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This Solutions Manual was last updated in August, 2011. We appreciate receiving comments
and corrections you might have on the current version. Please send emails to ha.nguyen@usask.ca
or shwedyk@ee.umanitoba.ca.
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Deterministic Signal Characterization
and Analysis

P2.1 First let us establish (or review) the relationships for real signals

(a) Given {Ak, Bk}, i.e., s(t) =
∑∞

k=0 [Ak cos (2πkfrt) + Bk sin (2πkfrt)], Ak, Bk are real.

Then Ck =
√

A2
k + B2

k, θk = tan−1 Bk
Ak

, where we write s(t) as

s(t) =
∞∑

k=0

Ck cos (2πkfrt− θk)

If we choose to write it as

s(t) =
∞∑

k=0

Ck cos (2πkfrt + θk)

then the phase becomes θk = − tan−1 Bk
Ak

. Further

Dk =
Ak − jBk

2
D−k = D∗

k, k = 1, 2, 3, . . .

D0 = A0 (B0 = 0 always).

(b) Given {Ck, θk} then Ak = Ck cos θk, Bk = Ck sin θk. They are obtained from:

s(t) =
∞∑

k=0

Ck cos (2πkfrt− θk) =
∞∑

k=0

[Ck cos θk cos(2πkfrt) + Ck sin θk sin(2πkfrt)]

Now s(t) can written as:

s(t) =
∞∑

k=0

Ck

{
ej[2πkfrt−θk] + e−j[2πkfrt−θk]

2

}

s(t) = C0

[
e−jθ0 + ejθ0

2

]

︸ ︷︷ ︸
cos θ0

+
∞∑

k=1

[
Ck

2
e−jθkej2πkfrt +

Ck

2
ejθke−j2πkfrt

]

1
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Therefore

D0 = C0 cos θ0 where θ0 is either 0 or π

Dk =
Ck

2
e−jθk , k = 1, 2, 3, . . .

What about negative frequencies? Write the third term as Ck
2 ejθkej[2πk·(−fr)·t], where

(−fr) is interpreted as negative frequency. Therefore D−k = Ck
2 e+jθk , i.e., D−k = D∗

k.
(c) Given {Dk}, then Ak = 2R{Dk} and Bk = −2I{Dk}. Also Ck = 2|Dk|, θk = −∠Dk,

where Dk is in general complex and written as Dk = |Dk|ej∠Dk .

Remark: Even though given any set of the coefficients, we can find the other 2 sets, we
can only determine {Ak, Bk} or {Dk} from the signal, s(t), i.e., there is no method to
determine {Ck, θk} directly.

Consider now that s(t) is a complex, periodic time signal with period T = 1
fr

, i.e.,
s(t) = sR(t) + jsI(t) where the real and imaginary components, sR(t), sI(t), are each
periodic with period T = 1

fr
. Again we represent s(t) in terms of the orthogonal basis

set {cos (2πkfrt), sin (2πkfrt)}k=1,2,.... That is

s(t) =
∞∑

k=0

[Ak cos (2πkfrt) + Bk sin (2πkfrt)] (2.1)

where Ak = 2
T

∫
t∈T s(t) cos (2πkfrt)dt; Bk = 2

T

∫
t∈T s(t) sin (2πkfrt)dt are now complex

numbers.

One approach to finding Ak, Bk is to express sR(t), sI(t) in their own individual Fourier
series, and then combine to determine Ak, Bk. That is

sR(t) =
∞∑

k=0

[
A

(R)
k cos (2πkfrt) + B

(R)
k sin (2πkfrt)

]

sI(t) =
∞∑

k=0

[
A

(I)
k cos (2πkfrt) + B

(I)
k sin (2πkfrt)

]

⇒ s(t) =
∞∑

k=0




(
A

(R)
k + jA

(I)
k

)

︸ ︷︷ ︸
=Ak

cos (2πkfrt) +
(
B

(R)
k + jB

(I)
k

)

︸ ︷︷ ︸
=Bk

sin (2πkfrt)




(d) So now suppose we are given {Ak, Bk}. How do we determine {Ck, θk} and Dk?
Again, (2.1) can be written as

s(t) =
∞∑

k=0

[(
Ak − jBk

2

)
ej2πkfrt +

(
Ak + jBk

2

)
e−j2πkfrt

]

As before, define Dk as Dk ≡ Ak−jBk
2 and note that the term

∑∞
k=0

Ak+jBk
2 e−j2πkfrt can

be written as
0∑

k=−∞

Ak + jB−k

2
ej2πkfrt =

0∑

k=−∞

(
Ak − jBk

2

)
ej2πkfrt =

0∑

k=−∞
Dkej2πkfrt

Solutions Page 2–2
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Therefore s(t) =
∑∞

k=−∞Dkej2πkfrt, where Dk = Ak−jBk
2 , k = ±1,±2, . . . and D0 =

A0 − jB0 (note that B0 is not necessary equal to zero now).

Equation (2.1) can also be written as:

s(t) =
∞∑

k=0

√
A2

k + B2
k cos

(
2πkfrt− tan−1 Bk

Ak

)

from which it follows that Ck ≡
√

A2
k + B2

k and θk = − tan−1 Bk
Ak

.

Remarks:
(i) Dk 6= D∗

k if s(t) is complex.
(ii) The amplitude, Ck, and θk are in general complex quantities and as such lose their

usual physical meanings.
(iii) A complex signal, s(t) would arise not from the physical phenomena but from our

analysis procedure. This occurs for instance when we go to an equivalent baseband
model.

Consider now that
{

Dk ≡ Ak−jBk
2

}
are given. Then since D−k = Ak+jBk

2 , we have, upon
adding and subtracting Dk, D−k: Ak = Dk + D−k; Bk = j(Dk −D−k).
{Ck, θk} can be determined from {Ak, Bk}, which in turn can be determined from Dk

as above.

P2.2 (a) Ak = 2
T

∫
t∈T s(t) cos (2πkfrt)dt = 2

T

∫
t∈T s(t) cos (2π(−k)frt)dt = A−k, i.e., even.

(b) Bk = 2
T

∫
t∈T s(t) sin (2πkfrt)dt = − 2

T

∫
t∈T s(t) sin (2π(−k)frt)dt = −B−k, i.e., odd.

(c) Ck =
√

A2
k + B2

k; C−k =
√

(A−k)2 + (B−k)2 =
√

(Ak)2 + (−Bk)2 = Ck, i.e., even (note
that squaring an odd real function always gives an even function).

(d) θk = − tan−1
(

Bk
Ak

)
; θ−k = − tan−1

(
B−k

A−k

)
= − tan−1

(
−Bk

Ak

)
= tan−1

(
Bk
Ak

)
= −θk, i.e.,

odd (note that tan−1(·) is an odd function).

(e) Dk = Ak−jBk
2 ; D−k = A−k−jB−k

2 = Ak+jBk
2 = D∗

k.

Remarks: Properties (a), (b) are true for complex signals as well. But not (c), (d), (e),
at least not always.

P2.3 fr = 1
T = 1

8 (Hz).

A1 = 2R(D1) = 0; B1 = −2I(D1) = −2.

A5 = 2R(D5) = 4; B5 = −2I(D5) = 0.

C1 = 2|D1| = 2; θ1 = ∠D1 = π
2 .

C5 = 2|D5| = 4; θ5 = 0.

∴ s(t) = −2 sin
(
2π

(
1
8 t

))
+ 4 cos

(
2π

(
5
8 t

))
= 2 cos

(
2π

(
1
8 t + π

2

))
+ 4 cos

(
2π

(
5
8 t

))
.

P2.4 The fundamental period, fr, is fr = fc (Hz).

(a) Write s(t) as s(t) =
V

2
ejα

︸ ︷︷ ︸
D1

ej2πfct︸ ︷︷ ︸
k=1

+
V

2
e−jα

︸ ︷︷ ︸
D−1

e−j2πfct︸ ︷︷ ︸
k=−1

.

Solutions Page 2–3
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(i) D1 = V
2 ejα, D−1 = V

2 e−jα = D∗
1.

(ii) α = 0 ⇒ D1 = V
2 = D−1.

(iii) α = π ⇒ D1 = −V
2 = D−1.

(iv) α = −π ⇒ same as (iii), not much difference between +π and −π.
(v) α = π

2 ⇒ D1 = j V
2 , D−1 = −j V

2 .
(vi) α = −π

2 ⇒ D1 = −j V
2 , D−1 = j V

2 .

(b) The magnitude spectrum is the same for all the cases, as expected, since only the phase
of the sinusoid changes. It looks like:

0  (Hz)fcf−

2
V

2
V

|  | (volts)
••

cf

Figure 2.1

The phase spectra of cosines change as shown in Fig. 2.2. For (iii) and (iv), which
plot(s) do you prefer and why?
Note: In all cases, the magnitude and phase spectra are even and odd functions, respec-
tively, as they should be.

(c) s(t) = V cosα cos (2πfct)− V sinα sin (2πfct)

(i) A1 = V cosα, B1 = −V sinα.
(ii) A1 = V , B1 = 0.
(iii) A1 = −V , B1 = 0.
(iv) same as (iii).
(v) A1 = 0, B1 = −V .
(vi) A1 = 0, B1 = V .

For {Ck, θk} we have C1 = V always and θ1 = +α.

P2.5 s(t) = 2 sin(2πt− 3) + 6 sin(6πt).

(a) The frequency of the first sinusoid is 1 Hz and that of the second one is 6π
2π = 3 Hz. The

fundamental frequency is fr = GCD{1, 3} = 1 Hz. Rewrite sin(x) as cos(x− π
2 ). Then

s(t) = 2︸︷︷︸
C1

cos


2πt−

(
3 +

π

2

)

︸ ︷︷ ︸
θ1


 + 1︸︷︷︸

C3

cos


2π(3)t− π

2︸︷︷︸
θ3


.

Use |Dk| = Ck
2 , ∠Dk = θk, D−k = D∗

k relationships to obtain:

∴ D1 = 1ej(3+π
2
), D3 = 1

2ej π
2 .

∴ D−1 = 1e−j(3+π
2
), D−3 = 1

2e−j π
2 .

(b) See Fig. 2.3.

Solutions Page 2–4
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0  (Hz)f

α−

α

(radians)

0  (Hz)f

•

∠ (radians)∠

•

• •

0  (Hz)fCf

π

0  (Hz)f

•

•

(radians)∠ (radians)∠

π− π−

π •

•

(Phase spectrum of a cos( ))⋅

cf cf

cf

cf−

cf−

cf−
cf−

(i) (ii)

(iii), (iv)

0  (Hz)f

π

0  (Hz)f

• •

(radians)∠ (radians)∠

π− π−• •(Phase spectrum of a cos( ))− ⋅

cfcf−

cfcf−

Or

Or Or

0  (Hz)f 0  (Hz)f

•

•

(radians)∠ (radians)∠

2
π−

•

•

2
π

2
π

2
π−

(Phase spectrum of a sin( ))− ⋅ (Phase spectrum of a sin( ))⋅

cf−
cf−

cf
cf

(v) (vi)

Figure 2.2

P2.6 Classification of signals is as follows:

Solutions Page 2–5
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0  (Hz)f

1
2

1

1 2 31−2−3−

0  (Hz)f1 2 3
1−2−3−

| |kD (volts)

(radians)
kD∠

( )3 2
π+

2
π

2
π−

Figure 2.3

(a) It has odd (but not halfwave) symmetry.
(b) Neither even, nor odd but show a halfwave symmetry.
(c) Even symmetry, also halfwave symmetry, therefore even quarterwave symmetry.
(d) (i) odd symmetry, also halfwave ⇒ odd quarterwave symmetry.

(ii) neither even, nor odd, nor halfwave.
(iii) even but not halfwave.

(e) Neither even, nor odd, nor halfwave.
(f) Any even signal still remains even since s′(t) = DC + s(t) and s′(−t) = DC + s(−t) =

DC + s(t) = s′(t).

Any odd signal is no longer odd. Note that a DC is an even signal.

Any halfwave symmetric signal is no longer halfwave symmetric. Again a DC signal is
not halfwave symmetric and this component destroys the halfwave symmetry. Note that
any signal with a nonzero DC component cannot be halfwave symmetric.

Regarding the values of the Fourier series coefficients, all that changes is the D0, C0 or
A0 value, i.e., the DC component value. All other coefficients are unchanged.

(g) In general the classification changes completely. But for certain specific time shift the
classification may remain the same. To see the effect of a time shift on the coefficients
consider first

D
(shifted)
k =

1
T

∫

t∈T
s(t− τ)e−j2πkfrtdt

λ=t−τ= e−j2πkfrτ

[
1
T

∫

λ∈T
s(λ)e−j2πkfrλdλ

]

︸ ︷︷ ︸
Dk

∴ D
(shifted)
k = e−j2πkfrτDk

D
(shifted)
k =

A
(shifted)
k − jB

(shifted)
k

2
= [cos (2πkfrτ)− j sin (2πkfrτ)]

[
Ak − jBk

2

]

Solutions Page 2–6
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∴ A
(shifted)
k = Ak cos (2πkfrτ)−Bk sin (2πkfrτ).

∴ B
(shifted)
k = Ak sin (2πkfrτ) + Bk cos (2πkfrτ).

Now

D
(shifted)
k =

C
(shifted)
k

2
ejθ

(shifted)
k = e−j2πkfrτ

{
Ck

2
ejθk

}

︸ ︷︷ ︸
Dk

∴ C
(shifted)
k = Ck,

∴ θ
(shifted)
k = θk − j2πkfrτ.

Basically a time shift leaves the amplitude of the sinusoid unchanged and results in a
linear change in the phase.

P2.7 (a) s(−t) = s1(−t) + s2(−t) = s1(t) + s2(t) = s(t) ⇒ even.

(b) s(−t) = s1(−t) + s2(−t) = s1(t)− s2(t), no symmetry.

(c) s
(
t± T

2

)
= s1

(
t± T

2

)
+ s2

(
t± T

2

)
= −s1(t)− s2(t) = −s(t). Therefore s(t) is halfwave

symmetric.

(d) Can’t say anything.

(e) Again cannot say anything.

(f) Consider s
(
t± T

2

)
= s1

(
t± T

2

)
+ s2

(
t± T

2

)
= −s1(t)− s2(t) = −s(t). Therefore s(t) is

halfwave symmetric.

Now if both s1(t), s2(t) are even then s(t) is even and therefore it is even quarterwave
symmetric. If both are odd, s(t) is odd and s(t) is odd quarterwave symmetric. However
if one is even and the other is odd then s(t) is only halfwave symmetric.

(g) s(t) is even but not halfwave symmetric.

P2.8 s(t) = s1(t)s2(t)

(a) s(−t) = s1(−t)s2(−t) = s1(t)s2(t) = s(t) ⇒ even.

(b) s(−t) = s1(−t)s2(−t) = −s1(t)s2(t) = −s(t) ⇒ odd.

(c) s
(
t± T

2

)
= s1

(
t± T

2

)
s2

(
t± T

2

)
= [−s1(t)] [−s2(t)] = s(t). Therefore s(t) is not

halfwave symmetric. Note that the fundamental period changes to T
2 .

(d) Neither even nor halfwave symmetric.

(e) Neither odd nor halfwave symmetric.

(f) Have 3 possibilities: (i) s1(t), s2(t) are both even quarterwave; (ii) s1(t), s2(t) are both
odd quarterwave; (iii) one is odd quarterwave, the other is even quarterwave.

(i) From (a) it follows that s(t) is even. From (c) it follows that it is not halfwave
symmetric.

(ii) Easy to show that s(t) is even. But s
(
t± T

2

)
= s1

(
t± T

2

)
s2

(
t± T

2

)
= [−s1(t)] [−s2(t)] =

s1(t)s2(t) = s(t) 6= −s
(
t± T

2

)
, therefore not halfwave symmetric.

Solutions Page 2–7
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(iii) s(t) is odd (follows from (b)) but again s
(
t± T

2

)
= s(t) 6= −s

(
t± T

2

)
, therefore not

halfwave symmetric.

Again note that in each case the fundamental period changes to T
2 .

(g) s(t) is even. Is it halfwave symmetric?

s

(
t± T

2

)
= s1

(
t± T

2

)
s2

(
t± T

2

)
= −s1

(
t± T

2

)
s2(t) 6= −s(t)

No.

P2.9 (a) Check for 2 conditions: that the magnitude is even and the phase is odd. If both are
satisfied then the signal is real. If one or the other or neither condition is satisfied then
the signal is complex.
(i) real, (ii) real (note the phase of π is the same as −π), (iii) complex (phase spectrum
is not odd).

(b) If a harmonic frequency has a phase of π (or 0) then there is only a cos(·) term at this
frequency. Similarly if the phase is π

2 (or 3π
2 ) then there is only a sin(·) term at that

frequency. Finally if the signal is even then it only has cos(·) terms in the Fourier series,
if odd then only sin(·) terms.

Therefore the signal in (ii) is even (and real). No signal is odd.

P2.10 The two spectra are

0  (Hz)f

0  (Hz)f

2
cV

mf− mf

2
mV

2
mV

cf− cf−

2
cV

0  (Hz)f
c mf f− −

4
m cV V

c mf f− + c mf f− c mf f+

4
m cV V

4
m cV V

4
m cV V

 coefficients of cos(2 )k m mD V f tπ

 coefficients of cos(2 )k c cD V f tπ

Figure 2.4

Solutions Page 2–8
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P2.11 The difference between two modulations of P2.1 and P2.2 is that the one in P2.2 has a spectral
component at fc or equivalently the modulating signal, s1(t) = VDC + Vm cos (2πfmt), has a
spectral component at f = 0 (i.e., DC component).

0  (Hz)f

0  (Hz)f

2
cV

mf− mf

2
mV

2
mV

cf− cf−

2
cV

0  (Hz)f
c mf f− −

4
c mV V

c mf f− + c mf f− c mf f+

4
c mV V

2
c mV V

2
c mV V

1( ) (V/Hz)S f

2 ( )S f

( )S f

cf− cf

2
c DCV V

2
c DCV V

DCV

Figure 2.5

Remarks:

(i) One can use the frequency shift property to determine the spectrum of s(t).

(ii) The phases of all the spectra are zero, a consequence of only cosines being involved, both
as carrier and message signals. A good exercise is to change some (or all) of the signals
to sines and redo the spectra.

(iii) The simplest way to find the spectra is to use some high-school trig, namely cos(x) cos(y) =
cos(x+y)+cos(x−y)

2 . No need to know convolution, frequency shift property, etc.

P2.12 (a) fi(t) = 1
2π

d
dt [2πfct− Vm sin (2πfmt)] = fc − Vmfm cos (2πfmt) (Hz).

0

( ) (Hz)if t

cf

c m mf V f+

c m mf V f−

1 mf  (sec)t

Figure 2.6

Solutions Page 2–9
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(b) Consider

s

(
t +

k

fm

)
= Vc cos

[
2πfc

(
t +

k

fm

)
− Vm sin

(
2πfm

(
t +

k

fm

))]

= Vc cos


2πfct + 2πk

fc

fm︸︷︷︸
n

−Vm sin (2πfmt + 2πk)


 = s(t)

Choose k = 1, i.e., s
(
t + 1

fm

)
= s(t) ⇒ periodic with period T = 1

fm
(sec).

(c) Consider s1(t) = ej[2πfct−Vm sin(2πfmt)]

s1

(
t +

k

fm

)
= ej[2πfct+kn2π−Vm sin(2πfmt+k2π)] = ej2πkn︸ ︷︷ ︸

1

ej[2πfct−Vm sin(2πfmt)]︸ ︷︷ ︸
s1(t)

Therefore s1(t) is periodic with period 1
fm

(sec). Its Fourier coefficients are determined
as follows:

Dk =
1
T

∫ T
2

= 1
2fm

−T
2

=− 1
2fm

ej[2πfct−Vm sin(2πfmt)]e−j2πkfmtdt

Change variable to λ = 2πfmT

Dk =
1
2π

∫ π

−π
ej[(n−k)λ−Vm sin λ]dλ = Jn−k(Vm),

where by definition Jn(x) = 1
2π

∫ π
−π e−j[nλ−x sin λ]dλ is nth order Bessel function.

Remarks: The spectrum depends on Vm, the amplitude of the modulating signals. In
fact Vm determines the maximum instantaneous frequency (see plot in (a)) which implies
that the larger Vm is, the wider the spectrum bandwidth becomes. Of course in theory
there are spectral components out to infinity but in practise a finite bandwidth would
capture most of the power of the transmitted signal. The restriction that fc is an integer
multiple of fm is easily removed but for this the Fourier transform is needed since the
signal is no longer periodic in general.

P2.13 (a)

s1(t) = 1 +
√

2ej π
4 ej2πt +

√
2e−j π

4 e−j2πt + 5ej2.21ej2π(2t) + 5e−j2.21e−j2π(2t)

+5e−j2.21ej2π(3t) + 5ej2.21e−j2π(3t)

= 1 + 2
√

2 cos
(
2πt +

π

4

)
+ 10 cos (4πt + 2.21) + 10 cos (6πt + 2.21)

where fr is taken to be 1 Hz.
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s2(t) = 2 cos
(
2πt + π

4

)

s1(t)s2(t) = 2 cos
(
2πt +

π

4

)
+ 2

√
2 cos2

(
2πt +

π

4

)

+20 cos (4πt + 2.21) cos
(
2πt +

π

4

)

+20 cos (6πt− 2.21) cos
(
2πt +

π

4

)

= 2 cos
(
2πt +

π

4

)

+
√

2
(
1 + cos

(
4πt +

π

2

))
+ 10 cos

(
2πt +

π

4
− 2.21

)

+10 cos
(
6πt +

π

4
+ 2.21

)
+ 10 cos

(
4πt− 2.21− π

4

)

+10 cos
(
8πt− 2.21 +

π

4

)

=
√

2 + 2 cos
(
2πt +

π

4

)

+10 cos
(
2πt +

π

4
− 2.21

)
+
√

2 cos
(
4πt +

π

2

)

+10 cos
(
4πt− π

4
− 2.21

)
+ 10 cos

(
6πt + 2.21 +

π

4

)

+10 cos
(
8πt− 2.21 +

π

4

)

D0 =
√

2; D1 = ej π
4 + 5ej(π

4
−2.21); D2 =

√
2

2 ej π
2 + 5e−j(π

4
+2.21);

D3 = 5ej(π
4
+2.21); D4 = 5e−j(π

4
−2.21); D−k = D∗

k

P2.14 The signal s1(t) is shown below:

0
t

V−
1( )s t

V

0

V

t

4
T−

4
T TT−

2
T−

2
T

1

c

T
f

=

cos(2 )cV f tπ

Figure 2.7

The Fourier coefficients of s1(t) are given by

D
[s1(t)]
k =

1
T

∫ T
4

−T
4

e−j2π k
T

tdt =
sin

(
πk
2

)

πk

D
[V cos(2πfct)]
k =

{
V
2 , k = ±1
0, k otherwise

=
V

2
δD(k − 1) +

V

2
δD(k + 1).
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where δD(·) is interpreted as a “discrete” delta function, i.e.,

δD(x) =
{

1, x = 0
0, x 6= 0

∴ D
[s(t)]
k = D

[s1(t)]
k ∗D

[V cos(2πfct)]
k

=
∞∑

n=−∞

sinπ(k−n
2 )

π(k − n)

[
V

2
δD(n− 1) +

V

2
δD(n + 1)

]

=
V

2
sin

(
π(k−1

2 )
)

π(k − 1)
+

V

2
sin

(
π(k+1

2 )
)

π(k + 1)

2t

1t1t−
2t−

V−

1V−

( ) cos(2 )ms t V f tπ=out ( )s t

V

t

1

4 mf

1
2 mf

1
1

2 m
t f+

1t 2t2t− 1t−
0

1

1( )s t

t

1V

1
mf

1t
2t2t−

1t−
0

1V

2 ( )s t

t

1V−

Figure 2.8

P2.15 It is obvious that we are interested in the case V1 < V , otherwise there is no saturation (see
Figure 2.8).
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The time t1 is given by: V cos(2πfmt1) = V1 ⇒ t1 = 1
2πfm

cos−1
(

V1
V

)
.

The time t2 is given by t2 = 1
4fm

+
(

1
4fm

− t1

)
= 1

2fm
− 1

2πfm
cos−1

(
V1
V

)
.

Lastly t2 − t1 = 1
2fm

− 1
πfm

cos−1
(

V1
V

) ≡ ∆t.

We are now in a position to draw the waveforms s1(t), s2(t) as in Figure 2.9. Note that s1(t)
is periodic with period 1

2fm
and has a DC component equal to t2−t1

T . On the other hand s2(t)
is periodic with period 1

fm
.

Now we determine the Fourier coefficients for s1(t), s2(t). The basic pulse shapes for s1(t)
(over time interval − 1

4fm
to 1

4fm
) and s2(t) (over time interval − 1

2fm
to 1

2fm
) are shown in

Fig. 2.9.

1
4 2m

T
f =1

4 2m

T
f

− −=

1
2 2m

T
f =1

2 2m

T
f

− −=

1t1t−
0

1

1( )s t

t

1
mf

1t
2t2t−

1t−

1V

2 ( )s t

t

1V−

0

Figure 2.9

Fourier coefficients of s1(t):

D
[s1(t)]
k =

1
T

∫ T
2

−T
2

s1(t)e−j2π k
T

tdt, where T =
1

2fm

=
1
T

[∫ t1

−T
2

e−j2π k
T

tdt +
∫ T

2

t1

e−j2π k
T

tdt

]

=
sin(πk)− sin

(
πkt1

T

)

πk
=
− sin

(
k cos−1

(
V1
V

))

πk

where
t1
T

= 2fmt1 =
1
π

cos−1

(
V1

V

)
, k = ±1,±2, . . . ,

D
[s1(t)]
0 =

t2 − t1
T

.

Fourier coefficients of s2(t):

D
[s2(t)]
k =

1
T

[∫ −t2

−T
2

−V1e−j2π k
T

tdt +
∫ t1

−t1

V1e−j2π k
T

tdt +
∫ T

2

t2

−V1e−j2π k
T

tdt

]

=
V1

πk

[
sin

(
2πkt2

T

)
+ sin

(
2πkt1

T

)]
, where T =

1
fm

.

Solutions Page 2–13



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

Now t1
T = 1

2π cos−1
(

V1
V

)
and t2

T = 1
2 − 1

2π cos−1
(

V1
V

)
. Therefore

D
[s2(t)]
k = [1− cos(πk)] sin

(
k cos−1

(
V1

V

))
.

Consider now the coefficients of s1(t)s(t) which is a convolution of the Fourier coefficients of
s1(t) and s(t). The Fourier coefficients of s(t) are simply D1 = V

2 (k = 1 or f = fm) and
D−1 = V

2 (k = −1 or f = −fm). All other coefficients are zero.

Graphically:

0mf− mf

2
V

[ ( )]s t
kD

2
V

 (Hz)kf2 mf 3 mf 4 mf 5 mf 6 mf5 mf− 4 mf− 3 mf− 2 mf−
1 2 3 4 5 6

0 mf

1[ ( )]s t
kD

2 mf 4 mf 6 mf6 mf− 4 mf− 2 mf−
1 2 33− 2− 1−

k
��0

� � 1−2−3−

0
 (Hz)kf

k
��

0mf− mf 2 mf 3 mf 4 mf 5 mf 6 mf4 mf− 3 mf− 2 mf−
1 2 3 4 5 6

7 mf
70

 (Hz)kf
k

��
*

k kD D− =

1[ ]
1
sD−

1[ ]
0
sD 1[ ]

1
sD 1[ ]

2
sD

1[ ( ) ( )]s t s t
kD

(
)

1
1

[
]

[
]

1
0

2
s

s
V

D
D

+

(
)

1
1

[
]

[
]

2
1

2
s

s
V

D
D

+

(
)

1
1

[
]

[
]

3
2

2
s

s
V

D
D

+

(
)

1
1

[
]

[
]

4
3

2
s

s
V

D
D

+

�

1[ ]
2
sD−

�

�

Figure 2.10

Convolve the Fourier series of s1(t), s(t) graphically, namely flip D
[s(t)]
k around the vertical

axis, slide it along the horizontal axis, multiply by D
[s1(t)]
k and sum the product. The plot

looks as in Fig. 2.10.

D
[s1(t)s(t)]
k =

{
D

[s1(t)]
2k−1 + D

[s1(t)]
2k−2 , k = 1, 3, 5, . . .

0, k = 0, 2, 4, . . .
,

D
[s1(t)s(t)]
−k =

{
D

[s1(t)s(t)]
k

}∗
.

Finally, D
[sout(t)]
k = D

[s1(t)s(t)]
k + D

[s2(t)]
k .
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P2.16 (a)

S(f) = V

∫ β

−β
e−j2πftdt = V

[
ej2πfβ − e−j2πfβ

j2πf

]

= V
sin(2πfβ)

πf
= 2V β

sin(2πfβ)
2πfβ

(b) D
[αT ]
k = 1

αT
2V β sin(2πfβ)

2πfβ

∣∣∣∣
f=kfr=k/αT

= 1
αT 2V β

sin(2π kβ
αT )

(2π kβ
αT )

(c) Plots of D
[αT ]
k = 1

2α

sin(πk
2α )

(πk
2α ) are shown in Fig. 2.11 for α = [1, 1.5, 2, 3, 5] (we set V = β = 1

and T = 4).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 f (Hz)

 D
 k[α

 T
]  (

V
/H

z)

 

 

α=1
α=1.5
α=2
α=3
α=5

Figure 2.11

(d) As α → ∞, the amplitude (magnitude) of D
[αT ]
k goes to zero; however the “envelope”

is always a sinc(·), i.e., that of S(f). Note also that the frequency spacing between the
frequency components, ∆f is proportional to 1

α and it goes to zero as α →∞.

P2.17 The basic difference in the magnitude/phase plots of the Fourier series representation and
the Fourier transform representation is that the Fourier transform magnitude plot will have
impulses at the fundamental (and harmonic) frequency(ies) of strength = |Dk|. This reflects
the fact that the signal is periodic and that we have finite power concentrated in a “zero”
interval. The phase spectrum is the same.

P2.18 (a) (i) S(f) = V1
2

[
δ(f −√2) + δ(f +

√
2)

]
+ V2

2 [δ(f − 2) + δ(f + 2)] (V/Hz)
(ii) S(f) = V1

2

[
δ(f −√2) + δ(f +

√
2)

]
+ V2

2

[
δ(f − 2

√
2) + δ(f + 2

√
2)

]

(b) (i) Not periodic. The ratio of the two frequencies of the 2 sinusoids,
√

2 and 2 Hz, is
not a rational number.

(ii) Periodic, since the ratio of the 2 frequencies is a rational number, 2
√

2√
2

= 2. The
spectra look as follows:
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0
 (Hz)kf

(volts)kD
1

2

V 1

2

V

2

2

V 2

2

V

2 22 2− 22−

Figure 2.12

P2.19 (a) S(f) =
∫∞
−∞m(t)

[
ej2πfct−e−j2πfct

2

]
e−j2πftdt = M(f−fc)+M(f+fc)

2

(b) See Figure 2.13.

0  (Hz)kf

( ) (V/Hz)M f

W− W

θ

θ−

( )  (V/Hz)M f

( ) (rad)M f∠

A

 (Hz)kf0

/ 2A

θ

θ−

θ

θ−

( )S f

( )S f

( )S f∠

cf W− cf W+cfcf− cf W− +cf W− −

Figure 2.13

P2.20 First find the Fourier series of e−jVm sin(2πfmt):

Dk =
1
T

∫ T

0
e−jVm sin(2πfmt)e−j2πkfmtdt where T =

1
fm

λ=2πfmt
=

1
T

∫ 2πfmT

0
e−jVm sin λe−jkλ dλ

2πfm

fmT=1
=

1
2π

∫ 2π

0
e−j(kλ−Vm sin λ)dλ

= Jk(Vm) (kth order Bessel function). (2.2)

Then the Fourier transform is:
∑∞

k=−∞ Jk(Vm)δ(f − kfm). Multiplying by ej2πfct shifts the
above spectrum by fc, i.e.,

s(t) ←→ S(f) = Vc

∞∑

k=−∞
Jk(Vm)δ(f − fc − kfm).
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P2.21 Differentiate the 1st signal twice:

A

TT− t0

( )s t

T
T− t

0

/A T

/A T−
TT− t0

⇒ ⇒d ( )

d

s t

t

2

2

d ( )

d

s t

t

( / )A T ( / )A T

( 2 / )A T−

Figure 2.14

Then

F
{

d2s(t)
dt2

}
=

A

T
ej2πfT − 2A

T
+

A

T
e−j2πfT =

2A

T
[cos(2πfT )− 1]

S(f) =
F

{
d2s(t)
dt2

}

(j2πf)2
=

A

T

1− cos(2πfT )
2π2f2

(V/Hz).

Consider now the 2nd signal. The 1st derivation looks like

TT−
t

0

/A T

d ( )

d

s t

t

( 2 )A−

Figure 2.15

We could differentiate the rectangular pulse again but we have done it so many times that
its transform is almost engrained in our minds.

F
{

ds(t)
dt

}
= −2A +

A sin(2πfT )
πfT

F {s(t)} =
A

j2πf

[
−2 +

sin(2πfT )
πfT

]
.

P2.22 For reference the Fourier transform of a rectangular pulse, centered at t = 0, width 2T , height
A, is AT sin(2πfT )

2πfT .

Now decompose s(t) into the sum of rectangular pulses, s1(t) and s2(t) (note that this de-
composition is not unique):
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t

10

1( )s t

2 3 4

( ) =s t

t1

0

2 ( )s t

2 3 4

2 +

1−

Figure 2.16

s1(t) is a shifted version of a rectangular pulse of width 2T = 3 and height A = 2; shifted by
2.5 seconds. Therefore,

F {s1(t)} = e−j2π(2.5)f︸ ︷︷ ︸
due to shifting

2(3/2)
sin(2πf(3/2))

2πf(3/2)
= 3e−j5πf sin(3πf)

3πf
.

s2(t) is a rectangular pulse of width 2T = 1, height A = −1; shift of 2.5 seconds. Thus,

F {s1(t)} = −1
2
e−j5πf sin(πf)

πf
.

Finally,

F {s(t)} = F {s1(t)}+ F {s2(t)} = 3e−j5πf sin(3πf)
3πf

− 1
2
e−j5πf sin(πf)

πf

P2.23 Consider the 1st figure.

S(f) = 1ej π
2 [u(f + 2)− u(0)] + 1e−j π

2 [u(0)− u(f − 2)]

s(t) =
∫ 0

−2
1ej π

2 ej2πftdf +
∫ 2

0
1e−j π

2 ej2πftdf =
1− cos(4πt)

πt

The spectrum in the 2nd figure is: S(f) = 1e−j π
4
f [u(f + 2)− u(f − 2)].

∴ s(t) =
∫ 2

−2
e−j π

4
fej2πftdf =

−2 cos(4πt)
2πt− π

4

Remark: The problem is a small illustration that the phase is also important in determining
the shape of a signal. An interesting question is: Is the ear more sensitive to phase or
magnitude distortions in an audio signal? Is the eye more sensitive to phase or magnitude
distortions in a image? For this one needs to resort to Matlab and experiment since we are
now in the realm of psychophysics.

P2.24 scos(t) = A cos(2πfmt) where fm = 1/2T ⇒ Scos(f) = (A/2) [δ(f − fm) + δ(f + fm)].

srect(t) = u
(
t + T

2

)− u
(
t− T

2

) ⇒ Srect(f) = T sin(πfT )
πfT .

S(f) = Scos(f) ∗ Srect(f) =
AT

2

∫ ∞

−∞
[δ(λ− fm) + δ(λ + fm)]

sin(π(f − λ)T )
π(f − λ)T

dλ

=
2AT

π

cos(πfT )
1− 4(πfT )2

.
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P2.25 A rectangular signal of width W (sec) and amplitude A (volts), i.e., srect(t) = A
[
u

(
t + W

2

]− u
(
t− W

2

)]

has Fourier transform AW sin(πfW )
πfW .

(a) The signal can be decomposed into 2 shifted rectangular signals; each of width T seconds;
amplitude ±A volts; one shifted T/2 seconds to the left, the other T/2 seconds to the
right. Now F {s(t− τ)} = e−j2πfτs(t). Here τ = +T/2 (or −T/2). Also W = T .

∴ S(f) = AT e−j2πf(T/2) sin(πfT )
πfT

+ AT e−j2πf(−T/2) sin(πfT )
πfT

= 2jAT
sin2(πfT )

πfT
(V/Hz).

(b) The derivative of s(t) results in 3 impulses, i.e.,

ds(t)
dt

= Aδ(t + T )− 2Aδ(t) + Aδ(t− T )

∴ F
{

ds(t)
dt

}
= Aej2πfT − 2A + Ae−j2πfT .

∴ S(f) =
F

{
ds(t)
dt

}

j2πf
= 2A

cos(2πfT )− 1
j2πf

= 2jAT
sin2(πfT )

πfT
(V/Hz).

P2.26 (a)

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt

X∗(f) =
[∫ ∞

−∞
x(t)e−j2πftdt

]∗
=

∫ ∞

−∞
x∗(t)

(
e−j2πft

)∗
dt∗

=
∫ ∞

−∞
x(t)ej2πftdt =

∫ ∞

−∞
x(t)e−j2π(−f)tdt = X(−f),

where the following were used: x(t) is real as is dt; the complex conjugate of a sum equals
the sum of complex conjugates (and integration for engineers is essentially a summation
operation); the complex conjugate of a product equals the product of complex conjugates.

(b) Now
∫ ∞

−∞
x(t)y(t)dt =

∫ ∞

t=−∞
dtx(t)

∫ ∞

f=−∞
Y (f)ej2πftdf

=
∫ ∞

f=−∞
dfY (f)

∫ ∞

t=−∞
x(t)e−j2π(−f)tdt

︸ ︷︷ ︸
=X(−f)=X∗(f)

=
∫ ∞

f=−∞
X∗(f)Y (f)df.

And interchanging the roles of x(t), y(t) we have
∫ ∞

f=−∞
X∗(f)Y (f)df =

∫ ∞

f=−∞
X(f)Y ∗(f)df.

If x(t) = y(t), we get
∫ ∞

−∞
x2(t)dt

︸ ︷︷ ︸
This has units of (volts)2·sec=joules

=
∫ ∞

−∞
|X(f)|2︸ ︷︷ ︸

which means this has units of joules/Hz

df
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or |X(f)|2 is an energy density spectrum, i.e., it tells us how the energy of x(t) is dis-
tributed in the frequency domain.

P2.27 (a)

Es =
∫ ∞

0
e−2atdt =

1
2a

(joules).

(b)

Es =
∫ ∞

−∞
|X(f)|2 df =

∫ ∞

−∞

df

a2 + 4π2f2
=

1
πa

tan−1

(
f

a/2π

) ∣∣∣∣
∞

f=0

=
1
2a

(joules).

(c)

2
∫ W

0
|X(f)|2 df = 0.95

(
1
2a

)

⇒ 2
∫ W

0

df

2π2
(
f2 + a2

4π2

) =
1
πa

tan−1

(
f

a/2π

) ∣∣∣∣
W

f=0

=
1
πa

tan−1

(
2πW

a

)

⇒ Solve tan−1

(
2πW

a

)
=

0.95π
2

⇒ W =
a

2π
tan

(
0.95π

2

)
= 2.02a (Hz).

Note that the required bandwidth is proportional to 1
time constant ⇒ the smaller the time

constant, the larger the bandwidth and vice versa. Makes intuitive sense, n’est-ce pas?

P2.28 (a) Since sT (t) =
∫∞
−∞ ST (f)ej2πftdf . Write s2

T (t) as:

s2
T (t) =

∫ ∞

f=−∞
ST (f)ej2πftdf ·

∫ ∞

λ=−∞
ST (λ)ej2πλtdλ

∴ P = lim
T→∞

1
T

∫ ∞

−∞
s2
T (t)dt

= lim
T→∞

1
T

∫ ∞

t=−∞

[∫ ∞

f=−∞
ST (f)ej2πftdf

∫ ∞

λ=−∞
ST (λ)ej2πλtdλ

]
dt

Interchange the order of integration:

P = lim
T→∞

1
T

∫ ∞

f=−∞
dfST (f)

∫ ∞

λ=−∞
dλST (λ)

∫ ∞

t=−∞
ej2π(λ+f)tdt

= lim
T→∞

1
T

∫ ∞

f=−∞
dfST (f)

∫ ∞

λ=−∞
dλδ(λ + f)ST (λ)

= lim
T→∞

1
T

∫ ∞

−∞
dfST (f)S∗T (f) = lim

T→∞
1
T

∫ ∞

−∞
|ST (f)|2 df

In the above derivation we made use of the facts that
∫∞
t=−∞ ej2π(λ+f)tdt = δ(λ+ f) and∫∞

λ=−∞ dλδ(λ + f)ST (λ) = ST (−f) = S∗T (f) (since sT (t) is real).
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Note that as T → ∞, the integral
∫∞
−∞ |ST (f)|2 df → ∫∞

−∞ s2
T (t)dt → ∞. To overcome

this difficulty; interchange the integration and limiting operations (mathematicians may
worry about this, engineers shall assume the functions exhibit “reasonable” behaviour).
Then

P =
∫ ∞

−∞
lim

T→∞
|ST (f)|2

T
df.

(b) From P = limT→∞ 1
T

∫∞
−∞ s2

T (t)dt, P has a unit of volts2·sec
sec = joules

sec = watts ⇒ |ST (f)|2
T

has a unit of watts
Hz . Call the limit a power spectrum density, i.e., it shows how the power

of s(t) is distributed in the frequency domain.

P2.29

F {R(τ)} =
∫ ∞

τ=−∞
R(τ)e−j2πfτdτ

= lim
T→∞

1
T

∫ ∞

τ=−∞

[∫ ∞

t=−∞
sT (t)sT (t + τ)dt

]
e−j2πfτdτ

= lim
T→∞

1
T

∫ ∞

t=−∞
dt sT (t)

∫ ∞

τ=−∞
sT (t + τ)e−j2πfτdτ

︸ ︷︷ ︸
λ=t+τ

= ej2πft
∫∞

λ=−∞ sT (λ)e−j2πfλdλ=ej2πftST (f)

= lim
T→∞

1
T

∫ ∞

t=−∞
dt sT (t)ej2πftST (f)

= lim
T→∞

1
T

ST (f)
∫ ∞

t=−∞
dt sT (t)ej2πft

︸ ︷︷ ︸
=ST (−f)=S∗T (f)

∴ F {R(τ)} = lim
T→∞

|ST (f)|2
T

.

P2.30 (a)

R(τ) = lim
T→∞

1
T

∫ ∞

−∞
sT (t)sT (t + τ)dt = lim

T→∞
V 2(T − τ)

T
= V 2 watts

⇒ S(f) = V 2δ(f) watts/Hz, all the power is concentrated at f = 0 (DC only)

(b)

R(τ) = lim
T→∞

1
T

∫ ∞

−∞
sT (t)sT (t + τ)dt = lim

T→∞
V 2(T/2− τ)

T
=

V 2

2
watts

⇒ S(f) =
V 2

2
δ(f) watts/Hz (half a DC, half the power)(c)

lim
T→∞

1
T

∫ T/2

−T/2
V cos (2πfct + θ) V cos [2πfc(t + τ) + θ] dt

= lim
T→∞

1
T

∫ T/2

−T/2

V 2

2
cos [2πfc(2t + τ) + 2θ] dt

︸ ︷︷ ︸
=0

+ lim
T→∞

1
T

V 2

2

∫ T/2

−T/2
cos (2πfcτ) dt

︸ ︷︷ ︸
T cos(2πfcτ)

∴ R(τ) =
V 2

2
cos(2πfcτ) watts and S(f) =

V 2

4
[δ(f − fc) + δ(f + fc)] watts/Hz.
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t
0

( )Ts t

/ 2T

t
/ 2 τ− −T 0

( )Ts t τ+

/ 2 τ−T

/ 2T−

T τ−

V

V

Figure 2.17

t
0

( )Ts t

/ 2T

tτ− 0

( )Ts t τ+

/ 2 τ−T

V

V

Figure 2.18

The average power of a sinusoid is V 2

2 watts. Half of it is concentrated at f = fc and
half at f = −fc.

P2.31

R(τ) = lim
T→∞

1
T

∫ ∞

−∞
sT (t)sT (t + τ)dt

R(τ + Ts) = lim
T→∞

1
T

∫ ∞

−∞
sT (t) sT (t + τ + Ts)︸ ︷︷ ︸

sT (t+τ)

dt = R(τ)

where Ts is the period of s(t).

P2.32 (a) Multiplication in the time domain results in a differentiation in the frequency domain.
(b)

S(f) =
∫ ∞

−∞
s(t)e−j2πftdt

dS(f)
df

=
∫ ∞

−∞
(−j2πt)s(t)e−j2πftdt = −j2π

∫ ∞

−∞
ts(t)e−j2πftdt

which shows that ts(t) and − 1
2πj

dS(f)
df are a Fourier transform pair. Continuing, it is

easily shown that tns(t) ←→
(
− 1

2πj

)n
dnS(f)

dfn are a Fourier transform pair.
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P2.33 Duality states that if s(t) ←→ S(f) then s(f) ←→ S(−t). Therefore, if

V e−a|t| ←→ 2V a

a2 + 4π2f2

then V e−a|f | ←→ 2V a

a2 + 4π2f2
=

V 2a

4π2
[

a2

4π2 + t2
] .

Adjust V, a to get 1
1+t2

⇒ a2

4π2 = 1 ⇒ a = 2π and 2V a
a2 = 2V

a = 2V
2π = 1 ⇒ V = π.

∴ 1
1 + t2

←→ πe−2π|f |.

It is easy enough to check that

1
1 + t2

= F−1
{

πe−2π|f |
}

=
∫ ∞

−∞
πe−2π|f |e2πftdf.

P2.34 P2.33 shows that s(t) = 1
1+t2

←→ πe−2π|f | = S(f) are a Fourier transform pair.

From P2.32 we have ts(t) = t
1+t2

←→ 1
−j2π

dS(f)
df are a Fourier transform pair, or

t

1 + t2
←→ 1

−2j

d(e−2π|f |)
df

.

Now with f < 0 we have d(e2πf )
df = 2πe2πf , and with f > 0 we have d(e−2πf )

df = −2πe−2πf .
Thus,

d(e−2π|f |)
df

= −2πe−2π|f | sgn(f)

∴ t

1 + t2
←→ −jπe−2π|f | sgn(f).

P2.35 Certainly
∫∞
−∞ [s1(t) + λs2(t)]

2 dt ≥ 0 for all λ or
∫ ∞

−∞
s2
1(t)dt

︸ ︷︷ ︸
c

+
[
2

∫ ∞

−∞
s1(t)s2(t)dt

]

︸ ︷︷ ︸
b

λ +
[∫ ∞

−∞
s2
2(t)dt

]

︸ ︷︷ ︸
a

λ2 ≥ 0.

The above is a quadratic in λ with coefficients a, b, c and roots λ1,2 = −b±√b2−4ac
2a . For the

polynomial to be always ≥ 0 requires that the roots to be complex (at very minimum a
double root), i.e., the quadratic should never intersect the λ axis, at best it may only touch
it. Therefore, b2 − 4ac ≤ 0 or

4
[∫ ∞

−∞
s1(t)s2(t)dt

]2

≤ 4
∫ ∞

−∞
s2
1(t)dt

∫ ∞

−∞
s2
2(t)dt

or
∣∣∣∣
∫ ∞

−∞
s1(t)s2(t)dt

∣∣∣∣ ≤
√∫ ∞

−∞
s2
1(t)dt

∫ ∞

−∞
s2
2(t)dt

=

√∫ ∞

−∞
s2
1(t)dt

√∫ ∞

−∞
s2
2(t)dt =

√
E1

√
E2.

Equality holds when s1(t) = Ks2(t), i.e., one signal is a scaled version of the other.
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P2.36
∣∣∣∣
∫ ∞

−∞
S1(f)S∗2(f)df

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
S∗1(f)S2(f)df

∣∣∣∣ ≤
√∫ ∞

−∞
|S1(f)|2df

√∫ ∞

−∞
|S2(f)|2df.

P2.37 Let s1(t) = s(t), s2(t) = s(t + τ). Then

∣∣∣∣
∫ ∞

−∞
s(t)s(t + τ)dt

︸ ︷︷ ︸
Rs(τ)

∣∣∣∣ ≤
√√√√√√

∫ ∞

−∞
s2(t)dt

︸ ︷︷ ︸
Rs(0)

∫ ∞

−∞
s2(t + τ)dt

︸ ︷︷ ︸
Rs(0)

.

Therefore, |Rs(τ)| ≤ Rs(0).

Remark: Above was done for energy signals but readily shown to be true for power signals.

P2.38

s(0) =
∫ ∞

−∞
S(f)df ≤

∫ ∞

−∞
|S(f)| df ; S(0) =

∫ ∞

−∞
s(t)dt ≤

∫ ∞

−∞
|s(t)| dt

WT =

∫∞
−∞ |S(f)| df

2S(0)
·
∫∞
−∞ |s(t)| dt

s(0)
≥ 1

2
.

P2.39 (a)

s(t) = V e−atu(t)

Es =
∫ ∞

−∞
s2(t)dt = V 2

∫ ∞

−∞
e−2at(t)dt =

V 2

2a
(joules).

(b) Let V = 1

2
a2

∫ fκ

0

1

1 + 4π2f2

a2

df =
κ

2a
.

Let fn = 2πf
a , i.e., change variables. Then

2
a2

∫ 2π
a

fκ

0

1
1 + f2

n

a
dfn

2π
= κ

(
1
2a

)

or tan−1

(
2π

a
fκ

)
=

πκ

2
⇒ fκ

a
=

1
2π

tan
(πκ

2

)
.

(c) s(0) = 1 ⇒ T =
∫∞
0 e−atdt = 1

a . With this T and fκ found in (b) we have

Tfκ =
fκ

a
=

1
2π

tan
(πκ

2

)
.

(d) Matlab plot.

P2.40 (a)

Es =
∫ ∞

−∞
s2(t)dt =

∫ ∞

−∞
e−2a|t|dt = 2

∫ ∞

0
e−2atdt =

1
a

(joules), where V = 1.
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(b) Using Equation (2.62c), fκ is determined from

2
∫ fκ

0

16π2f2

(a2 + 4π2f2)2
df =

κ

a
⇔

∫ fκ

0

f2

a4
(
1 + 4π2

a2 f2
)2 df =

κ

32π2a

Let integration variable be λ = 2πf
a . Then,

∫ 2πfκ
a

0

λ2

(1 + λ2)2
dλ =

κπ

4

Change variable again to x = λ2 ⇒ dλ = dx
2
√

x
.

∫ 2πfκ
a

λ=0

λ2

(1 + λ2)2
dλ =

∫ 4π2f2
κ

a2

x=0

√
x

2 (1 + x)2
dx.

To integrate, use G&R, p.71, 2.313.5, where z1 = a + bx, a = b = 1. Let f2
n = 4π2f2

κ
a2 .

The integral becomes

−
√

x

2(1 + x)

∣∣∣∣
f2

n

0

+
1
4

∫ f2
n

0

dx

(1 + x)
√

x

and using 2.211 (same page in G&R)
∫ f2

n

0

dx

(1 + x)
√

x
= 2 tan−1√x

∣∣∣∣
f2

n

0

.

Putting it all together we have

− fn

2(1 + f2
n)

+
1
2

tan−1(fn) =
κπ

4
(2.3)

as the equation that defines fn. Need to solve in Matlab for various values of κ.
(c) s(0) = 1 ⇒ T =

∫∞
−∞

∣∣e−a|t| sgn(t)
∣∣dt = 2

∫∞
0 e−atdt = 2

a .
In (b), after solving for fn we get fκ to be fκ = cfn, c = a

2π ⇒ Tfκ =
(

2
a

) (
a
2π

)
fn = 1

πfn

(where to repeat fn is the solution of (2.3) for various values of κ).
(d) Matlab work.

P2.41

s(t) ←→ S(f)
dns(t)
dtn

= s1(t) + Kδ(t) ←→ S1(f) + K

where S1(f) → 0 as f →∞. Now

F
{

dns(t)
dtn

}
= (j2πf)nS(f) ⇒ S(f) =

S1(f)
(j2πf)n

+
K

(j2πf)n
.

Since S1(f) → 0 as f →∞, the above means that S(f) → K
(j2πf)n for large n, i.e., the asymp-

totic behaviour of the spectrum depends on how many times the signal can be differentiated
before an impulse(s) appears.

How many times can one differentiate a pure sinusoid (i.e., one that lasts from −∞ to +∞)
before an impulse appears? How “concentrated” is the amplitude spectrum of the sinusoid?
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P2.42 (a)

SDSB-SC(f) =
∫ ∞

−∞
m(t)

[
ej2πfct + e−j2πfct

2

]
e−j2πftdt

=
1
2

∫ ∞

−∞
m(t)e−j2π(f−fc)tdt +

1
2

∫ ∞

−∞
m(t)e−j2π(f+fc)tdt

=
M(f − fc)

2
+

M(f + fc)
2

.

0
cf W− cf W+cfcf− cf W− +cf W− −

( )DSB-SC  (V/Hz)S f

/ 2A

θ−

θ

( )DSB-SC  (rad)∠S f

 (Hz)f

( )DSB-SC  (V/Hz)S f

Figure 2.19

(b) Note: The magnitude spectrum is a shifted and scaled version of the original spectrum
while the phase spectrum is simply a shifted version.

(c) The passband bandwidth is 2W Hz.

How would the above change if the carrier is sin(2πfct) instead of cos(2πfct)?

P2.43 The difference between SDSB-SC(f) of P2.42 and SAM(f) is a spectral component at ±fc due
to the carrier (or if you wish a DC component added to m(t)). It looks like in Fig. 2.20.

0
cf W− cf W+cfcf− cf W− +cf W− −

( )AM  (V/Hz)S f

/ 2A

θ−

θ

( )AM  (rad)∠S f

( )AMS f/ 2CV/ 2CV

 (Hz)f

Figure 2.20

Note: We invariably assume that the message, m(t), has zero DC. DC is useful for powering
stuff but contains no information of interest to be transmitted. The reason to insert a DC is
to simplify the demodulator – as we see in the next 2 problems.

P2.44 By now we are beginning to appreciate that multiplying a signal in the time domain by a
pure sinusoid simply shifts the spectrum and scales it. It is the shift that is important, the
scaling is somewhat arbitrary and practically would be eventually controlled by a “volume”
control.
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(a) For DSB-SC; S1(f) = [SDSB-SC(f − fc) + SDSB-SC(f + fc)] /2 and looks like in Fig. 2.21
(note that the impulses in the figure only occur for AM, not for DSB-SC).

0

/ 4A

θ−

θ

( / 4)CV

2 cf 2 +cf W2 −cf W2− cf 2− +cf W2− −cf W

( / 4)CV
( / 2)CV

θ−

θ

−W W

Output of 
lowpass filter

Filtered out 
by the 

lowpass filter

/ 2A

 (Hz)f

Figure 2.21

(b) The AM spectrum is the same as the DSB-SC except for the DC component that results
in the impulses at 0, ±2fc. Normally the demodulated signal, i.e., s1(t), would not only
be passed through a lowpass filter but also through a (well designed) high pass filter to
eliminate the DC component.

(c) Of course, as usual, multiplying by a sinusoid shifts the spectrum, scales it, etc. But it
is scaling that important, perhaps a more appropriate terminology would be scaling and
phasing. Let us look at the problem in 2 ways (not completely distinct). First in the
time domain:

s1(t) = s(t) sin(2πfct) = m(t) cos(2πfct) sin(2πfct).

Now

sinx cos y =
sin(x + y) + sin(x− y)

2
⇒ s1(t) =

1
2
m(t) sin [2π(2fc)t]

which shows that the spectrum of s1(t) is that of M(f) shifted by ±2fc ⇒ output of the
lowpass filter is ZERO.
In the frequency domain:

s1(t) = s(t)
[
ej2πfct − e−j2πfct

2j

]
⇒ S1(f) =

1
2j

[S(f − fc)− S(f + fc)] .

Considering 1
2j to be just a scaling factor, albeit a complex one, S1(f) is S(f) shifted

up and down (more appropriately to the left and right) by fc. But note the minus sign
in front of S(f + fc). This results in the spectrum around f = 0 canceling out – but we
know this already from the time domain analysis.

Finally the 1
2j not only scales but adds a phase of ±π

2 . Putting this all together the
spectrum S1(f) looks like:
To generalize one should consider s1(t) = s(t) cos(2πfct + θ), where θ would represent
the phase difference between the oscillator at the transmitter (modulator) and the one
at the receiver (demodulator), and see what happens to the output of the demodulator.

Solutions Page 2–27



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

0 2 cf 2 +cf W2 −cf W2− cf 2− +cf W2− −cf W

( )1S f

2

πθ +

2

π

2

πθ− +

2

πθ −

2

π−
2

πθ− −

/ 4A

 (Hz)f

( )1S f

( )1S f∠

Figure 2.22

The last chapter in the text considers a circuit (phase locked loop) which estimates
the incoming phase of the received signal. The next problem looks at a demodulation
technique that does not require knowledge of the phase, hence it is called noncoherent.
But alas it only works for AM.

P2.45 (a) s1(t) = |[Vc + m(t)] cos 2πfct| = |Vc + m(t)| |cos 2πfct|. But Vc + m(t) ≥ 0. Therefore,
|Vc + m(t)| = Vc+m(t). And |cos 2πfct| is a fullwave rectified sinusoid of period = 1

2fc
or

fr = 2fc. It therefore has a Fourier series of
∑∞

k=−∞Dkej2πkfrt, where most importantly
D0 (the DC value) 6= 0.

The spectrum of s1(t) = [Vc + m(t)] |cos 2πfct| =
∑∞

k=−∞Dk [Vc + m(t)] ej2πkfrt, then
consists of shifted versions of the spectrum of [Vc + m(t)], shifted by kfr = k2fc Hz,
with the kth shift weighted by Dk.

The output of the lowpass filter is sout = D0 [Vc + m(t)] since the spectrum components
at ±2fc,±4fc, etc, are filtered out. The DC term D0Vc is easily filtered out by a high
pass filter whose output would be D0m(t) (assuming m(t) does not have significant
energy around f = 0 – typically the case).

(b) s1(t) now is s1(t) = |m(t)| |cos 2πfct| =
∑∞

k=−∞Dk |m(t)| ej2πkfrt. Therefore the spec-
trum of |m(t)| will lie in a larger bandwidth, theoretically infinite but practically in some
bandwidth, say Wc = κW (κ > 1 but say less than 3). Then by adjusting the bandwidth
of the lowpass filter to Wc, the output would be D0|m(t)|, a distorted version of m(t).
Of course, Vc = 0 is an extreme condition but distortion shall exist as long as Vc <
max |m(t)| since then |Vc + m(t)| 6= Vc + m(t).

P2.46 (a) The double sideband suppressed carrier spectrum looks like:
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0
cf W− cf W+cfcf− cf W− +cf W− −

( )DSB-SC  (V/Hz)S f

/ 2A

θ−

θ

 (Hz)f
θ−

θ

Figure 2.23

And the function 1+sgn(f−fc)
2 + 1−sgn(f+fc)

2 plots as:

 (Hz)f0
cfcf−

11 ( )1 sign

2

+ − cf f( )1 sign

2

− + cf f

Figure 2.24

Multiplying the 2 frequency functions together results in

 (Hz)f0
cf W+cfcf−cf W− −

( )USSB  (V/Hz)S f

/ 2A

θ

( )USSB  (rad)∠S f

( )USSBS f

θ−

Figure 2.25

Note that the magnitude function is even and the phase function is odd. This tells us
that the time domain signal is real.

(b) s(t) = sUSSB(t)2 cos 2πfct = sUSSB(t)
[
ej2πfct + e−j2πfct

]
. Therefore, S(f) = SUSSB(f −

fc) + SUSSB(f + fc), i.e., the upper sideband spectrum shifted by ±fc Hz.

(c) Since the spectrum is exactly that of m(t) and the Fourier transform is unique.

P2.47 (a) sDSB-SC(f) = M(f−fc)+M(f+fc)
2 and some very simple algebra gives (P2.11).

(b) m(t) cos(2πfct).

(c) M(t) sgn(f) is a product in the frequency domain which means that in the time domain
we have a convolution, i.e, m(t) ∗ h(t) where h(t) = F−1 {sgn(f)}. A shift of the
spectrum by fc is accomplished my multiplying the time function by ej2πfct. Therefore,
[M(f − fc) sgn(f − fc)] ←→

[
m(t) ∗ F−1 {sgn(f)}] ej2πfct.

(d) The shift is now−fc Hz, hence [M(f − fc) sgn(f + fc)] ←→
[
m(t) ∗ F−1 {sgn(f)}] e−j2πfct.

(e) Use the fact that the inverse transform is a linear operation, i.e., superposition holds.
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0

/ 2A
θ

2 cf 2 +cf W2− cf2− −cf W
θ−

θ

−W W

/ 2A

 (Hz)f

/ 2A

θ−

Output of lowpass filter 
= m(t) (actually m(t)/2)

shift by cf

shift by cf−

Figure 2.26

(f) No. The frequency function, sgn(f) has a magnitude spectrum = |sgn(f)| = 1, an even
function but its phase spectrum is ∠sgn(f) = 0 for f ≥ 0 and = π for f < 0, which is
not an odd function.

(g) Yes. The magnitude spectrum is |j sgn(f)| = 1, an even function and the phase spec-
trum is ∠j sgn(f) = π/2 for f ≥ 0 and = −π/2 for f < 0 an odd function.

Recall that a real time function always has an even magnitude spectrum and an odd
phase spectrum.

(h) jh(t) ←→ j sgn(f).

(i) Note that

ej2πfct − e−j2πfct

2j
←→ sin(2πfct).

From (b) and (h), we get the block diagram of Fig. P2.42.

P2.48 In the frequency domain the lower single-sideband signal looks like:

0
cf W− cfcf− cf W− +

( )LSSB  (V/Hz)S f

/ 2A

θ−
 (Hz)f

θ

( ) ( )1 sgn

2 2

 + + +  c cM f f f f

( ) ( )1 sgn

2 2

 − − −  c cM f f f f

this is
this is

Figure 2.27

Therefore,

SLSSB(f) =
M(f + fc) + M(f − fc)

2
+

M(f + fc)
2

sgn(f + fc)
2

− M(f − fc)
2

sgn(f − fc)
2
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In the time domain:

m(t)
2

cos(2πfct) ←→ M(f + fc) + M(f − fc)
2

Let h(t) = F−1 {j sgn(f)}. Recognize
[
m(t)

2
∗ h(t)

]
e−j2πfct

2j
←→ M(f + fc)

2
j sgn(f + fc)

2j[
m(t)

2
∗ h(t)

]
ej2πfct

2j
←→ M(f − fc)

2
j sgn(f − fc)

2j

Therefore,

sLSSB(t) =
m(t)

2
cos(2πfct) +

[
m(t)

2
∗ h(t)

]
e−j2πfct − ej2πfct

2j

=
m(t)

2
cos(2πfct)−

[
m(t)

2
∗ h(t)

]
sin(2πfct)

The above result means that the summer in Fig. 2.42 would now be a “subtractor”.

P2.49 Nothing, except that there would be a carrier at ±fc.

P2.50

ha(t) = −j

∫ ∞

−∞
e−a|f |sgn(f)ej2πftdf

= −j

[
−

∫ 0

−∞
e(a+j2πt)fdf +

∫ ∞

0
e(−a+j2πt)fdf

]

=
4πt

−a2 − 4π2t2
a→0= − 1

πt
.

P2.51
∫ ∞

−∞
s(t)ŝ(t)dt =

∫ ∞

−∞
S(f)Ŝ∗(f)df (Parseval)

=
∫ ∞

−∞
S(f)S∗(f)(−j sgn(f))df

= −j

∫ ∞

−∞
|S(f)|2︸ ︷︷ ︸

even

sgn(f)︸ ︷︷ ︸
odd

df.

|S(f)|2 sgn(f) is odd ∴
∫∞
−∞ s(t)ŝ(t)dt = 0, i.e., they are orthogonal.

j sgn( f )
( ) ( )↔s t S f ˆˆ( ) ( ) ( ) sgn( )s t S f S f j f↔ =

Hilbert transform

Figure 2.28
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P2.52 We have established that R(τ) ←→ |S(f)|2 are a Fourier transform pair. Ŝ(f) = j sgn(f)S(f),

therefore
∣∣∣Ŝ(f)

∣∣∣
2

= |j sgn(f)|2 |S(f)|2 = |S(f)|2, i.e., the autocorrelation functions are the
same.

P2.53 In general,

M̂(f) = j sgn(f)M(f) = j

[
V

δ(f − fc) + δ(f + fc)
2︸ ︷︷ ︸

F{V cos(2πfct)}

]
sgn(f)

= V j

[
δ(f − fc) sgn(f) + δ(f + fc) sgn(f)

2

]

= V

[
− δ(f − fc) sgn(f)− δ(f + fc) sgn(f)

2j︸ ︷︷ ︸
sin(2πfct)

]

⇒ m̂(t) = −V sin(2πfct).

P2.54 (a)

S(f) = SPB(f)− jŜPB(f) = SPB(f)− j(j sgn(f))ŜPB(f)

= SPB(f) (1 + sgn(f)) =
{

2SPB(f), f ≥ 0
0, f < 0

 (Hz)f0

( ) ( ) ( )PB2=S f S f u f

( ) ( ) ( )PB∠ = ∠S f S f u f

( ) ( )V/HzS f

Figure 2.29

(b) Choose fs as shown. Note that choice is somewhat arbitrary.

 (Hz)f0

( ) ( )PB2 + +s sS f f u f f

( ) ( )PB s sS f f u f f∠ + +

( ) ( )BB V/HzS f

sf

Figure 2.30

Note that sBB(t) is complex because the magnitude |SBB(f)| is not an even function and
the phase is not an odd function, at least not in general.
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(c) From (b) we have that sBB(t) = s(t)e−j2πfst

∴ R
{

sBB(t)ej2πfst
}

= R
{

s(t)e−j2πfstej2πfst
}

= R{s(t)} .

But R{s(t)} = R{sPB(t)− jŝPB(t)} = sPB(t). Note that ŝPB(t) is a real signal when
sPB(t) is real.

sPB(t) = R
{[

s
[real]
BB (t) + j s

[imag]
BB (t)

]
[cos(2πfst) + j sin(2πfst)]

}

= s
[real]
BB (t) cos(2πfst)− s

[imag]
BB (t) sin(2πfst).

(d) If this axis of symmetry exists then when SPB(f)u(f) is shifted down by fs, the resultant
baseband spectrum will have magnitude spectrum that is even and a phase spectrum
that is odd ⇒ the baseband signal is real or the imaginary component s

[imag]
BB (t) is zero.
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P2.55 The spectrum S(f) = SUSSB(f)u(f) looks like:

 (Hz)f0
cf W+cf

( )  (V/Hz)S f

A

θ

( )∠ ii
Figure 2.31

Let sBB(t) = s(t)e−j2πfst and choose fs to be fc. Then the picture looks as follows:

 (Hz)f0

( )BB  (V/Hz)S f

A

θ

W

i
( )∠ i

Figure 2.32

Note that sBB(t) is complex, i.e., has a real and imaginary component. The real component
is modulated by cos(2πfct), the imaginary component by sin(2πfct) to produce the upper
sideband signal, as shown in Fig 2.42 in the textbook.
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Probability Theory, Random
Variables and Random Processes

P3.1 A random experiment consists of tossing two fair coins. Denote H=“Head” and T=“Tail”.

(a) Obviously the sample space is Ω={HH, HT, TH, TT}. Since the coins are said to be
fair, the implication is that each individual outcome is equally probably, namely the
probability of each outcome is 1

4 .

Event A

Event BHH TTTH HT
Sample space Ω

Figure 3.1: Sample space representation for the random experiment of tossing two coins.

(b) A=“The event that at least one head shows”={HH, HT, TH}

P (A) =
1
4

+
1
4

+
1
4

=
3
4

B=“The event that there is a match of two coins”={HH, TT}

P (B) =
1
4

+
1
4

=
2
4

=
1
2

(c) Using conditional probability:

P (A|B) =
P (A ∩B)

P (B)
=

P ({HH})
P (B)

=
1
4
1
2

=
1
2

1
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P (B|A) =
P (A ∩B)

P (A)
=

P ({HH})
P (A)

=
1
4
3
4

=
1
3

(d) Observe that P (A∩B) = P ({HH}) = 1
4 and P (A)P (B) = 3

4 × 1
2 = 3

8 . Since P (A∩B) 6=
P (A)P (B), A and B are not statistically independent.

P3.2 We write down all the provided probabilities. The test reliability specifies the conditional
probability of y given x, where y is the test result, x the test outcome:

P (y = 1|x = 1) = 0.95 P (y = 1|x = 0) = 0.05
P (y = 0|x = 1) = 0.05 P (y = 0|x = 0) = 0.95;

(3.1)

and the disease prevalence tells us about the marginal probability of x:

P (x = 1) = 0.01 P (x = 0) = 0.99. (3.2)

From the marginal P (x) and the conditional probability P (y|x) we can deduce the joint
probability P (x,y) = P (x)P (y|x) and any other probabilities we are interested in. For
example, by the sum rule, the marginal probability of y = 1 – the probability of getting a
positive result – is

P (y = 1) = P (y = 1|x = 1)P (x = 1) + P (y = 1|x = 0)P (x = 0). (3.3)

The person has received a positive result y = 1 and is interested in how plausible it is that
she has the disease (i.e., that x = 1). The man in the street might be duped by the statement
“the test is 95% reliable, so the person’s positive result implies that there is a 95% chance
that the person has the disease”. But this is incorrect. The correct solution is found using
the Bayes’ theorem.

P (x = 1|y = 1) =
P (y = 1|x = 1)P (x = 1)

P (y = 1|x = 1)P (x = 1) + P (y = 1|x = 0)P (x = 0)
(3.4)

=
0.95× 0.01

0.95× 0.01 + 0.05× 0.99
(3.5)

= 0.16. (3.6)

Thus, in spite of the positive result, the probability that the person has the disease is only 16%!

A follow-up question is: Suppose that the doctor recommends a medical procedure that you
have a 50/50 chance of surviving. Do you accept her recommendation? Implicit assumption
is that disease is so nasty that you will not survive it. More interesting what should the
probability of survival due to medical intervention or not be to tip your decision one way or
another. How does the test reliability affect this, and on and on.

P3.3 An information source produces 0 and 1 with probabilities 0.6 and 0.4, respectively. The
output of the source is transmitted via a channel that has a probability of error (turning a 1
into a 0 or a 0 into a 1) equal to 0.1 (see Fig. 3.2).

Define the following events:

E1 = “Output of the channel is 1” (3.7)
E2 = “Output of the source is 1” (3.8)
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0

1

cross-over probability

0.6

0.1

0.1

Channel's outputSource's Output

0.4

0

1

Probability

Channel

Figure 3.2

Obviously,

Ec
1 = “Output of the channel is 0” (3.9)

Ec
2 = “Output of the source is 0” (3.10)

Note that P (E2) = 0.4 and P (Ec
2) = 0.6.

(a) Since what the channel does is independent from what the source does, the probability
that “1 is observed at the output of the channel” can be calculated as follows:

P (E1) = P (“Output of the source is 0” ∩ “Channel makes error”)
+ P (“Output of the source is 1” ∩ “Channel makes no error”)
= P (“Output of the source is 0”)× P (“Channel makes error”)
+ P (“Output of the source is 1”)× P (“Channel makes no error”)
= 0.6× 0.1 + 0.4× (1− 0.1) = 0.42 (3.11)

(b) The probability that “a 1 is the output of the source if at the output of the channel a 1
is observed” can be calculated using the conditional probabilities as follows:

P (E2|E1) =
P (E2 ∩ E1)

P (E1)

=
P (“Output of the source is 1” ∩ “Output of the channel is 1”)

P (E1)

=
P (“Output of the source is 1” ∩ “Channel makes no error”)

P (E1)

=
P (“Output of the source is 1”)× P (“Channel makes no error”)

P (E1)

=
0.4× 0.9

0.42
=

0.36
0.42

= 0.857 (3.12)

(c) The question in Part (b) is exactly the same as Problem 3.2 if x and y are used to describe
the channel’s input and output values, while the “reliability of the test” is considered as
“the probability that the channel makes no error”, i.e., defines the transition probability.
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0

1

cross-over probability

p

ε

ε

Output yInput x

( )P x

1 p−

0

1

BSC

Figure 3.3

P3.4 Consider a binary symmetric channel (BSC) with cross-over probability ε, i.e., P (y = 1|x =
0) = P (y = 0|x = 1) = ε, where x and y represent the binary input and output, respectively.
The probability of a 0 transmitted is p (see Fig. 3.3).

(a)

P (x = 1|y = 1) =
P (x = 1,y = 1)

P (y = 1)

=
P (y = 1|x = 1)P (x = 1)

P (y = 1|x = 1)P (x = 1) + P (y = 1|x = 0)P (x = 0)

=
(1− ε)(1− p)

(1− ε)(1− p) + εp
(3.13)

(b)

P [error] = P [(y = 0,x = 1) or (y = 1,x = 0]
= P (y = 0|x = 1)P (x = 1) + P (y = 1|x = 0)P (x = 0)
= ε (3.14)

(c) There are
(
n
k

)
= n!

k!(n−k)! possible sequences, each having k ones and (n− k) zeros. Each
sequence (or event if you wish) is mutually exclusive. Therefore

P [k 1’s are received] =
(

n

k

)
P [a sequence has k 1’s and (n− k) 0’s]

=
(

n

k

)
P [there are k 1’s]P [there are (n− k) 0’s]

=
(

n

k

)
(P [1 received])k (P [0 received])n−k . (3.15)

The last two equalities in the above follow from the fact that the transmitted symbols
are statistically independent. Now

P [1 received] = pε + (1− p)(1− ε)
P [0 received] = 1− P [1 received] = 1− pε− (1− p)(1− ε) = ε(1− p) + p(1− ε).
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∴ P [k 1’s are received] =
(

n

k

)
[pε + (1− p)(1− ε)]k[ε(1− p) + p(1− ε)]n−k.

(d) Since the messages are to be equally likely, it follows that p = 1/2. Note also that in
contrast to (c) the n transmitted bits here are not at all statistically independent.
Assume that n is odd. A natural decision rule would be a majority rule one, i.e., if more
1’s than 0’s are received, decide that a 1 was transmitted and vice versa. If n is even
there is the possibility that an equal numbers of 1’s and 0’s are received. If this happens,
flip an unbiased coin to make a decision, otherwise rule is the same as when n is odd.
Let k be the number of received 1’s. Then the decision rule can be written as:

k
m2

R
m1

n

2

where m1 is one message (represented by n 0’s) and m2 is other message (represented
by n 1’s).
Therefore

P [error] = P [{(m1 decided) and (m2 xmitted)} or {(m2 decided) and (m1 xmitted)}]
= P [(m1 decided)|(m2 xmitted)]P [m2 xmitted]
+ P [(m2 decided)|(m1 xmitted)]P [m1 xmitted]

=
1
2
P

[
k <

n

2

∣∣∣∣n 1’s xmitted
]

+
1
2
P

[
k ≥ n

2

∣∣∣∣n 0’s xmitted
]

=
1
2

bn
2
c∑

k=0

(
n

k

)
(1− ε)kεn−k +

1
2

n∑

k=dn
2
e

(
n

k

)
εk(1− ε)n−k

(e) As n →∞ the P [error] → 0 (you might want to try justifying this mathematically). But
as n →∞ the rate of transmission goes to zero. One could only transmit one message,
if that.
Remark: The mapping in (d) is a repetition code. Thus a repetition code, if it is long
enough, can always be detected correctly, but the efficiency is too low. Of course we
do not want to use n → ∞ time to just transmit one bit. Here we can see the tradeoff
between the efficiency and the error probability. In practice, better codes that achieve
the same error probability but use much less time exist.

P3.5 (a) Since Fx(x) = B for all x > 10 one has 1 = P (x ≤ ∞) = Fx(∞) = B, i.e., B = 1.
Moreover, Fx(x) reaches (or should reach) a value of 1 at x = 10. Therefore A×103 = 1
⇒ A = 1

103 . So the cdf Fx(x) is as follows:

Fx(x) =





0, x ≤ 0
10−3x3, 0 ≤ x ≤ 10
1, x > 10

(3.16)

(b) The pdf of x is simply:

fx(x) =
dFx(x)

dx
=





0, x ≤ 0
3× 10−3x2, 0 ≤ x ≤ 10
0, x > 10

(3.17)

Both the cdf and pdf are shown in Fig. 3.4.
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( )F xx ( )f xx

x x

0.3

1.0

1010 00

Figure 3.4: Plots of Fx(x) and fx(x).

(c) The mean value of x is:

mx = E{x} =
∫ +∞

−∞
xfx(x)dx

=
∫ 10

0
xfx(x)dx =

∫ 10

0
3× 10−3x3dx =

30
4

= 7.5

The variance of x is:

σ2
x = var(x) = E{(x−mx)2} =

∫ +∞

−∞
(x−mx)2fx(x)dx

=
∫ 10

0
(x− 7.5)2fx(x)dx = 3.75

(d)
P (3 ≤ x ≤ 7) = Fx(7)− Fx(3) = 0.316 (3.18)

P3.6 To find fy(y), we first find the cdf of y, i.e., Fy(y). Consider the following cases for y (see
Fig. 3.5):

(i) For y < −b. Note that y can only receive values in the range −b ≤ y ≤ b. Therefore the
event y ≤ y is an impossible event and for this range of y one has Fy(y) = P (y ≤ y) = 0.

(ii) For y = −b. Then

Fy(y) = Fy(−b) = P (y ≤ −b) = P (y < −b) + P (y = −b) = P (y = −b)
= P (x ≤ −b) = Fx(−b)

=
∫ −b

−∞
fx(x)d(x) =

∫ −b

−∞

1√
2πσ2

e−x2/(2σ2)dx (3.19)

(iii) For y ≥ b. In contrast to case (i), for the range of y in this case the event y ≤ y is a
certain event and therefore Fy(y) = P (y ≤ y) = 1.

(iv) For −b < y < b. For this range of y, the random variable y and x are the same. Thus
Fy(y) = P (y ≤ y) = P (x ≤ y) = Fx(y). This also implies that fy(y) = fx(y) =

1√
2πσ2

e−y2/(2σ2) for y in this range.
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0

)(xgy =

x

b

-b

-b

b

0
x

( )f xx ( )F xx

0
x

1
22

1

πσ

21

0
y

( )f yy ( )F yy

0
y

1
22

1

πσ

-b b -b b

( )F b−x

( )F bx
( ( ))F b−x( ( ))F b−x

21

Figure 3.5

In summary,

Fy(y) =





0, y < −b
Fx(y), −b ≤ y < b
1, y ≥ b

(3.20)

Now, differentiating Fy(y) gives fy(y), the pdf of y:

fy(y) =
dFy(y)

dy
=





0, y < −b
Fx(−b)δ(y + b), y = −b

fx(y) = 1√
2πσ2

e−y2/(2σ2), −b < y < b

[1− Fx(b)]δ(y − b) = Fx(−b)δ(y − b), y = b
0, y > b

(3.21)

Note that the two delta functions are due to the discontinuities of Fy(y) at y = −b and y = b.
The strengths of these two delta functions are equal to the value of the “jump” of the cdf at
the discontinuities, which is Fx(−b). Plots of Fx(x), fx(x), Fy(y) and fy(y) are provided in
Fig. 3.5.
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P3.7 It is straightforward enough to determine the mean mx and variance σ2
x of a random variable

x from the definitions:

mx = E{x} =
∫ ∞

−∞
xfx(x)dx (3.22)

σ2
x = E{(x−mx)2} = E{x2} −m2

x

=
∫ ∞

−∞
x2fx(x)dx−m2

x. (3.23)

The only challenge perhaps is doing the integrations. However using the fact that the mean
is the center of gravity (or centroid) of the probability “mass” density and that the variance
is the variation around the mean can simplify (even eliminate sometimes) the necessity for
integrating.

(a) The pdf looks as in Fig. 3.6(a). Obviously the centroid is mx = 1
2(a + b).

To find the variance, shift fx(x) along the x-axis so that it lies symmetrically about
x = 0, i.e., work with the pdf in Fig. 3.6(b). Note that the shift does not affect the
variance. Then

σ2
x =

∫ b−a
2

− b−a
2

x2 1
(b− a)

dx =
2

(b− a)

∫ b−a
2

0
x2dx =

1
12

(b− a)2

For special case of a = −b then mx = 0 and σ2
x = b2/3.

0

( )f xx

x

1

b a−

ba 0

( )f xx

x

1

b a−

ba

(a) (b)

Figure 3.6: Uniform densities.

(b) For the Rayleigh density, we have no choice but to do the integrations. The following
general results from G&R, p. 337 are useful:

∫ ∞

0
x2ne−px2

dx =
(2n− 1)!!

2(2p)n

√
π

p
, for p > 0 (Eqn. 3.461-2)

∫ ∞

0
x2n+1e−px2

dx =
n!

2pn+1
, for p > 0 (Eqn. 3.461-3)

These equations allow us to compute all the moments of a Rayleigh random variable, if
we so desired. But here we are interested in only the 1st and 2nd moments.
The first moment is:

mx =
1
σ2

∫ ∞

0
x2e−

x2

2σ2 dx =
1
σ2

1!!
2

(
2 1

2σ2

)
√

π
1

2σ2

=
√

π

2
σ ≈ 1.25σ.
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The second moment is:

E{x2} =
1
σ2

∫ ∞

0
x3e−

x2

2σ2 dx =
1
σ2

1!

2
(

1
2σ2

)2

√
π
1

2σ2

= 2σ2.

Therefore the variance is

σ2
x = E{x2} −m2

x = 2σ2 − π

2
σ2 =

(
2− π

2

)
σ2 ≈ 0.429σ2.

Remark: The Rayleigh random variable is important in the study of fading channels
(Chapter 10). As shall be seen there, the parameter σ2 is also a variance (as the notation
suggests), but of course not of the Rayleigh random variable but of the 2 underlying
Gaussian random variables that make up the Rayleigh random variable.

(c) For the Laplacian density:
fx(x) =

c

2
e−c|x| (3.24)

By inspection fx(x) is an even function (symmetric about x = 0), hence mx = 0. The
variance of x is

σ2
x =

c

2

∫ ∞

−∞
x2e−c|x| = c

∫ ∞

0
x2e−cxdx

Integrate by parts to obtain:
∫

x2e−cxdx = −1
c
x2e−cx − 2

c2
xe−cx − 2

c3
e−cx (3.25)

Thus ∫ ∞

0
x2e−cxdx =

2
c3

⇒ σ2
x =

2
c2

(3.26)

(d) y is discrete random variable, given by y =
∑n

i=1 xi where xi are statistically indepen-
dent and identically distributed random variables with the pmf: P (xi = 1) = p and
P (xi = 0) = 1− p.

First, the mean and variance of each random variable xi can be found as:

mxi = E(xi) = p× 1 + (1− p)× 0 = p (3.27)
E{x2

i } = p× 12 + (1− p)× 02 = p

σ2
xi

= E{x2
i } −m2

xi
= p− p2 = p(1− p) (3.28)

Using linear property of the expectation operation E{·}, one has:

E{y} = E

{
n∑

i=1

xi

}
=

n∑

i=1

E{xi} = np (3.29)

To compute the variance of y, first compute E{y2}. Write y2 as

Y 2 =

(
n∑

i=1

xi

)2

=
n∑

i=1

n∑

j=1

xixj =
n∑

i=1

x2
i +

n∑

i=1

n∑

j=1,j 6=i

xixj

Solutions Page 3–9
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Since xi, i = 1, 2, . . . , n, are statistically independent, then

E{xixj} =
{

p2 i 6= j
p i = j

(3.30)

Using (3.30) and the linear property of E{·}, E{y2} can be computed as:

E{y2} = E

{
n∑

i=1

x2
i

}
+ E





n∑

i=1

n∑

j=1,j 6=i

xixj



 = np + n(n− 1)p2 (3.31)

⇒ σ2
y = E{y2} − [E{y}]2 = np + n(n− 1)p2 − (np)2 = np(1− p) (3.32)

P3.8 (a) P (A∪B) = area A+area B−common area (which is added twice). But area A = P (A),
area B = P (B) and common area = P (A ∩B). Hence

P (A ∪B) = P (A) + P (B)− P (A ∩B).

(b)
P (A ∪B ∪ C) = P (A) + P (B ∪ C)− P (A ∩ (B ∪ C),

where we consider B ∪ C as a single event. But A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
Therefore

P (A∪B∪C) = P (A)+P (B)+P (C)−P (B∩C)−P (A∩B)−P (A∩C)+P (A ∩B ∩A ∩ C︸ ︷︷ ︸
A∩B∩C

).

P3.9 (a) Given B then probability of A occurring is that it “lies” in the shaded area. Also B is
the new sample space. Therefore

P (A|B) =
P (A ∩B)

P (B)
.

Note that P (A) can be written as

P (A) =
P (A ∩ Ω)

P (Ω)
.

(b) Statistical independence can be expressed in 2 ways.

(i) P (A|B) = P (A). In this case the interpretation is that the ratio of the common
area (P (A ∩ B)) to the new sample space area (P (B)) is the same as the ratio of
the original area (P (A)) to the original sample space (P (Ω)).

(ii) P (A ∩ B) = P (A)P (B). Here the common area P (A ∩ B) is equal to the product
of the areas P (A) and P (B).

(c) No. One could say they are totally dependent. Knowledge of one occurring tells you a
lot about the other occurring, i.e., P (A|B) = 0 and vice versa.

P3.10 Need to determine if the 3 axioms are satisfied. Given B all possible events now lie in the
shaded area.

Axiom 1: P (any event) is certainly ≥ 0 and also ≤ 1.

Axiom 2: P (B|B) = 1.

Axiom 3: Holds. It is inherited from Ω.

Solutions Page 3–10
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A

Sample space Ω

B

A B∩

Figure 3.7

A

Sample space Ω

B

A B∩

Figure 3.8

P3.11 (a) P (A ∩ B ∩ C) = P (A)P (B)P (C), P (A ∩ B) = P (A)P (B), P (A ∩ C) = P (A)P (C);
P (B ∩ C) = P (B)P (C).

(b) (i) All conditions of (a) satisfied, therefore statistically independent.
(ii) Note that P (A ∩B ∩ C) = 0 6= P (A)P (B)P (C), therefore statistically dependent.
(iii) P (B∩C) = 1/8 6= P (B)P (C) = (1/2)(1/2) = 1/4, therefore statistically dependent.

(c) Yes. Consider the Venn diagram in Fig. 3.9. Let a2 = b, where a = P (A) = P (B) =
P (C). Then P (A ∩ B ∩ C) = 0 while P (A ∩ B) = P (A ∩ C) = P (B ∩ C) = b = a2 =
P (A)P (B) = P (A)P (C) = P (B)P (C).

(d) Number of conditions is
∑n

k=2

(
n
k

)
=

∑n
k=2

n!
k!(n−k)! .

P3.12 First calculate P (A), P (B) and P (C) as follows:

P (A) = 0.08 + 0.03 + 0.02 + 0.07 = 0.20
P (B) = 0.08 + 0.07 + 0.03 + 0.02 = 0.20
P (C) = 0.245 + 0.07 + 0.07 + 0.02 = 0.405

Now P (A ∩ B ∩ C) = 0.02 6= P (A)P (B)P (C) = (0.02)(0.02)(0.405) = 0.000162. Therefore
these events are statistically dependent.
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a

b

a

a

A B

C

Figure 3.9

Next,

P (A ∩B|C) =
P (A ∩B ∩ C)

P (C)
=

0.02
0.405

=
4
81

P (A|C) =
P (A ∩ C)

P (C)
=

0.09
0.405

=
2
9

P (B|C) =
P (B ∩ C)

P (C)
=

0.09
0.405

=
2
9

P (A|C)P (B|C) =
(

2
9

)2

=
4
81

= P (A ∩B|C).

Therefore the events A and B are conditionally independent.

Problems 3.3, 3.4, 3.13, 3.14 and 3.15 are important special cases of discrete-input discrete-
output channel models. The general model is described in Fig. 3.10.

The quantities of interest are usually P [y = yj ], P [x = xi|y = yj ] and also E{xy}. The
general relationships for the quantities are:

P [y = yj ] =
m∑

i=1

P [(y = yj) ∩ (x = xi)] =
m∑

i=1

P [y = yj |x = xi]P [x = xi] =
m∑

i=1

PijPi

P [x = xi|y = yj ] =
P [(x = xi) ∩ (y = yj)]

P [y = yj ]
=

P [y = yj |x = xi]P [x = xi]
P [y = yj ]

=
PijPi∑m

k=1 PkjPk

E{xy} =
m∑

i=1

n∑

j=1

xiyjP [(x = xi) ∩ (y = yj)]

=
m∑

i=1

n∑

j=1

xiyjP [y = yj |x = xi)]P [x = xi]

=
m∑

i=1

n∑

j=1

xiyjPijPi

Solutions Page 3–12
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1 1x P→

Output yInput x

��

2 2x P→

� �

i ix P→

m mx P→

1y

2y

jy

ny

11P

12P

ijP

mnP

1mP

1nP

1

where [ | ],  [ ] 

and typically .

Further 1,  0 1.

Note typically most of the 

 would be equal to 0.

j i i i

m

i i
i

ij

P y x P P x

n m

P P

P

=

= = = =

≥

= ≤ ≤∑

y x x

Figure 3.10

P3.13 Consider the “toy” channel model shown in Fig. 3.25 in the textbook.

(a) From the figure, we have P (x = −1) = 0.5, P (x = −1) = 0.5. All the transition
probabilities of y given x are:

P (y = 1|x = 1) = 0.4 P (y = 1|x = −1) = 0.4
P (y = 0|x = 1) = 0.2 P (y = 0|x = −1) = 0.2

P (y = −1|x = 1) = 0.4 P (y = −1|x = −1) = 0.4;
(3.33)

Then

P (y = 1) = P (y = 1|x = 1)P (x = 1) + P (y = 1|x = −1)P (x = −1)
= 0.4× 0.5 + 0.4× 0.5 = 0.4. (3.34)

Observe that P (y = 1) = P (y = 1|x = 1) = P (y = 1|x = −1) = 0.4. Similarly, one
can show that P (y = 0) = P (y = 0|x = 1) = P (y = 0|x = −1), and P (y = −1) =
P (y = −1|x = 1) = P (y = −1|x = −1). Since the distribution of the output y does not
depend on which value of the input x was transmitted, the two random variables x and
y are statistically independent.

(b) We have

E{x} = x1 × P (x = x1) + x2 × P (x = x2)
= 1× 0.5 + (−1)× 0.5 = 0, (3.35)

and

E{y} = y1 × P (y = y1) + y2 × P (y = y2) + y3 × P (y = y3)
= 1× 0.4 + 0× 0.2 + (−1)× 0.4 = 0, (3.36)
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Since x and y are statistically independent, one can compute E{xy} as

E{xy} = E{x}E{y} = 0. (3.37)

P3.14 Consider P (y = 1) = 1
2(0.3) + 1

2(0.4) = 0.35. But P (y = 1|x = 1) = 0.3 6= P [y = 1] ⇒
Statistical dependence.

The correlation is

2∑

i=1

3∑

j=1

xiyjPijPi =
1
2

2∑

i=1

3∑

j=1

xiyjPij

=
1
2




3∑

j=1

yjP1j −
3∑

j=1

yjP2j




=
1
2

[1(0.3) + 0(0.3)− 1(0.4)]− 1
2

[1(0.4) + 0(0.1)− 1(0.5)]

= 0. (3.38)

Therefore the random variables are uncorrelated.

Notes:

1) Uncorrelatedness does not mean (or imply) statistical independence. But statistical
independence always implies uncorrelatedness.

2) One extremely important case where uncorrelatedness implies statistical independence
is the case of jointly Gaussian random variables. Communication theory depends very
crucially on this fact as shall be seen in later chapters.

3) Statistical independence can increase or decrease the conditional probability of an event.
Two extreme cases are:

(a) Mutually exclusive events, A, B then P (A|B) = 0.
(b) An event B is contained in event A, i.e., B ⊂ A. Then P (A|B) = 1 where P (A),

P (B) 6= 0.

P3.15 Definitely statistically dependent since

P (y = 1) =
1
2
(1− ε)

︸ ︷︷ ︸
≈1/2

6= P (y = 1|x = 1) = 1− p− ε.︸ ︷︷ ︸
≈1

(3.39)

Also correlated because

E{xy} =
1
2




3∑

j=1

yjP1j −
3∑

j=1

yjP2j




=
1
2
{(1− p− ε− p)− [p− (1− p− ε)]}

= 1− 2p− ε > 0, for p, ε << 1. (3.40)
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P3.16 Consider two random variables x and y with means mx, my and variances σ2
x, σ2

y respec-
tively. Further let the two random variables be uncorrelated, which means that E{xy} =
E{x}E{y} = mxmy. Now “rotate” x and y to obtain new random variables xR and yR as
follows: [

xR

yR

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
=

[
(cos θ)x + (sin θ)y

(− sin θ)x + (cos θ)y

]
(3.41)

where θ is some arbitrary angle.

First one has

xRyR = [(cos θ)x + (sin θ)y] [−(sin θ)x + (cos θ)y]
= −(sin θ cos θ)x2 − (sin2 θ)xy + (cos2 θ)xy + (sin θ cos θ)y2

= [cos2 θ − sin2 θ]xy − sin θ cos θ[x2 − y2]. (3.42)

It follows that

E{xRyR} = E{[cos2 θ − sin2 θ]xy − sin θ cos θ[x2 − y2]}
= {cos2 θ − sin2 θ}E{xy} − sin θ cos θ[E{x2} − E{y2}].

But E{xy} = mxmy, E{x2} = m2
x + σ2

x, E{y2} = m2
y + σ2

y. Therefore

E{xRyR} = [cos2 θ − sin2 θ]mxmy − sin θ cos θ[m2
x + σ2

x −m2
y − σ2

y]. (3.43)

Now compute E{xR}E{yR} as follows:

E{xR}E{yR} = [(cos θ)mx + (sin θ)my][−(sin θ)mx + (cos θ)my]
= −(cos θ sin θ)m2

x + cos2 θmxmy − sin2 θ(mxmy) + (sin θ cos θ)m2
y

= [cos2 θ − sin2 θ]mxmy − sin θ cos θ[m2
x −m2

y] (3.44)

Comparing (3.43) and (3.44) shows that the two random variables xR and yR are uncorrelated

for any θ., i.e., E{xRyR} = E{xR}E{yR}, if and only if σ2
x = σ2

y .

Remarks:

1) Note that when one says uncorrelated one actually means uncovarianced. However,
universally the terminology is to say uncorrelated.

2) A lot of algebra could be avoided by realizing that the mean values do not place any role
as to whether the random variables are uncorrelated and therefore mx and my could
have been set to zero without loss of generality.

3) If the two random variables x, y are correlated, then one can find a rotation angle,
θ, that would make the random variables xR, yR uncorrelated. However, the angle
is determined by the correlation (and variances) of x and y. Here the rotation angle
is arbitrary and other considerations can be used to determine the rotation. This is
exploited in Chapter 5.

P3.17 (a) fx(x)dx

(b) fy(y)dy

(c) Equal
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(d) Replace y by g(x) and fy(y)dy by fx(x)dx and sweep over x, i.e., from x = −∞ to
x = +∞ to obtain the relationship.

P3.18 Start with the definition for the characteristic function:

Φx(f) = E{ej2πfx} =

+∞∫

−∞
ej2πfxfx(x)dx. (3.45)

Differentiate Φx(f) n times:

dnΦx(f)
dfn

=

+∞∫

−∞
(j2πx)nej2πfxfx(x)dx

= (j2π)n

+∞∫

−∞
xnej2πfxfx(x)dx. (3.46)

Set f = 0 and divide by (j2π)n

∴ 1
(j2π)n

dnΦx(f)
dfn

∣∣∣∣
f=0

=

+∞∫

−∞
xnfx(x)dx = E{xn}. (3.47)

P3.19 Maclaurin expansion of ex =
∑∞

n=0
xn

n! .

∴ ej2πfx =
∞∑

n=0

(j2πf)nxn

n! and Φx(f) = E{ej2πfx} =
∞∑

n=0

(j2πf)n

n! E{xn}.

⇒ The characteristic function is completely determined by the moments of the random vari-
able.

Note that expectation is a linear operation. Thus the expectation of a sum is the sum of the
expectations.

P3.20 The characteristic function is the “Fourier transform” of the probability density function
and everything that was discussed in Chapter 2 should carry over here. There are some
differences that must be taken into account. In Chapter 2 we went from the time domain
to the frequency domain and back whereas here we are going from the probability density
domain to the frequency domain and back. But this is a trivial difference. Indeed the Fourier
transform could be applied to a function of any independent variable, say temperature, length,
etc..

The main (and only) difference between the Fourier transform in Chapter 2 and the charac-
teristic function is the sign convention for f , i.e.,

x(t) ←→ X(f) =
+∞∫
−∞

x(t)e−j2πftdt

‖
+∞∫
−∞

X(f)ej2πftdf

(3.48)
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fx(x) ←→ Φx(f) =
+∞∫
−∞

fx(x)ej2πfxdx

‖
+∞∫
−∞

Φx(f)e−j2πfxdf

(3.49)

which shows that f → −f .

(a) Example 2.17, Chapter 2, establishes that V e−at2 ↔ V
√

π
a e−

π2f2

a are a Fourier transform

pair. Here we need the characteristic function (or Fourier transform) of 1√
2πσ

e−
x2

2σ2 .

Identify V ≡ 1√
2πσ

, a = 1
2σ2 , substitute and do the algebra.

∴ Φx(f) =
1√
2πσ

√
π2σ2e−π2(−f)22σ2

= e−2π2σ2f2
. (3.50)

(b) Example 2.9, Chapter 2, states V e−a|t| ↔ V 2a
a2+4π2f2 .

Here we are concerned with fx(x) = c
2e−c|x|. Identify V ≡ c

2 , a ≡ c. Then

∴ Φx(f) =
(c/2)(2c)

c2 + 4π2(−f)2
=

c2

c2 + 4π2f2
. (3.51)

(c) Example 2.11, Chapter 2, shows that a rectangular pulse of width T and height V has
the Fourier transform, V T sin(πfT )

πfT . Here we are dealing with a pdf of width 2A, height
1/2A, i.e., T = 2A, V = 1/2A.

∴ Φx(f) =
sinπ(−f)2A

π(−f)2A
=

sin(2πfA)
(2πfA)

. (3.52)

(Note that both rectangular pulses are centered at the origin).

Remark: Because the pdf’s were even functions the f convention did not matter. Is it possible
to have a pdf that is odd?

P3.21 Obviously the odd moments are zero since the integrand is an odd function. Consider now
the relationship

1√
2πσ2

+∞∫

−∞
e−

x2

2σ2 dx = 1. (3.53)

Write this as
+∞∫

−∞
e−αx2

=
√

π√
α

, where α is defined as α ≡ 1
2σ2

. (3.54)

Differentiate both sides with respect to α:

d
dα

:

+∞∫

−∞
−x2e−αx2

dx = −1
2

√
π

α3/2
(3.55)

Solutions Page 3–17



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

and again

d2

dα2
:

+∞∫

−∞
(−x2)(−x2)e−αx2

dx =
(
−1

2

)(
−3

2

) √
π

α5/2
(3.56)

and again

d3

dα3
:

+∞∫

−∞
(−x2)3e−αx2

dx =
(
−1

2

) (
−3

2

) (
−5

2

) √
π

α7/2
. (3.57)

The pattern is such that after the nth differentiation

dn

dαn
:

+∞∫

−∞
(−x2)ne−αx2

dx =
(
−1

2

)(
−3

2

)(
−5

2

)
· · ·

(
−2n− 1

2

) √
π

α(2n+1)/2
. (3.58)

Note that the LHS has the form of E{x2n} but some algebra is needed to see this

+∞∫

−∞
(−1)nx2ne−αx2

dx = (−1)n [1 · 3 · 5 · · · (2n− 1)]
2n

√
π

αnα1/2
(3.59)

Now bring back the definition of α:

+∞∫

−∞
x2ne−

x2

2σ2 dx =
[1 · 3 · 5 · · · (2n− 1)]

2n

√
π2n(σ2)n

√
2σ (3.60)

Rearrange:

E{x2n} =
1√
2πσ

+∞∫

−∞
x2ne−αx2

dx = 1 · 3 · 5 · · · (2n− 1)(σ2)n, n = 0, 1, 2, . . . (3.61)

P3.22 (a) Let y = x −mx, i.e., y is a zero mean r.v., variance σ2
x. Then Φy(f) = E{ej2πfy} =

E{ej2πf(x−mx)} = e−j2πfmxE{ej2πfx} or Φy(f) = e−j2πfmxΦx(f).

(b) Φx(f) = ej2πfmxe−j2π2f2σ2
x .

P3.23 (a)

E{ej2πf(x1+x2)} =

+∞∫

−∞

+∞∫

−∞
ej2πf(x1+x2) fx1x2(x1, x2)︸ ︷︷ ︸

=fx1 (x1)fx2(x2)

dx1dx2

=

+∞∫

−∞
ej2πfx1fx1(x1)dx1

︸ ︷︷ ︸
Φx1 (f)

·
+∞∫

−∞
ej2πfx2fx2(x2)dx2

︸ ︷︷ ︸
Φx2 (f)

. (3.62)

Therefore Φy(f) = Φx1(f)Φx2(f).
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Figure 3.11: Plots of fx1(x1) and fy(y).

(b) Convolution ⇒ fy(y) = fx1(x1) ~ fx2(x2) =
+∞∫
−∞

fx1(λ)fx2(y − λ)dλ. Convolving graph-

ically gives fy(y) as shown in Fig. 3.11.

(c) Φy(f) =
n∏

k=1

Φxk
(xk) or fy(y) = fx1(x1) ~ fx2(x2) ~ · · ·~ fxn(xn).

Above is true as long as the xk’s are statistically independent, i.e., it does not depend on
the random variables being Gaussian. However, if Gaussian, the characteristic function
of the kth r.v. is:

Φxk
(f) = e−j2πfmxk e−2π2f2σ2

xk (3.63)

and Φy(f) =
n∏

k=1

e−j2πfmxk e−2π2f2σ2
xk = e

−j2πf

(
n∑

k=1
mxk

)

e
−2π2f2

(
n∑

k=1
σ2
xk

)

(3.64)

which is a characteristic function of a Gaussian r.v., with mean my =
n∑

k=1

mxk
and

variance σ2
y =

n∑
k=1

σ2
xk

.

Note that the above result is easily generalized to a weighted linear sum, i.e., y =
n∑

k=1

akxk.

Then y is Gaussian, mean my =
n∑

k=1

akmxk
, variance σ2

y =
n∑

k=1

a2
kσ

2
xk

where xk are still

statistically independent Gaussian random variables.

P3.24 (a) For y to lie in the region (y, y + dy] one of three mutually exclusive events has to occur:
x has to fall in the region [x1 + dx1, x1) or (x2, x2 + dx2] or [x3 + dx3, x3), i.e.,

P [y < y ≤ y + dy] = P [x1 + dx1 ≤ x1 < x1] + P [x2 < x2 ≤ x2 + dx2]
+P [x3 + dx3 ≤ x3 < x3] (3.65)

In general P [z < z ≤ z + dz] = fz(z)dz. Therefore:

fydy = fx(x1)|dx1|+ fx(x2)dx2 + fx(x3)|dx3|. (3.66)

(b) Infinitesimals dx1, dx3 are negative quantities and the very least we should expect of a
probability is for it to be ≥ 0.
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(c) For the specific example we have

fy(y) =
3∑

i=1

fx(xi)|dxi|
|dy|

no harm in putting a magnitude sign on a positive quantity, dy.

=
3∑

i=1

fx(xi)∣∣∣ dy
dxi

∣∣∣
=

3∑

i=1

fx(xi)∣∣∣dy
dx

∣∣∣
x=xi

(3.67)

More generally fy(y) =
∑
i

fx(xi)

| dy
dx |x=xi

where the xi’s are the real roots of g(x) = y for the

specific value of y.

P3.25 Consider the graph of g(x) in Fig. 3.12.

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

y=x

y=1−(1−x)2

y

x

Figure 3.12

Inspection shows that:

(a) For y in the range (−∞,−1) there is only one real root, namely the positive root of
1− (1− x)2 = y ⇒ xr = 1 +

√
1− y, −∞ < y < −1.

(b) At y = −1 there are an infinite number of roots (actually a noncountable infinity)
which implies that P (y = −1) is nonzero. Indeed P (y = −1) = P (−∞ < x < −1) =∫ −1
−∞ fx(x)dx = 1

2e−1. Therefore fy(y) has an impulse at y = −1 of this strength.

(c) For −1 < y ≤ 0 there are two roots to the equation g(x) = y, one from the relationship
x = y; the other from the relationship 1 − (1 − x)2 = y (again the positive root). The
roots are therefore x1 = y, x2 = 1 +

√
1− y.

(d) For 0 < y < 1 there again are two roots from 1−(1−x)2 = y which are x1,2 = 1±√1− y.
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(e) Finally for y > 1 there are no root ⇒ fy(y) = 0.

As always

fy(y) =
∑

xr: the roots of g(x)=y

fx(xr)∣∣∣dg(x)
dx

∣∣∣
xr

. Here
dg(x)
dx

= 2(1− x). (3.68)

Therefore:

(a) −∞ < y < −1: xr = 1 +
√

1− y ⇒ fy(y) = 1
2

e−|1+
√

1−y|
|2(−√1−y)| .

(b) y = −1: fy(y) = 1
2e−1δ(y + 1).

(c) −1 < y < 0: fy(y) = 1
2

e−|1+
√

1−y|
|2(−√1−y)| +

1
2e−|y|.

(d) 0 < y < 1: fy(y) = 1
2

e−|1+
√

1−y|
|2(−√1−y)| +

1
2

e−|1−
√

1−y|
|2(−√1−y)| .

(e) y > 1: fy(y) = 0.

A plot of the pdf is shown in Fig. 3.13

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

y

f
 y

(y)

1/2 e−1 δ (y+1)

Figure 3.13

P3.26 (a) y = g(θ) = cos(α + θ). Consider the graph of the nonlinearity g(θ) in Fig. 3.14.
The roots are θ1 = cos−1 y − α; θ2 = π − α + d = 2π − 2α− θ1 = 2π − α− cos−1 y.
dy
dθ = − sin(α + θ).

Solutions Page 3–21



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

1

y

1−

d d

2π

1= π − α − θd

π − α1θ 2θ
θ

y

0
cosα

Figure 3.14: Plot of the nonlinearity y = g(θ) = cos(α + θ).

∴ fy(y) =
fθ(θ)|θ1∣∣∣dy

dθ

∣∣
θ1

∣∣∣
+

fθ(θ)|θ2∣∣∣dy
dθ

∣∣
θ2

∣∣∣
. (3.69)

Now fθ(θ)|θ1 = fθ(θ)|θ2 = 1
2π (θ is uniform over (0, 2π]).

dy

dθ

∣∣∣∣
θ1

= − sin(α + cos−1 y − α) = − sin(cos−1 y) = −
√

1− y2 (3.70)

dy

dθ

∣∣∣∣
θ2

= − sin(α + 2π − α− cos−1 y) = sin(cos−1 y) =
√

1− y2 (3.71)

Therefore

fy(y) =

{
1

π
√

1−y2
, −1 ≤ y ≤ 1

0, elsewhere
(3.72)

which plots as in Fig. 3.15.
As a check, we know

+∞∫

−∞
fy(y)dy =

1∫

−1

1

π
√

1− y2
dy

?=1 (3.73)

or

1∫

0

1√
1− y2

dy
?=

π

2
. (3.74)

The LHS is sin−1(y)
∣∣∣∣
1

0

= sin−1(1)− sin−1(0) = π
2 − 0 = π

2 . So the question mark can be

removed.
No, it does not depend on α.

(b) A sketch of the relationship y = cos(θ+α) where 0 ≤ θ ≤ π/9 (see Fig. 3.16) shows that
there is only one real root at θr = cos−1 y−α and that y lies in the range cos(α+π/9) ≤
y ≤ cosα).

Solutions Page 3–22



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

y

f
 y

(y)

1/π

Figure 3.15

y

θ

y

0

cosα

θr ( )20
9

π o

cos
9

π + α  
Figure 3.16

Again dy
dθ

∣∣∣∣
θ=θr

= − sin(α + cos−1 y − α) = 1√
1−y2

.

Now fθ(θ) = 9
π

[
u(0)− u(θ − π

9 )
]
and therefore fθ(θ)

∣∣∣∣
θr

= 9
π

[
u(0)− u(cos−1 y − α− π

9 )
]

where cos(α + π/9) ≤ y ≤ cosα.
Therefore

fy(y) =
9
π

[
u(0)− u(cos−1 y − α− π

9 )
]

√
1− y2

{
u[cos(α +

π

9
)− u(cosα)]

}
, (3.75)

which depends on α.

In communication models α is invariably 2πft, i.e., y = cos(2πft+θ). The above shows
that if θ is uniform over [0, 2π) then the random process is stationary (at least 1st order).
However if it is restricted then in general it becomes nonstationary.
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P3.27 (a) ≥ 0

(b) Since it is always ≥ 0 the function g(λ) = E{(x + λy)2} cannot cross the λ axis, i.e.,

g(λ) = E{x2}+ 2λE{xy}+ λ2E{y2} ≥ 0. (3.76)

This means that the equation g(λ) = 0 has two complex roots at

λ1,2 =
−2E{xy} ±

√
4E2{xy} − 4E{x2}E{y2}

2E{y2} . (3.77)

(Recall from high school that the roots of ax2 + bx + c = 0 are at −b±√b2−4ac
2a ).

For the roots to be complex the expression under the square root must be ≤ 0. This
requires that E2{xy} ≤ E{x2}E{y2} or E{xy} ≤

√
E{x2}E{y2}.

(c) Equality holds when y = kx, i.e., there is a linear relationship between the random
variables x,y. (Statisticians are wont to call this a linear regression).

(d) Consider the random variables x−mx and y −my. Then from (b) we have

E {(x−mx)(y −my)} ≤
√

E {(x−mx)2}E {(y −my)2} =
√

σ2
xσ2

y = σxσy

or
E {(x−mx)(y −my)}

σxσy︸ ︷︷ ︸
=ρx,y

≤ 1.

But the expression in (b) should properly be written as

−
√

E {x2}E {y2} ≤ E {xy} ≤
√

E {x2}E {y2} (3.78)

(
or |E {xy} | ≤

√
E {x2}E {y2}

)
(3.79)

from which it follows that −1 ≤ ρ ≤ 1.

(e)

|E {x(t)x(t + τ)} | ≤
√

E {x2(t)}E {x2(t + τ)} (3.80)

or |Rx(τ)| ≤
√

Rx(0)Rx(0) = Rx(0) (3.81)

where it is assumed that the process is stationary.

P3.28 (a)

P (y < y ≤ y + ∆y|x < x ≤ x + ∆x) =
P (y < y ≤ y + ∆y, x < x ≤ x + ∆x)

P (x < x ≤ x + ∆x)
. (3.82)

(b) Assuming continuous random variables the expression becomes 0
0 .
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(c) Rewrite the expression in (a) as:

P (y < y ≤ y + ∆y|x < x ≤ x + ∆x)
∆y

=
P (y < y ≤ y + ∆y, x < x ≤ x + ∆x)

∆x∆y P (x<x≤x+∆x)
∆x

. (3.83)

As ∆x,∆y → 0 the LHS becomes fy(y|x = x) (more appropriately fy|x(y|x = x)) and

the RHS becomes fxy(x,y)
fx(x) .

P3.29

fy(y|x) =
fx,y(x, y)

fx(x)
−→ a quadratic in x,y
−→ a quadratic in x

} ⇒ a quadratic in y.
Therefore Gaussian.

(3.84)

By symmetry fx(x|y) is also quadratic.

P3.30 Consider

P (A|r < r ≤ r + ∆r) =
P (r < r ≤ r + ∆r,A)
P (r < r ≤ r + ∆r)

=
P (r < r ≤ r + ∆r|A)P (A)

P (r < r ≤ r + ∆r)

=
P (r<r≤r+∆r|A)

∆r P (A)
P (r<r≤r+∆r)

∆r

. (3.85)

Let ∆r → 0. Therefore P (A|r = r) = f(r|A)P (A)
fr(r)

.

P3.31 To be a valid (not necessarily useful) pdf, a function must satisfy two, and only two, conditions:
(i) the area under it must be equal to one, and (ii) it must always be ≥ 0 (nonnegative).
Therefore:

(a) (i) Satisfies both conditions. It is a non-stationary Gaussian random process (or random
variable for any fixed t), whose mean is sgn(t) and variance is σ2.

(ii) No, neither condition is satisfied. fx(0) < 0 for t < 0. Also
∫∞
−∞ fx(x; t)dx =

sgn(t) 6= 1.

(b) Answered above.

Note that the functions are considered to be functions of x; t is looked upon as a parameter.

P3.32 A random process is generated as follows: x(t) = e−a|t|, where a is a random variable with
pdf fa(a) = u(a)− u(a− 1) (1/seconds).

(a) Sketches of several members of the ensemble are shown in Fig. 3.17. They are generated
with the Matlab codes below. Note that the Matlab function rand generates a random
number according to a uniform distribution over [0, 1].

t=[-2:0.001:2];
for i=1:4

a=rand(1,1);
x=exp(-a*abs(t));
subplot(4,1,i);plot(t,x,’linewidth’,1.5);
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tname=[’{\bfa}=’,num2str(a)];
title(tname,’FontName’,’Times New Roman’,’FontSize’,16);
grid on;
xlabel(’\itt’,’FontName’,’Times New Roman’,’FontSize’,16);
set(gca,’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’,’GridLineStyle’,’:’,...
’MinorGridLineStyle’,’none’,’FontName’,’Times New Roman’);
ylim([0,1.1]);

end
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1
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Figure 3.17: Several member functions of the random process x(t) = e−a|t|.

(b) Since a ranges between 0 and 1, for a specific time, t, the random variable x(t) ranges
from e−|t| (when a = 1) to 1 (when a = 0).

(c) Again, similar to P3.31, we consider x to be a function of a with t a parameter. The
mean and mean-squared values of x(t) are:

E{x(t)} =

∞∫

−∞
x(t)fa(a)da =

1∫

0

e−a|t|da =
e−a|t|

−|t|

∣∣∣∣
1

0

=
1
|t|

(
1− e−|t|

)
. (3.86)

E{x2(t)} =

∞∫

−∞
x2(t)fa(a)da =

1∫

0

e−2a|t|da =
e−2a|t|

−2|t|

∣∣∣∣
1

0

=
1

2|t|
(
1− e−2|t|

)
. (3.87)
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Note that at t = 0 the mean value is E{x(t)} = 0
0

by L’Hospitale
=

et

1

∣∣∣∣
t=0

= 1 (expected

intuitively), the MSV is E{x2(t)} = 1. Therefore the variance is 0, again expected
intuitively. This is not true, of course, at other values of t (except t = ±∞).

(d) We now determine the first-order pdf of x(t).
For x ≤ e−|t| or x > 1, we have fx(t)(x; t) = 0.

For e−|t| < x ≤ 1, the equation x = g(a) = e−a|t| has only one solution a = − 1
|t| lnx, e−|t| <

x ≤ 1. Furthermore
∣∣∣∣∣∣
dg(a)
da

∣∣∣∣
a=− 1

|t| ln x

∣∣∣∣∣∣
=

∣∣∣∣∣∣
−|t|e−a|t|

∣∣∣∣
a=− 1

|t| ln x

∣∣∣∣∣∣
= |t|x. (3.88)

Therefore

fx(t)(x; t) =
fa(a = − 1

|t| ln x)∣∣∣∣∣∣
dg(a)
da

∣∣∣∣
a=− 1

|t| ln x

∣∣∣∣∣∣

=
1
|t|x. (3.89)

To conclude:

fx(t)(x; t) =

{
1
|t|x , e−|t| < x ≤ 1
0, otherwise

(3.90)

Are the 2 conditions for this to be a valid pdf satisfied?

P3.33 (a) The transfer function of the filter is H(f) = 1
1+j2πfRC . The 3-dB frequency is given

by f3 dB = 1
2πRC . For f3 dB = 10 kHz and Cnom = 1.5 × 10−9 F the resistor value is

Rnom = 10.6× 103 ≈ 10 kΩ.

(b) The time constant τ = RC is given by τ = (Rnom + ∆R)(Cnom + ∆C) ≈ RnomCnom +
Cnom∆R + Rnom∆C (where the term ∆R∆C is ignored).
The random variables ∆R and ∆C have pdfs shown in Fig. 3.18.

0

( )f R∆∆R

R∆
nom0.05Rnom0.05R− 0 nom0.1Cnom0.1C−

nom

5
C

( )f C∆∆C

C∆

nom

10
R

Figure 3.18

The random variables x = Cnom∆R and y = Rnom∆C have the pdfs shown in Fig.
3.19:
Because x and y are statistically independent, the pdf of the random variable z = x+y
is the convolution of fx(x) and fy(y). It looks as in Fig. 3.20.
Finally, the pdf of RC is a shifted version of fz(z) and it is shown in Fig. 3.21.
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0
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nom nom

10
R C

nom nom.05R C−

nom nom
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R C

nom nom0.1R Cnom nom0.1R C−

( )f xx

y

Figure 3.19

0

( )f zz

nom nom

5
R C

nom nom0.15R Cnom nom0.15R C−
z

Figure 3.20

0

( )RCf RC

nom nom

2.5
R C

nom nom1.15R Cnom nom0.85R C nom nomR C
RC

Figure 3.21

(c) What is meant by average impulse response? Simplest is to let R = Rnom and C = Cnom

and let this be the average impulse response. More appropriately it should be called the
nominal impulse response.
Otherwise find the statistical average of h(t):

E{h(t)} =
∫∫

1
RC

e−
t

RC fRC(R,C)︸ ︷︷ ︸
=fR(R)·fC(C)

dRdC

=
∫ C=1.1Cnom

C=0.9Cnom

5
Cnom

dC
1
C

∫ R=1.05Rnom

R=0.95Rnom

dR
10

Rnom

1
R

e−
t

RC

Let λ ≡ 1
R . Then dλ = − 1

R2 dR, or dR = − 1
λ2 dλ. The inner integral becomes:

10
Rnom

∫ λ= 1
0.95Rnom

λ= 1
1.05Rnom

1
λ

e−λadλ =
10

Rnom

[
Ei(−aλ)

∣∣∣∣
λ= 1

0.95Rnom

− Ei(−aλ)
∣∣∣∣
λ= 1

1.05Rnom

]
,

where a ≡ t
C and the Ei(·) function is defined as Ei(x) = − ∫∞

−x
e−t

t dt.

Define the worst case impulse responses to occur when R and C to be fall at either the extreme
upper value of extreme lower value, i.e., R = 1.05Rnom and C = 1.1Cnom, or R = 0.95Rnom

and C = 0.9Cnom
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(d) Let x ≡ 1
RC . Then the impulse response is given by:

h(t) = xe−xtu(t).

To find the first-order pdf, treat t as a parameter. Therefore we have a nonlinear mapping
from random variable x to random variable h:

h = xe−xt

(of course the parameter t is restricted to be ≥ 0).

Now given fx(x) try to determine fh(h). But the question is how to find the roots of xe−xt = h
in an explicit form?

(e) The 3-dB bandwidth is given by f3 dB = 1
2πRC . The mean value is

E{f3 dB} = E

{
1

2πRC

}
=

1
2π

E

{
1
R

}
E

{
1
C

}

=
1
2π

∫ ∞

−∞

1
R

fR(R)dR

∫ ∞

−∞

1
C

fC(C)dR

=
1
2π

10
Rnom

(
ln R

∣∣∣∣
1.05Rnom

0.95Rnom

)
5

Cnom

(
lnC

∣∣∣∣
1.05Rnom

0.95Rnom

)

=
1
2π

10
Rnom

(0.1)
5

Cnom
(0.201)

=
1.005

2πRnomCnom

To find the variance, determine the MSV of f3 dB, i.e., E{f2
3 dB}:

E{f2
3 dB} =

1
4π2

E

{
1

R2

}
E

{
1

C2

}
=

1
4π2

1.003
R2

nom

(
1.010
C2

nom

)

=
1.013

4π2R2
nomC2

nom

The variance is

E{f2
3 dB} − (E{f3 dB})2 =

0.003
4π2R2

nomC2
nom

= 0.003f2
3-dB nominal

or the standard deviation is 0.055f3-dB nominal.

P3.34 (a) Check the two conditions for it to be a valid pdf.
The first condition: Is fx(x; t) ≥ 0 for all x and t? The answer is YES.
The second condition: Is the area equal to one?

∫ ∞

−∞
fx(x; t)dx =

∫ ∞

−∞

|t|
2

e−|x|/|t|dx =
|t|
2

[
2

∫ ∞

0
e−|x|/|t|dx

]

= |t|
(
−|t|e−x/|t|

∣∣∣∣
∞

0

)
= |t|2 = t2.

So the answer is NO.
Therefore pdf is not valid. But |t|

2 e−|t||x| is a valid pdf. As is 1
2|t|e

−|x|/|t|.
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(b) pdf is not valid.

(c) fx(x; t) = 0 at t = 0.

P3.35 (a) For any time t > 0 (where the time origin is when you start the measurement), the pdf is
a Gaussian distribution with zero mean and standard deviation σ(t) = [1−e−10t]u(t) > 0.
Hence it is a valid pdf but time-varying.

(b) For t > 0, the mean is zero, while the variance is σ2(t) = [1− e−10t]2u(t), which is time
varying.

(c) Fig. 3.22 plots σ2(t). Observe that σ2(t) closely approaches 1 when t = 0.5 sec (500
msec). At this point in time the first-order pdf does not change much and the process
can be considered first-order stationary.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t (sec)

σ2 (t
)

Figure 3.22: Plot of σ2(t).

P3.36 The mean value of x is:

E {x} = E





Tb∫

0

w(t)g(t)dt



 =

Tb∫

0

E{w(t)}g(t)dt = 0. (3.91)
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The variance of x is (since mean is zero, it equals the MSV):

σ2
x = E

{
x2

}
= E





Tb∫

t=0

w(t)g(t)dt

Tb∫

λ=0

w(λ)g(λ)dλ





=

Tb∫

t=0

dtg(t)

Tb∫

λ=0

dλg(λ) E {w(t)w(λ)}︸ ︷︷ ︸
N0
2

δ(t−λ)︸ ︷︷ ︸
N0
2

g(t)

=
N0

2

Tb∫

0

g2(t)dt =
N0Eg

2
. (3.92)

Note: Expectation is in essence an integration operation. Therefore in interchanging the
expectation and integration (w.r.t. time) operations we are simply changing the order of
integration.

0 W

1

f
W−

)( fH
( )tx ( )ty

Low-pass filter

Figure 3.23: Passing a random process through a low-pass filter.

P3.37 (a) The power spectral density (PSD) of y(t) is

Sy(f) = Sx(f) · |H(f)|2 =
{

N0
2 , |f | ≤ W

0, otherwise
(3.93)

0 W

0

2

N

f
W−

( )S fy

0

0

2

N

f

( )S fx

Figure 3.24
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(b) The autocorrelation can be found as the inverse Fourier transform of the PSD:

Ry(τ) = F−1{Sy(f)} =
∫ +∞

−∞
Sy(f)ej2πfτdf (3.94)

=
∫ W

−W

N0

2
ej2πfτdf (3.95)

=
N0

4πτ

∫ W

−W
ej2πfτ (2πτ)df

x=2πτf
=

N0

4πτ

∫ 2πWτ

−2πWτ
ejxdx (3.96)

=
N0

4πτ
· 2 sin(2πWτ) =

N0 sin(2πWτ)
2πτ

(3.97)

= N0 ·W · sinc(2Wτ) (3.98)

The (normalized) autocorrelation function Ry(τ) is sketched in Fig. 3.25.

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Wτ

R
y(τ

)/
(N

0W
)

Figure 3.25: Autocorrelation function Ry(τ).

(c) The DC level of y(t) is

my = E{y(t)} = mx ·H(0) = 0 · 1 = 0 (3.99)

The average power of y(t) is

σ2
y = E{y2(t)} = Ry(0) = N0W (3.100)
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(d) Since the input x(t) is a Gaussian process, the output y(t) is also a Gaussian process
and the samples y(kTs) are Gaussian random variables. For Gaussian random variables,
statistical independence is equivalent to uncorrelatedness. Thus one needs to find the
smallest value for τ (or Ts) so that the autocorrelation is zero. From the graph of Ry(τ),
the answer is:

τmin = (Ts)min =
1

2W
(3.101)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

S  y
(f

)/
N

0

f/W (normalized frequency)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

R
 y

(τ
)/

(N
0W

)

τ W (normalized spacing)

Figure 3.26: Plot of power spectral density and autocorrelation of the output process in P3.38.

P3.38 (a) As usual Sy(f) = |H(f)|2 N0
2 . See Fig. 3.26 for the plot of Sy(f).

(b)

Ry(τ) = F−1{Sy(f)} =
N0

2

∫ W

−W

(
1− |f |

W

)2

ej2πfτdf

= N0

∫ W

0

(
1− |f |

W

)2

cos(2πfτ)df

=
2N0

W (2πτ)2

[
1− sin(2πWτ)

2πWτ

]
=

2N0

W (2πτ)2
[1− sinc(2Wτ)]

See Fig. 3.26 for the plot of Ry(τ).

(c) DC level is zero. Average power is N0

∫ W
0

(
1− |f |

W

)2
cos(2πfτ)df = N0W

3 (watts), which
can also be found from Ry(0).
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(d) Since Ry(τ) > 0 for |τ | < ∞, there is no finite value of sampling period to yield statis-
tically independent noise samples.

P3.39 (a) The output noise power is N0W watts.
The input signal PSD is

F{Rs(τ)} = K

∫ ∞

−∞
e−a|τ |e−j2πfτdτ =

2aK

a2 + 4π2f2
(watts/Hz)

Output signal power is
∫ W

−W

2aK

a2 + 4π2f2
df =

2K

aπ
tan−1

(
2πW

a

)
.

Therefore

SNR(W ) =
2K

aπ

tan−1
(

2πW
a

)

N0W
.

(b) To find the maximum,

dSNR(W )
dW

=
2K

aπN0


−tan−1

(
2πW

a

)

W 2
+

2π

aW
√

1 + 4π2W 2

a2


 = 0,

which gives √
1 +

4π2W 2

a2
tan−1

(
2πW

a

)
=

2πW

a
.

Let x ≡ 2πW
a . Then one needs to solve

√
1 + x2 tan−1(x) = x. The only solution is x = 0,

i.e., W = 0. This solution could also been obtained by recognizing that, since the noise PSD
is flat and the signal power decays as 1/f2, increasing the filter bandwidth can only reduces
the SNR.

0 T

1

T

t

( )h t

A linear filter

( )tx ( )ty

Figure 3.27: System under consideration in Problem 3.40.

P3.40 (a) The filter is time-invariant (linearity does not matter). The input noise process x(t) is
WSS. The output noise process y(t) therefore is also WSS.
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(b) The frequency response of the filter in Fig. 3.27 is:

H(f) =
∫ ∞

−∞
h(t)e−j2πftdt =

∫ T

0

1
T

e−j2πftdt

=
1
T

1
−j2πf

e−j2πft
∣∣∣
T

0
= − 1

j2πfT

[
e−j2πfT − 1

]

= −e−jπfT − ejπfT

j2πfT
e−jπfT

=
j2 sin(πfT )

j2πfT
e−jπfT =

sin(πfT )
πfT

e−jπfT = sinc(fT )e−jπfT

If mx is the DC component in x(t), then the DC component in y(t) is

my = mx ·H(0) = mx · sinc(0) = mx

(c) If x(t) is a zero-mean, white noise process with power spectral density N0/2, the power
spectral density of y(t) is given by:

Sy(f) = Sx(f) · |H(f)|2 =
N0

2

[
sin(πfT )

πfT

]2

=
N0

2
sinc2(fT )

(d) The frequency components that are not present in the output process are the components
that make Sy(f) = 0. Obviously, these components correspond to πfT = kπ, or f =
k/T , k = ±1,±2, . . ..

P3.41 Consider the system in Fig. 3.28.

Delay T=

( )tx ( )d

dt

⋅ ( )ty

System

Figure 3.28: The system under consideration in Problem 3.41.

(a) Let the input x(t) and output y(t) be deterministic signals. Then

y(t) =
d
dt

[x(t) + x(t− T )]

=
d
dt

x(t) +
d
dt

x(t− T ) (3.102)

Obviously, the system is LTI. Since the response of an LTI system to a stationary process
is also a stationary process, it follows that y(t) is a wide-sense stationary process.
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(b) Rewrite (3.102) as

y(t) =
d
dt

[x(t) + x(t− T )]

Taking the Fourier transform of both sides and using the differentiating and shifting
properties of FT gives:

Y (f) = (j2πf)[1 + e−j2πfT ]X(f)

Thus, the frequency response of the system is:

H(f) =
Y (f)
X(f)

= (j2πf)[1 + e−j2πfT ]

(c) Now consider the input x(t) being a white noise process with PSD of N0
2 ⇒ Sx(f) =

N0
2 , ∀f . The PSD of y(t) is:

Sy(f) = Sx(f) · |H(f)|2 =
N0

2
|H(f)|2

Since |H(f)|2 = 16π2f2 cos2(πfT ), it follows that

Sy(f) = 8N0π
2f2 cos2(πfT )

The above (normalized) PSD is plotted in Fig. 3.29.

(d) Here we need to find frequency components such that Sy(f) = 0:

Sy(f) = 8N0π
2f2 cos2(πfT ) = 0 ⇔

{
f = 0
cos(πfT ) = 0

⇔
{

f = 0
πfT = π

2 + kπ; k = 0,±1,±2, . . .

⇔
{

f = 0
f = 2k+1

2T ; k = 0,±1,±2, . . .

P3.42 (a) The PSD of m(t) is found by taking the Fourier transform of the autocorrelation function
Rm(τ):

Sm(f) = F{Rm(τ)} =

∞∫

−∞
Rm(τ)e−j2πfτdτ =

∞∫

−∞
Ae−|τ |e−j2πfτdτ

=

0∫

−∞
Ae(1−j2πf)τdτ +

∞∫

0

Ae−(1+j2πf)τdτ

=
A

1− j2πf
e(1−j2πf)τ

∣∣∣∣
0

−∞
+

A

−(1 + j2πf)
e−(1+j2πf)τ

∣∣∣∣
∞

0

=
A

1− j2πf
+

A

1 + j2πf
=

2A

1 + 4π2f2
(3.103)
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fT

S y(f
)/
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Figure 3.29: Plot of Sy(f).

( )tm

( )tn

( )tr o o( ) ( )t t+m n

0 W

1

f
W−

)( fH

Ideal LPF

Figure 3.30: System under consideration in Problem 3.42.

(b) Since the filter is an ideal LPF of bandwidth W , the PSD of the output message is:

Smo(f) =
{

Sm(f) ; −W ≤ f ≤ W
0 ; otherwise

(3.104)
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−3 −2 −1 0 1 2 3
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1
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f

S m
(f

)/
A

Figure 3.31: The power spectral density Sm(f).

Thus, the power of the output message is:

Pmo =

∞∫

−∞
Smo(f)df =

W∫

−W

Sm(f)df

=

W∫

−W

2A

1 + 4π2f2
df =

2A

4π2
× 2×

W∫

0

1
( 1
2π ) + f2

df

=
A

π2
(2π)tan−1(2πf)

∣∣∣∣
W

0

=
2A

π
tan−1(2πW ). (3.105)

To find the power percentages at the filter output, note that the power of the input
message is Pm = Rm(0) = A. Therefore

W (Hz) Pmo Percentage = Pmo/A

10 0.9899A 98.99%

50 0.9979A 99.79%

100 0.9989A 99.89%
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(c) Since the PSD of the output noise is:

Sno(f) =
{

N0
2 ; −W ≤ f ≤ W
0 ; otherwise

(3.106)

Then the noise power at the output of the filter is:

Pno =

W∫

−W

N0

2
df =

N0

2
· 2W = N0W. (3.107)

(d) Let A = 4 × 10−3 watts, W = 4 kHz and N0 = 10−8 watts/Hz. Determine the SNR in
dB at the filter output.

⇒ Pmo =
2A

π
tan−1(2πW ) ≈ A.

This is because the bandwidth W = 4 kHz is large enough to practically pass all the
message power.

Pno = N0W = 10−8 × 4× 103 = 4× 105.

SNR = 10log10

Pmo

Pno

= 10log10

4× 10−3

4× 10−5
= 20dB.

P3.43

Ryw(τ) = E{y(t)w(t + τ)} = E

{[∫ ∞

−∞
h(λ)[s(t− λ) + w(t− λ)]dλ

]
w(t + τ)

}

=
∫ ∞

−∞
h(λ)


E {s(t− λ)w(t + τ)}︸ ︷︷ ︸

=0 (they are uncorrelated)

+E {w(t− λ)w(t + τ)}︸ ︷︷ ︸
=

N0
2

δ(τ+λ)


dλ

=
N0

2
h(−τ)
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Sampling and Quantization

P4.1 The spectrum of the analog signal is given by

S(f) =
5[δ(f − 500) + δ(f + 500)]

2
+

2[δ(f − 1800) + δ(f + 1800)]
2

(volts/Hz). (4.1)

0500− 500 18001800−

( ) (V/Hz)S f

 (Hz)f

1

2.5

Figure 4.1

The sampled spectrum Ssampled(f) is the sum of all the shifted versions by multiples of fs

(and scaled by 1/Ts = fs which we will assume is understood). Ssampled(f) plots as follows:

0

50
0

− 50
0

18
00

18
00

−

 (Hz)f

1

2.5

20
0

20
0

−25
00

− 25
00

15
00

− 15
00

��

1 kHz

2 kHz

sampled ( ) (V/Hz)S f

Figure 4.2

(a) Output spectrum is

2.5[δ(f − 500) + δ(f + 500)]︸ ︷︷ ︸
This is due to the analog signal

+ [δ(f − 200) + δ(f + 200)]︸ ︷︷ ︸
This is an alias - due to undersampling

. (4.2)

Output time signal is

5 cos (2π(500)t) + 2 cos (2π(200)t) . (4.3)
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(b) Output spectrum is

2.5[δ(f − 500) + δ(f + 500)] + [δ(f − 1800) + δ(f + 1800)]︸ ︷︷ ︸
This is due to the analog signal

+ [δ(f − 200) + δ(f + 200)] + 2.5[δ(f − 1500) + δ(f + 1500)]︸ ︷︷ ︸
Aliases

. (4.4)

Output time signal is

5 cos (2π(500)t) + 2 cos (2π(1800)t) + 2 cos (2π(200)t) + 5 cos (2π(1500)t) . (4.5)

P4.2 First we have the following transform pair:

0  (Hz)fWW−

1

( )S f

2 2
2 sin 2

( ) d
2

W j Wt j Wt
j ft

W

e e Wt
s t e f

j t t

π π
π π

π π

−

−

−↔ = = =∫

Figure 4.3

Therefore
∞∫

−∞

√
Ts

sin 2πW (t− nTs)
π(t− nTs)︸ ︷︷ ︸
sn(t)

e−j2πftdt
λ=t−nTs=

∞∫

−∞

√
Ts

sin 2πWλ

πλ
e−j2πf(λ+nTs)dλ

=
√

TsS(f)e−j2πfnTs . (4.6)

∞∫

−∞
sn(t)s∗m(t)dt =

∞∫

−∞
Ts S(f)︸︷︷︸

||
u(f+W )−u(f−W )=S∗(f)

e−j2πfnTsS(f)∗ej2πfnTsdf

= Ts

W∫

−W

e−j2πf(n−m)Tsdf

= Ts
ej2π(n−m)WTs − e−j2WTs

j2π(n−m)Ts

2WTs=1=
sin(π(n−m))

π(n−m)
(4.7)

=
{

0 n 6= m (orthogonal)
1 n = m (normal)

P4.3 (a)

Rwout(τ) = F−1 {Swout(f)} = N0W
sin(2πWτ)

2πWτ
(watts). (4.8)
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( )H f

0  (Hz)fWW−

0 / 2N( )tw out ( )tw

0( )  watts/Hz
2

N
S f =w out

2 0( ) ( )  watts/Hz
2

N
S f H f=w

out
( )S fw

Figure 4.4

(b) No. It depends on the transfer function, H(f), and the input PSD. However if the input
is a Gaussian process then so is the output since it was obtained by the linear operations
– essentially the output is a weighted linear sum of the input, w(t).

(c) At τ = kTs:

Rwout(kTs) = N0W
sin(2πWkTs)

2πWkTs

WTs=1= N0W
sin(2πk)

2πk

= 0, k 6= 0. (4.9)

The above means that the samples are uncorrelated. And because they are Gaussian,
they are statistically independent.

(d) If increased then definitely correlated, except for very special cases such as if Ts is halved
then the set of alternate samples would be uncorrelated, etc. If decreased then if Ts is
increased by an integer multiple the samples are uncorrelated, otherwise correlated.
Statistically independent depends on the process being Gaussian and samples being
uncorrelated. If not Gaussian, nothing can be said about statistical independence even
if uncorrelated.

P4.4 • 8-bit ⇒ 256 levels ⇒ Step size = 2/256 = 7.81 mV.

• 12-bit ⇒ 4096 levels ⇒ Step size = 2/4096 = 0.488 mV.

• 16-bit ⇒ 65,536 levels ⇒ Step size = 2/216 = 30.5µV.

P4.5 3-bit ⇒ 8 levels; 4 on each side of zero.

Target levels

0
m

-4 -3 -2 -1 1 2 3 4

Thresholds

1/4

( )f mm

Figure 4.5

By inspection the uniform quantizer is the optimum one.
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Signal power is:

σ2
m =

4∫

−4

m2fm(m)dm = 2

4∫

0

m2fm(m)dm

= 2

[
1
4

m3

3

∣∣∣∣
1

0

+
1
12

m3

3

∣∣∣∣
1

0

]
=

11
3

(watts). (4.10)

Quantization noise power:

σ2
q = 2

[ 1∫

0

(
m− 1

2

)2 1
4
dm

︸ ︷︷ ︸
Change variables → λ=m−1/2

+

2∫

1

(
m− 3

2

)2 1
12

dm

︸ ︷︷ ︸
λ=m−3/2

+

3∫

2

(
m− 5

2

)2 1
12

dm

︸ ︷︷ ︸
λ=m−5/2

+

4∫

3

(
m− 7

2

)2 1
12

dm

︸ ︷︷ ︸
λ=m−7/2

]

= 2


1

4

1/2∫

−1/2

λ2dλ +
1
12

1/2∫

−1/2

λ2dλ +
1
12

1/2∫

−1/2

λ2dλ +
1
12

1/2∫

−1/2

λ2dλ




=

1/2∫

−1/2

λ2dλ = 2

1∫

0

λ2dλ =
2
3

(watts). (4.11)

Therefore

SNRq =
σ2
m

σ2
q

=
11/3
2/3

= 5.5 or 10 log10 5.5 = 7.4dB.

0-1 1

1/3

1
-

4

1

4
1D 2T

1T

1D−

1

 (volts)m

( ) (1/volts)f mm

Figure 4.6
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P4.6

T1 =

D1∫
0

mfm(m)dm

D1∫
0

fm(m)dm

=

1/4∫
0

mdm + 1
3

D1∫
1/4

mdm

1
4 +

(
D1 − 1

4

)
1
3

=
1 + 8D2

1

8 + 16D1
(4.12)

T2 =

1∫
D1

mfm(m)dm

1∫
D1

fm(m)dm

=
1−D2

1

2(1−D1)
=

1 + D1

2
(4.13)

D1 =
T1 + T2

2
(4.14)

∴ 2D1 =
1 + 8D2

1

8 + 16D1
+

1 + D1

2
⇒ 4D2

1 −D1 +
5
4

= 0 ⇒ D1 = 0.4478 (4.15)

T1 = 0.1717; T2 = 0.7239. (4.16)

P4.7 Regardless of the quantizer used, the signal power is:

σ2
m = E{m2} =

1∫

−1

m2 (1− |m|)︸ ︷︷ ︸
fm(m)

dm = 2

1∫

0

m2(1−m)dm =
1
6

watts (4.17)

Rather than solving the 1-bit, 2-bit and 3-bit quantizers separately, we first set up general
expressions for the σ2

q, Di and Ti in terms of n, the number of bits used for quantization.
Before this, we observe that the pdf is symmetrical about zero and that the number of levels is
even (= 2n). Therefore the decision boundaries and target levels shall be symmetrical about
zero ⇒ need only consider the positive m axis. The picture looks as follows:

m

1

0 0D = 1KD =iD 1iD + 1KD −

0T iT 1KT −

1D � �

12
2

2 2

n
nL

K −= = =

(  number of target levels)L −

( )f mm

Figure 4.7

General expressions for the uniform quantizer:

The decision intervals Di+1 −Di are equal and are = 1/2n−1 = 1/K.

The target levels Ti are in the middle of the interval, i.e., Ti = (Di+Di+1)/2, i = 0, . . . , K−1,
or another way of expressing Ti is Ti = (i+1/2)∆, i = 0, . . . , K−1, ∆ = Di+1−Di = 1/2n−1.
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The quantization noise power is given by:

σ2
q = 2

K−1∑

i=0

Di+1∫

Di

(m− Ti)2(1−m)dm
λ=m−Ti= 2

K−1∑

i=0

1/2n∫

−1/2n

λ2(1− λ− Ti)dλ

= 2
K−1∑

i=0




(1− Ti)

1/2n∫

−1/2n

λ2dλ−
1/2n∫

−1/2n

λ3dλ

︸ ︷︷ ︸
=0




= 4
K−1∑

i=0

(1− Ti)
(

1
3(23n)

)

=
1

3(23n−2)

[
K−1∑

i=0

(1− Ti)

]
. (4.18)

Consider
K−1∑

i=0

(1− Ti) = K −
K−1∑

i=0

(
i +

1
2

)
∆ = K −∆

[
(K − 1)K

2
+

K

2

]

= K − ∆K

2
K

∆K=1=
K

2
= 2n−2 (4.19)

∴ σ2
q =

1
3(23n−2)

2n−2 =
1

3(22n)
watts. (4.20)

It is now easy to find SNRq for any number of bits:

SNRq =
σ2
m

σ2
q

=
3(22n)

6
= 22n−1 or (2n− 1) log10 2 = (2n− 1)3 dB. (4.21)

n 1 2 3 4

SNRq 2 8 32 124

SNRq(dB) 3 9 15 21

Turning our attention to the optimum quantizer

The equations for the decision boundaries are easy to write. They are:

Di =
Ti−1 + Ti

2
, i = 1, 2, . . . , K − 1 = 2n−1 − 1. (4.22)

For the target levels, consider the generic interval as shown:

The centroid of this “probability mass” is:

Ti =

Di+1∫
Di

m(1−m)dm

Di+1∫
Di

(1−m)︸ ︷︷ ︸
fm(m)

dm

=
D2

i+1−D2
i

2 − D3
i+1−D3

i

3

(Di+1 −Di)− D2
i+1−D2

i

2

=
Di+1+Di

2 − D2
i+1+Di+1Di+D2

i

3

1− Di+1+Di

2

=
3(Di+1 + Di)− 2(D2

i+1 + Di+1Di + D2
i )

3 [2− (Di+1 + Di)]
, i = 0, 1, . . . ,K − 1 (4.23)
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m
iD 1iD +

iT

1 m−

Figure 4.8

(Note that D0 = 0, DK = 1).

The above set of K +K − 1 = 2n− 1 nonlinear algebraic equations needs to be solved for the
decision boundaries and target levels. For n = 1 & 2 this can be done reasonably simply.

1-bit optimum quantizer

Only the target level, T0, needs to be determined (D0 = 0, D1 = 1)

T0 =
3(D1 + D0)− 2(D2

1 + D1D0 + D2
0)

3 [2− (D1 + D0)]
=

3− 2
3

=
1
3
. (4.24)

2-bit optimum quantizer

Have 22 − 1 = 3 equations in T0, T1, D1 with D0 = 0, D2 = 1.

D1 =
T0 + T1

2
or 2D1 = T0 + T1 (4.25)

T0 =
3(D1 + D0)− 2(D2

1 + D1D0 + D2
0)

3 [2− (D1 + D0)]
=

3D1 − 2D2
1

3(2−D1)
(4.26)

T1 =
3(D2 + D1)− 2(D2

2 + D2D1 + D2
1)

3 [2− (D2 + D1)]

=
3(1 + D1)− 2(1 + D1 + D2

1)
3 [2− (1 + D1)]

=
1 + D1 − 2D2

1

3(1−D1)
(4.27)

⇒ 2D1 =
3D1 − 2D2

1

3(2−D1)
+

1 + D1 − 2D2
1

3(1−D1)
. (4.28)

This simplifies to D3
1 − 4D2

1 + 4D1 − 1 = 0. Use either roots function in Matlab or observe
that D1 = 1 is a root and therefore the polynomial factors as (D1 − 1)(D2

1 − 3D1 + 1). The
roots of the quadratic are: 3±√9−4

2 = 3±√5
2 .

Choosing 3−√5
2 (since D1 must lie in [0, 1]) we have D1 = 0.382 and T0 = 0.176, T1 = 0.588.

3-bit optimum quantizer

There are 23− 1 = 7 equations in the unknowns T0, D1, T1, D2, T2, D3, T3. In particular, 3 for
the decision boundaries: D1 = T0+T1

2 , D2 = T1+T2
2 , D3 = T2+T3

2 , and 4 for the target levels:
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(D0 = 0, D4 = 1)

T0 =
3D1 − 2D2

1

3(2−D1)
(4.29)

T1 =
3(D2 + D1)− 2(D2

2 + D2D1 + D2
1)

3[2− (D2 + D1)]
(4.30)

T2 =
3(D3 + D2)− 2(D2

3 + D3D2 + D2
2)

3[2− (D3 + D2)]
(4.31)

T3 =
1 + D3 − 2D2

3

3(1−D3)
. (4.32)

To solve the above set of nonlinear algebraic equations the function fsolve in the optimization
toolbox of Matlab was used. The obtained solution is

D1 = 0.1879; D2 = 0.3920; D3 = 0.6243;

T0 = 0.0907; T1 = 0.2851; T2 = 0.4990; T3 = 0.7495.

Turning to the quantization noise power, σ2
q, for the optimum quantizer we derive at first a

general expression for the noise power when m falls in the region Di, Di+1. It is

σ2
q(i) =

Di+1∫

Di

(m− Ti)2(1−m)dm
λ=m−Ti= (1− Ti)

Di+1−Ti∫

Di−Ti

λ2dλ−
Di+1−Ti∫

Di−Ti

λ3dλ

=
(1− Ti)

3
[
(Di+1 − Ti)3 − (Di − Ti)3

]
+

1
4

[
(Di − Ti)4 − (Di+1 − Ti)4

]

(4.33)

and σ2
q = 2

K−1∑
i=0

σ2
q(i).

Programming this in Matlab gives:

2-bit quantizer: σ2
q = 0.0155;

3-bit quantizer: σ2
q = 0.0041;

The quantization signal-to-noise ratios are therefore:

1-bit 2-bit 3-bit

SNRq
(1/6)
(1/18) = 3 (1/6)

0.0155 = 10.75 (1/6)
0.0041 = 40.65

SNRq(dB) 4.77 10.3 16.1

Remark : Compared to the uniform quantizer, the optimum quantizer gives the biggest perfor-
mance improvement at 1 bit. As the number of bits increases the performance improvement
becomes less and less⇒ the optimum quantizer tends to be a uniform quantizer for n (number
of bits) “large”.

Matlab code

(i) Thresholds and decision levels (2-bit quantizer)
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function F=quantizer(x)
F=[x(1) - (1 + 8*x(3)^2)/(8 + 16*x(3)); x(2) - 0.5*(1 + x(3));
x(3) - 0.5*(x(1) + x(2))] % x_1 = T_1; x(2)=T_2; x(3)=D_1
x0=[0.25 0.75 0.5];
% initial guess - basically uniform quantizer values
options = optimset(’Display’,’iter’)
[x, fval]=fsolve(@quantizer, x0, options)

(ii) sigmaq=0; K= ;
D_vec=[0, D_1, D_2,...,D_{K-1}, 1];
T=[T_0,...,T_{K-1}];
for i=1:1:K

a=1-T(i); b=D_vec(i+1)-T(i); c=D_vec(i)-T(i);
sigmaq= a*(b^3-c^3)/3 + 0.25*(c^4 - b^4);

end
sigmaq=2*sigmaq;

P4.8 (a) Since fm(m) is symmetric about zero, one only needs to compute the decision and target
values for the positive m axis:

Tl =

∫ Dl+1

Dl
mfm(m)dm

∫ Dl+1

Dl
fm(m)dm

(4.34)

=
(c/2)

∫ Dl+1

Dl
mexp(−cm)dm

(c/2)
∫ Dl+1

Dl
exp(−cm)dm

=

∫ Dl+1

Dl
mexp(−cm)dm

∫ Dl+1

Dl
exp(−cm)dm

(4.35)

Applying integral by parts to obtain the following:
∫

exp(−cm)dm = −1
c
exp(−cm) (4.36)

∫
mexp(−cm)dm = −1

c
mexp(−cm)− 1

c2
exp(−cm) (4.37)

Thus
Tl =

Dl+1exp(−cDl+1)−Dlexp(−cDl)
exp(−cDl+1)− exp(−cDl)

+
1
c

(4.38)

The average signal power is

σ2
m =

∫ +∞

−∞
m2fm(m)dm = c

∫ +∞

0
m2exp(−cm)dm

=
2
c2

. (4.39)

The following integrals may be useful when computing the average quantization noise
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power:

I1(a, b) =
∫ b

a
m2exp(−cm)dm

= −
[
exp(−cm)

(
m2

c
+

2m

c2
+

2
c3

)] ∣∣∣∣
b

a

, (4.40)

I2(a, b) =
∫ b

a
mexp(−cm)dm

= −
[
exp(−cm)

(
m

c
+

1
c2

)] ∣∣∣∣
b

a

. (4.41)

(b) One-bit uniform quantizer: L = 2, D0 = 0, D1 = +∞, one need to find T0. Since
mmax → +∞, one can assume that mmax will not exceed a value p with the proba-
bility ε and then compute Dl, Tl corresponding to p and ε. Therefore,

ε =
∫ p

0

1
2
cexp(−cm)dm =

1
2

[1− exp(−cp)] (4.42)

⇒ p = −1
c

ln(1− 2ε). (4.43)

Then the target value for this case will be

T0 = − 1
2c

ln(1− 2ε). (4.44)

The average quantization noise power is:

σ2
q = 2

∫ ∞

0
(m− T0)2fm(m)dm

= c

∫ ∞

0
(m− T0)2exp(−cm)dm

= c

[
I1(0, +∞)− 2T0I2(0, +∞) +

T 2
0

c

]

=
1
c2

[
2 + ln(1− 2ε) +

1
4

ln2(1− 2ε)
]

. (4.45)

The quantization signal-to-noise ratio is therefore:

SNRq =
σ2
m

σ2
q

=
2

2 + ln(1− 2ε) + 1
4 ln2(1− 2ε)

. (4.46)

(c) One-bit optimum quantizer: L = 2, D0 = 0 and D1 = +∞. Use (4.38) to find T0:

T0 =
D1exp(−cD1)−D0exp(−cD0)

exp(−cD1)− exp(−cD0)
+

1
c

=
D1exp(−cD1)
exp(−cD1)− 1

+
1
c

=
1
c

(4.47)
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Thus the quantizer maps all the positive values of the sampled message to 1
c and all the

negative values to −1
c .

Similar to (4.45), the quantization noise power is

σ2
q = 2

∫ ∞

0
(m− T0)2fm(m)dm

= c

∫ ∞

0
(m− T0)2exp(−cm)dm

= c

[
I1(0, +∞)− 2T0I2(0, +∞) +

T 2
0

c

]

=
1
c2

. (4.48)

The quantization signal-to-noise ratio is therefore:

SNRq =
σ2
m

σ2
q

=
2/c2

1/c2
= 2. (4.49)

(d) Two-bit uniform quantizer: Similar to the one-bit uniform quantizer, one has L = 4, D0 =
0, D2 = −1

c ln(1−2ε). Thus, D1 = − 1
2c ln(1−2ε), T0 = − 1

4c ln(1−2ε), T1 = − 3
4c ln(1−2ε).

Two-bit optimum quantizer: L = 4, D0 = 0, D2 = +∞ ⇒ Need to find T0, T1 and D1.
Using (4.38) one has:

T0 =
D1exp(−cD1)
exp(−cD1)− 1

+
1
c

(4.50)

T1 = D1 +
1
c

(4.51)

Next, the equation to solve for D1 is:

D1 =
T0 + T1

2

=
1
c

[
D1 +

D1exp(−cD1)
exp(−cD1)− 1

]
+

1
c

(4.52)

Let x = cD1, then after some manipulations, the above equation becomes:

x = 2− 2e−x (4.53)

Equation (4.53) can be solved by trial and error. One method is to plot 2− 2e−x and x
versus x and look at the intersection point (see Fig. 4.9). The solution is x = 1.59 ⇒
D1 = 1.59

c ⇒ T1 = D1 + 1
c = 2.59

c and T0 = D1 − 1
c = 0.59

c .
For these two quantizers, the average quantization noise power can be computed as

σ2
q = 2

[
σ2
q(0) + σ2

q(1)
]
, (4.54)

where

σ2
q(0) =

c

2

[
I1(0, D1)− 2T0I2(0, D1) +

T 2
0

c
(1− exp(−cD1))

]
, (4.55)

σ2
q(1) =

c

2

[
I1(D1,+∞)− 2T1I2(D1, +∞) +

T 2
1

c
exp(−cD1)

]
, (4.56)

and the quantization signal-to-noise ratio can be found by SNRq = σ2
m/σ2

q.
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0 0.10.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
0

0.4

0.8

1.2

1.6

2

x 

2−2e−x 

Figure 4.9: Plots of 2− 2e−x and x versus x.

P4.9 To be added.

P4.10 To be added.

P4.11 By inspection the optimum quantizer is a uniform quantizer with decision boundaries at
k∆, (k + 1)∆, etc., and a target level of k∆ + ∆/2. With these values the target level is the
center of gravity of the probability mass density and the decision boundary is the arithmetic
of the two adjacent target values, i.e., the optimum equations are satisfied.

Note: This implies that as the number of quantization bits, R, increases the approximation
becomes better and better and that the uniform quantizer’s performance approaches that of
an optimum quantizer. Given the manufacturing simplicity of a uniform quantizer there is
little or no profit going to an optimum quantizer.

P4.12 Ignoring for the moment the range of mout, the first observation is that for fmout(mout) to be
uniform the RHS of (P4.5) must be a constant, dg(m)

dm = fm(m) ⇒ that g(m) is the cumulative
distribution function of m(t), i.e., g(m) = Fm(m). Fm(m) is monotonic and ranges from 0
(at −∞) to 1 (at +∞). Therefore fmout(mout) is uniform over [0, 1].

Pass mout(t) through a linear (mathematically more appropriately called affine) transforma-
tion which shifts it to lie in the [−1, 1] range.

y(t) = 2
[
mout(t)− 1

2

]
(4.57)

fy(y) =
1
2

[u(y + 1)− u(y − 1)] . (4.58)

Refuses, because the quantizer in all likelihood would not be robust enough. It would be
sensitive to the assumed pdf model for m(t).
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P4.13 Crest factor F is defined as

F =
Peak value of the signal
RMS value of the signal

=
mmax

σm
(4.59)

(a) A sinusoid with peak amplitude of mmax: VRMS = mmax/
√

2 ⇒ F =
√

2 .

(b) A square wave of period T and amplitude range [−mmax,mmax]: VRMS = mmax ⇒
F = 1 .

(c) Uniform over the amplitude range [−mmax,mmax]: σ2
m = E{m2} = 2

∫ mmax

0 m2 1
2mmax

dm =
m2

max
3 ⇒ VRMS = mmax√

3
⇒ F =

√
3 = 1.73 .

(d) Zero-mean Gaussian with variance σ2
m: VRMS = σm. Equation to solve for mmax is

1√
2πσm

∫ mmax

0
exp

(
− m2

2σ2
m

)
dm =

0.99
2

(4.60)

By changing the variable t = m√
2σm

the above can be rewritten as

2√
π

∫ mmax√
2σm

0
e−t2dt = 0.99 ⇒ erf

(
mmax√

2σm

)
= 0.99

⇒ mmax√
2σm

= erf−1(0.99) = 1.8214 ⇒ mmax =
√

2× 1.8214× σm

⇒ F = 2.5758 (4.61)

(e) Zero-mean Laplacian: σ2
m = E{m2} = 2

c2
⇒ σm =

√
2

c . Now solve for mmax:

c

2

∫ mmax

0
exp (−cm) dm =

0.99
2

⇒ −exp(−cm)

∣∣∣∣∣
mmax

0

= 0.99

⇒ 1− exp(−cmmax) = 0.99 ⇒ mmax =
− ln(0.01)

c
=

4.6052
c

⇒ F =
4.6052√

2
= 3.2563 (4.62)

(f) Zero-mean Gamma. The pdf is

fm(m) =

√
k

4π|m|exp(−k|m|) (4.63)

σ2
m = 2

∫ ∞

0
m2

√
k

4πm
exp(−km)dm =

√
k√
π

∫ ∞

0
m3/2exp(−km)dm (4.64)
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Integrate by parts to obtain:

∫ ∞

0
m3/2exp(−km)dm = −1

k
m3/2exp(−km)

∣∣∣∣∣
∞

0︸ ︷︷ ︸
=0

+
3
2k

∫ ∞

0
m1/2exp(−km)dm

= − 3
2k2

[
m1/2exp(−km)

∣∣∣∣
∞

0︸ ︷︷ ︸
=0

−1
2

∫ ∞

0

exp(−km)√
m

dm

]

=
3

4k2

∫ ∞

0

exp(−km)√
m

dm
t =

√
km

=
3
√

π

4k2
√

k

2√
π

∫ ∞

0
e−t2dt

=
3
√

π

4k2
√

k
× erf(∞)︸ ︷︷ ︸

=1

=
3
√

π

4k2
√

k
(4.65)

Combining (4.64) and (4.65) yields σ2
m = 3

4k2 ⇒ σm =
√

3
2k .

Now mmax is found as follows:
√

k

2
√

π

∫ mmax

0

exp(−km)√
m

dm =
0.99
2

t =
√

km

⇒
1√
π

∫ √
kmmax

0
e−t2dt = 0.99

⇒ erf
(√

kmmax

)
= 0.99 ⇒

√
kmmax = erf−1(0.99)

⇒ mmax =

[
erf−1(0.99)

]2

k
=

3.3174
k

(4.66)

F =
3.3174× 2√

3
= 3.8307 (4.67)

Therefore if one was to list the signals from least “peaked” to most “peaked”, they are:

square wave, sinusoid, uniform, Gaussian, Laplacian, Gamma,

which, from either the waveshapes or the pdfs, makes some intuitive sense.

P4.14 (a) Sinusoid: mmax cos(2πfrt) ⇒ T = 1/fr. Then over half a period the average value of
|m(t)| is

=
1

(T/2)

T/4∫

−T/4

mmax cos(2πfrt)dt =
2
T

mmax

1/(4fr)∫

−1/(4fr)

cos(2πfrt)dt =
2mmax

π
(4.68)

VRMS =
mmax√

2
⇒ E{|m(t)|}

VRMS
=

2
√

2
π

= 0.9 (4.69)

(b)

E{|m(t)|} = mmax, VRMS = mmax ⇒ E{|m(t)|}
VRMS

= 1 (4.70)
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(c)

E{|m|} =

mmax∫

−mmax

|m| 1
2mmax

dm =
mmax

2
(4.71)

σm =
mmax√

3
(4.72)

Therefore E{|m|}
σm

=
√

3
2 = 0.87.

(d)

E{|m|} =
1√

2πσm

∞∫

−∞
|m|e−

m2

2σ2
m dm

λ= m2

2σ2
m=

2σm√
2π

∞∫

0

e−λdλ =

√
2
π

σm (4.73)

∴ E{|m|}
σm

=

√
2
π

= 0.8 (4.74)

(e)

E{|m|} =
c

2

∞∫

−∞
|m|e−c|m|dm =

1
c

(4.75)

σm =
√

2
c

(from P 4.13e) ⇒ E{|m|}
σm

=
1√
2

= 0.707 (4.76)

(f)

E{|m|} =

√
k

4π

∞∫

−∞

|m|
|m|1/2

e−k|m|dm =

√
k

π

∞∫

0

m1/2e−kmdm

=

√
k

π

Γ(3
2)

(k)3/2
=

1
2k

(4.77)

σm =
√

3
2k

(from P4.13e) ⇒ E{|m|}
σm

=
1√
3

= 0.58 (4.78)

Listing the parameters from largest to smallest results in:

square wave, sinusoid, uniform, Gaussian, Laplacian, Gamma.

The above is the same order as in P4.13, but the parameter values are now decreasing instead
of increasing.

Note: The relationship can be used (and has been used) to design an RMS meter. The block
diagram looks as in Fig. 4.10. The advantage of this approach is a “true” RMS voltmeter
requires a squaring circuit whereas here only a fullwave rectifier is needed. The disadvantage
is that the voltmeter is good only as an RMS voltmeter for the specific signal that the signal
is calibrated.
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Fullwave Rectifier Everaging Circuit

Typically a (very)

lowpass filter

Scale Calibrated

e.g., for sinusoid

( )tm ( )tm
{ }

using 
E

σm

m
{ }E m

{ } { }RMS 1.11
0.9

E
Eσ= = =m

m
m

Figure 4.10: Block diagram of an RMS meter.

P4.15 Eqn. (4.46) states that

SNRq(σ2
n) =

3L2µ2

ln2(1 + µ)
σ2

n(
1 + 2µσn

E{|m|}
σm

+ µ2σ2
n

) . (4.79)

From P4.14 the signal parameter E{|m|}
σm

is as follows:

• Gaussian:
√

2
π ;

• Laplacian: 1√
2
;

• Gamma: 1√
3
;

• Uniform:
√

3
2 .

Matlab code for the plot:

L=256; % 8-bit quantizer
mu=255; % mu-law parameter
SPar= sqrt(2/pi); % appropriate signal parameter, entered is for Gaussian
K=3*L^2*mu^2/((log(1+mu))^2);
SPB =[-100:1:0]; % signal power from -100 to 0 dB, 1 dB increments
SP=10.^(SPB/10); % signal power
SNRq=K*SP./(1 + 2*mu*SPar*sqrt(SP) + mu^2*SP);
plot(SPB,10*log10(SNRq)); % plot SNRq in dB
hold;
%(repeat for next signal model)

From the plots it can be seen that the quantizer is quite insensitive to variations in input
signal power over a wide range (≈ 40 dB) and also insensitive to the actual pdf model of the
input signal - Both desirable properties.

P4.16 Consider positive m. Note that nonlinearity is an odd function. Therefore the derivative shall
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Figure 4.11: Plots of SNRq for different signal models with 8-bit µ-law quantizer (L = 256, µ = 255).

be an even function.

For 0 < m ≤ mmax

A
:

dy

dm
=

Aymax

mmax(1 + lnA)
(4.80)

For
mmax

A
< m ≤ mmax :

dy

dm
=

ymax

m(1 + lnA)
(4.81)

∴
(

dy

dm

)2

=

{
A2y2

max
m2

max(1+ln A)2
, 0 < m ≤ mmax

A
y2
max

m2(1+ln A)2
, mmax

A < m ≤ mmax

(4.82)
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Nq =
y2
max

3L2

mmax∫

−mmax

fm(m)(
dy
dm

)2 dm

=
y2
max

3L2

[ −mmax/A∫

−mmax

m2(1 + lnA)2

y2
max

fm(m)dm +

mmax/A∫

−mmax/A

m2
max(1 + lnA)2

A2y2
max

fm(m)dm

+

mmax∫

mmax/A

m2(1 + lnA)2

y2
max

fm(m)dm

]

=
(1 + lnA)2

3L2

[ −mmax/A∫

−mmax

m2fm(m)dm +

mmax∫

mmax/A

m2fm(m)dm +
m2

max

A2

mmax/A∫

−mmax/A

fm(m)dm

︸ ︷︷ ︸
=P(−mmax

A
≤m≤mmax

A )

]

=
(1 + lnA)2

3L2

{
σ2
m −

mmax/A∫

−mmax/A

m2fm(m)dm +
m2

max

A2
P

(
−mmax

A
≤ m ≤ mmax

A

)}

∴ SNRq =
3L2

(1+ln A)2
σ2
m

σ2
m +

(
m2

max
A2 P

(−mmax
A ≤ m ≤ mmax

A

)−
mmax/A∫
−mmax/A

m2fm(m)dm

) (4.83)

The term m2
max
A2 P

(−mmax
A ≤ m ≤ mmax

A

)−
mmax/A∫
−mmax/A

m2fm(m)dm depends on the ratio mmax/A

and on the pdf model assumed for fm(m). In a well-engineered system mmax/A ¿ 1 and
therefore for high σ2

m the SNRq = 3L2

(1+ln A)2
(analogous to µ-law behavior for large µ). In

essence, it appears that both µ-law and A-law are equally (perhaps similarly is a better
word) robust to the assumed signal model. Plots of SNRq are shown below for Laplacian and
uniform pdf models since these are fairly easy to handle analytically.

For uniform and Laplacian densities the 2 “correction” factors are:

(a) Uniform:

P
(
−mmax

A
≤ m ≤ mmax

A

)
=

1
2mmax

mmax/A∫

−mmax/A

dm =
1
A

(4.84)

mmax/A∫

−mmax/A

m2fm(m)dm =
1

mmax

mmax/A∫

0

m2dm =
m2

max

3A3
=

σ2
m

A3
. (4.85)

(b) Laplacian:
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First define mmax to be the value that captures ε% (percent) of the probability, given

by 2
mmax∫
−mmax

c
2e−c|m|dm ⇒ cmmax = − ln(1− ε/100). Then

P
(
−mmax

A
≤ m ≤ mmax

A

)
= 2

mmax/A∫

0

c

2
e−cmdm = 1− e−

cmmax
A (4.86)

and

mmax/A∫

−mmax/A

m2
( c

2
e−c|m|

)
dm = c

mmax/A∫

0

m2e−cmdm

=
1
c2

{
2− e−

cmmax
A

[(cmmax

A

)2
+ 2

cmmax

A
+ 2

]}
. (4.87)

But σ2
m = 2/c2 for Laplacian. Therefore

mmax/A∫

−mmax/A

m2
( c

2
e−c|m|

)
dm =

σ2
m

2

{
2− e−

cmmax
A

[(cmmax

A

)2
+ 2

cmmax

A
+ 2

]}
(4.88)

−100 −80 −60 −40 −20 0
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38.1715

38.172

38.1725

Signal power 10log
10
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m
2 ) (dB)

S
N

R q (
dB

)

 

 

Laplacian
Uniform

Figure 4.12: Plots of SNRq for different signal models with 8-bit A-law quantizer (L = 256,
A = 87.6, ε = 0.9999 for Laplacian pdf).

Plots in Fig. 4.12 show that A-law quantizer is more robust to µ-law quantizer, both over
input signal power and pdf models.

P4.17 The µ-law nonlinearity can be visualized in 2 different ways as illustrated in Fig. 4.13.

Consider (a) which is more of an engineering model (model (b) is left as a further exercise).
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y
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maxy−

maxm
maxm−

m

( )g m

( )a

y

maxy

maxy−
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maxm−

m

( )b

Figure 4.13: Visualization of µ-law nonlinearity.

The pdf, fy(y), shall have two impulses, one at y = ymax, the other at y = −ymax each of
strength P (mmax ≤ m < ∞).

In the range −mmax ≤ m ≤ mmax, there is only one root to the equation g(m) = y. Solve
this for 0 ≤ y ≤ ymax. Note that because of the symmetry in fm(m) & g(m), fy(y) is an even
function.

ymax

ln(1 + µ)

[
1 +

µm

mmax

]
= y ⇒ mroot =

mmax

µ

[
(1 + µ)y/ymax − 1

]
(4.89)

∣∣∣∣
dy

dm

∣∣∣∣
mroot

=
ymax

ln(1 + µ)
1(

1 + µm
mmax

) µ

mmax

∣∣∣∣
mroot

=
ymaxµ

mmax ln(1 + µ)
1

(1 + µ)y/ymax
(4.90)

fy(y) =
fm(m)|mroot∣∣∣ dy

dm

∣∣∣
mroot

=
mmax ln(1 + µ)√

2πymaxµ
(1 + µ)y/ymaxe−

1
2 [(1+µ)y/ymax−1]2 (4.91)

where 0 ≤ y ≤ ymax and fm(m) = N (0, 1).

Since fy(y) = fy(−y) we have:

fy(y) =





mmax ln(1+µ)√
2πymaxµ

(1 + µ)|y|/ymaxe−
1
2 [(1+µ)|y|/ymax−1]2 , −ymax ≤ y ≤ ymax

P (−∞ < m ≤ −mmax)δ(y + ymax) + P (mmax ≤ m < ∞)δ(y − ymax)
= 0, elsewhere

(4.92)

To plot let mmax be such that 99% of pdf is “captured”, which gives mmax = 2.576 and
P (−∞ < m ≤ −mmax) = P (mmax ≤ m < ∞) = 0.005. Let ymax = 1. The plot is shown in
Fig. 4.14, which does not seem to confirm the “intuition”.

P4.18 Consider x > 0, y(x) = (1 + S) x
1+Sx .

dy

dx
=

1 + S

(1 + Sx)2
⇒ dy

dx
=

1 + S

(1 + S|x|)2 , |x| < 1 (4.93)
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Figure 4.14: Pdf plot of the output of the µ-law compressor when input is Gaussian.

Nq =
1

3L2(1 + S)2

1∫

−1

(1 + S|x|)4fx(x)dx, where x =
m

mmax
. (4.94)

In terms of the unnormalized variable m, one has
dy

dx
=

dy

dm

dm

dx
= mmax

dy

dm
or

dy

dm
=

1
mmax

dy

dx
. (4.95)

Then

Nq =
m2

max

3L2(1 + S)2

mmax∫

−mmax

(
1 + S

|m|
mmax

)4

fm(m)dm

=
m2

max

3L2(1 + S)2

mmax∫

−mmax

(
1 + 4S

|m|
mmax

+ 6S2 |m|2
m2

max

+ 4S3 |m|3
m3

max

+ S4 |m|4
m4

max

)
fm(m)dm

=
m2

max

3L2(1 + S)2

(
1 + 4S

E{|m|}
mmax

+ 6S2 E{|m|2}
m2

max

+ 4S3 E{|m|3}
m3

max

+ S4 E{|m|4}
m4

max

)

To write this in terms of σ2
n = σ2

m/m2
max note that

E{|m|}
mmax

=
σm

mmax

E{|m|}
σm

=
√

σ2
n

E{|m|}
σm

(as seen in P4.15, Eqn. (P4.9)) (4.96)

E{|m|2}
m2

max

= σ2
n (4.97)

E{|m|3}
m3

max

=
σ3
m

m3
max

E{|m|3}
σ3
m

= (σ2
n)3/2 E{|m|3}

σ3
m

(4.98)

E{|m|4}
m4

max

=
σ4
m

m4
max

E{|m|4}
σ4
m

= (σ2
n)2

E{|m|4}
σ4
m

(4.99)
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∴ SNRq =
3L2(1 + S)2σ2

n

1 + 4S
√

σ2
n

E{|m|}
σm

+ 6S2σ2
n + 4S3(σ2

n)3/2 E{|m|3}
σ3
m

+ S4σ4
n

E{|m|4}
σ4
m

(4.100)

For a zero-mean Gaussian signal with power level σ2
m the quantities are:

E{|m|}
σm

=

√
2
π

;
E{|m|3}

σ3
m

= 2

√
2
π

;
E{|m|4}

σ4
m

= 3. (4.101)

Aside: If x is N (0, σ2) then

E{xn} =
{

1 · 3 · · · (n− 1)σn, n even
0, n odd

(4.102)

E{|x|n} =

{
1 · 3 · · · (n− 1)σn, n = 2k√

2
π2kk!σ2k+1, n = 2k + 1

(4.103)

Plots for S = 5, 10, 50, 100 are shown in Fig. 4.15. Note that the performance is not that
attractive in that the SNRq varies considerably with σ2

n. Some reflection leads one to conclude
that this is due to the “higher” order moments presented in the Nq expression, namely σ3

n, σ4
n.

One likes no moments higher than σ2
n because then SNRq → constant as σ2

n becomes larger.
The bottom line is that any old saturating nonlinearity is not suitable in a compander. It
has to be one that results in a σ2

n term in Nq and this is what ln(·) nonlinearities of the µ-law
and A-law give you.
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Figure 4.15: Plots of SNRq for 8-bit S-law quantizer with Gaussian input signal.

P4.19 Since we would like the mapping to be unique then the number of possible mappings from
the L = 2R target levels to the R-bit sequences is L! which for R = 2, 4, 8, 16 bits are
4! = 24; 16! = 2.0923 × 1013; 256! = Matlab says inf; 216! = more than 256! but still
countable. Though some of these mappings may be considered to be trivially different, there
is still a humongous number of them.
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P4.20 Let P [bit error] = Pe. Then E{q2} = E{q2|no bit error}(1− Pe) + E{q2|1 bit error}Pe.

Assume a uniform quantizer and also a uniform pdf for the quantization error (Eqn. (4.21)).
Then E{q2|no bit error} is that of Equation (4.22) and it is ∆2/12 (watts).

With one bit error the quantization error, q, shall still have a uniform pdf but with a nonzero
mean. The mean value depends on which bit is in error and the bit sequence considered. The
picture looks as shown in Fig. 4.16.

m ∆

Transmitted
bit pattern

Because of bit error
we demodulate to
this target level

jm
lm

∆k

l j= + ∆m m k

Figure 4.16

∴ E{(m−ml)2} = E{(m−mj − k∆)2}
= E{(m−mj)2} − E{2k∆(m−mj)}+ E{k2∆2} (4.104)

Now E{(m−mj)2} =
∆2

12
(i.e., as if no bit error occurred) (4.105)

E{(m−mj)} = 0 (4.106)

E{k2∆2} =
∑

k

k2∆2P [k] (4.107)

∴ E{q2} = σ2
q(1− Pe) +

(
σ2
q +

2∑

k

k∆2P [k]

)
Pe

= σ2
q + Pe

∑

k

k2∆2P [k]. (4.108)

So now it is a matter of determining the k profile along with the value of P [k]. We do this
for the three mappings of Fig. 4.19 and L = 8.

Bit pattern 000 001 010 011 100 101 110 111
NBC {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4}
Gray {1, 3, 7} {1, 1, 5} {1, 3, 1} {1, 1, 3} {1, 3, 7} {1, 1, 5} {1, 3, 1} {1, 1, 3}
FBC {1, 2, 1}︸ ︷︷ ︸ {1, 1, 3} {1, 2, 5} {1, 2, 7} {1, 2, 1} {1, 2, 3} {1, 2, 5} {1, 2, 7}

values of k

Now assuming that each bit sequence is equally probable and that which bit is in error is
equally probable, the P [k] is as follows:

NBC: P [k = 1] = 1/3; P [k = 2] = 1/3; P [k = 4] = 1/3
Gray: P [k = 1] = 14/24 = 7/12; P [k = 3] = 6/24 = 3/12; P [k = 5, 7] = 2/24 = 1/12
FBC: P [k = 1] = 11/24; P [k = 2] = 7/24; P [k = 3, 5, 7] = 2/24 = 1/12
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Therefore the quantization noise variance is:

NBC: E{q2} = σ2
q + 1

3 [∆2 + 4∆2 + 16∆2]Pe = ∆2[ 1
12 + 7Pe].

Gray: E{q2} = σ2
q + [ 7

12∆2 + 3
12(9∆2) + 1

12(25∆2) + 1
12(25∆2)]Pe = ∆2[ 1

12 + 9Pe].

FBC: E{q2} = σ2
q+[ 1

24∆2+ 7
24(4∆2)+ 2

24(9∆2)+ 2
24(25∆2)+ 2

24(49∆2)]Pe = ∆2[ 1
12 +8.46Pe].

If Pe ≤ 10−3 the effect is negligible.

P4.21 (a) ∆ = 2Vmax
256 = Vmax

128 . (Note: Here the optimum quantizer is a uniform quantizer).
σ2
m = Rm(τ = 0) = 1 (watts)

Since σ2
m = V 2

max
3 ⇒ V 2

max = 3.

σ2
q = ∆2

12 = V 2
max

12(27)2
= 1

216 .

(b) ∂
∂α

[
E

{
[m(k)− αm(k − 1)]2

}]
= 0 ⇒ α = Rm(1)

Rm(0) = Rm(Ts)
Rm(0) = e−1/100.

(c) y(k) = m(k)− αm(k − 1) = m(k)− e−1/100m(k − 1).
E{y(k)} = 0; E{y2(k)} = (1 + α2) Rm(0)︸ ︷︷ ︸

=1

−2α Rm(1)︸ ︷︷ ︸
=α

= 1− α2 = 0.0198.

y′(kTs) has a mean of zero and a variance of 0.0198. Because it is uniform we know that
the variance is (y′max)

2/12 ⇒ y′max = 0.48745.

∴ σ2
q

∣∣∣∣
diff. quan.

=
(y′max)

2

3 · 216
=

0.2376
3 · 216

(4.109)

σ2
q

∣∣∣∣
no diff. quan.

=
1

216
(4.110)

σ2
q

∣∣∣∣
diff. quan.

σ2
q

∣∣∣∣
no diff. quan.

=
0.2376

3
= 0.0792 = −11 dB. (4.111)

P4.22 The USB drive can store 8× 109 bits.

(a) 4 kHz speech, 8 bits per sample.
The Nyquist sampling rate is 8 kHz, giving a bit rate of 8× 8, 000 = 64, 000 bits/sec.

TD =
8× 109 bits

64, 000 bits/sec
= 1.25× 105 seconds = 34.7 hrs = 1.446 days

(b) 22 kHz audio signal, stereo, 16 bits per sample in each stereo channel.
Have 44, 000 samples/sec× 16 bits/sample× 2 channels.

TD =
8× 109 bits

44, 000× 16× 2 bits/sec
= 5.682× 103 seconds = 94.7 minutes = 1.58 hrs

(c) 5 MHz video signal, 12 bits per sample, combined with the audio signal above.
Have 10× 106 samples/sec× 12 bits/sample + 44, 000× 16× 2bits/sec.

TD =
8× 109 bits

120× 106 + 1.408× 106
=

8× 109 bits
121.408× 106 bits/sec

= 65.9 seconds = 1.1 minutes
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(d) Digital surveillance video, 1024 × 768 pixels per frame, 8 bits per pixel, 1 frame per
second.
Have (1024× 768) pixels/frame× 8 bits/pixel× 1 frame/sec = 6, 291, 456 bits/sec.

TD =
8× 109 bits

6, 291, 456 bits/sec
= 1.272× 103 seconds = 21.20 minutes

P4.23 We divide the range [−mmax,mmax] into 2R equally spaced quantization regions, each of
width ∆ = 2mmax/2R. If we place a target level in the middle of each quantization region,
the maximum value of the quantization noise is qmax = ∆/2 = mmax/2R. The PSNRq is then
given by

PSNRq = 20 log10

(
mmax

mmax/2R

)
= 20 log10

(
2R

)
= 6.02R (dB) (4.112)

To achieve distortion D requires R at least D/6.02, so the smallest value of R is

R = dD/6.02e bits (4.113)

Note that with this definition, the 6dB/bit rule-of-thumb hold as well.
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Optimum Receiver for Binary Data
Transmission

P5.1 First consider∫ Tb

0
[φ
′
2(t)]

2dt =
∫ Tb

0

[
s2(t)√

E2
− ρφ1(t)

]2

dt

=
1

E2

∫ Tb

0
s2
2(t)dt

︸ ︷︷ ︸
=E2︸ ︷︷ ︸

=1

−2ρ

∫ Tb

0

s2(t)√
E2

φ1(t)dt

︸ ︷︷ ︸
=

1√
E2

√
E1

∫ Tb

0
s2(t)s1(t)dt

︸ ︷︷ ︸
=ρ

+ρ2

∫ Tb

0
φ2

1(t)dt

= 1− 2ρ2 + ρ2 = 1− ρ2.

∴ φ2(t) = 1√
1−ρ2

φ
′
2(t) = 1√

1−ρ2

[
s2(t)√

E2
− ρφ1(t)︸ ︷︷ ︸

s1(t)√
E1

]
= 1√

1−ρ2

[
s2(t)√

E2
− ρ s1(t)√

E1

]
.

P5.2 (a) [
φ̂1(t)
φ̂2(t)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
φ1(t)
φ2(t)

]
(5.1)

φ̂1(t) = cos θφ1(t) + sin θφ2(t),
φ̂2(t) = − sin θφ1(t) + cos θφ2(t), (5.2)

φ̂1(t) · φ̂2(t) = − sin θ cos θφ2
1(t) + sin θ cos θφ2

2(t) + [cos2 θ − sin2 θ]φ1(t)φ2(t),

Tb∫

0

φ̂1(t)φ̂2(t)dt = − sin θ cos θ

Tb∫

0

φ2
1(t)dt

︸ ︷︷ ︸
=1

+sin θ cos θ

Tb∫

0

φ2
2(t)dt

︸ ︷︷ ︸
=1

+
[
cos2 θ − sin2 θ

] Tb∫

0

φ1(t)φ2(t)dt

︸ ︷︷ ︸
=0

= − sin θ cos θ + sin θ cos θ = 0 (5.3)
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Therefore {φ̂1(t), φ̂2(t)} are orthogonal. To see if they are normal, consider first

Tb∫

0

φ̂2
1(t)dt =

Tb∫

0

[cos θφ1(t) + sin θφ2(t)]2dt

= cos2 θ

Tb∫

0

φ2
1(t)dt

︸ ︷︷ ︸
=1

+2 cos θ sin θ

Tb∫

0

φ1(t)φ2(t)dt

︸ ︷︷ ︸
=0

+sin2 θ

Tb∫

0

φ2
2(t)dt

︸ ︷︷ ︸
=1

= cos2 θ + sin2 θ = 1. (5.4)

Similar derivation shows that φ̂2(t) also has unit energy. Therefore {φ̂1(t), φ̂2(t)} form
an orthonormal set.

What if the minus sign is put elsewhere, i.e.,
[

cos θ − sin θ
sin θ cos θ

]
or

[ − cos θ sin θ
sin θ cos θ

]
.

Are {φ1(t), φ2(t)} still orthonormal? If so does the matrix represent just a rotation?

(b) Need to find θ such that
∫ Tb

0 φ̂1(t)[s1(t)− s2(t)]dt = 0:

Tb∫

0

φ̂1(t) [s1(t)− s2(t)] dt =

Tb∫

0

[cos θφ1(t) + sin θφ2(t)] [s1(t)− s2(t)] dt

= cos θ




Tb∫

0

s1(t)φ1(t)dt−
Tb∫

0

s2(t)φ1(t)dt




+sin θ




Tb∫

0

s1(t)φ2(t)dt−
Tb∫

0

s2(t)φ2(t)dt




= cos θ(s11 − s21) + sin θ(s12 − s22) = 0. (5.5)

sin θ(s12 − s22) = cos θ(s21 − s11)

tan θ =
s21 − s11

s12 − s22

θ = tan−1 s21 − s11

s12 − s22
. (5.6)

Of course θ is determined by the signal set. You must know the signal set in order to
rotate the original basis set as desired: φ̂2(t) is perpendicular to the line joining s1(t)
and s2(t).
The above result of θ can also be obtained geometrically (see the signal space diagram
on Fig. 5.1). Use the following fact from geometry: Given the equation of a straight
line y = mx + b, then the perpendicular to the line has a slope of − 1

m .
The slope of the line joining s1(t) and s2(t) is s22−s12

s21−s11
. Therefore the slope of φ̂1(t) is

tan θ = − s21−s11
s22−s12

, or θ = tan−1 s21−s11
s12−s22

.
Since we choose θ such that

Tb∫

0

φ̂1(t) [s1(t)− s2(t)] dt = 0, (5.7)

Solutions Page 5–2
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)(1 tφ

)(1 ts

)(2 ts
)(2 tφ )(1̂ tφ

θ

)(2̂ tφ

0

θ

11s21s

12s

22s
11 21ˆ ˆs s=

Figure 5.1: Determining the rotation angle θ.

It follows that

Tb∫

0

s1(t)φ̂1(t)dt =

Tb∫

0

s2(t)φ̂1(t)dt

ŝ11 = ŝ21, (5.8)

i.e., the components of s1(t) and s2(t) along φ̂1(t) are the same.

P5.3 Area =
1√
2πσ

∫ ∞

T
e−

(x−µ)2

2σ2 dx
(λ=x−µ

σ
)

=
(∴dλ=dx

σ
)

1√
2π

∫ ∞

T−µ
σ

e−
λ2

2 dλ = Q

(
T − µ

σ

)
.

As shown in Fig. P5.40 of the text, T − µ > 0 (i.e., T > µ) but result is true even if
T < µ. Of course the argument of Q(x) is now negative and one would use the relationship
Q(−x) = 1−Q(x).

Stated in English, the area is a Q function whose argument is the distance from the mean to
the threshold divided by the RMS value (standard deviation).

Technology Adoption Process "The Chasm"
Laggards Late Majority Early Majority Early Adoptors Innovators

µ x
T

Area ?=

2

2

( )

21
e

2

x µ
σ

πσ

−−

0

Figure 5.2: Writing the shaded area in terms of the Q function.

Of course one must pay attention on which side of the mean the threshold lies and write the
expression accordingly. For instance in terms of the Q function what is the shaded area in
Fig. 5.2?

Solutions Page 5–3
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P5.4 (a) Since si(t) = si1φ1(t) + si2φ2(t), i = 1, 2, one has:

Ei =
∫ Tb

0
s2
i (t)dt =

∫ Tb

0
[si1φ1(t) + si2φ2(t)]2dt

=
∫ Tb

0
[s2

i1φ
2
1(t) + 2si1si2φ1(t)φ2(t) + s2

i2φ
2
2(t)]dt

= s2
i1

∫ Tb

0
φ2

1(t)dt

︸ ︷︷ ︸
=1

+2si1si2

∫ Tb

0
φ1(t)φ2(t)dt

︸ ︷︷ ︸
=0

+s2
i2

∫ Tb

0
φ2

2(t)dt

︸ ︷︷ ︸
=1

= s2
i1 + s2

i2

(b) Now let

φ1(t) =

{√
2
Tb

cos(2πfct), 0 ≤ t ≤ Tb

0, otherwise
(5.9)

and

φ2(t) =

{√
2
Tb

sin(2πfct), 0 ≤ t ≤ Tb

0, otherwise
(5.10)

Compute
∫ Tb

0
φ1(t)φ2(t) =

2
Tb

∫ Tb

0
cos(2πfct) sin(2πfct)dt

=
1
Tb

∫ Tb

0
sin(4πfct)dt = − 1

4Tbπfc
cos(4πfct)

∣∣∣∣
Tb

0

= − 1
4Tbπfc

[cos(4πfcTb)− 1] (5.11)

Thus, φ1(t) and φ2(t) are orthogonal if cos(4πfcTb) = 1 ⇒ 4πfcTb = 2kπ ⇒ fc = k
2Tb

,
where k is a positive integer (k = 1, 2, . . .). There must be an integer number of half
cycles of the cos and sin in the interval [0, Tb] for them to be orthogonal over the interval
of Tb seconds. No other frequency suffices.
Finally, (fc)min = 1

2Tb
when k = 1. It is graphically illustrated in Fig. 5.3.

t
0

bT

sin

cos

Figure 5.3: Orthogonality of sin and cos with a minimum frequency.

P5.5 Consider the following two signals s1(t) and s2(t) (this is the same signal set considered in
Example 5.5):

s1(t) = V cos(2πfct)

s2(t) = V cos(2πfct + θ), 0 ≤ t ≤ Tb, fc =
k

2Tb
, k integer (5.12)

Solutions Page 5–4
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(a) The energies of two signals can be computed as:

E1 =
∫ Tb

0
s2
1(t)dt =

∫ Tb

0
V 2 cos2(2πfct)dt

= V 2

∫ Tb

0

[1 + cos(4πfct)]
2

dt =
V 2

2

[∫ Tb

0
dt +

∫ Tb

0
cos(4πfct)dt

]

=
V 2Tb

2
(5.13)

E2 =
∫ Tb

0
s2
2(t)dt =

∫ Tb

0
V 2 cos2(2πfct + θ)dt

= V 2

∫ Tb

0

[1 + cos(4πfct + 2θ)]
2

dt =
V 2

2

[∫ Tb

0
dt +

∫ Tb

0
cos(4πfct + 2θ)dt

]

=
V 2Tb

2
(5.14)

where we have used the fact that cos(4πfct+β) is a periodic function with a fundamental
period of Tb/k (regardless of the value of the phase β) and an integration over multiple
periods of this function equals to zero.
The two signals s1(t) and s2(t) have unit energy if E1 = E2 = V 2Tb

2 = 1. Therefore,

V =
√

2
Tb

.

Remark: In communications we invariably take fc to be an integer multiple of 1
Tb

typ-
ically, sometimes 1

2Tb
so the results for E1 and E2 hold (and those in P5.4). Typically

fc is very large, on the order of 106 (MHz) or 109 (GHz) so that even if there aren’t an
integer number of cycles (or half cycles) in the time interval, for engineering purposes
E1 and E2 still are closely approximated by V 2Tb/2.

(b) Since E1 = E2 = E, the correlation coefficient of the two signals is

ρ =
1
E

∫ Tb

0
s1(t)s2(t)dt =

V 2

E

∫ Tb

0
cos(2πfct) cos(2πfct + θ)dt

=
V 2

2E

∫ Tb

0
cos θdt +

∫ Tb

0
cos(4πfct + θ)dt

︸ ︷︷ ︸
= 0 since fc =

k

2Tb

=
V 2Tb

2E
cos θ = cos θ (5.15)

Two signals are orthogonal when the correlation coefficient ρ = 0, which is equivalent to
cos θ = 0. So, θ = k π

2 , k = ±1,±2,±3, . . .

(c) Plot of ρ as a function of θ is shown in Fig. 5.4.

(d) d =
√

2E
√

1− ρ ⇒ dmax =
√

2E
√

1− (−1) = 2
√

E when ρ = −1, or θ = π (antipodal
signals).

To relate θ of part (c) to that of P5.4b note when θ = −π/2 then s2(t) = V cos(2πfct−π/2) =
V sin(2πfct), i.e., except for a scale factor it is φ2(t) of P5.4b. On the other hand θ = π/2
results in −φ2(t) of P5.4b. The signal space of the signal set is shown in Fig. 5.12 of the text
and it is reproduced in Fig. 5.5.

Solutions Page 5–5
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1−

1+

2π
π

23π π2
θ

θρ cos=

0

Figure 5.4: Plot of ρ = cos θ.

0

)(1 ts

)(2 ts

E

2

2
( ) sin(2 )c

s

t f t
T

φ π=

1−=
=

ρ
πθ

0

23

=
=

ρ
πθ

0

2

=
=

ρ
πθ

2locus of ( ) as 

varies from 0 to 2 .

s t θ
π

θ
1

2
( ) cos(2 )c

s

t f t
T

φ π=

Figure 5.5: Signal space representation of Problem 5.5.

P5.6 (a)

ρ =
1√

E1

√
E2

∫ Tb

0
V1V2 cos(2π(fc −∆f/2)t) cos(2π(fc + ∆f/2)t)dt

=
V1V2

2
√

E1

√
E2

[ ∫ Tb

0
cos(2π(2fc)t)dt

︸ ︷︷ ︸
=0 (integer number of cycles in Tb)

+
∫ Tb

0
cos(2π∆ft)dt

︸ ︷︷ ︸
=

sin(2π∆fTb)

2π∆f

]

since cosx cos y =
cos(x + y) + cos(x− y)

2

=
V1V2Tb

2
√

E1

√
E2

sin(2π∆fTb)
2π∆fTb

(5.16)

But V1
√

Tb√
2

=
√

E1 =
√

E and
V2

√
Tb√

E2
=
√

E. Therefore

ρ(∆f) =
sin(2π∆fTb)

2π∆fTb
.

Solutions Page 5–6
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Plot of ρ versus the normalized frequency ∆fTb is shown in Fig. 5.6.

0 bfT∆

ρ
1 1

 or  (minimum frequency separation 
2 2

                                     for orthogonality)

b
b

fT f
T

∆ = ∆ =

minimum  point  maximum distance point 

                                   between the 2 points

ρ ⇒

minρ

Figure 5.6: Plotting of ρ(∆f).

(b) One can differentiate ρ with respect to the (normalized) variable ∆fTb to find where the
minimum occurs. From the plot of ρ we expect it to be between 0.5 and 0.75. Formally
let x ≡ 2π∆fTb. Then ρ(x) = sin x

x and dρ(x)
dx = cos x

x − sin x
x2 = 0 (for maximum/minimum

points) or x = tanx. Solve this numerically.
Another approach (still numerical) is to set up a table of values of sin x

x between x =
2π × 0.65 and 2π × 0.75 in increments of say 0.01 and pick out value of x where the
minimum occurs.
The simplest approach is to trust the answer and check it by seeing if x

?=tanx at x = 2π×
0.715 (within acceptable engineering numerical accuracy), i.e., 2π×0.715 ?=tan(2π × 0.715).

For ∆fTb = 0.715, ρ = −0.2172. Therefore d =
√

2E(1.2172).
When ρ = 0, d =

√
2E. The distance has increased by a factor of 1.1033.

A more relevant way to “quantify” this increase is to state that for ρ = 0 the energy E
needs to be increased by 1.2172 to achieve the same distance between the 2 signals as in
the ρ = −0.2172 case. This is a 10 log10(1.2172) = 0.85 dB increase in energy (& hence
power).
Nonetheless for other reasons, namely synchronization, ∆f is chosen so that ρ = 0.

Remarks:

(i) When the frequency separation ∆f is chosen to be 1
2Tb

the two signals are said to

be “coherently” orthogonal, when ∆f is chosen to be k
1
Tb

(k ≥ 2) they are called

“noncoherently” orthogonal. Chapter 7 discusses this further.

(ii) To obtain the signal space representation is not that straightforward, except for ρ = 0.
All that can be said of the top of one’s head is that the signal space is 2–dimensional,
and that the 2 signals lie at a distance of

√
E (because of how we adjust V1, V2) from

the origin. One basis function can be chosen to be, say φ1(t) = s1(t)√
E

. The other basis
function is a function of ∆f .

P5.7 Using the Gram-Schmidt procedure, construct an orthonormal basis for the space of quadratic
polynomials {a2t

2 + a1t + a0; a0, a1, a2 ∈ R} over the interval −1 ≤ t ≤ 1.

Solutions Page 5–7
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It is simple to see that the equivalent problem is to find an orthonormal basis for three signals
s1(t) = 1, s2(t) = t and s3(t) = t2 over the interval −1 ≤ t ≤ 1.

The first orthonormal basis function is simply φ1(t) = 1√
2

since the energy of s1(t) = 1 over
the interval −1 ≤ t ≤ 1 is 2.

Next observe that s2(t) = t is an odd function, while φ1(t) is an even function. It follows that
s2(t) is already orthogonal to φ1(t). Thus, we set:

φ2(t) =
s2(t)√∫ 1
−1 s2

2(t)dt
=

t√∫ 1
−1 t2dt

= t
√

3/2

Next we project s3(t) = t2 on the subspace spanned by φ1(t) and φ2(t). It is clear that since
s3(t) is an even function and φ2(t) is an odd function, their product is odd, and we have
s32 =

∫ 1
−1 s3(t)φ2(t)dt = 0. On the other hand,

s31 =
∫ 1

−1

1√
2
t2dt =

2
3
√

2

The orthogonal signal is given by

φ
′
3(t) = s3(t)− 2

3
√

2
φ1(t)− 0 · φ2(t) = t2 − 1

3

Finally, the third orthonormal basis function is

φ3(t) =
(

t2 − 1
3

)
/
√

8/45 =

√
45
8

(
t2 − 1

3

)
=

√
5
8
(3t2 − 1).

In summary, {√
1
2
,

√
3
2
t,

√
5
8
(3t2 − 1)

}

is an orthonormal basis set for the quadratic functions over [−1, 1]. The set is plotted in Fig.
5.7.

To find the coefficients of any quadratic polynomial, p(t) = a2t
2 + a1t + a0, in terms of φ1(t),

φ2(t) and φ3(t) we find the projections of p(t) onto the 3 basis functions, i.e.,

p(t) = p1φ1(t) + p2φ2(t) + p3φ3(t)

where

p1 =
∫ 1

−1
p(t)φ1(t)dt =

∫ 1

−1
[a2t

2 + a1t + a0]
1√
2
dt =

√
2
3
a2 +

√
2a0 (5.17)

p2 =
∫ 1

−1
p(t)φ2(t)dt =

∫ 1

−1
[a2t

2 + a1t + a0]

√
3
2
tdt =

√
2
3
a1 (5.18)

p3 =
∫ 1

−1
p(t)φ1(t)dt =

∫ 1

−1
[a2t

2 + a1t + a0]

[√
3
8
(3t2 − 1)

]
dt =

4
5

√
3
8
a2. (5.19)

One, of course, does not achieve very much by approximating a quadratic polynomial by
another quadratic polynomial. Of more practical interest is the situation where we are given

Solutions Page 5–8
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−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

Figure 5.7: Orthonormal basis set for quadratic polynomials.

a more general time function, say s(t) of finite energy, and wish to approximate it by a
quadratic polynomial over the interval of [−1, 1]. Then the set of {φ1(t), φ2(t), φ3(t)} found
above can be used to approximate s(t) where the coefficients in the approximation s(t) ≈
ŝ(t) = s1φ1(t) + s2φ2(t) + s3φ3(t) are found by:

s1 =
∫ 1

−1
s(t)φ1(t)dt, s2 =

∫ 1

−1
s(t)φ2(t)dt, s3 =

∫ 1

−1
s(t)φ3(t)dt.

Furthermore the mean-squared error [s(t)− ŝ(t)]2 is minimum (see P5.9).

Remark: The 3 polynomials {φ1(t), φ2(t), φ3(t)} are normalized versions of the first three
members of what are referred to as Legendre polynomials. These are orthogonal polynomials
over [−1, 1] that are solutions of Legendre’s differential equations:

(1− t2)
d2pn(t)

dt2
− 2t

dpn(t)
dt

+ n(n + 1)pn(t) = 0.

The nth member is given by pn(t) = 1
2nn!

dn

dtn (t2 − 1)n (Rodrique’s formula) and

∫ ∞

−∞
pn(t)pm(t)dt =

{
2

2n+1 , n = m

0, n 6= m
.

Solutions Page 5–9
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P5.8 Orthogonal : ∫ T

0
si(t)sj(t)dt = 0, (i 6= j)

Equal energy:

E =
∫ T

0
s2
1(t)dt = · · · =

∫ T

0
s2
M (t)dt.

First, let us find the energy, say in sm(t):

Ê =
∫ T

0
ŝ2
m(t)dt =

∫ T

0

[
sm(t)− 1

M

M∑

k=1

sk(t)

]2

dt

=
∫ T

0
s2
m(t)−

∫ T

0

2
M

sm(t)
M∑

k=1

sk(t)dt +
∫ T

0

1
M2

[
M∑

k=1

sk(t)

]2

dt

= E − 2
M

∫ T

0
sm(t) [s1(t) + . . . + sM (t)] dt

+
1

M2

{∫ T

0

[
s2
1(t) + . . . + s2

M (t) + s1(t)s2(t) + . . . + sM−1(t)sM (t)
]
dt

}

= E − 2
M

∫ T

0

[
s1(t)sm(t) + . . . + s2

m(t) + . . . + sm(t)sM (t)
]
dt

+
1

M2

{∫ T

0
s2
1(t)dt + . . . +

∫ T

0
s2
M (t)dt +

∫ T

0
s1(t)s2(t)dt + . . . +

∫ T

0
sM−1(t)sM (t)dt

}

= E − 2
M

E +
1

M2
(ME + 0) = E − 1

M
E =

E

M
(M − 1)

Now let us find the correlation coefficient:

ρmn =
∫ T

0

ŝm(t)ŝn(t)
Ê

dt

=
1
Ê

∫ T

0

[
sm(t)− 1

M

M∑

k=1

sk(t)

][
sn(t)− 1

M

M∑

k=1

sk(t)

]
dt

=
1
Ê

∫ T

0

[
sm(t)sn(t)− 1

M
sm(t)

M∑

k=1

sk(t)− 1
M

sn(t)
M∑

k=1

sk(t) + (
1
M

M∑

k=1

sk(t))2
]

dt

=
1
Ê

∫ T

0
sm(t)sn(t)dt− 1

M

∫ T

0
sm(t)

M∑

k=1

sk(t)dt− 1
M

∫ T

0
sn(t)

M∑

k=1

sk(t)dt

+
1

M2

∫ T

0

[
M∑

k=1

sk(t)

]2

dt

=
1
Ê

[
0− 1

M
E − 1

M
E +

1
M2

ME

]
=

1
Ê

(− E

M
) =

−E/M

E/M(M − 1)
=

1
1−M

The signal space plots for M = 2, 3, 4 are as follows.

M = 2: It is easy to show that ŝ1(t) = s1(t)−s2(t)
2 and ŝ2(t) = s2(t)−s1(t)

2 = −ŝ1(t), i.e., the
signals are antipodal with energy Ê = E/2.
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Note that

M∑

m=1

ŝm(t) =
M∑

m=1

sm(t)− 1
M

M∑

m=1

(
M∑

k=1

sk(t)

)
=

M∑

m=1

sm(t)− 1
M

M∑

k=1

sk(t)

(
M∑

m=1

1

)

︸ ︷︷ ︸
=M

= 0.

Therefore the signals {ŝm(t)}M
m=1 are linearly independent since any one of them is a linear

combination of the remaining M − 1 of them. They therefore lie in an (M − 1)-dimensional

signal space at distance
√

M−1
M from the origin. Further, since they are equally correlated

the angle between any 2 vectors from the origin to the signal points is the same for each pair.
Putting this all together we have for:

M = 3: A 2-dimensional signal space. Signal points are at distance
√

2
3E from origin, laying

at a angle spacing of 120◦, i.e., on vertices of an equilateral triangle.

M = 4: Lying in a 3-dimensional space, distance of
√

3
4E, on the vertices of a regular tetra-

hedron.

0

1̂( )s t2ˆ ( )s t

2
E

2( )tφ

1( )tφ

2
E−

0

1̂( )s t

2ˆ ( )s t

2
3 E

1( )tφ

3ˆ ( )s t

1( )tφ

2( )tφ

3( )tφ

0

3̂( )s t 2ˆ ( )s t

4ˆ ( )s t

1̂( )s t

3
4 E

2M =

3M =

4M =

Figure 5.8

P5.9 (a) The approximation error is simply e(t) = s(t) − ŝ(t) = s(t) − ∑N
k=1 skφk(t). Thus the
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energy of the estimation error is:

Ee =
∫ +∞

−∞

[
s(t)−

N∑

k=1

skφk(t)

]2

dt

= Es − 2
∫ +∞

−∞
s(t)ŝ(t)dt +

∫ +∞

−∞
[s1φ1(t) + . . . + sNφN (t)]2 dt

= Es − 2
∫ +∞

−∞
s(t)ŝ(t)dt +

∫ +∞

−∞
[s2

1φ
2
1(t) +

+ . . . + s2
Nφ2

N (t) + s1s2φ1(t)φ2(t) + . . . + sN−1sNφN−1(t)φN (t)]dt

= Es − 2
∫ +∞

−∞
s(t)ŝ(t)dt +

∫ +∞

−∞

N∑

k=1

s2
kφ

2
k(t)dt + 0

= Es − 2
∫ +∞

−∞
s(t)ŝ(t)dt +

N∑

k=1

∫ +∞

−∞
s2
kφ

2
k(t)dt

= Es − 2
∫ +∞

−∞
s(t)ŝ(t)dt +

N∑

k=1

s2
k

= Es − 2
N∑

k=1

sk

∫ +∞

−∞
s(t)φk(t)dt +

N∑

k=1

s2
k (5.20)

Obviously Ee is a function of sk and therefore sk can be chosen to minimize Ee. To find the
optimal sk, differentiate Ee with respect to each sk and set the result to zero:

dEe

dsk
= 0−

2d
[∑N

k=1 sk

∫ +∞
−∞ s(t)φk(t)dt

]

dsk
+

d
[∑N

k=1 s2
k

]

dsk

= −2
∫ +∞

−∞
s(t)φk(t)dt + 2sk = 0

⇒ sk =
∫ +∞

−∞
s(t)φk(t)dt

(b) Substituting
∫ +∞
−∞ s(t)φk(t)dt = sk into (5.20), the minimum mean square approximation

error is given by:

(Ee)min = Es − 2
N∑

k=1

sk

∫ +∞

−∞
s(t)φk(t)dt +

N∑

k=1

s2
k

= Es − 2
N∑

k=1

s2
k +

N∑

k=1

s2
k = Es −

N∑

k=1

s2
k (joules)

Basically the energy of the approximation error is the signal energy minus the energy in the
approximation signal.

P5.10 (a) The coefficients sij , i, j ∈ {1, 2} are found as follows:

s11 =
∫ 1

0
s1(t)φ1(t)dt = 1, s12 =

∫ 1

0
s1(t)φ2(t)dt = 1,

s21 =
∫ 1

0
s2(t)φ1(t)dt = 1, s22 =

∫ 1

0
s2(t)φ2(t)dt = −1.
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Note that these results can also be found by inspecting that s1(t) = φ1(t) + φ2(t) and
s2(t) = φ1(t)− φ2(t).

(b) [
φR

1 (t)
φR

2 (t)

]
=

[
cos θ sin θ

− sin θ cos θ

] [
φ1(t)
φ2(t)

]
(5.21)

φR
1 (t) = (cos θ)φ1(t) + (sin θ)φ2(t) θ=600

=

1
2
φ1(t) +

√
3

2
φ2(t)

φR
2 (t) = −(sin θ)φ1(t) + (cos θ)φ2(t) θ=600

= −
√

3
2

φ1(t) +
1
2
φ2(t) (5.22)

The time waveforms of φR
1 (t) and φR

2 (t) for θ = 600 are shown in Fig. 5.9.

t0t0 5.0 5.0 1

1 ( )R tφ

1

2

)31( +
2 ( )R tφ

2

)31( −
2

)31( −

2

)31( +−

Figure 5.9: Plots of φR
1 (t) and φR

2 (t).

(c) Determine the new set of coefficients sR
ij , i, j ∈ {1, 2} in the representation:

[
s1(t)
s2(t)

]
=

[
sR
11 sR

12

sR
21 sR

22

] [
φR

1 (t)
φR

2 (t)

]
(5.23)

• One method is a straightforward calculation: sR
ij =

∫ 1

0
si(t)φR

j (t)dt. Thus

sR
11 =

1
2

(
2× 1 +

√
3

2

)
=

1 +
√

3
2

, sR
12 =

1
2

(
2× 1−√3

2

)
=

1−√3
2

sR
21 =

1
2

(
2× 1−√3

2

)
=

1−√3
2

, sR
21 =

1
2

(
2× −(1 +

√
3)

2

)
= −1 +

√
3

2
.

• A second method is based on sij and θ directly:
[

s1(t)
s2(t)

]
=

[
sR
11 sR

12

sR
21 sR

22

] [
φR

1 (t)
φR

2 (t)

]
=

[
sR
11 sR

12

sR
21 sR

22

] [
cos θ sin θ

− sin θ cos θ

] [
φ1(t)
φ2(t)

]

=
[

s11 s12

s21 s22

] [
φ1(t)
φ2(t)

]
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Therefore [
s11 s12

s21 s22

]
=

[
sR
11 sR

12

sR
21 sR

22

] [
cos θ sin θ

− sin θ cos θ

]

⇒
[

sR
11 sR

12

sR
21 sR

22

]
=

[
s11 s12

s21 s22

] [
cos θ sin θ

− sin θ cos θ

]−1

=
[

s11 s12

s21 s22

] [
cos θ − sin θ
sin θ cos θ

]

θ=600

=

[
1 1
1 −1

][
1
2 −

√
3

2√
3

2
1
2

]
=

[ √
3+1
2

1−√3
2

1−√3
2 −

√
3+1
2

]

(d) Geometrical picture for both the basis function sets (original and rotated) and for the
two signal points is shown in Fig. 5.10. Note: As seen from the geometrical picture,

2 ( )R tφ

1 ( )R tφ

)(1 tφ

)(2 tφ

)(2 ts

)(1 ts

060=θ

045−

d

Figure 5.10: Geometrical representation of the basis function sets (original and rotated) and
the two signals.

sR
11 = −sR

22 and sR
12 = sR

21. This is seen in (c) above and is true for any θ. But do
not jump to conclusions that this is true all the time. It comes about because of the
locations of s1(t), s2(t) in the signal space.

(e) Determine the distance d between the two signals s1(t) and s2(t) in two ways:

(i) Algebraically:

d2 =
∫ 1

0
[s1(t)− s2(t)]2dt =

∫ 0.5

0
22dt +

∫ 1

0.5
22dt = 4 ⇒ d = 2 (5.24)

(ii) Geometrically: From the signal space plot of (d) one has d =
√

2 + 2 = 2 (Note that
both signal have energy E1 = E2 = 2).
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(f) Thought φ1(t) and φ2(t) can represent the two given signals, they are by no means
a complete basis set because they cannot represent an arbitrary, finite-energy signal
defined on the time interval [0, 1]. As a start to complete the basis, we wish to plot
the next two possible orthonormal functions φ3(t) and φ4(t). Obviously there are may
possible choices for φ3(t) and φ4(t). One simple choice is shown below.

t

)(4 tφ

0
t

)(3 tφ

0

2

1

4

1

2

1

2−

2

4

3

2

1

2−

1

Figure 5.11: An example of φ3(t) and φ4(t).

P5.11 (a) The first orthonormal basis function is chosen, somewhat arbitrarily, as φ1(t) = s1(t)√
E1

=
1√
2
s1(t).

Next s2(t) is already orthogonal to φ1(t). Thus, we set:

φ2(t) =
s2(t)√∫ 2
0 s2

2(t)dt
=





1√
2
, 0 ≤ t ≤ 1

− 1√
2
, 1 ≤ t ≤ 2

0, elsewhere
(5.25)

Then project s3(t) onto φ1(t) and φ2(t) to have

s31 =
∫ 2

0

1√
2
dt =

√
2, s32 =

∫ 1

0

1√
2
dt−

∫ 2

1

1√
2
dt = 0

The third orthogonal signal is given by

φ
′
3(t) = s3(t)−

√
2φ1(t)− 0 · φ2(t) =

{ −1, 2 ≤ t ≤ 3
0, elsewhere

Since the energy of φ
′
3(t) equal 1, one sets φ3(t) = φ

′
3(t).

Finally, the fourth orthonormal basis function is obtained by fist projecting s4(t) onto
φ1(t), φ2(t), φ3(t):

s41 =
∫ 2

0

1√
2
× (−1)dt = −

√
2, s42 =

∫ 1

0

1√
2
× (−1)dt +

∫ 2

1

−1√
2
× (−1)dt = 0

s43 =
∫ 3

2
−1× (−1)dt = 1

The orthogonal signal is given by

φ
′
4(t) = s4(t) +

√
2φ1(t)− 0φ2(t)− φ3(t) = 0
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In conclusion, we need only 3 orthonormal basis functions to represent the signal set.
They are plotted in Fig. 5.12.

φ1(t) =

{
1√
2
, 0 ≤ t ≤ 2

0, elsewhere
, φ2(t) =





1√
2
, 0 ≤ t ≤ 1

− 1√
2
, 1 ≤ t ≤ 2

0, elsewhere
, φ3(t) =

{
1, 2 ≤ t ≤ 3
0, elsewhere

t

1( )tφ

0

1

2

1
t

3( )tφ

02 2 3

2 ( )tφ

1

1−

t0 1 2

1

2

1

2
−

Figure 5.12: Three basis functions.

In terms of the above basis functions, the four signals are:



s1(t)
s2(t)
s3(t)
s4(t)


 =




√
2 0 0
0

√
2 0√

2 0 1√
2 0 1







φ1(t)
φ2(t)
φ3(t)




(b) First the 3 functions are certainly orthogonal (they are what one calles “time orthogonal”
since they do not overlap in time) and obviously each of them has unit energy. The
question is do they represent the 4 time functions exactly. Well,

s1(t) = v1(t) + v2(t) + 0 · v3(t), s2(t) = v1(t)− v2(t) + 0 · v3(t)
s3(t) = v1(t) + v2(t)− v3(t), s4(t) = −v1(t)− v2(t)− v3(t)

(c) Geometrical representation of the four signals is plotted in Fig. 5.13.

P5.12 The signal set is given as:

s1(t) =

{ √
3A cos

(
2πt
Tb

)
, 0 ≤ t ≤ Tb

0, otherwise

s2(t) =

{
A sin

(
2πt
Tb

)
, 0 ≤ t ≤ Tb

0, otherwise
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1( )v t

2 ( )v t

3( )v t

)(1 ts

3( )s t

2 ( )s t

4 ( )s t

1

1

1−

1−
0

1−

Figure 5.13: Geometrical representation of the 4 signals by {v1(t), v2(t), v3(t)}.

bT
2
bT

t
0

sin

cos

Figure 5.14

(a) There is one cycle of the cos and one cycle of the sin in the interval [0, Tb]. Graphically:

Obviously the area of the product is zero, regardless of the amplitudes of the sine and
cos. Therefore s1(t) and s2(t) are orthogonal.

Solutions Page 5–17



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

Show mathematically:
∫ Tb

0
s1(t)s2(t)dt =

√
3A2

∫ Tb

0
cos

(
2πt

Tb

)
sin

(
2πt

Tb

)
dt

=
√

3
2

A2

∫ Tb

0
sin

(
4πt

Tb

)
dt = −

√
3

2
A2 Tb

4π
cos

(
4πt

Tb

) ∣∣∣∣∣∣

Tb

0
= 0

The energies of the two signals are:

E1 =
∫ Tb

0
s2
1(t)dt =

(√
3A√
2

)2

Tb =
3A2Tb

2

E2 =
∫ Tb

0
s2
2(t)dt =

(
A√
2

)2

Tb =
A2Tb

2

Simply choose the basis functions {φ1(t), φ2(t)} to be scaled versions of s1(t) and s2(t):

φ1(t) =
s1(t)√

E1
=

√
2
Tb

cos
(

2πt

Tb

)
; 0 ≤ t ≤ Tb

φ2(t) =
s2(t)√

E2
=

√
2
Tb

sin
(

2πt

Tb

)
); 0 ≤ t ≤ Tb

bT
2
bT

bT

2

bT

2−

t bT2
bT

t

2 ( )tφ

bT

2

bT

2−

0 0

1( )tφ

Figure 5.15

(b) The optimum decision rule for the minimum distance receiver is:
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1( )tφ

2 ( )tφ

0

)(2 ts

)(1 ts

“Decide 1T”
“Decide 0T”

1E

2E

3

πθ =

T

Figure 5.16

(r1 − s21)2 + (r2 − s22)2
“0D”

T
“1D”

(r1 − s11)2 + (r2 − s12)2

⇔ r2
1 + (r2 −

√
E2)2

“0D”

T
“1D”

(r1 −
√

E1)2 + r2
2

⇔ −2r2

√
E2 + E2

“0D”

T
“1D”

−2r1

√
E1 + E1

⇔ −2r2A

√
Tb

2
+

A2Tb

2
+ 2r1A

√
3Tb

2
− 3A2Tb

2

“0D”

T
“1D”

0

⇔
√

3r1 − r2 − A
√

Tb√
2

“0D”

T
“1D”

0

(c) From the signal space diagram, the squared distance between the two signals is:

d2
21 = E1 + E2 =

√
3A2Tb

2
+

A2Tb

2
= 2A2Tb = 2Tb (when A = 1 volt)

It follows that the bit error rate bit is:

P [error] = Q

(
d21/2√
N0/2

)
= Q

(√
2Tb/2√
N0/2

)
= Q

(√
Tb

N0

)
≤ 10−6

⇒
√

Tb

N0
≥ 4.75 ⇒ Tb ≥ (4.75)2N0

⇒ rb =
1
Tb

≤ 1
(4.75)2N0

=
1

(4.75)2.10−8

= 4.43× 106 bits/sec = 4.43 Mbps
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(d) To implement the optimum receiver that uses only matched filter, one needs to rotate
the basis functions as shown in the signal space diagram to obtain φ̂1(t) and φ̂2(t): φ̂1(t)
is perpendicular to the line joining s1(t) and s2(t). Since

tan(θ) =
√

E1√
E2

=

√
3A2Tb/2
A2Tb/2

=
√

3 ⇒ θ =
π

3

It follows that

φ̂2(t) = − sin θφ1(t) + cos θφ2(t)

= −
√

2
Tb

cos
(

2πt

Tb

)
sin θ +

√
2
Tb

sin
(

2πt

Tb

)
cos θ

=
√

2
Tb

sin
(

2πt

Tb
− θ

)
=

√
2
Tb

sin
(

2πt

Tb
− π

3

)

The block diagram of the optimum receiver is shown below:

Received signal
( )tr

Tr
D

D

"1"

"0"

2̂

2 2
( ) cos

3b b

t
h t

T T

π π 
= −   bt T=

Figure 5.17

The impulse response of the filter is found as:

h(t) = φ̂2(Tb − t) =
√

2
Tb

sin
(

2π(Tb − t)
Tb

− π

3

)

=
√

2
Tb

sin
(
−2πt

Tb
+

5π

3

)
=

√
2
Tb

cos
(

2πt

Tb
− π

3

)

The threshold can be found from the signal space diagram to be:

T = −
[√

E1 sin
(π

3

)
− d21

2

]
= −

[√
3A

√
Tb

2

√
3

2
−A

√
2Tb

1
2

]
= −A

2

√
Tb

2

(e) The average energy of the two signals s1(t) and s2(t) is :

Eb =
E1 + E2

2
= A2Tb

For a given (fixed) energy per bit Eb, antipodal signalling achieves the smallest error
probability amongst all binary signalling schemes. This is because the distance between
the two signals in antipodal signalling is the largest (again, for a fixed Eb). Thus, the
two signals can be modified as:

ŝ1(t) = −ŝ2(t) =
√

Ebφ1(t)

= A
√

Tb

√
2
Tb

cos
(

2πt

Tb

)
=
√

2A cos
(

2πt

Tb

)
, 0 ≤ t ≤ Tb
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V−

t)(1 ts

V

0
bTt )(2 ts

0
bT

V

2
bT

2
bT

2

b

V
t

T

2
2

b

V
t V

T
− +

2

1 3
bV T

E = 2
2 bE V T=

Figure 5.18 t
0

bTt
0

bT

2
bT

2
bT

1( )tφ 2 ( )tφt
0

bT

2
bT

1

bT

1

bT
−

3

bT

1 2( ) ( )s t s t

2V

2V− total area
0=

Figure 5.19

P5.13 (a) To show s1(t) is orthogonal to s2(t), one needs to show that
∫ Tb

0 s1(t)s2(t)dt = 0.
The above is quite obvious by plotting s1(t)s2(t).
Since s1(t) and s2(t) are orthogonal, choose:

φ1(t) =
s1(t)√

E1
=

√
3

V
√

Tb
s1(t); φ2(t) =

s2(t)√
E2

=
1

V
√

Tb
s2(t)

Plots of φ1(t) and φ2(t) are shown above.

(b) Plots of signal space diagram and the optimum decision regions are shown below:
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“Decide 1T”
“Decide 0T”

T
0

)(2 tφ

)(1 tφ
)(1 ts

)(2 ts

6

πθ =
2E

1E

1̂( )tφ2̂( )tφ

2E

modified

2ˆ ( )s t

2

1 3
bV T

E =
2

2 bE V T=

Figure 5.20

The optimum decision rule is that of the minimum distance rule:

(r1 − s21)2 + (r2 − s22)2
“0D”

T
“1D”

(r1 − s11)2 + (r2 − s12)2

⇔ r2
1 + (r2 −

√
E2)2

“0D”

T
“1D”

(r1 −
√

E1)2 + r2
2

⇔ −2r2

√
E2 + E2

“0D”

T
“1D”

−2r1

√
E1 + E1

⇔ −2r2V
√

Tb + V 2Tb + 2r1V

√
Tb

3
− V 2Tb

3

“0D”

T
“1D”

0

⇔ r1√
3
− r2 +

V
√

Tb

3

“0D”

T
“1D”

0

(c) The squared distance between the two signals:

d2
21 = E1 + E2 =

V 2Tb

3
+ V 2Tb =

4V 2Tb

3
=

4Tb

3
(when V = 1 volt)

The error probability of the minimum distance receiver is:

P [error] = Q

(
d21/2√
N0/2

)
= Q

(
2
√

Tb/2
√

3√
N0/2

)
= Q

(√
Tb

N0
·
√

2√
3

)
≤ 10−6

⇒
√

Tb

N0
·
√

2√
3

≥ 4.75 ⇒ Tb ≥ (4.75)2 · 3
2
N0

⇒ rb =
1
Tb

≤ 2
(4.75)2 × 3×N0

=
1

(4.75)2 × 1.5× 10−8

= 2.955× 106 bits/sec = 2.955 Mbps
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(d) Need to rotate φ1(t) and φ2(t) to obtain φ̂1(t) and φ̂2(t) as shown in the signal space
diagram: φ̂1(t) is perpendicular to the line joining s1(t) and s2(t). Since

tan(θ) =
√

E1√
E2

=
V
√

Tb/
√

3
V
√

Tb
=

1√
3
⇒ θ =

π

6
⇒ sin θ =

1
2
; cos θ =

√
3

2

To realize the optimum receiver that uses only one matched filter, one needs to obtain
φ̂2(t) and the threshold T .

φ̂2(t) = − sin θφ1(t) + cos θφ2(t)

= −1
2
φ1(t) +

√
3

2
φ2(t)

the filter’s impulse response is h(t) = φ̂2(Tb− t). Both φ̂2(t) and h(t) are plotted belowt
0

bT

2
bT

t
0

bT
2
bT

2̂( )tφ
2̂( ) ( )bh t T tφ= −

3

2 bT

3

2 bT

3

2 bT
−3

2 bT
−

3

bT
−

3

bT
−

Figure 5.21

The block diagram of the optimum receiver:

( )tr
bt T=

( )h t
2

2

ˆ  :  1
2 3

ˆ  :  0
2 3

b
D

b
D

V T
T

V T
T


≥ = < =r

r

Figure 5.22

where the threshold can be found from the signal space diagram to be:

T =
d21

2
−

√
E1 sin

(π

6

)
=

2V
√

Tb

2
√

3
− V

√
Tb√
3

· 1
2

=
V
√

Tb

2
√

3

Note: One can also make use of the result obtained in Question 2 to come up with the
following implementation:

Tb∫

0

r(t)[s2(t)− s1(t)]dt
“1D”

T
“0D”

E2 −E1

2
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( )tr
bt T=

2 1

2 1

 :  1
2

 :  0
2

D

D

E E

E E

−≥ −<2 1( ) ( )b bs T t s T t− − −

Figure 5.23

(e) Need to modify s2(t) so that the Euclidean distance d21 is maximized. Since the energy
of s2(t) cannot be changed ⇒ move s2(t) to the point (−√E2, 0) so that the maximized
distance is

d21 =
√

E2 +
√

E1 =

(√
3 + 1√

3

)
V

√
Tbt

0
bT2

bT

3V−

2 2 1ˆ ( ) ( )s t E tφ=

Figure 5.24

P5.14 (a) The two signals are (time) orthogonal with equal energy E = A2T
2 (joules). The orthog-

onal basis is φ1(t) = s1(t)√
E

& φ2(t) = s2(t)√
E

.

0
t

0
t

2

T T
2

T

2 A

T E
= 2

T

)(2 tφ)(1 tφ

Figure 5.25

(b)+(c) See above plots.

(d) P [bit error] = Q
(√

E
N0

)
= Q

(√
A2Tb
2N0

)
= Q

(√
1

2rb×10−3

)
= 10−6

⇒ 1√
2

√
1

2rb×10−3 = erfc−1
(
2× 10−6

) ⇒ rb = 1

(4×10−3)[erfc−1(2×10−6)]2
.

(e) Rotate the orthogonal basis by 450 x and look at projection along φR
2 (t) = s2(t)−s1(t)

normalizing factor .

(f) We want s2(t) as far away from s1(t) as possible. Therefore make it antipodal, i.e.,
s2(t) = −s1(t).
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)(1 tφ

)(2 tφ

E

E

( )1 0Ts t ↔

( )2 1Ts t ↔

1D

2r

1r

0

0D

2r

Figure 5.26

bt T=

( )tr

( )
0

d
bT

t•∫

( )
0

d
bT

t•∫
bt T=

Comparator
-

+ Threshold = 0

2 1−r r

1r

2r

)(1 tφ
)(2 tφ

Figure 5.27

0
t

T

1

T

1

T
−

2T

2 ( )R tφ

Figure 5.28

bt T=( )
0

d
bT

t•∫ 2
Rr

2 ( )R tφ

( )tr

Figure 5.29

P5.15 The noise, n(t) = n, is simply a DC level but the amplitude of the level is random and is
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∑)(tsi

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T2/T

V

Tt =
1

1

0 0

0 1
D

D

r

r

≥ ⇒

< ⇒

2Tt =

Tt =

+

−

( )tn

( ) ( )

0
it s t

t T

= +
≤ ≤

r n

( )tr ( )
0

1
d

T

t
T ∫

( )
2

0

d
T

t∫

( )
2

d
T

T

t∫

2 1

2 0
D

D

r VT

r VT

≥ ⇒

< ⇒

( )tr

Figure 5.30: A binary communication system with additive noise.

Gaussian distributed with a probability density function given by

fn(n) =
1√

2πN0
exp

(
− n2

2N0

)
(5.26)

The received signal in the first bit interval can be written as:

r(t) = si(t) + n(t) = si(t) + n, 1 ≤ t ≤ Tb (5.27)

(a) The autocorrelation function of the noise n(t) is

Rn(τ) = E{n(t)n(t + τ)} = E{n× n} = E{n2} = N0,

Since Rn(τ) = N0 for every τ , it follows that any two noise samples, no matter how far
they are, are correlated. In fact, because the noise is modeled as a random DC level,
knowing the value of the noise at one time instant gives a full knowledge about the noise
at any other time instants.
The power spectral density of the noise is

Sn(f) = F{Rn(τ)} = F{N0} = N0δ(f)

Note that Sn(f) 6= 0 only when f = 0, or Sn(f) = 0 for f 6= 0. This is of course due to
the noise being modeled as a random DC level!

(b) Consider the following signal set and the receiver (as usual, s1(t) is used for the trans-
mission of bit “0” and s2(t) is for the transmission of bit “1”). In essence, the system

∑)(tsi

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T2/T

V

Tt =
1

1

0 0

0 1
D

D

r

r

≥ ⇒

< ⇒

2Tt =

Tt =

+

−

( )tn

( ) ( )

0
it s t

t T

= +
≤ ≤

r n

( )tr ( )
0

1
d

T

t
T ∫

( )
2

0

d
T

t∫

( )
2

d
T

T

t∫

2 1

2 0
D

D

r VT

r VT

≥ ⇒

< ⇒

( )tr

Figure 5.31

uses antipodal signalling. The decision variable is r1 = 1
T

∫ T
0 r(t)dt. More specifically,

{
r1 = V + n1 if “0” was transmitted
r1 = −V + n1 if “1” was transmitted
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where the noise n1 is Gaussian, zero-mean and has a variance of N0/T . Therefore the
error probability of the receiver is:

P [error] = Q

(
2V/2√
N0/T

)
= Q




√
V 2T

N0




(c) Consider the signal set plotted in Fig. 5.32.

∑)(tsi

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T

t

)(1 ts

0

V

T
t

)(2 ts

0

V−

T2/T

V

Tt =
1

1

0 0

0 1
D

D

r

r

≥ ⇒

< ⇒

2Tt =

Tt =

+

−

( )tn

( ) ( )

0
it s t

t T

= +
≤ ≤

r n

( )tr ( )
0

1
d

T

t
T ∫

( )
2

0

d
T

t∫

( )
2

d
T

T

t∫

2 1

2 0
D

D

r VT

r VT

≥ ⇒

< ⇒

( )tr

Figure 5.32: A signal set.

To achieve a probability of zero, the receiver needs to remove the noise completely. There
are many possibilities. Perhaps the simplest is to take 2 samples of r(t), at r(t1) and
r(t2), where 0 < t1 < T/2 and T/2 < t2 < T , i.e., they are in the first half and second
half of the bit interval, respectively. The decision rule is as follows:

If sample r(t1) equals r(t2), then decide s1(t).

If sample r(t1) is not equal to r(t2), then decide s2(t) (note that r(t1) > r(t2)).

When s1(t) is transmitted, r(t) = V + n, 0 ≤ t ≤ T ⇒ r(t1) = r(t2).

When s2(t) is transmitted, then

r(t) =
{

V + n, 0 ≤ t ≤ T/2
−V + n, T/2 ≤ t ≤ T

⇒ r(t1) 6= r(t2).

Therefore it is possible to determine whether s1(t) or s2(t) was transmitted perfectly.
Another receiver implementation is as follows:

∑)(tsi

t

)(1 ts

0

V

T
t

)(2 ts

0

V−
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0
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1

0 0

0 1
D

D

r

r
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< ⇒

2Tt =

Tt =

+

−

( )tn

( ) ( )

0
it s t

t T
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≤ ≤

r n

( )tr ( )
0

1
d

T

t
T ∫

( )
2

0

d
T

t∫

( )
2

d
T

T

t∫

2 1

2 0
D

D

r VT

r VT

≥ ⇒

< ⇒

( )tr

Figure 5.33

The noise process in this problem is an extreme example of colored noise. Using the
signal space ideas developed in this chapter one can see that the noise lies along one
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axis only, namely that given by φ1(t) = s1(t)√
E

. It does not have any component along

φ2(t) = s2(t)√
E

. This is illustrated in Fig. 5.34. This allows you to determine which signal
is sent exactly. In this context, another receiver implementation is shown in Fig. 5.34.

Tt =
2

2

0 1

0 0
D

D

r

r

> ⇒
= ⇒( )tr ( )

0

d
T

t∫)(1 tφ

)(2 tφ

E

E

( )1s t

0

( )2s t

1Noise projection is on ( ) onlytφ 2 ( )tφ

Figure 5.34: Noise projection and another receiver implementation.

P5.16 (Matched Filter)

)()( fHth ⇔
( ) ( )s t t+ w out out( ) ( )s t t+ w

Figure 5.35

(a) The response of the filter to the input signal component can be written as

sout(t) = F−1{S(f)H(f)} =
∫ ∞

−∞
S(f)H(f)ej2πftdf

⇒ sout(t0) =
∫ ∞

−∞
S(f)H(f)ej2πft0df ⇒ [sout(t0)]2 =

[∫ ∞

−∞
S(f)H(f)ej2πft0df

]2

(5.28)

(b) Since the input noise is white with power spectral density (PSD) N0/2, it follows that
the PSD of the output noise is N0

2 |H(f)|2. The total power of the output noise Pwout is
thus given by,

Pwout =
∫ ∞

−∞

N0

2
|H(f)|2df =

N0

2

∫ ∞

−∞
|H(f)|2df (5.29)

From (5.28) and (5.29) the SNRout can be written as,

SNRout =
[sout(t0)]2

Pwout

=

[∫∞
−∞ S(f)H(f)ej2πft0df

]2

N0

2

∫ ∞

−∞
|H(f)|2df

(5.30)
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(c) Now
∫∞
−∞[a(t) + λb(t)]2dt ≥ 0 (always). Considered as a quadratic in λ:

αλ2 + βλ + γ ≥ 0 (5.31)

with coefficients α, β and γ given as:

α =
∫ ∞

−∞
b2(t)dt (5.32)

β = 2
∫ ∞

−∞
a(t)b(t)dtλ (5.33)

γ =
∫ ∞

−∞
a2(t)dt (5.34)

The above inequality requires that the quadratic αλ2+βλ+γ cannot have any real roots,
otherwise it was cross the real axis for some value of λ (actually at two points) and would
be less than 0. From the formula for the roots this means that ∆ = β2−4αγ < 0, which,
upon substituting for α, β, γ is

[∫ ∞

−∞
a(t)b(t)dt

]2

≤
∫ ∞

−∞
a2(t)dt

∫ ∞

−∞
b2(t)dt (5.35)

which is known as Cauchy-Schwartz inequality. The equality holds when a(t) = Kb(t),
where K is an arbitrary (real) scaling factor, i.e., the shapes of a(t) and b(t) are the
same.

(d) Using Parseval’s relationship,
∫ ∞

−∞
a(t)b(t)dt =

∫ ∞

−∞
A(f)B∗(f)df (see P2.26, page 69),

5.35 becomes
[∫ ∞

−∞
A(f)B∗(f)df

]2

≤
∫ ∞

−∞
|A(f)|2df

∫ ∞

−∞
|B(f)|2(f)df (5.36)

where equality holds when A(f) = KB(f), K an arbitrary (real) scaling constant.

(e) Now let A(f) = H(f) and B∗(f) = S(f)ej2πft0 , then (5.36) becomes:
[∫ ∞

−∞
H(f)S(f)ej2πft0df

]2

≤
∫ ∞

−∞
|H(f)|2df

∫ ∞

−∞
|S(f)|2(f)df (5.37)

Combining (5.30) and (5.37) gives:

SNRout ≤
∫∞
−∞ |H(f)|2df

∫∞
−∞ |S(f)|2(f)df

N0
2

∫∞
−∞ |H(f)|2df

=
∫ ∞

−∞

|S(f)|2
N0/2

df (5.38)

(f) The maximum value of SNRout is achieved by choosing A(f) = KB(f), i.e.,
H(f) = KS∗(f)e−j2πft0 . Finally, the corresponding impulse response of the filter is

h(t) = Ks(t0 − t) (5.39)

where K is any real number. Note that to arrive at the above relation, the following two
properties of the Fourier transform have been used (x(t) is a real function here):

1. Time shift: x(t− t0) ⇔ X(f)e−j2πft0 .
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0

t

1( )s t

K

T3T 2 3T 0

t

2 ( )s t

K−

T3T 2 3T

Figure 5.36: Signal set matched to the filter’s impulse response.

2. Time reversal: x(−t) ⇔ X∗(f).

In our situation we take t0 to be Tb, the bit duration. Therefore h(t) = Ks(Tb − t).

P5.17 (a) The signal set would be ±Kh(Tb − t) where K is a scaling factor that determines the
transmitted energy (or average power). They plot as in Fig. 5.36. This makes h(t) a
matched filter to the signal set.

(b) Assume K = 1. The transmitted energy of either signal is

E =
∫ Tb

0
s2
1(t)dt =

∫ Tb/3

0

(
3
Tb

t

)2

dt +
∫ Tb

Tb/3

[
− 3

2Tb
t +

3
2

]2

dt =
Tb

3
(joules)

P [bit error] = Q

(√
2E

N0

)
= Q

(√
2Tb

3N0

)
= Q

(√
2

3rb × 10−9

)
≤ 10−3

rb ≤ 2× 109

3[Q−1(10−3)]2
= 6.98× 107 bits/second = 69.8 Mbps

P5.18 (Antipodal signalling)

)(ts

bT0

A

t
/ 3bT 2 / 3bT

)(ty

t

22 3bA T

bT0 4 / 3bT2 / 3bT 2 bT

2 3bA T

Figure 5.37

(a) The impulse response of the filter matched to s(t) is

h(t) = s(Tb − t) = s(t) (5.40)

where to arrive at the last equality we recognize that s(t) is even about t = Tb/2.
Therefore, the impulse response h(t) looks exactly the same as s(t).
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(b) The output of the matched filter when s(t) is applied at the input is

y(t) = s(t) ∗ h(t) =
∫ t

0
s(λ)s(t− λ)dλ

=





0 t < 0
A2t 0 ≤ t < Tb/3

A2(2Tb/3− t) Tb/3 ≤ t < 2Tb/3
2A2(t− 2Tb/3) 2Tb/3 ≤ t < Tb

2A2(4Tb/3− t) Tb ≤ t < 4Tb/3
A2(t− 4Tb/3) 4Tb/3 ≤ t < 5Tb/3
A2(2Tb − t) 5Tb/3 ≤ t < 2Tb

0 6 ≤ t

(5.41)

The output y(t) is sketched in Fig. 5.38. Observe that the output peaks at the sampling
time t = Tb = 3. This is of course not a coincidence but due to the property of the
matched filter, namely maximizing the signal-to-noise ratio at the sampling instant (see
P5.16).

)(ts

bT0

A

t
/ 3bT 2 / 3bT

)(ty

t

22 3bA T

bT0 4 / 3bT2 / 3bT 2 bT

2 3bA T

Figure 5.38: Output of the matched filter: only signal s(t) is present at the input.

(c) The output of the matched filter when−s(t) is applied at the input is the negative version
of the waveform in Fig. 5.38. This is simply because [−s(t)] ∗ h(t) = −[s(t) ∗ h(t)].

(d) To compute the SNR, the variance (i.e., average power) of the noise at the output of the
filter at t = Tb needs to be found. This can be accomplished as follows.
Approach 1: At the output of the matched filter and for t = Tb the noise is

n =
∫ Tb

0
n(λ)h(Tb − λ)dλ

=
∫ Tb

0
n(λ)s(Tb − (Tb − λ))dλ =

∫ Tb

0
n(λ)s(λ)dλ (5.42)

The variance of the noise is

σ2
n = E

[∫ Tb

0

∫ Tb

0
n(λ)n(v)s(λ)s(v)dλdv

]
=

∫ Tb

0

∫ Tb

0
E{n(λ)n(v)}s(λ)s(v)dλdv

=
N0

2

∫ Tb

0

∫ Tb

0
δ(λ− v)s(λ)s(v)dλdv =

N0

2

∫ Tb

0
s2(λ)dλ = N0A

2 Tb

3
(5.43)
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Approach 2: The PSD of the noise at the output of the matched filter is
N0

2
|H(f)|2 =

N0

2
|S(f)|2. Then the noise power is

σ2
n =

∫ ∞

−∞

N0

2
|S(f)|2df =

N0

2

∫ Tb

0
s2(λ)dλ = N0A

2 Tb

3
(5.44)

The signal-to-noise ratio (SNR) at the output of the matched filter at the sampling
instant is given by

SNR =
[±y(Tb)]2

σ2
n

=
(2A2Tb/3)2

N0A2 Tb
3

=
4A2Tb

3N0
(5.45)

(e) For antipodal signalling, the distance between the two signals is d21 = 2
√

E = 2
√

2A2Tb
3 .

Therefore the probability of bit error is

P [error] = Q

(
d21/2√
N0/2

)
= Q




√
2A2Tb

3√
N0/2


 = Q




√
4A2Tb

3N0


 (5.46)

Finally, it follows from (5.46) and (5.45) that

P [error] = Q
(√

SNR
)

(5.47)

Equation (5.47) holds for general antipodal signalling, i.e., regardless of what s(t) is
used. The relationship in (5.47) also clearly shows that for antipodal signalling over an
AWGN channel maximizing the SNR at the output of a receiving filter is the
same as minimizing the probability of error!

(f) Plot of P [error] as a function of SNR is shown in Fig. 5.39. The minimum SNR to
achieve a probability of error of 10−6 is

SNR = [Q−1(10−6)]2 = 22.595 = 13.54 (dB) (5.48)

P5.19 (Bandwidth) Define W to be the bandwidth of the signal s(t) if ε% of the total energy of s(t)
is contained inside the band [−W,W ]:

∫ W

−W
|S(f)|2df

∫ ∞

−∞
|S(f)|2df

=
2

∫ W

0
|S(f)|2df

E
=

ε

100
(5.49)

(a) (i) Rectangular pulse: s(i)(t) =
√

1
Tb

, 0 ≤ t ≤ Tb.

S(i)(f) =
1√
Tb

∫ Tb

0
e−j2πftdt =

Tb√
Tb

e−jπfTb
ejπfTb − e−jπfTb

2jπfTb

=
√

Tbe−jπfTb
sin(πfTb)
(πfTb)

.

Then ∣∣S(i)(f)
∣∣2 = Tb

sin2(πfTb)
π2(fTb)2

.
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Figure 5.39: Plot of P [error] as a function of SNR.

(ii) Half-sine: s(ii)(t) =
√

2
Tb

sin
(

πt
Tb

)
, 0 ≤ t ≤ Tb. To find S(ii)(f), write s(ii)(t) as

s(ii)(t) =
√

2s(i)(t) sin
(
2π

(
1

2Tb

))
. Then S(ii)(f) =

√
2S(i)(f) ∗ F

{
sin

(
2π

(
1

2Tb

))}
.

But

F
{

sin
(

2π

(
1

2Tb

))}
=

δ(f − 1/2Tb)− δ(f + 1/2Tb)
2j

= Ssin(f)

and

S(i)(f) ∗ Ssin(f) =
∫ ∞

−∞
S(i)(λ)Ssin(f − λ)dλ

=
√

Tb

2j

∫ ∞

−∞
e−jπλTb

sin(πλTb)
(πλTb)

[
δ(f − λ− 1/2Tb)− δ(f − λ + 1/2Tb)

2j

]
dλ

Using the sifting property of the impulse function we have

S(ii)(f) =
√

Tb

√
2

2j
e−jπ

(
f− 1

2Tb

)
Tb

sin
(
π

(
f − 1

2Tb

)
Tb

)

π
(
f − 1

2Tb

)
Tb

− e−jπ
(
f+ 1

2Tb

)
Tb

sin
(
π

(
f + 1

2Tb

)
Tb

)

π
(
f + 1

2Tb

)
Tb




Now e−jπ
(
f− 1

2Tb

)
Tb = e−jπfTbejπ/2 = je−jπfTb and e−jπ

(
f+ 1

2Tb

)
Tb = −je−jπfTb ,
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sin
(
π

(
f ± 1

2Tb

)
Tb

)
= sin

(
πfTb ± π

2

)
= ± cos(πfTb). Therefore

S(ii)(f) =
√

Tb

√
2

2j

je−jπfTb

πTb
cos(πfTb)

[
−1

f − 1
2Tb

+
1

f + 1
2Tb

]

︸ ︷︷ ︸
= −1

Tb

(
f2− 1

4T2
b

)=− 4T2
b

Tb(4f2T2
b
−1)

= −2
√

2
√

Tb

π

cos(πfTb)
(4f2T 2

b − 1)
e−jπfTb

Then ∣∣S(ii)(f)
∣∣2 =

8Tb

π2

cos2(πfTb)
(4(fTb)2 − 1)2

. (5.50)

(iii) Raised cosine: s(iii)(t) =
√

2
3Tb

[
1− cos

(
2πt
Tb

)]
, 0 ≤ t ≤ Tb. It can be written as

s(iii)(t) =
√

2
3

[
s(i)(t)− s(i)(t) cos

(
2πt
Tb

)]
. Therefore,

S(iii)(f) =

√
2
3

[
S(i)(f)− S(i)(f) ∗ F

{
cos

(
2πt

Tb

)}]

But F
{

cos
(

2πt
Tb

)}
= δ(f−1/Tb)+δ(f+1/Tb)

2 . Again the impulse functions just sift (or if

you wish shift) the spectrum of S(i)(f) to S(i)

(
f − 1

Tb

)
and S(i)

(
f + 1

Tb

)
. Therefore

S(iii)(f) =

√
2
3


S(i)(f)−

S(i)

(
f − 1

Tb

)
+ S(i)

(
f + 1

Tb

)

2




Doing all the necessary algebra, one obtains:

S(iii)(f) =
√

2Tb√
3π

sin(πfTb)
(fTb)[1− (fTb)2]

e−jπfTb . (5.51)

and ∣∣S(iii)(f)
∣∣2 =

2Tb

3π2

sin2(πfTb)
(fTb)2[1− (fTb)2]2

. (5.52)

Substituting the above into (5.49) and changing the variable λ = fTb one has the fol-
lowing equations to solve for WTb:

(i) Rectangular pulse:

2
∫ W

0

Tb sin2(πfTb)
(πfTb)2

df = 2
∫ WTb

0

sin2(πλ)
(πλ)2

dλ =
ε

100
. (5.53)

(ii) Half-sine:

2
∫ W

0

8
π2

Tb cos2(πfTb)
[1− 4(fTb)2]2

df =
16
π2

∫ WTb

0

cos2(πλ)
(1− 4λ2)2

dλ =
ε

100
(5.54)
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(iii) Raised cosine:

2
∫ W

0

2Tb

3π2

[
sin(πfTb)

(fTb)[1− (fTb)2]

]2

df =
4

3π2

∫ WTb

0

sin2(πλ)
λ2(1− λ2)2

dλ =
ε

100
(5.55)

(b) The above equations can only be solved numerically. Using the numerical integration
routine in MATLAB (quad or quad8 in MATLAB 5.3 and quadl in MATLAB 6.0), the
following table is obtained.

Table 5.1: Values of WTb

ε% Rectangular Half-Sine Raised Cosine

90.0% 0.8487 0.7769 0.9501
95.0% 2.0740 0.9116 1.1146
99.0% 10.2860 1.1820 1.4093
99.9% 31.1677 2.7355 1.7290

Note that the bandwidth is normalized in terms of the signalling rate rb = 1/Tb (bits/second).
Asymptotically, as f becomes very large, the energy spectral densities behave as follows:
Rectangular: 1/f2; Half-sine: 1/f4 and Raised cosine: 1/f6.
Thus the raised cosine decays the fastest. This is related to the number of times a
signal can be differentiated before impulses appear. In the above, impulses appear in
the rectangular pulse after the first derivative, in the half-sine after the second derivative
and in the raised cosine after the third derivative. Thus one would feel that the raised
cosine is the smoothest, then the half-sine and finally the rectangular pulse. This agrees
with the plot of all three signals in Figure 5.40.
In the frequency domain, this translates to the smoother signal occupies the lesser
amount of frequency axis (though this may also depends on the value of ε used for
bandwidth definition. Note from Table 5.1 that though the raised cosine’s spectral den-
sity decays (asymptotically) the fastest, it does not start to occupying “less frequency
axis” until the energy bandwidth criterion is 99.9%, a value that is probably not of engi-
neering interest. A criterion of 95% or 99% would be more realistic values for engineering
design and analysis.
Figures 5.41 and 5.42 plot the energy spectral densities of all three signals in linear and
logarithmic scales, respectively. It can be seen that the faster the density decays with
f , the wider the main lobe. This is reasonable because all three signals have the same
energy (of 1 joule). Thus the energy of the respective signals has to wide up someplace
on the frequency axis. If not at the higher frequency then the main lobe will do.

P5.20 (a) When the two bits are equally likely (uniform source), the error performance of a digital
binary communications system only depends on the Euclidean distance between the two
signals. This distance is 2

√
E for antipodal signalling, where

√
E is the energy of s(t).

It follows that, for the two communication systems to have the same error performance,
the energies of the two waveforms in Figure 5.43 have to be the same. That is:

A2T =
B2T

3
⇒ B = A

√
3
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Figure 5.40: Plot of three signals in the time domain.
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Figure 5.41: Plot of Energy Spectral Densities of three signals.

(b) Define W to be the bandwidth of the signal s(t) if 95% of the total energy of s(t) is
contained inside the band [−W,W ]. The bandwidth of the rectangular signal has been
found in P5.19 to be W(i) = 2.07/T .
For the triangular signal, to find the bandwidth W(ii) we first find S(ii)(f). To this end,
differentiate s(ii)(t) twice, find the Fourier transform of the resulting signal and divide
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Figure 5.42: Plot of Energy Spectral Densities of three signals.
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Figure 5.43: Two waveforms for s(t).

by (j2πf)2.
Since

d2s(ii)(t)
dt2

=
2B

T
δ(t)− 4B

T
δ

(
t− T

2

)
+

2B

T
δ (t− T )

and

F
{

d2s(ii)(t)
dt2

}
=

2B

T
− 4B

T
e−jπfT +

2B

T
e−j2πfT

S(ii)(f) =
F

{
d2s(ii)(t)

dt2

}

(j2πf)2
=

2B
T

(
1 + e−j2πfT

)− 4B
T e−jπfT

(j2πf)2

=
4B
T e−jπfT

(
ejπfT +e−jπfT

2

)
− 4B

T e−jπfT

(j2πf)2

=
4B

T

cos(πfT )− 1
(jπf)2
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Then

∣∣S(ii)(f)
∣∣2 = 16B2 (cos(πfT )− 1)2

π2f2T 2
⇒

∣∣S(ii)(f)
∣∣2

E(ii)
=

48T

π2

(cos(πfT )− 1)2

f2T 2

So the equation to find W(ii) is

96T
π2

∫ W(ii)

0

(cos(πfT )− 1)2

f2T 2
df =

ε

100
= 0.95

⇔ 96
π2

∫ W(ii)T

0

(cos(πλ)− 1)2

λ2
dλ = 0.95

which gives W(ii) = 1.00/T .
Since both systems have the same bit rate of 2 Mbps, the bit duration in both system
is T = 1/(2× 106) = 0.5× 10−6 seconds.
The required bandwidths of the two systems are therefore W(i) = 2.07/(0.5 × 10−6) =
4.14× 106 Hz = 4.14 MHz and W(ii) = 1.00/(0.5× 10−6) = 2.00× 106 Hz = 1.82 MHz.
Clearly, when the two systems have the same error performance, system-(ii) is preferred
since it requires less transmission bandwidth.

(c) Consider the system that uses s(t) in Fig. 5.43-(i). Then the error probability is

P [error] = Q

(√
2E

N0

)
= Q




√
2A2T

N0


 = 10−6

⇒ 2A2T

N0
= [Q−1

(
10−6

)
]2 = 4.752

⇒ A =
(

4.752N0

2T

)1/2

=
(

4.752 × 2× 10−8

2× 0.5× 10−6

)1/2

= 0.6718 (volts)

P5.21 Consider a diversity system in Fig. 5.44.

(a) The decision variable r can be written as:

r = KrA + rB = ±(KVA + VB) + (KwA + wB)
= ±V + w

Note that the signal components always have the same sign in both branches. In the
above one has

V = KVA + VB : total signal component
w = KwA + wB : total noise component

Both wA and wB are zero-mean, with variances σ2
A and σ2

B respectively; furthermore
they are uncorrelated, thus, the noise w is zero-mean Gaussian random variable with
variance σ2 = K2σ2

A + σ2
B.

Rewrite the decision variable r as:
{

r = V + w if “1” was transmitted
r = −V + w if “0” was transmitted
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Figure 5.44: A Diversity System.

The probability of error for the decision rule
1D

r ≷ 0
0D

is

Pr[error] = Q

(
V

σ

)
= Q


 KVA + VB√

K2σ2
A + σ2

B


 (5.56)

(b) To minimize Pr[error] one needs to maximize

g(K) =
V 2

σ2
=

(KVA + VB)2

K2σA + σB
=

V 2
A

σ2
A

(K + α)2

K2 + β

where α =
VB

VA
, β =

σ2
B

σ2
A

. Now

dg(K)
dK

=
V 2

A

σ2
A

[
2(K + α)(K2 + β)− (K + α)2(2K)

(K2 + β)2

]

=
2V 2

A

σ2
A

(K + α)[K2 + β − (K + α)K]
(K2 + β)2

=
2V 2

A

σ2
A

(K + α)(β − αK)
(K2 + β)2

= 0

gives K = −α or K =
β

α
=

σ2
B

σ2
A

VA

VB
. Since K > 0, the optimum value of K to minimize

Pr[error] is

K∗ =
β

α
=

σ2
B

σ2
A

VA

VB
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(c) When K = K∗ = β
α we have

g(K∗) =
(K∗VA + VB)2

(K∗)2σ2
A + σ2

B

=

[
σ2

BVA

σ2
AVB

VA + VB

]2

(
σ2

B

σ2
A

VA
VB

)2
σ2

A + σ2
B

=
(σ2

BV 2
A + σ2

AV 2
B)2

σ4
Bσ2

AV 2
A + σ4

Aσ2
BV 2

B

=
(σ2

BV 2
A + σ2

AV 2
B)2

σ2
Aσ2

B(σ2
BV 2

A + σ2
AV 2

B)

=
σ2

BV 2
A + σ2

AV 2
B

σ2
Aσ2

B

=
V 2

A

σ2
A

+
V 2

B

σ2
B

(5.57)

which means that
V 2

σ2
=

V 2
A

σ2
A

+
V 2

B

σ2
B

(5.58)

Note that each ratio in the above is the signal-to-noise ratio (SNR). Thus (5.58) shows
that the best possible SNR is the sum of the SNRs in the two different branches. This
is also called the maximal-ratio combining.

The probability of error for maximal-ratio combining is:

Pr[error] = Q

(√
V 2

A

σ2
A

+
V 2

B

σ2
B

)

Remark : The diversity system considered in this assignment is a very popular model in
mobile communications when multiple antenna are used at the transmitter/receiver.

(d) If K is set to 1 then the combining of two channels A and B is called
equal-gain combining :

Pr[error] = Q

(
V

σ

)
= Q


 VA + VB√

σ2
A + σ2

B


 (5.59)

Of course, as shown above, equal-gain combining (although simple) is inferior to maximal-
ratio combining in terms of error performance.

P5.22 Let s1(t) ↔ 0T , s2(t) ↔ 1T .

(a) f(rj |1T ) = c
2e−c|rj−V |; f(rj |0T ) = c

2e−c|rj |. Since the samples are statistically indepen-
dent, the conditional pdfs are:

f(r1, . . . , rM |1T ) =
m∏

j=1

c

2
e−c|rj−V |; f(r1, . . . , rM |0T ) =

m∏

j=1

c

2
e−c|rj |.

(b) The log-likelihood ratio becomes:

ln

{∏m
j=1

c
2e−c|rj−V |

∏m
j=1

c
2e−c|rj |

}
= c

m∑

j=1

[|rj | − |rj − V |] .
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If rj < 0 then |rj | = −rj and |rj −V | = −(rj −V ). Therefore the sum becomes −cm1V .

If rj < V then |rj | = rj and |rj − V | = −(rj − V ). The sum is 2c
∑

0<rj<V rj − cm2V .

If rj > V then |rj | = rj and |rj − V | = (rj − V ). The sum is cm3V .

Therefore the sum becomes 2c
∑

rj∈(0,V ) rj + cV (m3 −m1 −m2).

But m = m3+m2+m1, therefore the sum can be written as 2c
∑

rj∈(0,V ) rj+cV (m3−m).

Note: m is known to us beforehand but m3 and of course rj are not. They depend on
the transmitted signal and the noise samples.

Further what if rj = 0 or V – where should one put these samples? It should not matter
but let us place them with the m1 and m3 count, respectively.

(c) The decision rule to maximize the error probability is:

f(r1, . . . , rm|1T )
f(r1, . . . , rm|0T )

1D

R
0D

P1

P2
.

In deriving this there were no assumptions made regarding the conditional pdfs. After
taking ln, we have

∑

rj∈(0,V )

rj + m3V
1D

R
0D

mV +
1
c

ln
P1

P2
.

Remark: The receiver derived is not necessarily the best there is for the given noise
model but it is the optimum on (in terms of minimizing error probability) under the
given conditions.

P5.23 (a) The observable is the number of received photons in the time interval Tb seconds. There-
fore:

P [k photons emitted in Tb seconds|1T ] =
[(λs + λn)Tb]ke−(λs+λn)Tb

k!
,

P [k photons emitted in Tb seconds|0T ] =
[λnTb]ke−λnTb

k!
.

The likelihood ratio test becomes:

[(λs + λn)Tb]k

[λnTb]k
e−λsTb

1D

R
0D

(
P1

P2

)

Taking ln gives:

k
1D

R
0D

ln
(

λn

λs + λn

)[
λsTb + ln

P1

P2

]
P1=P2= ln

(
λn

λs + λn

)
λsTb = Th.
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(b) Again assuming the bits are equally probable, one has

P [bit error] =
1
2
P [k ≥ Th|0T ] +

1
2
P [k < Th|1T ]

=
1
2

[P [k ≥ Th|0T ] + (1− P [k ≥ Th|1T ])] =
1
2

+
1
2
P [k ≥ Th|0T ]− 1

2
P [k ≥ Th|1T ]

=
1
2

+
1
2

{ ∞∑

k = Th︸ ︷︷ ︸
strictly

speaking,
should be
ceiling,

i.e., dThe

[
(λnTb)ke−λnTb

k!
− [(λs + λn)Tb]ke−(λs+λn)Tb

k!

]

︸ ︷︷ ︸
=

[
(λnTb)k

k!
e−λnTb

(
1−

(
1+ λs

λn

)k

e−λsTb

)]

}
.

The average transmitted energy due to signal photons in one bit interval is hfλsTb,
while that due to background photons is hfλnTb. Therefore the signal-to-noise ratio is
SNR = hfλsTb

hfλnTb
= λs

λn
. So P [bit error] depends on the SNR, but in a very complicated

manner.

P5.24 (Signal design for non-uniform sources)

(a) Simple manipulations give:

√
A− B√

A
=

√
(ŝ22 − ŝ12)2

2N0
− 0.5 ln

(
1− p

p

) √
2N0

(ŝ22 − ŝ12)2

=
ŝ22 − ŝ12√

2N0
+

√
N0 ln

(
p

1−p

)
√

2(ŝ22 − ŝ12)

T − ŝ12√
N0/2

=
0.5(ŝ12 + ŝ22)− ŝ12 + 1

2
N0

ŝ22−ŝ12
ln

(
p

1−p

)
√

N0/2

=
ŝ22 − ŝ12√

2N0
+

√
N0 ln

(
p

1−p

)
√

2(ŝ22 − ŝ12)

It then follows that:

√
A− B√

A
=

T − ŝ12√
N0/2

⇒ Q

(√
A− B√

A

)
= Q

(
T − ŝ12√

N0/2

)

Similarly,

√
A +

B√
A

=
ŝ22 − T√

N0/2
=

ŝ22 − ŝ12√
2N0

+

√
N0 ln

(
1−p

p

)
√

2(ŝ22 − ŝ12)

Since Q(x) = 1−Q(−x), then:

⇒ Q

(
ŝ22 − T√

N0/2

)
=

[
1−Q

(
T − ŝ22√

N0/2

)]
= Q

(√
A +

B√
A

)
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Thus, the error probability can be written as:

Pr[error] = pQ

(√
A− B√

A

)
+ (1− p)Q

(√
A +

B√
A

)

Since Pr[error] is a decreasing functions of A ⇒ Pr[error] is minimized when A is maxi-
mized.
Using the energy constraint Ēb = E1p + E2(1− p) one can write A as the function of a
single variable E1 as follows:

A =
E2 − 2ρ

√
E1E2 + E1

2N0
=

E1 + Ēb−E1p
1−p − 2ρ

√
ĒbE1−E2

1p
1−p

2N0
(5.60)

Thus, the design problem is to find the optimal value of E1 in the range 0 ≤ E1 ≤ Ēb/p
(E1 cannot exceed Ēb/p because E2 ≥ 0) so that A is maximum.

(b) For the case of “orthogonal” signalling, ρ = 0 and A is simplified to

A =
Ēb + E1(1− 2p)

(1− p)2N0

It is straightforward to see from the above equation that the maximum value of A is
Amax = Ēb/(2pN0), which occurs when E1 takes on its maximum value of E1 = Ēb/p
(and thus E2 = 0). This implies the following optimal signal set:

s1(t) =
√

Ēb/pφ1(t)

s2(t) = 0

i.e., we do not use the second basis function. In fact, we have on-off keying (OOK).
If we select E1 = E2 = Ēb as is usually done (“conventional” design), then A = (Ēb/N0).
Since p ≤ 0.5, Amax/A = (2p)−1 ≥ 1 with equality only when p = 0.5.
Note also that, for p = 0.5, the two solutions E1 = 2Ēb, E2 = 0 and E1 = E2 = Ēb,
are special cases of the general solution (for orthogonal signal set) E1 = 2Ēb cos2 φ,
E2 = 2Ēb sin2 φ, where φ is an arbitrary angle.

(c) Fig. 5.45 plots the error performance of the optimum design and the conventional design
when p = 0.1. Observe that, at BER=10−5, the gain in SNR by the optimum design is
about 7.1 dB.

(d) Nonorthogonal Signals. The first and second derivatives of A in (5.60) with respect to
E1 are, respectively:

dA

dE1
=

1
2N0

[
1− 2p

1− p
− ρĒb(Ēb − 2E1p)

(1− p)0.5(ĒbE1 − E2
1p)

]
= 0 (5.61)

d2A

dE2
1

= ρ
2p(ĒbE1 − E2

1p) + (Ēb − 2E1p)2

2(1− p)0.5(ĒbE1 −E2
1p)1.5N0

It can be seen that the sign of the second derivative is determined by the sign of ρ.
Thus, for ρ > 0, A is a convex function of E1 (with a minimum), while for ρ < 0, A is a
concave function of E1 (with a maximum). Figure 5.46 plots the normalized quantity

An = A
2N0

Ēb
=

E1n(1− 2p) + 1
1− p

− 2ρ

(
E1n − E2

1np

1− p

)0.5
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Figure 5.45: Error performance of the optimum and conventional designs.
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Figure 5.46: Variation of An with E1n when ρ varies between −1 and +1 in the step of 0.1
(p = 0.1).

Solutions Page 5–44



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB) 

B
E

R

Conventional design
Optimum design     ρ=1

ρ=0.75

ρ=0.5

ρ=0.25

ρ=0

Figure 5.47: Variation of BER of the optimal and conventional systems for ρ ≥ 0 (p = 0.1).

as a function of normalized E1, E1n = E1/Ēb, for several values of ρ and p = 0.1. We
can observe the convexity for ρ > 0 and concavity for ρ < 0.
Equating (5.61) to zero, the following two roots which give a minimum for ρ > 0 and a
maximum for ρ < 0 are obtained:

E1 =
Ēb

2p

[
1− 1− 2p

[1− 4p(1− p)(1− ρ2)]0.5

]
, ρ > 0

E1,opt =
Ēb

2p

[
1 +

1− 2p

[1− 4p(1− p)(1− ρ2)]0.5

]
, ρ < 0 (5.62)

Thus for ρ > 0, the maximum of An occurs at the edge with E1,opt = Ēb/p, E2,opt = 0,
Amax = Ēb/(2pN0), which is OOK again.
Fig. 5.47 plots the BER as a function of Ēb/N0 for optimal E1 and E2, and also for
conventional system (with E1 = E2 = Ēb, hence, A = Ēb/(1− ρ)/N0) for several values
of nonnegative ρ and p = 0.1. We can see from this figure that for nonnegative ρ, the
BER of the optimal system (OOK) is much better than that of the conventional system.
For example, when the BER is 10−7, the improvement in Ēb/N0 is about 7.1 dB for
ρ = 0 and is even greater for higher values of ρ.
For ρ < 0, the maximum of A occurs when E1 = E1,opt of (5.62). From (5.62) and (5.60)
one has:

E2,opt =
Ēb

2(1− p)

[
1 +

1− 2p

[1− 4p(1− p)(1− ρ2)]0.5

]
(5.63)

Substituting (5.62) and (5.63) in (5.60), we obtain the maximum value

Amax =
Ēb

2N0

[
1

2p(1− p)

{
1 +

(1− 2p)2

[1− 4p(1− p)(1− ρ2)]0.5

}
− 2ρ|ρ|

[1− 4p(1− p)(1− ρ2)]0.5

]
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Figure 5.48: Variation of BER of the optimal and conventional systems for ρ < 0 (p = 0.1).

Fig. 5.48 plots the BER as a function of Eb/N0 for optimal E1 and E2, and for the conventional
system, for several values of negative ρ when p = 0.1. It can be seen from this figure that for
negative values of ρ, there is also a significant improvement in performance relative to the
conventional system. For example, when BER is 10−7, the improvement in is about 4.5 dB
for ρ = −1 and about 6.0 dB for ρ = −0.25.

Finally, if there is no constraint on the specific value of ρ (which should be the case when
ρ 6= 0), it is not hard to see that the optimum signal set corresponds to ρ = −1.

Technology Adoption Process "The Chasm"
Laggards Late Majority Innovators

E
�

A0E− A−

1( )f m�3( )f m� 2( )f m�
3m 1m2m

Figure 5.49

P5.25 (a) The decision variable can be expressed as:

` =
∫ T

0
r(t)s(t)dt =





E + w, if m1 was sent
w, if m2 was sent

−E + w, if m3 was sent

where E is the energy of ±s(t) and w =
∫ T
0 w(t)s(t)dt is zero-mean Gaussian random

Solutions Page 5–46



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

variable with variance σ2 = N0
2 E.

Thus, given m1 was sent:

P [error|m1] = P (` < A) = 1−Q

(
A− E

σ

)
= Q

(
E −A√
EN0/2

)

Given m3 was sent:

P [error|m3] = P (` > −A) == Q

(
−A + E√

EN0/2

)

Given m2 was sent:

P [error|m2] = Pr(` < −A or ` > A) = 2Q

(
A√

EN0/2

)

(b) The average probability of error when the a priori probabilities of the three signals are
P [m1] = P [m3] = 1

4 and P [m2] = 1
2 is given by:

P [error] =
1
4
P [error|m1] +

1
4
P [error|m3] +

1
2
P [error|m2]

=
1
2
Q

(
−A + E√

EN0/2

)
+ Q

(
A√

EN0/2

)

(c) Since P [error] = f(A), to minimize f(A) one needs to find A from df(A)
dA = 0. Using the

hint provided, one obtains:

dQ

(
−A+E√
EN0/2

)

dA
= − 1√

EN0/2

(
− 1√

2π

)
exp

[
−(E −A)2

EN0

]

=
1√

πEN0
exp

[
−(E −A)2

EN0

]

dQ

(
A√

EN0/2

)

dA
=

1√
EN0/2

(
− 1√

2π

)
exp

[
− A2

EN0

]

Thus, setting df(A)
dA = 0 gives:

1
2

exp
[
−(E −A)2

EN0

]
= exp

[
− A2

EN0

]

⇔ ln
(

1
2

)
− (E −A)2

EN0
= − A2

EN0
⇔ A =

1
2

[
E −N0 ln

(
1
2

)]

Finally, when P [m1] = P [m3] = P [m2] = 1
3 , then setting df(A)

dA = 0 yields A =
E

2
,

which is independent of the noise level N0!
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P5.26

v(t) =
∞∑

k=−∞
[P1s1(t− kTb) + P2s2(t− kTb)]

v(t + Tb) =
∞∑

k=−∞

[
P1s1(t + Tb − kTb︸ ︷︷ ︸

t−(k−1)Tb

) + P2s2(t + Tb − kTb︸ ︷︷ ︸
t−(k−1)Tb

)
]
.

Now change (dummy) index variable to l = k − 1. Then

v(t + Tb) =
∞∑

l=−∞

[
P1s1(t− lTb) + P2s2(t− lTb)

]
= v(t).

Therefore v(t) is periodic with period Tb.

P5.27 (Regenerative Repeaters) The number of repeaters needed: K = 2000km/20km = 100.

(i) If analog repeaters are used:

Pb = Q

(√
2Eb

KN0

)
= 10−6

⇒ Eb

N0
=

K

2
[
Q−1 (Pb)

]2 =
100
2

[
Q−1

(
10−6

)]2 = 1130 = 30.53 dB

(ii) If regenerative repeaters are used:

Pb = KQ

(√
2Eb

N0

)

⇒ Eb

N0
=

1
2

[
Q−1

(
Pb

K

)]2

=
1
2

[
Q−1

(
10−6

100

)]2

= 15.74 = 11.97 dB

P5.28 (Simulation of a binary communication system using antipodal signalling) The error prob-
ability of BPSK signalling is P [error] = Q

(√
2Eb/N0

)
. Since Eb = V 2Tb, Tb = 1 second

and N0/2 = 1 watts/Hz, one has P [error] = Q(V ), or V = Q−1(P [error]). The following
MATLAB script can be used to perform the simulation.

Pe_vec=[10^(-1) 10^(-2) 10^(-3) 10^(-4) 10^(-5)];
L=[10^5,10^5,10^6,10^6,10^7];
% Numbers of information bits to run, corresponding to each Pe
for i=1:length(Pe_vec)

Pe=Pe_vec(i);
V(i)=Qinv(Pe);
% This is the sequence of information bits (0,1):
b=round(rand(1,L(i)));
% Convert bits to amplitudes levels of +V and -V volts
% and add to it AWGN with variance of 1:
r=V(i)*(2*b-1)+randn(1,length(b));
% Receiver:
temp=sign(r);
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Figure 5.50: BER performance of BPSK signalling.

% if r=0 then arbitrarily decide that bit 1 was transmitted.
temp(find(temp==0))=1;
% This is the sequence of demodulated bits (0,1):
b_hat=(temp+1)/2;
% Estimation of the error probability:
BER(i)=length(find(b_hat-b))/length(b);

end
Fig. % Plot the experimental and theoretical probabilities of error (BER)
sim=semilogy(20*log10(V),BER,’marker’,’x’,’markersize’,8,’color’,’k’);
hold on;
theo=semilogy(20*log10(V),Q(V),’marker’,’o’,’markersize’,8,’color’,’k’);
legend([sim theo],’Simulation’,’Theory’,+1);
xlabel(’{\itV}/{\it\sigma} (dB)’,’FontName’,’Times New
Roman’,’FontSize’,16); ylabel(’BER’,’FontName’,’Times New
Roman’,’FontSize’,16); h=gca;
set(h,’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’,’GridLineStyle’,’:’,...

’MinorGridLineStyle’,’none’,’FontName’,’Times New Roman’);

Fig. 5.50 plots both the theoretical and experimental BER curves. As can be seen, the two
curves are almost identical, except for P [error] = 10−5. This difference is merely due to the
insufficient data for simulation of this BER value (only 107 input bits were generated). The
difference would disappear if more bits were simulated.

The numbers of bits in error that I got after running the above script are {9992 1021 986 108 124}.
Of course these numbers will differ slightly for each execution of the script.
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Baseband Data Transmission

P6.1 (a) See Fig. 6.1-(a).

(b) dk = bk ⊕ dk−1; d−1 = 0. See Fig. 6.1-(b).

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

1 0 0 01 11 1 1 1

NRZ-L  waveform (with input to modulator the “encoded” bits dk )
V

V−

:kd t

t

V

V−

Initial condition
NRZI  waveform

t

bT 10 bT

(a)

(b)

Figure 6.1

Note that the waveforms of (a), (b) are the same, i.e., one can implement the modulator
either as in (a) or as in (b), end result is identical.

(c) With polarity reversal at 4Tb, the transmitted waveform is as shown in Fig. 6.2.

(d) The question is ambiguous a bit since it may refer to either no polarity reversal or a
polarity reversal at at t = 4Tb. So do it for both situations.

1
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Polarity reversal
V

V−
1 0 001 1 1 1� :kd

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

0 0

t

t

0 0 01 1 1 1 1 11:kb�
Error (due to polarity reversal)

t�
1 0d − =

� � �
1 1;  0 (initial condition assumed)k k kb d d d− −= ⊕ =�

Figure 6.2

(i) With polarity reversal at t = 4Tb and d̂−1 = 1 (assumed). The picture looks as in
Fig. 6.3

0 0 01 1 1 1 11:kb� t�
1 1d − =

0

Error Error

Figure 6.3

(ii) With no polarity reversal at t = 4Tb, see Fig. 6.4.

0 0 01 1 1 1 1:kb� t�
1 1d − =

0 0

Error

Figure 6.4

Remarks: dk sequence of (b) was used since with no polarity reversal and no noise,
d̂k = dk. Also from (c) we might expect that only 1 error would occur since assuming
d̂−1 = 1 is equivalent to a polarity reversal. The conclusion is that a polarity reversal
causes one bit to be in error.

(e) See Fig. 6.5.
(f) – A polarity reversal leads to a bit error in the interval in which the polarity reversal

takes place. The decoder, in the absence of random noise, recovers after this interval.
In the presence of random noise, an error due to the random noise leads to a bit
error in the next interval as shall be seen in the next problem.

– Note that if the polarity reversal takes place not at t = kTb then, at least in the
absence of random noise this is easily detected and can be corrected.

P6.2 Look at the modulator as first a mapping (encoding) from bk to dk and then an NRZ-L
modulator.

(a) The signals of the NRZ-L modulator are antipodal, in general with energy = Eb. The
signal space looks as in Fig. 6.6
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Inadvertent 
polarity reversal

V

V−
1 0 001 1 1� :kd

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

0 0

t

t0

Deliberate 
polarity reversal

0 0 01 11 1 11:kb� t�
1 1d − =

0

Error Error

Figure 6.5

)(1 tφ
bE

0
bE−

1kd =0kd =
t

bT0

1

bT

)(1 tφ

(Here we let 1)bE =

Figure 6.6

(b) With the energy level set to 1 joule the output sk is: dk = ‘1’ → sk = +1 volt; dk =
‘0’ → sk = −1 volt. Using dk sequence determined in P6.1(b), the output sequence is
shown in Fig. 6.7.

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

t1+ 1+ 1+ 1+ 1+ 1+ 1+1− 1− 1−:ks

(Use  sequence determined in P6.1(b))kd

Figure 6.7

(c) rk = sk + wk (volts). See Fig. 6.8

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

t0.6 0.2− 1.2 0.6 0.8 0.2 1.20.8− 0.2 1−:kr

0 11 1 11 1 t00 1� :kd

0 10 bTError Error

Figure 6.8
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Demodulator is a bit-by-bit demodulator, and the decision rule is rk

d̂k=0

≷
d̂k=1

0. Note the

dk bit errors at t = Tb and t = 7Tb. See Fig. 6.9

01 1 10 0 t1 0

0 10 bT

:kb��
1 0d − = Error

0 0

Error Error Error

Figure 6.9

The observation is that a bit error in d̂k due to random noise results in 2 bit errors in
the decoded information bits b̂k. This is the influence of the memory in the system. If
dk is in error then since it participates in the determination of both bk and bk+1, i.e.,
b̂k = d̂k ⊕ d̂k−1 and b̂k+1 = d̂k+1 ⊕ d̂k, then both b̂k, b̂k+1 are both affected by d̂k. In
other words, the error propagates but not that severely.

(d) See Fig. 6.10.

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

t1+ 1+ 1+ 1− 1− 1− 1−1− 1+ 1+:ks

Polarity reversal

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

t0.6 0.2− 1.2 1.4− 1.2− 1.8− 0.8−0.8− 2.2 1:kr

0 01 1 00 0 t10 1� :kd

0 10 bT

01 1 10 t1 1

0 10 bT

:kb��
1 0d − =

Errors due to 
random noise

0 1

Error due to 
polarity reversal

1

Note: polarity reversal appears to help 
noise errors!!! But be cautious – rarely 

in life do 2 wrongs make 1 right.

Figure 6.10

P6.3 We assume, as we almost invariably do throughout, that the information bits are equally
likely, i.e., P [bk = 0] = P0 = 1/2; P [bk = 1] = P1 = 1/2. In P6.6, we will discuss the more
general case.

(a) Now dk = bk ⊕ dk−1. Note that dk = 0 if (bk = 0 and dk−1 = 0) or (bk = 1 and
dk−1 = 1), which are 2 mutually exclusive random events. Therefore,

P [dk = 0] = P [(bk = 0 and dk−1 = 0] + P [(bk = 1 and dk−1 = 1)] .

Using Bayes’ rule:

P [dk = 0] = P [bk = 0|dk−1 = 0]P [dk−1 = 0] + P [bk = 1|dk−1 = 1)]P [dk−1 = 1] .

Solutions Page 6–4
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But bits bk are statistically independent of the dk bits, i.e.,

P [bk = 0|dk−1 = 0] = P [bk = 0] =
1
2

= P [bk = 1|dk−1 = 1]

∴ P [dk = 0] =
1
2

{
P [dk−1 = 0] + P [dk−1 = 1]︸ ︷︷ ︸

surely, this equals 1

}
=

1
2

= P [dk = 1]

(b)

P [dk bit in error] = Q

(
2Eb

N0

)
.

1( )

k

t

r

φ
b kE s↔

0

bE−

( 1)kd =( 0)kd =
t

bT0

1

bT

ˆ 1kd =ˆ 0kd =

Figure 6.11

(c) (i) No.
(ii) No. 2 wrongs do make a right as we observed in P6.2(d).
(iii) Yes.
(iv) Yes.

P
[
b̂k error

]

= P

[
(d̂k correct and d̂k−1 incorrect) or (d̂k incorrect and d̂k−1 correct)︸ ︷︷ ︸

mutually exclusive events

]
.

Also decisions d̂k, d̂k−1 are statistically independent, since noise terms wk, wk−1 are
statistically independent. Therefore,

P
[
b̂k error

]
= 2P

[
d̂k correct

]
P

[
d̂k−1 incorrect

]

= 2Q

(√
2Eb

N0

)[
1−Q

(√
2Eb

N0

)]
.

With NRZ-L, we have P
[
b̂k error

]
= Q

(√
2Eb
N0

)
. Assume that Q

(√
2Eb
N0

)
¿ 1, which

is the practical case. Then P
[
b̂k error for NRZI

] ∼= 2Q
(√

2Eb
N0

)
, i.e., 2 times that of

NRZ-L. The factor 2 reflects the error propagation, i.e., whenever there is a bit error
due to random noise, the succeeding bit is also in error.

P6.4 (a) First thing is to define the state set, i.e., what is needed from the past that along with
the present input bit, bk, allows one to determine the output.

Solutions Page 6–5



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

1/ 1k kd b= =

1 0kd − =

inputencoder output

1 1kd − =

0 / 1k kd b= =
0 / 0k kd b= =0 / 0k kd b= =

/ 1kV b+ =

inputmodulator output
/ 1kV b− =

/ 0kV b+ =/ 0kV b− =

prev. mod. ouput = -V prev. mod. ouput = +V
Figure 6.12

– Mapping from bk to dk: state is value of dk−1.
– Mapping from bk to modulator level: state is previous value of modulator output.

The state diagrams then look as in Fig. 6.12

(b) The trellis looks as in Fig. 6.13

0, / 0V− 0, / 0V−

1, / 0V+

1,
/1

V+

0,
/1V−

input bit kb
modulator 
output value

encoded bit output kd( 0)kb =
( 1)kb =

1kd −

0

1

V−

V+

State
(prev. mod. 
output)

�

Figure 6.13

(c) The branch “metrics” are (rk−
√

Eb)2 and (rk +
√

Eb)2 respectively, −√Eb if the branch
corresponds to the +V being transmitted and +

√
Eb if the level transmitted is −V (see

Fig. 6.14).

( )2

k br E+

( )2

k br E−

where in our case

1bE =

Figure 6.14

Therefore the best path can be found as illustrated in Fig. 6.15.
Note that there are 4 bit errors, which is the same as in P6.2(c). Thus, in this case, the
VA does not perform better. But 1 swallow does not make a summer and more will be
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t0.6 0.2− 1.2 0.6 0.8 0.2 1.20.8− 0.2 1−:kr

0.16 1.44 0.04 0.16 0.04 0.64 0.043.24 0.64 4

2.56 0.64 4.84 2.56 3.24 1.44 4.840.04 1.44 0

( )2
1 :kr −

( )2
1 :kr +

2.56 0.8 5.68 3.44 4.28 2.52 7.200.84 3.16

0.16 1.60 0.88 1.04 1.08 1.72 2.404.04 2.36 6.40
V+

V−

2.40

6.40

2.40

1 1 0 0 0 00 0 11:kb�

�or :kd

 :kb⇒
� 1 1 0 0 0 00 0 11

0 1 1 1 1 10 1 01

Figure 6.15

said at the end of the problem. But next, we look at P6.4(d).

(d) Refer to Fig. 6.16 for the solution.
Note that there are only 3 bit errors making it appear that the polarity reversal actually
helps. But again one should not jump to conclusions. For a proper evaluation of the
comparison between bit-by-bit demodulation and sequence demodulation one should
resort to simulation, say in Matlab.

P6.5 (a) Consider 2 sections of the trellis as in Fig. 6.17.
Bit pattern bk−1 = 0, bk = 0 corresponds the possible paths as shown in Fig. 6.18.
Bit pattern bk−1 = 1, bk = 0 corresponds to the possible paths shown in Fig. 6.19.
Similarly, bit patterns bk−1 = 0, bk = 1 and bk−1 = 1, bk = 1 correspond to paths
shown in Fig. 6.20.
So the bit bk is represented by the signals shown in Fig. 6.21.

(b) Choose basis functions as in Fig. 6.22 to represent bit bk. The signal space plot looks
as in Fig. 6.23.
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t0.6 0.2− 1.2 1.4− 1.2− 1.8− 0.8−0.8− 2.2 1:kr

0.16 1.44 0.04 5.76 4.84 7.84 3.243.24 1.44 0

2.56 0.64 4.84 0.16 0.04 0.64 0.040.04 10.24 4

2.56 0.8 5.68 1.04 1.08 1.72 3.200.84 11.96 7.20

0.16 1.60 0.88 6.64 5.88 8.92 6.404.04 3.16 3.20

( )2
1 :kr −

( )2
1 :kr +

7.20

3.20

1 1 1 0 0 10 1 11:kb�

Figure 6.16

/ 0V− / 0V−

/ 0V+

/1
V+

/1V−

V−

V+
/ 0V+

kb1kb −

( )1 bk T− bkT( )2 bk T−

Figure 6.17

V− V−

V+ V+

t
bkT( )1 bk T−( )2 bk T−

t

bkT( )1 bk T−( )2 bk T−

V−

V+

Figure 6.18

(c) The demodulator is to project r(t) onto φ1(t), φ2(t) to obtain sufficient statistics r1, r2

and choose the signal point they are closest to. The decision space is shown in Fig. 6.23.
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V+

V−

V− V+

t
bkT( )1 bk T−( )2 bk T−

t

V−

V+

Corresponding output signals 
for each path (or bit pattern)

Figure 6.19

V+

V−

V−V+

t

t

V−

V+

V+

V−

V+

V− V−

V+
t

t

V−

V+

V+

V−

Figure 6.20

t

V−

V+

t
V−

V+

t
V−

V+

t
V−

2 bT
2 bT

0kb =

1kb =

or

or

Figure 6.21

(d) As for Miller scheme, one has

P [bk is in error] = 2Q

(√
E cos 45◦√

N0/2

)[
1−Q

(√
E cos 45◦√

N0/2

)]
= 2Q

(√
E

N0

) [
1−Q

(√
E

N0

)]
.

To compare with the expression in P6.3(c) note that E = 2Eb (because we are looking
at the signal over 2 bit intervals). Therefore, the error probability is the same.
Remark: We shall use the ideas here when the fading channel and differential phase shift
keying (DPSK) is discussed - Chapter 10.
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t
2 bT0

1

2 bT

t
2 bT

bT0

bT

1

2 bT

1

2 bT
−

1( )tφ =

2 ( )tφ =

Figure 6.22

)(1 tφ
0

1kb =� )(2 tφ

1kE b↔ =

1kE b− ↔ =

0kE b↔ =0kE b− ↔ =

1kb =� 0kb =�0kb =�
2 1r r=

2 1r r= −

1r

2r

Figure 6.23

P6.6 Consider Table 6.1.

Table 6.1
dk−1 → i dk → j Product ij
0 → −1 0 → −1 +1
0 → −1 1 → −1 −1
1 → +1 0 → −1 −1
1 → +1 1 → +1 +1

The average or expected value of the product ij is given by a weighted sum of the 4 possible
values of ij where the weight are given by the probability that that value occurs. Therefore,

E {dk−1dk} = E {ij} =
∑

values of ij

ij P [ij = ij] =
∑

values of ij

ij P [dk−1dk = ij]

=
∑

values of ij

ijP [dk = i|dk−1 = j]P [dk−1 = j]

= P [dk = 0|dk−1 = 0]P [dk−1 = 0]− P [dk = 1|dk−1 = 0]P [dk−1 = 0]
−P [dk = 0|dk−1 = 1]P [dk−1 = 1] + P [dk = 1|dk−1 = 1]P [dk−1 = 1] .
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Now dk = dk−1 ⊕ bk, which means that

P [dk = 0|dk−1 = 0] = P [bk = 0] = 1/2, since when dk−1 = 0,dk = 0 iff bk = 0.

P [dk = 1|dk−1 = 0] = P [bk = 1] = 1/2
P [dk = 0|dk−1 = 1] = P [bk = 1] = 1/2
P [dk = 1|dk−1 = 1] = P [bk = 0] = 1/2.

Therefore,

E {dk−1dk} =
1
2

P [dk−1 = 0]− 1
2

P [dk−1 = 0]− 1
2

P [dk−1 = 1] +
1
2

P [dk−1 = 1]

= 0, i.e., uncorrelated.

Since the PSD depends only on second order statistics, we conclude that the modulator sees
an input of uncorrelated bits (strictly speaking uncorrelated impulses) just as in the NRZ-L
case. Therefore the PSD of NRZI is the same as that of NRZ-L.

The above assumes that the input bits bk are equally probable. More generally, P [bk = 0] =
P0 and P [bk = 1] = P1 = 1− P0. In this case the correlation becomes:

E {dk−1dk} = P0P [dk−1 = 0]− P1P [dk−1 = 1]− P1P [dk−1 = 0] + P0P [dk−1 = 0]
= (P0 − P1)

{
P [dk−1 = 0]− P [dk−1 = 1]

} 6= 0, if P0 6= P1.

Consider now the issue of statistical independence. Intuitively, one feels that because of the
functional relationship between dk and dk−1, they would be statistically dependent. Consider
the case of equally likely {bk} bits. In P6.3 we showed that in this case the differential bits
{dk} are equally likely, i.e., P [dk] = P [dk−1] = 1/2.

Now consider P [dk|dk−1]. Then

P [dk = 0|dk−1 = 0] = P [bk = 0] = 1/2;P [dk = 1|dk−1 = 0] = P [bk = 1] = 1/2
P [dk = 0|dk−1 = 1] = P [bk = 1] = 1/2;P [dk = 1|dk−1 = 1] = P [bk = 0] = 1/2

which means that P [dk|dk−1] = P [dk], i.e., they are statistically independent.

But this is the case only when the input bits are equally probable. Otherwise as shown above
the differential bits are correlated and therefore definitely not statistically independent.

Finally, if P0 6= P1, i.e., the input bits are not equally probable, it can be shown that as
k becomes large, the differential bits {dk} tend to be equally probable, i.e., P [dk = 1] →
1/2, P [dk = 0] → 1/2 which means that the differential bits are uncorrelated. However, in
this case they are statistically dependent since P [dk|dk−1] 6= P [dk].

P6.7 (a) See Figs. 6.24 and 6.25.

(b) Yes, it is. As in P6.1(c) assume a polarity reversal at t = 4Tb. Then as in P6.1(c) the
demodulated d̂k would be reversed (or complemented) from this point on. The output
b̂k would be identical to that in P6.1(c), an error for the bit in interval 4Tb to 5Tb and
then correct decisions.

(c) Nothing much would change. The error performance would be the same, the demodula-
tion/decoding procedure would be the same. What would change is the basis function
for the signal space diagram, the signal would now be a normalized biphase signal instead
of an normalized NRZ-L signal. The signal space diagram would look the same.
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0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

1 1 11 1 0 1 01 t1

1

:

0
k k kd b d

d
−

−

= ⊕
=

0

0 10 bT

Figure 6.24

V

V−

t

bT 10 bT2 bT 3 bT 7 bT 8 bT 9 bT

Figure 6.25

P6.8 Error performance is independent of the antipodal signal set. Assuming, of course, the same
energy levels and an AWGN channel. The basis function for the signal space would be a
normalized version of the signal and the demodulator would project the received signal onto
this basis function to generate the sufficient statistic. After this the sufficient statistic is
processed the same, regardless of the antipodal signal set.

The PSD would depend on the actual signals used and would be 1
Tb
|S(f)|2 where S(f) =

F{s(t)}.
P6.9 (a) See Fig. 6.26.

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

V

V−

t

bT 10 bT0 4 bT 5 bT 6 bT

Figure 6.26

(b) Yes and no. Depends on how one demodulates. See (c) as to how one demodulates so
that the modulation is immune to polarity reversals.

(c) Note that a 0T results in one of 2 signals namely ±s0(t) and a 1T results in one of ±s1(t)
(see Fig. 6.27).
Therefore the signal space looks as shown in Fig. 6.28.
Demodulate by projecting the received signal onto φ0(t), φ1(t) to generate sufficient
statistics r0, r1 and decide according to the decision boundaries shown in the signal
space diagram.
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0
bT

t

0 ( )s t

0
bT

t

1( )s t

V V

V−

Figure 6.27

0
0

( )
( )

s t
t

E
φ =

0

1D

1
1

( )
( )

s t
t

E
φ =

(0, ) 1TE ↔

(0, ) 1TE− ↔

( ,0) 0TE ↔( ,0) 0TE− ↔

0kb =�0kb =�
1 0r r=

1 0r r= −

0r

1r

1D

0D

0D

Figure 6.28

(d) By symmetry

P [error] = P [r0, r1 fall in 1D region | 0T ]

= 2

[
Q

(√
E cos 45o

√
N0/2

)] [
1−Q

(√
E sin 45o

√
N0/2

)]
= 2Q

(√
E

N0

)[
1−Q

(√
E

N0

)]

∼= 2Q

(√
E

N0

)

Remark: Signal space is identical to that of Miller modulation and hence the error
performance is the same. The actual transmitted sequence and resultant PSD is however
different from Miller.

P6.10 Let 0T → s0(t) and 1T → s1(t) where s0(t) ⊥ s1(t), each of energy E. Polarity reversals
mean that 0T → ±s0(t) and 1T → ±s1(t). The modification to the demodulator to obtain
polarity reversal immunity is to modify the decision regions in the signal space from Fig. 6.29
to Fig. 6.30. Note that the price you pay is a factor of 2 in the error probability expression.
However, it only applies if there no polarity reversals. If there are, then you gain a lot.

P6.11 (a) See Fig. 6.31. Yes, immune to polarity reversal.
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0
0

( )
( )

s t
t

E
φ =

0

1D

1
1

( )
( )

s t
t

E
φ =

(0, ) 1TE ↔

( ,0) 0TE ↔

1 0r r=

0r

1r

0D

0

[error]
E

P Q
N

 
=    

Figure 6.29

0
0

( )
( )

s t
t

E
φ =

0

1D

1
1

( )
( )

s t
t

E
φ =

(0, ) 1TE ↔

(0, ) 1TE− ↔

( ,0) 0TE ↔( ,0) 0TE− ↔

0kb =�
1 0r r=

1 0r r= −

0r

1r

1D

0D

0D

0

[error] 2
E

P Q
N

 
=    

Figure 6.30

(b) See Fig. 6.32. The sufficient statistic is r =
∫
t∈Tb

r(t)φ(t)dt.

(c) f(r|0T ) ∼ N (0, N0/2), f(r|1T ,−V ) ∼ N (−√E, N0/2); f(r|1T ,+V ) ∼ N (
√

E, N0/2).
Therefore,

f(r|1T ) ∼ 1
2
N (−

√
E,N0/2) +

1
2
N (
√

E, N0/2).
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0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

V

V−

t

bT 10 bT0 4 bT 5 bT 6 bT2 bT 3 bT 7 bT 8 bT 9 bT

( ) :Ts t

Figure 6.31

0
bT

t

1

bT

( )tφ
0

1TE ↔1TE− ↔ 0 0T↔

Figure 6.32

Technology Adoption Process "The Chasm"
Laggards Late Majority Innovators

E
r

0

( 1 )Tf r( 1 )Tf r ( 0 )Tf r

E−

0

2
N0

2
N0

2
N

Figure 6.33

(d) The LRT is:

f(r|1T )
f(r|0T )

=

1
2

[
1√

2π
√

N0/2
e
−(r−√E)2

2(N0/2) + 1√
2π
√

N0/2
e
−(r+

√
E)2

2(N0/2)

]

1√
2π
√

N0/2
e

−r2

2(N0/2)

1D

R
0D

1

⇔ e
2
√

E
N0

r + e−
2
√

E
N0

r

2

1D

R
0D

e
E

N0

⇔ cosh

(
2
√

E

N0
r

)
1D

R
0D

e
E

N0 .

(e) f(`|0) ∼ N (0, 4E/N2
0 ); f(`|−V ) ∼ N (−2E/N0, 4E/N2

0 ); f(`|+V ) ∼ N (2E/N0, 4E/N2
0 ).
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Technology Adoption Process "The Chasm"
Laggards Late Majority Innovators

�
hT0

( )f V+�( )f V−� ( 0)f �
1D0D1D

hT−
0

2E
N0

2E
N−

2
0

4E
N2

0

4E
N2

0

4E
N

Figure 6.34

P [error | 0T ] = 2Q

(
Th

2
√

E/N0

)

P [error | 1T ] =
1
2
P [error | 1T , +V ] +

1
2
P [error | 1T ,−V ] = P [error | 1T , +V ]

= P [−Th ≤ ` ≤ Th| 1T , +V ] = P [` ≤ Th| 1T ,+V ]− P [` ≤ −Th| 1T ,+V ]

= Q

(
2E
N0
− Th

2
√

E/N0

)
−Q

(
2E
N0

+ Th

2
√

E/N0

)
.

P6.12 (a) Since we are only interested in what bit was transmitted, not the signal levels, ±V , 0 we
determine the region(s) of r where either P1f(r| − V ) or P3f(r|+ V ) is ≥ P2f(r|0). In
this region(s) we decide that a 1 was transmitted, in the remaining region(s) we decide
a 0 was transmitted.
Let σ2 ≡ N0/2. Then

f(r| − V ) =
1√
2πσ

e−
(r+

√
E)2

2σ2

f(r|0) =
1√
2πσ

e−
r2

2σ2

f(r|+ V ) =
1√
2πσ

e−
r2

2σ2 .

Now

P3f(r|+ V ) > P2f(r|0) ⇔ 1
4

1√
2πσ

e−
(r−√E)2

2σ2 >
1
2

1√
2πσ

e−
r2

2σ2

(after some⇔
algebra)

r >
σ2

√
E

ln 2 +
√

E

2
.

In the above region of r choose a 1 transmitted, i.e., 1D.
Similarly,

P1f(r|−V ) > P2f(r|0) ⇒ 1
4

1√
2πσ

e−
(r+

√
E)2

2σ2 >
1
2

1√
2πσ

e−
r2

2σ2 ⇒ r < −
(

σ2

√
E

ln 2 +
√

E

2

)
.
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In this region of r we decide on a 1 being transmitted, i.e., 1D.
Note: The 2nd result we would expect from the symmetry of the problem. Also the
factor σ2√

E
ln 2 arises from the fact that P2 6= P1 (or P3).

Therefore −
(

N0

2
√

E
ln 2 +

√
E
2

)
≤ r ≤

(
N0

2
√

E
ln 2 +

√
E
2

)
choose 0, otherwise choose 1.

(b) Multiply the decision rule of (P6.8) by 2
√

E
N0

, i.e., scale the decision space:
{
−

(
ln 2 + E

N0

)
≤ 2

√
E

N0
r = ` ≤

(
ln 2 + E

N0

)
choose 0 transmitted

otherwise choose 1 transmitted

The new decision variable ` is Gaussian with a mean value equal to(
2
√

E

N0

)
× (mean value of r)︸ ︷︷ ︸

depends on the signal transmitted

and a variance equal to
(

4E
N2

0

)
× (variance of r)︸ ︷︷ ︸

=
N0
2

. Therefore,

f(`| − V ) ∼ N
(−2E

N0
,
2E

N0

)
; f(`|0) ∼ N

(
0,

2E

N0

)
; f(l|+ V ) ∼ N

(
2E

N0
,
2E

N0

)
.

To aid in deriving the error probabilities, let us sketch the decision regions(s) as in Fig.
6.35.

Technology Adoption Process "The Chasm"
Laggards Late Majority Innovators

�
hT0

( )f V+�( )f V−� ( 0)f �
1D0D1D

hT−
0

2E
N0

2E
N−

0

2E
N0

2E
N0

2E
N

Figure 6.35

P [error |0T ] = P [(` > T1)|0T or (` < −T1)] = 2P [` > T1|0T ] = 2Q


 ln 2 + 2Eb

N0√
4Eb
N0




P [error|1T ] = P [{−T1 < ` < T1| − V xmitted} or {−T1 < ` < T1|+ V xmitted}]
= 2P [{−T1 < ` < T1|+ V xmitted}]

= 2

[
Q

(
2Eb
N0

− T1√
var

)
−Q

(
2Eb
N0

+ T1√
var

)]

= 2


Q




2Eb
N0

− ln 2√
4Eb
N0


−Q




6Eb
N0

+ ln 2√
4Eb
N0






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P [bit error] = P [bit 0 in error]P [0T ] + P [bit 1 in error]P [1T ]

=
1
2
P [error |0T ] +

1
2
P [error |1T ]

P6.13 (a) The sketch(es) looks as follows in Fig. 6.36.

Technology Adoption Process "The Chasm"
Laggards Late Majority Innovators

r
0

( )f r V+( )f r V− ( 0)f r

1D0D1D

E−

0

2
N

E2
E

2
E−

Figure 6.36

The decision rule is {
−
√

E
2 ≤ r ≤

√
E
2 , choose 0

otherwise, choose 1.

(b)

P [error |0T ] = 2Q

( √
E/2√
N0/2

)
= 2Q

(√
Eb

N0

)

P [error |1T ] = 2

[
Q

(√
Eb

N0

)
−Q

(
3
√

Eb

N0

)]

P [bit error] =
1
2
P [error |0T ] +

1
2
P [error |1T ]

= 2Q

(√
Eb

N0

)
−Q

(
3
√

Eb

N0

)

P6.14 (a) Yes, there should be. The first one, that of P6.11.

(b) Matlab works to be added.

P6.15 (a) What we need to know to from the past is whether the previous level to represent a 1T

is +V or −V . Choose these as the states and the state diagram is shown in Fig. 6.37.

(b) Fig. 6.38 shows a trellis diagram.

P6.16 Change the mapping rule as follows (See Fig. 6.39:

• A 0 is always mapped to a level of 0 volts.

• A 1 is mapped to a pulse of level +V , if previous it was mapped to a pulse of level −V
and vice versa.
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/1TV+

/1TV−
0 / 0T

Previouslevel was -V Previouslevel was +V
0 / 0T

Figure 6.37

0T

V+

V−

State

�

1T

bT 2 bT 3 bT

Figure 6.38

t0

bT
2
bT

0

t

1

bT
2
bT

0

t

V

bT

2
bT

0

V−

Figure 6.39

t

bT
2
bT

0
t

bT
2
bT

0

1

bT

2

bT

(a) (b)

Figure 6.40

In essence nothing much changes. The main difference is the basis function used to represent
the signals transmitted. Here it would be the function in Fig. 6.40(a) instead of the one in
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Fig. 6.40(b).

If we adjust V here so that the energy level for AMI-RZ is the same as for AMI-NRZ then
all error expressions and error performances for the 3 (including that of P6.13) demodulation
methods are identical. If the voltage levels are kept the same then the energy E (and hence
Eb) is halved for AMI-RZ.

Another difference would be in the PSD.

P6.17 (a) See Fig. 6.41.

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

I+

t

bT 10 bT2 bT 3 bT 7 bT 8 bT 9 bT4 bT 5 bT 6 bT

Figure 6.41

(b) See Fig. 6.42.

Energy

1T

0
2
E E

0T 1T

Figure 6.42

(c) Let the sufficient statistics be

I1 = intensity, or some measure of it, in the 1st half
I2 = intensity, or some measure of it, in the 2nd half.

Then a possible decision rule would be as illustrated in Fig. 6.43.

1I

2I

+

−

0

4

1

0 (or a threshold of + )

D

D

I≥
<

Figure 6.43

Take the polarity inversion to mean that the laser is off when it is on and vice versa. Then
the above decision rule is not insensitive to polarity inversion. Indeed the decision would
always be 1D. However it can be modified to be polarity insensitive by the following
decision rule:

|I1 − I2|
0D

R
1D

+
I

4
.
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P6.18 (a) So k, the number of counted photons in time interval Tb, is our sufficient statistic.

P [k photons emitted in a Tb interval |1T , 1T represented by laser off] = (λnTb)
ke−λnTb

k!

P [k photons emitted in a Tb interval |1T , 1T represented by laser on] = [(λs+λn)Tb]
ke−(λs+λn)Tb

k!

P [k photons emitted in a Tb interval |1T ] = 1
2

[
[(λs+λn)Tb]

ke−(λs+λn)Tb

k! + (λnTb)
ke−λnTb

k!

]

P [k photons emitted in a Tb interval |0T ] = 1
2

[
[(λs+λn)

Tb
2

]ke−(λs+λn)
Tb
2

k! + (λn
Tb
2

)ke−λn
Tb
2

k!

]

The likelihood ratio test (LRT) is:

1
2

(λs + λn)kT k
b e−(λs+λn)Tb + λk

nT k
b e−λnTb

(λs + λn)k T k
b

2k e−(λs+λn)
Tb
2 + λk

n
T k

b

2k e−λn
Tb
2

1D

R
0D

1

⇔

[(
1 + λs

λn

)k
e−λsTb + 1

]
e−λnTb

[(
1 + λs

λn

)k
e−λsTb/2 + 1

]
e−λnTb/2

1D

R
0D

2
2k

= 2−k+1

⇔

[(
1 + λs

λn

)k
e−λsTb + 1

]

[(
1 + λs

λn

)k
e−λsTb/2 + 1

] 2(k−1)
1D

R
0D

eλnTb/2.

(b) Unfortunately, an analytical expression for the error performance of the receiver in (a)
appears to be intractable. Nonetheless one can resort to simulation.

P6.19 (a) See Fig. 6.44.

0 bT 2 bT 3 bT 4 bT 5 bT 6 bT 7 bT 8 bT 9 bT 10 bT

:kb 0 0 0 01 1 1 1 1 1 t

I+

t

bT 10 bT2 bT 3 bT 7 bT 8 bT 9 bT4 bT 5 bT 6 bT

Figure 6.44

(b) Yes. But again depends on how decision rule is implemented. But basically if the
demodulator decides on whether the laser is on or off for the whole bit interval OR on
for only 1/2 the bit interval then the modulation is immune to polarity reversals.

(c) Let the axis be the energy of the transmitted pulse. The signals then plots as in Fig.
6.45.

(d) Let the states be

(i) previous 1 represented by +I, i.e., laser on for the whole bit interval,
(ii) previous 1 represented by 0, i.e., laser off for the whole bit interval.

The state diagram is shown in Fig. 6.46.
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Energy

1T

0
2
E E

0T 1T

Figure 6.45

0 / 0T

Previous 1T representedby laser onlaser on for 2nd half / 0T

Previous 1T representedby laser off laser on for 1st half / 0T

laser on for  sec. /1b TT

laser off for  sec. /1b TT

Figure 6.46

P6.20 (a) P [ck = 1] = P [ck = −1] = 1
4 ; P [ck = 0] = 1

2 .

(b) E{c2
k} = 0P [ck = 0] + 1P [ck = 1] + 1P [ck = −1] = 1

2 .

Consider now E{ckck+1}. Set up a table (see Table 6.2) for the possibilities for ck, ck+1

and the product. ∴ E{ckck+1} = −1(1/4) + 0(1/4) + 0(1/4) + 0(1/4) = −1/4

Table 6.2

bk bk+1 P [bk,bk+1] ck ck+1 ckck+1 P [ckck+1] = P [bkbk+1]

1 1 1/4
{

1
−1

−1
1

}
→ −1 1/4

0 1 1/4
{

0
0

1
−1

}
→ 0 1/4

1 0 1/4
{

1
−1

0
0

}
→ 0 1/4

0 0 1/4
{

0 0
} → 0 1/4

Now consider E{ckck+n}, n > 1 and the Table 6.3. If the bits bk are statistically
independent and equally probable then each of combinations of ck, ck+n is equally
probable, i.e., P [ckck+n] = 1/9.

∴ E{ckck+n} = 1(1/9)− 1(1/9)− 1(1/9)+ 1(1/9) = 0. Therefore they are uncorrelated.
Now Equation (5.127) in the textbook states that:

S(f) =
|P (f)|2

Tb

∞∑
m=−∞

Rc(m)e−j2πmfTb
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Table 6.3

ck ck+n ckck+n

1 1 1
1 −1 −1
1 0 0

−1 1 −1
−1 −1 1
−1 0 0

0 1 0
0 −1 0
0 0 0

where Rc(m) is the autocorrelation we have just determined and

P (f) = F {NRZ signal} =
∫ Tb

0
V e−j2πftdt

=
V

πf
e−jπfTb

[
ejπfTb − e−jπfTb

2j

]

︸ ︷︷ ︸
sin(πfTb)

⇒ |P (f)|2 = V 2T 2
b

sin2(πfTb)
(πfTb)2

Finally,

S(f) = V 2Tb
sin2(πfTb)
(πfTb)2

[
Rc(−1)ej2πfTb + Rc(0) + Rc(1)e−j2πfTb

]

︸ ︷︷ ︸
=−1

4
[2 cos(2πfTb)] +

1
2︸ ︷︷ ︸

=sin2(πfTb)

.

P6.21 (a) The decision rule of (6.14) is compute di =
√∫ nTb

0 [r(t)− Si(t)]2dt for each possible
transmitted sequence and choose the smallest. Since di is obviously ≥ 0 this decision
rule can be restated as compute d2

i for each possible transmitted sequence and choose
the smallest, i.e.,

compute

d2
i =

∫ nTb

0
r2(t)dt− 2

∫ nTb

0
r(t)Si(t)dt +

∫ nTb

0
S2

i (t)dt, i = 1, . . . , M = 2n,

and choose smallest.

Now the term
∫ nTb

0 r2(t)dt is the same for each i and can be discarded. Similarly∫ nTb

0 S2
i (t)dt is the same regardless of i, i.e., for Miller modulation each transmitted

signal (sequence) has the same energy. It may also be discarded. Therefore the decision
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rule can be stated as:

Compute

−2
∫ nTb

0
r(t)Si(t)dt, i = 1, . . . , m = 2n,

and choose smallest.

The factor 2 does not affect which i yields the smallest relative value. Multiplying though
by −1 changes the smallest into largest. Therefore the decision rule is:

Compute∫ nTb

0
r(t)Si(t)dt, i = 1, . . . ,m = 2n,

and choose smallest.

Writing this as
n∑

j=1

∫ jTb

(j−1)Tb

rj(t)Sij(t)dt =
n∑

j=1

[r(j)
1 , r

(j)
2 ]

[
s
(j)
i1

s
(j)
i2

]
we get the desired re-

sult.
(b) The steps are essentially the same as before, except now one computes the crosscorre-

lation between the signal projections and the signal components along a branch, adds
to the surviving value of the state from which the branch emanates and compares with
all the incoming path values at the state on which the branch terminates. Choose the
largest and discard all others. Do this for each state.

Table 6.4: Cross correlation table: r1s1 + r2s2

(s1, s2) 0 → Tb Tb → 2Tb 2Tb → 3Tb 3Tb → 4Tb

s1(t) → (1, 0) −0.2 0.2 −0.61 −1.1
s2(t) → (0, 1) −0.4 −0.8 0.5 0.1
s3(t) → (−1, 0) 0.2 −0.2 0.61 1.1
s4(t) → (0,−1) 0.4 0.8 −0.5 −0.1

(c) Trellis showing the branch correlations, i.e., r
(j)
1 s

(j)
i1 + r

(j)
2 s

(j)
i2 , is in Fig. 6.47.

The pruned trellis showing the survivors & partial path correlations is in Fig. 6.48.
To compare with the minimum distance approach remember that the minimum distance
corresponds to maximum correlation, i.e., the relationship is an inverse one.

P6.22 (a) By error probability, what is meant is bit error probability. We are not all that interested
in symbol error probability. From the symmetry, we can say that

P [bit error] = P [bit error |0T ] = P [bit error |s1(t)] (or P [bit error |s2(t)]).

A bit error occurs when s1(t) is transmitted whenever the sufficient statistics (r1, r2) are
closer to either s3(t), s4(t) then to s1(t) (or s2(t)). The geometrical picture looks as in
Fig. 6.49.
Clearly,

P [bit error] = Q

( √
E√

2
√

N0/2

)
= Q

(√
E

N0

)
.
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⋅⋅⋅
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)2(
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−+
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2

)3(
1

+−
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2

)4(
1

+−
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)(1 ts

)(2 ts

)(3 ts

)(4 ts

0.2

0.4−
0.2

0.8

0.2−

0.8
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0.61−

0.5

0.5−

0.61−

0.5

1.1

1.1−

0.1
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1.1
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1.1−

0.1

Figure 6.47

⋅⋅⋅

bT0
bT2 bT3 bT4

)(1 ts

)(2 ts

)(3 ts

)(4 ts

0.2

0.4−

0.4

0.6−

1.0

0.5

0.39

0.81

1.5

1.1−

0.29−

2.6

0.4

1.4

Figure 6.48

(b) Matlab works to be added.

P6.23 Matlab works to be added.
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1r0

)(1 ts

)(2 ts

)(3 ts

)(4 ts

2r2 1r r= −

E

2
E

( )1 2

Error occurs if 

,  fall herer r xmitted signal

4
π

Figure 6.49
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Basic Digital Passband Modulation

P7.1
Antenna diameter: d =

λ

4
wave length: λ =

c

f
=

3× 108

f




⇒ d =

c

4f
=

3× 108

4f

(a) Direct coupling:

f = 4kHz ⇒ d =
3× 108

4× 4× 103
= 18.75× 103(m) = 18.75(km)

(b) Via modulation with carrier frequency fc = 1.2GHz

⇒ d =
3× 108

4fc
=

3× 108

4× 1.2× 109
= 62.5× 10−3(m) = 6.25(cm)

The above results clearly show that carrier-wave or passband modulation is an essential step
for all systems involving radio transmission.

P7.2 Express NRZ signal in terms of NRZ-L signal as follows:

sNRZ(t) = 1/2 [sNRZ−L(t) + 1] (7.1)

Note that the factor 1/2 scales the autocorrelation by (1/2)2 = 1/4, the constant 1 shifts
(vertically) the autocorrelation by 1 and sNRZ−L(t) has an autocorrelation of RsNRZ−L(τ).
Putting all this together we have

RsNRZ(τ) =
1
4

[
RsNRZ−L(τ) + 1

]
=

{
1
4 + 1

4

(
1− |τ |

Tb

)
, |τ | ≤ Tb

1
4 , |τ | > Tb

Try to generalize this: Let y(t) = K[x(t)+A] where K, A are constants. x(t) has mean value
mx and autocorrelation, Rx(τ). What then is Ry(τ)?

P7.3 Consider (7.41), P [m2|m1]. This probability is the volume under f(r̂2, r̂1|m1) in the 1st
quadrant as shown below. Note that given m1, r̂2 and r̂1 are statistically independent Gaus-

sian random variables, variance = N0
2 , and means −

√
Es
2 ,

√
Es
2 , respectively. The volume is

therefore∫ ∞

r̂2=0

∫ ∞

r̂1=0
f(r̂2|m1)f(r̂1|m1)dr̂2dr̂1 =

[∫ ∞

r̂2=0
f(r̂2|m1)dr̂2

] [∫ ∞

r̂1=0
f(r̂1|m1)dr̂1

]

1
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P [m2|m1] =




1
√

2π
√

N0
2

∫ ∞

r̂2=0
e
−

(
r̂2+

√
Es
2

)2

2

(
N0
2

)

dr̂2







1
√

2π
√

N0
2

∫ ∞

r̂1=0
e
−

(
r̂1+

√
Es
2

)2

2

(
N0
2

)

dr̂1




=

[
1−Q

(√
Es/2

N0/2

)]
Q

(√
Es/2

N0/2

)
=

[
1−Q

(
Es

N0

)]
Q

(
Es

N0

)

Graphically the 2 integrals above compute the areas illustrated in Fig. 7.1

0

2r
1̂r

2̂r

2sE

nd

0

2  integral

1 sE
Q

N

 
= −    

st

0

1  integral sE
Q

N

 
=    

( )( )1 1m s t

( )2 1ˆ |f r m

( )1 1ˆ |f r m

1r

Figure 7.1: Areas to compute P [m2|m1].

Similarly P [m3|m1] is given by the volume under f(r̂2, r̂1|m1) in the 2nd quadrant, i.e., by
the product of the areas in Fig. 7.2.

0

2
r

1̂
r

2̂
r

0 0

2

2

s sE E
Q Q

N N

   
= =      

   

1
r

2
s
E

2
s
E

0 0

2

2

s sE E
Q Q

N N

   
= =      

   

[ ] 2

3 1

0

sEP m m Q
N

 
=   

 

Figure 7.2: Areas to compute P [m3|m1].

Finally P [m4|m1] = P [m2|m1] – as can be seen graphically.

P7.4 (a) As in the case of QPSK with Gray mapping, to determine the bit error probability for
the above mapping it is necessary to distinguish between the different message errors
(or signal errors). Again because of symmetry it is sufficient to consider only a specific
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ℜ
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Figure 7.3: QPSK modulation.

Bit Pattern Signal Transmitted

00 s1(t)
11 s2(t)
10 s3(t)
01 s4(t)

signal, say s1(t). Then the different error probabilities are

P [s2(t)|s1(t)] = Q

(√
2Eb

N0

)[
1−Q

(√
2Eb

N0

)]
(7.2)

P [s3(t)|s1(t)] = Q2

(√
2Eb

N0

)
(7.3)

P [s4(t)|s1(t)] = Q

(√
2Eb

N0

)[
1−Q

(√
2Eb

N0

)]
(7.4)

Note that the above result does not depends on the specific mapping. Then the bit error
probability is given by

P [bit error] =
= 1.0P [s2(t)|s1(t)] + 0.5P [s4(t)|s1(t)] + 0.5P [s3(t)|s1(t)] =

= 1.5Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)
≈ 1.5Q

(√
2Eb

N0

)
(7.5)

(b) Recall that the bit error probability of QPSK employing Gray mapping is Q
(√

2Eb
N0

)
.

Compared to (7.5) we see that with anti-Gray mapping the bit error probability is
increased by a factor of 3/2. The plots of both error probabilities are shown in Figure
7.4.

P7.5 (a) Since the symbols are equiprobable and the channel is AWGN the demodulator is a
minimum distance one. The decision boundary and decision regions are shown in Fig.
7.5.
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Figure 7.4: Error performance of QPSK with Gray and Anti-Gray mapping.
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Figure 7.5: Asymmetric QPSK.
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(b) In Fig. 7.5, d1 =
√

Es cos θ and d2 =
√

Es sin θ, where θ = π/6.

P [symbol error] = 1− Pr[symbol correct]
= 1− Pr[symbol correct|s1(t)] (due to symmetry)
= 1− P [(r1, r2) ∈ <1|s1(t)] = 1− P [r1 ≥ 0|s1(t)]P [r2 ≥ 0|s1(t)]

= 1−
[
1−Q

(
d1√
N0/2

)][
1−Q

(
d2√
N0/2

)]

= Q

(
d1√
N0/2

)
+ Q

(
d2√
N0/2

)
−Q

(
d1

σ

)
Q

(
d2√
N0/2

)

= Q

(√
2Es

N0
cos θ

)
+ Q

(√
2Es

N0
sin θ

)
−Q

(√
2Es

N0
cos θ

)
Q

(√
2Es

N0
sin θ

)
.

(c)

P [b1 in error] = P [b1 in error|s1(t)] = P [(r1, r2) ∈ <2 or <3|s1(t)]

= P [r1 < 0|s1(t)] = Q

(
d1√
N0/2

)
= Q

(√
2Es

N0
cos θ

)
. (7.6)

Similarly,

P [b2 in error] = Q

(
d2√
N0/2

)
= Q

(√
2Es

N0
sin θ

)
. (7.7)

With θ = π/6, sin θ = 1
2 < cos θ =

√
3

2 . Since the Q-function is a monotonically
decreasing function of its argument, P [b1 in error] < P [b2 in error] and thus bit b1 is
more protected than bit b2.
Note that in general, if 0 < θ < π/4, then bit b1 is more protected. If π/4 < θ < π/2,
then b2 is more protected. And if θ = π/4?

(d)

P [b1 in error] = Q

(√
1.5

Es

N0

)
≤ 10−3 ⇒ 1.5

Es

N0
≥ [

Q−1(10−3)
]2 = 3.092

⇒ Es ≥ 3.092

1.5
N0 =

3.092

1.5
× 10−6 = 6.37× 10−6 (joules). (7.8)

Choose equality to keep Es as small as possible.

P7.6

Sending: s(t) = cos(2πfct); fc = 1.2GHz
Receiving: r(t) = cos[2πfc(t + Td)] = cos(2πfct + 2πfcTd)

where Td is the propagation delay corresponding to the distance d. Assuming ideal electro-

magnetic propagation at the speed of light, then Td =
d

c
, where c = 3× 108m/s.
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(a) If the mobile user moves in-line away from the base station (to point B), or in-line toward
the base station (to point C), then the difference in propagation delay is:

T
′
d = ±d

′

c

⇒ The difference in phase shift is:

∆θ = 2πfcT
′
d = ±2πfcd

′

c
= ±2π

⇒ d′ =
2πc

2πfc
=

c

fc
=

3× 108

1.2× 109
= 0.25(m) = 25 cm

Thus a movement of only 25cm causes a maximum phase rotation of 2π radian.
(b) Of course we do not care about a 2π phase rotation because it does not change the

transmitted signal. Typically, a phase rotation of π/2 or π is a more serious problem (as
will be seen in Problem 7.7). The minimum distances of user’s movement to cause a π

2
and π phase rotations are as follows:

∆θ = π/2 ⇒ d” = d′/4 = 25/4 = 6.25 cm
∆θ = π ⇒ d” = d′/2 = 25/2 = 12.5 cm

If BPSK is used then it would appear that moving your cell phone from one ear to another
would (depending on the size of your head) have a severe effect on the receiver performance.
One should either track the incoming phase, say by a phase-locked loop which is the subject
of Chapter 12 or consider modulation/demodulation techniques that are present in the face
of phase uncertainty – this is the subject of Chapter 10.

P7.7

r(t) =
{ sR

1 (t) + w(t) = 0 + w(t) : “0T ”

sR
2 (t) + w(t) =

√
E

√
2
Tb

cos(2πfct + θ) + w(t) : “1T ”

Without the noise, the receiver sees one of the two signals

sR
1 (t) = 0 : “0T ”

sR
2 (t) =

√
E

√
2
Tb

cos(2πfct + θ) : “1T ”

Write sR
2 (t) as follows:

sR
2 (t) =

(√
E cos θ

) √
2
Tb

cos(2πfct)
︸ ︷︷ ︸

φ1(t)

+
(√

E sin θ
)√

2
Tb

sin(2πfct)
︸ ︷︷ ︸

φ2(t)

.

Thus, for an arbitrary θ two basis functions are required to represent sR
1 (t) and sR

2 (t) as shown
in Fig. 7.6(a).

(a) If the receiver assumes that θ = 0, then the optimum decision boundary is a line per-
pendicular to φ1(t) and at

√
E/2 distance from sR

1 (t) (see Figure 7.6-(a)). With this
receiver, the decision is based on r1:

r1 =
∫ Tb

0
r(t)φ1(t)dt =

{
0 + w1 : “0T ”√

E cos θ + w1 : “1T ”
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(a) (b)

2

E

Figure 7.6: Signal space diagram for ASK with phase uncertainty.

where, as usual, w1 is a zero-mean Gaussian random variable with variance N0/2. The
decision rule can be expressed as

1T

r1 R
√

E/2
0T

(7.9)

The error performance of the receiver that implements the above decision rule can be
calculated as follows:

P [error] = P [0T ]P [r1 ≥
√

E/2|s1(t)] + P [1T ]P [r1 ≤
√

E/2|s2(t)]

=
1
2
Q

( √
E/2√
N0/2

)
+

1
2
Q

(√
E cos θ −√E/2√

N0/2

)

= 0.5Q

(√
E

2N0

)
+ 0.5Q

(√
2E

N0
[cos θ − 0.5]

)
(7.10)

Equation (7.10) shows that P [error] increases as θ increases from 0 to π. This implies that
the phase uncertainty degrades the error performance of the optimum receiver designed
for ASK assuming no phase shift.

– For θ = 30o ⇒ cos θ =
√

3
2 . Then

P [error] = 0.5Q

(√
E

2N0

)
+ 0.5Q

(√
E

2N0
(
√

3− 1)

)

– For θ = 60o ⇒ cos θ = 1
2 . Then

P [error] = 0.5Q

(√
E

2N0

)
+

1
4
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Figure 7.7: Error performance of ASK under phase uncertainty.

– For θ = 90o ⇒ cos θ = 0. One has

P [error] = 0.5Q

(√
E

2N0

)
+ 0.5Q

(
−

√
E

2N0

)

= 0.5Q

(√
E

2N0

)
+ 0.5

[
1−Q

(√
E

2N0

)]
= 0.5

The result for θ = 90o is expected. Since in this case the 2 signals have the same
projection along φ1(t), i.e., they are indistinguishable. We would expect that the
best we can do is to guess, since r1 gives no information about which signal was
transmitted and the error probability should be 1/2.
Fig. 7.7 plots the error performance of the conventional optimum receiver for dif-
ferent values of θ as calculated above. It is clear that the knowledge of the phase
θ is crucial for the implementation of the “conventional” optimum receiver. All the
receivers discussed in the text so far require this knowledge and they are called the
“COHERENT” receivers. For coherent receivers, a circuit known as phase-locked
loop (PLL) needs to be built to estimate the phase of the incoming signals (see
Chapter 12).

(b) Without PLL, the receiver needs to partition the signal space into two regions that are
robust to the phase uncertainty. A rather obvious choice for the decision boundary is a
circle centered at sR

1 (t) and with some diameter D as shown in Fig. 7.6-(b). In essence,
this receiver makes the decision based on the output energy, not the voltage values.

An interesting question is “what is the optimum value of D to minimize the probability
of error for the above receiver?”. Finding the answer to this question involves Rician and
Rayleigh probability density functions (see Chapter 10). It can be shown that the optimum
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value of D is:

D =
√

E√
2

(
1 +

4N0

E

)
. (7.11)

The above shows that the optimum “threshold” depends on the actual noise level (channel
condition). Typically E/N0 À 1 or N0/E ¿ 1 and D is well approximated by

D ≈
√

E

2
. (7.12)

2r

)(2 tφ

)(1 tφ
2

2
2

2
1

  tocompare and

Compute

D

rr +
( )tr Decision

( )∫ •
bT

t
0

d

( )∫ •
bT

t
0

d

bTt =

1r
bTt =

Figure 7.8: Implementation of the noncoherent receiver for ASK.

The receiver in Fig. 7.8 does not require the phase information and it is called the “nonco-
herent” receiver. With D given by (7.12), it can be shown that the error probability of the
noncoherent receiver is approximately:

P [error] ≈ 1
2
e−

E
4N0

The above performance is also plotted in Fig. 7.7 for comparison. Observe that there is a
loss of about 1 to 2 dB in SNR compared to coherent receiver. However, the noncoherent
receiver is much simpler to implement since it does not require a PLL.

A final remark is that the notation E in this question is the energy of signal s2(t); not the
average energy per bit. The average energy per bit for this case is Eb = E/2.

P7.8 (a) See Fig. 7.9.

(b) The receiver in this case projects onto the φ1(t) axis to get r1 and compares r1 to a

threshold of 0, i.e., r1

1D

R
0D

0 where it is assumed that 1T ↔ sT
1 (t), 0T ↔ sT

2 (t).

The signal projection is either ±k
√

Eb cos θ and the noise projection has a variance of
N0/2. Therefore

P [error] = Q

(
k
√

Eb cos θ√
N0/2

)
= Q

(
k

√
2Eb

N0
cos θ

)
.
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0( )2
Rs t

( ) ( ) ( )2 2 20
,  d

bT
t r r t t tφ φ= ∫

( )
( ) ( )

1
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d

bT

t
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φ
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bk E ( )1
Rs t

( )2 1tanr rθ=

θ

2 1

1
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r r

θ
= −

2Z

1: decide 1TZ

0D

1D

Figure 7.10

(c) See Fig. 7.10.

P [error] = Q

(
k

√
2Eb

N0

)

bt T=

( )tr

( ) ( )2

2
sin 2 c

b

t f t
T

φ π=

( ) ( )1

2
cos 2 c

b

t f t
T

φ π=

( )
0

d
bT

t•∫

( )
0

d
bT

t•∫
bt T=

1r

2r

1 2 1,

choose 1 .

Otherwise

choose 0

T

T

r r Z∈

Figure 7.11
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Remark: Another receiver, and a simpler one, is one that needs only ONE projection.
What is it?

P7.9 Signal space diagrams at the transmitter and receiver are shown below:

0 ( )Ts t

3 ( )Ts t
2 ( )Ts t

1 ( )Ts t 0 ( )Rs t

1 ( )Rs t

2 ( )Rs t

3 ( )Rs t

α
sE

s
E

k

{ 000 =m011 =m

112 =m 103 =m

1( )tφ

2( )tφ

0ℜ

Figure 7.12

(b) The symbol error probability can be determined as follows:

P [error] =
3∑

i=0

P [error|sT
i (t)]P [sT

i (t)] = P [error|sT
i (t)] = P [error|sT

0 (t)]

The above is obvious given the symmetry of both the transmit and receive signals and
the fact that the four transmit signals are equally likely. Given sT

0 (t) was transmitted,
one has

r(t) = sR
0 (t) + w(t); 0 ≤ t ≤ Ts

Therefore,

r1 = sR
0,1 + w1 = k

√
Es cos

(
α +

π

4

)
+ w1

r2 = sR
0,2 + w2 = k

√
Es sin

(
α +

π

4

)
+ w2

where w1 and w2 are i.i.d Gaussian random variables with zero mean and variance N0
2 .

Thus:

P [error|sT
0 (t)] = 1− P [correct|sT

0 (t)] = 1− P [(r1, r2) ∈ R0|sT
0 (t)]

= 1− P [r1 ≥ 0|sT
0 (t)]P [r2 ≥ 0|sT

0 (t)]

= 1−
[
1−Q

(
k
√

Es sin (α + π/4)√
N0/2

)] [
1−Q

(
k
√

Es cos (α + π/4)√
N0/2

)]

= Q

(
k sin (α + π/4)

√
2Es

N0

)
+ Q

(
k cos (α + π/4)

√
2Es

N0

)

−Q

(
k sin (α + π/4)

√
2Es

N0

)
Q

(
k cos (α + π/4)

√
2Es

N0

)
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Note that the third term in the above expression can be safely ignored.
(c) To compute the bit error probability, need to compute the following message error prob-

abilities given that sT
0 (t) (or message m0 = 00) was transmitted:

P [m1|m0] = P [r1 ≤ 0|m0]P [r2 ≥ 0|m0]

= Q

(
k cos (α + π/4)

√
2Es

N0

)[
1−Q

(
k sin (α + π/4)

√
2Es

N0

)]

P [m2|m0] = P [r1 ≤ 0|m0]P [r2 ≤ 0|m0]

= Q

(
k cos (α + π/4)

√
2Es

N0

)
Q

(
k sin (α + π/4)

√
2Es

N0

)

P [m3|m0] = P [r1 ≥ 0|m0]P [r2 ≤ 0|m0]

= Q

(
k sin (α + π/4)

√
2Es

N0

)[
1−Q

(
k cos (α + π/4)

√
2Es

N0

)]

Finally:

P [bit error] = 0.5P [m1|m0] + 1.0P [m2|m0] + 0.5P [m3|m0]

= 0.5

[
Q

(
k cos (α + π/4)

√
2Es

N0

)
+ Q

(
k sin (α + π/4)

√
2Es

N0

)]
(7.13)

The bit error error probability of QPSK with no phase and attenuation uncertainty is

P [bit error] = Q

(√
Es

N0

)
= Q

(√
2Eb

N0

)
(7.14)

Thus, as long as α 6= 0 and/or k 6= 1, one of the arguments of Q functions in (7.13) is

smaller than
√

Es
N0

. Therefore, it makes the bit error probability in (7.13) worse than
that in (7.14).

P7.10 (a) See Fig. 7.13.

2b bE T

2b bE T−

0
bT

Signal set #1

t
0

bT

Signal set #2

t

Figure 7.13

Signal #1 has a discontinuity ⇒ PSD decays asymptotically as 1
f2 .

Signal #2 has a discontinuity after 1 differentiation ⇒ PSD decays asymptotically as
1
f4 .
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(b) To determine the PSDs, shift the signal set by Tb
2 (to the left) and use the modulation

model (for antipodal signalling) in Fig. 7.14, where h(t) =
√

Eb

√
2
Tb

cos(2πfct) or h(t) =
√

Eb

√
2
Tb

sin(2πfct), |t| ≤ Tb
2 .

Modulated
Output

( )
( )

H f

h t
�

( )in

1
 watts/Hz

b

S f
T

=

( ) ( ) ( )2

out in  watts/HzS f H f S f=bT

Figure 7.14

To find H(f) express h(t) as K
[
ej2πfct ± e−j2πfct

]
where K =

√
Eb

√
2
Tb

(
1
2

)
, + sign for

signal set #1; K =
√

Eb

√
2
Tb

(
1
2j

)
, − sign for signal set #2.

Then |H(f)|2 = |K|2|F {
ej2πfct ± e−j2πfct

} |2. Note |K|2 = Eb
2Tb

is the same for either
signal set.

F
{

ej2πfct ± e−j2πfct
}

=
∫ Tb

2

−Tb
2

{
ej2πfct ± e−j2πfct

}
e−j2πftdt

=
∫ Tb

2

−Tb
2

{
ej2π(f−fc)t ± e−j2π(f+fc)t

}
dt

=
ej2π(f−fc)Tb − e−j2π(f−fc)Tb

j2︸ ︷︷ ︸
sin π(f−fc)Tb

1
π(f − fc)

± ej2π(f+fc)Tb − e−j2π(f+fc)Tb

j2︸ ︷︷ ︸
sin π(f+fc)Tb

1
π(f + fc)

(7.15)

Now fc = k
Tb

(usual assumption). Therefore sinπ(f − fc)Tb = sin(πfTb − kπ) =
sin(πfTb) cos(kπ) and sinπ(f + fc)Tb = sin(πfTb + kπ) = sin(πfTb) cos(kπ). There-
fore the Fourier transform becomes

sin(πfTb) cos(kπ)
[

1
f − fc

± 1
f + fc

]
= sin(πfTb) cos(kπ)

[
(f + fc)± (f − fc)

f2 − f2
c

]
.

So for signal set #1, it is (sinπfTb cos(kπ))
[

2f
f2−f2

c

]
, while for signal set #2, it is =

(sinπfTb cos(kπ))
[

2fc

f2−f2
c

]
. Therefore the PSD of signal set #1 is

|K|2 sin2(πfTb)
[

4f2

(f2 − f2
c )2

]
=

Eb

2Tb
sin2(πfTb)

[
4f2

(f2 − f2
c )2

]
,

and that of signal set #2 is:

|K|2 sin2(πfTb)
[

4f2
c

(f2 − f2
c )2

]
=

Eb

2Tb
sin2(πfTb)

[
4f2

c

(f2 − f2
c )2

]
,
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where cos2(kπ) = 1.
Observe that the PSD of signal set #1 ∝ 1

f2 and that of signal set #2 ∝ 1
f4 for large f ,

as expected.

(c) Need to set up equations for plotting. Note that

4f2

(f2 − f2
c )2

=
4f2

(f2 − k2

T 2
b
)2

=
4f2T 4

b

(f2T 2
b − k2)2

= 4T 2
b

(fTb)2

[(fTb)2 − (fcTb)2]2
,

and
4f2

c

(f2 − f2
c )2

=
4f2

c T 4
b

(f2T 2
b − k2)2

= 4T 2
b

(fcTb)2

[(fTb)2 − (fcTb)2]2
.

Therefore the two PSDs are:

(2EbTb) sin2(πfTb)
[

(fTb)2

[(fTb)2 − (fcTb)2]2

]
(signal set #1)

(2EbTb) sin2(πfTb)
[

(fcTb)2

[(fTb)2 − (fcTb)2]2

]
(signal set #2)

The normalized PSDs, normalized by (2EbTb) are plotted in Fig. 7.15. The Plots are
versus fTb with fcTb as a parameter. Observe that as more and more cycles (i.e., fcTb is
larger and larger) the difference between the two PSDs becomes negligible. The reason
is that the maximum slope is larger and larger (ignoring the discontinuity for signal set
#1).

(d) So how do we reconcile this? I.e., how does one reconcile that the PSD ignores phase
information (a statement made in Chapter 3) and that phase appears to play a role in
the slope of the PSD, at least in this case.

P7.11 (a)

P[error] = pQ

(√
2Eb

N0

)
+ (1− p)Q

(√
2Eb

N0

)

= Q

(√
2Eb

N0

)
= Q

(√
2SNR

)
(7.16)

which is the same as in the case of that p is actually 1/2. Here SNR = Eb/N0.

(b) Now the receiver knows that p 6= 1/2. It needs to adjust the threshold accordingly to
minimize P[error]. The optimal threshold is found as follows:

f(r|1T )
f(r|0T )

1D

R
0D

1− p

p

1√
2π
√

N0/2
e−(r−√Eb)

2/N0

1√
2π
√

N0/2
e−(r+

√
Eb)2/N0

1D

R
0D

1− p

p
(7.17)
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Figure 7.15: Normalized PSDs of two signal sets.
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Figure 7.16: Decision regions of the BPSK demodulator with the assumption of p = 1/2.
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Figure 7.17: Decision regions of the optimum BPSK demodulator when p is known at the
receiver.

P[error] = (1− p)Q

(√
Eb + Th√

N0/2

)
+ pQ

(√
Eb − Th√

N0/2

)

= (1− p)Q


1 + 1

4SNR ln
(

1−p
p

)

1√
2
√

SNR


 + pQ


1− 1

4SNR ln
(

1−p
p

)

1√
2
√

SNR




= (1− p)Q
(√

2
[√

SNR +
1

4
√

SNR
ln

(
1− p

p

)])

+pQ

(√
2

[√
SNR− 1

4
√

SNR
ln

(
1− p

p

)])
(7.18)

As a small check, when p = 1/2 one has P[error] = Q
(√

2
√

SNR
)
, as expected.

(c) The error performance curves based on the demodulator of (a) and that of (b) for
p = 0.6, 0.7, 0.8, 0.9 are shown in Fig. 7.18. Observe that the error performance curves
are quite insensitive to the a priori probability value p.

P7.12 close all;
clear all;
[y,fs,nbits]=wavread(’Filename’);
%Normalize the values in y
y=2^(nbits-1)+2^(nbits-1)*y;
% Change each floating point value to an unsigned integer
if nbits==8

y=uint8(y);
elseif nbits==16
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Figure 7.18: Error performance of BPSK demodulators with different values of the a priori
probability p.

y=uint16(y);
elseif nbits==32

y=uint32(y);
elseif nbits==64

y=uint64(y);
else

fprintf(’The number of bits per sample used in...
this wav file is out of the range !’);

exit
end
% Count the number of bit 1s and 0s
count_bit1=0;
count_bit0=0;
L=numel(y);
for l=1:L

sample=bitget(y(l),1:nbits);
count_bit1=count_bit1 + sum(sample);
count_bit0=count_bit0 + nbits - sum(sample);

end
fprintf(’\n Number of bits per sample: $\%d$’,nbits);
fprintf(’\n Number of bit 1s: $\%d$’,count_bit1);
fprintf(’\n Number of bit 0s: $\%d$’,count_bit0);
fprintf(’\n Percentage of bit 1s: $\%3.2f$’,100*count_bit1/(L*nbits));
fprintf(’\n Percentage of bit 0s: $\%3.2f$’,100*count_bit0/(L*nbits));

The following are results for the wave file tested:

Number of bits per sample: 16
Number of bit 1s: 2832449
Number of bit 0s: 2132159
Percentage of bit 1s: 57.05
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Percentage of bit 0s: 42.95

P7.13 mark_vec=[’^’;’o’;’s’;’d’]; color_vec=[’r’;’b’;’m’;’g’];
L=1000; % number of QPSK symbol;
Pevec=[10^(-1),10^(-2),10^(-3),10^(-4)]; for h=1:4

Pe=Pevec(h);
sigma=(Qinv(Pe)*sqrt(2))^(-1);
text_title=[’{\itL}=’,num2str(L),’;Pr[bit error]=’,num2str(Pe)];
b=round(rand(1,2*L)); % This is the binary information sequence
for i=1:L

BP=b((i-1)*2+1:i*2); % Take two bits at a time to map to a QPSK symbol
if BP==[0 0]

phi_1(i)=1;phi_2(i)=0;
elseif BP==[0 1]

phi_1(i)=0;phi_2(i)=1;
elseif BP==[1 1]

phi_1(i)=-1;phi_2(i)=0;
elseif BP==[1 0]

phi_1(i)=0;phi_2(i)=-1;
end

r1=phi_1(i)+sigma*randn(1,1);
r2=phi_2(i)+sigma*randn(1,1);
figure(h); % Plot in a seperate figure for each value of Pr[error]
plot(r1,r2,’marker’,mark_vec(bi2de(BP)+1,:),’markersize’,6,’markerfacecolor’,...

color_vec(bi2de(BP)+1,:),’color’,color_vec(bi2de(BP)+1,:));
hold on;
figure(5); % Plot in the same figure for all four values of Pr[error]
subplot(2,2,h);
plot(r1,r2,’marker’,mark_vec(bi2de(BP)+1,:),’markersize’,6,’markerfacecolor’,...

color_vec(bi2de(BP)+1,:),’color’,color_vec(bi2de(BP)+1,:));
hold on;
end
x=[-3:0.01:3];
figure(h);
plot(x,x,x,-x,’marker’,’none’,’color’,’k’,’linewidth’,1.5);
title(text_title,’FontName’,’Times New Roman’,’FontSize’,16)
xlabel(’{\it\phi}_1({\itt})’,’FontName’,’Times New Roman’,’FontSize’,16);
ylabel(’{\it\phi}_2({\itt})’,’FontName’,’Times New Roman’,’FontSize’,16);
h1=gca;
set(h1,’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’,’GridLineStyle’,’:’,...

’MinorGridLineStyle’,’none’,’FontName’,’Times New Roman’);
axis([-3 3 -3 3]);axis equal;
figure(5);
subplot(2,2,h);
plot(x,x,x,-x,’marker’,’none’,’color’,’k’,’linewidth’,1.5);
title(text_title,’FontName’,’Times New Roman’,’FontSize’,16)
xlabel(’{\it\phi}_1({\itt})’,’FontName’,’Times New Roman’,’FontSize’,16);
ylabel(’{\it\phi}_2({\itt})’,’FontName’,’Times New Roman’,’FontSize’,16);
h1=gca;
set(h1,’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’,’GridLineStyle’,’:’,...

’MinorGridLineStyle’,’none’,’FontName’,’Times New Roman’);
axis([-3 3 -3 3]);axis equal;

end

Note that the program is by no means “optimal”. Your program may be different, even
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though they accomplish the same task.
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Figure 7.19

Fig. 7.20 plots the received QPSK signals in the signal space diagram. It is clear that with a
higher signal-to-noise ratio the received signals stay closer to the corresponding transmitted
signals. This makes it easier for the demodulation, hence a smaller bit or symbol error
probability.

P7.14 (a) BASK signal set is:
{

0T : 0

1T :
√

E
√

2
Tb

[u(t)− u(t− Tb)] cos 2πfct
(7.19)
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Figure 7.20

which maybe rewritten as:
{

0T : R{
0ej2πfct

} ⇒ sBB(t) = 0

1T : R
{√

E
√

2
Tb

[u(t)− u(t− Tb)]ej2πfct
}

⇒ sBB(t) =
√

E
√

2
Tb

[u(t)− u(t− Tb)]
(7.20)

They are plotted in Fig. 7.21.
In baseband the signal is NRZ or BASK is NRZ modulation shifted up by the carrier
frequency, fc Hz.
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Figure 7.21

(b) BPSK signal set is:




0T : −√Eb

√
2
Tb

[u(t)− u(t− Tb)] cos(2πfct)

1T :
√

Eb

√
2
Tb

[u(t)− u(t− Tb)] cos(2πfct)

which maybe written as:




0T : R
{
−√Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πfct
}

⇒ sBB(t) = −√Eb

√
2
Tb

[u(t)− u(t− Tb)]

1T : R
{√

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πfct
}

⇒ sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)]

The baseband signals are shown in Fig. 7.22.

0T

1T

0
tbT

( )BBs t

2

b

E
T

2

b

E
T

−

Figure 7.22

In baseband the signal set is that of NRZ-L or BPSK is NRZ-L modulation shifted up
by the carrier frequency, fc Hz.

(c) BFSK signal set is:





0T :
√

Eb

√
2
Tb

cos(2πf1t)

1T :
√

Eb

√
2
Tb

cos(2πf2t)
0 ≤ t ≤ Tb (assume f1 < f2).

The signal set can be rewritten as:

0T : R
{√

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πf1t

}
,

1T : R
{√

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πf2t

}
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(i) Let fs = f1. Then immediately, when for 0T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)].

For 1T , write the passband signal as: R
{ √

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πf2te−j2πf1t

︸ ︷︷ ︸
This is sBB(t).

ej2πf1t

}

0T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)] (7.21)

1T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2π(f2−f1)t (7.22)

=
√

Eb

√
2
Tb

[u(t)− u(t− Tb)] {cos 2π(f2 − f1)t + j sin 2π(f2 − f1)t} (7.23)

(ii) Let fs = f2. Basically the roles of f1 and f2 are interchanged. Therefore from (i):

0T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)] {cos 2π(f2 − f1)t− j sin 2π(f2 − f1)t}

1T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)]

(iii) Let fs = f1+f2

2 . Then

0T : sPB(t) = R
{ √

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πf1te−j2π
(

f1
2

)
te−j2π

(
f2
2

)
t

︸ ︷︷ ︸
=sBB(t)=

√
Eb

√
2

Tb
[u(t)−u(t−Tb)]e

−j2π

(
f2−f1

2

)
t

e−j2π
(

f2+f1
2

)
t
}

1T : sPB(t) = R
{ √

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2πf2te−j2π
(

f1
2

)
te−j2π

(
f2
2

)
t

︸ ︷︷ ︸
=sBB(t)=

√
Eb

√
2

Tb
[u(t)−u(t−Tb)]e

j2π

(
f2−f1

2

)
t

e−j2π
(

f2+f1
2

)
t
}

Or if we let ∆f ≡ f2 − f1 be the frequency separation then:

0T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)]e−j2π(∆f
2 )t

1T : sBB(t) =
√

Eb

√
2
Tb

[u(t)− u(t− Tb)]ej2π(∆f
2 )t

To plot the signals in baseband, let f2−f1 = ∆f = 1
Tb

, the minimum frequency separation
for “noncoherent” orthogonality. The various signals are plotted in Figs. 7.23, 7.24 and
7.25.
Remarks:

(i) In passband the transmitted energy is 0 or E (for BASK) or Eb (for BPSK or
BFSK). What is the energy in the equivalent baseband signal(s)? Note – for a
complex signal, x(t), the energy is given by

∫∞
∞ |x(t)|2dt =

∫∞
∞ x(t)x∗(t)dt. How

would you explain the factor of 2?
(ii) BPSK, BFSK are antipodal and orthogonal (with the proper choice of f2−f1). Are

these characteristics preserved in baseband?
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Figure 7.23: Case (i): fs = f1.
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Figure 7.24: Case (ii): fs = f2.
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Figure 7.25: Case (iii): fs = f1+f2

2 .

(iii) What would happen in (b) to the sBB(t)’s if instead of fs = fc, the shift frequency,
also commonly called representation frequency, is chosen to be fs = fc + foffset? Try
to draw some general conclusions or go to P7.15.

P7.15 One gets a real equivalent baseband signal if the shift or representation frequency, fs, is
chosen so that passband signals’ Fourier transform has the following properties: its magnitude
function, |SPB(f)|, is even about fs and its phase function, ∠S(f), is odd about fs or |S(f −
fs)| = |S(−f − fs)| and ∠S(f − fs) = −∠S(−f − fs).

Otherwise the equivalent baseband signal is complex.

So given the spectrum of a passband signal as in Fig. 7.26, how would you choose fs to have
a real equivalent baseband signal?

TO CONCLUDE – THE CHOICE OF THE REPRESENTATION FREQUENCY IS ARBI-
TRARY AND IS YOUR DECISION. BUT THERE ARE GOOD, BAD & UGLY CHOICES.

P7.16 Let the QPSK signals be represented by the following signal set:
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0
f

( )PBS f

( )PBS f∠

Figure 7.26

00 → √
Es

√
2
Ts

cos(2πfct) choosing fs=fc

=⇒ sBB(t) =
√

Es

√
2
Ts

[u(t)− u(t− Ts)]

01 → √
Es

√
2
Ts

cos(2πfct + π
2 ) sBB(t) =

√
Es

√
2
Ts

[u(t)− u(t− Ts)]ej π
2

10 → √
Es

√
2
Ts

cos(2πfct + π) sBB(t) =
√

Es

√
2
Ts

[u(t)− u(t− Ts)]ejπ

11 → √
Es

√
2
Ts

cos(2πfct + 3π
2 ) sBB(t) =

√
Es

√
2
Ts

[u(t)− u(t− Ts)]e−j π
2

What do the plots of the baseband signals look like?

What happens to the baseband signals if the transmitted signal set is shifted by say θ radians?

Before going to Problems 7.17 to 7.20 we first become comfortable with Equation (7.4). The
term SB(f − fs) represents SB(f) shifted to the right by fs Hz, while the term SB(−f − fs)
represents SB(f) flipped around the vertical axis, i.e., SB(−f) and then (because of the flip
or −f argument) shifted to the left by fs Hz. Summing the two gives Sn(f). Here we worked
from SB(f) to Sn(f) but one can work the other way. As another graphical example consider
Sn(f) as shown in Fig. 7.27.

0
f

( )nS f

A

2f− 1f− 1f 2f

Figure 7.27

Whatever it is, Sn(f), is real positive and even and therefore a valid PSD. To determine the
PSD of the equivalent baseband process the representation frequency, fs, must be chosen.
Let us choose it to be f2+f1

2 . Then the PSD of the equivalent baseband process is shown in
Fig. 7.28.

A word about the auto-correlation function. It is as usual the inverse Fourier transform of
the PSD, i.e., RB(τ) =

∫∞
−∞ SB(f)ej2πfτdf .

Note that the PSD of Fig. 7.31 results in a complex auto-correlation function while the PSD
above results in a real auto-correlation function.

Real or complex depends on the shape of the passband PSD and also on the choice of fs.
A complex auto-correlation function means that the equivalent baseband process is complex.
Keep in mind that it is the passband process that is the physical (real) process, the baseband
process is first an equivalent one, i.e., a mathematical construct.
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2

f f−   
Figure 7.28

Some questions you can ask yourself are: What is the equivalent baseband process PSD when
fs above is chosen to be = f1?, = f2? When would the auto-correlation function be real?

P7.17 (a) Let Sn(f) be as in Fig. 7.29. Let H(f) be as in Fig. 7.30. Certainly |H(f)|2 = Sn(f).
Choose fs = f1 which implies that HB(f) is as in Fig. 7.31

0
f

( )nS f

2f− 1f− 1f 2f

( ) ( )nS f− ( ) ( )nS f+

Figure 7.29

0
f

( )H f
( )

( )even function

H f

2f− 1f− 1f 2f

( ) ( )nS f− ( ) ( )nS f+

( )
( )odd function

H f∠

Figure 7.30

0
f

( )BH f

2 1f f−

( )BH f∠

( )BH f

Figure 7.31

Now show that indeed H(f) = HB(f − fs) + HB(−f − fs)∗. Term HB(f − fs) of course
gives the spectrum in Fig. 7.32
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0
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1f 2f

( )the part of the positive  axisf

Figure 7.32

Now HB(−f − fs) is again a flip of HB(f) about the vertical axis and a shift to the left
by fs = f1 Hz. The result is shown on the left of Fig. 7.33

0
f

2f− 1f−

i
( )B SH f f∠ − −

( )B SH f f− −

0
f

2f− 1f−

i
( )B SH f f∠ − −

( )*
B SH f f− −

Figure 7.33

But we want the overall phase function ∠H(f) to be an odd function (h(t) is real).
Therefore conjugate (not as a French verb but as complex conjugate) HB(−f − fs) →
HB(−f − fs)∗. This flips the phase over since if x = |x|ej∠x, x∗ = |x|ej(−∠x) ⇒ ∠x∗ =
−∠x. Therefore the result is as shown on the right of Fig. 7.33.
Remarks:

• The reason that there was no complex conjugate in Eqn. (P7.4) is because Sn(f) is
a PSD and hence the phase is zero (always).

• Different fs can be chosen. You may wish to see what is the effect?

(e) nB(t) = e−j2πfst
∫∞
−∞w(t− λ)hB(λ)ej2πfsλdλ. Should be a baseband process. Facetious

answer would be because of the subscript B in nB(t).
More seriously −n(t) is a passband process with its PSD lying “around” fs Hz. Therefore
nB(t) should be a baseband process with its PSD “around” 0 Hz and shifted up and
down by ej2πfst to lie around fs Hz.

(f) nI(t) = R{nB(t)} = R
{[∫∞

−∞w(t− λ)hB(λ)ej2πfsλdλ
]
e−j2πfst

}

nQ(t) = −I {nB(t)} = −I
{[∫ ∞

−∞
w(t− λ)hB(λ)ej2πfsλdλ

]
e−j2πfst

}
.
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P7.18 (a) They are Gaussian because they are obtained by linear operations.

E {nB(t)nB(t + τ)} = E

{[{∫ ∞

λ=−∞
w(t− λ)hB(λ)ej2πfsλdλ

}
e−j2πfst

]

{∫ ∞

u=−∞
w(t + τ − u)hB(u)ej2πfsudu

}
e−j2πfs(t+τ)

}

= e−j2πfste−j2πfs(t+τ) ×∫ ∞

λ=−∞

∫ ∞

u=−∞
E {w(t− λ)w(t + τ − u)}︸ ︷︷ ︸

=δ(τ−u+λ) (w(t) is white noise)

hB(u)ej2πfs(λ+u)du

︸ ︷︷ ︸
hB(τ+λ)ej2πfs(t+2λ) (Impulse sifts out value at τ−λ=0 ⇒ u=τ+λ)

hB(λ)dλ

= e−j2πfs(2t+τ)

∫ ∞

λ=−∞
hB(λ)hB(τ + λ)ej2πfsτej2π(2fs)λdλ

= e−j4πfst

∫ ∞

λ=−∞
hB(λ)hB(τ + λ)ej2π(2fs)λdλ

Now Fourier transform with respect to τ :

Fτ {RnB(t, τ)} = e−j4πfst

∫ ∞

τ=−∞

[∫ ∞

λ=−∞
hB(λ)hB(τ + λ)ej2π(2fs)λdλ

]
e−j2πfτdτ

= e−j4πfst

∫ ∞

λ=−∞
hB(λ)ej2π(2fs)λ

[∫ ∞

τ=−∞
hB(τ + λ)e−j2π2fτdτ

]
dλ

(b)

Sn(f) = SB(f − fs) + SB(−f − fs) = |H(f)|2 = |HB(f − fs) + H∗
B(−f − fs)|2

= [HB(f − fs) + H∗
B(−f − fs)][H∗

B(f − fs) + HB(−f − fs)]
= HB(f − fs)H∗

B(−f − fs)︸ ︷︷ ︸
=|HB(f−fs)|2=SB(f−fs)

+HB(f − fs)HB(−f − fs)︸ ︷︷ ︸
0

+H∗
B(−f − fs)H∗

B(f − fs)︸ ︷︷ ︸
0

+H∗
B(f − fs)HB(−f − fs)︸ ︷︷ ︸

=|HB(−f−fs)|2=SB(−f−fs)

∴ SB(f) = |HB(f)|2

(c) We know that H(f) = HB(f − fs) + H∗
B(−f − fs). Therefore we show that

F
{

2R
{

hB(t)ej2πfst
}}

= H(f)

which means h(t) = 2R{
hB(t)ej2πfst

}
. To show this express the real operation as
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follows; R{x} =
x + x∗

2
.

∴ F {h(t)} = H(f) = F
{

hB(t)ej2πfst + h∗B(t)e−j2πfst
}

=
∫ ∞

−∞
hB(t) ej2πfste−j2πft︸ ︷︷ ︸

e−j2π(f−fst)t

dt

︸ ︷︷ ︸
HB(f−fs)

+
∫ ∞

−∞
h∗B(t)e−j2πfste−j2πftdt

︸ ︷︷ ︸
=

[ ∫ ∞

−∞
hB(t)e−j2π(−f−fs)tdt

︸ ︷︷ ︸
HB(−f−fs)

]∗

︸ ︷︷ ︸
H∗

B
(−f−fs)

or H(f) = HB(f − fs) + H∗
B(−f − fs) as we wished to show.

(d) n(t) =
∫∞
−∞w(t− λ)h(λ)dλ =

∫∞
−∞w(t− λ)

[R{
hB(λ)ej2πfstdλ

}]
dλ

Interchange the integral and R{} operation. Note that w(·) is real and can be “pulled”
inside the R{} operation. Therefore

n(t) = R
{∫ ∞

λ=−∞
w(t− λ)hB(λ)ej2πfsλdλ

}
.

Change the variables in the inner bracket to u = τ + λ. It becomes

ej2πfλ

∫ ∞

u=−∞
hB(u)e−j2πfudu = ej2πfλHB(f)

F {RnB(t, τ)} = e−j4πfstHB(f)
∫ ∞

λ=−∞
dλhB(λ)e−j2π(−f−2fs)λ

︸ ︷︷ ︸
HB(−f−2fs)

But HB(f) and HB(−f−2fs) do not overlap ⇒ product is zero. Therefore RnB(t, τ) = 0
But, on the other hand, nB(t) = nI(t)− jnQ(t). Therefore

E {nB(t)nB(t + τ)} = E {[nI(t)− jnQ(t)][nI(t + τ)− jnQ(+τ)]}
= [E {nI(t)nI(t + τ)} − E {nQ(t)nQ(t + τ)}]

−j [E {nI(t)nI(t + τ)}+ E {nQ(t)nQ(t + τ)}]
= [RI(τ)−RQ(τ)]− j [RI(τ) +RQ(τ)]

But we just showed that this expectation is equal to zero. Therefore RI(τ) = RQ(τ)
and RI,Q(τ) = −RQ,I(τ)
Consider now:

E {n∗B(t)nB(t + τ)} = E

{[∫ ∞

λ=−∞
w(t− τ)h∗B(λ)e−j2πfsλdλ

]
e−j2πfst

[∫ ∞

u=−∞
w(t + τ − u)hB(u)ej2πfsudu

]
e−j2πfs(t+τ)

}

= e−j2πfsτ

[ ∫ ∞

λ=−∞

∫ ∞

u=−∞
E {w(t− λ)w(t + λ− u)}︸ ︷︷ ︸

=δ(τ−u+λ) as impulse occurs at u=τ+λ

h∗B(λ)hB(u)e−j2πfs(λ−u)dλdu

]
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Considering the integral w.r.t. u, the impulse sifts out the value of the integral at
u = τ + λ. Therefore

E {n∗B(t)nB(t + τ)} = e−j2πfsτ

∫ ∞

λ=−∞
h∗B(λ)hB(τ + λ)e−j2πfs(λ−τ−λ)dλ

=
∫ ∞

λ=−∞
h∗B(λ)hB(τ + λ)dλ.

Now Fourier transform the above w.r.t τ , call it SB(f):

SB(f) =
∫ ∞

τ=−∞

[∫ ∞

λ=−∞
h∗B(λ)hB(τ + λ)dλ

]
e−j2πfτ

=
∫ ∞

λ=−∞

[∫ ∞

τ=−∞
hB(τ + λ)e−j2πfτdτ

]
h∗B(λ)dλ

Change variable in the τ integral to u = τ + λ. It becomes
∫ ∞

u=−∞
hB(u)e−j2πf(u−λ)du = ej2πfλ

∫ ∞

u=−∞
hB(u)e−j2πfudu = ej2πfλHB(f)

∴ SB(f) = HB(f)
[∫ ∞

λ=−∞
h∗B(λ)ej2πfλdλ

]
= HB(f)

[ ∫ ∞

λ=−∞
hB(λ)e−j2πfλdλ

︸ ︷︷ ︸
HB(f)

]∗

∴ SB(f) = HB(f)H∗
B(f) = |HB(f)|2 watts/Hz

(e) From (a) we have that RI(τ) = RQ(τ) and RI,Q(τ) = −RQ,I(τ). In (b) we find out that
E {n∗B(t)nB(t + τ)} is the inverse Fourier transform of SB(f), i.e., =

∫∞
−∞ SB(f)e−j2πfτdf .

But it also equals
E {[nI(t) + jnQ(t)][nI(t + τ)− jnQ(t + τ)]} = [RI(τ)+RQ(τ)]+ j[−RI,Q(τ)+RQ,I(τ)]
or

2RI(τ)− j2RI,Q(τ)︸ ︷︷ ︸
or (2RQ(τ)+j2RQ,I(τ))

=
∫ ∞

−∞
SB(f)e−j2πfτdf

=
∫ ∞

−∞
SB(f) cos(2πfτ)df + j

∫ ∞

−∞
SB(f) sin(2πfτ)df

⇒ RI(τ) = RQ(τ) =
1
2

∫ ∞

−∞
SB(f) cos(2πfτ)df

RI,Q(τ) = −RQ,I(τ) = −1
2

∫ ∞

−∞
SB(f) sin(2πfτ)df

(f) It is even. The crosscorrelation function are 0, since SB(t) sin(2πfτ) is an odd function
and the area under it is zero. Therefore the I & Q processes are statically independent.

P7.19

Y (f) = X(f)H(f) = [XB(f − fs) + X∗
B(−f − fs)][HB(f − fs) + H∗

B(−f − fs)]
= XB(f − fs)HB(f − fs) + X∗

B(−f − fs)H∗
B(−f − fs)

+XB(f − fs)H∗
B(−f − fs)︸ ︷︷ ︸

=0

+X∗
B(−f − fs)HB(f − fs)︸ ︷︷ ︸

=0
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But Y (f) can be also written as Y (f) = YB(f − fs) + Y ∗
B(−f − fs), i.e.,

YB(f − fs) + Y ∗
B(−f − fs) = XB(f − fs)HB(f − fs) + X∗

B(−f − fs)H∗
B(−f − fs)

⇒ YB(f − fs) = XB(f − fs)HB(f − fs) ⇒ YB(f) = XB(f)HB(f)
⇒ yB(t) = xB(t)⊗ hB(t)

P7.20 hB(t) = sB(Tb − t).
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M-ary Signaling Techniques

P8.1 (a) Basically the procedure is to take the previous Gray code, flip it over to create a bottom
half. Insert a leading zero in the top half and the leading one in the bottom half. So for
3-bit sequences, one obtains:

leading zeros





0 0 0
0 0 1
0 1 1
0 1 0

top half

leading ones





1 1 0
1 1 1
1 0 1
1 0 0

bottom half

(b)

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1
0 0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0
0 0 1 0 1 0 0 1 1 1
0 0 1 1 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 0
0 1 0 0 0 0 1 1 0 0
0 1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 1 1 1
0 1 0 1 1 0 1 1 1 0
0 1 1 0 0 0 1 0 1 0
0 1 1 0 1 0 1 0 1 1
0 1 1 1 0 0 1 0 0 1
0 1 1 1 1 0 1 0 0 0

For the bottom half︸ ︷︷ ︸
For the bottom half: flip the top half over and set b1=1.

(c) The direct method appears to be more straightforward since it appears that you do
not need to generate the previous Gray bit codes to get the final one. But in reality
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there is no difference. One can adapt the inductive method to produce a Gray code by
considering the pattern of zeros and ones in successive columns - Left as an exercise.

P8.2 (4-ASK modulation)

(a)+(b) With M = 4,

P[symbol error] =
3
2
Q

(
∆√
2N0

)
⇒ ∆√

2N0
= Q−1

(
2
3
P[symbol error]

)
. (8.1)

The results of ∆√
2N0

, Q
(

∆√
2N0

)
, Q

(
3∆√
2N0

)
, Q

(
5∆√
2N0

)
corresponding to different

P[symbol error] are given in the Table 8.1.

Table 8.1

P[symbol error] ∆√
2N0

Q
(

∆√
2N0

)
Q

(
3∆√
2N0

)
Q

(
5∆√
2N0

)

10−1 1.5011 6.67× 10−2 3.35× 10−6 3.06× 10−14

10−2 2.4747 6.67× 10−3 5.67× 10−14 1.81× 10−35

10−3 3.2087 6.67× 10−4 3.10× 10−22 3.17× 10−58

10−4 3.8202 6.67× 10−5 1.04× 10−30 1.28× 10−81

(c) It is clear that

P[{01}D|{00}T ] = Q

(
∆
2√

N0/2

)
−Q

(
3∆
2√

N0/2

)

= Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
≈ Q

(
∆√
2N0

)
. (8.2)

Similarly, one can find that

P[{11}D|{00}T ] = Q

(
3∆√
2N0

)
−Q

(
5∆√
2N0

)
≈ Q

(
3∆√
2N0

)
, (8.3)

P[{10}D|{00}T ] = Q

(
5∆√
2N0

)
. (8.4)

(d) It can be seen from the signal space that the same set of conditional symbol error
probabilities applies for the case that symbol 10 is transmitted. The set will be different
when either {01} or {11} is transmitted.

Compared with Q
(

∆√
2N0

)
the term Q

(
3∆√
2N0

)
and Q

(
5∆√
2N0

)
are negligible at any level

of P[symbol error] and can be ignored. It is the error that occurs when a signal is
mistaken with a nearest neighbor that dominates. Therefore, in terms of neighbors the
most important ones are the nearest ones.
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P8.3 (a)

P [bit error] = P [bit error| {00}T ]P [{00}T ] + P [bit error| {01}T ]P [{01}T ]
+P [bit error| {11}T ]P [{11}T ] + P [bit error| {10}T ]P [{10}T ]

P [{00}T ] = P [{01}T ] = P [{11}T ] = P [{10}T ] =
1
4

P [bit error| {00}T ] = P [bit error| {10}T ]
P [bit error| {01}T ] = P [bit error| {11}T ]

∴ P [bit error] =
1
2
P [bit error| {00}T ] +

1
2
P [bit error| {01}T ]

P [bit error| {00}T ] =
1
2

[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)]

+
[
Q

(
3∆√
2N0

)
−Q

(
5∆√
2N0

)]
+

1
2
Q

(
5∆√
2N0

)

P [bit error| {01}T ] =
1
2
Q

(
∆√
2N0

)
+

1
2

[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)]

+
1
2
Q

(
3∆√
2N0

)

⇒ P [bit error] =
3
4
Q

(
∆√
2N0

)
+

1
2
Q

(
3∆√
2N0

)
− 1

4
Q

(
5∆√
2N0

)
.

(b) Due to symmetry P [b1 in error] = P [b1 in error|b1 = 0]

P [b1 in error|b1 = 0] = P

[
rI > 0

∣∣∣∣ sT = −∆
2

, b1 = 0
]

P

[
sT = −∆

2

∣∣∣∣b1 = 0
]

+P

[
rI > 0

∣∣∣∣ sT = −3∆
2

, b1 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b1 = 0
]

⇒ P [b1 in error] =
1
2

[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)]
.

P [b2 in error] = P [b2 in error|b2 = 0]P [b2 = 0] + P [b2 in error|b2 = 1]P [b2 = 1]

P [b2 in error|b2 = 0] = 2P
[
−∆ < rI < ∆

∣∣∣∣ sT = −3∆
2

, b2 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b2 = 0
]

= 2
[
Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)](
1
2

)
= Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)

P [b2 in error|b2 = 1] = 2P
[
rI < −∆ or rI > ∆

∣∣∣∣ sT = −∆
2

, b2 = 1
]

P

[
sT = −∆

2

∣∣∣∣b2 = 1
]

= 2
[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)](
1
2

)
= Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)

⇒ P [b2 in error] =
1
2

[
2Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
−Q

(
5∆√
2N0

)]

= Q

(
∆√
2N0

)
+

1
2
Q

(
3∆√
2N0

)
− 1

2
Q

(
5∆√
2N0

)
.
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The arithmetic averaging of the two individual bit error probabilities gives:

P [bit error] =
3
4
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
− 1

4
Q

(
5∆√
2N0

)
(same as in (a)).

The first observation is that the individual bit errors are not the same, the probability
of b2 being in error is higher by approximately a factor of 2. The overall bit error
probability is somewhere between the two individual bit error probabilities. If one makes
the reasonable approximations based on the result of P8.2(b) then

P [bit error] =
3
4
Q

(
∆√
2N0

)

P [b1 in error] =
1
2
Q

(
∆√
2N0

)

P [b2 in error] = Q

(
∆√
2N0

)

Using the approximate expression we have P [bit error] = 1
2Q

(
∆√
2N0

)
, which is close to

the exact expression.

P8.4 (a) From Fig. 8.27 in the textbook, one can obtain the decision rule for bit b2 as follows:

|rI |
b2=0

R
b2=1

∆. (8.5)

(b) Denote s1(t) = {00}, s2(t) = {01}, s3(t) = {11}, s4(t) = {10}. The error probabilities
can be calculated as:

P[b1 in error] =
1
4

4∑

i=1

P[b1 in error|si(t)]

=
1
4

[
Q

(
3∆√
2N0

)
+ Q

(
∆√
2N0

)
+ Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)]

=
1
2

[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)]
. (8.6)

P[b2 in error] =
1
4

4∑

i=1

P[b2 in error|si(t)] =
1
2

(P[b2 in error|s1(t)] + P[b2 in error|s2(t)])

=
1
2

[
Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)
+ Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)]

= Q

(
∆√
2N0

)
+

1
2
Q

(
3∆√
2N0

)
− 1

2
Q

(
5∆√
2N0

)
. (8.7)

Then the average bit error probability can be calculated as

P[bit error] =
P[b1 in error] + P[b2 in error]

2

=
3
4
Q

(
∆√
2N0

)
+

1
2
Q

(
3∆√
2N0

)
− 1

4
Q

(
5∆√
2N0

)
. (8.8)

The error probabilities are identical to those of P8.3.
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Figure 8.1

P8.5 (a) With symbol demodulation, P [b1 in error] remains unchanged from P8.3(a) since the
pattern for b1 is identical. On the other hand,

P [b2 in error] = P [b2 in error|b2 = 0]P [b2 = 0] + P [b2 in error|b2 = 1]P [b2 = 1]

=
1
2
P [b2 in error|b2 = 0] +

1
2
P [b2 in error|b2 = 1]

P [b2 in error|b2 = 0] = P

[
−∆ < rI < 0

∣∣∣∣ sT = −3∆
2

, b2 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b2 = 0
]

+P

[
rI > ∆

∣∣∣∣ sT = −3∆
2

, b2 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b2 = 0
]

+P

[
−∆ < rI < 0

∣∣∣∣ sT =
∆
2

, b2 = 0
]

P

[
sT =

∆
2

∣∣∣∣b2 = 0
]

+P

[
rI > ∆

∣∣∣∣ sT =
∆
2

, b2 = 0
]

P

[
sT =

∆
2

∣∣∣∣b2 = 0
]

=
1
2

[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+ Q

(
5∆√
2N0

)

+Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+ Q

(
∆√
2N0

)]

=
3
2
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+

1
2
Q

(
5∆√
2N0

)

⇒ P [bit error] = Q

(
∆√
2N0

)
− 1

4
Q

(
3∆√
2N0

)
+

1
4
Q

(
5∆√
2N0

)
.

Compared with Gray coding the bit error probability is somewhat larger, basically
Q

(
∆√
2N0

)
as compared to 3

4Q
(

∆√
2N0

)
, but not dramatically so.

(b) Now consider demodulation directly to the bits. The decision rules are:

rI

b1=1

R
b1=0

0

{
(rI < −∆) or (0 < rI < ∆) ⇒ b2 = 0
(−∆ < rI < 0) or (rI > 0) ⇒ b2 = 1

In terms of error probabilities, P [b1 in error] should be the same as in P8.4(b). P [b2 in error]
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is determined as follows:

P [b2 in error|b2 = 0]

= P

[
−∆ < rI < 0

∣∣∣∣ sT = −3∆
2

, b2 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b2 = 0
]

+P

[
rI > ∆

∣∣∣∣ sT = −3∆
2

, b2 = 0
]

P

[
sT = −3∆

2

∣∣∣∣b2 = 0
]

+P

[
−∆ < rI < 0

∣∣∣∣ sT =
∆
2

, b2 = 0
]

P

[
sT =

∆
2

∣∣∣∣b2 = 0
]

+P

[
rI > ∆

∣∣∣∣ sT =
∆
2

, b2 = 0
]

P

[
sT =

∆
2

∣∣∣∣b2 = 0
]

=
1
2

{[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)]
+ Q

(
5∆√
2N0

)

+
[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)]
+ Q

(
∆√
2N0

)}

=
3
2
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+

1
2
Q

(
5∆√
2N0

)

P [b2 in error|b2 = 1] =
1
2
P

[
rI < −∆

∣∣∣∣ sT = −∆
2

, b2 = 1
]

+
1
2
P

[
0 < ∆ < rI

∣∣∣∣ sT = −∆
2

, b2 = 1
]

+
1
2
P

[
rI < −∆

∣∣∣∣ sT =
3∆
2

, b2 = 1
]

+
1
2
P

[
0 < rI < ∆

∣∣∣∣ sT =
3∆
2

, b2 = 1
]

=
1
2

{
Q

(
∆√
2N0

)
+

[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)]

+Q

(
5∆√
2N0

)
+

[
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)] }

=
3
2
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+

1
2
Q

(
5∆√
2N0

)

⇒ P [b2 in error] =
1
2
P [b2 in error|b2 = 0] +

1
2
P [b2 in error|b2 = 1]

=
3
2
Q

(
∆√
2N0

)
−Q

(
3∆√
2N0

)
+

1
2
Q

(
5∆√
2N0

)
.

P [bit error] =
1
2
P [b2 in error] +

1
2
P [b1 in error]

=
1
2

[
2Q

(
∆√
2N0

)
− 1

2
Q

(
3∆√
2N0

)
+

1
2
Q

(
5∆√
2N0

)]

= Q

(
∆√
2N0

)
− 1

4
Q

(
3∆√
2N0

)
+

1
4
Q

(
5∆√
2N0

)
.

Again, the result is the same as demodulating to the symbol.
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0
2

∆
2

∆−
2

3∆
2

3∆−

010 110 111011

5

2

∆ 7

2

∆

101 100

5

2

∆−7

2

∆−

001000

1 2 3b b b

↓↓↓

Ir

Figure 8.2

P8.6 (a)

rI

b1=0

R
b1=1

0; |rI |
b2=1

R
b2=0

2∆; If {|rI | > 3∆ or |rI | < ∆} ⇒ b3 = 0, else b3 = 1.

Graphically, the decision regions are illustrated in Fig. 8.3.

0 2∆ 3∆

010 110 111011

∆

101 100001000

−∆2− ∆3− ∆

1 1b =1 0b =

2 0b =2 0b = 2 1b =

3 0b = 3 0b =3 0b = 3 1b =3 1b =

Ir

Figure 8.3

(b) Consider first bit b1:

P [b1 in error] = P [b1 in error|b1 = 0]P [b1 = 0]
+P [b1 in error|b1 = 1]P [b1 = 1]

= P [b1 in error|b1 = 0] (by symmetry)

= P

[
rI > 0

∣∣∣∣ sT is one of − 7∆
2

,−5∆
2

,−3∆
2

,−∆
2

, b1 = 0
]

×P

[
sT is one of − 7∆

2
,−5∆

2
,−3∆

2
,−∆

2

∣∣∣∣b1 = 0
]

︸ ︷︷ ︸
=1/4

⇒ P [b1 in error] =
1
4

[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
+ Q

(
5∆√
2N0

)
+ Q

(
7∆√
2N0

)]
.

Now consider bit b2:

P [b2 in error] = P [b2 in error|b2 = 0]P [b2 = 0]
+P [b2 in error|b2 = 1]P [b2 = 1]
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P [b2 in error|b2 = 0] =

P

[
−2∆ < rI < 2∆

∣∣∣∣ sT is one of − 7∆
2

,−5∆
2

,
5∆
2

,
7∆
2

, b2 = 0
]

×P

[
sT is one of − 7∆

2
,−5∆

2
,
5∆
2

,
7∆
2

∣∣∣∣b2 = 0
]

︸ ︷︷ ︸
=1/4

= 2
[
Q

(
3∆√
2N0

)
−Q

(
11∆√
2N0

)
+ Q

(
∆√
2N0

)
−Q

(
9∆√
2N0

) ](
1
4

)
.

P [b2 in error|b2 = 1] =

P

[
rI < −2∆ or rI > 2∆

∣∣∣∣ sT is one of − 3∆
2

,−∆
2

,
∆
2

,
3∆
2

, b2 = 1
]

×P

[
sT is one of − 3∆

2
,−∆

2
,
∆
2

,
3∆
2

∣∣∣∣b2 = 1
]

︸ ︷︷ ︸
=1/4

= 2
[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
+ Q

(
5∆√
2N0

)
+ Q

(
7∆√
2N0

)] (
1
4

)
.

⇒ P [b2 in error] =
1
2

[
2Q

(
∆√
2N0

)
+ 2Q

(
3∆√
2N0

)
+ Q

(
5∆√
2N0

)

+Q

(
7∆√
2N0

)
−Q

(
9∆√
2N0

)
−Q

(
11∆√
2N0

) ]
.

Lastly consider bit b3:

P [b3 in error|b3 = 0] =

P

[
−3∆ < rI < −∆ or ∆ < rI < 3∆

∣∣∣∣ sT is one of− 7∆
2

,−∆
2

,
∆
2

,
7∆
2

, b3 = 0
]

×P

[
sT is one of − 7∆

2
,−∆

2
,
∆
2

,
7∆
2

∣∣∣∣b3 = 0
]

︸ ︷︷ ︸
=1/4

=
1
4

{
2
[
Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)
+ Q

(
9∆√
2N0

)
−Q

(
13∆√
2N0

)]

+2
[
Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)
+ Q

(
3∆√
2N0

)
−Q

(
7∆√
2N0

)]}

=
1
2

[
2Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
− 2Q

(
5∆√
2N0

)

−Q

(
7∆√
2N0

)
+ Q

(
9∆√
2N0

)
−Q

(
13∆√
2N0

)]
.
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P [b3 in error|b3 = 1] =
1
4
P

[
(rI < −3∆) or (−∆ < rI < ∆) or (rI > 3∆)

∣∣∣∣ sT is one of− 5∆
2

,−3∆
2

,
3∆
2

,
5∆
2

, b3 = 1
]

=
1
4
· 2 ·

[
Q

(
∆√
2N0

)
+ Q

(
3∆√
2N0

)
−Q

(
7∆√
2N0

)
+ Q

(
11∆√
2N0

)

+Q

(
3∆√
2N0

)
+ Q

(
∆√
2N0

)
−Q

(
5∆√
2N0

)
+ Q

(
9∆√
2N0

) ]

=
1
2

[
2Q

(
∆√
2N0

)
+ 2Q

(
3∆√
2N0

)
−Q

(
5∆√
2N0

)

−Q

(
7∆√
2N0

)
+ Q

(
9∆√
2N0

)
+ Q

(
11∆√
2N0

) ]
.

⇒ P [b3 in error] =
1
4

[
4Q

(
∆√
2N0

)
+ 3Q

(
3∆√
2N0

)
− 3Q

(
5∆√
2N0

)

−2Q

(
7∆√
2N0

)
+ 2Q

(
9∆√
2N0

)
+ Q

(
11∆√
2N0

)
−Q

(
13∆√
2N0

)]
.

Using the result of P8.2 we ignore, with confidence, all terms except Q
(

∆√
2N0

)
. There-

fore:

P [b1 in error] =
1
4
Q

(
∆√
2N0

)

P [b2 in error] =
1
2
Q

(
∆√
2N0

)

P [b3 in error] = Q

(
∆√
2N0

)

∴ P [bit error] =
1
3
· 7
4
·Q

(
∆√
2N0

)
=

7
12

Q

(
∆√
2N0

)
.

P8.7 Consider rectangular QAM of λ bits with λI bits assigned to the I axis, λQ bits to the Q axis
(λ = λI + λQ). Gray code the λI , λQ bit patterns separately, concatenate them and assign
the corresponding bit pattern to the I, Q signal.

Example: λI = λQ = 2. Gray code for either axis is 00, 01, 11, 10. Therefore the result is as
shown in Fig. 8.4.

P8.8 (a) See Fig. 8.4 for the bit pattern b1b2b3b4. Then the decision rules are:

rQ

b1=1

R
b1=0

0; |rQ|
b2=0

R
b2=1

∆
2

; rI

b3=1

R
b3=0

0; |rI |
b4=0

R
b4=1

∆
2

.

Note: rI , rQ are statistically independent Gaussian random variables, variance N0/2 and
a mean value which depends on the transmitted signal.

(b) Since rectangular 16-QAM is basically 2 independent 4-ASK modulations the results of
P8.2 apply directly.
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0100 0101 0111 0110

0000 0001 0011 0010

00
01

11
10

 Gray code Iλ
00 01 11 10

  axis, QQ r

1 2 3 4b b b b

Figure 8.4

(c) Make this bit a b1 or b3 bit.

P8.9 (a) Constellation (a): The average symbol energy is equal to the squared distance of any
signal from the origin. In terms of ∆ this is Es =

(
∆

2 sin 22.5◦
)2 = 1.71∆2 joules/symbol.

Constellation (b): The sum of the squared distances of each signal from the origin is
= 4

(
∆2

4 + ∆2

4

)
+ 4

(
9∆2

4 + ∆2

4

)
= 12∆2. The average energy is Es = 12∆2

8 = 1.5∆2

joules/symbol.

Constellation (c): Again sum of the squared distances is = 4
(

∆2

4 + ∆2

4

)
+4

(
∆ +

√
2

2 ∆
)2

=

(8 + 4
√

2)∆2. Therefore Es = 1 +
√

2
2 ∆2 = 1.71∆2 joules/symbol.

Constellation (d): Sum of the squared distances is 2
(

∆2

4

)
+ 2

(
9∆2

4

)
+ 4

(
∆2

4 + ∆2
)

=

10∆2. Therefore Es = 10∆2

8 = 1.25∆2 joules/symbol.

So from most efficient to least efficient the ranking is (d), (b), (c), (a).
Note: Since each symbol (in each constellation) represents 3 bits, the average bit energy,
Eb = Es/3 joules/bit.

(b) See Fig. 8.5.

(c) See Fig. 8.6.

(d) The triangular constellation is most efficient at 1.125∆2 joules/symbol, which is

10 log10

(
1.25
1.125

)
= 0.46 dB

better than the best constellation in Fig. 8.28.

Solutions Page 8–10



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

)(1 tφ

)(2 tφ

0

Gray code for I-axis bits

100 101 111 110

000 001 011 010

1

0

00 01 11 10
Gray code for Q-axis bits

Figure 8.5

)(1 tφ

)(2 tφ

0

These signals are most 
susceptible to error. They have 
the least space to maneuver in, 
at least the corresponding 
received signal does. 

Figure 8.6

P8.10 (a) Fig. 8.7 shows the signal constellation with the signals to be Gray coded numbered. A
solution is also given and explained on the figure.

(b) Assume that all the 16 signal points are equally likely. The optimum decision boundaries
of the minimum distance receiver are also sketched in Fig. 8.7.
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1

2

3

4 5 10712

8

9

6

11

1 6 11

2 7 12

3 8 9

4 5 10

→ →
↓

→ →
↓

→ →
↓

→ →

0000 1

0001 2

0011 3

0010 4

0100

0110 5

0111 10

0101 7

1101 12

1100

1111

1110

1010 11

1001 9

1011 8

1000 6

→
→
→
→

→
→
→
→

→
→
→
→

A graph of the signals to be Gray coded and
their nearest neighbours looks as follows:

The 4-bit Gray code is:

Somewhat heuristically 
assign the bit patterns to 
signals as shown. The 
remaining 4 bit patterns 
can be arbitrarily 
assigned to the 4 
remaining signals.

Figure 8.7: V.29 constellation and “Gray mapping”.

Solutions Page 8–12



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

P8.11 (a) The two constellations have roughly the same symbol error performance since the mini-
mum distance for both constellations is 2.
To see which one is more power-efficient, one needs to compute the average (or total)
energies for the two constellations.

Ē(a) =
1
16

[
4{(32 + 32) + (12 + 12) + 2(32 + 12)}] = 10.0 (joules)

Ē(b) =
1
16

{
4[(
√

2)2 + (
√

2 + 2)2 + (
√

2 + 4)2 + (
√

2 + 6)2]
}

= 24.49 (joules)

From the above results it can be seen that constellation (a) is much more power-efficient
than constellation (b).

(b) See Fig. 8.8. Gray code by trial and error - but intelligent trial and error.

1( )tφ

2( )tφ

0100

0101

0111

0000

1010

1011

1001

1000

0110
0001 0011 0010 1110 1111 1101 1100

Figure 8.8

(c) See Fig. 8.8. The four outer (corner) signals are least susceptible to error since they
have the least nearest neighbors, hence and the most space for the received signal to
roam in.

P8.12 (a) By observation, dmin is maximized when ∆h = ∆v = ∆ (= dmin), which means that
tan θ = (∆/2)

(3∆/2) = 1
3 ⇒ θ = 18.4◦.

(b) Gray code “vertical bits” and “horizontal bits” separately and then concatenate them.
The result is shown in Fig. 8.9.

(c) For the present constellation: Es =
(

3
2dmin

)2 +
(

1
2dmin

)2 = 5
2 (dmin)

2 ⇒ dmin = 0.63
√

Es.
For 8-PSK the geometry looks like in Fig. 8.10 and dmin = 0.765

√
Es, which is better.
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0
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101100 110111

001000 010011

mind

mind

0100 1011
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ve
rt

ic
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 b
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s 
→

0

1

Figure 8.9

0

045 ( )0
min 2 sin 22.5 0.765s sd E E= =

Figure 8.10

∆

∆

min

2

d
2 2

2min
min 3

4 4

d
d

∆+ = ∆ ⇒ = ∆

Figure 8.11

P8.13 (a) See Fig. 8.11.
(b) – Have 6 signals with energy = d2

min = 3∆2 joules.
– 1 signal with zero energy.

– 1 signal with (dmin cos 30◦)2 +
(

3dmin
2

)2
=

(
3
4 + 9

4

)
3∆2 = 9∆2. Therefore

Es =
[6(3) + 9]∆2

8
=

27
8

∆2 joules/signal.

Eb =
Es(joules/signal)
3( bits/signal)

=
9
8
∆2 joules/bit.

(c) See Fig. 8.12.
(d) No, not possible. The signal at the origin has 6 nearest neighbors. Not possible to find

six 3-bit patterns that differ from its 3-bit pattern by only 1 bit. At most there are three
3-bit patterns.

Solutions Page 8–14



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

Qr

decision

boundaries

Ir
0

Figure 8.12 0000
1R

2R

∆

∆

/12π I0101
10001010001001100111 0011

0100
00011001101111111110 11001101

Q
Figure 8.13: The 16APSK constellation used in DVB-S2.

P8.14 (a) From Fig. 8.13, one can calculate R1, R2 in terms of ∆ as follows:

∆
2

= R2 sin
π

12
⇒ R2 =

∆
2 sin π

12

= 1.932∆. (8.9)

∆ = R1

√
2 ⇒ R1 =

∆√
2

= 0.707∆. (8.10)

The average symbol energy is:

E(1)
s =

1
16

(
12R2

2 + 4R2
1

)
=

1
16

(
44.79∆2 + 2∆2

)
= 2.9245∆2. (8.11)
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2R

1R

∆

∆

∆

6

π

8

π

I
Q

Figure 8.14: The modified 16APSK constellation.

(b) Similarly, from Fig. 8.14, R1, R2 can be calculated as:

R1 =
∆

2 sin π
8

= 1.307∆. (8.12)

R2 =
∆

2 tan π
8

+ ∆ cos
π

6
= 2.073∆. (8.13)

The average symbol energy is:

E(2)
s =

1
16

(
8R2

1 + 8R2
2

)
=

1
2

(
R2

1 + R2
2

)

=
1
2

(
1.708∆2 + 4.297∆2

)
= 3.003∆2. (8.14)

Since the minimum distances of both constellations are the same, the two constellations
perform approximately identically in AWGN. The modified constellation has a larger
average energy (E(2)

s > E
(1)
s ). Therefore it is less power-efficient compared to DVB-S2

16APSK.
Furthermore, the demodulator for the (8,8) signal constellation appears to be more
complicated than that of the (4,12) constellation. But to back this up you should propose
block diagrams of the demodulators.

(c) The (8,8) constellation cannot be Gray coded. This is based on the observation that 3
signals which are at equal distance (dmin) from each other, i.e., lie on the vertices of an
equilateral triangle, cannot be Gray coded. This is true regardless of the length of the
bit sequence.
Proof:

1) Let a, b, c be 3 unique n-bit sequences.
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2) Let a and b differ in one bit, say in the jth position.
3) Now suppose c differs from a by only one bit. This cannot be in the jth position

because then it would be identical to b. So let it differ in the ith position.
4) But this means that c differs from b in the jth and ith positions, hence violating the

Gray mapping rule. Remember Gray code means that 2 binary sequences that are
at minimum distance differ by only one bit.

The (4,12) constellation, however, can be Gray coded. See a Gray code table for 4-bit
sequences in Fig. 8.15.

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0000

0100

1100

1000

0001

0011

0010

0110

0111

0101

1101

1111

1110

1010

1011

1001

For the signals on the 
inner circle

For the signals on the 
outer circle

Figure 8.15

P8.15 (a) The probability of symbol error can be written as

P [symbol error] = P [(error on I axis) or (error on Q axis)]
= P [(error on I axis)] + P [(error on Q axis)]

−P [(error on I axis) and (error on Q axis)]

Now P [(error on I axis)] is that of M -ASK with M = MI = 2λI (number of signal
components along I axis).
Similarly P [(error on Q axis)] is that of M -ASK with M = MQ = 2λQ .
Finally P [(error on I axis) and (error on Q axis)] = P [(error on I axis)]P [(error on Q axis)]
because the 2 events are statistically independent. This is because the noise components
wI ,wQ along the respective I and Q axes are statistically independent.
Using Eqn. (8.18) on page 307 we obtain

P [symbol error] =
2(MI − 1)

MI
Q

(
∆√
2N0

)
+

2(MQ − 1)
MQ

Q

(
∆√
2N0

)

−4(MI − 1)(MQ − 1)
MIMQ

Q2

(
∆√
2N0

)
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Since it is more meaningful to express the error probability in terms of Eb, the average
transmitted energy per bit, we find the relationship between Eb and ∆. First we deter-
mine the average transmitted energy per symbol (or signal). Now the transmitted signal
can be written as

sij(t) = (2i− 1−MI)
∆
2

√
2
Ts

cos(2πfct) + (2i− 1−MQ)
∆
2

√
2
Ts

cos(2πfct)

i = 1, 2, . . . , MI = 2λI ; j = 1, 2, . . . , MQ = 2λQ

The energy of the (i, j)th signal is Eij = (2i−1−MI)2 ∆2

4 +(2j−1−MQ)2 ∆2

4 . Therefore

Es =
1

MI ·MQ

MI∑

i=1

MQ∑

j=1

Eij =
∆2

4m

MI∑

i=1

MQ∑

j=1

[
(2i− 1−MI)2 + (2j − 1−MQ)2

]

Consider the sum
∑MI

i=1

∑MQ

j=1(2i − 1 − MI)2 (other sum is the same except MI ,MQ

are interchanged). It equals
{∑MI

i=1

[
4i2 − 4(1 + MI)i + (1 + MI)2

]∑MQ

j=1 1
}

. Using the

identities
∑n

k=1 k2 = n(n+1)(2n+1)
6 ;

∑n
k=1 k = n(n+1)

2 and straightforward algebra, the

sum becomes (M2
I−1)M

3 , where M = MI ·MQ = 2λ.

More algebra yields Es = ∆2

12

{
M2

I + M2
Q − 2

}
joules/symbol.

Now Eb = Es
λ = Es

log2 M joules/bit which means that ∆ =
2
√

3
√

log2 MEb√
M2

I +M2
Q−2

. Therefore

P [symbol error] =
2(MI − 1)

MI
Q

(√
6 log2 M

M2
I + M2

Q − 2
· Eb

N0

)

+
2(MQ − 1)

MQ
Q

(√
6 log2 M

M2
I + M2

Q − 2
· Eb

N0

)

−4(MI − 1)(MQ − 1)
M

Q2

(√
6 log2 M

M2
I + M2

Q − 2
· Eb

N0

)

It is worthwhile, because of all the algebra, to see if the above error probability expres-
sion reduces to (8.47), page 320 of the text for square QAM, i.e., MI = MQ =

√
M . Also

plots of P [symbol error] versus Eb
N0

for non-square QAM are also of interest. To reduce
the possibilities consider the special case of λI = λQ + 1 ⇒ λI = λ+1

2 , λQ = λ−1
2 , λ odd.

Special case but the most practical one. Left as a further exercise.

It is also of interest to see how the average energies divide between the inphase and
quadrature axes.
Along the quadrature axis we have

EQ =
1

MQ

MQ∑

j=1

(2i− 1−MI)2
∆2

4
=

∆2

12
(M2

Q − 1) joules/“quadrature symbol”

Similarly EI = ∆2

12 (M2
I − 1) joules/“inphase symbol”.
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Note EQ + EI = Es (as would be expected); further for square QAM, EI = EQ = Es
2 ,

i.e., the energy is divided evenly.
Now consider non-square QAM

EI

EQ
=

M2
I − 1

M2
Q − 1

=
22λI − 1
22λQ − 1

Now let λI = λQ + 1. Then the ratio becomes

EI

EQ
=

22λ − 1
22λ − 1

, λ odd.

As λ becomes large, EI
EQ

→ 4, indeed it does this quite rapidly.

(b) The union upper bound is obtained by simply ignoring the overlapping regions, i.e.,
P [(error on I axis) and (error on Q axis)] or the Q2(·) term.

P8.16 In general,

P [symbol error] =
M∑

i=1

P [error|si(t)]P [si(t)]

=
1
M

M∑

i=1

P [error|si(t)] (since signals are equally probable)

≤ P [worst-case conditional error]

From the geometry the worst-case conditional error occurs when an “inner” signal is trans-
mitted and equals the volume under the 2-dimensional pdf in the region outside the square
or 1− (volume under pdf inside the square). See Fig. 8.16.

∆

∆
signal point

Figure 8.16

Volume under pdf inside the square =
[
1− 2Q

(
∆

2
√

N0/2

)]2

. Therefore,

P [symbol error] ≤ 1−
[
1− 2Q

(
∆

2
√

N0/2

)]2

.
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Now from P8.15, ∆ = 2
√

3
√

Es√
M2

I +M2
Q−2

. It then follows that

P [symbol error] ≤ 1−
[
1− 2Q

(√
6Es

(M2
I + M2

Q − 2)N0

)]2

.

A somewhat looser upper bound can be obtained by noting that 2M ≤ M2
I + M2

Q < 2M2.
For square QAM, M2

I + M2
Q = 2M and the result, Eqn. (8.48), follows immediately. For

non-square QAM where M2
I + M2

Q < 2M2 the reasoning is as follows:

Replacing M2
I + M2

Q by 2M2 ⇒ the argument of the Q(·) function is smaller ⇒ that Q(·) is
larger ⇒ 1− 2Q(·) is smaller ⇒ [1− 2Q(·)]2 is smaller ⇒ 1− [1− 2Q(·)]2 is larger ⇒

P [symbol error] ≤ 1−
[
1− 2Q

(√
6Es

(2M2 − 2)N0

)]2

. (8.15)

Note that 6Es
(2M2−2)N0

= 3Es
(M2−1)N0

= 3λEb
(M2−1)N0

.

Remark: We show that indeed M2
I + M2

Q ≥ 2M or 22λI + 22λQ ≥ 2 · 2λ. Let λI = λQ + k, k ≥
1 ⇒ λI = λ+k

2 , λQ = λ−k
2 . Then 22λI + 22λQ = 2λ2k + 2λ2−k = 2λ(2k + 2−k) and since

2k + 2−k > 2 for any k ≥ 1, then indeed M2
I + M2

Q > 2M . The inequality M2
I + M2

Q < 2M2

is quite obvious.

P8.17 The verification involves 2 changes of variable. First in the integral w.r.t. λ, let x =
√

2
N0

λ.
The integral becomes ∫ √

2
N0

r1

x=−∞

1√
2π

e−
x2

2 dx

Now let y =
√

2
N0

r1. Then

P [correct] =
1√
2π

∫ ∞

y=−∞

[
1√
2π

∫ y

x=−∞
e−

x2

2 dx

]M−1

e−
(

y−
√

2Es
N0

)2

2 dy

Finally observe that Es = λEb = log2 MEb and that P [error] = 1− P [correct].

P8.18 The transmitted signal can be written as:

si(t) = (±
√

Eb)φ1(t)+(±
√

Eb)φ2(t)+· · ·+(±
√

Eb)φj(t)+· · ·+(±
√

Eb)φλ(t), i = 1, 2, . . . , M,

where the jth component is +
√

Eb if the jth bit of the transmitted bit sequence is 1 and
−√Eb if the jth bit is 0; j = 1, 2, . . . , λ.

The demodulator consists of projecting the received signal r(t) = si(t)+w(t) onto φ1(t), φ2(t),
. . . , φλ(t) to generate the sufficient statistics r1, r2, . . . , rλ, and using minimum distance to
carve up the decision space. Geometrically this consists of choosing the signal point that
lies in the quadrant that r1, r2, . . . , rλ fall in (convince yourself of this for λ = 2 and λ = 3;
perhaps λ = 4 if you are really ambitious).
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Now because of symmetry (and the fact that the signals are equally probable), one has

P [error] = P [error|a specific signal or bit sequence] = 1− P [correct|a specific signal]

Choose for the specific signal the bit sequence (111 · · · 11), or (
√

Eb,
√

Eb,
√

Eb, · · · ,
√

Eb,
√

Eb),
the signal that lies in the first quadrant. Now,

P [correct|this specific signal] = P [r1 > 0, r2 > 0, · · · , rλ > 0]

where the rj ’s are Gaussian, mean value
√

Eb, variance N0/2 and statistically independent.
Therefore,

P [correct|this specific signal] =
λ∏

j=1

P [rj > 0] =

[
1−Q

(√
2Eb

N0

)]λ

.

Finally,

P [error] = 1−
[
1−Q

(√
2Eb

N0

)]λ

.

Remark: The signal points also lie on the surface of a hypersphere of radius
√

λEb.

P8.19 (a) Simply put, the transmission bandwidth is halved. It is directly proportional to the
dimensionality of the signal space.

(b) The sufficient statistics are generated by projecting the received signal onto the M
2 or-

thonormal bases (which are si(t) normalized to unit energy) to obtain r1, r2, . . . , rj , . . . , rM/2.
Statistically rj is Gaussian with variance of N0

2 and a mean value of 0, +
√

Eb, or −√Eb.
Zero if the transmitted is not ±sj(t), +

√
Eb if the transmitted signal is +sj(t) and −√Eb

is the transmitted signal is −sj(t). Note that we assume, for convenience, that the signal
sj(t) has energy Eb. To obtain the decision rule consider just the special case of M = 4
and generalize from there.

0

1( )s t− 1( )s t

bEbE−

1Choose ( )s t− 1Choose ( )s t

bE− 2 ( )s t−

bE 2 ( )s t

1 1( ),t rφ

2 2( ),t rφ2 1r r= − 2 1r r=

Figure 8.17

The decision rule is: If |r1| > |r2| and

{
r1 > 0 choose s1(t)
r1 < 0 choose −s1(t)

.

To generalize:

Compute |rj |, j = 1, 2, . . . , M
2 . Determine maximum |rj |, j = 1, 2, . . . , M

2 . Then the
decision is si(t) if rj > 0 and −si(t) if rj < 0.
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(c) Due to the symmetry of the decision space we have

P [symbol error] = P [symbol error|any specific transmitted signal]
= 1− P [correct decision|any specific transmitted signal].

Choose the specific transmitted signal to be s1(t). Then s1(t) is chosen if

(r1 > 0) and (−r1 ≤ r2 ≤ r1) and (−r1 ≤ r3 ≤ r1) and · · · and (−r1 ≤ rM
2
≤ r1).

To determine the probability of the above happening, fix the random variable r1 at a
specific value, say r1 = r1 ≥ 0. Note that the probability of this is fr1(r1|s1(t))dr1 =
N (√

Eb,
N0
2

)
dr1. Then the probability of the event

[
(−r1 ≤ r2 ≤ r1) and (−r1 ≤ r3 ≤ r1) and · · · and (−r1 ≤ rM

2
≤ r1)|s1(t)

]

is given by
∏M

2
i=2 P [−r1 ≤ ri ≤ r1|s1(t)] where the random variables are Gaussian, zero-

mean (given that the transmitted signal is s1(t)), variance N0
2 and statistically indepen-

dent.
Therefore the probability becomes


 1
√

2π
√

N0
2

∫ r1

−r1

e−
r2
i

2(N0/2) dri




M
2
−1

=
[
1− 2Q

(
r1

√
2

N0

)]M
2
−1

Now 0 ≤ r1 ≤ ∞, i.e., we find the weighted sum of the above, weighted by the probability
of r1 = r1:

P [symbol error] = 1−

 1√

πN0

∫ ∞

r1=0

[
1− 2Q

(
r1

√
2

N0

)]M
2
−1

e−
(r1−

√
Eb)2

N0 dr1


 .

It would be useful to plot and compare the above error probability with that of orthogonal
modulation (such as M -FSK), either for the same number of signal points, or the same
dimensionality of the signal space.

P8.20 (a) See Fig. 8.18.

(b) It can be seen from Fig. 8.18 that the USSB waveform does not have the desirable
property of constant envelope of BPSK signal. This is the price one has to pay for a
reduced (half) bandwidth of the USSB signal.

P8.21 One has to establish a bandwidth definition and also the error probability at which the
signalling techniques are compared. In the text (Section 8.7 and Fig. 8.26) the bandwidth W
is defined as the reciprocal of the symbol duration. Other possible definition that could have
been used are null-to-null bandwidth, 95% power bandwidth and so on. The error probability
used to determine the SNR is 10−5.

(a) Using Eqn. (8.33),
(

rb
W

)
FSK

= 2 log2 M
M , we have

• 2-FSK:
(

rb
W

)
= 2 log2 21

2 = 1.
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0 Tb 2Tb 3Tb 4Tb 5Tb 6Tb

−V

0

V
0 1 1 0 1 0

t

(a) BPSK signal

0 Tb 2Tb 3Tb 4Tb 5Tb 6Tb

−V

0

V
0 1 1 0 1 0

t

(b) USSB−BPSK signal

Figure 8.18

• 4-FSK:
(

rb
W

)
= 2 log2 22

4 = 1.

And using Fig. 8.23 we have at P [symbol error] = 10−5:

• 2-FSK: Eb
N0

= 12.6 dB.

• 4-FSK: Eb
N0

= 10.2 dB.

(b) The coordinates for the plot are given below.

(i) For FSK, use Fig. 8.83 to determine Eb
N0

and Eqn. (8.83) for rb
W . The results are:

M = 8 16 32 64
Eb
N0

@ 10−2 = 5.1 4.5 4.2 3.5 (dB)
Eb
N0

@ 10−7 = 10.4 9.3 8.5 7.8 (dB)(
rb
W

)
= 0.75 0.5 0.3125 0.1875 (bits/sec/Hz)

(ii) For PSK, use Fig. 8.15 and Eqn. (8.39) for M = 64 to determine Eb
N0

. Use Eqn.
(8.81) for rb

W . The results are:
M = 2 4 8 16 32 64

Eb
N0

@ 10−2 = 4.4 5.3 8.4 13 18 22.7 (dB)
Eb
N0

@ 10−7 = 11.25 11.6 14.8 19.5 24.5 29.7 (dB)(
rb
W

)
= 1 2 3 4 5 6 (bits/sec/Hz)

(iii) For QAM, use Fig. 8.20 to determine Eb
N0

and use Eqn. (8.81) for rb
W . The results

are:
M = 4 16 64

Eb
N0

@ 10−2 = 5.3 9.7 14.4 (dB)
Eb
N0

@ 10−7 = 11.4 15.6 20 (dB)(
rb
W

)
= 2 4 6 (bits/sec/Hz)
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Note for QAM: W = 1
Ts

= 1
λTb

= rb
log2 M ⇒ rb

W = log2 M .

The plots on power-bandwidth plane are shown in Fig. 8.19. Note that the points shift
toward Shannon’s capacity curve for a larger value of SER. This does not mean that it
is beneficial to increase the SER requirement. It merely says that one can approach the
Shannon’s curve easier by lowering the transmission reliability requirement. Shannon’s
work, however, promises to approach the curve with an arbitrarily low SER!

−10 −5 −1.60 5 10 15 20 25 30
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10

SNR per bit, E
b
/N

0
 (dB)

r b/W
 (

bi
ts

/s
/H

z)

 

 

PSK
QAM
FSK

M=2

M=4

M=8
M=16

M=32

M=64

M=8

M=16

M=32

M=64

SER=10−2

SER=10−7

Figure 8.19

P8.22 (a) Invoking the sampling theorem we have 2W samples/sec.

(b) The answer in (a) means that in T seconds there are 2WT independent time samples;
independent in the sense that they are all needed to represent the time signal.

(c) Any set of orthogonal functions are linearly independent in the usual mathematical
sense that there is no set of nonzero coefficients {c1, c2, . . . , cN}, N being the number of
orthogonal functions such that

∑N
k=1 ckφk(t) = 0. Each orthogonal function can provide

an independent sample. Since we need 2WT independent samples then it follows that
one needs 2WT orthogonal functions.

(d)

SRECT(f) =
∫ T

2

−T
2

e−j2πT dt = V T
sin(πfT )

πfT

and in passband this becomes

V T

2

[
sin(π(f − fc)T )

π(f − fc)T
+

sin(π(f + fc)T )
π(f + fc)T

]
.
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From the sketch of the above function it is (or should be) readily seen that the null-to-
null bandwidth is W = 2

T Hz. This means that WT = 2 and that 2WT = 4, i.e., we can
fit 4 orthogonal time functions in this bandwidth.
Remark: The above derivation is very heuristic, it however agrees well with the sophis-
ticated mathematical analysis given by Landau, Pollack & Slepian. Their definition of
bandwidth is different; remember no time-limited signal can be bandlimited - the Gor-
dian knot of signal analysis. The achieved result however agrees very well with their
conclusions. Perhaps the moral is: one should not let sophisticated mathematics stand
in the way of good engineering. Always keep in mind math for engineers is a tool, albeit
a very important one.

P8.23 (a) To show that two time functions are orthogonal over an interval of T seconds, one needs
to show that

∫
t∈T s1(t)s2(t)dt = 0. Since here we are dealing with sinusoids we can

dispense with the integration by recalling that an integer number of cycles of a sinusoid
in the time interval T means the area (or the integral of it) under it is zero. Recall
further the following trig identities:

cosx cos y =
1
2

[cos(x + y) + cos(x− y)]

sinx sin y =
1
2

[cos(x− y)− cos(x + y)]

cosx sin y =
1
2

[sin(x + y)− sin(x− y)]

Show φ′1(t) ⊥ φ′2(t)

φ′1(t)φ
′
2(t) = cos

(
πt

T

)
sin

(
πt

T

)
cos2 (2πfct) =

1
2

sin
(

2πt

T

)
1
2

[
1 + cos

(
2π

k

T
t

)]

=
1
4

{
sin

(
2πt

T

)
+

1
2

sin
(

2π
k + 1

T
t

)
− 1

2
sin

(
2π

k − 1
T

t

)}

The sinusoids have 1, (k + 1), (k − 1) cycles, respectively, over T sec and therefore the
area under them is 0. Therefore φ′1(t) and φ′2(t) are orthogonal.

Show φ′1(t) ⊥ φ′3(t)

φ′1(t)φ
′
3(t) = cos2

(
πt

T

)
cos (2πfct) sin (2πfct) =

1
4

[
1 + cos

(
2πt

T

)]
sin

(
2π

k

T
t

)

=
1
4

{
sin

(
2π

k

T
t

)
+

1
2

sin
(

2π
k + 1

T
t

)
+

1
2

sin
(

2π
k − 1

T
t

)}

Here there are k, (k+1), (k−1) cycles respectively over T sec⇒ area = 0⇒ φ′1(t) ⊥ φ′3(t).

Show φ′1(t) ⊥ φ′4(t)

φ′1(t)φ
′
4(t) = cos

(
πt

T

)
sin

(
πt

T

)
cos (2πfct) sin (2πfct) =

1
4

sin
(

2πt

T

)
sin

(
2π

k

T
t

)

=
1
8

{
cos

(
2π

k − 1
T

t

)
− cos

(
2π

k + 1
T

t

)}
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⇒ (k − 1), (k + 1) cycles over T ⇒ area = 0 ⇒ φ′1(t) ⊥ φ′4(t).

Show φ′2(t) ⊥ φ′3(t)

φ′2(t)φ
′
3(t) = sin

(
πt

T

)
cos

(
πt

T

)
cos (2πfct) sin (2πfct)

Note this product is the same as φ′1(t)φ
′
4(t). Therefore it follows that the area under

φ′2(t)φ
′
3(t) is zero over T sec and that φ′2(t) ⊥ φ′3(t).

Show φ′2(t) ⊥ φ′4(t)

φ′2(t)φ
′
4(t) = sin2

(
πt

T

)
cos (2πfct) sin (2πfct)

=
[
1− cos2

(
πt

T

)]
cos (2πfct) sin (2πfct)

= cos (2πfct) sin (2πfct)− cos2
(

πt

T

)
cos (2πfct) sin (2πfct)

The area under the first term is 0 over T sec because as noted in the problem the two
carriers are orthogonal over T sec. The second term is the same as φ′1(t)φ

′
3(t) and we

have shown that this area is zero. Therefore φ′2(t) ⊥ φ′4(t).

Show φ′3(t) ⊥ φ′4(t)

φ′3(t)φ
′
4(t) = cos

(
πt

T

)
sin

(
πt

T

)
sin2 (2πfct)

= cos
(

πt

T

)
sin

(
πt

T

)

︸ ︷︷ ︸
area=0 because p1(t) ⊥ p2(t)

− cos
(

πt

T

)
sin

(
πt

T

)
cos2 (2πfct)

︸ ︷︷ ︸
area=0, from φ′1(t) ⊥ φ′2(t)

Therefore φ′3(t) ⊥ φ′4(t).

Remark: Given n functions, one needs to check (n−1)! conditions to see that they form
an orthogonal set. Here n = 4 and (n− 1)! = 3! = 6 conditions.

(b) Though one should find the normalizing factor for each basis function, we’ll determine
it for the 1st one and trust the gods (or intuition) it is the same for the other three.
Now

∫ T
2

−T
2

(
φ′1(t)

)2 dt =
∫ T

2

−T
2

cos2
(

πt

T

)
cos2 (2πfct) dt

=
∫ T

2

−T
2

[
1
2

+
1
2

cos
(

2πt

T

)] [
1
2

+
1
2

cos
(

2π(2fc)t
T

)]
dt =

T

4

Therefore multiply each basis function by
√

4
T = 2√

T
to normalize.

(c) Let φi(t) = 2√
T

φ′i(t), i = 1, 2, 3, 4,−T
2 ≤ t ≤ T

2 . See Fig. 8.20.
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1( )t iTφ −

2 ( )t iTφ −

3( )t iTφ −

4 ( )t iTφ −

4ib

4 1ib +

4 2ib +

4 3ib +

∑
( )s t

NRZ-L modulators
bL E= ±

, 1,0,1, 2,i = −… …

Demultiplexer
4ib

4 1ib +

4 2ib +

4 3ib +

1 0 1 2 3 4 4 1 4 2 4 3 4 4i i i i ib b b b b b b b b b− + + + +… …
4 b sT T T= =

bT
input bit sequence

Figure 8.20

(d) The transmitted signal s(t) is given by

s(t) = ±
√

Ebφ1(t)±
√

Ebφ2(t)±
√

Ebφ3(t)±
√

Ebφ4(t)

where it is +
√

Eb if the bit is 1 and −√Eb if the bit is 0 (assumed).

The signal space is 4 dimensional, with basis functions φi(t), i = 1, 2, 3, 4. The sig-
nals lie on the vertices of a four-dimensional hypercube with coordinates ranging from
(−√Eb,−

√
Eb,−

√
Eb,−

√
Eb) to (+

√
Eb,+

√
Eb,+

√
Eb, +

√
Eb) corresponding to bit pat-

terns (0000) to (1111) (assuming that 0 ↔ −√Eb, 1 ↔
√

Eb).

There are 16 signals, one on each vertex. The minimum distance between two signals
occurs when a pair differ in only one component and is equal to 2

√
Eb.

Finally the number of nearest neighbors is 4. Note that in an n-dimensional hypercube
any vertex has n nearest vertices.

P8.24 (a) The generation of the sufficient statistics is the same for the symbol demodulator and for
the bit demodulator(s). See Fig. 8.21. The difference between the two is in the decision
rule.

The decision rule for the symbol demodulator is: determine which quadrant r1, r2, r3, r4

fall in and choose the signal (or bit pattern it represents) that lies in that quadrant.
For example, if (r1 > 0, r2 < 0, r3 > 0, r4 > 0) choose signal (+

√
Eb,−

√
Eb, +

√
Eb,+

√
Eb)

(or bit pattern 1011).
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4 ( )tφ
4r

3( )tφ

2 ( )tφ

1( )tφ

Decision 
rule

st kT=

Decision

3r

2r

1r

( )r t

( )d
t T

t
∈

•∫

( )d
t T

t
∈

•∫

( )d
t T

t
∈

•∫

( )d
t T

t
∈

•∫

Figure 8.21

For the bit demodulator the decision rule is:

r1

b4i=1

R
b4i=0

0; r2

b4i+1=1

R
b4i+1=0

0; r3

b4i+2=1

R
b4i+2=0

0; r4

b4i+3=1

R
b4i+3=0

0.

(b) Due to symmetry we have

P [symbol error] = P [symbol error|a specific signal]
= 1− P [correct|a specific signal]

= 1− P

[
correct

∣∣∣∣specific signal
(
+

√
Eb, +

√
Eb,+

√
Eb, +

√
Eb

)]

P

[
correct

∣∣∣∣
(
+

√
Eb, +

√
Eb, +

√
Eb,+

√
Eb

)]

= P

[
r1 ≥ 0, r2 ≥ 0, r3 ≥ 0, r4 ≥ 0

∣∣∣∣
(
+

√
Eb, +

√
Eb,+

√
Eb, +

√
Eb

)]

Under the given conditions the random variables ri are Gaussian with mean
√

Eb, vari-
ance N0/2, and statistically independent. The probability is therefore

[
1√

2π
√

N0/2

∫ ∞

0
e−

(x−√Eb)2

2(N0/2) dx

]4

=

[
1−Q

(√
2Eb

N0

)]4

Therefore

P [symbol error] = 1−
[
1−Q

(√
2Eb

N0

)]4

P [bit error for the bit demodulator] = Q

(√
2Eb

N0

)

Solutions Page 8–28



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

Note that the above result is just a special case of the more general result derived in
P8.18 for a hypercube constellation.
The bit error probability of the symbol demodulator is the same as that of the bit demod-
ulator. To see this consider bit b4i, i.e., the one that corresponds to sufficient statistic ri.
A symbol error is caused by any one of r1, r2, r3, r4 or any subset of them being of the
wrong sign. However bit b4i would still be correct if ri is of the right polarity regardless
of what r2, r3, r4 are. The probability of this is Q

(√
2Eb
N0

)
.

The bit error probability of Q2PSK is the same as BPSK and QPSK/OQPSK/MSK.

P8.25 (a) Substituting in for the φi(t)’s and collecting terms we have:

s(t) =
2
√

Eb√
T

{(
b1 cos

πt

T
+ b2 sin

πt

T

)
cos (2πfct) +

(
b3 cos

πt

T
+ b4 sin

πt

T

)
sin (2πfct)

}

The envelope is given by (ignoring the constant 2
√

Eb√
T

):

e(t) =

[(
b1 cos

πt

T
+ b2 sin

πt

T

)2

+
(

b3 cos
πt

T
+ b4 sin

πt

T

)2
] 1

2

Using the fact that cos2 x + sin2 x = 1 (always) and that b2
i = 1, one has

e(t) =
[
2 + 2(b1b2 + b3b4) cos

πt

T
sin

πt

T

] 1
2

=
[
2 + 2(b1b2 + b3b4) sin

2πt

T

] 1
2

=
[
2 + 2(b1b2 + b3b4) sin

πt

2Tb

] 1
2

. (8.16)

Plot of e(t) for all three different combinations of b1b2 + b3b4 is shown in Fig. 8.22.

(b) Need b1b2 + b3b4 = 0 ⇒ b1 = − b3b4
b2

. Price paid is a reduction in the information rate.
Instead of 4 information bits transmitted every T seconds, there are only 3 information
bits transmitted now.
The coding scheme is represented by the following table:

Real Number Arithmetic Bolean Algebra
b2 b3 b4 b1 b2 b3 b4 b1

−1 −1 1 +1 0 0 0 1
−1 −1 1 −1 0 0 1 0
−1 1 −1 −1 0 1 0 0
−1 1 1 +1 0 1 1 1

1 −1 −1 −1 1 0 0 0
1 −1 1 +1 1 0 1 1
1 1 −1 +1 1 1 0 1
1 1 1 −1 1 1 1 0

Note that b1 = 1 if there is an even number of ones, otherwise b1 = 0. The encoder can
be implemented by the following logic:

b1 = b2 ⊕ b3 ⊕ b4
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Figure 8.22

(c) Eight – one for each 3-bit allowable bit pattern.

dmin =
[(

2
√

Eb

)2
+

(
2
√

Eb

)2
] 1

2

= 2
√

2
√

Eb.

(Note that signals closest together differ in 2 components).

(d) The block diagram is the same as that of P8.24(a). One difference could be that the
sufficient statistics for b1 (b4i) does not need to be generated. Only bits b2, b3, b4 represent

information. The bit error probability is Q
(√

2Eb
N0

)
.

(e) Yes, it can be used for error detection. After demodulating the bits to b̂1, b̂2, b̂3, b̂4,
determine if b̂1 = b̂2 ⊕ b̂3 ⊕ b̂4. If this is not true then an error has been made. Note that
the error could be on the “redundant” bit b1. If the relationship is satisfied then either
no errors are made or an undetectable number of errors have been made. You may wish
to convince yourself that an odd number errors (i.e., 1 or 3) are detectable while an even
number (2 or 4) are not.

P8.26 (a) Consider E {si(t)sj(t + τ)}, i 6= j. This, with a bit of creativity in notation, is:

∞∑

k=−∞

∞∑

l=−∞
E {bikbjl} cos

or
sin

{
πt

4Tb

}
cos
or
sin

{
π(t + τ)

4Tb

}

But E {bikbjl} = 0 ∀i, j; i 6= j. Therefore any two signals are uncorrelated.
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(b)

Rs1(τ) = E {s1(t)s1(t + τ)} =
∞∑

k=−∞

∞∑

l=−∞
E {b1kb1l} cos

{
πt

4Tb

}
cos

{
π(t + τ)

4Tb

}

Rs3(τ) =
∞∑

k=−∞

∞∑

l=−∞
E {b3kb3l} cos

{
πt

4Tb

}
cos

{
π(t + τ)

4Tb

}

But E {b1kb1l} = E {b3kb3l}, since both = 1 if k = l and = 0 if k 6= l. Therefore the
two autocorrelations are the same.

Use the same argument to show that Rs2(τ) = Rs4(τ).

(c) The PSD component due to s1(t) (or s3(t)) is 1
4Tb
|H(f)|2.

To find H(f), determine F
{

cos
(

πt
4Tb

)}
and F {u(t + 2Tb)− u(t− 2Tb)} which are

1
2

[
δ(f − 1

8Tb
) + δ(f + 1

8Tb
)
]

and 4Tb sin (4πfTb)
4πfTb

, respectively.

Now convolve and simplify to obtain:

H(f) = −2πTb
cos (4πfTb)

(4πfTb)2 − π2

4

For s2(t), h(t) = sin
(

πt
4Tb

)
[u(t + 2Tb)− u(t− 2Tb)] and we now convolve

1
2j

[
δ(f − 1

8Tb
) + δ(f + 1

8Tb
)
]

and 4Tb sin (4πfTb)
4πfTb

. This gives

H(f) =
16πTb

j

fTb cos (4πfTb)
(4πfTb)2 − π2

4

The overall PSD is

π2Tb cos2(4πfTb)
1 + 64(fTb)2[

(4πfTb)2 − π2

4

]2 (watts/Hz).

(d) Plot of the resultant PSD is shown in Fig. 8.23.
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Signaling Over Bandlimited Channels

P9.1 A bandwidth of 4 kHz in the passband (i.e., around fc) means that in baseband we have 2 kHz
of bandwidth. Since a bit rate of 9600 bit/second means that at minimum 1

2Tb
= rb

2 = 4800 Hz
of bandwidth is needed to transmit with zero ISI, obviously an M -ary modulation is required
to reduce the bandwidth requirement. Since QAM has been specified as the modulation
paradigm, determine the number of bits a symbol needs to carry (or represent) to achieve not
only zero ISI but also a β ≥ 0.5 (the roll-off factor spec.). Do this by trial and error: start
with λ = 3, i.e., 3 bits/symbol. Then the symbol transmission rate is rs = 9600 bits/second

3 bits/symbol =
3200 symbols/sec. Using the hint this means that the required bandwidth needed for zero ISI
is 1

2Ts
= rs

2 = 1.6 kHz. Since we have 2 kHz this means that we have an excess of bandwidth
with the excess being 0.4 kHz. But is this enough to achieve a β ≥ 0.5. Let’s check this

1 + β

2Ts
=

rs

2
+

rs

2
β = 2 kHz ⇒ β =

0.4
1.6

= 0.25 < 0.5

Back to the drawing board. (An auxiliary question is: When the developer of the drawing
board made an error in the drawing board what did she go back to?)

Try λ = 4. Now rs = 9600
4 = 2400 symbols/sec. Since rs

2 = 1.2 kHz we have 800 Hz (or 0.8
kHz) excess bandwidth ⇒ 1.2 kHz + 0.8 kHz = 2 kHz ⇒ β = 0.8

1.2 = 2
3 > 0.5 so this spectrum

is satisfied, i.e., 16-QAM is the modulation to use.

Finally need to satisfy the bit error probability of 10−6. To do this consider the 16-QAM
modulation as 2 4-ASK modulation, i.e., 2 bits on the inphase axis, 2 bits on the quadrature
axis. From Eqn. (8.27) we have

P [symbol error] = 2P [bit error] = 2× 10−6

And from Fig. 8.8, using the M = 4 curve, this means Eb
N0

' 14.5 dB or 101.45 = 28.2 so
Eb = 28.2× 10−8 joules. The average transmitted power is

Pav =
Es

Ts
=

4Eb

Ts
= 4× 28.2× 10−8 × 2400 = 2.707× 10−3 (watts) = 2.707 (mW) (9.1)

P9.2 First in “baseband” the channel looks like in Fig. 9.1, where hc(t) = h′c(t)2 cos(2πfct);
fc = 1.8 kHz. We therefore have 1.5 kHz if bandwidth to play with.

(a) Now Ts = λTb or λ = rb
rs

= 9600
2400 = 4 bits/symbol ⇒ 16-QAM.

1
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0

' ( )CH f

1.5 kHz− 1.5 kHz
 (kHz)f

Figure 9.1

This means that 1
2Ts

= rs
2 = 1.2 kHz is the minimum bandwidth needed to achieve zero

ISI. But we have 1.5 kHz of bandwidth or an excess of 0.3 kHz. Therefore β can be
larger than 0. Utilizing the entire bandwidth, β is determined from:

1 + β

2Ts
=

rs

2
(1 + β) = 1.2(1 + β) = 1.5 ⇒ β = 0.25

(b) In “passband” the spectrum looks as in Fig. 9.2 (showing just the positive frequency
portion).

0
 (kHz)f

0.3 0.6 0.9 1.8 2.7 3.0 3.3

0.5

1

Figure 9.2

P9.3 With 75% excess bandwidth, then β = 0.75. Now,

|HR(f)| = |SR(f)| 12
|HC(f)| 12

; |HT (f)| = K2

K1

|SR(f)| 12
|HC(f)| 12

Assume K2 = K1 and that SR(f) is raised-cosine. Therefore

HR(f) = HT (f) =





√
Ts

|1+α cos (2πfTs)|
1
2
, |f | ≤ 0.25

2Ts

√
Ts cos

[
πTs
1.5

(
|f |− 0.25

2Ts

)]

|1+α cos (2πfTs)|
1
2

, 0.25
2Ts

≤ |f | ≤ 1.75
2Ts

0, |f | ≥ 1.75
2Ts

Note that 1 + α cos (2πfTs) for 0 < f < 1.75
2Ts

= 7
8Ts

plots as in Fig. 9.3 (where it is assumed
that 0 < α < 1).
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0
f

1 α+

1 α−

1
2 sT

7
8 sT

1 cos(1.75 )α π+

Figure 9.3

P9.4 (a)
HC(f) = 1 +

α

2

[
ej2πft0 + e−j2πft0

]
; s(t) ↔ S(f)

Therefore

Y (f) = S(f)HC(f) = S(f) +
α

2
S(f)ej2πft0 +

α

2
S(f)e−j2πft0 .

Now, multiplying S(f) by ej2πft0 means a time shift of t0 seconds in the time domain
(see Table 2.3 – Property 2). Therefore

y(t) = s(t) +
α

2
s(t + t0) +

α

2
s(t− t0)

Remark: The fact that s(t) is bandlimited to W Hz is necessary. Otherwise we could
not make use of the property. Why?

(b) The output of the matched filter, based on the hint is

y0(t) =
∫ ∞

−∞

[
s(λ) +

α

2
s(λ + t0) +

α

2
s(λ− t0)

]
s(t− (T − λ))dλ.

And at t = kT :

y0(kT ) =
∫ ∞

−∞
s(λ)s((k − 1)T − λ)dλ +

α

2

∫ ∞

−∞
s(λ− t0)s((k − 1)T − λ)dλ

+
α

2

∫ ∞

−∞
s(λ + t0)s((k − 1)T − λ)dλ

(c) If t0 = T , the above becomes

y0(kT ) =
∫ ∞

−∞
s(λ)s((k − 1)T − λ)dλ +

α

2

∫ ∞

−∞
s(λ− T )s((k − 1)T − λ)dλ

+
α

2

∫ ∞

−∞
s(λ + T )s((k − 1)T − λ)dλ

Change variables in the last two integrals to λ − T → λ and λ + T → λ, respectively.
Then

y0(kT ) =
∫ ∞

−∞
s(λ)s((k − 1)T − λ)dλ +

α

2

∫ ∞

−∞
s(λ)s((k − 2)T − λ)dλ

+
α

2

∫ ∞

−∞
s(λ)s(kT − λ)dλ
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Let x(t) = s(t) ∗ s(t− T ). Then the above can also be written as:

y0(kT ) = x(kT ) +
α

2
x((k − 1)T ) +

α

2
x((k + 1)T )

where the first term is the desired signal component, while the last two terms account
for ISI.

P9.5 (a) The sufficient statistic is

1T : rk =
√

Eb ± 0.25
√

Eb + wk

0T : rk = −
√

Eb ± 0.25
√

Eb︸ ︷︷ ︸
due to ISI

+ wk︸︷︷︸
N

(
0,

N0
2

)

The decision space looks as shown in Fig. 9.4. By symmetry, we have

P [bit error] =
1
2
Q

(
0.75

√
Eb√

N0/2

)
+

1
2
Q

(
1.25

√
Eb√

N0/2

)

=
1
2
Q

(√
9
8

Eb

N0

)
+

1
2
Q

(√
25
8

Eb

N0

)

0 1.25 bE1.25 bE−

bE−

kr
0.75 bE0.75 bE−

bE

0D 1D

Figure 9.4

(b) With no ISI, one has P [bit error] = Q
(√

2Eb√
N0

)
. The two error probabilities are plotted

in Fig. 9.5. Observe that at the bit error probability of 10−5 the difference in SNR is
about 2.2 dB.

P9.6 (a) Solve questions of this type graphically (usually), i.e., slide SR(f) along the f axis until
the sum results in a constant level between − 1

2Tb
to 1

2Tb
Hz. See Fig. 9.6.

(b) No. Spectrum would not be flat in 0 to 1
2Tb

Hz.

(c) Excess bandwidth is 1 kHz.

P9.7 (a) To transmit with zero-ISI we need to find a signalling rate rb = 1/Tb bits/sec such that
in the frequency band − rb

2 = − 1
2Tb

≤ f ≤ 1
2Tb

= rb
2 (Hz) the spectrum SR(f) and its

aliases SR

(
f − 1

Tb

)
and SR

(
f + 1

Tb

)
add up to a constant value. For the two spectra

given, the answers are (see Figs. 9.7 and 9.8):

rb = 2× 2000 = 4000 bits/sec = 4 kbps for (a)
rb = 2× 1500 = 3000 bits/sec = 3 kbps for (b)

Remark: One could also determine rb
2 from the frequency at which SR(f) has the required

symmetry about rb
2 (which is?).
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Figure 9.6
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Figure 9.7
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 (kHz)f
0

0.5

1

1

2 bT

33−

first alias

1
b

b

r
T

=

Figure 9.8

(b) Clearly the excess bandwidths are

3000− 2000 = 1000 Hz (or 50%) for (a)
3000− 1500 = 1500 Hz (or 100%) for (b)

(c) See Fig. 9.9.

 (kHz)f
0 1

0.5

1

2 31−2−3−

Raised-cosine; 0.5β =

Figure 9.9

(d) The raised-cosine spectrum is preferred because its eye diagram is considerably more
open. The wide opening is desirable under synchronization error and additive white
Gaussian noise in order to minimize the effect of ISI. Note that the relative shapes of
the two eye diagrams are expected since the RC spectrum is smoother than the other
spectrum for the same bit rate and excess bandwidth.

P9.8 As mentioned on page 348, SR(f) should have a certain symmetry about the 1
2Tb

point.
Graphically, at least for SR(f) functions that have zero phase, this symmetry can be checked
by checking to see if SR(f) is: i) flat from 0 to some f1 ≤ 1

2Tb
; ii) the portion from f1 to

1
Tb
− f1 has odd symmetry about the

(
1

2Tb
, 1

2

)
point; iii) is zero for f > 1

Tb
− f1. Applying

this to the four spectra given:

(i) Yes. Choose 1
2Tb

to be 2B
3 Hz ⇒ rb = 4

3B bits/second.

(ii) Yes. Choose 1
2Tb

to be B
2 Hz ⇒ rb = B bits/second.
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(iii) Yes. Here 1
2Tb

= 2B
3 Hz ⇒ rb = 4

3B bits/second.

(iv) No. The required symmetry does not exist on the f axis.

P9.9 See Table 9.1.

Table 9.1

k = 0 1 2 3 4 5 6 7 8 9 10 11 12
bk = 1 1 0 0 1 0 1 0 1 1 0 1
dk = 0 1 0 0 0 1 1 0 0 1 0 0 1
Vk = −V +V −V −V −V V V −V −V V −V −V V (ignore noise)
yk = 0 0 −2V −2V 0 2V 0 −2V 0 0 −2V 0
b̂k = 1 1 0 0 1 0 1 0 1 1 0 1

P9.10 (a)

S
(sampled)
R (t) =

∞∑

k=−∞
s(kTb)δ(t− kTb) =

N−1∑

k=0

skδ(t− kTb)

Therefore

S
(sampled)
R (f) =

N−1∑

k=0

sk

∫ ∞

−∞
δ(t− kTb)e−j2πftdt =

N−1∑

k=0

ske−j2πfkTb

From the sampling theorem, Section 4.11, pages 136-139, Eqn. (4.5) we know that

∞∑

k=−∞
SR

(
f − k

Tb

)
= TbS

(sampled)
R (f)

Ignoring the aliases, i.e., considering only k = 0 term:

SR(f) =

{
TbS

(sampled)
R (f) =

∑N−1
k=0 Tbske−j2πfkTb , − 1

2Tb
≤ f ≤ 1

2Tb

0, otherwise.

(b)

sR(t) = F−1{SR(f)} =
N−1∑

k=0

Tbsk

∫ 1
2Tb

− 1
2Tb

e−j2πfkTbej2πftdf

=
N−1∑

k=0

Tbsk

∫ 1
2Tb

− 1
2Tb

ej2π(t−kTb)fdf

=
N−1∑

k=0

Tbsk
ej2π(t−kTb)

1
2Tb − e−j2π(t−kTb)f

1
2Tb

j2π(t− kTb)

=
N−1∑

k=0

sk

sin
(

π
Tb

(t− kTb)
)

π
Tb

(t− kTb)
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P9.11 (a)

sR(t) = j2Tb

∫ 1
2Tb

− 1
2Tb

(
ej2πfTb − e−j2πfTb

2j

)
ej2πftdf

After integration this becomes

sR(t) =
Tb

π





sin
(

π
Tb

(t + Tb)
)

(t + Tb)
−

sin
(

π
Tb

(t− Tb)
)

(t− Tb)





Now sin
(

π
Tb

(t + Tb)
)

= sin
(

π
Tb

(t− Tb)
)

= − sin
(

πt
Tb

)
so

sR(t) =
Tb

π
sin

(
πt

Tb

){ −1
t + Tb

+
1

t− Tb

}
=

2T 2
b

π

sin
(

πt
Tb

)

t2 − T 2
b

=
2
π

sin
(

πt
Tb

)

(
t

Tb

)2
− 1

sR(t) decays as 1
t2

which is expected since SR(f) needs to be differentiated twice to
produce an impulse(s). Use the duality concept and the result of P2.41:
sR(kTb) = 0 at k = 0,±2,±3,±4, . . . . At k = ±1, i.e., ±Tb, sR(±Tb) becomes 0

0 . Using
L’Hospitale’s rule we have s(Tb) = −1, s(−Tb) = +1.

(b) Ignoring any random noise: yk = Vk+1 + Vk−1 Associate value Vk+1 with bit bk. Vk−1 is
due to bit bk−2 and an ISI term, i.e., the interference comes not from the previous bit
but from the one before it. Since Vk = ±V , there are three received levels, ±2V and 0.

(c) As a precoder form dk = bk ⊕ dk−2. See Fig. 9.10

Delay 2 units

k
b

k
d

Figure 9.10

(d) 2.1 dB. Note that this is very similar to duobinary.

P9.12 (a) Using the result of P9.10, Eqn. P9.3,

SR(f) =





Tb

[
2 +

2(ej2πfTb+e−j2πfTb)
2

]
= 2Tb (1 + cos(2πfTb))

= 2Tb(1 + cos2 πfTb − sin2 πfTb) = 4Tb cos2 πfTb, − 1
2Tb

≤ f ≤ 1
2Tb

0, otherwise.

(b) It decays as 1
t3

. Need to differentiate SR(f) three times before an impulse(s) appears.

(c) yk = Vk−1 + 2Vk + Vk+1 (ignoring the random noise).

(d) There are five levels, ±4V,±2V, 0.
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(e) To design the encoder, one wants a unique yk to correspond to bk. Note further that
there are 2 interfering terms which implies that dk = f(bk, dk−1, dk−2). Given this let
us build a truth table of (bk, dk−1, dk−2) and the corresponding dk so that a unique yk

is produced. Finally let bk = 0 correspond to the levels 0,±4V and bk = 1 to the level
±2V .

bk dk−1 dk−2 ⇒ dk yk−1 = Vk−2 + 2Vk−1 + Vk

0 0 0 0 = −2− 1− 1 = −4
0 0 1 1 = −2 + 1 + 1 = 0
0 1 0 0 = +2− 1− 1 = 0
0 1 1 1 = +2 + 1 + 1 = +4
1 0 0 1 = −2− 1 + 1 = −2
1 0 1 0 = −2 + 1− 1 = −2
1 1 0 1 = +2− 1 + 1 = +2
1 1 1 0 = +2 + 1− 2 = +2

Note that if yk−1 = ±4V or 0 then bk = 0 and if yk−1 = ±2V then bk = 0. Therefore
the decision space looks as in Fig. 9.11:

0 4V4V−
ky

2V2V−

0D 1D 0D1D0D

Figure 9.11

Note further that we are assuming, as usual, that the random noise sample wk is Gaus-
sian, zero-mean and of variance σ2

w (watts).

(f) To determine the SNR degradation, we need to determine
(

V 2

σ2
w

)
max

from Eqn. (9.37)

where |SR(f)| = 4Tb cos2(πfTb). Therefore

(
V 2

σ2
w

)

max

= PT Tb

[√
N0

2

∫ 1
2Tb

− 1
2Tb

4Tb cos2(πfTb)

]2

Note that cos2(πfTb) = 1
2 [1+cos(2πfTb)] and do the integration to get

(
V 2

σ2
w

)
max

= PT Tb
2N0

.

Therefore the probability of error is Q
(√

PT Tb
2N0

)
(ignoring constant factors before the

Q(·) function(s)).

Compared with the ideal binary case where P [error] ∼ Q
(√

PT Tb
2N0

)
, we see that PT

needs to be increased by a factor of 4 which implies an SNR degradation 10 log10 4 = 6
dB.

P9.13 (a) The Fourier transform of the sampled spectrum

Ssampled
R (f) = TbF {−δ(t + Tb) + 2δ(t)− δ(t− Tb)}

= Tb

{
−ej2πfTb + 2− e−j2πfTb

}
= 2Tb[1− cos(2πfTb)]
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The spectrum of the continuous time signal is

SR(f) =

{
2Tb[1− cos2(πfTb)] = 4Tb sin2(πfTb), |f | ≤ 1

2Tb

0, otherwise.

(b) The spectrum of SR(f) looks as in Fig. 9.12. Since it has a discontinuity, sR(t) decays
as 1

t .

0
f

4 bT

1
2 bT

− 1
2 bT

Figure 9.12

(c) Without random noise yk = −Vk−1 + 2Vk − Vk+1 where Vj = ±V .

(d) The sampled output yk = −(±V ) + 2(±V ) − (±V ). Looking at all combinations sk =
−4V,−2V, 0,+2V, +4V , i.e., there are 5 levels.

(e) To establish the coder’s table, note that there are 2 interfering terms which implies that
a coded bit should depend on 2 previous coded bits as well as the present information
bit, i.e., dk = f(bk, dk−1, dk−2). Further we wish bk = 0 and bk = 1 to be associated
with levels that are distinct. Let bk = 0 correspond to the levels 0,±4V and bk = 1
correspond to levels ±2V . Therefore

bk dk−1 dk−2 ⇒ dk yk−1 = Vk−2 + Vk−1 + Vk

0 0 0 0 = −1− 2− 1 = −4
0 0 1 0 = −1 + 2− 1 = 0
0 1 0 1 = +1− 2 + 1 = 0
0 1 1 1 = +1 + 2 + 1 = +4
1 0 0 1 = −1− 2 + 1 = −2
1 0 1 1 = −1 + 2 + 1 = +2
1 1 0 0 = +1− 2− 1 = −2
1 1 1 0 = +1 + 2− 1 = +2

(f) Using Eqn. (9.39) we have

(
V 2

σ2
w

)

max

= PT Tb

[√
N0

2

∫ 1
2Tb

− 1
2Tb

2Tb [1− cos(2πfTb)] df

]2

=
PT Tb

2

so P [error] ∼ Q
(√

PT Tb
2N0

)
⇒ a 6 dB degradation in SNR.

P9.14 See Fig. 9.13. The eye diagram with the duobinary signalling (left figure) is significantly
more open, reflecting the fact that its overall impulse response, sR(t), decays as 1/t2, while
that of P9.11 decays as 1/t.
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0 1.0 2.0
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/V

0 1.0 2.0
−3
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−1
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1

2

3

t/T
b

y(
t)

/V

Figure 9.13: Eye diagrams with the duobinary modulation (left) and with the spectrum of
P9.11 (right). Note that for duobinary modulation the sampling times need to be delayed by
Tb/2.
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Eye Digram for P9.15 with RC = 0.2T
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Note that the eye is quite wide open

Sampling Time

Figure 9.14

P9.15 See Figs. 9.14, 9.15, 9.16.
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Eye Diagram For P9.15 with RC = T
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Figure 9.15
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Note that the eye is closed − very severe ISI 
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Figure 9.16
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Signaling Over Fading Channels

P10.1 The two equations of interest are

P [error]BASK =
1
2
e−T 2

h/N0 +
1
2

[
1−Q

(√
2E

N0
,

√
2

N0
Th

)]
(10.1)

where Th is the threshold used in BASK and E = 2Eb, and

P [error]BFSK =
1
2
e−Eb/2N0 (10.2)

When one chooses Th =
√

E
2 =

√
2Eb
2 then P [error]BASK simplifies to:

P [error]BASK =
1
2
e−Eb/2N0 +

1
2

[
1−Q

(
2
√

Eb

N0
,

√
Eb

N0

)]

Since the first term in the above expression is P [error]BFSK, while the second term is always
positive for finite Eb/N0, it follows immediately that P [error]BASK > P [error]BFSK.

P10.2 The plot of the normalized optimum threshold, namely T
(normalized)
h = Th√

Eb
2

is shown in Fig.

10.1. The plot shows that Th ≥
√

E
2 =

√
Eb
2 . This fact can be shown mathematically as

follows.

Start with Th = N0

2
√

E
I−1
0

(
eE/N0

)
where E = 2Eb. Therefore

Th =
N0

2
√

2Eb
I−1
0

(
e2Eb/N0

)
=

√
Eb

2
1(

2Eb
N0

)I−1
0

(
e2Eb/N0

)

or

T
(normalized)
h =

Th√
Eb
2

=
I−1
0

(
e2Eb/N0

)
(

2Eb
N0

)

Now ex cos θ = I0(x) + 2
∑∞

k=1 Ik(x) cos(kθ) and Ik(x) > 0 for all k > −1 and x > 0.

Therefore with θ = 0 we have ex = I0(x) + 2
∑∞

k=1 Ik(x) ≥ I0(x), which also means
I−1
0 (ex) ≥ x, ∀x > 0. Therefore T

(normalized)
h ≥ 1.

1
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Figure 10.1

P10.3 The transmitted signal set and signal space are as follows:

1T : s(t) =
√

E cos(2πfct)
0T : s(t) = 0 (10.3)

0 E

0T 1T 2
( ) cos(2 )T c

b

t f t
T

φ π=

The received signal set and signal space is

1T : r(t) =
√

Eα cos(2πfct− θ) + w(t)
0T : r(t) = 0 + w(t) (10.4)

0 Eα

0R 1R 2
( ) cos(2 )R c

b

t f t
T

φ π θ= −

Since we assume α, θ are estimated accurately for each transmission, we use θ to set the basis
function φR(t) appropriately and α to set the threshold. The decision rule is

r
1D

≷
0D

α
√

E

2
= α

√
Eb

2

where Eb = E
2 and r =

∫ Tb

0
r(t)φR(t)dt.
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Note that f(r|0T ) ∼ N (
0, N0

2

)
and f(r|1T ) ∼ N (

α
√

2Eb,
N0
2

)
. Conditioned on θ and α, the

error probability is given by

P [error|θ, α] = Q

(
α
√

Eb/2√
N0/2

)
= Q

(
α

√
Eb

N0

)

The error probability depends on the specific value α (but not on the specific value of θ) that
the random variable α assumes during the a specific transmission. Now α takes on values
from 0 to ∞ according to the Rayleigh pdf, fα(α) = 2α

σ2
F

e−α2/σ2
F u(α). To find the overall

average error probability, average the conditional bit error probability over fα(α), i.e., find

P [error] =
∫ ∞

0
Q

(
α

√
Eb

N0

)
fα(α)dα =

1
2

∫ ∞

0

[
1− erf

(
α

√
Eb

N0

)]
fα(α)dα

where we have substituted Q(x) = 1
2

[
1− erf

(
x√
2

)]
. It follows that

P [error] =
1
2
− 1

σ2
F

∫ ∞

0
α · erf

(
α

√
Eb

N0

)
e
− α2

σ2
F dα

Perusing Gradstyn & Ryzhik we notice, page 649, Eqn. 6.287-1, that
∫ ∞

0
xΦ(βx)e−µx2

dx =
β

2µ
√

µ + β2
[Re(µ) > −Re(β2), Re(µ) > 0]

where Φ(x) = 2√
π

∫ x
0 e−t2dt (G&R, p.930, Eqn. 8.250-1), i.e., Φ(x) = erf(x).

Identifying β =
√

Eb
2N0

, µ = 1
σ2

F
, and substituting we get

P [error] =
1
2
− 1

2

√
σ2

F Eb/2N0√
1 + σ2

F Eb/2N0

(10.5)

Interpreting σ2
F Eb as the received energy per bit and comparing with coherent BFSK (Eqn.

(10.80)) we see that coherent BASK’s performance is identical to that of coherent BFSK and
both are 3 dB less efficient than coherent BPSK (Eqn. (10.81)).

As aside, the following shows that σ2
F Eb is indeed the average received energy per bit. During

any transmission the received energy is ER(α) = 1
2(0) + 1

2(α2E) = 1
2α2(2Eb) = α2Eb.

Therefore the average received energy per bit is

E {ER(α)} =
∫ ∞

0
α2Eb

{
2

σ2
F

αe
− α2

σ2
F

}

︸ ︷︷ ︸
fα(α)

dα

λ= α2

σ2
F︷︸︸︷

= σ2
F Eb

∫ ∞

0
λe−λdλ = σ2

F Eb (joules/bit).

Note that this is true for both BPSK and BFSK.
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P10.4 We use the approach developed in Section 10.3.3. The main difference is that not only is
the received phase, θ, random but so is the received amplitude which is scaled by α. Eqn.
(10.42) which expresses the received signals over 2 bit intervals becomes:

r(t) =




±

√
2Eb
Tb

α cos(2πfct− θ) [u(t)− u(t− 2Tb)] + w(t), “0T ”

±
√

2Eb
Tb

α cos(2πfct− θ) {[u(t)− u(t− Tb)]− [u(t− Tb)− u(t− 2Tb)]}+ w(t), “1T ”

Rewrite this as

r(t) =





±
√

2Eb
Tb

[nF,I cos(2πfct) + nF,Q sin(2πfct)] [u(t)− u(t− 2Tb)] + w(t), “0T ”

±
√

2Eb
Tb

[nF,I cos(2πfct) + nF,Q sin(2πfct)]

{[u(t)− u(t− Tb)]− [u(t− Tb)− u(t− 2Tb)]}+ w(t), “1T ”

where nF,I = α cosθ, nF,Q = α sinθ are statistically independent, zero-mean Gaussian ran-

dom variables with identical variance σ2
F
2 .

Again we need the 4 basis functions of Eqn. (10.43) to generate the sufficient statistics. These
are as in (10.44), (10.45), the difference being that rather than cosθ, sinθ we have α cosθ,
α sinθ, i.e., nF,I , nF,Q.

The sufficient statistics are therefore

0T :





r1,I =
√

2EbnF,I + w1,I

r1,Q =
√

2EbnF,Q + w1,Q

r2,I = w2,I

r2,Q = w2,Q

OR





r1,I = −√2EbnF,I + w1,I

r1,Q = −√2EbnF,Q + w1,Q

r2,I = w2,I

r2,Q = w2,Q

1T :





r1,I = w1,I

r1,Q = w1,Q

r2,I =
√

2EbnF,I + w2,I

r2,Q =
√

2EbnF,Q + w2,Q

OR





r1,I = w1,I

r1,Q = w1,Q

r2,I = −√2EbnF,I + w2,I

r2,Q = −√2EbnF,Q + w2,Q

Observe that, regardless of the case considered, r1,I , r1,Q, r2,I , r2,Q are statistically indepen-
dent Gaussian random variables. Consider the case of 0T , i.e., f(r1,I , r1,Q, r2,I , r2,Q|0T ). In
this situation r1,I is a zero-mean Gaussian random variable of variance σ2

2 = Ebσ
2
F + N0

2 . So is
r1,Q. This is regardless of whether +

√
2Eb or −√2Eb is considered. r2,I , r2,Q are zero-mean

Gaussian random variables of variance σ2
1 = N0

2 .

With 1T the situation is reversed, i.e., r1,I , r1,Q ∼ N (0, σ2
1) and r2,I , r2,Q ∼ N (0, σ2

2).

The likelihood ratio test
f(r1,I , r1,Q, r2,I , r2,Q|1T )
f(r1,I , r1,Q, r2,I , r2,Q|0T )

1D

≷
0D

1

becomes
e−r2

1,I/2σ2
1e−r2

1,Q/2σ2
1e−r2

2,I/2σ2
2e−r2

2,Q/2σ2
2

e−r2
1,I/2σ2

2e−r2
1,Q/2σ2

2e−r2
2,I/2σ2

1e−r2
2,Q/2σ2

1

1D

≷
0D

1

Taking the natural logarithm, gathering terms and rearranging, the test simplifies to

(
r2
2,I + r2

2,Q

) (
− 1

σ2
2

+
1
σ2

1

)
1D

≷
0D

(
r2
1,I + r2

1,Q

) (
− 1

σ2
2

+
1
σ2

1

)
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Now σ2
2 > σ2

1 ⇒ − 1
σ2
2

+ 1
σ2
1

> 0 ⇒ can cancel this function from both sides without affecting
the inequality relationship. Therefore the decision rule becomes

r2
2,I + r2

2,Q

1D

≷
0D

r2
1,I + r2

1,Q

The above makes intuitive sense. Since both the phase and the amplitude information is
destroyed by the fading channel the only way to distinguish as to whether a 1 or 0 was
transmitted is to look at whether there is more energy in the {φ2,I(t), φ2,Q(t)} plane or in the
{φ1,I(t), φ1,Q(t)} plane, which is what the above decision rule does.

The decision rule can be rewritten as
√

r2
2,I + r2

2,Q

1D

≷
0D

√
r2
1,I + r2

1,Q

which looks at the envelope of the received signal in the appropriate plane.

To obtain the error performance, the “energy form” of the decision rule is preferred. Also for
purposes of error performance the variables in the decision rule are considered to be random,
i.e., it is written as

`2 ≡ r2
2,I + r2

2,Q

1D

≷
0D

r2
1,I + r2

1,Q ≡ `1

Due to symmetry the error probability can be written as

P [error] = P [error|0T ] = P [`2 ≥ `1|0T ]

Under the condition that a zero is transmitted the random variable `2 is Chi-square with
2 degrees of freedom and parameter σ2

1 while `1 is also Chi-square, 2 degrees of freedom,
parameter σ2

2.

Now fix `1 at a specific value, say `1 = `1. Then

P [error|0T , `1 = `1] =
∫ ∞

`1

f`2(`2|0T )d`2 =
∫ ∞

`1

e−`2/2σ2
1

2Γ(1)σ2
1

d`2 = e−`1/2σ2
1

Sweep `1 over all possible values, weighted, of course, by the probability of that value occur-
ring, i.e.,

P [error|0T ] =
∫ ∞

0
P [error|0T , `1 = `1]f`1(`1|0T )d`1 =

∫ ∞

0
e−`1/2σ2

1
e−`1/2σ2

2

2Γ(1)σ2
2

d`1

=
1

1 + σ2
2

σ2
1

=
1

1 + Ebσ
2
F +N0/2

N0/2

=
1
2

1

1 + σ2
F Eb

N0

. (10.6)

Comparison of (10.6) with the performances of coherent BFSK and coherent BPSK (Eqns.
(10.80) and (10.81) in Section 10.4.3) is shown in Fig. 10.2. Observe that noncoherently-
demodulated DBPSK performs basically the same as coherently demodulated BFSK.
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Figure 10.2

P10.5 (a) The received signal is

1T : rj(t) =
√

E′
b

√
2
Tb

αj cos(2πfct− θj) + w(t)

0T : rj(t) = −
√

E′
b

√
2
Tb

αj cos(2πfct− θj) + w(t)

where (j − 1)Tb ≤ t ≤ jTb, j = 1, 2, . . . , N .

Though the terminology is somewhat ambiguous, indeed one might say misleading, co-
herent demodulation means that not only the phase θj is estimated perfectly (at least
perfectly enough for engineering purpose) but so is the attenuation factor αj .

With θj known, a set of sufficient statistics is generated by projecting the received

signal(s) onto the N basis functions of
√

2
Tb

cos(2πfct − θj), (j − 1)Tb ≤ t ≤ jTb,
j = 1, 2, . . . , N . They are:

1T : rj =
√

E′
bαj + wj

0T : rj = −
√

E′
bαj + wj

where j = 1, 2, . . . , N . The rj ’s are i.i.d. Gaussian random variables of means ±√Ebαj

and variance σ2 = N0/2. The LRT

f(r1, r2, . . . , rN |1T )
f(r1, r2, . . . , rN |0T )

1D

≷
0D

1
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becomes
ΠN

j=1

(
1√
2πσ

)
e−(rj−

√
E′bαj)/2σ2

ΠN
j=1

(
1√
2πσ

)
e−(rj+

√
E′bαj)/2σ2

1D

≷
0D

1

Taking the ln and simplifying gives the following decision rule:

N∑

j=1

αjrj

1D

≷
0D

0.

Remark: The above decision rule is actually known as the maximum-ratio-combining
(MRC) detection rule. This is because the signal-to-noise ratio of the decision variable
is maximized (the proof is left as a further problem).

(b) In developing the receiver, the αj ’s were assumed to be known (i.e., perfectly estimated
at the receiver). To determine the error performance, however, we consider many, many
transmissions (typically > 108) and the αj ’s will take on a gamut of values, i.e., they are
considered to be random variables with a Rayleigh pdf.

Start the calculation of the error performance by observing that due to symmetry

P [error] = P [error|1T ] = P [error|0T ]

and that

P [error|0T ] = P


` =

N∑

j=1

αjrj ≥ 0
∣∣0T


 .

To evaluate the above, start by assuming the αj ’s take on a specific set of values and
then average over all possible values. That is, let −→α = (α1, α2, . . . ,αN ) = −→α =
(α1, α2, . . . , αN ). Then

P [error|0T ,−→α = −→α ] = P


` =

N∑

j=1

αjrj ≥ 0
∣∣0T ,−→α = −→α


 .

Note that the quantities αjrj = −√
E′

bα
2
j +αjwj are statistically independent Gaussian

variables of mean −√
E′

bα
2
j and variance α2

jN0/2. Therefore ` is a Gaussian random
variable whose mean is m = −√

E′
b

∑N
j=1 α2

j and variance σ2 = N0
2

∑N
j=1 α2

j . Therefore,

P [error|0T ,−→α = −→α ] =
1√
2πσ

∫ ∞

0
e−(`+m)2/2σ2

d` = Q
(m

σ

)
= Q




√
2E′

b

N0

√√√√
N∑

j=1

α2
j


 .

But, as mentioned, the above error expression is for a specific set of αj ’s and we view the
αj ’s as random. Therefore the error expression should be averaged over all possible values
of the αj ’s with a weighting provided by the joint pdf of the αj ’s, i.e., f−→α (−→α ). Though
this can be done, here we take a (slightly) different approach. Namely let β =

∑N
j=1 α2

j

where fαj (αj) = 2αj

σ2
F

e−α2
j/σ2

F u(αj) are the statistically independent Rayleigh random

variables. Now recognize that each α2
j can be represented as a sum of squares of two
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i.i.d. Gaussian random variables. As such, β is essentially a sum of squares of 2N i.i.d.
Gaussian random variables.
The pdf of β can be readily determined from Eqn. (10.90), i.e.,

fβ(β) =
1

σ2N (N − 1)!
βN−1e−β/σ2

F u(β).

Therefore

P [error] = P [error|0T ] =
∫ ∞

β=0
Q




√
2E′

b

N0
β


 fβ(β)dβ

=
1

σ2N

∫ ∞

β=0
Q




√
2E′

b

N0
β


 βN−1

(N − 1)!
e−β/σ2

F dβ

By changing variables x = E′b
N0

β, the above expression can be rewritten as

P [error] =
∫ ∞

0
Q

(√
2x

) xN−1e−x/SNR

SNRN (N − 1)!
dx

where SNR = E′bσ
2
F

N0
. Now Q

(√
2x

)
= 1√

2π

∫∞
y=
√

2x e−y2/2dy and therefore

P [error] =
∫ ∞

x=0

{
1√
2π

∫ ∞

y=
√

2x
e−y2/2dy

}
xN−1e−x/SNR

SNRN (N − 1)!
dx

The above integral essentially finds the volume under the 2-dimensional function (sur-
face) of g(x, y) = 1√

2π(N−1)!SNRN xN−1e−x/SNRe−y2/2 in the region illustrated as in Fig.
10.3.

0

Region for integrationy

x

2

2  or 
2

y
y x x= =

dx

Figure 10.3

The key to performing the integration is to change the order of integration, i.e., sweep
first w.r.t. x and then w.r.t. y as illustrated in Fig. 10.4.
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sweeping first w.r.t.  from 2  

to  and then w.r.t. to  from 0 to 

y x

x∞ ∞

2

sweeping first w.r.t.  from 0 

to 2  and then w.r.t. to  from 0 to 

x

y y ∞

0

Region for integrationy

x

2

2  or 
2

y
y x x= =

dx

dy

Figure 10.4

Therefore:

P [error] =
∫ ∞

y=0





1√
2π

∫ y2

2

x=0

xN−1e−x/SNR

SNRN (N − 1)!
dx



 e−y2/2dy

Consider the inner integral
∫ y2

2

x=0
xN−1e−x/SNRdx, which looks like an incomplete Gamma

function, and from G&R, page 317, Eqn. 3.381.1 with u = y2

2 , ν = N , µ = 1
SNR we get

the integral to be
(

1
SNR

)−N
γ

(
N, y2

2SNR

)
where γ(·, ·) is the incomplete Gamma function.

Therefore:

P [error] =
1

(N − 1)!
1√
2π

∫ ∞

y=0
e−y2/2γ

(
N,

y2

2SNR

)
dy

Using the relationship from G&R, page 940, Eqn. 8.352.1 with 1 + n ≡ N , x ≡ y2

2SNR
the incomplete Gamma function becomes:

γ

(
N,

y2

2SNR

)
= (N − 1)!

{
1− e−

y2

2SNR

N−1∑

k=0

y2k

2kSNRkk!

}

Therefore the error probability can be written as:

P [error] =
1√
2π

∫ ∞

y=0
e

y2

2 dy − 1√
2π

∫ ∞

y=0
e−( 1

2
+ 1

2SNR)y2
N−1∑

k=0

y2k

2kSNRkk!
dy

Now 1√
2π

∫∞
y=0 e

y2

2 dy = 1
2 (half the area of a zero-mean, unit variance Gaussian pdf) and

changing variables in the 2nd integral, λ ≡ y2

2 , simplifying, etc., we get

P [error] =
1
2
− 1

2
√

π

N−1∑

k=0

1
SNRkk!

∫ ∞

λ=0
λk− 1

2 e−(SNR+1
SNR )λdλ
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The integral looks now like a complete Gamma function and from G&R, page 317, Eqn.
3.381.4 with γ − 1 ≡ k − 1

2 ⇒ γ = k + 1
2 , µ = SNR+1

SNR we see that the integral is
1

(SNR+1
SNR )k+1

2
Γ

(
k + 1

2

)
where Γ(·) is the complete Gamma function.

Now Γ
(
k + 1

2

)
=

√
π

2 (2k − 1)!! (Notation: (2k − 1)!! = 1 · 3 · 5 · · · (2k − 3) · (2k − 1)).
Using this relationship and after some algebra, one gets:

P [error] =
1
2
− 1

2

N−1∑

k=0

(2k − 1)!!
k!2kSNRk

(
SNR

SNR + 1

)k+ 1
2

Define parameter µ ≡
√

SNR
SNR+1 ⇒ SNR = µ2

1−µ2 and
(

SNR
SNR+1

)k+ 1
2 =

(
µ2

)k+ 1
2 = µ2k+1.

In terms of µ, the error probability is

P [error] =
1
2
− 1

2

N−1∑

k=0

(2k − 1)!!
k!2k

(
1− µ2

µ2

)k

µ2k+1

Now
(

1−µ2

µ2

)k
=

(
1−µ

2

)k (
1+µ

2

)k
2k2k 1

µ2k . Therefore

P [error] =
1
2
− 1

2

N−1∑

k=0

(2k − 1)!!
k!

2k

(
1− µ

2

)k (
1 + µ

2

)k

µ

Write (2k−1)!!
k! = 1·3·5···(2k−3)·(2k−1)

k! × 2·4·6···(2k−2)·(2k)
2·4·6···(2k−2)·(2k) . But 2 · 4 · 6 · · · (2k − 2) · (2k) =

2kk! ⇒ (2k−1)!!
k! = (2k)!

k!2kk!
= 1

2k

(
2k
k

)
. Finally,

P [error] =
1
2
− 1

2

N−1∑

k=0

(
2k

k

)(
1− µ

2

)k (
1 + µ

2

)k

µ (10.7)

except we want to write it in the form of (P10.1)!

We next show that (10.7) is indeed the same as (P10.1) by induction. This means that
we first confirm that (10.7) and (P10.1) are the same for N = 1 (quite obvious) and
assume that they also the same for N = L, i.e.,

1
2
− 1

2

L−1∑

k=0

(
2k

k

)(
1− µ

2

)k (
1 + µ

2

)k

µ =
(

1− µ

2

)L
[

1
2

L−1∑

m=0

(
L− 1 + m

m

)(
1 + µ

2

)m
]

.

(10.8)
Then we need to show that (10.7) and (P10.1) are indeed the same for N = L + 1. This
is accomplished with the following manipulations:

1
2

[
1−

L∑

k=0

(
2k

k

)(
1− µ

2

)k (
1 + µ

2

)k

µ

]

=
1
2

[
1−

L−1∑

k=0

(
2k

k

) (
1− µ

2

)k (
1 + µ

2

)k

µ

]
− 1

2

(
2L

L

)(
1− µ

2

)L (
1 + µ

2

)L

µ
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Using the assumption of (10.8) this can be written as (where the term
(

1−µ
2

)L
is factored

out):

(
1− µ

2

)L
[

L−1∑

m=0

(
L− 1 + m

m

)(
1 + µ

2

)m

− 1
2

(
2L

L

)(
1 + µ

2

)L

µ

]
(10.9)

Now
(

L− 1 + m

m

)
=

(L− 1 + m)!
m!(L− 1)!

L + m

L

L

L + m
=

(L + m)!
m!L!

L

L + m

=
(

L + m

m

)(
1− m

L + m

)

Therefore (10.9) becomes

(
1− µ

2

)L
[

L−1∑

m=0

(
L + m

m

) (
1 + µ

2

)m

−
L−2∑

m=0

(
L + m

m

)(
1 + µ

2

)m+1

−1
2

(
2L

L

) (
1 + µ

2

)L

µ

]
(10.10)

where

L−1∑

m=0

m

L + m

(
L + m

m

)(
1 + µ

2

)m
k=m−1=

L−2∑

k=−1

k + 1
L + k + 1

(
L + k + 1

k + 1

) (
1 + µ

2

)k+1

=
L−2∑

k=0

k + 1
L + k + 1

(
L + k + 1

k + 1

)(
1 + µ

2

)k+1

But

k + 1
L + k + 1

(
L + k + 1

k + 1

)
=

k + 1
L + k + 1

(L + k + 1)!
L!(k + 1)!

=
(L + k)!

L!k!
=

(
L + k

k

)

Changing the dummy index k to m we get (10.10) in the following form:

(
1− µ

2

)L
[

L−1∑

m=0

(
L + m

m

) (
1 + µ

2

)m

−
L−1∑

m=0

(
L + m

m

)(
1 + µ

2

)m+1

+
1
2

(
2L

L

)(
1 + µ

2

)L

− 1
2

(
2L

L

)(
1 + µ

2

)L

µ

]
(10.11)

where the term 1
2

(
2L
L

) (
1+µ

2

)L
is added and subtracted.

Since, obviously
(

1 + µ

2

)m+1

=
(

1 + µ

2

)m (
1
2

+
µ

2

)
=

1
2

(
1 + µ

2

)m

+
µ

2

(
1 + µ

2

)m
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(10.11) can be written as

(
1− µ

2

)L
[

1
2

L−1∑

m=0

(
L + m

m

)(
1 + µ

2

)m

− µ

2

L−1∑

m=0

(
L + m

m

)(
1 + µ

2

)m

+
1
2

(
2L

L

)(
1 + µ

2

)L

− 1
2

(
2L

L

)(
1 + µ

2

)L

µ

]
(10.12)

Gathering terms appropriately (10.13) becomes

(
1− µ

2

)L
[

1
2

L∑

m=0

(
L + m

m

)(
1 + µ

2

)m

− µ

2

L∑

m=0

(
L + m

m

)(
1 + µ

2

)m
]

,

which (finally) equals:

(
1− µ

2

)L+1
[

1
2

L∑

m=0

(
L + m

m

)(
1 + µ

2

)m
]

(10.13)

(c) With approximations, (10.13) with L = N − 1 becomes

P [error] ≈
(

1
4SNR

)N N−1∑

k=0

(
N − 1 + k

k

)
1k =

1
4N

(
2N − 1

N

)
1

SNRN

The error probability decreases as the Nth power of the signal-to-noise ratio. N is
usually called the diversity gain (or order) of the system. Note that this performance
behavior is the same as with noncoherent FSK. But there is a 3 dB saving in power but
at the expense of a more complicated receiver since the phase and attenuation need to
be estimated.

P10.6 To be added.

P10.7 (a) A constant does not vary very much, indeed not at all. Therefore its variance is equal to
0. Further the expected or average value of a constant is the constant itself1. Therefore
the amount of fading is AF = 0/constant = 0.

(b) var{α2} = E{α4}−E2{α2}. E{α2} = 2
σ2

F

∫ ∞

0
α3e−α2/σ2

F dα and after a change of vari-

able this becomes σ2
F

∫ ∞

0
λe−λdλ = σ2

F . E{α4} = 2
σ2

F

∫∞
0 α5e−α2/σ2

F dα and with the

same change of variable this becomes σ4
F

∫ ∞

0
λ2e−λdλ = 2σ4

F . Therefore

AF = 2σ4
F−σ4

F

(σ2
F )2

= 1.

(c) First find a general expression for E{αn} and then evaluate it for n = 4 and n = 2.

E{αn} =
2mm

Γ(m)σ2m

∫ ∞

0
αn+2m−1e−mα2/σ2

dα.

1For an anecdote about a totally absurd proof that the expected value of a constant is the constant, contact the
second author.
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Let λ → mα2

σ2 . Then

E{αn} =
mmσn+2m−2

Γ(m)σ2m
(
mn+2m−2

2

)
m

∫ ∞

0
λ

n+2m−2
2 e−λdα =

σn

Γ(m)mn/2
Γ

(
m +

n

2

)

For n = 2,

E{α2} =
σ2

Γ(m)m
Γ(m + 1) =

σ2mΓ(m)
Γ(m)m

= σ2

For n = 4,

E{α4} =
σ4

Γ(m)m2
Γ(m + 2) =

σ4(m + 1)
m

= σ4 +
σ4

m

Therefore AF = 1
m . Note that when m = 1 the Nakagami distribution is Rayleigh and

as m →∞, it tends to a Gaussian pdf. Plots of the Nakagami-m pdf for various values
of m are shown in Fig. 10.5.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 α

f α(α
)

Normalized Nakagami−m Distribution (with σ2=1)

 

 

m=1 (Rayleigh)
m=2
m=4
m=10

Figure 10.5

P10.8 (a) If the phase is π radians then the sign(s) of the transmitted signal is reversed, i.e., a bit
zero is represented by a signal pattern where the transmitted signal in the (k− 1)th bit
interval and kth bit interval are the same: either (−,−) or (+, +). On the other hand,
for bit one the pattern is (+,−) or (−,+). In essence, nothing changes.

(b) Start by observing that we want dk = dk−1 if the present bit bk = 0 and dk = dk−1 if
bk = 1. The truth table for dk, dk−1, bk is

dk−1 bk dk

0 (π rad) 0 0 (π rad)
0 (π rad) 1 0 (0◦)

1 (0◦) 0 1 (0◦)
1 (0◦) 1 0 (π rad)
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From the truth table one sees (easily) that dk = dk−1 ⊕ bk. In block diagram form this
means

Delay

(  second)
b
T

k
d

k
b

1kd −

Remark: The above is what is discussed in Chapter 6, Section 6.6, differential modula-
tion, pages 251-252.

(c) Let φ(k−1)(t) =
√

2
Tb

cos(2πfct) be the orthogonal basis for the (k − 1)th bit interval

and φ(k)(t) =
√

2
Tb

cos(2πfct) for the kth bit interval. Then the signal space plot of the
signal set of (10.40) becomes

0

b
E

( 1) ( )k
tφ −

( ) ( )k
tφ

b
E

b
E−

b
E−

0
T

1
T

1
T

0
T

It is identical (perhaps one should say isomorphic) to the signal space plot for Miller
modulation.

(d) Based on (b), consider the following coherent demodulation: first demodulation to d̂k

and then to b̂k. The block diagram looks as follows:

2
cos(2 )c

b

f t
T

π

bt kT=
( 1)

( )d
b

b

kT

k T

t
−

•∫ kb�kd
( )r t

�
1kd −Comparator

Inverse of mapping 

at modulator

Delay

(  seconds)bT

Of course it is possible to demodulate by projecting r(t) onto {φ(k−1)(t), φk(t)} (the
signal space of bit dk) and choosing the closest signal point. But this would require two
matched filters (or two correlators).
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(e) First, observe that P [error] = P [error|0T ]. Second, note that b̂k is in error if (i) d̂k−1 is
in error and d̂k is correct or (ii) if d̂k−1 is correct and d̂k is in error, i.e., if both d̂k, d̂k−1

are correct then b̂k is correct and if both d̂k, d̂k−1 are incorrect then b̂k is also correct
(who said “two wrongs do not make a right”).
Since the events d̂k−1, d̂k are statistically independent (remember noise is white and
Gaussian) and the 2 events (i), (ii) above are mutually exclusive, one has

P [error] = 2Q

( √
Eb√

N0/2

)[
1−Q

( √
Eb√

N0/2

)]
= 2Q

(√
2Eb

N0

)[
1−Q

(√
2Eb

N0

)]
.

Plots of the error performance for this phase uncertainty model and that of (10.48) are
shown in Fig. 10.6. Observe that coherent demodulation saves about 0.5 dB in Eb/N0.

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

P
[b

it 
er

ro
r]

 

 

DBPSK
Coherently demodulated DBPSK

Figure 10.6

(f) CDDBPSK perhaps.
Remark: Because of the memory introduced by the differential mapping one can de-
termine a state diagram, a trellis and use Viterbi’s algorithm to perform a sequence
demodulation. Left as exercise or convince yourself that Fig. 6.19 is applicable here.

P10.9 (a) One possible relative phase change, ∆φ, mapping is as follows:

00 → ∆φ = 0 (radians)

01 → ∆φ =
π

2
11 → ∆φ = π

10 → ∆φ =
3π

2

(
or− π

2

)

(b) Since there is memory, let us assume an initial condition of 0 radians. Parse the sequence
into 2 bit sequences and determine the transmitted phase sequence.
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01 11 11 00 01 10 10 . . .
0 π

2
3π
2

π
2

π
2 π π

2 0 . . . (transmitted phase)
↑

initial condition
As can be seen and as expected, the absolute transmitted phase has no meaning. It is
the relative (or differential) phase that conveys the information.

(c) The trellis looks as shown below, where the state is defined as the previous transmitted
phase. Note that the trellis is fully developed after one Ts interval.

Output phase

⋅⋅⋅

( 1) sk T−

0

π

2
π

3
2

π

skT

0 / 00

Input 2 bit sequence

State

1  (rad)kd −

012
π

11π3 012
π

0 /10
002

π

01π3 112
π

0 /11

102
π

00π

3 012
π

0 / 01

112
π

10π

3 002
π

(d) Because of the memory of one symbol interval we shall look at the signal in the previous
symbol interval along with the present symbol interval. A signal in a symbol interval lies
in 2 dimensions, that of {

√
2
Tb

cos(2πfct),
√

2
Tb

sin(2πfct)}, which means 4 dimensions
are needed to represent the signal over 2 symbol intervals. Along each dimension the
signal component takes on one of 2 possible value (±√Eb). Therefore there are 24 = 16
possible signals lying in the 4-dimensional signal space. Each signal lies in one of the 16
quadrants, indeed each quadrant has only 1 signal lying in it.
Remark: More detail as to the actual signal points is provided in the next problem.

(e) Start by considering the following “truth table”, perhaps it is more appropriately called
a desired table.
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bk,Q bk,I dk,Q dk,I

0 0 ⇒ Phase stays the same ⇒ dk−1,Q dk−1,Ias the previous phase

0 1 ⇒ Phase changes ⇒ Now how dk,Q, dk,I behave depends
by +π

2 radians on the bit pattern dk−1,Q, dk−1,I

dk−1,Q dk−1,I

1 1 dk−1,Q dk−1,I

0 0 dk−1,Q dk−1,I

1 0 dk−1,Q dk−1,I

0 1 dk−1,Q dk−1,I

1 0 ⇒ Phase changes ⇒ Again change in dk,Q, dk,I depends
by −π

2 radians on the bit pattern dk−1,Q, dk−1,I

dk−1,Q dk−1,I

1 1 dk−1,Q dk−1,I

0 0 dk−1,Q dk−1,I

1 0 dk−1,Q dk−1,I

0 1 dk−1,Q dk−1,I

1 1 ⇒ Phase changes ⇒ dk−1,Q dk−1,Iby +π radians

Remark: To see the above relationships between the {dk,Q, dk,I} bits and the {dk−1,Q, dk−1,I}
bits, especially for the 01, 10 bit patterns for bk,Q, bk,I you may wish to sketch a few
(I, Q) signal space diagrams.

Now to form the Boolean expressions. Let us first consider the inphase bit dk,I . The
formation shall not proceed by formal logic design procedures but more by intuition, in
other words by (hopefully) intelligent trial and error.

The first observation is that the pattern for the dk,I bit is similar for two subsets of the
bk,Q, bk,I bit pattern, namely (00, 11) and (01, 10). So let us start with the expression
bk,Q ⊕ bk,I which would create a selector bit of 0 or 1, respectively for the two subsets.
Consider subset (00, 11). Expression bk,Q ⊕ bk,I shall be equal to 1 in this case. Note
that bk,I ⊕ dk−1,I has as its output dk−1,I when bk,I = 0 and dk−1,I when bk,I = 1. So
AND this with bk,Q ⊕ bk,I and the subset (00,11) is accounted for. Thus far we have
dk,I = (bk,Q ⊕ bk,I) AND (bk,I ⊕ dk−1,I).
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To account for the 2nd subset, OR the above expression with an expression to be deter-
mined for the 2nd subset. Since when the 2nd subset is relevant, the above expression
is 0, we can develop this expression independently.
To see what this expression is, consider the table below where just dk,I is considered and
the Boolean expressions (bk,Q ⊕ dk−1,Q) and (bk,I ⊕ dk−1,I) are also shown.

bk,Q bk,I dk−1,Q dk−1,I dk,I (bk,Q ⊕ dk−1,Q) (bk,I ⊕ dk−1,Q)

0 1 1 1 dk,I = dk−1,I = 0 1 0

0 0 dk,I = dk−1,I = 1 0 1

1 0 dk,I = dk−1,I = 0 1 0

1 1 dk,I = dk−1,I = 1 0 1

1 0 1 1 dk,I = dk−1,I = 1 0 1

0 0 dk,I = dk−1,I = 0 1 0

1 0 dk,I = dk−1,I = 1 0 1

0 1 dk,I = dk−1,I = 0 1 0

Note that both “track” the dk,I bit, albeit one in a complementary fashion. Therefore
form the following Boolean expression for the 2nd subset: (bk,Q⊕bk,I) AND (bk,Q ⊕ dk−1,Q).
The final overall expression for the inphase bit is

dk,I =
[
(bk,Q ⊕ bk,I) AND (bk,I ⊕ dk−1,I)

]
OR

[
(bk,Q ⊕ bk,I) AND (bk,Q ⊕ dk−1,Q)

]

Remark: One could also use (bk,I ⊕ dk−1,Q). Do it? Also convince yourself that (bk,I ⊕
dk−1,I) or (bk,Q ⊕ dk−1,I) are not appropriate to be used. For the quadrature bit reason
as above, or use “symmetry”, or guess, to get

dk,Q =
[
(bk,Q ⊕ bk,I) AND (bk,Q ⊕ dk−1,Q)

]
OR

[
(bk,Q ⊕ bk,I) AND (bk,I ⊕ dk−1,Q)

]

P10.10 (a) There are four basis functions, namely

φk,I(t) =
√

2
Ts

cos(2πfct)

φk,Q(t) =
√

2
Ts

sin(2πfct)





(k−1)Ts≤t≤kTs

(present symbol interval)

and

φk−1,I(t) =
√

2
Ts

cos(2πfct)

φk−1,Q(t) =
√

2
Ts

sin(2πfct)





(k−2)Ts≤t≤(k−1)Ts

(previous symbol interval)
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(b) 24, i.e., 16 possible bit patterns.

(c) 24 quadrants.

(d) Using Table 10.2 of P10.9
bk−3 bk−2 bk−1 bk Previous phase Present phase

0 0 0 0 i) π
4

π
4

ii) 3π
4

3π
4

iii) 5π
4

5π
4

iv) 7π
4

7π
4

Since the present 2 bits are 00, the present phase is the same as the previous phase, i.e.,
does not change.

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE− 0

bE

, ( )k I tφ

, ( )k Q tφ

bE−

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

0

bE−

, ( )k I tφ

, ( )k Q tφ

bE−

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

0
, ( )k I tφ

, ( )k Q tφ

bE−

bE−

bE bE

Signal ii)

Signal iii)

Signal iv)

Figure 10.7

To determine which quadrant(s) the signals fall in, the notation needs to be clarified
further. Let the components along a specific axis be ±1 as implied and let the axes be
ordered as follows: (φk−1,I , φk−1,Q, φk,I , φk,Q). Then the quadrants in this notation are:

i) (+1, +1,+1, +1) or if we let 1111 or in decimal, 15
ii) (−1,+1,−1, +1) −1 ↔ bit 0, +1 ↔ bit 1 0101 taking the left 5
iii) (−1,−1,−1,−1) then in binary 0000 most bit as being 0
iv) (+1,−1, +1,−1) the quadrants are 1010 the least significant 10

(e) The previous phase can still be any one of the 4 values, (π
4 , 3π

4 , 5π
4 , 7π

4 ) and since the
present 2 bits are 00, which means ∆φ = 0, the present phase is also one of (π

4 , 3π
4 , 5π

4 , 7π
4 )

as in (d).
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(f)

bk−3 bk−2 bk−1 bk Previous phase Present phase
0 0 0 1 i) π

4
3π
4

ii) 3π
4

5π
4

iii) 5π
4

7π
4

iv) 7π
4

π
4

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE 0

bE

, ( )k I tφ

, ( )k Q tφ

bE−

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE− 0

bE−

, ( )k I tφ

, ( )k Q tφ

bE−

0
, ( )k I tφ

, ( )k Q tφ

bE−

bE

i)

ii)

iii)

Signal space

0

bE

, ( )k I tφ

, ( )k Q tφ

bE0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

iv)

Figure 10.8
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The signals fall in the following quadrants

Quadrant Binary Decimal
i) (+1, +1,−1, +1) 1101 13
ii) (−1, +1,−1,−1) 0100 4
iii) (−1,−1,+1,−1) 0010 2
iv) (+1,−1,+1, +1) 1011 11

If the previous bits bk−3bk−2 are 01, 10, or 11 we still have the same set of signals. As
in (e), the previous phase can still be any of the 4 values and the present phase is a
“relative” shift of π

4 with respect to these 4 values.

Consider now

bk−3 bk−2 bk−1 bk Previous phase Present phase
0 0 1 1 i) π

4
5π
4

ii) 3π
4

7π
4

iii) 5π
4

π
4

iv) 7π
4

3π
4

Solutions Page 10–21



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

0

bE−

, ( )k I tφ

, ( )k Q tφ

bE−

i)

ii)

iii)

Signal space

0

bE

, ( )k I tφ

, ( )k Q tφ

bE

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

0
, ( )k I tφ

, ( )k Q tφ

bE−

bE

0

bE

, ( )k I tφ

, ( )k Q tφ

bE−

iv)

Figure 10.9

Quadrant Binary Decimal
i) (+1, +1,−1,−1) 1100 12
ii) (−1, +1, +1,−1) 0110 6
iii) (−1,−1,+1, +1) 0011 3
iv) (+1,−1,−1, +1) 1001 9
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When bk−3bk−2 are 01, 10, or 11, same argument as before, i.e., have the same signal
set.

Finally, consider

bk−3 bk−2 bk−1 bk Previous phase Present phase
0 0 1 0 i) π

4
7π
4

ii) 3π
4

π
4

iii) 5π
4

3π
4

iv) 7π
4

5π
4
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0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE

0

bE

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

0

bE−

, ( )k I tφ

, ( )k Q tφ

bE−

i)

ii)

iii)

Signal space

0

bE

, ( )k I tφ

, ( )k Q tφ

bE

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE

0

bE−

1, ( )k I tφ −

1, ( )k Q tφ −

bE−

0
, ( )k I tφ

, ( )k Q tφ

bE−

bE

0

bE

, ( )k I tφ

, ( )k Q tφ

bE−

iv)

Figure 10.10

Quadrant Binary Decimal
i) (+1, +1,+1,−1) 1110 14
ii) (−1, +1, +1, +1) 0111 7
iii) (−1,−1,−1, +1) 0001 1
iv) (+1,−1,−1,−1) 1000 8

Again bk−3bk−2 = 01, 10, 11 results in the same set of signal points for bk−1bk = 10.
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(g) To develop the demodulator, observe that the signal points lie as follows for the various
possibilities of bk−1bk

bk−1bk 00 01 11 10

Quadrant →




15
5
0
10







13
4
2
11







12
6
3
9







14
7
1
8




The observation is that they lie in disjoint quadrants (or disjoint quadrant subsets).
Therefore, to make a decision on the symbol bk−1bk decide which quadrant the received
signal lies in, more accurately which quadrant the sufficient statistics lie in, and choose
the bk−1bk symbol that belongs to this quadrant.
The sufficient statistics are the projection of r(t) onto the basis functions φk−1,I(t),
φk−1,Q(t), φk,I(t), φk,Q(t). The block diagram looks as follows:

, ( )k Q tφ

st kT=

( 1)

( 2)

( )d
s

s

k T

k T

t

−

−

•∫

, ( )k I tφ

st kT=

( 1)

( 2)

( )d
s

s

k T

k T

t

−

−

•∫

1, ( )k Q tφ −

( 1) st k T= −

( 1)

( 2)

( )d
s

s

k T

k T

t

−

−

•∫

1, ( )k I tφ −

( 1) st k T= −

( 1)

( 2)

( )d
s

s

k T

k T

t

−

−

•∫

1k kb b −
� �( )r t

1 1

2 2

1

Decide which

 quadrant , ,

 ,    fall in 

and choose 

the symbol 

I Q

I Q

k k

r r

r r

b b −

Figure 10.11

Remarks:

(i) The above block diagram is a minimum-distance receiver, i.e., the signal point r(t) is
closest to is chosen and the symbol bkbk−1 it corresponds to is decided on. Remember
we are in white Gaussian noise.

(ii) As an example quadrant 6 is chosen and symbol b̂k b̂k−1 = 11 is decided on if
(r1,I < 0) and (r1,Q > 0) and (r2,I > 0) and (r2,Q < 0).
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P10.11 From Problems 10.8 and 10.9 let us make the following observations:

(i) The received signal over two symbol intervals can be written as:

r(t) = ±
√

Ebφk−1,I(t)±
√

Ebφk−1,Q(t)±
√

Ebφk,I(t)±
√

Ebφk,Q(t) + w(t)

Therefore the sufficient statistics r1,I , r1,Q, r2,I , r2,Q are of the form ±√Eb + w, i.e.,
statistically independent Gaussian random variables of mean ±√Eb and variance N0/2.
Note that Eb is readily interpreted as the transmitted energy per bit.

(ii) Because, as usual, the information bits bk are assumed to be equally probable and
statistically independent which leads to symmetry in the transmitted (and received)
signal space. We have

P [symbol error] = P [symbol error|bkbk−1 = 00]

Indeed we can refine this further as:

P [symbol error] = P [symbol error|a specific quadrant signal transmitted]

(iii) Let us choose as a specific quadrant signal the one that corresponds to quadrant 5, or
(−1, +1,−1,+1) or the signal −√Ebφk−1,I(t)+

√
Ebφk−1,Q(t)−√Ebφk,I(t)+

√
Ebφk,Q(t).

A symbol error is made if r1,I , r1,Q, r2,I , r2,Q fall in quadrants 1, 2, 3, 4, 6, 7, 8, 9, 11,
12, 13, 14.

Note that if r1,I , r1,Q, r2,I , r2,Q fall in quadrants 0, 10, or 15, though an error is made in
the transmitted signal, a correct decision is still made on the transmitted information
bits bkbk−1 = 00.

(iv) So one needs to calculate the volume under f(r1,I , r1,Q, r2,I , r2,Q|signal in quadrant 5) in
the quadrants in which a symbol error is made. This can be done (almost) by inspection.
Consider the volume in quadrant 2, i.e., quadrant (−1,−1, +1,−1). Note that there is
agreement in 2 of the components, in this case specifically r1,I , r2,Q and disagreement
in 2 components, namely r1,Q, r1,I . The “contributions” to the volume when there are
agreement and disagreement are shown below:

0

2

0N

Disagreement Agreement

b
E

Figure 10.12

Quantified mathematically,

Agreement “contribution” = 1−Q

(√
2Eb

N0

)

Disagreement “contribution” = Q

(√
2Eb

N0

)
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The volume in this quadrant is then a product of the four “contributions”, 1 agreement
and 3 disagreements in this case. The contribution of this quadrant volume to the total
volume is therefore

[
1−Q

(√
2Eb
N0

)]
Q3

(√
2Eb
N0

)
. Based on this reasoning, set up the

following table where the argument
√

2Eb
N0

of the Q(·) function is understood.

Quadrant Decimal Error volume contribution
(−1, +1,−1, +1) (5) (1−Q)Q3

(−1,−1,+1,−1) (2) (1−Q)Q3

(−1, +1,−1,−1) (4) (1−Q)3Q
(+1,−1,+1, +1) (11) (1−Q)Q3

(+1, +1,−1, +1) (13) (1−Q)3Q
(−1,−1,−1, +1) (1) (1−Q)3Q
(−1, +1,+1, +1) (7) (1−Q)3Q
(+1,−1,−1,−1) (8) (1−Q)Q3

(+1, +1,+1,−1) (14) (1−Q)Q3

(−1,−1,+1, +1) (3) (1−Q)2Q2

(−1, +1,+1,−1) (6) (1−Q)2Q2

(+1,−1,−1, +1) (9) (1−Q)2Q2

(+1, +1,−1,−1) (12) (1−Q)2Q2

The probability of symbol error is the sum of the above volumes, remember the events
are mutually exclusive. A little algebra yields

P [symbol error] = 4

[
Q

(√
2Eb

N0

)
− 2Q2

(√
2Eb

N0

)
+ 2Q3

(√
2Eb

N0

)
−Q4

(√
2Eb

N0

)]
.

(10.14)
Remark: An error expression is given in “Telecommunication Systems Engineering”, W.
C. Lindsay & M. K. Simon, Doves, 1973, p. 246. The derivation is quite different.
Compare. Also the Viterbi algorithm can be applied here. Left as an exercise.

For comparison, the symbol error probability of coherently-demodulated QPSK is given
from Eqns. (7.39) and (7.40) in the text as:

P [symbol error] = 1−
[
1−Q

(√
2Eb

N0

)]2

= 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)
(10.15)

Fig. 10.13 shows plots of (10.14) and (10.15). Observe that coherently-demodulated
QPSK outperforms coherently-demodulated DQPSK over the whole range of Eb/N0. At
high SNR (i.e., high Eb/N0), the difference in Eb/N0 to achieve the same symbol error
probability is quite small, about 0.2 dB only.
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Figure 10.13

P10.12 (a) 16-QAM symbols are 4-bit sequences. Consider 2 contiguous symbols

7 6 5 4 3 2 1k k k k k k k kb b b b b b b b− − − − − − −

( 1) sk T− skT 4s bT T=

Arbitrarily, let bk−1bk be the differentially encoded bits, which determine the transmitted
phase, i.e.,

bk−1bk

00 Transmitted phase = Previous xmitted phase
01 Transmitted phase = Previous xmitted phase +π/2
01 Transmitted phase = Previous xmitted phase +π
01 Transmitted phase = Previous xmitted phase +3π/2 (or −π/2)

(b) The remaining 2 bits, bk−3bk−2 amplitude modulate the transmitted sinusoid by +∆/2, +3∆/2.

Write the transmitted sinusoid as
√

1
Ts

cos(2πfct+ϕk) where ϕk = π/4, 3π/4, 5π/4, 7π/4
radians (ϕk is the relative phase as determined by bkbk−1). In the symbol interval
{(k − 1)Ts, kTs} the transmitted signal lies in the signal space as follows:
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( )I tφ

( )Q tφ

(00)

(10)

(01)

(11)

0

(01)

(00)

(11)

(10)

(10)

(11)

(00)

(01)

(11)

(01)

(10)

(00)

2

∆

2
( ) cos(2 )I c

s

t f t
T

φ π=

2
( ) sin(2 )Q c

s

t f t
T

φ π=

2 3bits k kb b− −

2

∆

Figure 10.14

Remark: Which quadrant the transmitted signal lies in depends on what the differential
encoding tells one.

(c) 64-QAM has 6-bit signals bk−5bk−4bk−3bk−2bk−1bk. Again we let bk−1bk be the differen-
tially encoded bits while the bits bk−5bk−4bk−3bk−2 amplitude modulate the transmitted
carrier by +∆/2, +3∆/2,+5∆/2, +7∆/2. Showing only one quadrant of the transmitted
signal space:

( )I tφ

( )Q tφ

0

2

∆

2
( ) cos(2 )I c

s

t f t
T

φ π=

2
( ) sin(2 )Q c

s

t f t
T

φ π=

5 4 3 2

To map the bits 

use a Gray code mapping
k k k kb b b b− − − −

2

∆

Figure 10.15

Again the transmitted signal space occupies all 4 quadrants. The signal points in the
other 3 quadrant are rotated version of the ones shown in the first quadrant. The bits
bk−5bk−4bk−3bk−2 would amplitude modulate the carrier

√
1
Ts

cos(2πfct + ϕk), where ϕk

is the differential phase determined by bk−1bk.
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(d) To generalize to any square QAM, proceed as above. Simply take the first 2 bits and
differentially encode the phase. The remaining bits then amplitude modulate the carrier.

Out of curiosity which, if any, of the 16-QAM constellations in Fig. 8.17 lend themselves
to differentially encoding (against kπ/2 phase ambiguity)?

(e) Modulator:

3 2 1k k k kb b b b− − −

S/P

PAM 
modulator

PAM 
modulator

Differential 
mapper

kb

1kb −

kb

1kb −

NRZ-L

NRZ-L
sT

sT

( )2
sin 2 c

s

f t
T

π

( )2
cos 2 c

s

f t
T

π

( )Ts t

3
,

2 2

∆ ∆ + +  

3
,

2 2

∆ ∆ + +  
,k Id

,k Qd1,k Id −

1,k Qd −

{ }1, 1+ −

{ }1, 1+ −

Figure 10.16

Demodulator: The block diagram consists of 2 parts. One of these demodulates the
differential bits bkbk−1, and is that of P10.10(g) where one looks at the signal over 2
symbol intervals (k − 2)Ts to (k − 1)Ts. Decide which of the 16 quadrants the (4)
sufficient statistics fall in and then determine the differential bits b̂k b̂k−1.
The second part demodulates the “amplitude bits”. It carves up the signal space of (b)
using a minimum-distance criterion (as we are in AWGN).

,k Ir

,k Qr

(00)

(10)

(01)

(11)

0

(01)

(00)

(11)

(10)

(10)

(11)

(00)

(01)

(11)

(01)

(10)

(00)

decision

boundaries

2

∆

2

∆

Figure 10.17
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P10.13 (a) The received signal space has 4 basis functions, namely

φ1,I(t) =
√

2
Tb

cos(2πf1t); (10.16)

φ1,Q(t) =
√

2
Tb

sin(2πf1t); (10.17)

φ2,I(t) =
√

2
Tb

cos(2πf2t); (10.18)

φ2,Q(t) =
√

2
Tb

sin(2πf2t). (10.19)

In terms of these basis functions the received signal can be written as

0T : r(t) =
√

E1φ1,I(t) +
√

E2nF,Iφ1,I(t) +
√

E2nF,Qφ1,Q(t) + w(t), (10.20)

1T : r(t) =
√

E1φ2,I(t) +
√

E2nF,Iφ2,I(t) +
√

E2nF,Qφ2,Q(t) + w(t), (10.21)

where the fading parameters nF,I = α cosθ, nF,Q = α sinθ are statistically independent
Gaussian random variables, zero mean, variance σ2

F /2.
Project r(t) onto the 4 basis functions to obtain a set of sufficient statistics:

0T : r1 =
√

E1 +
√

E1nF,I + w1,I 1T : r1 = w1,I

r2 =
√

E2nF,Q + w1,Q r2 = w1,Q

r3 = w2,I r3 =
√

E1 +
√

E2nF,I + w2,I

r4 = w2,Q r4 =
√

E2nF,Q + w2,Q

where w1,I ,w1,Q,w2,I ,w2,Q, due to the AWGN, are the usual statistically independent,
zero-mean Gaussian random variables, variance σ2 ≡ N0/2. Note that whether 0T or
1T the sufficient statistics r1, r2, r3, r4 are statistically independent Gaussian random
variables.

(b) The LRT is therefore (as usual, bits are assumed equally probable):

4∏
i=1

f(ri|1T )

4∏
i=1

f(ri|0T )

1D

R
0D

1 (10.22)

Ignoring the
√

2π factor which cancels out top and bottom and letting σ2
t ≡ E2σ

2
F /2 +

N0/2, the LRT is

1
σ e−

r21
2σ2 1

σ e−
r22
2σ2 1

σt
e
− (r3−

√
E1)2

2σ2
t

1
σt

e
− r24

2σ2
t

1
σt

e
− (r1−

√
E1)2

2σ2
t

1
σt

e
− r22

2σ2
t

1
σ e−

r23
2σ2 1

σ e−
r24
2σ2

1D

R
0D

1 (10.23)

Canceling and taking ln, we get:

(r1 −
√

E1)2

σ2
t

+
r2
2

σ2
t

+
r2
3

σ2
+

r2
4

σ2

1D

R
0D

r2
1

σ2
+

r2
2

σ2
+

(r3 −
√

E1)2

σ2
t

+
r2
4

σ2
t

(10.24)
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Rewrite this as:

r2
3

σ2
− (r3 −

√
E1)2

σ2
t

+
r2
4

σ2
− r2

4

σ2
t

1D

R
0D

r2
1

σ2
− (r1 −

√
E1)2

2σ2
t

+
r2
2

σ2
− r2

2

σ2
t

(10.25)

After some algebra, namely consisting of completing the square by adding and subtract-
ing terms, the decision rule can be written as:

(
r3 +

√
E1

cσ2
t

)2

+ r2
4

1D

R
0D

(
r2
1 +

√
E1

cσ2
t

)
+ r2

2 (10.26)

where c ≡ 1
σ2 − 1

σ2
t

> 0. Also note that cσ2
t = E2σ

2
F /2σ2 ⇒

√
E1

cσ2
t

= 2
√

E1σ2

E2σ2
F

≡ m.
Therefore the decision rule can be written as

∴ (r3 + m)2 + r2
4

1D

R
0D

(
r2
1 + m

)
+ r2

2.

The parameter m reflects the direct LOS path, which results in a “DC” received com-
ponent.

P10.14(a-d) Though it is easy enough to find the characteristic functions of what should read x2

and y2, i.e., E{ejωx2} and E{ejωy2} where x ∼ N (m,σ2) and y ∼ N (0, σ2), and then
multiply the 2 characteristic functions, the difficulty is in finding the inverse transform.

Specifically,

Φx2(ω) = E
{

ej2ωx2
}

=
1√
2πσ

∞∫

−∞
ejωx2

e−
(x−m)2

2σ2 dx

=
1√

1− j2ωσ2
e

m2

1−j2ωσ2 (10.27)

and

Φy2(ω) =
1√

1− j2ωσ2
⇒ Φz(ω) =

e
m2

1−j2ωσ2

(1− j2ωσ2)

∴ fz(z) =
1
2π

∞∫

−∞

e
m2

(1−j2ωσ2)

(1− j2ωσ2)
e−jωzdω

Unfortunately, we are not able to perform this integration.

Well, if one fails in one approach, try another one. Consider random variable z =√
x2 + y2 where x, y are statistically independent Gaussian random variables, common

variance, σ2, and mean mx,my, respectively. First let us find the probability distribution
function Fz(z) = P [z = x2 + y2 ≤ z]. Graphically this is finding the probability that z
falls in the region indicated in Fig. 10.18.
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y

x
0

�2 2z x y= +

Figure 10.18

This probability is
∫∫

Z
fxy(x, y)dxdy =

1
2πσ2

∫∫

Z
e−

(x−mx)2

2σ2 e−
(y−my)2

2σ2 dxdy (10.28)

Now change to polar coordinates: ρ2 = x2 + y2; dxdy = ρdρdα; x = ρ cosα; y = ρ sinα
and region Z is 0 ≤ ρ ≤ z; 0 ≤ α < 2π.

∴ Fz(z) =

z∫

ρ=0

2π∫

α=0

1
2πσ2

e−
ρ2

2σ2 e
mxρ cos α+myρ sin α

σ2 e−
(m2

x+m2
y)

2σ2 ρdρdα

=
1
σ2

e−
(m2

x+m2
y)

2σ2

z∫

ρ=0

ρe−
ρ2

2σ2


 1

2π

2π∫

α=0

e
ρ(mx cos α+my sin α)

σ2 dα


dρ (10.29)

Write mx cosα + my sinα as
√

m2
x + m2

y cos
(
α− tan−1 my

mx

)
and recognize the inner

integral to be I0

(
ρ
√

m2
x+m2

y

σ2

)
. Therefore

Fz(z) =
e−

(m2
x+m2

y)

2σ2

σ2

z∫

ρ=0

ρe−
ρ2

2σ2 I0


ρ

√
m2

x + m2
y

σ2


dρ (10.30)

But what is desired is the probability density function fz(z) = dFz(z)/dz. Differentiating
the expression for Fz(z) with respect to z, (using Leibnitz rule), we get

fz(z) =
z

σ2
e−

(z2+m2
x+m2

y)

2σ2 I0


z

√
m2

x + m2
y

σ2


 (of course it is = 0 for z < 0) (10.31)

which is (P10.10) with mx = m and my = 0.
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(e) We have m2 = κσ2
F

(1+κ) and σ2 = σ2
F

2(1+κ) . Substituting and simplifying by letting zn ≡ z/σF ,
one has

σF fz(zn) = 2zn(κ + 1)e−(z2
n+ κ

1+κ)(1+κ)I0

(
2zn

√
κ(1 + κ)

)

Plots of σF fz(zn) with σF = 1 and various values of κ are shown in Fig. 10.19. As κ
increases the pdf tends to a Gaussian pdf. This is expected since the fading becomes
less and less of a factor.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

 z
 n

f z(z
n)

Normalized Rician Distribution (with σ
F
2=1)

 

 

κ=0 (Rayleigh)
κ=1
κ=4
κ=16

Figure 10.19
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Advanced Modulation Techniques

P11.13 (a) Because in general s1(t) and s2(t) are correlated, two orthornormal basis functions φ1(t)
and φ2(t) are required to completely represent them. Since the four signals y1(t), y2(t),
y3(t) and y4(t) are just linear combinations of s1(t) and s2(t), they can also be represented
as linear combinations of φ1(t) and φ2(t). Thus the dimensionality of the four signals is
two. One possible set of orthornormal functions φ1(t) and φ2(t) are given below (using
Gram–Schmidt procedure):





φ1(t) = s1(t)

φ2(t) =
1√

1− ρ2
s2(t)− ρ√

1− ρ2
s1(t)

(11.1)

(b) First the two signature waveforms s1(t) and s2(t) can be written in terms of the the
basis functions as follows:

{
s1(t) = φ1(t)
s2(t) = ρφ1(t) +

√
1− ρ2φ2(t)

(11.2)

It follows that the four signals {y1(t), y2(t), y3(t), y4(t)} can be written as follows:

y1(t) = +s1(t) + s2(t) = (1 + ρ)φ1(t) +
√

1− ρ2φ2(t)
y2(t) = +s1(t)− s2(t) = (1− ρ)φ1(t)−

√
1− ρ2φ2(t)

y3(t) = −s1(t) + s2(t) = −(1− ρ)φ1(t) +
√

1− ρ2φ2(t)
y4(t) = −s1(t)− s2(t) = −(1 + ρ)φ1(t)−

√
1− ρ2φ2(t)

(11.3)

These four signals are plotted in Fig. 11.1-(a)

(c) The joint optimum receiver for this CDMA system is a minimum distance receiver,
which jointly demodulate the transmitted bits of both user 1 and user 2 based on the
signal (y1(t), y2(t), y3(t) or y4(t)) that is closest to r(t). The decision boundary and
the decision regions for this minimum distance receiver when ρ = 0.5 are shown in Fig.
11.1-(b). Note that for ρ = 0.5 one has

√
1− ρ2 = 0.866.
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Figure 11.1: Two-User CDMA: (a) Signal space plot for four possible received signals in the
absence of the background noise, (b) Decision regions of the jointly minimum distance receiver
when ρ = 0.5.
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Synchronization

P12.1 The attenuation affects the received energy, Eb, which is now α2Eb. From equations (12.1), (12.2)
with

√
Eb → α

√
Eb.

BPSK: P [bit error] = Q

(
α

√
2Eb

N0
cos θ

)
, (12.1)

QPSK: P [bit error] =
1
2
Q

(
α

√
2Eb

N0
(cos θ − sin θ)

)

+
1
2
Q

(
α

√
2Eb

N0
(cos θ + sin θ)

)
. (12.2)
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Figure 12.1
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Figure 12.2

The Matlab plots allow one to make design judgements as to the margins needed for trans-
mitted power and phase locked loop performance based usually on worst-case scenarios.

Note that this is always somewhat of a subjective judgement. For instance – what error
probability does one choose to make the decision(s)?

P12.2 (a) Refer to Figure 12.3. Note that x1 = d− (i− 1)∆ where d = r cos(α + θ).

∴ x1 =
∆
2

[
(2i− 1)2 + (2j − 1)2

]1/2 cos
(

tan−1

(
2j − 1
2i− 1

)
+ θ

)
−∆(i− 1)

x2 + x1 = ∆ ⇒ x2 = i∆− ∆
2

[
(2i− 1)2 + (2j − 1)2

]1/2 cos
(

tan−1

(
2j − 1
2i− 1

)
+ θ

)

Similarly, d1 = r sin(α + θ), y2 = d1 − (j − 1)∆.

∴ y2 =
∆
2

[
(2i− 1)2 + (2j − 1)2

]1/2 sin
(

tan−1

(
2j − 1
2i− 1

)
+ θ

)
−∆(i− 1)

y1 = ∆− y2 = j∆− ∆
2

[
(2i− 1)2 + (2j − 1)2

]1/2 sin
(

tan−1

(
2j − 1
2i− 1

)
+ θ

)

(b) The error probabilities are determined by finding a volume under a 2-dimensional Gaus-
sian pdf in the appropriate regions. Because the 2 Gaussian random variables (nI , nQ if
you wish) are statistically independent (each of variance N0/2 and a mean determined
by the signal point under consideration) the volume(s) are a product of 2 Q-functions
and basically determined by inspection from the geometrical picture. Let σ2 ≡ N0/2.
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r i j

α
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∆−
= ∆−

−⇒ =
−
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∆

∆

1y

2y
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r
θ

α

1d

d
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2

j
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( 1)i − ∆ (2 1)
2

i
∆−

Figure 12.3

1y

2y

1x 2x

I

II

III

VI

Figure 12.4

Inner signals (refer to Figure 12.4)
Need to find the volumes under the 2-D Gaussian pdf in the 4 regions I, II, III, IV .
These are:

Volume I = Q
(x1

σ

)
(12.3)

Volume II =
[
1−Q

(x1

σ

)
−Q

(x2

σ

)]
Q

(y1

σ

)
(12.4)

Volume III = Q
(x2

σ

)
(12.5)

Volume IV =
[
1−Q

(x1

σ

)
−Q

(x2

σ

)]
Q

(y2

σ

)
. (12.6)

The total volume is of course the sum, and therefore:

Pinner[symbol error] = Q
(x1

σ

)
+ Q

(x2

σ

)

+
[
Q

(y1

σ

)
+ Q

(y2

σ

)] [
1−Q

(x1

σ

)
−Q

(x2

σ

)]
. (12.7)
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Outer-vertical signals (refer to Figure 12.5)

1y

2y

1x
I

II

III

Figure 12.5

Volume I = Q
(x1

σ

)
(12.8)

Volume II =
[
1−Q

(x1

σ

)]
Q

(y1

σ

)
(12.9)

Volume III =
[
1−Q

(x1

σ

)]
Q

(y2

σ

)
(12.10)

Pouter−V[symbol error] = Q
(x1

σ

)
+

[
Q

(y1

σ

)
+ Q

(y2

σ

)] [
1−Q

(x1

σ

)]
(12.11)

Outer-horizonal signals (refer to Figure 12.6)

2y

1x 2x

I

II III

Figure 12.6

Volume I = Q
(y2

σ

)
(12.12)

Volume II =
[
1−Q

(y2

σ

)]
Q

(x1

σ

)
(12.13)

Volume III =
[
1−Q

(y2

σ

)]
Q

(x2

σ

)
(12.14)

Pouter−H[symbol error] = Q
(y2

σ

)
+

[
Q

(x1

σ

)
+ Q

(x2

σ

)] [
1−Q

(y2

σ

)]
(12.15)
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Corner signals (refer to Figure 12.7)

2y

1x
I

II

Figure 12.7

Volume I = Q
(x1

σ

)
(12.16)

Volume II =
[
1−Q

(x1

σ

)]
Q

(y2

σ

)
(12.17)

Pcorner[symbol error] = Q
(x1

σ

)
+ Q

(y2

σ

) [
1−Q

(x1

σ

)]
(12.18)

(c) Consider the (i, j)th signal, i.e., the signal at
[
(2i− 1)∆

2 , (2j − 1)∆
2

]
. Its energy is Eij =

∆2

4 (2i−1)2 + ∆2

4 (2j−1)2 joules. (Note - phase rotation does not affect energy, therefore
ignore θ).

Es = 4
↑

(4 quadrants)

NI∑

i=1

NQ∑

j=1

Eij P [signal ij]
||

1
M

= 1
2λ

NI = 2λI/2, NQ = 2λQ/2

λ = λI + λQ,M = 2λ

=
4
M

NI∑

i=1

NQ∑

j=1

[
∆2

4
(2i− 1)2 +

∆2

4
(2j − 1)2

]
(joules/symbol)

=
∆2

M





NI∑

i=1

NQ∑

j=1

(4i2 − 4i + 1) +
NI∑

i=1

NQ∑

j=1

(4j2 − 4j + 1)



 (12.19)

Now
n∑

k=1

k =
n(n + 1)

2
;

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

After some algebra and by realizing that
∑n

k=1 1 = n, we get

Es =
∆2NINQ

3M

[
(4N2

I − 1) + (4N2
Q − 1)

]
(12.20)

But NINQ = 2(λI+λQ)/2 =
(
2λ

)1/2 = M1/2

∴ Es =
2∆2

3
√

M

(
2N2

I + 2N2
Q − 1

) ⇒ Eb =
Es

λ
=

2∆2

3λ
√

M

(
2N2

I + 2N2
Q − 1

)
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With square QAM, we have λI = λQ = λ/2 ⇒ N2
I =

(
2λ/4

)2
=

(
2λ

)1/2 =
√

M = N2
Q.

∴ Eb =
2∆2

3λ
√

M

(
4
√

M − 1
)

joules/bit (12.21)

or ∆ =


 3λ

√
M

2
(
4
√

M − 1
)




1/2

(12.22)

Remark: Can express ∆ as a function of λ and M only for square QAM.

(d) The expression for P [symbol error] is quite lengthy. To simplify it, at least notationally
note that the distances x1, x2, y1, y2 are functions of i, j which means the error probabil-
ities in (b) are functions of i, j. So write Pinner[error] as Pinner[error, i, j], Pouter-V[error]
as Pouter-V[error, i, j], and so on. Then

P [symbol error] =

only 1 quadrant
considered

↓
4
M
↑

symbols are
equally probable





NI−1∑

i=1

NQ−1∑

j=1

Pinner[error, i, j]

+
NQ−1∑

j=1

Pouter-V[error, i = NI , j]

+
NI−1∑

i=1

Pouter-H[error, i, j = NQ] + Pcorner[error, i = NI , j = NQ]

}
(12.23)

(e) Use the expression for ∆ in terms of Eb/N0 derived in (c) and the general expression of
(d) to guide you in writing the Matlab program.

P12.3 (a) See Fig. 12.8.

(b)

P[error] = Q

(√
2Eb

N0
cosθ

)
(12.24)

E {P[error]} =

2π∫

0

Q

(√
2Eb

N0
cos θ

)
fθ(θ)dθ

=

2π∫

0

Q

(√
2Eb

N0
cos θ

)
1

2πI0(Λm)
eΛm cos θdθ

=
1

2πI0(Λm)

2π∫

0

Q

(√
2Eb

N0
cos θ

)
eΛm cos θdθ. (12.25)

There is no “closed-form” integration available. Therefore resort to numerical integra-
tion. Specifically, make use of the routine quadl in Matlab. Plots of P [bit error] for
different values of Λm are shown in Fig. 12.9.
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Figure 12.8
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Figure 12.9

Note that for Λm = 0, i.e., the uniform pdf case, the performance breakdowns completely,
equivalent to flipping a coin to make a decision. This is expected since the phase (which
carries the information) is completely random.
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P12.4 The demodulator looks like:

bt T=

( )
0

d
bT

t∫

( )( )2
cos 2 c

b

f f t
T

π + ∆

( )2
( ) cos 2 ( )b c

b

t E f t t
T

π= ± +r w
r

Figure 12.10

Performing the integration one gets:

r = ±
√

Eb
sin(2π∆fTb)

2π∆fTb

[
1 +

∆fTb

2π(2fc + ∆f)

]
+ w (12.26)

where

w =

Tb∫

0

√
2
Tb

cos (2π(fc + ∆f)t)w(t)dt

is a Gaussian r.v., zero-mean and a variance that, strictly speaking, is not N0/2. We shall
take it to be N0/2 as a very good approximation.

Remark: The interested reader may wish to show that the variance, E{w2}, is given by
N0
2

[
1 + sin(4π(fc+∆f)Tb)

4π(fc+∆f)Tb

]
. Since fc is on the order of 106 to 109 while Tb on the order of 10−3

to 10−4, the second term is neglected.

Therefore the error probability is given by:

P [bit error] = Q

(√
2Eb

N0

sin(2π∆fTb)
2π∆fTb

)
, (12.27)

where the approximation 1 + ∆fTb
2π(2fc+∆f) ≈ 1 is used for the signal part of r.

From the plot, take ∆fTb < 0.1 (at an error rate of ≈ 10−5). Then if Tb ∼ 10−3 ⇒ ∆f <
0.1(103) = 102, i.e., 100Hz. So the oscillator specification would read 16Hz ±100Hz. Need to
be quite accurate and stable. Note that as Tb becomes smaller (i.e., a higher bit rate rb) the
allowable frequency deviation is larger.
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Figure 12.11

P12.5 The demodulator’s block diagram looks as shown in Fig. 12.12, where fi = f1 if 0T and
fi = f2 if 1T .

bt T=

( )
0

d
bT

t∫

( )( )1

2
cos 2

b

f f t
T

π + ∆
( )2

( ) cos 2 ( )b i
b

t E f t t
T

π= +r w

2r
bt T=

( )
0

d
bT

t∫

( )( )2

2
cos 2

b

f f t
T

π + ∆

1r

k̂b

Figure 12.12
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The sufficient statistics r1, r2 are:

0T : r1 =
√

Eb
2
Tb

Tb∫

0

cos(2πf1t) cos (2π(f1 + ∆f1)t) dt

+
√

2
Tb

Tb∫

0

cos (2π(f1 + ∆f1)t)w(t)dt

r1 =
√

Eb
sin (2π(f1 + ∆f1)Tb)

2π(f1 + ∆f1)Tb
+

√
Eb

sin (2π∆f1Tb)
2π∆f1Tb

+ w1 (12.28)

An easy assumption to make is to ignore the 1st term since f1 >> 1, typically ∼ 106 − 109.
Therefore,

r1 =
√

Eb
sin (2π∆f1Tb)

2π∆f1Tb
+ w1

On the other hand,

r2 =
√

Eb
2
Tb

Tb∫

0

cos(2πf1t) cos (2π(f2 + ∆f2)t) dt

+
2
Tb

Tb∫

0

cos (2π(f2 + ∆f2)t)w(t)dt

=
√

Eb
sin (2π(f1 + f2 + ∆f2)Tb)

2π(f1 + f2 + ∆f2)Tb
+

√
Eb

sin (2π(f2 − f1 + ∆f2)Tb)
2π(f2 − f1 + ∆f2)Tb

+ w2

(12.29)

Again the 1st term is easily ignored. To ignore the 2nd term is more problematical. Let
f2 − f1 = 1/Tb, the minimum separation for (noncoherent) orthogonality. Then the term
becomes

√
Eb

sin 2π∆f2Tb
2π(1+∆f2Tb)

. If ∆f2Tb << 1, say < 0.1, then
√

Eb
sin 2π∆f2Tb
2π(1+∆f2Tb)

< 0.09
√

Eb and is
ignored in the plots. Therefore r2 = w2.

Similarly for 1T :

r1 =
√

Eb
sin (2π(f2 + f1 + ∆f1)Tb)

2π(f2 + f1 + ∆f1)Tb
+

√
Eb

sin (2π(f1 − f2 + ∆f1)Tb)
2π(f1 − f2 + ∆f1)Tb

+ w1 ≈ w1

r2 =
√

Eb
sin (2π∆f2Tb)

2π∆f2Tb
+ w2

(
where again the double
frequency term is ignored

)
(12.30)
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The received signal space looks as follows:

0

2

2

sin(2 )

2
b

b
b

f T
E

f T

π
π

∆
∆ 1 2=r r

0D

2r

1r

2d

1d

1

1

sin(2 )
0

2
b

b T
b

f T
E

f T

π
π

∆ ↔
∆

Figure 12.13

The terms w1,w2 are zero-mean Gaussian random variables. However because of the fre-
quency offsets they are not of variance N0/2 (see the solution to P12.4). Further they are
correlated because cos (2π(f1 + ∆f1)t), cos (2π(f2 + ∆f2)t) are not orthogonal. However, this
correlation is

sin (2π(f2 + f1 + ∆f2 + ∆f1)Tb)
2π(f2 + f1 + ∆f2 + ∆f1)Tb

+
sin (2π(f2 − f1 + ∆f2 −∆f1)Tb)

2π(f2 − f1 + ∆f2 −∆f1)Tb

≈ sin 2π(∆f2 −∆f1)Tb

2π (1 + (∆f2 −∆f1)Tb)

(
note that f2 − f1 ≈ 1

Tb

)
(12.31)

And since it is reasonable to assume that ∆f2 ≈ ∆f1 then the correlation is negligible and
ignored, i.e., w1,w2 are treated as zero-mean statistically independent Gaussian random
variables of variance N0/2.

Therefore

P [bit error] =
1
2
Q

(
d1√
N0/2

)
+

1
2
Q

(
d2√
N0/2

)
(12.32)

If we assume (which we do for the plots) that ∆f2 ≈ ∆f1 ≈ ∆f ⇒ d1 ≈ d2 ≈ d

P [bit error] = Q

(
d√

N0/2

)
= Q

(√
Eb

N0

sin(2π∆fTb)
2π∆fTb

)
(12.33)

where d =
√

Eb
sin 2π∆fTb

2π∆fTb
cos(45◦). Plots are those of P12.4 except for a 3dB (loss) factor. See

Fig. 12.14.
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Figure 12.14

P12.6 The block diagram looks as follows:

( )h t
( )tθ Phase 

detector

VCO
VCO 0( ) ( )d

t
t K vϕ λ λ= ∫

( )in ( ) ( )v t g tψ= ( )0 ( ) ( ) ( )v t h t g tψ= ⊗

Figure 12.15

Now ψ(t) = θ(t)− ϕ(t) or ψ(t) + ϕ(t) = θ(t).

⇒ dψ(t)
dt

+
dϕ(t)

dt
=

dθ(t)
dt

.

But dϕ(t)
dt = Kvcov0(t) = Kvcoh(t) ∗ g[ψ(t)].

∴ dψ(t)
dt

+ Kvcoh(t) ∗ g[ψ(t)] =
dθ(t)
dt

.
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P12.7 The impulse response of the loop filter of Figure 12.7(a) is h(t) = δ(t). Therefore the differ-
ential equation becomes

dψ(t)
dt

+ Kvcog(ψ) = ∆ω or
dψ(t)

dt
= ∆ω −Kvcog(ψ).

(a) The sawtooth characteristic looks as follows:

ψ

( )g ψ

0

dV

dV−

π−
2π−

π
2π

3π

Figure 12.16

The phase plane is

0 ψ

d / dtψ

VCO dK V ω+ ∆

π−
2π−

π
2π

3π

VCO dK V ω− + ∆
: stable operating point

: unstable operating point

VCO

steady state error
dK V

π ω∆=

Figure 12.17

Remark: Vd/π can be called the gain of the phase detector.
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(b) The triangular characteristic looks as follows:

ψ

( )g ψ

0

dV

dV−

π−2π−
π 2π

2

π−

2

π

3

2

π−

3

2

π

Figure 12.18

The phase plane is

ψ0
π−2π− π 2π

2

π−
2

π3

2

π− 3

2

π

d / dtψ

VCO dK V ω+ ∆

VCO dK V ω− + ∆
: stable operating point

: unstable operating point
VCO

steady state error
2 dK V

π ω∆=

Figure 12.19

Remark: One feature of the above 2 characteristics is that their implementation is
accomplished by digital circuits. See Gardner, “Phaselock techniques”, for a discussion.
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P12.8 (a)

in ( ) sin ( )v t tψ= 0 ( )v t

( )i t
+

−

+

−

R

C

Figure 12.20

Using i(t) = C dv0(t)
dt and KVL, we have

vin(t) = v0(t) + RC
dv0(t)

dt
(12.34)

Now (refer to Fig. 12.10b): ψ(t) = θ(t)− ϕ(t) and ϕ(t) = Kloop

∫ t
v0(λ)dλ.

⇒ ϕ(t) = θ(t)− ψ(t);
dϕ(t)

dt
= Kloopv0(t);

d2ϕ(t)
dt2

= Kloop
dv0(t)

dt

⇒ dϕ(t)
dt

=
dθ(t)
dt

− dψ(t)
dt

;
d2ϕ(t)

dt2
=

d2θ(t)
dt2

− d2ψ(t)
dt2

Therefore

RC
dv0(t)

dt
+ v0(t) =

RC

Kloop

d2ϕ(t)
dt2

+
1

Kloop

dϕ(t)
dt

= sin ψ(t)

⇒ RC

Kloop

d2ψ(t)
dt2

+
1

Kloop

dψ(t)
dt

+ sin ψ(t) =
RC

Kloop

d2θ(t)
dt2

+
1

Kloop

dθ(t)
dt

or
d2ψ(t)

dt2
+

1
RC

dψ(t)
dt

+
Kloop

RC
sinψ(t) =

d2θ(t)
dt2

+
1

RC

dθ(t)
dt

(b) The state variables are ψ(t) and ψ̇(t) = dψ(t)
dt . We can write the state equation(s) in two

different ways. The standard approach is to define x = ψ(t) and y = dψ(t)
dt as the state

variables. Then the two state equations are:

dx

dt
=

dψ

dt
= y

dy

dt
=

d2ψ

dt2
= − 1

RC

dψ(t)
dt

− Kloop

RC
sinψ(t) =

1
RC

[−y −Kloop sinx]

One can then solve (numerically) the above two 1st order nonlinear differential equations
for state variables x, y (i.e., ψ, ψ̇) and plot the phase plane, namely ψ̇ versus ψ.
The other approach is to obtain directly a differential equation for ψ̇ with ψ as the
independent variable and solve this numerically. Proceeding as in the text (see page
518) we get:

dψ̇

dψ
= − 1

RC
− Kloop

RC

sinψ

ψ̇
.

Remark: For the state (or phase) plane we assumed that the forcing function θ(t) is
zero. Have only non-zero initial conditions.
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(c) The phase plane plots are shown in Fig. 12.21 for Kloop = 1/2 and Kloop = 2 and with
RC = 1.
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Figure 12.21

P12.9 Use the Laplace transform to obtain the transfer function and then convert to the time domain
using the relationship between operators of s ↔ d

dt .

in ( )V s 0 ( )V s

( )i t
+

−

+

−

1R

1

sC

R

Figure 12.22

V0

Vin
=

R + 1
sC

R + R1 + 1
sC

=
1 + sRC

1 + s(R + R1)C

⇒ (R1 + R)CsV0(s) + V0(s) = RCsVin(s) + Vin(s)

⇒ (R1 + R)C
dv0(t)

dt
+ v0(t) = RC

dvin(t)
dt

+ vin(t)

As in P12.8, using the relationships: vin(t) = sinψ(t); ϕ(t) = Kloop

∫ t
v0(λ)dλ; ϕ(t) =
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θ(t)− ψ(t) and observing that dvin(t)
dt = cosψ(t)dψ(t)

dt we get

d2ψ(t)
dt2

+
1 + RC cosψ(t)

(R1 + R)C
dψ(t)

dt
+

Kloop

(R1 + R)C
sinψ =

d2θ(t)
dt2

+
1

(R1 + R)C
dθ(t)
dt

The state equations are obtained as follows. Let x = ψ and y = dψ
dt be the state variables.

Then the two state equations are:

dx

dt
= y

dy

dt
= −1 + RC cosx

(R1 + R)C
y − Kloop

(R1 + R)C
sinx (12.35)

Or the differential equation for ψ̇ as a function of ψ is

dψ̇

dψ
= −1 + RC cosψ

(R1 + R)C
− Kloop

(R1 + R)C
sinψ

ψ̇
. (12.36)

Remarks:

(i) As a quick (partial) check let R = 0 and R1 → R. Then equations (12.35), (12.36)
should agree with those of P12.8.

(ii) One can write the state equations (12.35) with a non-zero forcing function, if desired.

(iii) One can use numerical methods to solve the nonlinear 1st order differential equation
of (12.35) to obtain ψ̇, ψ and plot ψ̇ versus ψ. It seems preferable to solve (12.36) and
obtain ψ̇ as a function of ψ. Why?
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The phase plane plots are shown in Fig. 12.23 for Kloop = 1/2 and Kloop = 2 and with
R1C = RC = 1.
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Figure 12.23

Remarks: For the interested reader, generic Matlab codes to generate the phase plane plots
of P12.9 are given below.

t_range=[0:0.05:20];
d_phase_error=[-3.5:0.5:3.5, -10^(-4),10^(-4)];
PLL=inline(’[-0.5*(1+cos(y(2)))*y(1)-(2)*0.5*sin(y(2));y(1)]’,’t’,’y’);
% Set R_1C=RC=1, parameter K_loop is entered in this expression
for i=1:length(d_phase_error);

if d_phase_error(i)<0
phase_error=pi;

else
phase_error=-pi;

end
ini_con=[d_phase_error(i),phase_error];
[T,Y]=ode45(PLL,t_range,ini_con);
x=Y(:,2);fx=Y(:,1);
figure(1);
if d_phase_error(i)<0

plot(x,fx,’k’,’linewidth’,0.5,’linestyle’,’--’);hold on;
else

plot(x,fx,’k’,’linewidth’,0.5,’linestyle’,’-’);hold on;
end

end
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P12.10 The transfer function of the inverting (ideal) operational amplifier is

V0(s)
Vin(s)

= − Zf (s)
Zin(s)

=
R + 1

sC

R1
= − R

R1

(
1 +

1
RCs

)
. (12.37)

Let a → 1
RC and R1 = R, we have the desired transfer function of H(s) = 1+ a

s . The negative
sign is easily accounted for by inserting an unity-gain inverting amplifier.

P12.11 The question is what straight line to use. Let us use the simplest one. Choose its slope to be
that of sinψ at the origin, which is d sin ψ

dψ

∣∣
ψ=0

= 1. Over the range (−π/6, π/6) the maximum
error occurs at π/6 and is π/6− sin(π/6) = 0.024 ⇒ % error = 0.024

π/6 × 100 = 4.5%.

P12.12 (a) ϕ(s) = KloopH(s)
s Ψ(s); Ψ(s) = Θ(s)− ϕ(s).

⇒ ϕ(s) =
KloopH(s)

s
[Θ(s)− ϕ(s)] ⇒ ϕ(s) =

KloopH(s)/s

1 + KloopH(s)/s
Θ(s) = T (s)Θ(s).

For the reader knowledgeable in control theory the above result follows immediately by
considering ϕ(s) as the output of a (linear) unity feedback system with KloopH(s)

s as the
forward loop transfer function.

(b) Ψ(s) = Θ(s)− ϕ(s) = Θ(s)− T (s)Θ(s) = [1− T (s)]Θ(s).

P12.13

Θ(s) =
∆ω

s2
+

θ0

s
; T (s) =

Kloop

s + Kloop
; 1− T (s) =

s

s + Kloop

Ψ(s) =
∆ω

s(s + Kloop)
+

θ0

s + Kloop
=

∆ω

Kloops
− ∆ω

Kloop(s + Kloop)
+

θ0

s + Kloop

ψ(t) =
∆ω

Kloop

(
1− e−Kloopt

)
u(t) + θ0e−Klooptu(t).

The steady-state error is ∆ω
Kloop

which agrees.

Matlab work to be done for ψ(0) = π/4,−π/10; ωd = 0.1, 0.5.

For the plot of the transient response, write the error expression in terms of ωd ≡ ∆ω
Kloop

and
tn ≡ Kloopt. Note that θ0 = ψ(0), ψ(t) = ωd(1− e−tn) + ψ(0)e−tn .

P12.14 From P12.12 we have Ψ(s) = [1− T (s)]Θ(s) where T (s) = KloopH(s)/s
1+KloopH(s)/s

⇒ 1− T (s) =
s

s + KloopH(s)
=

s2

s2 + Kloop(s + a)

∴ Ψ(s) =
s2

s2 + Kloop(s + a)
· ∆ω + sθ0

s2
=

sθ0 + ∆ω

s2 + Kloop(s + a)
⇒ lim

s→0
sΨ(s) = 0 = lim

t→∞ψ(t) = steady-state error.

Result agrees with that of text - see discussion on page 517.
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P12.15 (a) From P12.9 we have

H(s) =
R

R1 + R

s + 1
RC

s + 1
(R1+R)C

∴ K =
R

R1 + R
; a =

1
RC

; b =
1

(R1 + R)C
.

(b)

T (s) =
KloopH(s)

s + KloopH(s)
=

Kloop(s + a)
s(s + b) + Kloop(s + a)

=
Kloop(s + a)

s2 + (Kloop + b)s + aKloop

1− T (s) =
s(s + b)

s2 + (Kloop + b)s + aKloop

∴ Ψ(s) =
s(s + b)

s2 + (Kloop + b)s + aKloop
· ∆ω + sθ0

s2

⇒ lim
s→0

sΨ(s) = lim
s→0

(s + b)(∆ω + sθ0)
s2 + (Kloop + b)s + aKloop

=
b∆ω

aKloop

=
R

R1 + R

∆ω

Kloop
(the steady-state error).

Compared to the 1st-order loop the steady state error is reduced by the factor R
R1+R .

However compared to the perfect integrator it is non-zero since the filter does not “real-
ize” the perfect integrator but only approximates it. This approximation becomes better
as R1 increases relative to R (perfect when R1 → ∞). But practically R1 can only be
made so large otherwise the high gain amplifier used for compensation shall start giving
problems.

P12.16 (a) The phase detector output is:

[V sin (ωct + θ(t)) + nI(t) cosωct + nQ(t) sinωct]K cos (ωct + tϕ(t))

Using the trigonometric identities

cosx cos y =
cos(x + y) + cos(x− y)

2
and sinx cos y =

sin(x + y) + sin(x− y)
2

and ignoring the 2ωc terms which are fairly easily filtered out, we get

vout(t) =
KV

2
sin (θ(t)− ϕ(t)) +

K

2
nI(t) cos ϕ(t)− K

2
nQ(t) sin ϕ(t)

(b) Define the noise term n′(t) ≡ K
2 nI(t) cos ϕ(t) − K

2 nQ(t) sin ϕ(t). The phase detector
output is vout(t) = KV

2 sin (ψ(t)) + n′(t) and the block diagram follows immediately.

Solutions Page 12–20



N
gu

ye
n

&
Sh

w
ed

yk

Nguyen & Shwedyk A First Course in Digital Communications

(c) The output of the phase detector is v0(t) = A sinψ(t). The output of the loop filter or
input to the VCO is

vin(t) = Kh(t) ∗A sinψ(t) + Kh(t) ∗ n′(t)

ϕ(t) =

t∫

0

vin(λ)dλ ⇒ dϕ(t)
dt

= vin(t)

and ψ(t) = θ(t)− ϕ(t) ⇒ dϕ(t)
dt

=
dθ(t)
dt

− dψ(t)
dt

⇒ dψ(t)
dt

+ KA

t∫

−∞
h(t− λ) sin ψ(λ)dλ =

dθ(t)
dt

−K

t∫

−∞
h(t− λ)n(λ)dλ

The reasoning that n′(t) can be modeled as a Gaussian process, indeed as a “white”
Gaussian process can be found in “Principles of Coherent Communication” by A.J.
Viterbi (McGraw-Hill); section 2.7, pages 28–34.

P12.17 (a)

E {ϕ(t)} = E





t∫
Kh(λ) ∗ n′(λ)dλ



 = K

t∫
Kh(λ) ∗ E

{
n′(λ)

}
dλ = 0

since E {n′(λ)} = 0. Remember that expectation is a linear operation, as in inte-
gration and convolution, so the operations can be interchanged. Further, E {ψ(t)} =
−E {−ψ(t)} = −E {ϕ(t)} ≈ 0.

(b) The block diagram relating ϕ(t) to n′(t) is

( )

( )

Kh t

KH jω

( )tϕ( )
0

dt

1/

t

jω
∫

A

+

− ( )jϕ ω

( )t′n

( )jω′n

Figure 12.24

The transfer function relating ϕ(jω) to n′(jω) is

KH(jω)/jω

1 + AKH(jω)/jω
⇒ Sϕ(ω) =

∣∣∣∣
KH(jω)/jω

1 + AKH(jω)/jω

∣∣∣∣
2

Sn′(ω) (watts/Hz).

Obviously Sψ(ω) = Sϕ(ω).
(b) Multiply the transfer function (top and bottom) by A

∴ Sϕ(ω) =
∣∣∣∣

AKH(jω)/jω

A (1 + AKH(jω)/jω)

∣∣∣∣
2

Sn′(ω) =
1

A2

∣∣∣∣
AKH(jω)/jω

1 + AKH(jω)/jω

∣∣∣∣
2 N0

2

=
1

A2
|T (jω)|2 N0

2
= Sψ(ω)
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where T (jω) is the closed loop transfer function as seen by the following block diagram.

( )Kh t
( )tϕ

( )
0

dt
t∫A

+

−

( )tθ

Figure 12.25

(d)

σ2
ψ =

1
2π

∞∫

−∞
Sψ(ω)dω =

1
π

∞∫

0

Sψ(ω)dω (using even property of a PSD)

=
1
π

∞∫

0

N0

2A2
|T (jω)|2 dω =

N0

A2


 1

2π

∞∫

0

|T (jω)|2 dω


 =

N0Bloop

A2
(watts).

P12.18 Raising the signal to the nth power (ignore noise) means
[√

Es

(
ej 2πk

m

)]n
=

(√
Es

)n
ej 2πnk

m .

Of course it is desirable to raise it to the smallest possible power to get a (non-zero) constant
value, more specifically a (non-zero) constant positive real value for all k. It follows that
n = m.

P12.19 Again one wishes to create a (non-zero) constant positive real value for all kl. It follows that
n = LCM{kl}. Here LCM means the least common multiple. For example, for Fig. 12.26,
m = LCM{4, 8, 12} = 24. (Taking C = 3, k1 = 4, k2 = 8, k3 = 12).

P12.20 Every woman for herself here.
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