be removed from the overall 
information ( )AL u  produced by the the routine ‘logmap()’ or ‘sova()’ as

( ) ( ) ( ) s
e A c kL u L u L u L y= − −  (9.4.47) 

- Another thing to note is that as shown in Fig. 9.15(c), the basis for the final decision about u  is 
the deinterleaved overall information 2AL  that is attributed to decoder 2. Accordingly, the turbo 
decoder should know the pseudo-random sequence ‘map’ (that has been used for interleaving by 
the transmitter) as well as the fading amplitude and SNR of the channel. 

- The trellis structure and the output arguments produced by the routine ‘trellis()’ are illustrated in 
Fig. 9.16.

Interest readers are invited to run the program “turbo_code_demo.m” with the value of the 
control constant ‘dec_alg’ set to 0/1 for Log-MAP/SOVA decoding algorithm and see the BER 
becoming lower as the decoding iteration proceeds. How do the turbo codes work? How are the 
two decoding algorithms, Log-MAP and SOVA, compared? Is there any weakpoint of turbo 
codes? What is the measure against the weakpoint, if any? Unfortunately, to answer such 
questions is difficult for the authors and therefore, is beyond the scope of this book. As can be 
seen from the simulation results, turbo codes have an excellent BER performance close to the 
Shannon limit at low and medium SNRs. However, the decreasing rate of the BER curve of a 
turbo code can be very low at high SNR depending on the interleaver and the free distance of the 
code, which is called the ‘error floor’ phenomenon. Besides, turbo codes needs not only a large 
interleaver and block size but also many iterations to achieve such a good BER performance, 
which increases the complexity and latency (delay) of the decoder.
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(d) Why don’t we make the code for the above set of four symbols as follows? 

Symbol     00      01      10       11 

Codeword      0       1      10      11 

With this code, we could have the average codeword length as 

L  = 0.81× 1+0.09× 1+0.09× 2+0.01× 2 = 1.1[bits/symbol] 

which is shorter than that with the code obtained in (a) or (b). To answer this question, think 
about the decoding of a coded sequence {1011} based on the above table. 

9.4  Channel Capacity and Hamming Codes 
Recall that the MATLAB function ‘Hammgen(n)’ can be used to generate the n N×  parity-check 
matrix for an ( , )N K  Hamming code where n2 1N = −  and nK N= − . Suppose the message 
sequence is coded with the (7,4) or (15,11) Hamming code, BPSK(Binary Phase Keying)-
modulated, and then transmitted through a BSC (Binary Symmetric Channel).
(a) Compute the crossover (channel bit transmission error) probability of BPSK signaling with each 

of these two codings for SNRdB 0~13= [dB] by 

( )(7.3.5)
r cQ SNR Rε =  with (Code rate)c

KR
N

=                             (P9.4.1) 

and substitute this into Eq. (9.3.13) to get the channel capacity

(9.3.13)
2 21 (1 ) log (1 ) log 1 ( )t bC Hε ε ε ε ε= + − − + = − [bits/symbol]            (P9.4.2) 

Plot the channel capacity tC  vs. SNRdB 0~13=  and use the graph to find the rough value of 
SNRdB  at which the inequality (9.3.8) is marginally satisfied: 

1
BPSK

b
c c tcb R b R C== = ≤ [bits/symbol]                                   (P9.4.3) 

(b) Referring to the lower part of the MATLAB routine ‘do_Hamming_code74()’ (Sec. 9.4.2), use 
Eq. (9.4.11) to compute the theoretical (approximate) probabilities of message bit error for 
SNRdB 0~13= [dB] with no code, (7,4) Hamming code, and (15,11) Hamming code and plot 
them versus SNRdB. Use the theoretical BER curves to find the rough values of SNRdB at 
which the two codings have the same BER as that with no coding. 

(c) Modify the MATLAB routine ‘do_Hamming_code74()’ so that it can simulate the BPSK 
signaling with (7,4) Hamming code and (15,11) Hamming code for SNRdB = 5, 7, 9, and 
11[dB]. Run it to plot the BERs versus SNRdB on the theoretical BER curves obtained in (b).

     Table P9.4  BERs of BPSK signaling with (7,4) or (15,11) Hamming code 
 SNRdB=5[dB] SNRdB=7[dB] SNRdB=9[dB] SNRdB=11[dB] 

No code 0.037679  0.002413  
(7,4) Hamming code 0.012422

(0.010996)
0.000118

(0.000080)
(15,11) Hamming code 0.060606

(0.038549)
0.001196

(0.000830)
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9.5  Effect of Coding on BER 
To understand why the BER of simulation result is much higher than the theoretical value of Eq. 
(9.4.11) (Sec. 9.4.2), insert the following statements at the appropriate places in the MATLAB 
routine ‘do_Hamming_code74()’ (Sec. 9.4.2). 
notbe1= sum(r_sliced~=coded); notbec1= sum(r_c~=coded);
si= bin2deci(s); % syndrome
if notbe1>0 & iter<30
fprintf('\n # of transmitted bit errors %d -> ',notbe1);
fprintf('%d after correction (syndrome= %d)',notbec1,si);

end

Then run the routine with SNRbdB=5 to answer the following questions: 
(i)  Is a single bit error in a codeword always corrected? 
(ii) Is there any case where the number of bit errors is increased by a wrong correction? 
What do you think is the reason for the big gap between the two BERs that are obtained from 
simulation and theoretical formula (9.4.11)? 

9.6  BCH (Bose-Chaudhuri-Hocquenghem) Codes with Simulink
BCH codes constitute a powerful class of cyclic codes that provides a large selection of block 
lengths, code rates, alphabet sizes, and error-correcting capability as listed in Table 5.2 of [S-3]. 
Accroding to the table, the =),( KN (15,7) and (31,16) BCH codes are represented by the generator 
polynomial coefficient vectors 

1 721(octal) [1   1   1    0   1   0    0  0   1]= =g                                            (P9.6.1) 

2 107657(octal) [1   0  0  0   1  1  1   1 1  0   1  0  1   1  1  1]= =g               (P9.6.2)

and their error correcting capabilities are 2 and 3, rspectively. Suppose the message sequence is 
coded with these two BCH codes, BPSK(binary phase-shift keying)-modulated, and then 
transmitted through a BSC (binary symmetric channel). 
(a) Let us try to make use of the MATLAB built-in function ‘bchgenpoly()’ to make the generator 

polynomial vectors for the (31,16) BCH code: 
N=31; K=16;
gBCH=bchgenpoly(N,K); % Galois row vector in GF(2) representing
                      % the (N,K) BCH code 
g=double(gBCH.x) % Extracting the elements from a Galois array 

Does the resulting vector conform with 2g ?
(b) It may take a long time to use the MATLAB built-in routine ‘decode()’ with such a big BCH 

code as 2g . If we prepare the syndrome table using ‘E=syndtable(H)’ beforehand and then use 
‘decode(coded,N,K,‘cyclic’,g,E)’ with the prepared syndrome table E, it will save a lot of 
decoding time. Likewise, if we prepare the error pattern matrix E and the corresponding error 
pattern index vector epi using ‘cyclic_decoder0’ (Sec. 9.4.3) beforehand and then use 
‘cyclic_decoder(coded,N,K,g,E,epi)’, it will save the decoding time, too. Complete the 
following MATLAB program “do_cyclic_codes.m” so that it can simulate a BPSK 
communication system with each of the above two BCH codes and plot the BERs for 
SNRdBs1=[2 4 10] together with the throretical BER curves for SNRdBs=[0:0.01:14] obtained 
from Eq. (9.4.11). Run the completed program to get the BER curves. 



Problems    323 

%do_cyclic_codes.m
clear, clf 
gsymbols=['bo';'r+';'kx';'md';'g*'];
% Theoretical BER curves
SNRdBs=0:0.01:14;  SNRs=10.^(SNRdBs/10); pemb_uncoded=Q(sqrt(SNRs));
semilogy(SNRdBs,pemb_uncoded,':'), hold on
use_decode = 0; % Use encode()/decode or not
MaxIter=1e5; Target_no_of_error=100;  SNRdBs1=2:4:10; 
for iter=1:2 

if iter==1, N=15; K=7; nceb=2; %(15,7) BCH code generator 
else    N=31; K=16; nceb=3; % (31,16) BCH code generator

end
   gBCH=bchgenpoly(N,K); %Galois row vector representing (N,K) BCH code
   g=double(gBCH.x);

clear('S')
if use_decode>0, H=cyclgen(N,g); E=syndtable(?); 
else

     E= combis(N,nceb); % All error patterns
for i=1:size(E,1) 

        S(i,:) = cyclic_decoder0(E(i,:),N,K,g); % Syndrome
        epi(bin2deci(S(i,:))) = ?; % Error pattern indices

end
end

   Rc = K/N; %code rate
   SNRcs=SNRs*Rc; sqrtSNRcs=sqrt(SNRcs); 
   ets=Q(sqrt(SNRcs)); % transmitted bit error probability Eq.(7.3.5)
   pemb_t=prob_err_msg_bit(ets,N,nceb); 

semilogy(SNRdBs,pemb_t,gsymbols(iter,1),'Markersize',5)
for iter1=1:length(SNRdBs1) 

      SNRdB = SNRdBs1(iter1); SNR = 10.^(SNRdB/10); 
      SNRc = SNR*Rc; sqrtSNRc = sqrt(SNRc);
      et=Q(sqrt(SNRc)); % transmitted bit error probability Eq.(7.3.5)
      K100 = K*100; 
      nombe = 0;

for iter2=1:MaxIter 
         msg=randint(1,K100); % Message vector

if use_decode==0,  coded=cyclic_???????(msg,N,K,g);
else  msg=reshape(msg,length(msg)/K,K); 

coded=??????(msg,N,K,'cyclic',g);
end

         r= 2*coded-1 + randn(size(coded))/sqrtSNRc; % Received vector
         r_sliced= 1*(r>0); % Sliced

if use_decode==0
decoded= cyclic_???????(r_sliced,N,K,g,E,epi);
else  decoded= ??????(r_sliced,N,K,'cyclic',g,E);

end
         nombe= nombe + sum(sum(decoded~=msg));

if nombe>Target_no_of_error, break; end
end

      lm=iter2*K100; pemb=nombe/lm; % Message bit error probability
      semilogy(SNRdB,pemb,gsymbols(iter,:),'Markersize',5)

end
end
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(c) Referring to the Simulink model “BCH_BPSK_sim.mdl” depicted in Fig. P9.6 and the 
following program “do_BCH_BPSK_sim.m”, use Simulink to simulate a BPSK communication 
system with the (31,16) BCH code for error correction and find the BERs for 0/bE N = -1, 3, and 
7dB. Noting that SNRbdB=EbN0dB+3 since 0/( / 2)b bSNR E N= , list the BERs together with 
those obtained using ‘encode()’/‘decode()’ in (b). 

%do_BCH_BPSK_sim.m
clear, clf
K=16; % Number of input bits to the BCH encoder (message length)
N=31; % Number of output bits from the BCH encoder (codeword length)
Rc=K/N; % Code rate to be multiplied with the SNR in AWGN channel block
b=1; M=2^b; % Number of bits per symbol and modulation order
T=0.001/K; Ts=b*T; % Sample time and Symbol time
SNRbdBs=[2:4:10]; EbN0dBs=SNRbdBs-3; 
EbN0dBs_t=0:0.1:10; EbN0s_t=10.^(EbN0dBs_t/10); 
SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'PSK',b,'BER');
for i=1:length(EbN0dBs)
   EbN0dB=EbN0dBs(i);
   sim('BCH_BPSK_sim');
   BERs(i)=BER(1); % just ber among {ber, # of errors, total # of bits}
   fprintf(' With EbN0dB=%4.1f, BER=%10.4e=%d/%d\n', EbN0dB,BER);
end
semilogy(EbN0dBs,BERs,'r*', EbN0dBs_t,BER_theory,'b')
xlabel('Eb/N0[dB]'); ylabel('BER');
title('BER of BCH code with BPSK');
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%dc09p07.m
% To practice using convenc() and vitdec() for channel coding 
clear, clf
Gc=[4 5 11;1 4 2]; % Octal code generator matrix
K=size(Gc,1); % Number of encoder input bits
% Constraint length vector 
Gc_m=max(Gc.');
for i=1:length(Gc_m), Lc(i)=length(deci2bin1(oct2dec(Gc_m(i)))); end
trel=poly2trellis(Lc,Gc);
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
lm=1e5; msg=randint(1,lm);
transmission_ber=0.02;
notbe=round(transmission_ber*lm); % Number of transmitted bit errors
ch_input=convenc([msg zeros(1,delay)],trel); 
% Received/modulated/detected signal
ch_output= rem(randerr(1,length(ch_input),notbe)+ch_input,2);
decoded_trunc= vitdec(ch_output,trel,Tbdepth,'trunc','hard');
ber_trunc= sum(msg~=decoded_trunc(????))/lm;
decoded_cont= vitdec(ch_output,trel,Tbdepth,'cont','hard');
ber_cont=sum(msg~=decoded_cont(????????????))/lm;
% It is indispensable to use the delay for the decoding result
%  obtained using vitdec(,,,'cont',) 
nn=[0:100-1];
subplot(221), stem(nn,msg(nn+1)), title('Message sequence')
subplot(223), stem(nn,decoded_cont(nn+1)), hold on
stem(delay,0,'rx')
decoded_term= vitdec(ch_output,trel,Tbdepth,'term','hard');
ber_term=sum(msg~=decoded_term(????))/lm;
fprintf('\n BER_trunc  BER_cont   BER_term')
fprintf('\n %9.2e  %9.2e  %9.2e\n', ber_trunc,ber_cont,ber_term)
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9.7  A Convolutional Code and Viterbi Decoding 
Fig. P9.7 shows a convolutional encoder (described by two kinds of schematic) and the two 
corresponding generator matrices where one is a binary generator matrix that is used by the 
‘conv_encoder()’/‘conv_decoder()’ and the other is an octal generator matrix that is used by the 
MATLAB built-in functions ‘convenc()’/‘vitdec()’. Let the convolutional encoder and the 
corresponding Viterbi decoder be used for channel coding where there happens a 2%-error in the 
100,000 transmitted bits. Complete the above program “dc09p07.m” to simulate this situation and 
run it to find the BER. 

9.8  A Convolutional Code and Viterbi Decoding with Simulink 
Fig. P9.8.1 shows a convolutional encoder described by the octal code generator matrix 

[133 171]cG = . Fig. P9.8.2 shows the Simulink model “Viterbi_QAM_sim.mdl” that can be used to 
simulate a QAM communication with a given convolutional encoder and the corresponding Viterbi 
decoder. The following MATLAB function ‘Viterbi_QAM()’ can also be used to simulate a QAM 
communication with a given convolutional encoder and the corresponding Viterbi decoder. 
Complete the following MATLAB program “do_Viterbi_QAM”, which uses the MATLAB 
function ‘Viterbi_QAM()’ and the Simulink model “Viterbi_QAM_sim.mdl” to simulate a 16-
QAM communication system with the convolutional encoder of Fig. P9.8.1 and the corresponding 
Viterbi decoder. Run it to find the BERs for EbN0=3, 6, and 9dB.

 EbN0dB=3[dB] EbN0dB=6[dB] EbN0dB=9[dB] 
MATLAB ‘Viterbi_QAM.m’  0.006684  

Simulink ‘Viterbi_QAM_sim.mdl’ 0.466403  0.000079 

function [pemb,nombe,notmb]=Viterbi_QAM(Gc,b,SNRbdB,MaxIter) 
if nargin<4, MaxIter=1e5; end
if nargin<3, SNRbdB=5; end
if nargin<2, b=4; end
[K,N]=size(Gc); Rc=K/N;  Gc_m=max(Gc.');
% Constraint length vector 
for i=1:length(Gc_m), Lc(i)=length(deci2bin1(oct2dec(Gc_m(i)))); end
Nf=144; % Number of bits per frame
Nmod=Nf*N/K/b; % Number of QAM symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc; sqrtSNRbc=sqrt(SNRbc);
sqrtSNRc=sqrt(2*b*SNRbc); % Complex noise for b-bit (coded) symbol
trel=poly2trellis(Lc,Gc);
Tbdepth=5; delay=Tbdepth*K; 
nombe=0; Target_no_of_error=100; 
for iter=1:MaxIter 
   msg=randint(1,Nf); % Message vector
   coded= convenc(msg,trel); % Convolutional encoding
   modulated= QAM(coded,b); % 2^b-QAM-Modulation
   r= modulated +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc; 
   demodulated= QAM_dem(r,b); % 2^b-QAM-Demodulation
   decoded= vitdec(demodulated,trel,Tbdepth,'trunc','hard');
   nombe = nombe + sum(msg~=decoded(1:Nf)); %

if nombe>Target_no_of_error, break; end
end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability
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%do_Viterbi_QAM.m
clear, clf
Nf=144; Tf=0.001; Tb=Tf/Nf; % Frame size, Frame and Sample/Bit time
Gc=[133 171]; 
[K,N]=size(Gc); Rc=K/N; % Message/Codeword length and Code rate
% Constraint length vector 
Gc_m=max(Gc.');
for i=1:length(Gc_m) 

Lc(i)=length(deci2bin1(oct2dec(Gc_m(i))));
end
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
b=4; M=2^b; % Number of bits per symbol and Modulation order
Ts=b*Rc*Tb; % Symbol time 
N_factor=sqrt(2*(M-1)/3); % Eq.(7.5.4a)
EbN0dBs_t=0:0.1:10; SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'QAM',b,'BER');
EbN0dBs=[3 6]; Target_no_of_error=50;
for i=1:length(EbN0dBs)
   EbN0dB=EbN0dBs(i); SNRbdB=EbN0dB+3; 
   randn('state', 0); 
   [pemb,nombe,notmb]=???????_QAM(Gc,b,SNRbdB,Target_no_of_error);

pembs(i)=pemb;
   sim('Viterbi_QAM_sim'); pembs_sim(i)=BER(1); 
end
[pembs; pembs_sim]
semilogy(EbN0dBs,pembs,'r*', EbN0dBs_t,BER_theory,'b')
xlabel('Eb/N0[dB]'); ylabel('BER');

function qamseq=QAM(bitseq,b)
bpsym = nextpow2(max(bitseq)); % no of bits per symbol
if bpsym>0, bitseq = deci2bin(bitseq,bpsym); end
if b==1, qamseq=bitseq*2-1; return; end % BPSK modulation
% 2^b-QAM modulation
N0=length(bitseq);  N=ceil(N0/b);
bitseq=bitseq(:).'; bitseq=[bitseq zeros(1,N*b-N0)];
b1=ceil(b/2); b2=b-b1; b21=b^2; b12=2^b1; b22=2^b2; 
g_code1=2*gray_code(b1)-b12+1; g_code2=2*gray_code(b2)-b22+1;
tmp1=sum([1:2:2^b1-1].^2)*b21; tmp2=sum([1:2:b22-1].^2)*b12;
M=2^b; Kmod=sqrt(2*(M-1)/3); 
%Kmod=sqrt((tmp1+tmp2)/2/(2^b/4)) % Normalization factor
qamseq=[];
for i=0:N-1
   bi=b*i; i_real=bin2deci(bitseq(bi+[1:b1]))+1;
   i_imag=bin2deci(bitseq(bi+[b1+1:b]))+1;
   qamseq=[qamseq (g_code1(i_real)+j*g_code2(i_imag))/Kmod];
end
function [g_code,b_code]=gray_code(b)
N=2^b; g_code=0:N-1; 
if b>1, g_code=gray_code0(g_code); end
b_code=deci2bin(g_code);

function g_code=gray_code0(g_code)
N=length(g_code); N2=N/2;
if N>=4, N2=N/2; g_code(N2+1:N)=fftshift(g_code(N2+1:N)); end
if N>4, g_code=[gray_code0(g_code(1:N2)) 
gray_code0(g_code(N2+1:N))]; end
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function bitseq=QAM_dem(qamseq,b,bpsym)
%BPSK demodulation
if b==1, bitseq=(qamseq>=0); return; end
%2^b-QAM demodulation
N=length(qamseq);
b1=ceil(b/2); b2=b-b1;
g_code1=2*gray_code(b1)-2^b1+1; g_code2=2*gray_code(b2)-2^b2+1;
tmp1=sum([1:2:2^b1-1].^2)*2^b2;
tmp2=sum([1:2:2^b2-1].^2)*2^b1;
Kmod=sqrt((tmp1+tmp2)/2/(2^b/4)); % Normalization factor
g_code1=g_code1/Kmod; g_code2=g_code2/Kmod; 
bitseq=[];
for i=1:N
  [emin1,i1]=min(abs(real(qamseq(i))-g_code1));
  [emin2,i2]=min(abs(imag(qamseq(i))-g_code2));
  bitseq=[bitseq deci2bin1(i1-1,b1) deci2bin1(i2-1,b2)];
end
if (nargin>2)
  N = length(bitseq)/bpsym; bitmatrix = reshape(bitseq,bpsym,N).';

for i=1:N, intseq(i)=bin2deci(bitmatrix(i,:)); end
  bitseq = intseq;
end

9.9  Ungerboeck TCM (Trellis-Coded Modulation) Codes 
Figs. P9.9.1(a) and (b) show two Ungerboeck TCM encoders and Fig. P9.9.2 shows a Simulink 
model “TCM_sim.mdl” that simulates the TCM encoding-decoding with the TCM encoder of Fig. 
P9.9.1.

function [pemb,nombe,notmb]=... 
TCM(state_eq,K,Nsb,N,Constellation,SNRbdB,Target_no_of_error)

M=2^N; Rc=K/N;
Nf=288; % Number of bits per frame
Nmod=Nf/K; % Number of symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc; 
sqrtSNRc=sqrt(2*N*SNRbc); % Complex noise per K=Rc*N-bit symbol
nombe=0;  MaxIter=1e6; 
for iter=1:MaxIter

msg=randint(1,Nf); % Message vector
coded = TCM_encoder(state_eq,K,Nsb,N,msg,Constellation); 
r= coded +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc; 
decoded= TCM_decoder(state_eq,K,Nsb,r,Constellation);
nombe = nombe + sum(msg~=decoded(1:Nf)); 
if nombe>Target_no_of_error, break; end

end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability

function [s1,x]=TCM_state_eq1(s,u,Constellation)
% State equation for the TCM encoder in Fig. P9.9.1(a)
% Input:  s= State, u= Input
% Output: s1= Next state, x= Output
s1 = [u(2) s(1)];
x= Constellation(bin2deci([u(1) rem(u(2)+s(2),2) s(1)])+1);
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(a) Run the following program “do_TCM_8PSK.m” to use the above MATLAB routine “TCM()” 
and the Simulink model “TCM_sim.mdl” for finding the BERs of the TCM system with the 
encoder-modulator of Fig. P9.9.1(a) where the SNR is given as 0/ 2[dB]bE N = . Set the 8PSK 
constellation for “TCM_sim.mdl” to 1C  or 3C (Gray code). 

1

2

3

2exp , 0,1,2,3,4,5,6,7
8

2exp , 0,4,2,6,1,5,3,7
8

2exp , 0, 1,3,2,6,7,5,4
8

kC j k

kC j k

kC j k

π

π

π

= =

= =

= =

                             (P9.9.1) 

What difference will be made to the BER? Set the 8PSK constellation for “TCM.m” to 2C  or 
3C . What difference will be made to the BER? Fill in the following table. 
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Table P9.9  BER of TCM systems 

0/bE N
BER

QPSK - no code 
(Theoretical)

TCM-8PSK
(Fig. P9.9.1(a)) 

TCM-8PSK
(Fig. P9.9.1(b))

2dB 0.038

TCM with 1C
TCM1 with 1C
TCM with 2C
TCM1 with 2C
TCM with 3C
TCM1 with 3C

0.0018

0.059

0.018

0.0020

0.016

0.015
Simulink with 2C
Simulink with 1C
Simulink with 3C

0.020

0.064
0.049

(b) Modify the program “do_TCM_8PSK.m” and make a routine “TCM_state_eq2()” so that the 
TCM system with the encoder of Fig. P9.9.1(b) can be simulated. Run the modified program 
“do_TCM_8PSK.m” to find the BERs for 0/ 2[dB]bE N =  and fill in the corresponding blanks 
of Table P9.9. 

%do_TCM_8PSK.m
clear
Nf=144; Tf=0.001; Tb=Tf/Nf; % Frame size, Frame and Sample/Bit times
Gc=[1 0 0; 0 5 2]; state_eq='TCM_state_eq1'; Ns=2; % Fig. P9.9.1(a)
%Gc=[1 2 0; 4 1 2]; state_eq='TCM_state_eq2'; Ns=3; % Fig. P9.9.1(b)
[K,N]=size(Gc); Rc=K/N; % Message/Codeword length and Code rate
% Constellation for TCM Simuklink block
Constellation2=exp(j*2*pi/8*[0 4 2 6 1 5 3 7]); 
% Constellation good for TCM() MATLAB function
Constellation1=exp(j*2*pi/8*[0:7]);
% Constraint length vector 
Gc_m=max(Gc.');
for i=1:length(Gc_m), Lc(i)=length(deci2bin(oct2dec(Gc_m(i)))); end
%trel=poly2trellis(Lc,Gc);
Tbdepth=sum(Lc)*5; delay=Tbdepth*K;
Ts=K*Tb; % or N*Rc*Tb % Symbol time
EbN0dBs_t=0:0.1:10;  SNRbdBs_t=EbN0dBs_t+3;
BER_theory= prob_error(SNRbdBs_t,'PSK',K,'BER');
EbN0dBs=2; %[3 6];
Target_no_of_error=50;
for i=1:length(EbN0dBs)

EbN0dB=EbN0dBs(i); SNRbdB=EbN0dB+3; 
 pemb=TCM(state_eq,K,Ns,N,Constellation1,SNRbdB,Target_no_of_error);
pembs_TCM8PSK(i)=pemb
sim('TCM_sim'); pembs_TCM8PSK_sim(i)=BER(1); 

end
figure(1), clf
semilogy(EbN0dBs_t,BER_theory,'b'), hold on
semilogy(EbN0dBs,pembs_TCM8PSK_sim,'r*', EbN0dBs,pembs_TCM8PSK,'m*')
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(c) For the TCM encoder with no input bit inserted into between the flip-flops (registers), the 
routines ‘TCM()’, ‘TCM_encoder(), and ‘TCM_decoder()’ can be modified as ‘TCM1()’, 
‘TCM_encoder1(), and ‘TCM_decoder1()’ (listed below) so that they can accommodate any 
(convolutional) encoder using the (octal) code generator instead of a function representing the 
state equation for the TCM encoder. Run the program “do_TCM_8PSK.m” with ‘TCM()’ 
replaced by ‘TCM1()’ and check if the routines work properly. Fill in the corresponding blanks 
of Table P9.9. 

(d) With reference to the set partitioning shown in Fig. 9.14 (Sec. 9.4.5), why do you think the BER 
is affected by different constellations? Why is the TCM system of Fig. P9.9.1(b) less affected 
by different constellations than that of Fig. P9.9.1(a)? 

function [outputs,state]=TCM_encoder1(Gc,input,state,Constellation)
% generates the output sequence of a binary TCM encoder
% Input:  Gc    = Code generator matrix consisting of octal numbers
%         K     = Number of input bits entering the encoder 
%         Nsb   = Number of state bits of the TCM encoder
%         N     = Number of output bits of the TCM encoder
%         input = Binary input message sequence
%         state = State of the TCM encoder
%         Constellation = Signal sets for signal mapper
% Output: output = a sequence of signal points on Contellation
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
[K,N]=size(Gc);
for k=1:K, nsb(k)=length(de2bi(oct2dec(max(Gc(k,:)))))-1; end
Nsb=sum(nsb);
tmp= rem(length(input),K); 
input= [input zeros(1,(K-tmp)*(tmp>0))];
if nargin<3, state=zeros(1,Nsb); 
elseif length(state)==2^N 

    Constellation=state; state=zeros(1,Nsb);
end
input_length= length(input);
N_msgsymbol= input_length/K;
input1= reshape(input,K,N_msgsymbol).';
outputs= [];
for l=1:N_msgsymbol
   ub= input1(l,:);
   is=1; nstate=[];
   output=zeros(1,N);

for k=1:K
      tmp = [ub(k) state(is:is+nsb(k)-1)]; 
      nstate = [nstate tmp(1:nsb(k))]; is=is+nsb(k); 

for i=1:N
         output(i) = output(i) + ... 

deci2bin1(oct2dec(Gc(k,i)),nsb(k)+1)*tmp';
end

end
   state = nstate;

output = Constellation(bin2deci(rem(output,2))+1);
   outputs = [outputs output];
end



Problems    333 

function decoded_seq=TCM_decoder1(Gc,demod,Constellation,opmode)
% performs the Viterbi algorithm on the PSK demodulated signal
% Inpit: state_eq = External function for state equation saved 
%                    in an M-file
%        K   = Number of input bits entering encoder at each cycle.
%        Nsb = Number of state bits of TCM encoder
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
[K,N]=size(Gc);
for k=1:K, nsb(k)=length(de2bi(oct2dec(max(Gc(k,:)))))-1; end
Nsb=sum(nsb);
N_states=2^Nsb;
N_msgsymbol=length(demod);
for m=1:N_states

for n=1:N_msgsymbol+1
      states(m,n)=0; % inactive in the trellis diagram
      p_state(m,n)=0; n_state(m,n)=0; input(m,n)=0;

end
end
states(1,1)=1; % make the initial state active
cost(1,1)=0; K2=2^K;
for n=1:N_msgsymbol
 y=demod(n); %received sequence
  n1=n+1;
for m=1:N_states

if states(m,n)==1 %active
      xb=deci2bin1(m-1,Nsb);

for m0=1:K2
        u=deci2bin1(m0-1,K);
        is=1; nstate=[]; output=zeros(1,N);

for k=1:K
           tmp = [u(k) xb(is:is+nsb(k)-1)]; 
           nstate = [nstate tmp(1:nsb(k))]; is=is+nsb(k); 

for i=1:N
              output(i) = output(i) + 

deci2bin1(oct2dec(Gc(k,i)),nsb(k)+1)*tmp';
end

end
        nxb(m0,:) = nstate;

yb(m0) = Constellation(bin2deci(rem(output,2))+1);
nxm0=bin2deci(nxb(m0,:))+1;
states(nxm0,n1)=1;

        difference=y-yb(m0);
       d(m0)=cost(m,n)+difference*conj(difference);

if p_state(nxm0,n1)==0 
          cost(nxm0,n1)=d(m0);
         p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; 

else
          [cost(nxm0,n1),i]=min([d(m0) cost(nxm0,n1)]);

if i==1, p_state(nxm0,n1)=m; input(nxm0,n1)=m0-1; end
end

end
end

end
end
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decoded_seq=[];
if nargin<4 | ~strncmp(opmode,'term',4)

% trace back from the best-metric state (default)
[min_cost,m]=min(cost(:,n1));
else m=1; %trace back from the all-0 state

end
for n=n1:-1:2
   decoded_seq= [deci2bin1(input(m,n),K) decoded_seq];
   m=p_state(m,n);
end

function [pemb,nombe,notmb]= 
TCM1(Gc,Constellation,SNRbdB,Target_no_of_error)

if nargin<4, Target_no_of_error=50; end
[K,N]=size(Gc); M=2^N; Rc=K/N;
Nf=288; % Number of bits per frame
Nmod=Nf/K; % Number of symbols per modulated frame
SNRb=10.^(SNRbdB/10); SNRbc=SNRb*Rc; 
sqrtSNRc=sqrt(2*N*SNRbc); % Complex noise per K=Rc*N-bit symbol
nombe=0;   MaxIter=1e6; 
for iter=1:MaxIter

msg=randint(1,Nf); % Message vector
coded = TCM_encoder1(Gc,msg,Constellation); % TCM encoding
r= coded +(randn(1,Nmod)+j*randn(1,Nmod))/sqrtSNRc; 
decoded= TCM_decoder1(Gc,r,Constellation);
nombe = nombe + sum(msg~=decoded(1:Nf)); %
if nombe>Target_no_of_error, break; end

end
notmb=Nf*iter; % Number of total message bits
pemb=nombe/notmb; % Message bit error probability

9.10 DSTBC (Differential Space-Time Block Coding) with Four Transmit Antennas 
The DSTBC with two transmit antennas (Sec. 9.4.8) can be extended into the DSTBC with four 
transmit antennas as follows: 

The transmission matrix for sending 0 1 2 3 0 3 1 3 2 3 3 1 3 2[ ]n n nx x x x x x x x x+ + + + +  to the receiver 
is constructed as 

4( 1) 4 3n n nXS S+ =   with 4 40S I ×=                                       (P9.10.1) 
where
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↓ (P9.10.2)

Each row of this transmission matrix is transmitted through each antenna and each column is sent 
during each one of four consecutive periods. Then the signal received through a noise-free channel 
having frequency response 1 2 3 4[ ]h h h h=h  can be described as 

(P9.10.1)
4( 1) 4( 1) 1 4( 1) 2 4( 1) 34( 1) 4( 1) 4 4 4 4n n n nn n n n n nr r r r S S X XR R+ + + + + + ++ += = = =h h     (P9.10.3) 
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The receiver uses the following decoding rule[W-10] to estimate the message sequence { nx }:

3
3 13 2 2 2 2
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| | | | | | | |ˆ
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n n n nn
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r r r rx
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x                                                          (P9.10.4) 
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Complete the following program “test_DSTBC_H4_PSK.m” and run it to see if this scheme works. 

%test_DSTBC_H4_PSK.m
clear, clf
ITR=10; MaxIter=100; 
sq2= sqrt(2); sq3= sqrt(3); sq6=sqrt(6); 
M=4; phs= 2*pi*[0:M-1]/M; MPSKs= exp(j*phs); % 4-PSK symbols
h=[0.95*exp(j*0.5) exp(-j*0.4) 1.02*exp(-j*0.2) 0.98*exp(j*0.1)]; % Channel
dh= 0.01*[exp(-j*0.1) -exp(j*0.2) exp(j*0.1) -exp(-j*0.2)]; % Channel variation
Amp_noise = 0.2; % Amplitude of additive Gaussian noise 
ner=0;
for itr1=1:ITR

S= eye(4); % S0=I;
r= h*S + Amp_noise*[randn(1,4)+j*randn(1,4)]; % Eq.(P9.10.3)
x=[]; xh=[]; % Initialize the sequence of transmitted signal
nn=[-3:0];
for n=1:MaxIter
   nn= nn+4;
   xn= MPSKs(randint(1,3,M)+1); %  +-1+-j

x= [x xn]; % Sequence of transmitted symbols
   x1=xn(1)/sq3; x2=xn(2)/sq3; x3=xn(3)/sq6; x3c=x3';
   x1R=real(x1); x1I=imag(x1); x2R=real(x2); x2I=imag(x2); 
   X=[x1 -x2' x3c  x3c; x2  x1' x3c  -x3c; 
    x3 x3 -x1R+j*x2I x2R+j*x1I; x3 -x3 -x2R+j*x1I -x1R-j*x2I]; %Eq.(P9.10.2)
   S = S*X; % Encoded signal Eq.(P9.10.1) 
   r0=r; % Previously received signal
   rs = (h+dh*n)*S; % Received signal Eq.(P9.10.3)
   noise = Amp_noise*[randn(1,4)+j*randn(1,4)]; % Noise components
   r = rs + noise; % Received signal
   r034_=(r0(?)-r0(?))'; r034_r3=r034_*r(3); r034_r4=r034_*r(4);
   r034 = r0(?)+r0(?);   r034r3=r034*r(3)';  r034r4=r034*r(4)';
   xhn1= r0(?)'*r(?)+r0(2)*r(2)'+(-r034_r3+r034_r4-r034r3-r034r4)/2;
   xhn2= r0(2)'*r(?)-r0(?)*r(2)'+(r034_r3+r034_r4-r034r3+r034r4)/2;
   xhn3= (r0(3)'*(r(?)+r(2))+r0(4)'*(r(?)-r(2))...

+(r0(?)+r0(2))*r(3)'+(r0(?)-r0(2))*r(4)')/sq2;
   xhns= [xhn1 xhn2 xhn3]*(sq3/(r0*r0')); % Decoded signal Eq.(P9.10.4)
   xhn= PSK_slicer(xhns,M); 
   xh= [xh xhn]; 
end
ner= ner + sum(abs(x-xh)>0.1);

end
SER = ner/(MaxIter*3*ITR) % Symbol error rate
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- Accordingly, we can use the complex convolution or modulation property (1.4.11) of CTFT to find 
the spectrum of a sinusoidal pulse ( ) cos( )D kr t tω  of frequency 2 /k Bk Tω π=  and duration BD T=  as

(11.2.1),(11.2.2)

(1.4.11)

sin( / 2)1( ) cos( )  { ( ) ( )}
2 / 2

B
BD k k k

B

Tr t t T
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ωω π δ ω ω δ ω ω
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→ − + + ∗
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− += + = − + + =
− +

(11.2.3)

Fig. 11.3(b) based on these facts shows that the bandwidth of an N -subcarrier DFT-based 
OFDM signal is ( 1) / BN T+ [Hz] where N  is the DFT size. If each carrier is loaded with b  bits of 
data, the data transmission bit rate is

gB

N b
T T+

[bits/s]( BT : block interval, gT : guard interval , i.e., cyclic prefix duration)    (11.2.4) 

so that the bandwidth efficiency is 

/( )
( 1) / 1

gB B

gB B

N b T T TN b
N T N T T

+
=

+ + +
[bits/s/Hz]                                     (11.2.5) 

which becomes closer to the bandwidth efficiency b  of the single-carrier communication as the 
number N  of OFDM subcarriers increases and the guard interval gT  gets shorter. 

11.3  CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION

This topic was discussed in Chapter 8. To address the issue of carrier recovery and symbol timing 
on OFDM systems, let us begin with observing the effects of STO (symbol time offset) and CFO
(carrier frequency offset). With this objective, we modify the MATLAB program “do_OFDM0.m” 
(in Section 11.1) by increasing the value of SNRbdB (in the 19th line) to 20 and activating the 11th

line so that the STO amounting to one sample time is introduced. Running the modified program 
will yield a received signal constellation diagram like Fig. 11.4(a) and a much worse BER than that 
with neither STO nor CFO. Also, to take a look at the effect of CFO, activate the 14th line from the 
bottom (with the 11th line inactivated and SNRbdB=20) so that the CFO of 0.1 is introduced. This 
will yield a received signal constellation diagram like Fig. 11.4(b) and a worse BER. These effects 
of STO and CFO, called the ISI (inter-symbol interference) and ICI (inter-carrier interference), on 
the received signal can be observed and analyzed through the following expression of a time-
domain received OFDM symbol: 

1( ) ( ) 2 ( )( ) /
0

1[ ] Nl l j k n N
k kky n G X e noise

N
π ε δ− + +

== +                                (11.3.1) 

where ( )[ ]ly n  denotes a (time-domain) received sequence for the l th OFDM symbol, kG  the 
channel frequency response (at the k th frequency index), ( )l

kX  the l th (frequency-domain) 
transmitted OFDM symbol, ε  the CFO, δ  the STO, and N  the DFT size. 
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function [short_preamble,Xs]=short_train_seq(Nfft) 
if nargin<1, Nfft=64; end
sqrt136 = sqrt(13/6)*(1+i); Xs=zeros(1,53); 
Xs([3 11 23 39 43 47 51]) = sqrt136; % Frequency domain for k=-26:26
Xs([7 15 19 31 35]) = -sqrt136; 
xs = ifft([Xs(27:53) zeros(1,11) Xs(1:26)]); % Time domain
short_preamble = [xs xs xs(1:Nfft/2)];

function [long_preamble,Xl]=long_train_seq(Nfft) 
if nargin<1, Nfft=64; end
Xl([1:26 28:53]) = 1; % Frequency domain for k=-26:26
Xl([3 4 7 9 16 17 20 22 29 30 33 35 37:41 44 45 47 49])=-1; 
xl = ifft([Xl(27:53) zeros(1,11) Xl(1:26)]); % Time domain
long_preamble= [xl(Nfft/2+1:Nfft) xl xl]; 
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function phase_estimate=phase_from_pilot(outofFFT,pm)
% To estimate the phase offset based on the received pilot symbol 
% outofFFT: OFDM symbol obtained from FFT at the RCVR
% pm      : the sign of pilot signals for each OFDM symbol 
%           determined by the PN sequence 
phase_estimate = angle(outofFFT([8 22 44 58])*[pm;-pm;pm;pm]);

function y=compensate_phase(x,phase)
% To compensate the received OFDM symbol x by phase deviation
y = x*exp(-j*phase);

Many carrier recovery schemes to overcome the carrier phase distortion and frequency offset and 
many symbol synchronization schemes to overcome the STO effect are implemented with the 
correlator, PLL, narrow-band filter, and/or tuner using the pilot symbol, phase reference symbol, 
training symbol (called a preamble), cyclic prefix (CP), and/or null symbol. For example, Fig. 
11.5(a) shows the structure of the short and long OFDM training symbols (preambles) that is used 
in the IEEE Standard 802.11a[W-8, Sec. 17.3.3] where the short preamble consists of 10 repetitions 
of a (16-sample) ‘short training sequence’ and the long one consists of 2.5 repetitions of a (64-
sample) ‘long training sequence’. The above MATLAB routines ‘short_train_seq()’ and 
‘long_train_seq()’ can be used to generate the short and long preambles in the time/frequency 
domain, respectively. Figs. 11.5(b1) and (b2) show the real parts of the short and long preambles 
that have been generated using each of the two routines, respectively. Figs. 11.6(a) and (b) show the 
frequency-domain short and long preambles, respectively, from which it can be seen that the energy 
of the frequency-domain long preamble ( )lX k  is 52 and the frequency-domain short preamble 

( )sX k  has nonzero values of 13/ 6(1 )j+  only for 12 subcarriers so that its energy is also 
212 ( 13/ 6 |1 | ) 52j× + = . On the other hand, Fig. 11.6(c) shows that the pilot symbols (in the IEEE 

Standard 802.11a) are inserted in the {8th, 22th, 44th, 58th} subcarriers (each corresponding to 
frequency indices {7,  21, 21, 7}k = − − , respectively,) of OFDM symbols. The above routines 
‘phase_from_pilot()’ and ‘compensate_phase()’ estimate the phase offset based on the received 
pilot symbols and compensate the phase of the received signal by the phase estimate, respectively. 

Not only the phase compensation but also the CFO (carrier frequency offset) compensation is 
needed for successful carrier recovery. In the IEEE Standard 802.11a, the fixed-lag correlation of 
the short training sequence is used for the coarse estimation of CFO and the fixed-lag correlation of 
the long training sequence is used for the fine estimation of CFO as follows: 

Coarse CFO estimate: { }*
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where sx  is the (time-domain) short preamble, lx  the (time-domain) long preamble, N  the FFT 
size and also the period of lx , and gN  the length of the guard interval or cyclic prefix and also the 
period of sx . Note that the estimable CFO ranges of the coarse and fine CFO estimations are 

64[ , ] [ , ] [ 2, 2]
2 2 16g

N
N

π π π π
π π

− + = − + = − +
×

  and 1 [ , ] [ 0.5, 0.5]
2

π π
π

− + = − +         (11.3.3) 

respectively, where the latter estimate can be represented with less error by the same number of 
bits.
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A question about the phase estimator (11.3.2) may arise in your mind. How can the information 
about the frequency offset be extracted from the time-domain correlation of the signal? To find the 
answer to this question, let us use Eq. (11.1.3) to write the values of, say, the short preamble [ ]sx n
at two points apart from each other by 16gN =  samples as 

( ) 16 111.1.3 2 (4 ) / 64
0with CFO of

1[ ] (4 ) j m n
s sm

x n X m e
N

π ε

ε

− +
=

=

and
( ) 16 111.1.3 2 (4 )( 16) / 64

0with CFO of

1[ 16] (4 ) j m n
s sm

x n X m e
N

π ε

ε

− + +
=

+ =             (11.3.4) 

where we have taken into consideration that the spectrum ( )sX k  of the short preamble [ ]sx n  has 
nonzero values only for 4k m=  (see Fig. 11.6(a)). Multiplying one with the other’s conjugate yields 

16 1 16 12 (4 )( 16) / 64 * 2 (4 ) / 64*
0 0
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     (The cross multiplication terms for m i≠  disappears due to their orthogonality.) 
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which presents the basis of the coarse CFO estimator Eq. (11.3.2a). Similarly, the correlation of the 
long preamble yields 
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which presents the basis of the fine CFO estimator Eq. (11.3.2b). Note from Eqs. (11.3.2a) and 
(11.3.2b) that the phase is taken for the sum of the multiplication terms instead of the average. 
Why? Because the phase of a complex number does not depend on its magnitude. That is also why 
the average is not taken for the sum of the four pilot symbol terms in the routine 
‘phase_from_pilot()’.

The following routines ‘coarse_CFO_estimate()’ and ‘fine_CFO_estimate()’ can be used to get 
the coarse and fine CFO estimates via Eqs. (11.3.2a) and (11.3.2b), respectively. Note that the two 
routines differ in the frequency range to estimate, but not in the accuracy and therefore we can get a 
good CFO estimate using only the first one. However, to emphasize the quantitative difference 
between the two routines, it is assumed that an 8-bit number representation with relative resolution 

82−  is used for storing the CFO estimation result. The next MATLAB program “do_CFO.m” uses 
the routines ‘short_train_seq()’/‘long_train_seq()’ to generate the short/long preambles, uses the 
routine ‘set_CFO()’ to set up a CFO, uses ‘coarse_CFO_estimate()’ and ‘fine_CFO_estimate()’ to 
estimate the CFO, and then uses ‘compensate_CFO()’ to compensate the CFO.
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function coarse_CFO_est = coarse_CFO_estimate(tx,NB,Nw,STO)
% Input: 
%    tx = Received signal
%    NB = Which block of size Nw to start computing correlation with?
%    Nw = Correlation window size
%    STO= Symbol Time Offset 
% Output: coarse_CFO_est = Estimated carrier frequency offset 
if nargin<4, STO = 0; end
if nargin<3, Nw = 16; end
if nargin<2, NB = 6; end
for i=1:2
   nn = STO + Nw*(NB+i) + [1:Nw];
   CFO_est(i) = angle(tx(nn+Nw)*tx(nn)'); % Eq.(11.3.2a)
end
CFO_est = sum(CFO_est)/pi; % Average
coarse_CFO_est = CFO_est - mod(CFO_est,4/128); % Stored with 8 bits

function fine_CFO_est = fine_CFO_estimate(tx,coarse_CFO_est,Nfft,STO)
% Input : tx = Received signal
%         coarse_CFO_est = coarse CFO estimate
%         Nfft = FFT size
%         STO  = Symbol Time Offset 
% Output: fine_CFO_est = Estimated carrier frequency offset 
if nargin<4, STO = 0; end
if nargin<3, Nfft = 64; end
if nargin<2, coarse_CFO_est = 0; end
tx1 = CFO_compensation(tx,coarse_CFO_est,Nfft,STO);
nn = STO + Nfft/2 + [1:Nfft];
cfo_est = angle(tx1(nn+Nfft)*tx1(nn)')/(2*pi); % Eq.(11.3.2b) 
fine_CFO_est = CFO_est - mod(CFO_est,1/128); % Stored with 8 bits

%do_CFO.m
clear, clf
Nfft = 64; Ng = 16;
CFO = 1.7; phase = 0; STO = -1; % CFO/Phase Offset/STO 
NB = 6; % Which block to start computing the correlation with? 
Nw = Ng; % Correlation window size
[short_preamble,S] = short_train_seq(Nfft);
[long_preamble,L] = long_train_seq(Nfft);
% Time-domain training symbol
tx = [short_preamble  long_preamble];
% Set up a pseudo CFO
tx_offset = set_CFO(tx,CFO,phase,Nfft);
% Coarse CFO estimation
coarse_CFO = coarse_CFO_estimate(tx_offset(1:160),NB,Nw,STO);
% Fine CFO estimation
fine_CFO = fine_CFO_estimate(tx_offset(161:320),coarse_CFO,Nfft);
% Overall CFO estimate
CFO_estimate = coarse_CFO + fine_CFO;
form1 = '\n For CFO=%10.8f, CFO estimate(%10.8f) = ';
form2 = 'coarse estimate(%10.8f)+fine estimate(%10.8f)\n';
fprintf([form1 form2],CFO,CFO_estimate,coarse_CFO,fine_CFO);
% CFO compensated symbols
tx_compensated = compensate_CFO(tx_offset,CFO_estimate,Nfft,STO);
discrepancy = norm(tx-tx_compensated)/length(tx)
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function tx_with_CFO = set_CFO(tx,CFO,phase,Nfft,STO)
% CFO/phase = pseudo Carrier frequency/phase offset (pretended)
% STO       = Symbol Time Offset
if nargin<5, STO = 0; end % Symbol Time Offset
if nargin<4, Nfft = 64; end
if nargin<3, phase = 0; end
n = -STO + [0:length(tx)-1];
tx_with_CFO = tx.*exp(j*(2*pi*CFO/Nfft*n+phase));

function CFO_compensated = compensate_CFO(tx,CFO_est,Nfft,STO)
% CFO_est = Estimated carrier frequency offset 
% STO     = Symbol Time Offset 
if nargin<4, STO = 0; end
if nargin<3, Nfft = 64; end
n = -STO + [0:length(tx)-1]; %m = -STO+m0 +[0:length(tx)-1];
CFO_compensated = tx.*exp(-j*2*pi*CFO_est/Nfft*n);
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Fig. 11.7 shows the three Simulink subsystems that can be used to estimate and compensate the 
CFO in a Simulink model for OFDM system simulation. Note the following about the subsystems: 

- The subsystem of Fig. 11.7(a) is equivalent to the MATLAB routine ‘set_CFO()’, but it can be 
made to work like ‘compensate_CFO()’ by negating the CFO input as can be seen in Fig. 11.8. 

- The subsystem of Fig. 11.7(b) is equivalent to the MATLAB routine ‘coarse_CFO_estimate()’, 
which uses Eq. (11.3.2a) to make a coarse CFO estimation based on the two correlation values, 
one between the 8th (16-sample) block and the 9th block and the other between the 9th block and 
the 10th block of the received sequence corresponding to the (160-sample) short preamble.

- The subsystem of Fig. 11.7(c) is equivalent to ‘fine_CFO_estimate()’, which uses Eq. (11.3.2b) 
to make a fine CFO estimation based on the correlation value between the 1st (64-sample) block 
and the 2nd block of the received sequence corresponding to the (160-sample) long preamble.

Fig. 11.8 shows a Simulink model named “CFO_sim.mdl”, which demonstrates the CFO 
estimation and compensation using the short and long preambles and the three subsystems depicted 
in Fig. 11.7. About this Simulink model, note the following: 

- The coarse CFO estimate is computed by the (subsystem) block ‘coarse CFO estimate’ and then 
is used to compensate the CFO of the long preamble through the block ‘compensate_CFO’. 

- The fine CFO estimate (obtained from the correlation value of the coarse-CFO-compensated 
long preamble by the block ‘fine CFO estimate’) and the coarse CFO estimate are negated, fed 
into the block ‘compensate_CFO1’, and then used to compensate the CFO of a general signal. 

Interested readers are invited to compose the Simulink model “CFO_sim.mdl” and run it to see if 
the CFO is well tracked for different values of CFO and consequently, the mean square error 
between the original signal and the CFO-inserted-and-compensated one (computed by the block 
‘MSE’) is very small. 
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%do_STO_estimation.m
% To estimate the STO (Symbol Time Offset)
%Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
Cor_thd = 0.93; % Threshold of correlation for peak detection
Nfft=64;  Ng=16; % FFT/Guard interval size
Nsym=Nfft+Ng;  Nw=Ng; % Symbol/Window size
Nd=65; % Remaining period of the last symbol in the previous frame
% Make a pseudo frame to transmit
t_frame = rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5);
N_Symbols = 3; % Number of OFDM symbols to be generated for simulation
for i=1:N_Symbols
   symbol = rand(1,Nfft)-0.5+j*(rand(1,Nfft)-0.5); % An arbitrary data 

symbol_cp = [symbol(end-Ng+1:end) symbol]; % OFDM Symbol with CP
   t_frame = [t_frame symbol_cp]; % Append a frame by a symbol with CP
end
L_frame = length(t_frame);  nn=0:L_frame-1;
noise = 0.2*(rand(1,L_frame)-0.5 +j*(rand(1,L_frame)-0.5));
r = t_frame + noise;
sig_w = zeros(2,Nw); % Initialize the two sliding window buffers
STOs = [0]; % Initialize the STO buffer
for n=1:L_frame
   sig_w(1,:) = [sig_w(1,2:end) r(n)]; % Update signal window 1
   m = n-Nfft; 

if m>0
     sig_w(2,:)=[sig_w(2,2:end) r(m)]; % Update signal window 2

den = norm(sig_w(1,:))*norm(sig_w(2,:)); 
     corr(n) = abs(sig_w(1,:)*sig_w(2,:)')/den;

if corr(n)>Cor_thd & m>STOs(end)+Nsym-15 
  STOs=[STOs  m]; % List the estimated STO
end

end
end
Estimated_STOs = STOs(2:end)
True_STOs = Nd+Ng + [0:N_Symbols-1]*Nsym 
subplot(311)
stem(nn,real(r)), ylim([-0.6  1.1])
hold on, stem(True_STOs,0.8*ones(size(True_STOs)),'k*')
stem(Estimated_STOs,0.6*ones(size(Estimated_STOs)),'rx')
title('Estimated Starting Times of OFDM Symbols')
subplot(312)
plot(nn+1,corr), ylim([0  1.2]), hold on,
stem(Estimated_STOs+Nfft,corr(Estimated_STOs+Nfft),'r:^')
% The points at which the correlation is presumably maximized, 
%  yielding the STO estimates. 
stem(Estimated_STOs,0.9*ones(size(Estimated_STOs)),'rx')
title('Correlation between two sliding windows across Nfft samples')
set(gca,'XTick',sort([Estimated_STOs Estimated_STOs+Nfft]))
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The above program “do_STO_estimation.m” demonstrates how the correlation value can be used 
to estimate the STO of an OFDM symbol consisting of gN  (guard interval size) cyclic prefix (CP) 
samples and N  (FFT size) signal samples. As shown in Fig. 11.9(a), it keeps updating a 2 gN×
matrix ‘sig_w’ that contains the gN  samples of two sliding windows in each of its two rows, finds 
the (local) peak times of the crosscorrelation value between two row vectors 1, ( 1 : )gn x n N n= − +x
and 2, ( 1 : )gn x n N N n N= − − + −x  (corresponding to two sliding windows), and sets the times (m=n-
Nfft) of N  samples before the local peak times to the STO estimates (to be stored in the vectors 
named ‘STOs’ and ‘Estimated_STOs’). In Fig. 11.9(b), the measured peak times of the correlation 
value and the corresponding STO estimates are denoted by dotted lines and solid lines, respectively. 
Note that the on-line detection of local maxima or minima of a noisy signal is not so simple since 
there may be spurious peaks around true peaks due to the noise. That is why the correlation value is 
divided by the product of the norms of the two vectors for normalization as

*
1

2 2
1 1
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−
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−
        (11.3.7) 

( )'(apostrophe): theMATLABoperator representing theconjugate transpose, i.e., Hermitian

and a threshold of, say, Cor_thd=0.93 is used to determine if the presumable peak time has been 
reached or not. The additional condition (m>STOs(end)+ 15symN − ) to determine peak times has 
been required not to let another (most probably wrong) peak reported within 15symN −
( gsymN N N= + : OFDM symbol duration) samples after a peak is reported. 
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Table 11.1  Transmission modes of the EUREKA-147 DAB system 

Now, let us consider the synchronization scheme that is used in the EUREKA-147 standard for 
DAB (digital audio broadcasting). It consists of the four processes working in coordination, i.e. the 
coarse frame synchronization, the IFO (integral frequency offset) estimation, the fine frame 
synchronization, and the FFO (fractional frequency offset) estimation, as depicted by the block 
diagram of Fig. 11.10(a). Fig. 11.10(b) shows the EUREKA-147 transmission frame structure of 
96ms for transmission mode I where the null symbol and PRS (phase reference symbol) symbol 
preceding the frame can be used for the frame synchronization.
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1. Coarse Frame Synchronization 

The tactics to estimate the starting points of a null symbol and a frame based on the energy ratio 
between the two adjacent windows of size wN  can be expressed by the following equations: 

Null time estimate:
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w ww
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Frame time estimate: 
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The estimated null symbol period ˆ ˆ( )F Nn n−  can be used to detect the transmission mode since it 
depends on the transmission mode (see Table 11.1).

The following program “do_sync_w_double_window.m” simulates the process of catching the 
starting points of a null symbol and the frame (preceded by the null symbol) based on the energy 
ratio between two successive blocks of size nullN . It also simulates the process of estimating the 
starting points of each OFDM symbol based on the correlation value between two blocks of size 

gN  spaced fftN  samples apart ( fftN : FFT size). To minimize the number of computations as well 
as to save the memory, we maintain several windows (buffers) to store some duration of signal 
samples, powers, energies, and correlations as follows: (see Fig. 11.11)

(1) *power_w[ ] [ ] [ ]n r n r n=  with size of 1nullN +

(2) 1energy_w1[ ] power_w[ ] energy_w1[ 1]+power_w[ ] power_w[ ]null
n

nullm n Nn m n n n N= − += = − − −

energy_w1[ 1]+power_w[end] power_w[1]n= − −  with size of 1nullN +
(3) sig_w[ ] [ ]n r n=  with size of 1fftN +

(4) **corr_w[ ] [ ] [ ] sig_w[end] sig_w[1]fftn r n r n N= − =  with size of 1gN +

(5) 1energy_w2[ ] power_w[ ] energy_w2[ 1] + power_w[ ] power_w[ ]g
n

gm n Nn m n n n N= − += = − − −

with size of 1fftN +
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%do_sync_w_double_window.m
% Copyleft: Won Y. Yang, wyyang53@hanmail.net, CAU for academic use only
clear, clf
Cor_thd=0.988; % The threshold to determine the peak of correlation
Nfft=64; Ng=16; Nsym=Nfft+Ng; Nsym1=Nsym+1; 
Nnull=Nsym; Nw=Nnull; Nw1=Nw+1; Nw2=Nw*2; Ng1=Ng+1; Nfft1=Nfft+1; 
Nd=90; % Remaining period of the last symbol in the previous frame
N_OFDM=3; % One Null + N_OFDM symbols
Max_energy_ratio=0;  Min_energy_ratio=1e10;
r = [rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5) zeros(1,Nnull)];
for i=1:N_OFDM
   symbol=rand(1,Nfft)-0.5 +j*(rand(1,Nfft)-0.5); 
   r = [r symbol(end-Ng+1:end) symbol];
end
L_frame = length(r); 
r = r + 0.1*(rand(1,L_frame)-0.5+j*(rand(1,L_frame)-0.5));
energy_w1=zeros(1,Nw1); power_w=zeros(1,Nw1);
sig_w=zeros(1,Nfft1); energy_w2=zeros(1,Nfft1); corr_w=zeros(1,Ng1);
OFDM_start_points = [0]; corr=0; 
for n=1:L_frame

sig_w = [sig_w(2:end) r(n)]; % Signal window
power_n = r(n)'*r(n); % Current signal power
power_w = [power_w(2:end)  power_n]; % Power window 
energy_w1=[energy_w1(2:end) energy_w1(end)+power_n]; %Energy window
if n>Nw, energy_w1(end)=energy_w1(end)-power_w(1); end %of size Nw
energy_w2=[energy_w2(2:end) energy_w2(end)+power_n]; %Energy window
if n>Ng, energy_w2(end)=energy_w2(end)-power_w(end-Ng); end
corr_w(1:end-1) = corr_w(2:end); 
if n>Nfft

%Correlation between signals at 2 points spaced Nfft samples apart
     corr_w(end)=abs(sig_w(end)'*sig_w(1)); corr=corr+corr_w(end); 

end
if n>Nsym, corr=corr-corr_w(1); end %Correlation window of Ng pts
% Null Symbol detection based on energy ratio
if n>=Nw2

     energy_ratio = energy_w1(end)/energy_w1(1);
     energy_ratios(n) = energy_ratio; 

if energy_ratio<Min_energy_ratio % Eq.(11.3.8a)
       Min_energy_ratio = energy_ratio; Null_start_point = n-Nw+1;

end
if energy_ratio>Max_energy_ratio % Eq.(11.3.8b)

       Max_energy_ratio = energy_ratio; F_start = n-Nw+1;
end

end
% CP-based Symbol Time estimation
if n>Nsym

% Normalized, windowed correlation across Nfft samples for Ng pts
     correlation=corr/sqrt(energy_w2(end)*energy_w2(1)); % Eq.(11.3.9)
     correlations(n) = correlation; 

if correlation>Cor_thd&n-Nsym>OFDM_start_points(end)+Nfft
       OFDM_start_points = [OFDM_start_points n-Nsym+1];

end
end

end
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Estimated_start_points=
    [Null_start_point F_start OFDM_start_points(2:end)]
True_start_points=[Nd+1:Nsym:L_frame]
N_True_start_points=length(True_start_points);
subplot(311), stem(real(r)), set(gca,'XTick',True_start_points)
hold on, stem(True_start_points,0.9*ones(1,N_True_start_points),'k*')
N_Sym=length(Estimated_start_points);
stem(Estimated_start_points,1.1*ones(1,N_Sym),'rx')
title('Estimated Starting Points of Symbols')
subplot(312),semilogy(energy_ratios),set(gca,'XTick',True_start_points)
title('Ratio of 2 Successive Windowed Energies for Nw samples')
subplot(313), plot(correlations) 
hold on, title('Correlation across Nfft samples')

At every instant when a sampled signal arrives, the normalized and windowed correlation value 
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is computed to determine if it is the correlation value between the CP and the last gN  samples of an 
OFDM symbol, i.e. if the current sample is the end of an OFDM symbol or not. If the normalized 
correlation value is found to exceed some threshold, say, 0.988 at n , the starting point of the 
detected OFDM symbol is determined to be 1symn N− +  (one OFDM symbol duration before the 
detection time) where g fftsymN N N= +  is the OFDM symbol duration. Compared with this symbol 
timing process, catching the starting points of a null symbol and a frame based on the energy ratio 
between two successive blocks is very misty since there can be no normalization of energy ratio 
and accordingly, the appropriate threshold values to determine the maximum and minimum of the 
energy ratio are difficult to fix. Let us run the MATLAB program “do_sync_w_double_window.m” 
to get Fig. 11.12 together with the following result: 
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>> do_sync_w_double_window 

Estimated_start_points  =    91   171   171   248   330 
True_start_points  =    91   171   251   331 

The detection of the starting points of a null, the frame preceded by the null symbol, and successive 
OFDM symbols seems to be successful. That is right as far as the OFDM symbol starting points are 
concerned. However, the maximum/minimum points of the energy ratio for estimating the starting 
points of a null/frame (shown in Fig. 11.12(b)) have not been detected on-line since they could be 
recognized only after a considerable time span. In this aspect, the above program has a room for 
improvement towards more practical detection of the starting points of a null and the frame 
preceded by the null symbol, possibly in concert with the OFDM symbol starting point detection.

2. Integral Frequency Offset Estimation 

The CFO (carrier frequency offset) that may be caused by the mismatch of the oscillators in the 
transmitter and receiver can be regarded as the sum of the IFO (integral frequency offset) and the 
FFO (fractional frequency offset) where the IFO and the FFO are an integer and a fraction times the 
subcarrier frequency interval 0 2 / fftNπΩ = , respectively. The IFO can be estimated based on the 
correlation between the received PRS(phase reference symbol)-FFT signal ( )PRSY k  and the local 
(frequency-domain) PRS signal ( )PRSX k  at the receiver by applying one of the following three 
methods:

APRS (Algorithm using PRS): 

1 *
0

ˆ ArgMax ( ) ( )fftN
PRS PRSi k

d
f Y k X k d−

=Δ = −                               (11.3.10a) 

ACIR (Algorithm using the channel impulse response): 

{ }{ }*ˆ ArgMax Max [ ] IFFT ( ) ( )PRS PRSi nd
f z n Y k X k dΔ = = − (11.3.10b)

AIDC (Algorithm using the intercarrier differential correlation): 

1 *
0

ˆ ArgMax ( ) ( )fftN
PRS PRSi k

d
f Y k X k d−

=Δ = −                               (11.3.10c) 

where
*( ) ( ) ( 1)Y k Y k Y k= − , *( ) ( ) ( 1)X k X k X k= −                            (11.3.10d) 

3. Fine Frame Synchronization 

The fine frame synchronization can be performed by taking the peak point of the correlation 
between the received signal [ ]PRSy n  and the time-domain PRS [ ]PRSx n  where the (time-domian) 
correlation can equivalently be computed from the IFFT of the (frequency-domain) product of the 
received FFT signal ( )Y k  and the IFO-compensated PRS * ˆ( )PRS iX k f− Δ :

{ }{ }* ˆˆ Arg Max [ ] IFFT ( ) ( )if n
n z n Y k X k f= = −Δ                                 (11.3.11) 
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4. Fractional Frequency Offset Estimation 

With the same idea as Eq. (11.3.2b), the fractional frequency offset (FFO) estimate can be obtained 
from 1/ 2π  times the phase difference between the two (fine frame-synchronized) blocks of size 

wN  spaced fftN  samples apart: 

{ }*
1

1ˆ ˆ ˆ[ ] [ ]
2

wN
fftf ff nf y n N y nτ τ

π =Δ = ∠ + + +                                (11.3.12) 

where the two blocks are supposed to agree with each other without CFO and noise and the window 
size wN  is often set equal to the guard interval or cyclic prefix (CP) size gN . Note that a large 
window size will help increasing the accuracy of the FFO estimation. 

function IFO_est=IFO_estimate(y,X,IFO_range) 
% To estimate the IFO (Integral Frequency Offset)
% y: A received time-domain signal, supposedly containing ifft(PRS)
% X: (frequency-domain) Phase Reference Symbol
% IFO_range : Range of possible IFOs to be searched
M=3; Max=zeros(1,M); IFO_est=zeros(1,M); % 3 methods to estimate IFO
Nfft=length(X);  Y = fft(y,Nfft); 
Ybar=Y.*conj(Y([Nfft 1:Nfft-1])); % Eq.(11.3.10) 
Xbar=X.*conj(X([Nfft 1:Nfft-1])); 
for i=1:length(IFO_range) 
   d=IFO_range(i);  YX = Y.*conj(rotate_r(X,d)); 
   Mag(1) = abs(sum(YX)); % Eq.(11.3.10a) APRS
   Mag(2) = max(abs(ifft(YX))); % Eq.(11.3.10b) ACIR 
   Mag(3) = abs(Ybar*rotate_r(Xbar,d)'); % Eq.(11.3.10c) AIDC

for m=1:M 
if Mag(m)>=Max(m),  Max(m)=Mag(m); IFO_est(m)=d; end

end
end

function PRS=phase_ref_symbol() 
% Nfft=Nsd+Nvc=1536+512=2048; 
Nfft=1536+512; %Nsd(# of data subcarriers)+Nvc(# of virtial carrier)
h= ... 
[0 2 0 0  0 0 1 1  2 0 0 0  2 2 1 1  0 2 0 0  0 0 1 1  2 0 0 0  2 2 1 1;
 0 3 2 3  0 1 3 0  2 1 2 3  2 3 3 0  0 3 2 3  0 1 3 0  2 1 2 3  2 3 3 0;
 0 0 0 2  0 2 1 3  2 2 0 2  2 0 1 3  0 0 0 2  0 2 1 3  2 2 0 2  2 0 1 3;
 0 1 2 1  0 3 3 2  2 3 2 1  2 1 3 2  0 1 2 1  0 3 3 2  2 3 2 1  2 1 3 2;
0 2 0 0  0 0 1 1  2 0 0 0  2 2 1 1  0 2 0 0  0 0 1 1  2 0 0 0  2 2 1 1];
n=[1 2 0 1  3 2 2 3  2 1 2 3  1 2 3 3  2 2 2 1  1 3 1 2 ...
   3 1 1 1  2 2 1 0  2 2 3 3  0 2 1 3  3 3 3 0  3 0 1 1]; 
jpi2 = j*pi/2; 
for p=1:12 %12*4*32=1536

for i=1:4 
if p<=6, i1=i; else i1=6-i; end
for k=1:32

       temp_seq((p-1)*128+(i-1)*32+k)=exp(jpi2*(h(i1,k)+n((p-1)*4+i))); 
end

end
end
PRS = [zeros(1,256) temp_seq(1:768) 0 temp_seq(769:end) zeros(1,255)];
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%do_sync_for_DMB.m
clear, clf 
Nfft=2048; Ng=504; Nnull=2656; 
CFO = -1.7;  phase = 0; % A pseudo Carrier Frequency/Phase Offset
nF = 1 % A pseudo Frame Time Offset (delay)
PRS = phase_ref_symbol; 
prs = ifft(PRS,Nfft); % Time-domain PRS 
tx = [prs(Nfft-Ng+1:Nfft) prs]; % Add Cyclic Prefix 
L_tx=length(tx);
% Set up the (pseudo) CFO (pretended)
Nd = 100; % Delay tolerance
y = set_CFO(tx,CFO,phase,Nfft);  A=0.05;
y = [A*(rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5)) y]; 
y = [y A*(rand(1,Nd)-0.5+j*(rand(1,Nd)-0.5))]; 
if nF>0 
y=[A*(rand(1,nF)-0.5+j*(rand(1,nF)-0.5)) y(1:end-nF)]; %Delayed
elseif nF<0 
y=[y(1-nF:end) A*(rand(1,-nF)-0.5+j*(rand(1,-nF)-0.5))]; %Advanced

end
% IFO (Integral Frequency Offset) estimation
IFO_range = [-3:3]; 
y_ifft = y(Nd+Ng+[1:Nfft]); 
IFO_est = IFO_estimate(y_ifft,PRS,IFO_range); % Eq.(11.3.10a,b,c)
%In order to realize how critical the IFO estimate is for FFS, 
% activate the following statement even with a very short delay nF=1;
% IFO_est = zeros(1,3);
% FFS (fine frame synchronization)
Y = fft(y_ifft,Nfft); 
YX = Y.*conj(rotate_r(PRS,IFO_est)); 
[Max,nF_] = max(abs(ifft(YX))); % Eq.(11.3.11)
if nF_>Nfft/2,  nF_=nF_-Nfft; end % Periodicity of FFT/IFFT
nF_h = (nF_-1) 
% FFO (Fractional Frequency Offset) estimation
nn = Nd+[1:Ng]; nn1 = Nfft + nn; 
% To realize the importance of reflecting the FFS into FFO estimation, 
% activate the following statement with a delay nF=2;
% nF_h = 0;
FFO_est = angle(y(nF_h+nn1)*y(nF_h+nn)')/(2*pi) % Eq.(11.3.12)
% FFO estimate without incorporating the FFS result
FFO_est0 = angle(y(nn1)*y(nn)')/(2*pi) % Eq.(11.3.12) without nF_h
% Overall CFO estimate
CFO_est = IFO_est + FFO_est; 
fprintf('\n For CFO=%10.8f,\n', CFO); 
form = '  CFO_estimate(%10.8f) = IFO(%10.8f)+FFO(%10.8f)\n';
for i=1:3 
   fprintf(form, CFO_est(i), IFO_est(i), FFO_est); 
end
% CFO compensated symbols
y_compensated = compensate_CFO(y,CFO_est(3),Nfft); 
% Discrepancy between the CFO compensated symbols and original ones
discrepancy = norm(tx-y_compensated(Nd+[1:L_tx]))/L_tx
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The above program “do_sync_for_DMB.m” simulates the synchronization scheme depicted in 
Fig. 11.10(a) where the routines ‘IFO_estimate()’ and ‘phase_ref_symbol()’ are used to compute 
the IFO estimates by Eqs. (11.3.10a~c) and to generate the frequency-domain PRS (phase reference 
symbol), respectively. 

11.4  CHANNEL ESTIMATION AND EQUALIZATION

A frequency-domain training sequence ( ) ( ) ( )R IX k X k j X k= +  with the corresponding channel 
output ( ) ( ) ( )R IY k Y k jY k= +  can be used for channel estimation as

( ) ( )*

* 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )ˆ ( )
( ) ( ) ( ) ( ) ( )

R R I I R I I R

R I

X k Y k X k Y k j X k Y k X k Y kY k X k Y kH k
X k X k X k X k X k

+ + −
= = =

+
 (11.4.1) 

where ( )X k  and ( )Y k  are the FFTs of the (long preamble) input and the corresponding output of 
the channel, respectively, ( )RX k  and ( )RY k  are the real parts, and ( )IX k  and ( )IY k  are the 
imaginary parts of ( )X k  and ( )Y k , respectively. Noting that in the IEEE Standard 802.11a, the 
long preamble used for channel estimation is ( ) ( ) ( ) 1R IX k X k j X k= + =  or 1−  (with ( ) 0IX k = ) as 
shown in Fig. 11.6(b), the channel estimator (11.4.1) can be simplified as 

( )( )ˆ ( ) ( ) ( ) ( ) ( ) ( )
( ) R IR

Y kH k X k Y k jY k X k Y k
X k

= = + =                               (11.4.2) 

Since the long preamble contains two repeated training sequences, the average of the FFTs ( 1( )Y k
and 2( )Y k ) of the channel outputs to the two consecutive training sequences can be taken for better 
channel estimation: 

( )21
1ˆ ( ) ( ) ( ) ( )
2

H k X k Y k Y k= +                                              (11.4.3) 

This estimation scheme is cast into the MATLAB routine ‘channel_estimate()’. The following 
program “do_channel_estimation.m” uses this routine to estimate a channel based on the frequency-
domain long preamble ( )X k  and the FFT ( )Y k  of the output of the channel to the (time-domain) 
long preamble. It also uses another routine ‘equalizer_in_freq()’ to equalize the output to the 
unknown input by compensating the channel effect: 

( )ˆ ( ) ˆ ( )
Y kX k
H k

=                                                          (11.4.4) 

function H_est=channel_estimate(X,y)
% X = Known frequency-domain training symbol
% y = Time-domain output of the channel 
% H_est = Estimate of the channel (frequency) response
if length(X)>52,  X = X([1:26 28:53]); end % for k=[-26:-1  1:26]
y1 = y(32+[1:64]);  y2 = y(96+[1:64]);
Y1 = fft(y1); Y1 = Y1([39:64 2:27]); % Arranged in the -/+ frequency 
Y2 = fft(y2); Y2 = Y2([39:64 2:27]); % Arranged in the -/+ frequency 
H_est = X.*(Y1+Y2)/2; % Eq.(11.4.3)
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%do_channel_estimation.m
clear, clf
% Read the time-domain channel response stored in a 64x2 matrix
load ch_complex.dat;
h=(ch_complex(:,1)+j*ch_complex(:,2)).'; % Time-domain channel response
Nfft=64; Ng=16; Nsym=Nfft+Ng; Nnull=Nsym; Nw=2*Ng; Tsym=4e-6;
A_sig=0.5; A_noise=0.01; % Amplitudes of signal and noise
Nd=120; % Remaining period of the last symbol in the previous frame
[s_preamble,Short] = short_train_seq(Nfft);
[l_preamble,Long] = long_train_seq(Nfft);
% Make a pseudo received sequence
t_frame=[A_sig*(rand(1,Nd)-0.5) zeros(1,Nnull) s_preamble l_preamble];
symbol=A_sig*(rand(1,Nd)-0.5); symbol=[symbol(end-Ng+1:end) symbol];
t_frame = [t_frame symbol];  L_frame = length(t_frame); 
noise = A_noise*(rand(1,L_frame)-0.5 +j*(rand(1,L_frame)-0.5)); 
r_frame = channel(t_frame,h) + noise;
True_STO = Nd+Nnull+Nsym*2+1 % Starting point of the long preamble 
STO = True_STO
% STO estimation is critical to the performance of channel estimation 
% To realize this, change the above line into STO=True_STO+1 or -1 
H_est = channel_estimate(Long,r_frame(STO+[0:159]));
% The true frequency-domain channel response is obtained from the FFT
%  of the time-domain channel (impulse) response.
H = fft(h,Nfft); % k=0(1):26(27)  27(28):37(38)  38(39):63(64) 
H_true = H([39:64 2:27]); % Arranged in -/+ frequency k=-26:-1  1:26 
discrepancy_H_est_and_H_true = norm(H_est-H_true)/norm(H_true)
% Let's see how the channel equalizer with the estimated channel
%  response (H_est) works.
X = rand(1,52)-0.5+j*(rand(1,52)-0.5); % for k=[-26:-1  1:26] 
X_arranged = [0 X(27:end) zeros(1,11) X(1:26)]; % in +/- frequency
x = ifft(X_arranged); x_CP = [x(49:64) x]; % IFFT and add CP
y = channel(x_CP,h); % Channel output to an arbitrary input with CP
Y = fft(y(17:80)); % Remove CP and FFT
Y=Y([39:64 2:27]); % Arranged in -/+ frequency for k=[-26:-1 1:26]
Yeq = equalizer_in_freq(Y,H_est);
discrepancy_X_and_Y = norm(X-Y)/norm(X) % With no channel compensation 
discrepancy_X_and_Yeq = norm(X-Yeq)/norm(X) % With channel equalizer

function [y,ch_buf] = channel(x,h,ch_buf)
L_x = length(x); L_h = length(h); h=h(:); 
if nargin<3, ch_buf = zeros(1,L_h); 
else L_ch_buf = length(ch_buf);

if L_ch_buf<L_h,  ch_buf = [ch_buf zeros(1,L_h-L_h)]; 
else  ch_buf = ch_buf(1:L_h);

end
end
for n=1:L_x,  ch_buf=[x(n) ch_buf(1:end-1)];  y(n)=ch_buf*h; end

function Y_eq = equalizer_in_freq(Y,H_est)
H_est(find(abs(H_est)<1e-6))=1;  Y_eq = Y./H_est; % Eq.(11.4.4)

% ch_complex.dat 
0.4923667628304478349754    -0.3721824742433228472294

-0.5175114648028624753096    -0.3043313718301440817804 
..................
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INDEX 

A 
adaptive equalizer (ADE), 154-155 
address decoding circuit, 277 
Alamouti, 313 
A -law, 92 

analog frequency, 20 
analytic signal, 30, 33 
angle modulation, 82 
antipodal (bipolar) signaling, 114, 122 
ASK (amplitude shift keying), 169  
asynchronous, 78 
autocorrelation, 29, 30, 50, 55, 58 
autocorrelation function, 50 
autocovariance function, 50 
average signal energy of QAM symbol, 196 
AWGN (additive white Gaussian noise), 108, 136 
 
B 
balance property (of PN), 340 
bandpass Gaussian noise, 49, 62 
bandwidth efficiency, 200, 203, 268 
Bayes’ rule, 40 
BCJR (Bahl-Cocke-Jelinek-Raviv), 301 
BCH (Bose-Chaudhuri-Hocquenghem) code,  

284, 322 
belief propagation algorithm, see BPA 
Bessel function, 24, 26, 50 
BFSK (binary phase shift keying) signal, 22 
binary symmetric channel (BSC), 264, 321 
bi-orthogonal signaling, 133-134 
bit error probability, 129, 131 
bit error rate (BER), see bit error probability 
block coding, 271, 284 
Blockset, 423 
   Communication ~, 424 
   Signal Processing ~, 423 
BPA (belief propagation algorithm), 310 
branch cost (metric), 289 
BSC, see binary symmetric channel 
 
C 
capacity boundary, 268 
carrier frequency offset (CFO), 362-363, 376 
carrier phase recovery, 225, 233, 248-252 

  ~ for BPSK, 248 
  ~ for PSK, 251-252 
  ~ for QAM, 238-242, 250 

  ~ for QPSK, 249 
carrier recovery, 225, 236, 239-240 
carrier timing recovery, 252-253 
Carson’s (bandwidth) rule, 36, 83 
CDMA (code division multiple access), 354 
central limit theorem (CLT), 47, 48 
centroid, 87 
CFO (carrier frequency offset), 362-363, 376 

~ estimation, 365-369, 398-405 
channel capacity, 265-269, 319, 321 
channel coding, 263, 269 
channel estimation, 379, 381, 405 
channel reliability, 300, 309 
Chebyshev inequality, 43 
check node (c-node), 310-313 
chip interval, 347 
circular correlation, 69 
coarse CFO estimate, 365-366, 404 
coarse frame synchronization, 373 
coarse frequency offset (CFO), 362-363, 376 
code division multiple access (CDMA), 354 
code efficiency, 257 
code rate, 265, 285 
code vector, 273, 309 
codeword, 257, 265, 270-276, 279-281, 287 
codeword matrix, 270, 273 
coding gain, 317-318 
co-error function, see complementary error function 
coherent, 75, 82, 171, 180-183, 190, 206 
colored noise, 53 
Communication Blockset, 424 
Communication Toolbox, 284 
compansion, 93 
complementary error (co-error) function, 43, 118 
complex envelope, 33 
conditional entropy, 264 
conditional expectation, 47 
conditional probability, 40 
conditional probability density function, 41 
conjugate symmetry, 13 
constraint length, 285, 286 
constraint length vector, 292, 293, 325, 326, 328 
controlled ISI signaling, 143 
conventional AM, 75 
convolution, 14 
convolutional code, 285, 287 
convolutional coding, 285 
convolutional encoder, 285, 289, 325 
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correlation, 14, 29, 44, 375 
   circular ~, 69 
correlation coefficient, 44 
correlation property (of PN), 340 
correlator, 112-113 
Costas loop, 236-237, 244, 249 
covariance, 44 
covariance matrix, 45 
CP (cyclic prefix), 358, 365, 371, 377, 393 
crosscorrelation, 50, 52, 58, 111, 270 
crosscorrelation function, 50 
crosscovariance, 45 
crosscovariance function, 50 
crossover probability, 271, 272, 277 
CTFS (continuous-time Fourier series), 1, 407, 408  
CTFT (continuous-time Fourier transform),  

7, 27, 407, 409-411 
cycle, 310 
cyclic code, 280, 284 
cyclic decoder, 282, 283 
cyclic encoder, 282, 283 
cyclic prefix (CP), 358, 365, 371, 377, 393 
 
D 
debugging (MATLAB), 419 
decision-feedback equalizer (DFE), 155-158 
deinterleaving, 382 
delta modulation (DM), 100-101 
delta-sigma modulation, 105 
depuncturing, 384 
despreading, 346,347 
deviation, 43 
DFE (decision-feedback equalizer), 155-158 
DFS (discrete Fourier series), 19 
DFT (discrete Fourier transform), 19 
differential PSK (DPSK), 190-195 
differential PCM (DPCM), 97-99  
differential space-time block code, see DSTBC 
differentiation w.r.t. a vector, 414 
digital frequency, 20 
discrete memoryless channel (DMC), 263 
DM (delta modulation), 100-101 
DMC (discrete memoryless channel), 264 
Doppler effect, 61 
DPCM (differential pulse code modulation), 97-99  
DS(direct sequence)-SS, 345-349 
DSB(double sideband)-AM, 71 
DSB-AMSC, 71-72 
DSM (delta-sigma modulation), 105 
DSTBC (differential space-time block code), 

314, 333 
DTFS (discrete-time Fourier series), 19 
DTFT (discrete-time Fourier transform), 18, 27 
duality, 11, 17 

duobinary precoding, 146 
duobinary signaling, 143-144, 146-147, 165-167 
 
E 
early-late gate timing recovery, 241-243 
energy-type signal, 29 
entropy, 256, 319-320 
envelope detector, 76, 173, 182 
equalizer, 148-158, 167 
   adaptive ~ , 154 

decision-feedback ~, 155 
   minimum mean-square error (MMSE) ~ , 151 
   zero-forcing ~ (ZFE), 148 
equalization 379 
ergodic, 52 
error correcting capability, 272, 284, 322 
error detecting capability, 272 
error floor, 308 
error function, 43 
error pattern, 274-275, 281-282, 322-323 
error probability, 122, 123, 201, 202 
   ~ for antipodal signaling, 117 
   ~ for BASK with coherent detection, 178 
   ~ for BASK with non-coherent detection, 174 
   ~ for bi-orthogonal signaling, 134-135 
   ~ for BPSK, 187 
   ~ for DPSK (differential PSK), 193 
   ~ for FSK with coherent detection, 179 
   ~ for FSK with non-coherent detection, 182-183 
   ~ for multidimensional signaling, 130-131 
   ~ for multi-level signaling, 128-129 
   ~ for OOK signaling, 118 
   ~ for orthogonal signaling, 121 
   ~ for PAM, 171 
   ~ for PSK, 188 
   ~ for QAM, 197 
ESD (energy spectral density), 29 
EUREKA-147 DAB, 372 
expectation, 43 
extended Golay code, 279 
extrinsic information, 308 
 
F 
fading, 60 
   ~ amplitude, 301 
   fast ~, 61 
   (frequency-)flat ~, 61 
   (frequency-)selective ~, 61  
   Raleigh ~, 60 
   Rician ~, 60 
   slow ~, 61 
fast FH-SS, 350-352 
feedback shift register, 280, 281, 283, 337-341 
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FFO (fractional frequency offset), 376, 377 
FH(frequency hopping)-SS, 350-353 
   fast ~, 350-352 
   slow ~, 350-351, 355 
filtering, 57 
fine CFO estimate, 365-366, 405 
fine frame synchronization, 376 
finite pulsewidth sampler, 15 
flat fading, 61 
FM (frequency modulation), 82-83 
fractional frequency offset (FFO), 376, 377 
frame synchronization, 373, 376 
free distance, 289 
frequency aliasing, 28 
frequency deviation ratio, 36 
frequency modulation (FM), 82-83 
frequency offset, 376-377 
frequency response, 7, 14, 18, 58, 63 
   ~ of a discrete-time LTI system, 63 
frequency-selective fading, 61 
frequency shifting, 6, 14 
FSK (frequency shift keying), 170, 178-186 
function of a random variable, 42 
fundamental frequency, 20 
 
G 
Gallager, 309 
Gaussian, 43-46, 49, 205, 235 
Gaussian noise, 49, 205  

  sampled ~, 57 
generator matrix, 272-274, 278, 285, 325, 327 
generator polynomial, 280, 285 
generator sequence, 285 
Golay code, 279 
Gold code, 340-343 
Gold sequence, see Gold code 
gradient, 154, 414 
granular (idling) noise, 100-101 
guard interval, 358, 362, 365, 387, 398 
 
H 
Hadamard matrix, 270 
Hamming code, 278, 284, 321 
Hamming distance, 272 
Hamming weight, 272, 287 
hard value, 298 
hard decision, 289, 292 
Hermitian symmetry, 13 
Hilbert transform, 32, 37, 78 
Huffman code, 257-259, 320 
 
I 
ideal LPF (lowpass filter), 140 

ideal sampler, 15 
IEEE Standard 802.11a, 386-388 
   timing-related parameters, 387 
IFO (integral frequency offset), 376 
impulse function, 5 
impulse sequence, 6 
impulse train, 5 
independent, 41-42, 45 
inner (or dot or scalar) product, 121 
in-phase component,  33, 49 
instant sampler, 15 
integral frequency offset (IFO), 376 
interleaving, 382 
ISI (intersymbol interference), 139 
ISI free condition, 141-142 
 
J 
Jacobian, 42, 43, 49, 412 
jamming 347 
jointly normal distribution, 44 
joint probability, 40 
joint probability density function, 41 
 
K 
Kasami sequence, 341-342 
 
L 
L-value, 298, 305 
Laplace transform, 412 
LAPP (log a posteriori probability), 301 
LDPC (low-density parity-check)  

~ code, 284, 309 
~ decoding, 310 
~ encoding, 309 

least mean square (LMS), 154 
Lempel-Ziv-Welch (LZW) coding, 260 
Lempel-Ziv-Welch (LZW) decoding, 261-262 
LF (loop filter), 226-230 
LFSR, see linear feedback shift register  
line code, 65 
linear block coding, 271, 284 
linear feedback shift register (LFSR),  

281, 283, 337-338, 340-341 
Lloyd-Max, 89-90 
LLR (log-likelihood ratio), 298, 301, 305 
   conditioned ~, 301, 308, 310 
LMS (least mean square), 154 
log-MAP decoding, 298 
long preamble, 363-365 
long training sequence, see long preamble 
loop filter (LF), 226-230 
lowpass equivalent, 33 
LSSB (lower single sideband), 80 
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LZW (Lempel-Ziv-Welch) coding, 260 
LZW (Lempel-Ziv-Welch) decoding, 262 
 
M 
m -sequence (maximal length sequence), 339 

~ generator, 339 
preferred pairs of ~s, 340 

MAP (maximum a posteriori probability), 298, 301 
marginal probability density function, 41 
Mason’s gain formula, 287 
matched filter, 110-111 
MATLAB Command Window, 418 
MATLAB Editor Window, 418 
MATLAB introduction, 417 
maximal length sequence ( m -sequence), 339 
maximum a posteriori probability (MAP), 298 
maximum likelihood estimate (MLE), 231 
mean, 43, 55 
mean function, 50 
mean square quantization error (MSQE), 87 
message passing algorithm (MPA), 310 
minimum distance, 123, 271, 272, 289 
minimum mean-square error equalizer, see MMSEE 
minimum-shift keying (MSK), 211-215 
minimum tone spacing, 179, 181 
MLE (maximum likelihood estimate), 231 
MMSEE (minimum mean-square error equalizer), 

151, 153 
modified duobinary signaling, 147-148 
modulation, 6, 14, 71 
modulation order, 127, 204 
modulation efficiency, 76  
MPA (message passing algorithm), 310 
MSK (minimum-shift keying), 211-215 
MSQE (mean square quantization error), 87 
μ -law, 92 
multi-amplitude, 127, 132 
multi-dimensional (orthogonal), 129, 132 
multi-level (multi-amplitude), 127, 132 
multi-path channel, 59 
mutual information, 265 
 
N 
NDA-ELD (nondata-aided early-late delay),  

244-246 
node cost (metric), 289 
noise power (or variance), 123 
noise PSD, 55 
noncoherent, 78, 171-173, 181-183, 190, 193, 206  
nondata-aided early-late delay (NDA-ELD),  

244-246 
nonuniform quantization, 89-91, 94 
normal convergence theorem, 47 

  (see also central limit theorem) 
normal distribution, 43, 44 
Nyquist band, 143, 144 
Nyquist bandwidth constraint, 140 
Nyquist frequency, 28 
 
O 
OFDM, 357-358 
OFDM receiver, 392 
OFDM symbol, 358, 362, 388, 394 
OFDM symbol duration, 371, 375, 388 
OFDM transmitter, 392 
offset QPSK (OQPSK), 207-208 
on-off keying (OOK), 118, 122 
OOK (on-off keying), 118 
OQPSK (offset QPSK), 207-208 
orthogonal, 45, 119, 121, 122, 129, 179 
orthogonal signaling, 119-121, 126, 132 
orthogonality, 397, 398 
 
P 
PAM (pulse amplitude modulation), 15, 17, 127 
parity check matrix, 274, 278, 279, 309 
Parseval,s relation, 18 
partial response signaling, 143 
path metric, 305, 308 
PCM (pulse code modulation), 95-97 
perfect (code), 279 
phase-locked loop, see PLL 
phase modulation (PM), 82-83 
phase offset, 73 
phase shift keying (PSK), 170, 187-190 
phase tracker, 403 
physically realizable, 141 

/4π -shifted QPSK (quadrature PSK), 209-210 
pilot, 365, 387, 388 
pilot polarity sequence, 387-388 
PLCP (physical layer convergence procedure),  

386 
PLL (phase-locked loop), 226-232, 247 
PM (phase modulation), 82-83 
PN (pseudo or pseudo-random noise), 337-338 
posteriori probability, 40, 231 
power efficiency, 200, 203 
power spectral density (PSD), 29, 53, 57-58 
power theorem, 18 
power-type signal, 29 
PPDU (PHY packet data unit), 386 
PRBS (pseudo-random binary sequence), 337 
preamble, 365 
precoding, 146 
predictor, 98 
pre-envelope signal, 30 
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prefix, see CP 
principal frequency range, 21 
priori information, 298, 307, 308, 310 
priori probability, 40 
probability, 39 
probability density function, 41 
probability distribution function, 41 
probability transition matrix, 264 
processing gain, 347, 350 
PSD (power spectral density), 29, 53, 57-58 
pseudo noise (PN), 337-338, 387 
PSK (phase shift keying), 170, 187-190 
pulse amplitude modulation (PAM), 15, 17, 127 
pulse code modulation (PCM), 95-97 
puncturing, 298, 384 
 
Q 
QAM (quadrature amplitude modulation), 195-200 
QPSK (quadrature PSK), 189-190 

/4π -shifted ~, 209-210 
offset ~ (OQPSK), 207-208 
staggered ~, see OQPSK 

quadrature amplitude modulation (QAM), 195-200 
quadrature carrier, 197 
quadrature component, 33, 49 
quadrature correlator, 197 
quantization, 87-91, 94 
 
R 
raised-cosine (RC) filter, 160-164 
raised-cosine frequency response, 141-142, 159 
raised-cosine impulse response, 142, 160 
random process, 49 
Rayleigh fading, 60 
Rayleigh probability density function, 50, 174, 182 
RC  filter, 109-110 
real convolution, 14 
rectangular pulse, 8 
rectangular wave, 2 
recursive systematic convolutional encoder, 298 
Reed-Solomon (RS) code, 284 
resolution frequency, 20 
Rice probability density function, 50, 62, 174, 182 
Rician fading, 60 
roll-off factor, 141 
RSC encoder, 298 
run property (of PN), 340 
 
S 
sampling frequency, 27 
sampling theorem, 27, 28 
scrambler, 387, 388 
Shannon-Hartley channel capacity theorem, 267 

Shannon limit, 268 
short preamble, 363-365 
short training sequence, see short preamble 
sigma-delta modulation, see delta-sigma modulation 
signal constellation diagram, 122 
signal correlator, 112 
Signal Processing Blockset, 423 
signal space, 121, 122 
signal-to-quantization noise ratio (SQNR), 87 
Simulink Library Browser Window, 422 
sinusoidal FM (frequency-modulation) signal, 24 
slope overload distortion, 100-101 
slow fading, 61 
slow FH-SS, 355 
soft value, 297 
soft-decision, 289, 293 
soft-in/soft-output Viterbi algorithm, see SOVA 
source coding, 257, 263 
SOVA (soft-in/soft-output Viterbi algorithm), 305 
SPA (sum-product algorithm), 310, 311 
space-time block code (STBC), 313 
spread-spectrum (SS), 337 
spreading, 346, 347 
SQNR (signal-to-quantization noise ratio), 87 
square-root raised-cosine (SRRC) filter, 162-164 
square-root raised-cosine impulse response, 163 
squaring loop, 233-235, 248 
squaring timing recovery, 252 
SS (spread-spectrum), 337 
   DS(direct sequence)-~, 345-349 
   FH(frequency hopping)-~, 350-353, 355 
SSB(single-sideband)-AM, 78 
staggered QPSK, see OQPSK 
state diagram for convolution encoder, 288 
stationary, 51-52 
STBC (space-time block code), 313 
steepest descent method, 154 
STO (symbol time offset), 362-363 
   ~ estimation, 370-372, 382, 393, 399 
stochastic process, 49 
strict-sense stationary, 51 
subcarrier, 358 
sum-product algorithm, see SPA 
suppressed carrier, 71 
symbol error probability, 128, 130, 131 
symbol error rate (SER),  

see symbol error probability 
symbol synchronization, 225, 241 
symbol time offset (STO), 362-363 
synchronous, 75, 82 
synchronization, 241, 365, 372, 393 
syndrome, 274-277, 281-282, 309, 322 
systematic, 274, 298 
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T 
Tanner graph, 310 
TCM, 294-297, 329-334 
time shifting, 6, 14 
timing recovery, 241-245 
traceback depth, 292, 293 
transmission bandwidth, 75, 80 
transmission mode, 372 
transmitted carrier, 75 
trellis, 288-290, 293, 304 
trellis-coded modulation, see TCM 
triangular pulse, 8 
triangular wave, 2 
turbo code, 298-308 
turbo decoding, see log-MAP or SOVA 
 
U 
uncorrelated, 44, 45 
Ungerboeck TCM encoder, 329-330 
uniform distribution, 43, 46 
uniform number, 46 
uniform quantization, 88 
unit signal waveform, 108 

USSB (upper single sideband), 78 
 
V 
variable node (v-node), 310, 311, 312 
variance, 43, 55 
VCO, 226-232, 247 
vector quantization, 103-104 
Viterbi 

~ (decoding) algorithm, 289-293 
~ decoding, 325 

voltage-controlled oscillator, see VCO 
 
W 
waveform coding, 270 
weight, 271 
white noise, 53, 55, 62, 108, 136, 205 
wide-sense stationary, 51 
 
Z 
z -transform, 412-413 
zero-forcing equalizer (ZFE), 148, 151 
 

 
Index for MATLAB Routines (*: MATLAB built-in function) 

MATLAB routine name Description  Page 
number 

ADC() 
ade() 
Alaw() 
Alaw_inv() 
awgn()* 

awgn_() 
bchgenpoly()* 
berawgn()* 
bercoding()* 
bilinear()* 

channel() 
channel_estimate() 
coarse_CFO_estimate() 
combis() 
compensate_CFO() 
compensate_phase() 
conv_encoder() 
convenc()* 
corr_circular() 
CTFS() 
CTFT() 
cyclic_decoder() 
cyclic_encoder() 
cyclpoly()* 

Analog-to-digital conversion 
tunes the adaptive equalizer  
A -law  (Eq. (4.1.8a)) 

1−A -law  (Eq. (4.1.8b)) 
Additive white Gaussian noise 
Additive white Gaussian noise 
makes the BCH code generator polynomial for given (N,K) 
Probability of bit error for various modulation schemes  
Probability of bit error for various coding schemes 
bilinear transformation (optionally with prewarping) 
simulates the channel effect using convolution 
finds the estimate of channel (frequency) response 
finds the coarse estimate of CFO 
makes an error pattern matrix 
compensate the CFO  
compensate the carrier phase 
convolutional encoding 
convolutional encoding 
Circular (or cyclic or periodic) correlation 
CTFS coefficients together with the reconstruction  
CTFT spectrum together with the inverse CTFT 
Cyclic decoder 
Cyclic encoder 
makes the cyclic code generator polynomial for given (N,K) 

93 
154 
92 
92 
136 
136 
321 
202 
279 
228-229 
380 
379 
367 
275 
368 
365 
286 
293, 325 
69, 343 
4, 5 
9 
282 
282 
281, 284 
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MATLAB routine name Description Page 
number 

dc01e01 
dc01e03 
dc01e16 
dc01e17 
dc01p02 
dc0109_1 
dc0109_2 
dc02e02a 
dc02e02b 
dc02e03 
de02e05 
dc02f05 
dc02p01 
dc04e03 
dc0501 
dc05f17 
dc07p01 
dc07t02 
dc09e05 
dc09p07 
deci2bin1() 
decode()* 
decoder() 
deinterleaving() 
dem_PSK_or_QAM() 
depuncture() 
detector_FSK() 
detector_MSK() 
detector_PSK() 
dfe() 
do_ade 
do_BCH_BPSK_sim 
do_CFO 
do_CFO_PHO_STO 
do_channel_estimation 
do_cyclic_code 
do_cyclic_codes 
do_dfe 
do_FSK_sim 
do_Hamming_code74 
do_interleaving 
do_mmsee 
do_MSK_sim 
do_OFDM0 
do_OFDM1 
do_PLL 
do_PNG 
 

plots the CTFS spectra of rectangular/triangular waves 
plots the CTFT spectra of rectangular/triangular pulses 
plots the FFT spectrum of a FSK signal 
plots the spectrum of a sinusoidal-modulated FM signal 
Lowpass equivalent of a bandpass signal 
plots the Hilbert transform of a sinusoidal wave 
Lowpass equivalent of a bandpass signal 
plots the distribution of a uniform noise 
plots the distribution of a Gaussian noise 
checks the validity of central limit theorem (CLT) 
plots the autocorrelation and histogram of a white noise 
plots a white noise together with its correlation and PSD 
plots the distribution of a bandpass noise with Rice pdf 
Nonuniform quantization considering relative errors 
simulates binary communications with RC /matched filters 
plots the theoretical BER curve for orthogonal signaling 
simulates a linear combination of Gaussian noises 
Table 7.2 (SNRdB for each signaling to achieve BER=10-5) 
constructs the codeword matrix for a linear block code 
shows some examples of using convenc() and vitdec() 
Decimal-to-binary conversion 
Decoding 
Decoding of a signal value by the given code table 
Deinterleaving 
performs the PSK or QAM demodulation 
Depuncturing 
Detection of FSK signals 
Detection of MSK signals 
Detection of PSK signals 
tunes the decision feedback equalizer (DFE) 
simulates the adaptive-equalizer  (ADE) 
runs the Simulink model “BCH_BPSK_sim” 
simulates the CFO estimation and compensation 
simulates the CFO/PHO/STO estimation and compensation 
tries using channel_estimate() for channel estimation 
tries with a cyclic code 
tries with cyclic codes 
simulates the decision feedback equalizer (DFE) 
runs the Simulink model “FSK_passband_sim” 
finds the BER performance of the Hamming (7,4) code 
tests the MATLAB routines interleaving() and deinterleaving() 
simulates the minimum mean-square error equalizer  
runs the Simulink model “MSK_passband_sim” 
simulates a basic OFDM system 
simulates an OFDM system (IEEE Std 802.11a) 
simulates a PLL (phase-locked loop) system 
uses MATLAB program ‘png()’ and runs Simulink model  

“PN_generator_sim.mdl” to generate a PN sequence  

4 
9 
23 
25 
38 
31 
35 
46 
47 
48 
56 
54 
62 
93 
113 
131 
205 
203 
273 
324 
272 
284 
96 
383 
390 
384 
217 
222 
220 
156 
155 
323 
367 
399-401 
380 
281 
323 
156 
217 
276 
383 
152 
222 
359 
389 
229 
343 
 



Index 434 

MATLAB routine name Description Page 
number 

do_PSK_sim 
do_puncture 
do_QAM_carrier 

_recovery 
do_QAM_sim 
do_QPSK_Costas 
do_QPSK_Costas_ 

earlylate 
do_rcos1 
do_rcos2 
do_square_filter_clock 
do_squaring_loop 
do_STO 
do_STO_estimation 
do_sym_sync_earlylate 
do_sync_for_DMB 
do_sync_w_double 

_window 
do_TCM_8PSK 
do_vector_quantization 
do_vitdecoder 
do_vitdecoder1 
do_Viterbi_QAM 
 
do_zfe 
DS_SS 
encode()* 
equalizer_in_freq() 
FH_SS 
FH_SS2 
fine_CFO_estimate() 
freqz()* 
Gauss_Hermite() 
GI_and_orthogonality 
gm2gM() 
gray_code() 
Hamm_gen() 
Hammgen()* 
hilbert()* 
hist()*  
Huffman_code() 
IFO_estimate() 
interleaving() 
Jkb() 
LDPC_decoder() 
LDPC_demo 
logmap() 
long_train_seq() 

runs the Simulink model “PSK_passband_sim” 
tests the MATLAB functions puncture() and depuncture() 
simulates QAM with decision-feedback carrier recovery 
 
runs the Simulink model “QAM_passband_sim” 
simulates QPSK using Costas loop for carrier phase recovery 
simulates QPSK using Costas loop and Early-Late algorithm  
  for carrier phase recovery and timing recovery, respectively 
draws the impulse/frequency responses of a raised cosine filter 
performs the two cascaded square-root raised-cosine filtering 
Square-law bit synchronizer 
simulates a squaring loop to get a reference signal from BPSK 
detects the OFDM symbol start points 
simulates the STO estimation/compensation 
simulates the early late sampling time control for symbol sync 
simulates the frame synchronization and CFO estimation 
simulates the estimation of OFDM frame and  

symbol start times using the double sliding window 
runs MATLAB routine ‘TCM’ and Simulink model  
simulates the vector quantization 
tries using vit_decoder() and vitdec() 
tries the various usages of vitdec() 
runs MATLAB routine ‘Viterbi_QAM.m’ together with 
   Simulink model ‘Viterbi_QAM_sim.mdl’ 
simulates the zero forcing equalizer (ZFE) 
simulates BPSK with DS-SS(spread spectrum) 
Encoding 
simulates the frequency-domain equalizer 
simulates BFSK with fast FH-SS(spread spectrum) 
simulates BFSK with slow FH-SS(spread spectrum) 
finds the fine estimate of CFO 
Frequency response of a discrete-time system 
Integration using the Gauss-Hermite quadrature 
tests the orthogonality of an OFDM signal  
PNG polynomial into one used by Simulink 
Gray coding 
makes the parity-check/generator matrices for Hamming code 
makes the parity-check/generator matrices for Hamming code 
analytic signal with Hilbert transform as the imaginary part 
plots a histogram 
Huffman code generator for a given symbol probability vector 
finds the estimate of IFO (integral frequency offset) 
Interleaving 
The first kind of kth-order Bessel function 
Low-density parity-check (LDPC) decoder 
simulates an LDPC coding and decoding 
Log-MAP algorithm for turbo coding 
generates the long training sequence for 802.11a 

220 
385 
239 
 
222 
237 
244-245 
 
161 
162 
68 
234 
393-395 
371 
243 
378 
374 
 
330 
103 
290 
292 
327 
 
150 
348 
284 
380 
352 
355 
367 
63 
132 
398 
344 
327 
278 
278 
76-77, 83
46-48, 56
258 
377 
382 
25 
311 
312 
302 
364 
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LZW_coding() 
LZW decoding() 
mmsee() 
mod_PSK_or_QAM() 
mulaw() 
mulaw_inv() 
nextpow2 ()* 
OFDM_parameters() 
phase_from_pilot() 
phase_ref_symbol() 
plot_ds_ss 
plot_MOD() 
PNG() 
poly2trellis()* 
prdctr() 
prob_err_msg_bit() 
prob_error() 
PSK_slicer() 
puncture() 
Q() 
QAM() 
QAM_dem() 
quantize_nonuniform 
quantize_uniform 
rand()* 

randerr()* 
randint()* 
randn()* 
rcosflt()* 
rcosine()* 

rD() 
rD_wave() 
Rice_pdf() 
rsdec()* 
rsenc()* 
set_CFO() 
set_parameter_11a 
short_train_seq() 
sim_antipodal 
sim_ASK_passband_ 
   coherent 
sim_ASK_passband_ 
   noncoherent 
sim_biorthogonal 
sim_Delta_Sigma 
sim_DM 
sim_DPCM 
sim_DPSK_passband 

performs the LZW coding on an input symbol sequence 
performs the LZW decoding on an input coded sequence 
tunes the mimimum mean-square error equalizer (MMSEE) 
performs the PSK or QAM modulation 
μ -law  (Eq. (4.1.7a)) 

1−μ -law  (Eq. (4.1.7b)) 
nextpow2(N) returns the first P such that 2^P >= abs(N) 
set the OFDM parameters for IEEE Std 802.11a 
finds the OFDM carrier phase estimate based on the pilot 
generates the PRS for EUREKA-147 DAB 
plots the signals in a DS-SS(spread spectrum) system 
plots the signals appearing in a specified modulation process 
Pseudo-noise generator 
makes a trellis structure for a given generator polynomial 
One-step-ahead predictor based on RLSE 
Theoretical message bit error probability by Eq. (9.4.11) 
Probability of error for various signaling 
slices each of PSK signals into the regular constellation points 
Puncturing 
Complementary error (co-error) function 
QAM (quadrature amplitude modulation) modulation 
QAM demodulation 
Lloyd-Max nonuniform quantization 
Uniform quantization 
generates an array of uniformly-distributed random numbers  
generates a binary matrix having 0 or 1 at random positions 
generates a matrix consisting of random integers  
generates an array of Gaussian-distributed random numbers 
designs and implements a raised-cosine filter 
designs a raised-cosine filter  
Rectangular pulse 
Rectangular wave 
Rice probability density function 
RS (Reed-Solomon) decoding 
RS (Reed-Solomon) encoding 
set up the CFO  
set the parameters for running “ieee_11a_CFO_est.mdl” 
generates the short training sequence for 802.11a 
simulates an antipodal (bipolar) signaling (in baseband) 
simulates the coherent BASK in passband 
 
simulates the non-coherent BASK in passband 
 
simulates a bi-orthogonal signaling (in baseband) 
simulates the delta-sigma ( ΔΣ ) modulation 
Delta modulation 
Differential pulse code modulation 
simulates the QDPSK (differential QPSK) in passband 

260 
262 
152 
390 
92 
92 
74, 77, 82
388 
365 
377 
345 
74 
338 
292-293 
99 
276 
202 
316 
385 
125 
327 
328 
90 
89 
47 
281, 284 
284 
47 
160-163 
161-163 
9 
4 
62 
284 
284 
368 
402 
364 
125 
176 
 
177 
 
135 
105 
101 
99 
194 
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sim_DSB_AMSC 
sim_DSB_AMTC 
sim_FM 
sim_FSK_passband_ 
   coherent 
sim_FSK_passband_ 
   noncoherent 
sim_MSK 
sim_OQPSK 
sim_orthogonal 
sim_PCM 
sim_PSK_passband 
sim_QAM_passband 
sim_S_QDPSK 
sim_SSB_AM 
sim_TCM 
slice() 
source_coding() 
source_decoding() 
sova() 
state_eq() 
TCM() 
TCM1() 
TCM_decoder() 
TCM_decoder1() 
TCM_encoder() 
TCM_encoder1() 
TCM_state_eq1() 
test_corr_circular 
test_DSTBC_G2_PSK 
test_DSTBC_H4_PSK 
test_Rayleigh_fading 
test_unwrap 
trellis() 
tri() 
tri_wave() 
turbo_code_demo 
unwrap()* 
vector_quantization() 
vit_decoder() 
vitdec()* 

Viterbi_QAM 
xcorr()* 
xcorr_my() 
zfe() 

simulates the DSB-AM 
simulates the conventional AM (DSB-AMTC) 
simulates the FM (frequency modulation) 
simulates the coherent FSK in passband 
 
simulates the noncoherent FSK in passband 
 
simulates the passband MSK communication 
simulates the offset QPSK (OQPSK) 
simulates an orthogonal signaling (in baseband) 
Pulse code modulation 
simulates the QPSK in passband 
simulates the QAM in passband 
simulates the /4π -shifted QPSK 
simulates the USSB/LSSB (upper/lower single sideband)-AM 
simulates 8PSK with the trellis-coded modulation 
slices a received signal according to the given constellation 
performs the source coding on an input symbol sequence 
performs the source coding on an input coded sequence 
Soft-output Viterbi algorithm for turbo coding 
State equation used in conv_encoder()  
Trellis-coded modulation 
TCM using TCM_encoder1() and TCM_decoder1() 
TCM decoder with a convolutional encoder touched by input 
TCM decoder w. a convolutional encoder untouched by input 
TCM encoder with a convolutional encoder touched by input 
TCM encoder w. a convolutional encoder untouched by input 
State equation used in TCM() 
tests the MATLAB routine ‘corr_circular()’ 
applies the DSTBC with 3 transmit antennas for 4PSK 
applies the DSTBC with 4 transmit antennas for 4PSK  
Rayleigh fading effect 
tests the function of unwrap() 
Trellis structure 
Triangular pulse 
Triangular wave 
demonstrates turbo coding/decoding with logmap() or sova() 
undo the radian phase wrapped into ( π− ,π ] 
Vector quantization 
Viterbi decoding 
Viterbi decoding 
QAM with convolutional encoding and Viterbi decoding 
correlation 
correlation 
zero-forcing equalizer 

74 
77 
84 
184 
 
185 
 
214 
208 
126 
96 
189 
199 
210 
82 
296 
222 
259 
259 
306 
286 
329 
334 
297 
333 
296 
332 
329 
69 
316 
335 
60 
84 
304 
9 
4 
307 
83-84 
104 
290, 291 
292, 293 
326 
53 
52 
149 
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Index for Simulink Models 
Simulink model name Description  Page 

number 
BCH_BPSK_sim 
BPSK_squaring 
CFO_sim 
channel_estimation_sim 
Delta_Sigma_sim 
do_OFDM0_sim 
do_OFDM1_sim 
DS_SS_sim 
DS_SS2_sim 
FSK_passband_sim 
ieee_11a_CFO_est 
interleaving_sim 
MSK_passband_sim 
PLL_sim 
PN_generator_sim 
PSK_carrier_phase_ 

timing_recovery 
PSK_passband_sim 
puncture_sim 
QAM_carrier_recovery 
QAM_passband_sim 
QPSK_Costas 
scrambling_sim 
SRRC_filter 
TCM_sim 
Viterbi_QAM_sim 

simulates BPSK with BCH coding 
simulates BPSK with squaring loop for carrier phase recovery 
simulates the CFO estimation and compensation 
simulates the channel estimation for OFDM system 
simulates the delta-sigma ( ΔΣ ) modulation 
simulates a basic OFDM system 
simulates an OFDM system (IEEE Std 802.11a) 
simulates QAM with DS-SS(spread spectrum) 
simulates QAM with 2-user DS-SS (CDMA) system 
simulates the passband FSK (frequency-shift keying) 
simulates 802.11a system with CFO estimation/compensation 
tries the interleaving and deinterleaving 
simulates the passband MSK (minimum-shift keying) 
simulates a PLL (phase-locked loop) system 
tries generating the PN/Gold/Kasami sequences 
simulates PSK with carrier phase and timing recovery 
 
simulates the passband PSK (phase-shift keying) 
tries puncturing and depuncturing 
simulates QAM with decision-feedback carrier phase recovery 
simulates the passband QAM 
simulates BPSK with Costas loop for carrier phase recovery 
tries using Scarmbler and Descrambler blocks 
performs the cascaded square-root raised-cosine filtering 
simulates a Ungerboeck TCM (trellis-coded modulation) 
QAM with convolutional encoding and Viterbi decoding 

324 
248 
369 
381 
105 
360 
392 
349 
354 
216 
403-404 
384 
223 
247 
342 
251 
 
219 
385 
250 
221 
249 
388 
164 
330 
327 
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