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Preface

This SOLUTIONS MANUAL was last updated in August, 2011. We appreciate receiving comments
and corrections you might have on the current version. Please send emails to ha.nguyen@usask. ca
or shwedyk@ee.umanitoba.ca.



Chapter 2

Deterministic Signal Characterization
and Analysis

P2.1 First let us establish (or review) the relationships for real signals

(a) Given {Ay, By}, ie., s(t) = Y 5o [Axcos (2nk frt) + By sin (27wk f,t)], Ay, By, are real.
Then Cj, = /A2 + B2, ), = tan™! f’“, where we write s(t) as

t) = i Cy cos (2mk frt — O)

k=0
If we choose to write it as
(o]
= Cicos (2rk fyt + O)
k=0
then the phase becomes 6, = — tan™" B’“ . Further
Ay, — jBy

D, =
2
Dy = Dj, k=1,23,...
D() = AO (B() =0 always).
(b) Given {Cf, 0} then Ay = Cy cosOy, By = Cjsinf. They are obtained from:
Z Cy cos (2mk frt — ) = Y _ [Cl, cos b, cos(2mk fyt) + Cy sin O, sin(2nk f,1)]
k=0 k=0

Now s(t) can written as:

jl2mkfrt—0k] 4 q—il2mkfri— m}

N

_.790 7600 o C . '
s(t) = Co { +e } "‘Z { k o0k gi2mkfrt | lejeke]%rkfrt]
k=1

cos g
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Therefore
Dy = Cycosby where 0 is either 0 or m
C .
Dy = 7’%—9% k=1,2,3,...

What about negative frequencies? Write the third term as %ejekej 2k (=fr) 1] where
(—fr) is interpreted as negative frequency. Therefore D_j, = %e*jek, ie., D_j = Dj.
Given {Dy}, then Ay = 2R{Dy} and By = —2Z{Dy}. Also Cyx = 2|Dg|, 0 = —4£Dx,
where Dy, is in general complex and written as Dy = |Dy|e’ ZDy

Remark: Even though given any set of the coefficients, we can find the other 2 sets, we
can only determine {Ay, Bi} or {Dy} from the signal, s(t), i.e., there is no method to
determine {Cy, 6y} directly.

Consider now that s(t) is a complex, periodic time signal with period T' = %, ie.,
s(t) = sgr(t) + jsr(t) where the real and imaginary components, sg(t), s;(t), are each
periodic with period T = . Again we represent s(t) in terms of the orthogonal basis
set {cos (2mk f,t), sin (27kar )}k=1,2,... That is

[e.e]

s(t) = _[Aycos (2mkf,t) + By sin (27k f,t)] (2.1)
k=0

where Ay = # [, s(t) cos (2mk fyt)dt; By = % [, s(t) sin (27k f,t)dt are now complex
numbers.

One approach to finding Ay, By is to express sg(t), s;(t) in their own individual Fourier
series, and then combine to determine Ay, By. That is

sp(t) = Z [AI(CR) cos (2mk ft) + B,(CR) sin (Qkart)}
k=0

si(t) = [A,(f) cos (2mk frt) + B,(CI) sin (27rkfrt)}
k=0

= s(t) = Z (A]E:R) + ]A,(CI)> cos (2mk frt) + (BIER) + jB,gI)) sin (27k f,.t)
k=0 |N————

| —
=Ay =By

So now suppose we are given { Ay, Br}. How do we determine {C}, 0} and Dy?
Again, (2.1) can be written as

N [( A= BN amkpe (At IBRY jarkg
s(t) = ;0 K 5 e + 5 e

As before, define Dy, as Dj, = 4 ] £ and note that the term > 72 7Ak‘;.73ke 32k frt can
be written as

0 . 0 . 0
Ak + JB—k jonkft Ak —JBK\ jorkft j2rkfot
Yo e X (T ) Kb

k=—00 k=—oc0 k=—00
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Therefore s(t) = > 72 Dyel?mkfrt where D), = %, k=4+1,42, ... and Dy =

Ap — jBy (note that By is not necessary equal to zero now).

Equation (2.1) can also be written as:

N B
S(t) = Z \/@COS (27Tk'f7,t — tanfl ‘4:)
k=0

from which it follows that C} = 1/Az + B,% and 0, = —tan™! f—’;.

Remarks:

(i) Dy # Dy if s(t) is complex.

(ii) The amplitude, C%, and 0 are in general complex quantities and as such lose their
usual physical meanings.

(iii) A complex signal, s(t) would arise not from the physical phenomena but from our
analysis procedure. This occurs for instance when we go to an equivalent baseband
model.

A —jBg

2

= %, we have, upon

Consider now that {D;C = } are given. Then since D_y
adding and subtracting Dy, D_y: Ay = Dy + D_y; By, = j(Dr, — D_g).
{Ck, 0} can be determined from {Ag, By}, which in turn can be determined from Dy

as above.

P22 (a) Ay =% [, ops(t)cos (2rkft)dt = 2 [,_, s(t) cos (2m(—k) frt)dt = Ay, i.e., even.
(b) B =% [,cp s(t)sin (2nkfyt)dt = =2 [, 5 s(t) sin (2x(—k) frt)dt = —B_y, i.e., odd.
(¢) Ck =1/A2+B% C_i, = /(A_k)? + (B_x)? = \/(4Ar)? + (—By)? = Ck, i.e., even (note
that squaring an odd real function always gives an even function).
(d) 0 = —tan™! (i—:); 6_, = —tan! <§—:z) = —tan~! <—§—:> = tan~! (ﬁ—:) = —0, i.e.,
odd (note that tan~!(-) is an odd function).

Ap—jBy . A_k—3B_k Ax+iB
(€) Dy = =525 Dy = 2 = == =Dy

Remarks: Properties (a), (b) are true for complex signals as well. But not (c), (d), (e),
at least not always.
P23 f. =1 =1 (Hz).
A1 = QR(Dl) = 0; Bl = QI(D1> = —2.
As =2R(Ds5) = 4; Bs = —27(D5) = 0.
Cy=2|Dy| =26, = /Dy = I.
05 — 2‘D5‘ = 4; 95 =0.
. s(t) = —2sin (27 (%t)) + 4 cos (27 (%t)) = 2cos (27 (%t +75)) +4cos (2 (%t))
P2.4 The fundamental period, f,, is f, = f. (Hz).

Vv o... vV oo )
1 _ VY ja_ j2nfet | ¥V —ja —j2mfct
(a) Write s(t) as s(t) = 5e"¢ 4 ge e ‘
k=1 N—— k=-1
Dl D*l

SOLUTIONS PAGE 2-3



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

(i) Dy = ¥e* D_y = Ye I = Dj.

(ii)a:O:>D1 §:D_1.

(ili) a=m= Dy =-Y =D_,4

(iv) @ = —m = same as (iii), not much difference between +m and —.
(V)a: :>D1—]27D1—_]2

(vi) a=-% = Dy =—j¥, D_; =j¥%.

(b) The magnitude spectrum is the same for all the cases, as expected, since only the phase
of the sinusoid changes. It looks like:

| | (volts)

~1, 0 f. f(H2)
Figure 2.1

The phase spectra of cosines change as shown in Fig. 2.2. For (iii) and (iv), which
plot(s) do you prefer and why?

Note: In all cases, the magnitude and phase spectra are even and odd functions, respec-
tively, as they should be.

(c) s(t) =V cosacos (2nf.t) — Vsinasin (27 f.t)

(i) Ay =Vcosa, By = —Vsina.
(i) Ay =V, By = 0.
(ili) Ay =V, By =0.
(iv) same as (iii).
(v) A1 =0, By =-V.

(vi) A1 =0, B =V.
For {C%, 0} we have C; =V always and 6; =

P2.5 s(t) = 2sin(2nt — 3) + 6 sin(67t).

(a) The frequency of the first sinusoid is 1 Hz and that of the second one is 3 = 3 Hz. The
fundamental frequency is f, = GCD{1,3} = 1 Hz. Rewrite sin(z) as cos(ac —%). Then

s(t) = _2 cos 2wt—<3+g) + L cos | 2m(3)t = 2
Cl T/ 03 \9/
1 3

Use |Dy| = % 4Dy, = 0y, D_j, = Dj relationships to obtain:
Dy = 1e33+3) , D3 = ,eJQ
.D_;1=1e7’ (3+ ) D_g = fe_]2

(b) See Fig. 2.3.
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O (radians)

O (radians)

Q) (ii)
777777777 a
-1, )
l 0 f. f(H2) ~f, 0 i f(H2)
,,,,,,,, (Phase spectrum of acos([))
-a
(iii), (iv) Or
0 (radians) 0 (radians)
,,,,,,,,, n 72' - —
_fC ‘ ‘ fc
0 fo  f (H2) -, 0 J f (Hz)
=JTé————————7 e v/
Or Or
0 (radians) O (radians)
,,,,,,,,, P
_fC fC
—1, 0 f. f(H2) | 0 I f (H2)
(Phase spectrum of a—cos()) 41 LA -1
W) O (radians) (vi) O (radians)
,,,,,,,,, n2 % o
_fC fC
| 0 f. f (Hz) -, 0 f (Hz)
_% ,,,,,,,,,,,,,,,,, A

(Phase spectrum of a—sin()) (Phase spectrum of asin())

Figure 2.2

P2.6 Classification of signals is as follows:
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| Dy | (volts)
1

%

-3 -2 -1 0 1 2

f (Hz)

0D, (radians)

(3+7)

172

_/21 0 1 2 3 f(Hy

Figure 2.3

(a) It has odd (but not halfwave) symmetry.

(b) Neither even, nor odd but show a halfwave symmetry.
)
)

(c
(d

Even symmetry, also halfwave symmetry, therefore even quarterwave symmetry.
(i) odd symmetry, also halfwave = odd quarterwave symmetry.
(ii) neither even, nor odd, nor halfwave.
(iii) even but not halfwave.
(e) Neither even, nor odd, nor halfwave.
(f) Any even signal still remains even since s'(t) = DC + s(t) and s'(—t) = DC + s(—t) =
DC + s(t) = §'(t).

Any odd signal is no longer odd. Note that a DC is an even signal.

Any halfwave symmetric signal is no longer halfwave symmetric. Again a DC signal is
not halfwave symmetric and this component destroys the halfwave symmetry. Note that
any signal with a nonzero DC component cannot be halfwave symmetric.

Regarding the values of the Fourier series coefficients, all that changes is the Dy, Cy or
Ag value, i.e., the DC component value. All other coefficients are unchanged.
(g) In general the classification changes completely. But for certain specific time shift the

classification may remain the same. To see the effect of a time shift on the coefficients
consider first

D;(:hifted) = 1/ s(t — 7)o I2mkfrtqp AT gmi2mhkfeT [1/ S(A)eﬂ”kaAd)\]
T/, T
eT \eT

-~

Dy,
. D]E:shifted) _ e_jgﬂkaTDk

hifted) ., (shifted
D]E:shifted) _ AS ted) —JB;(CS ted)

= [cos (2mk fy7) — jsin 27k f,.7)] [Ak’_]B’f]

2 2
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A,(CShifted) = Ay cos (2nk f,7) — By sin 27k f, 7).

B,(:hifted) = Ay sin 27k f,.7) + By, cos (2mk f7).

Now (shifted) -
Dlishifted) _ Ck2 O g2k for {%ejek}
——
Dy,
C}gshifted) o
SO — g jorkf,.

Basically a time shift leaves the amplitude of the sinusoid unchanged and results in a
linear change in the phase.

P2.7 (a) s(=t) = si(—t) + s2(—t) =
(b) s(—t) = s1(—t) + sa2(—t) =
() s(tx3)=s1(t£%)+s

symmetric.

s1(t) + sa2(t) = s(t) = even.
s1(t) — sa(t), no symmetry.
( %) = —51(t) — s2(t) = —s(t). Therefore s(t) is halfwave

(d) Can’t say anything.
(e) Again cannot say anything.
(f) Consider s (t+ %) =5 (t£ %) + 59 (t %) = —s1(t) — s2(t) = —s(t). Therefore s(t) is

halfwave symmetric.

Now if both s1(t), s2(t) are even then s(t) is even and therefore it is even quarterwave
symmetric. If both are odd, s(t) is odd and s(t) is odd quarterwave symmetric. However
if one is even and the other is odd then s(t) is only halfwave symmetric.

g) s(t) is even but not halfwave symmetric.

—t)sa(—t) = s1(t)s2(t) = s(t) = even.
—t)sa(—t) = —s1(t)s2(t) = —s(t) = odd.
(t+L) = si(t£L)so(t£L) = [=s1(t)][—s2(t)] = s(t). Therefore s(t) is not
halfwave symmetric. Note that the fundamental period changes to %
(d) Neither even nor halfwave symmetric.
(e) Neither odd nor halfwave symmetric.
(f) Have 3 possibilities: (i) s1(t), s2(t) are both even quarterwave; (ii) s1(t), s2(t) are both
odd quarterwave; (iii) one is odd quarterwave, the other is even quarterwave.
(i) From (a) it follows that s(t) is even. From (c) it follows that it is not halfwave
symmetric.
(ii) Easy to show that s(t) is even. But s (¢ + D=si(txD)sa(t £ L) = [—s1(t)] [-52(t)] =
s1(t)s2(t) = s(t) # —s (t £ L), therefore not halfwave symmetric.

SOLUTIONS PAGE 2-7
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P29 (a)

(iii) s(¢) is odd (follows from (b)) but again s (¢ + %) =s(t) #—s(t+ %), therefore not

halfwave symmetric.

Again note that in each case the fundamental period changes to %

(g) s(t) is even. Is it halfwave symmetric?
T T T T
1) = + +I) = s ([t -
s <t 2> s1 <t 2) S9 <t 2) $1 (t 2) s9(t) # —s(t)

Check for 2 conditions: that the magnitude is even and the phase is odd. If both are
satisfied then the signal is real. If one or the other or neither condition is satisfied then

No.

the signal is complex.

(i) real, (ii) real (note the phase of 7 is the same as —), (iii) complex (phase spectrum
is not odd).

If a harmonic frequency has a phase of m (or 0) then there is only a cos(-) term at this
frequency. Similarly if the phase is 5 (or 37”) then there is only a sin(-) term at that
frequency. Finally if the signal is even then it only has cos(-) terms in the Fourier series,

if odd then only sin(-) terms.

Therefore the signal in (ii) is even (and real). No signal is odd.

P2.10 The two spectra are

D, coefficients of V., cos(277f 1)

17

m m

V,
&
- f f (H2)
D, coefficients of V, cos(277f t)

v% V%

—f 0 -f. f (H2)

vmv% vmv% vmv% vmv%
| 1 | ]

—f,—f, —f+f 0 f-f  f+f f(HD)

Cc

Figure 2.4
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P2.11 The difference between two modulations of P2.1 and P2.2 is that the one in P2.2 has a spectral
component at f. or equivalently the modulating signal, s1(t) = Vpc + Vi, cos (27 fint), has a
spectral component at f = 0 (i.e., DC component).

S(f) (VIH2)
VDC
AR N
~fn 0 fon f (Hz)
S,(f)
V%[ [V%
-1, 0 —f. f (H2)
S(f)
vcv%[ VATA Ivcv% vcv%[ VATA Ivcv%
Sf—f, —f, —f +1, 0 f—f  f f+f f(H2)
Figure 2.5

Remarks:

(i) One can use the frequency shift property to determine the spectrum of s(t).

(ii) The phases of all the spectra are zero, a consequence of only cosines being involved, both
as carrier and message signals. A good exercise is to change some (or all) of the signals
to sines and redo the spectra.

(iii) The simplest way to find the spectra is to use some high-school trig, namely cos(z) cos(y) =
cos(z+y)+cos(z—y)
2

. No need to know convolution, frequency shift property, etc.
P2.12 (a) fi(t) = iﬂ% 27 fet — Vi sin (27 fint)] = fo — Vinfm cos (27 fint) (Hz).

fi(t) (H2)

fC +Vm fm

SOLUTIONS PAGE 2-9
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P2.13

(b)

Consider
s <t+ fi) = V,.cos [27rfc <t+ f]jn) — Vi sin (27rfm (t + i))]
= V.cos |2mfct + 27k J{C —Vmsin (27 fut + 27k) | = s(t)
s

n

Choose k =1, i.e., s (t + f%) = s(t) = periodic with period T' = f% (sec).

Consider s1(t) = I [27 fet—Vim sin(27 fm1)]
o <t * k) - ej[27rf6t+kn27r_vm sin(2m fmt+k2m)] _ ejQﬂlm ej[27rfct—Vm sin(27 fm )]

N—
1 s1(t)

m

Therefore s;(t) is periodic with period fLm (sec). Its Fourier coefficients are determined
as follows: .
Dy = 1 /erm oI 27 fet—Vin sin (2 )]y — 2k fint 4

2 2fm

Change variable to A = 27 f,,,T

T o

Dk 1 / ej[(n—k:)/\—Vm sin /\]d)\ — Jnfk(vm);

—T

where by definition J,,(z) = 5= [7 e /[PA=2snAq) is nth order Bessel function.

Remarks: The spectrum depends on V,,, the amplitude of the modulating signals. In
fact V;,, determines the maximum instantaneous frequency (see plot in (a)) which implies
that the larger V,, is, the wider the spectrum bandwidth becomes. Of course in theory
there are spectral components out to infinity but in practise a finite bandwidth would
capture most of the power of the transmitted signal. The restriction that f. is an integer
multiple of f,, is easily removed but for this the Fourier transform is needed since the
signal is no longer periodic in general.

si(t) = 1+ V26l T2 | \/2e 75 o i2Tt | 5i2214j2m(2t) | 5o—i2.21,—j2m(2t)
1 e I2:21i2m(31) | 0221, —j2m(31)

= 1+2V2cos (27t + %) + 10 cos (4t + 2.21) + 10 cos (67t + 2.21)

where f, is taken to be 1 Hz.
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sa(t) = 2cos (27t + F)

s1(t)s2(t) = 2cos (27rt + Z) + 2v/2 cos? (27rt + %)

+20 cos (47t + 2.21) cos (27Tt + %)
+20 cos (67t — 2.21) cos (27Tt + %)

= 2cos <27rt + %)
+v/2 (1 + cos (47715 + g)) + 10 cos (27Tt + % — 2.21>
+10cos (6t + 7 +221) + 10cos (4mt —2.21 - 7
+10 cos (87rt —2.21+ %)

= V24 2cos (27Tt+ %)
+10cos (27rt + % N 2.21) + /2 cos (47Tt + g)
+10cos (4t — 7 —221) + 10cos (6mt +2.21 + 7 )
+10 cos <87rt —2.21+ Z)

Do = V2 Dy = el 45¢0(i7220); Dy = V26i5 4 5ei(5+221),
Ds = 5ej(§+2.21); Dy = 5e—j(g—221); D_j, =D}

P2.14 The signal s1(t) is shown below:

V cos(277f t)

-T —%0% T

Figure 2.7

The Fourier coefficients of s1(t) are given by

1) _ 1 T jonk sin (7F)
. = — —jomgt 34 _ 5
Dk - T /—Z e T dt —
Vv
[V cos(2m fet)] _ 5, k=41 _ K ) K
Dk { 0, k otherwise 2 ép(k—1)+ 5 Sp(k+1).
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where dp(-) is interpreted as a “discrete” delta function, i.e.,

= {3 239

D}[j(t)] _ D,[fl(m N DLVCOS(Qﬂfct)]
_ io: sin W(I“C_T")
B L m(k—mn)
v sin (n(5))

|:¥5D(n -1)+ %5D(n +1)

Ksin (Tr(l—“'g—l))

S () s(t) =V cos(277f,t)

VARA

S,(t)
Vi
-, |0 t, t
-4t
i i v
.
M,
Figure 2.8

P2.15 It is obvious that we are interested in the case V; < V, otherwise there is no saturation (see
Figure 2.8).
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The time ¢; is given by: V cos(2nfint1) = Vi = 1 = 5= Vl)

1 —1
5 COS (7 .

The time to is given by to = ﬁ + (41“% — L‘1) = ﬁ — 27r1fm cos™! (

<=

Lastly to — t1 = 2]%” — ﬁ cos™! (%) = At.
We are now in a position to draw the waveforms s; (), s2(t) as in Figure 2.9. Note that s1(¢)

is periodic with period 2fLm and has a DC component equal to % On the other hand sy(t)

is periodic with period f%n

Now we determine the Fourier coefficients for s;(t), s2(t). The basic pulse shapes for s;(t)

(over time interval —ﬁ to 4}‘%) and so(t) (over time interval _Qf% to 2%”) are shown in
Fig. 2.9.

si(t) S, (1)

Vl

y /%fm:T/z
A 2 R 7 7 J =3 |_

t

Figure 2.9
Fourier coefficients of s (¢):
1 [z 1
2 .
D’[jl(t)} = T /12" S]_(t)e_‘]27r%tdt, where T = %
1 b k T
= = / e 2T it +/ e I Ttdt
T |/ T t
2
sin(mk) — sin (%) —sin (k cos™ (%))
B k B k
t 1 Vi
where % =2fnt1 = ;cos_1 <V1> , k=4£1,42,...,
D([)sl(t)] _ b tl.
T

Fourier coefficients of sa(t):

1 —to i t1 3 z .
D’[CSQ(t)} - / V'le—j27r;itdt+/ Vle—]27r;2tdt+/2 Vie—]Zﬂéitdt]
T\|/)-z —t1 t2
2
Vi 2kt 2kt 1
= 7?/1: [sin( WT 2) —|—sin< WT 1)] , where T' = f—m
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Now & = % cos™ 1 (7) and % % — % cos™ 1 (%) Therefore

T
D,ESQ(t)] = [1 — cos(mk)] sin (k cos~! <“//1)> .

Consider now the coefficients of s;(t)s(¢) which is a convolution of the Fourier coefficients of
s1(t) and s(t). The Fourier coefficients of s(t) are simply Dy = % (k=1or f = f) and
Dy =% (k=-1or f=—fny). All other coefficients are zero.

Graphically:
DL
\Y \Y
/2[ Z
. -5f —4f -3f -2f —f_ |0 f_ 2f 3f 4f 5f_ 6f - f, (H2)
-3 -2 -1 0 1 2 3 4 5 6 - Kk
Dis)
Dfl Df] 0D([)s] Df] Df]
—6f, -4f -2f, 0 f, 2f, 41, 6f, --- f. (H2)
-3 -2 -1 0 1 2 3 -k
[a) &) [a) [a)
DIs®s®  + + ¥ ¥
- z. Zo Zo o
g & & &
D, =D, Sl >N Sl >[N
~4f —3f —2f —f_ [0 f_ 2f 3f 4f 5f_ 6f 7f - f, (H2)
01 2 3 4 5 6 7 k
Figure 2.10

Convolve the Fourier series of s1(t), s(t) graphically, namely flip D,[:(t)] around the vertical

axis, slide it along the horizontal axis, multiply by D,[jl(t)] and sum the product. The plot

looks as in Fig. 2.10.

Pl _ D[;;jftl)] + D[Qilftz?], k=1,3,5,...
k 0, k=0,24,..."
s1(t)s(t s1(t)s(t *

Dl {pl sy,

Finally, D,[:O‘”(t)} = Dl[:l(t)é‘(t)] +Dl[c82(t)]-
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P2.16 (a)
s 2 fB _ g—i2mfB
S(f) = V/ e Tt =V :
() § e
_ Vsin(27rfﬁ) _ 2vﬁsin(27rfﬁ)
wf 2nf 3
. ~ kB
b D[QT] — 1 2V@sin(2nfB) — LQV Sm(gwoﬁ)
( ) k aoT 2r 8 ek fomh/oT ol B (271-%)
in( Tk
(c) Plots OfD][:‘T] = 210{81?&,30)‘) are shown in Fig. 2.11 fora = [1,1.5,2,3,5] (weset V = =1
2c
and T = 4).
0.5 P
—o o=1
—=a 0=1.5
0.4+ —x a=2 ]
— a=3
0.3 Q r © —a4A a=5 ||
T ooz :
2
=
K04 .
N . T%m . s ﬂ% . f
NN I I
-0.1F 1
035 2 15 1 05 0 05 1 15 2 25
f (Hz)
Figure 2.11

(d) As @ — oo, the amplitude (magnitude) of D,[CO‘T] goes to zero; however the “envelope”

is always a sinc(-), i.e., that of S(f).

Note also that the frequency spacing between the

frequency components, Af is proportional to é and it goes to zero as o — ©0.

P2.17 The basic difference in the magnitude/phase plots of the Fourier series representation and
the Fourier transform representation is that the Fourier transform magnitude plot will have
impulses at the fundamental (and harmonic) frequency/(ies) of strength = |Dg|. This reflects

the fact that the signal is periodic and that we have finite power concentrated in a

interval. The phase spectrum is the same.

“zero”

P218 (a) (i) S(f) =9 [0(f —v2) +o(f + V)] + 2 [0(f —2) +(f +2)] (V/Hz)
(i) S(f) =% [6(f = V2)+6(f +vV2)] + % [6(f — 2v2) + 6(f +2V2)]
(b) (i) Not periodic. The ratio of the two frequencies of the 2 sinusoids, v/2 and 2 Hz, is
not a rational number.
(ii) Periodic, since the ratio of the 2 frequencies is a rational number, 2\‘//55 = 2. The
spectra look as follows:
SOLUTIONS PAGE 2-15
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D, (volts
“ o)
v, |2 2 v
f. (H2)
22 2 0 J2 22 ‘
Figure 2.12

00 e '27chtie— j27 fet
P2.19 (a) S(f) = [ m(t) [f
(b) See Figure 2.13.

} o—I2Tftqp — M(f_fc);M(f""fC)

M (f) (V/HZ)

[M ()] (V/HZ)

””””””””” /
9
0 f, (H2)

|S(F)]
Al2 N
fffffff e <0
-f -W —f i~ —-f +W 0 f -W fi f +wW
. S N\\i\\“gll,ﬂ,k,ﬁ_ . 5 ‘ f, (H2)
DS(f)\/
Figure 2.13

P2.20 First find the Fourier series of e~ Vm sin(2mfmt).
Y .
/ eijm s1n(27rfmt)ef]27rkfmtdt where T' = —
0 fm

Dy, = T
A=2mfmt 1 /Qﬂf’"T o3 Vim sin A g7k dA
T Jo 27Tfm
fmT=1 1 [ oI (FA=Vimsin ) g\

21 Jy
Jx (Vi) (kth order Bessel function). (2.2)

Then the Fourier transform is: Y > Ji(Vin)d(f — kfrm). Multiplying by eI27fet shifts the

above spectrum by f., i.e.,

k=—o0

PAGE 2-16
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P2.21 Differentiate the 1st signal twice:

ds(t) d?s(t)
s(t) dt dt?
A - AT —  (AIT) | (AIT)
B S S
-T ‘0 Tt -T J t -T (0T 't
-AIT v
(—2A/T)
Figure 2.14

Then

d25(t) A j27TfT 2A A 7j27l'fT 2A
.7-"{ e } = e —?+Te = ?[cos(%rfT)—l]

F { dfistgt)} A1l —cos(2mfT)
S(f) = GamfE T T 2 (V/Hz).

Consider now the 2nd signal. The 1st derivation looks like
ds(t)
dt

AIT

[ [ ] t

-T JoT

Y (-2A)

Figure 2.15

We could differentiate the rectangular pulse again but we have done it so many times that
its transform is almost engrained in our minds.

]__{dz(tt)} _ _2A+Asir;(;;fT)
Fls(t)) = W[—Hsmfff)].

P2.22 For reference the Fourier transform of a rectangular pulse, centered at ¢ = 0, width 27, height

A, is AT%.

Now decompose s(t) into the sum of rectangular pulses, s1(t) and sa(t) (note that this de-
composition is not unique):

SOLUTIONS PAGE 2-17
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P2.23

P2.24

s(®)
s(t) = T 2

ol 1 2 3 a 0l

S (t)
+
t 1 2 3 4 t

DI

Figure 2.16

s1(t) is a shifted version of a rectangular pulse of width 27" = 3 and height A = 2; shifted by
2.5 seconds. Therefore,

sin(27f(3/2)) Y sin(37 f)
27 )

Flat)) = 27090 2(3/2) et f

due to shifting

s9(t) is a rectangular pulse of width 27" = 1, height A = —1; shift of 2.5 seconds. Thus,

f@ﬁ»:—;ﬁwmgﬂ,

Finally,

—jbnf sin(37 f) _ }e—jsmf sin(7 f)

Fs(t)} = F{s1(0)} + F {s2(t)} = 3e srf 2 mf

Consider the 1st figure.
S(f) = 1e/3 [u(f +2) — w(0)] + 1792 [u(0) — u(f - 2)]

0 2 _
s(t) :/ lejgej%ftdf—i—/ le I3el2mItqf = 1 — cos(4nt)

2 0 Tt

The spectrum in the 2nd figure is: S(f) = 1le ™77 [u(f 4+ 2) — u(f — 2)].

o) /2 oIl —2 cos(4mt)

—92 27t — %
Remark: The problem is a small illustration that the phase is also important in determining
the shape of a signal. An interesting question is: Is the ear more sensitive to phase or
magnitude distortions in an audio signal? Is the eye more sensitive to phase or magnitude
distortions in a image? For this one needs to resort to Matlab and experiment since we are
now in the realm of psychophysics.

Seos(t) = Acos(2m ft) where f, = 1/2T = Seos(f) = (A/2) [0(f — fmn) + 0(f + fin)]-
b0 = 4(t+ 1) (e 2) = Sl ) = T2

S = Sl $) xSl ) = %5 [ BO= ) 400+ £ Tor LSy
2AT  cos(mfT)
7 1—4(nfT)%
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P2.25 A rectangular signal of width W (sec) and amplitude A (volts), i.e., srect (t) = A [u (¢ + %] —u(t—

has Fourier transform AWSinﬁ{jVW).

(a) The signal can be decomposed into 2 shifted rectangular signals; each of width 7" seconds;
amplitude +A volts; one shifted 7/2 seconds to the left, the other 7/2 seconds to the
right. Now F {s(t — 7)} = e 727/75(t). Here 7 = +T/2 (or —T/2). Also W =T.

: _ ATz S/ T) ~janp(-rynSin(rfT)
.. S(f) ATe 7[-fT + ATe ﬂ—fT
sin?(7fT)
= 2JAT—~""/ (V/Hz).
JAT== 2 (V/Ha)

(b) The derivative of s(t) results in 3 impulses, i.e.,

d‘:l(;) = AS(t+T) — 2A8(t) + Ad(t — T)
F { dfg) } — AT 24 4 Ae 2T,
S(f) = Fj{;:z)} , QA% = 2jAijT(JC7}fT) (V/Hz).
P2.26 (a)
X(f) = /: z(t)e 2Tt
X*(f) = [ /_ O; m(t)e_ﬂ’rftdtr = /_ Z 2 (1) (e2) ar

= / z(t)e?? tdt = / z(t)e 72Nt = X (—f),

where the following were used: x(t) is real as is dt; the complex conjugate of a sum equals
the sum of complex conjugates (and integration for engineers is essentially a summation
operation); the complex conjugate of a product equals the product of complex conjugates.

(b) Now
/_ Z 2(t)y(t)dt = /t ioo dta(t) / O_O_OO Y (f)e2lid
= [ ap [ awerntra= [T xgvinar
=X(=H=X*(f)

And interchanging the roles of x(t), y(t) we have

[ xwviar= [T xarow

=—00 f=—o0

If 2(t) = y(t), we get

oo ) oo )
/ (1)t _ / X(f) af
—00 —00 S——
S——— which means this has units of joules/Hz

This has units of (volts)?-sec=joules

SOLUTIONS PAGE 2-19
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or | X(f)|? is an energy density spectrum, i.e., it tells us how the energy of z(t) is dis-
tributed in the frequency domain.

P2.27 (a)
= /00 e 20t = L (joules)
s 0 2a '
(b)
1 FN® 1
Ey = d = — tan ' = — (joules).
/ HiFaf= / a2 + 4n2f2? 47T2f2 ma <a/27r> ‘f:o 2a (joules)
(c)
W ) 1
2 X df =095 —
[ xnpar=oos (5)
w 1 W 1 2
= 2/ df = —tan~! <f> ‘ = —tan~! < ﬂW)
0 <f2 a? ) Ta a/2m) ;o Ta a
=  Solve tan~! <27TW> _ ot
a 2
.95
= W =-tan <0 ”) — 2.02a (Hz).
27
Note that the required bandwidth is proportional to Wlnstam = the smaller the time

constant, the larger the bandwidth and vice versa. Makes intuitive sense, n’est-ce pas?

P2.28 (a) Since sp(t) = [0 Sr(f)e??™/tdf. Write s7.(t) as:

s%(t) = /OO S:r(f)eﬂ”ftdf‘ - ST()\)ejQW)\td/\

=—00 A=—00
R O e
P = TlféoT/_oos%(t)dt
1 o0 o0 . [e.9] .
—  lim / [/ ST(f)e””ftdf ST()\)eﬂ“td)\ dt
T—o00 T t=—o00 f:—OO A=—00

Interchange the order of integration:

Po= gz [T s [T ansi [T e
o t=—o0

=—00 A=—00

~ im ;/w deT(f)/oo NSO+ £)Sr(\)

T—o0 ——00 A=—00
1 [ L[>
= Jim g [ arsensin = pim g [ ISP

In the above derivation we made use of the facts that [~ I2TOENEA = §(A + f) and
a2 AAS(A+ f)ST(A) = Sp(—f) = S5(f) (since sp(t) is real).
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Note that as T — oo, the integral [°°_[Sy(f)|*df — [°%_ s2(t)dt — co. To overcome
this difficulty; interchange the integration and limiting operations (mathematicians may
worry about this, engineers shall assume the functions exhibit “reasonable” behaviour).

Then
[ee) 2
P:/ lim 157! df.

oo I'—00 T

. . 2
(b) From P = limy_.o0 = [*°_ s%(t)dt, P has a unit of VOltSS;'SGC = J(fslélceb = watts = %

has a unit of %tzts Call the limit a power spectrum density, i.e., it shows how the power
of s(t) is distributed in the frequency domain.

P2.29
FIR()} = / R(r)e 27 dr
= lim 1/00 /Oo sp(t)sr(t + 7)dt| e 2™ 7dr
T—oo T )i oo [Jim—oo g 4
1 [ o0 .
= Tli—rgoT/t:_oo dtsT(t) /T:_Oo ST(t+7)e—32ﬂde7_
)\:é+Tej2ﬁft f;iioo sT()\)e—jQTrf)‘d/\:ejQWftST(f)
1 [ .
_ . - j2m ft
Jm /t:oo dt s(8)e7 S ()
= lim lST(f) / < dt sp(t)e/?m /!
T—)OOT t=—00
=87 (=f)=S7(f)
2
f{R(T)} — Thm ‘ T;f)’
P2.30 (a)

1 [ 2(7 —
R(T) = lim / ST(t>ST(t + T)dt = Thm ‘/(TT) = V2 watts

L[> 2(T/2 — 2
R(7) = lim / st(t)sp(t+7)dt = Tlim V(é,T) = V? watts

2

T/2
lim — / Vcos (2mfet +0) V cos 2m fe(t + 7) + 0] dt

T/2 172 1ve [T/2
:Th—%oT/_T/QQCOS 27 fo(2t 4+ T) + 26] dt+jlgréo T2/—T/2 cos (2m for)dt

g

v~

=0 T cos(2m feT)

[0(f — fe) +0(f + fc)] watts/Hz.

2

- R(r) = V? cos(27 f.7) watts and S(f) = ‘f
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5.(0)
Vv
t
-T/2 0 T/2
5. (t+7)
V
t
-T/2-r1 0 T/2-1
- T >
Figure 2.17
5:(t)
V
0 T/2 t
5, (t+7)
V

-T 0 T/2-1

Figure 2.18

The average power of a sinusoid is VTQ watts. Half of it is concentrated at f = f. and

half at f = —f..
P2.31
1
R(t) = TIE»I;OT/_OO st(t)sr(t + 7)dt
1 (oo}
R(r+1) = Jim T/ sp(t) sp(t+ 7+ T,)dt = R(r)
— 00 o) \—,—/

st (t+71)
where T is the period of s(t).

P2.32 (a) Multiplication in the time domain results in a differentiation in the frequency domain.
(b)
o0 .
S(f) = / s(t)e 72t dt
oo
d5(f) = / (—j2mt)s(t)e 2™ tdt = —j271'/ ts(t)e I2Itqt
df o0 —o0
which shows that ¢s(t) and —%%&j) are a Fourier transform pair. Continuing, it is
n an
easily shown that t"s(t) «— <—%) d dfcﬂf ) are a Fourier transform pair.
SOLUTIONS
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P2.33

P2.34

P2.35

Duality states that if s(t) «— S(f) then s(f) «— S(—t). Therefore, if

2Va
a2 + 4n? f2

then Ve alfl 2Va = v

a? +4n2f2 4 2 [%—i—tﬂ'

Ve alt

1 a®> _ _ 2Va _ 2V _ 2V
1+t2:W—1:>a—27rand = =5=1=V=m

1
1412

Adjust V,a to get

s qe 27l

It is easy enough to check that
1 °
=F! {7['67271'“0'} = / ﬂef%lfle%ftdf.

1+ ¢2 o
P2.33 shows that s(t) = Htg «— me~2lfl = S(f) are a Fourier transform pair.
From P2.32 we have ts(t) = 1 thQ _].1% digcf ) are a Fourier transform pair, or
t 1 d(e27lf1)
142 —25 df
Now with f < 0 we have d(ej}rf) = 2me?™f | and with f > 0 we have d(%;ﬁf) = —2me27f,
Thus,
d(e—2mlf]
(edf ) _ _27Te727r|f| Sgn(f)
t
112 —jme 2 sgn(f).
Certainly [°°_[s1(t) + Asa(t)]*dt > 0 for all \ or
o0 o o0
/ 2(1)dt + [2 / sl(t)SQ(t)dt] At [ / sg(t)dt] 2> 0.
—0o —0o e —0o0
\c, b a
The above is a quadratic in A with coefficients a, b, c and roots A2 = by bZ—dac W. For the

polynomial to be always > 0 requires that the roots to be complex (at very minimum a
double root), i.e., the quadratic should never intersect the \ axis, at best it may only touch
it. Therefore, b?> — 4ac < 0 or

4 [/Z sl(t)SQ(t)dtr < /Oo 2t )dt/oo s3(t)dt
/_ O; sl(t)SQ(t)dt' \/ / sg(t)dt
_ \/ [ dt\/ IR G

Equality holds when s1(t) = Ksa(t), i.e., one signal is a scaled version of the other.

IA

or
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P2.36

[ sinssnar| = | [~ sinsinar| < \/ /- !S1(f)\2df\/ " sanpar.

P2.37 Let s1(t) = s(t), sa(t) = s(t + 7). Then

'/ s(t+7) dt’ /Oo sQ(t)dt/OO s2(t + 7)dt.

oo — 00

Rs(0) Rs(0)
Therefore, |Rs(7)| < R4(0).

Remark: Above was done for energy signals but readily shown to be true for power signals.

P2.38
s = [ stnar< [“isplas s = [ st [ sl
> 1S d t)]dt
o SISO Xl 1
25(0) s(0) 2
P2.39 (a)
s(t) = Ve “u(t)
00 00 VQ
E, = / s (t)dt = V2/ e 29t (t)dt = % (joules).
(b) Let V =1
2 [~ 1
e Wdf = 5.
a® Jo 1447 2a
Let f, = f , 1.e., change variables. Then
2 A (1
), 1+72%7 " "\2a
(27 K f 1 T
1 (=" — K
o tan (afﬁ> Q:a 27Tt <2)
(c) s(0)=1=T= [“e dt =1 With this T and f, found in (b) we have
fx 1 TK
Tf. = = — .
I a 27 tan ( 2 )
(d) Matlab plot.
P2.40 (a)
oo [e.e] o0 1
s = / s3(t)dt = / e 2altlgy = 2/ e 2%t = — (joules), where V = 1.
—0o0 —00 0 a
SOLUTIONS
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(b) Using Equation (2.62c), fi is determined from

fn 16 2 £2 fm 2
2/ T af=" <:> / 2df -
o (a2 +4m2f2)2 4,r2 f2> 3272a

Let integration variable be A = ? Then,

27 fk
T A2 KT

=T
0 (1+ >\2)2 4

Change variable again to z = A2 = d\ = 5 \F

27 fr 2 4m f%
/ )\d)\:/ 2 de.
A

—0 (1+A2)? e=0  2(1+1z)°

To integrate, use G&R, p.71, 2.313.5, where 21 = a + bz, a = b = 1. Let f2 = A fe
VT

The integral becomes
s L] /ffz da
20+a2)|, 4Jo (Q1+az)/z

and using 2.211 (same page in G&R)

17

12 dz
_ Y otan!
/0 (1+2)vz an”™" vz

0
Putting it all together we have

714 1 KT

7(1 ) tan Yfn) = T (2.3)

as the equation that defines f,. Need to solve in Matlab for various values of k.

(c) s(0)=1=T= [ ‘e‘“'” sgn(t)|dt =2 [ e *dt = 2
In (b), after solving for f, we get fi tobe fx =cfn, c= - = Tf, = (5) (%) fn= %fn
(where to repeat f;, is the solution of (2.3) for various values of k).

(d) Matlab work.

P2.41
s(t) — S(f)
d™s(t)
dtn
where S1(f) — 0 as f — co. Now

F{EEON — Ganpysir) = 5(0) -

= Sl(t) —I-K(S(t) — Sl(f) + K

Si(f) K
(g2rf)r - (G2 f)"
Since Si(f) — 0 as f — oo, the above means that S(f) — (]%f) for large n, i.e., the asymp-

totic behaviour of the spectrum depends on how many times the signal can be dlﬁerentlated
before an impulse(s) appears.

How many times can one differentiate a pure sinusoid (i.e., one that lasts from —oo to +00)
before an impulse appears? How “concentrated” is the amplitude spectrum of the sinusoid?
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P2.42 (a)

oo ej27rfct 4 e—j27rf,;t

m(t) [ 5 } e 92 Itqt

Spsp-sc(f) = /

—00

00 ) 1 0 .
/ m(t)eﬂ”(ffc)tdt+2/ m(t)e 2 HFtgy

—0o0

N | =

—0o0

_ M(f_fc) +M(f+fc)
= 5 5 .

S (1) (VD)
‘SJSB-SC ( f )‘ (VIHz)

AV U /A

—fc—\g/—fc ~f. W 0 fﬂq/fc\ W (Hy)
—Q

OSpspsc () (rad)

Figure 2.19

(b) Note: The magnitude spectrum is a shifted and scaled version of the original spectrum
while the phase spectrum is simply a shifted version.

(¢) The passband bandwidth is 2W Hz.

How would the above change if the carrier is sin(2w f.t) instead of cos(2m f.t)?

P2.43 The difference between Spgp.gc(f) of P2.42 and Sanm(f) is a spectral component at +f. due
to the carrier (or if you wish a DC component added to m(t)). It looks like in Fig. 2.20.

Sav ( f ) (V/Hz)

,,,,,,,,,,,,,,,, A2l
0 fc Vc \ fc +W f (HZ)
-0 DSAM ( f) (rad)
Figure 2.20

Note: We invariably assume that the message, m(t), has zero DC. DC is useful for powering
stuff but contains no information of interest to be transmitted. The reason to insert a DC is
to simplify the demodulator — as we see in the next 2 problems.

P2.44 By now we are beginning to appreciate that multiplying a signal in the time domain by a
pure sinusoid simply shifts the spectrum and scales it. It is the shift that is important, the
scaling is somewhat arbitrary and practically would be eventually controlled by a “volume”
control.
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(a)

For DSB-SC; S1(f) = [Spsp-sc(f — fe) + Sps-sc(f + fe)] /2 and looks like in Fig. 2.21
(note that the impulses in the figure only occur for AM, not for DSB-SC).

L N Vo (Ve/4)
fffffff n A A
—2f, ~-WN22f, szﬁw —WP 0 vﬂr 2fc—\*9 21, %fC+W f (H2)
Output of Filtered out
lowpass filter by the
lowpass filter
Figure 2.21

(b)

The AM spectrum is the same as the DSB-SC except for the DC component that results
in the impulses at 0, £2f.. Normally the demodulated signal, i.e., s1(¢), would not only
be passed through a lowpass filter but also through a (well designed) high pass filter to
eliminate the DC component.

Of course, as usual, multiplying by a sinusoid shifts the spectrum, scales it, etc. But it
is scaling that important, perhaps a more appropriate terminology would be scaling and
phasing. Let us look at the problem in 2 ways (not completely distinct). First in the
time domain:

s1(t) = s(t) sin(27 ft) = m(t) cos(2m ft) sin(27 f.t).
Now

sin(z + y) + sin(z — y)
2

sinx cosy = = s51(t) = %m(t) sin [27(2f.)t]

which shows that the spectrum of s;(¢) is that of M (f) shifted by £2f. = output of the
lowpass filter is ZERO.

In the frequency domain:

ej?ﬂfct _ e—j27rfct

25

s1(t) = s(t) = Si(f) = 21] S(f — £2) = SU + )]

Considering % to be just a scaling factor, albeit a complex one, Si(f) is S(f) shifted
up and down (more appropriately to the left and right) by f.. But note the minus sign
in front of S(f + f.). This results in the spectrum around f = 0 canceling out — but we
know this already from the time domain analysis.

Finally the % not only scales but adds a phase of +5. Putting this all together the
spectrum S (f) looks like:

To generalize one should consider s1(t) = s(t) cos(2w fct + 6), where 6 would represent
the phase difference between the oscillator at the transmitter (modulator) and the one
at the receiver (demodulator), and see what happens to the output of the demodulator.
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P2.45

P2.46

s(f)
si(f)
77777 & _Al4
-2f -W -2f -2f +W 0 2f -W  2f,  2f +W f (H2)
Figure 2.22

(a)

(a)

The last chapter in the text considers a circuit (phase locked loop) which estimates
the incoming phase of the received signal. The next problem looks at a demodulation
technique that does not require knowledge of the phase, hence it is called noncoherent.
But alas it only works for AM.

s1(t) = |[Ve +m(t)] cos 2w fet| = |Ve +m(t)]|cos2m fet|. But V. + m(t) > 0. Therefore,
Ve +m(t)| = Vo+m(t). And |cos 27 f t| is a fullwave rectified sinusoid of period = %fc or

fr = 2fc. Tt therefore has a Fourier series of 72 Dyed?mkFt where most importantly
Dy (the DC value) # 0.

The spectrum of s1(t) = [Ve +m(t)]|cos2m fot| = S22 Dy [Ve + m(t)] €278/t then
consists of shifted versions of the spectrum of [V. + m(t)], shifted by kf, = k2f. Hz,
with the kth shift weighted by Dj.

The output of the lowpass filter is sous = Do [Ve + m(t)] since the spectrum components
at £2f., +4f., etc, are filtered out. The DC term DyV, is easily filtered out by a high
pass filter whose output would be Dym(t) (assuming m(t) does not have significant
energy around f = 0 — typically the case).

s1(t) now is s1(t) = |m(t)||cos2n fot| = S22 Dy |m(t)|e/*™*/rt. Therefore the spec-
trum of |m(t)| will lie in a larger bandwidth, theoretically infinite but practically in some
bandwidth, say W, = kW (k > 1 but say less than 3). Then by adjusting the bandwidth
of the lowpass filter to W, the output would be Dy|m(t)|, a distorted version of m(t).
Of course, V. = 0 is an extreme condition but distortion shall exist as long as V., <
max |m(t)| since then |V, + m(t)| # Ve + m(t).

The double sideband suppressed carrier spectrum looks like:
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S () (VIH2)

-1, W ~f +W 0 f, W AW £ (Hy)

Figure 2.23

And the function 1+Sgn§f —fe) 4 I_Sgnéf +fe) plots as:

1 1-sign(f +f.) 1+sign(f - f.) 1
2 2

- f. 0 f, f (Hz)
Figure 2.24

Multiplying the 2 frequency functions together results in

Susss () (V/H2)

Figure 2.25

Note that the magnitude function is even and the phase function is odd. This tells us
that the time domain signal is real.

(b) s(t) = sussp(t)2cos2n fot = syssp(t) [e2™/el + e727Iet] - Therefore, S(f) = Susss(f —
fe) + Susss(f + fe), i-e., the upper sideband spectrum shifted by +f, Hz.

(¢) Since the spectrum is exactly that of m(t) and the Fourier transform is unique.

P2.47 (a) spspsc(f) = M(f_fc);rM(erfc) and some very simple algebra gives (P2.11).
(b) m(t) cos(2m fct).

(¢) M(t)sgn(f) is a product in the frequency domain which means that in the time domain
we have a convolution, i.e, m(t) * h(t) where h(t) = F~!{sgn(f)}. A shift of the
spectrum by f. is accomplished my multiplying the time function by e/27/¢*, Therefore,

[M(f — fe)sgn(f — fo)] «— [m(t) = F~1 {sgn(f)}] e/27fet.
(d) The shift is now — f. Hz, hence [M(f — f.)sgn(f + f.)] < [m(t) x F1 {Sgn(f)}] e—J2nfct

(e) Use the fact that the inverse transform is a linear operation, i.e., superposition holds.
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/ shift by f,
N

—2f, -W,}é/z f, 2f, 2f,+W  f (Hz)
shiftby — f,
Output of lowpass filter
= m(f) (actually m(7)/2)
Figure 2.26

(f) No. The frequency function, sgn(f) has a magnitude spectrum = |sgn(f)| = 1, an even
function but its phase spectrum is Zsgn(f) = 0 for f > 0 and = 7 for f < 0, which is
not an odd function.

(g) Yes. The magnitude spectrum is |jsgn(f)| = 1, an even function and the phase spec-
trum is Zjsgn(f) = n/2 for f > 0 and = —7/2 for f < 0 an odd function.

Recall that a real time function always has an even magnitude spectrum and an odd
phase spectrum.

(h) jh(t) «— jsgn(f).
(i) Note that
ej27rf¢t y e—j27rfct
25

sin(27 f.t).

From (b) and (h), we get the block diagram of Fig. P2.42.

P2.48 In the frequency domain the lower single-sideband signal looks like:

Ssee ( f ) (V/H2)

_fc _fc +W 0 fc WC f (HZ)
%/—/ ,,,,,,,,,

this is
M(f+f) 1+son(f +f,) this is
2 2 M(f-f)|1-sgn(f-f,)
2 2
Figure 2.27

Therefore,

_ M(f + fc) + M(f B fc) M(f + fc) Sgn(f + fc) . M(f B fc) Sgn(f B fc)
Srssp(f) = 5 R— 5 5 5
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In the time domain:

mQ(t) COS(27TfCt) M(f+fc)_£M(f_fc)
Let h(t) = F~ 1 {jsen(f)}. Recognize
[mm @] e M(f + f.) jsen(f + .
2 2 2 2j
10| S MU ) onl] 1
2 27 2 25
Therefore,
m m —j2wfet _ nj2mfet
spesp(t) = 2(t)COS(27TfCt) + [% * h(t)] e 2 o
= m2<t) cos(2rm fot) — [%t) * h(t)] sin(27 f.t)

The above result means that the summer in Fig. 2.42 would now be a “subtractor”.

P2.49 Nothing, except that there would be a carrier at +f,.

P2.50
ha(t) = =i [ e Wlsgn(penriag
\ 0 [e%s)
— [_/ e(a+j27rt)fdf+/ e(a+j27rt)fdf:|
—00 0
 —a?2 —4Ax22 gt
P2.51

/OO (st = /OO S(FS(f)df  (Parseval)

—00 —

_ / S8 (f)(—jsen(f)df

i [ ISP sen(f) df.
—— ——

—00
even odd

1S(f)|?sgn(f) is odd .. 75 s(t)s(t)dt = 0, i.e., they are orthogonal.

s(t) ~ S(f) §t) - S(f)=S(f)jsan(f )
— jsenlf) />

Hilbert transform

Figure 2.28
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P2.52 We have established that R(7) «— |S(f)|* are a Fourier transform pair. S(f) = jsgn(f)S(f),

.2
therefore ‘S(f)‘ = [jsgn(H)?[S(F)I? = |S(f)I?, ie., the autocorrelation functions are the
same.

P2.53 In general,

i) = gsmnpns) = | V=TI T |
F{V cos(2m fet)}
[t U )]
_ v]- MR )
2)
sin(;;fct)
=m(t) = —Vsin(2rf.t).

P2.54 (a)
S(f) = Ses(f)—jSes(f) = Sea(f) — j(isen(f))Ses(f)

= SPB(f)(1+Sgn(f))={g:qPB(f% ?ig

S(f) (V/Hz)

Figure 2.29

(b) Choose fs as shown. Note that choice is somewhat arbitrary.

S () (VIH2)

2|S (F + f,)|u(f +1,)

o ¢ f (Ho)
D08 (f + f)u(f+1,)

Figure 2.30

Note that sgp(t) is complex because the magnitude |Sgp(f)| is not an even function and
the phase is not an odd function, at least not in general.
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(c) From (b) we have that sgp(t) = s(t)e™727/st
LR {SBB(t)eﬂﬂfsf} ~R {s(t)e_ﬂ’rfsteﬂ’rfst} — R{s(t)}.

But R{s(t)} = R{spp(t) — jspa(t)} = spp(t). Note that spp(t) is a real signal when
spp(t) is real.

spe(t) = R{[sg‘g‘](tH jsgfgag](t)] [cos (27 fst) + jsin(27rfst)]}

S (1) cos(2m ft) — sk (t) sin(2 fit).

(d) If this axis of symmetry exists then when Spg(f)u(f) is shifted down by fs, the resultant
baseband spectrum will have magnitude spectrum that is even and a phase spectrum

that is odd = the baseband signal is real or the imaginary component sggag] (t) is zero.
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P2.55 The spectrum S(f) = Susss(f)u(f) looks like:

S(f) (V/Hz)

Figure 2.31

Let spp(t) = s(t)e 72™fst and choose fs to be f.. Then the picture looks as follows:

S (f) (VIHY)
,,,,A,,,
R - g

N
A

o | w f (H2)
0(:)

Figure 2.32

Note that spp(t) is complex, i.e., has a real and imaginary component. The real component
is modulated by cos(27 fct), the imaginary component by sin(27 f.t) to produce the upper
sideband signal, as shown in Fig 2.42 in the textbook.
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Chapter 3

Probability Theory, Random
Variables and Random Processes

P3.1 A random experiment consists of tossing two fair coins. Denote H=“Head” and T="“Tail”.

(a) Obviously the sample space is Q={HH, HT, TH, TT}. Since the coins are said to be

fair, the implication is that each individual outcome is equally probably, namely the

probability of each outcome is %.

Sample space Q

HT * Event 4

eO0

Figure 3.1: Sample space representation for the random experiment of tossing two coins.

(b) A=“The event that at least one head shows”={HH, HT, TH}

1 1 1 3
PA =3+3+171

B=“The event that there is a match of two coins”={HH, TT}

1 1 2 1
PB=3%47173
(¢) Using conditional probability:
P(AnNB) P({HH}) 1 1
(AIB) = =5 P(B) L 2
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P3.2

P3.3

B P(ANB) B P({HH}) B
PBN =5ty = Pl

IO
w

(d) Observe that P(ANB) = P({HH}) = } and P(A)P(B) = 2 x § = 3. Since P(ANB) #
P(A)P(B), A and B are not statistically independent.

We write down all the provided probabilities. The test reliability specifies the conditional
probability of y given x, where y is the test result, x the test outcome:

Ply=1x=1)=095 P(y=1x=0)=0.05

Ply=0x=1)=0.05 P(y=0x=0)=0.95; (3.1)
and the disease prevalence tells us about the marginal probability of x:
P(x=1)=0.01 P(x=0) = 0.99. (3.2)

From the marginal P(x) and the conditional probability P(y|x) we can deduce the joint
probability P(x,y) = P(x)P(y|x) and any other probabilities we are interested in. For
example, by the sum rule, the marginal probability of y = 1 — the probability of getting a
positive result — is

Ply=1)=P(y=1x=1)P(x=1)+ Py =1x=0)P(x=0). (3.3)

The person has received a positive result y = 1 and is interested in how plausible it is that
she has the disease (i.e., that x = 1). The man in the street might be duped by the statement
“the test is 95% reliable, so the person’s positive result implies that there is a 95% chance
that the person has the disease”. But this is incorrect. The correct solution is found using
the Bayes’ theorem.

Ply=1x=1)P(x=1)

Px=1y=1) = 4

x=1y=1 = 5 Ik Px =1+ Ply = 1jx = 0)P(x = 0) (34)
0.95 x 0.01

y 3.5

0.95 x 0.01 + 0.05 x 0.99 (3:5)

~ 0.16. (3.6)

Thus, in spite of the positive result, the probability that the person has the disease is only 16%!

A follow-up question is: Suppose that the doctor recommends a medical procedure that you
have a 50/50 chance of surviving. Do you accept her recommendation? Implicit assumption
is that disease is so nasty that you will not survive it. More interesting what should the
probability of survival due to medical intervention or not be to tip your decision one way or
another. How does the test reliability affect this, and on and on.

An information source produces 0 and 1 with probabilities 0.6 and 0.4, respectively. The
output of the source is transmitted via a channel that has a probability of error (turning a 1
into a 0 or a 0 into a 1) equal to 0.1 (see Fig. 3.2).

Define the following events:

E; = “Output of the channel is 1” (3.7)
E; = “Output of the source is 1” (3.8)
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Probability cross-over probabilit
— $ —
0.6 0 0
Source's Outpt< > Channel's outpt
0.4 1 1
. _J
Channe
Figure 3.2
Obviously,
Ef = “Output of the channel is 0" (3.9)
E5 = “Output of the source is 0" (3.10)

Note that P(E3) = 0.4 and P(ES) = 0.6.

(a) Since what the channel does is independent from what the source does, the probability
that “l1 is observed at the output of the channel” can be calculated as follows:

P(Ey) = P(“Output of the source is 0” N “Channel makes error”)
+ P(“Output of the source is 17 N “Channel makes no error”)
= P(“Output of the source is 0”) x P(“Channel makes error”)
+ P(“Output of the source is 17) x P(“Channel makes no error”)
= 0.6x0.1+04x (1—-0.1)=0.42 (3.11)

(b) The probability that “a 1 is the output of the source if at the output of the channel a 1
is observed” can be calculated using the conditional probabilities as follows:

P(E2 N El)
P(En)

P(“Output of the source is 17 N “Output of the channel is 1”)
P(Ey)

P(“Output of the source is 1”7 N “Channel makes no error”)

P(E1)

P(“Output of the source is 17) x P(“Channel makes no error”)

P(Ey)

P(Es|Ey) =

0.4x0.9 0.36
0.42  0.42

= 0.857 (3.12)

(c¢) The question in Part (b) is exactly the same as Problem 3.2 if x and y are used to describe
the channel’s input and output values, while the “reliability of the test” is considered as
“the probability that the channel makes no error”, i.e., defines the transition probability.
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cross-over probability

P(x)
— A
p 0 0
Input x < . > Output y
1-p 1 1
N _J
L J
e
BSC
Figure 3.3

P3.4 Consider a binary symmetric channel (BSC) with cross-over probability e, i.e., P(y = 1|x =
0) = P(y = 0|x = 1) = ¢, where x and y represent the binary input and output, respectively.
The probability of a 0 transmitted is p (see Fig. 3.3).

(a)
Plx=1ly=1) = T YD
Q Ply=1x=1)P(x=1)
Ply=1x=1)Px=1)+P(y=1x=0)P(x=0)
(I—e(—p)
-0 -7+ 1)
(b)
Plerror] = Pl(y=0,x=1)or (y=1,x=0]
= Ply=0x=1)P(x=1)+P(y=1x=0)P(x=0)
4 (3.14)

(c) There are (Z) = ﬁlk), possible sequences, each having k ones and (n — k) zeros. Each
sequence (or event if you wish) is mutually exclusive. Therefore

P[k 1’s are received] = <Z>P[a sequence has k 1’s and (n — k) 0’s]
= <Z> Plthere are k 1’s|P[there are (n — k) 0]

= <Z> (P[1 received])* (P[0 received])™ ™" . (3.15)

The last two equalities in the above follow from the fact that the transmitted symbols
are statistically independent. Now

P[1 received] = pe+ (1 —p)(1—¢)
P[0 received] = 1— P[l received] =1 —pe— (1 —p)(1 —¢€) =¢(1 —p)+p(l —e).
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P3.5

(d)

(a)

. P[k 1’s are received] = <Z> [pe + (1 —p)(1 — )]*[e(1 = p) + p(1 — )" .

Since the messages are to be equally likely, it follows that p = 1/2. Note also that in
contrast to (c) the n transmitted bits here are not at all statistically independent.
Assume that n is odd. A natural decision rule would be a majority rule one, i.e., if more
1’s than 0’s are received, decide that a 1 was transmitted and vice versa. If n is even
there is the possibility that an equal numbers of 1’s and 0’s are received. If this happens,
flip an unbiased coin to make a decision, otherwise rule is the same as when n is odd.
Let k be the number of received 1’s. Then the decision rule can be written as:

where my is one message (represented by n 0’s) and mgy is other message (represented
by n 1’s).
Therefore
Plerror] = P[{(m; decided) and (mgy xmitted)} or {(msg decided) and (m; xmitted)}]
= P[(m; decided)|(mg xmitted)]P[my xmitted]
+ P[(mg decided)|(m; xmitted)]P[m; xmitted]

1 1
= —Plk< n n 1’s xmitted| + =P |k > n n 0’s xmitted
2 2 2 2
1 L3 n 1 — n
_ k n—k k n—k
= 3 (k>(1—e)e +§ E (k>e(l—e)
k=0 k=[2

As n — oo the Plerror] — 0 (you might want to try justifying this mathematically). But
as n — oo the rate of transmission goes to zero. One could only transmit one message,
if that.

Remark: The mapping in (d) is a repetition code. Thus a repetition code, if it is long
enough, can always be detected correctly, but the efficiency is too low. Of course we
do not want to use n — oo time to just transmit one bit. Here we can see the tradeoff
between the efficiency and the error probability. In practice, better codes that achieve
the same error probability but use much less time exist.

Since Fx(z) = B for all x > 10 one has 1 = P(x < o0) = Fx(o0) = B, ie,, B = 1.
Moreover, Fy(x) reaches (or should reach) a value of 1 at x = 10. Therefore A x 103 = 1
= A= L. So the cdf Fy(z) is as follows:

TOS.
0, <0
Fe(x)=4¢ 107323, 0<2 <10 (3.16)
1, x> 10
(b) The pdf of x is simply:
0 <0
dFy ’ =
felw) = ) )3 g g2 a < (3.17)
dz
0, x> 10

Both the cdf and pdf are shown in Fig. 3.4.
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3

Figure 3.4: Plots of Fx(x) and fx(x).

(¢) The mean value of x is:
400
mx = FE{x}= / x fx(x)dz
—00
0 10

! 30
= / zfx(x)de = / 3x107323%de == =75
0 0 4

The variance of x is:
“+o00
0,2( = var(x) = E{(x — mx)Q} = / (x — mx)Qfx(:r)dx

10
_ / (@ = 7.5 fx(2)de = 3.75
0

(d)
P(3<x<T)=Fy(7) — F(3) = 0.316 (3.18)

P3.6 To find fy(y), we first find the cdf of y, i.e., Fy(y). Consider the following cases for y (see
Fig. 3.5):

(i) For y < —b. Note that y can only receive values in the range —b < y < b. Therefore the
event y < y is an impossible event and for this range of y one has Fy(y) = P(y <y) = 0.

(ii) For y = —b. Then

Fy(y) = Fy(-b)=Ply<-b)=Ply<-b)+Ply=-b)=Ply=-b)
= P(x < -b) = Fx(-b)

= / fxlx = / 2ﬁ02e_$2/(2"2)d$ (3.19)
—0o0

(iii) For y > b. In contrast to case (i), for the range of y in this case the event y < y is a
certain event and therefore Fy(y) = P(y <y) = 1.

(iv) For —b < y < b. For this range of y, the random variable y and x are the same. Thus
Fy(y) = P(y < y) = P(x < y) = Fx(y). This also implies that fy(y) = fx(y) =

22026 y?/(20%) for y in this range.
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y=9(x)
b 7777777 |
b |
T - » X
| 0 b
Lo b
f, (X) F(X)
1
\2mo? P
/]/2/
X X
0 0
f,(y) F(y)
1
2mo?
(F(=b)) (F (b))
y y
-b 0 b
Figure 3.5
In summary,
0, y < —b
Fy(y) =4 Fx(y), -b<y<b (3.20)
L, y=>b
Now, differentiating Fy (y) gives fy(y), the pdf of y:
0, y<-—b
dFy(y) D1 20
fy(y) = dy fx(y) = Wormoi i ) —b<y<b (3:21)
[1— Fx(b)]d(y — b) = Fx(=b)d(y —b), y=b
0, y>b

Note that the two delta functions are due to the discontinuities of Fy(y) at y = —b and y = b.
The strengths of these two delta functions are equal to the value of the “jump” of the cdf at
the discontinuities, which is Fx(—b). Plots of Fx(x), fx(x), Fy(y) and fy(y) are provided in
Fig. 3.5.
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P3.7 It is straightforward enough to determine the mean m, and variance o2 of a random variable
x from the definitions:

mx = F{x}= /00 z fx(z)dx (3.22)
ox = B{(x-mx)’} = E{x’} —m}
= / 22 fy (z)dz — m2. (3.23)

The only challenge perhaps is doing the integrations. However using the fact that the mean
is the center of gravity (or centroid) of the probability “mass” density and that the variance
is the variation around the mean can simplify (even eliminate sometimes) the necessity for
integrating.

(a)

The pdf looks as in Fig. 3.6(a). Obviously the centroid is myx = 3(a +b).
To find the variance, shift fx(x) along the z-axis so that it lies symmetrically about
x = 0, i.e., work with the pdf in Fig. 3.6(b). Note that the shift does not affect the

variance. Then

b—a b—a

2 . 2 /2 2 1 2
- dz = de = — (b —
ol /_b—an = x = xdx 12( a)
For special case of a = —b then myx = 0 and o2 = b%/3.
f,.(x) f.(x)
1
1 b-a
b-a
0 a b X a 0 b X
(a) (b)

Figure 3.6: Uniform densities.

For the Rayleigh density, we have no choice but to do the integrations. The following
general results from G&R, p. 337 are useful:

o0 o0 — 1)l
/ 2P dy = (”)\ﬁ for p>0 (Eqn. 3.461-2)
0 p

2(2p)"
00 |
/0 S e I #, for p>0 (Eqn. 3.461-3)

These equations allow us to compute all the moments of a Rayleigh random variable, if
we so desired. But here we are interested in only the 1st and 2nd moments.
The first moment is:

—— 12/0055%—5.22(13; LR S \/?a ~1.250.
a* Jo 022 (252) \ 552 2
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The second moment is:

1 [ _ =2 1 1!
E{X2} = 2/ 1’38 202dx = Tﬁ ; = 202.
o Jo 772(52)" \ 27

Therefore the variance is

02 = B{x?} —m2 = 207 — g(ﬂ - (2 { g) o2 ~ 0.42907.

Remark: The Rayleigh random variable is important in the study of fading channels
(Chapter 10). As shall be seen there, the parameter o2 is also a variance (as the notation
suggests), but of course not of the Rayleigh random variable but of the 2 underlying
Gaussian random variables that make up the Rayleigh random variable.

(c¢) For the Laplacian density:
frl(@) = 56~ (3.24)

By inspection fx(z) is an even function (symmetric about z = 0), hence mx = 0. The

variance of x is
c [ 5 < 9
02 = / zPecll = c/ xe”“dx
2 —00 0

Integrate by parts to obtain:

1 2 2
/xQe_CIdm = —Ex2e_cx - C—Qxe_cx — C—ge_caj (3.25)
Thus
o 2 . 2
/ rie”Mdr = 5 = oy = (3.26)
0 C C

(d) y is discrete random variable, given by y = Y | x; where x; are statistically indepen-
dent and identically distributed random variables with the pmf: P(x; = 1) = p and
P(x;=0)=1—p.

First, the mean and variance of each random variable x; can be found as:

My, = E(x)=px1+(1-p)x0=p (3.27)
E{x} = px1’+(1-p)x0°=p
0%, = B} -mi =p—p*=p(1-p (3.28)

Using linear property of the expectation operation E{-}, one has:

E{y}=FE {sz} => EB{xi}=np (3.29)
i=1 i=1

To compute the variance of y, first compute E{y?}. Write y? as

n 2 n n n n n
Y2 = <le> :ZZXixj:Zx?+Z Z XiX;
i=1 i=1

i=1 j=1 i=1 j=1,j#i
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Since x;, 1 = 1,2,...,n, are statistically independent, then
2 . .
e J o i#E]
E{x;x;} = { P iei (3.30)

Using (3.30) and the linear property of E{-}, E{y?} can be computed as:

E{y’} = E {Z Xf} +FE Z Z x;x;j ¢ = np +n(n —1)p? (3.31)
i=1

i=1 j=1,j7#i
=0y = E{y’} - [E{y}]*=np+n(n—1)p* — (np)* = np(l —p) (3.32)

P3.8 (a) P(AUB) = area A+4area B—common area (which is added twice). But area A = P(A),
area B = P(B) and common area = P(AN B). Hence

P(AUB)=P(A)+ P(B)— P(ANB).

P(AUBUC) = P(A)+ P(BUC)— P(AN (BUC),

where we consider B U C as a single event. But AN (BUC) = (ANB)U((ANC).
Therefore

P(AuBUC) = P(A)+P(B)+P(C)—P(BNC)—P(ANB)—P(ANC)+P(ANBNANCQC).
ANBNC

P3.9 (a) Given B then probability of A occurring is that it “lies” in the shaded area. Also B is
the new sample space. Therefore

P(A|B) = P(;l(;)B)
Note that P(A) can be written as

(b) Statistical independence can be expressed in 2 ways.

(i) P(A|B) = P(A). In this case the interpretation is that the ratio of the common
area (P(AN B)) to the new sample space area (P(B)) is the same as the ratio of
the original area (P(A)) to the original sample space (P(€2)).

(i) P(ANB) = P(A)P(B). Here the common area P(A N B) is equal to the product
of the areas P(A) and P(B).

(c) No. One could say they are totally dependent. Knowledge of one occurring tells you a
lot about the other occurring, i.e., P(A|B) = 0 and vice versa.
P3.10 Need to determine if the 3 axioms are satisfied. Given B all possible events now lie in the
shaded area.
Aziom 1: P(any event) is certainly > 0 and also < 1.
Axiom 2: P(B|B) = 1.
Aziom 3: Holds. It is inherited from 2.
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Sample space Q

An B

Figure 3.7

Sample space Q

An B

Figure 3.8
P3.11 (a) P(ANBNC) = P(A)P(B)P(C), P(ANnB) = P(A)P(B), P(ANC) = P(A)P(C);
P(BNC)=P(B)P(C).
(b) (i) All conditions of (a) satisfied, therefore statistically independent.
(ii) Note that P(ANBNC) =0 # P(A)P(B)P(C), therefore statistically dependent.
(iii) P(BNC)=1/8 # P(B)P(C) = (1/2)(1/2) = 1/4, therefore statistically dependent.
(c) Yes. Consider the Venn diagram in Fig. 3.9. Let a®> = b, where a = P(A) = P(B) =
P(C). Then P(ANBNC) =0 while P(ANB) = P(ANC)=P(BNC) =b=a’ =
P(A)P(B) = P(A)P(C) = P(B)P(C).

(d) Number of conditions is > p_, () = > j_, Wlk)'
P3.12 First calculate P(A), P(B) and P(C) as follows:

P(A) = 0.08+0.03+ 0.02 4 0.07 = 0.20
P(B) = 0.08+0.07+0.03+0.02 = 0.20
P(C) = 0.245+ 0.07 +0.07 4 0.02 = 0.405

Now P(ANBNC) =0.02# P(A)P(B)P(C) = (0.02)(0.02)(0.405) = 0.000162. Therefore
these events are statistically dependent.
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Figure 3.9
Next,

P(ANnBNCQO) 0.02 4
P(ANB = = -
(40 B|C) P(C) 0.405 81

P(ANCQO) 0.09 2

P(A = = .

(4ic) P(C) 0.405 9

P(BNO) 0.09 2

P — = —

(B|C) P(C) 0.405 9

2
P(AIC)P(B|C) — <;> :%:P(AHBKJ).

Therefore the events A and B are conditionally independent.

Problems 3.3, 3.4, 3.13, 3.14 and 3.15 are important special cases of discrete-input discrete-
output channel models. The general model is described in Fig. 3.10.

The quantities of interest are usually Ply = y;], P[x = z;ly = y;] and also E{xy}. The
general relationships for the quantities are:

Ply =y;] = ZP[(y =y)N(x =) = ZP[y = yjlx = ;] P[x = z;] = ZPu'Pi

E{xy} = > > auy;Plx =) (y =y;)]

i=1 j=1

= >3 wwPly = ylx = 2)|Plx = 2]
i=1 j=1
= > > wwPyP

i=1 j=1
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Input x Output y
X - Pl VA
X - I:)2 Y,
where Ply =y, [x=x], B = P[x=x]
and typically n=m.
Further >’ P =1, 0<P<1.
i=1
Note typically most of the
X - P Y, R, would be equal to 0.
Xp — I:)m Ya
Figure 3.10

P3.13 Consider the “toy” channel model shown in Fig. 3.25 in the textbook.

(a) From the figure, we have P(x = —1) = 0.5, P(x = —1) = 0.5. All the transition
probabilities of y given x are:

Ply=1x=1) =04 Ply=1x=-1) =04
P(y=0/x=1)=0.2 Ply=0x=-1)=0.2 (3.33)
Py=-1x=1)=04 P(y=-1x=-1)=0.4;
Then

Ply=1) = Ply=1x=1)Px=1)+P(y=1x=-1)P(x=—-1)
= 04x05+04x05=04. (3.34)

Observe that P(y = 1) = P(y = 1jlx = 1) = P(y = 1|x = —1) = 0.4. Similarly, one
can show that P(y = 0) = P(y =0jx = 1) = P(y = 0]x = —1), and P(y = —1) =
Py =—1|x=1) = P(y = —1|x = —1). Since the distribution of the output y does not
depend on which value of the input x was transmitted, the two random variables x and
y are statistically independent.

(b) We have

E{x} = 1 xPx=uz1)+z2x P(x=u12)
= 1x054(—1)x0.5=0, (3.35)

and

E{ly} = mixP(ly=u1)+y2xP(y =y2)+y3z x Py =y3)
= 1x0440x0.2+(—1)x04=0, (3.36)
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Since x and y are statistically independent, one can compute F{xy} as
E{xy} = E{x}E{y}=0. (3.37)

P3.14 Consider P(y = 1) = (0.3) + $(0.4) = 0.35. But P(y = 1jx = 1) = 03 # Ply = 1] =
Statistical dependence.

The correlation is

2 3 2 3
S Y mPsP = 530 Py
i=1 j=1

i=1 j—1
1 3 3
= S| D_wPy— D uiPy
P p

[1(0.3) +0(0.3) — 1(0.4)] — % [1(0.4) + 0(0.1) — 1(0.5)]
(3.38)

= I

Therefore the random variables are uncorrelated.

Notes:

1) Uncorrelatedness does not mean (or imply) statistical independence. But statistical
independence always implies uncorrelatedness.

2) One extremely important case where uncorrelatedness implies statistical independence
is the case of jointly Gaussian random variables. Communication theory depends very
crucially on this fact as shall be seen in later chapters.

3) Statistical independence can increase or decrease the conditional probability of an event.

Two extreme cases are:

(a) Mutually exclusive events, A, B then P(A|B) = 0.
(b) An event B is contained in event A, i.e., B C A. Then P(A|B) = 1 where P(A),
P(B) # 0.

P3.15 Definitely statistically dependent since

1

Ply=1)==(1— Ply=1x=1)=1-p—e 3.39

(y=1) 2( €) # Py = 1|x )%)/1_6/ (3.39)
~1/2 -

Also correlated because

3 3
1
B{xy} = 5 |[D_wiPy— ) uiPy
=1 =1
1
= glll=p—e=p)=p-(1A-p-o}
= 1—-2p—€>0, for pe << 1. (3.40)

SOLUTIONS PAGE 3-14



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

P3.16

P3.17

2 2

Consider two random variables x and y with means mx, my and variances oy, oy, respec-

tively. Further let the two random variables be uncorrelated, which means that E{xy} =
E{x}E{y} = mymy. Now “rotate” x and y to obtain new random variables xz and yp as

follows:
Xr | cosf siné x| | (cos@)x+ (sinf)y (3.41)
yr | | —sinf cos@ y | | (—sinf)x+ (cosf)y '
where 6 is some arbitrary angle.

First one has

xrYr = |[(cosf)x + (sinf)y][—(sinf)x + (cosf)y]
—(sin @ cos 0)x* — (sin? O)xy + (cos® B)xy + (sin 6 cos 0)y*
= [cos? 6 — sin?f]xy — sin @ cos f[x* — y?]. (3.42)

It follows that

E{xgyr} = E{[cos’f —sin®f]xy — sinfcosf[x*> — y?]}
= {cos’f —sin® 0} E{xy} — sinf cos [ E{x*} — E{y*}].
But E{xy} = mymy, E{x*} = m} + o, E{y®} = m} + 03. Therefore
E{xgyr} = [cos? 0 — sin® Olmxmy — sin @ cos O[m2 + o2 — m2 — 03,]. (3.43)

y

Now compute E{xr}FE{yr} as follows:

E{xr}E{yr} = [(cos@)mx + (sin®)my|[—(sin)myx + (cosf)my]
= —(cos@sinO)m2 + cos® Omymy — sin® O(mxmy) + (sin 6 cos H)mf,
= [cos? 0 — sin® O]mxmy — sin @ cos O[m2 — m?,] (3.44)

Comparing (3.43) and (3.44) shows that the two random variables xp and y r are uncorrelated

for any 6., i.e., E{xpyr} = F{xg}E{yRr}, if and only if |02 = 0)2, )

Remarks:

1) Note that when one says uncorrelated one actually means uncovarianced. However,
universally the terminology is to say uncorrelated.

2) A lot of algebra could be avoided by realizing that the mean values do not place any role
as to whether the random variables are uncorrelated and therefore myx and m, could
have been set to zero without loss of generality.

3) If the two random variables x, y are correlated, then one can find a rotation angle,
0, that would make the random variables xr, yr uncorrelated. However, the angle
is determined by the correlation (and variances) of x and y. Here the rotation angle
is arbitrary and other considerations can be used to determine the rotation. This is
exploited in Chapter 5.

(a) fx(z)dz
(b) fy(y)dy
(¢) Equal
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(d) Replace y by g(x) and fy(y)dy by fx(x)dx and sweep over z, ie., from z = —oo to
x = +00 to obtain the relationship.

P3.18 Start with the definition for the characteristic function:

+oo
Bl f) = B{e/2Ix} — / 21T £ (2)dg. (3.45)
Differentiate ®x(f) n times:
4" o
—arm }iff ) - / (j2ma)"e”™ I fi(w)da
+0o0o
= (j2m)" / 2" (2)da. (3.46)
Set f =0 and divide by (j27)"
+oo

o1 d”<1>x(f>‘
C G A |

- / o fo(@)de = E{a"). (3.47)

ooz
n=0 n!"*

P3.19 Maclaurin expansion of e* = >

2 o (2rf)en 2 o (2"
. el2mfr — nzo J i and O (f) = E{e’ ”fx} = nZO J - E{x"}.
= The characteristic function is completely determined by the moments of the random vari-
able.

Note that expectation is a linear operation. Thus the expectation of a sum is the sum of the
expectations.

P3.20 The characteristic function is the “Fourier transform” of the probability density function
and everything that was discussed in Chapter 2 should carry over here. There are some
differences that must be taken into account. In Chapter 2 we went from the time domain
to the frequency domain and back whereas here we are going from the probability density
domain to the frequency domain and back. But this is a trivial difference. Indeed the Fourier
transform could be applied to a function of any independent variable, say temperature, length,
etce..

The main (and only) difference between the Fourier transform in Chapter 2 and the charac-
teristic function is the sign convention for f, i.e.,

(1) s X() = [ a)eiitay

I (3.48)
T x(peag

SOLUTIONS PAGE 3-16



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

+o0 )
fx(z) — D (f) :7‘[ Fxlz)ei?™ e dy
N | (3.49)
[ ®x(fle /= df
which shows that f — —f.

2
(a) Example 2.17, Chapter 2, establishes that Ve o’ o Vf e~ a are a Fourier transform

pair. Here we need the characteristic function (or Fourier transform) of \/217meim‘

substitute and do the algebra.

Identify V = r ;0= 2027
- B(f) = 21770 V2ot T )20 _ omiet (3.50)
(b) Example 2.9, Chapter 2, states Ve @ ﬁ/fﬂang.
Here we are concerned with fx(z) = %e*d‘”‘. Identify V' = §,a = c. Then
5 Ox(f) = /@) _ (3.51)

2+ 4An2(— )2 2+ 4m2f?

(c) Example 2.11, Chapter 2, shows that a rectangular pulse of width 7" and height V' has

the Fourier transform, VTmf—T) Here we are dealing with a pdf of width 2A, height

1/24, ie., T = 24,V = 1/24.
sinm(—f)2A  sin(27fA)
A(~12A ~ (nfA)

(Note that both rectangular pulses are centered at the origin).

Dy (f) = (3.52)

Remark: Because the pdf’s were even functions the f convention did not matter. Is it possible
to have a pdf that is odd?

P3.21 Obviously the odd moments are zero since the integrand is an odd function. Consider now
the relationship

1 / _aZ
——— [ e 202dzx =1. (3.53)
NG
2o J
Write this as
+o0o
1
/ e = \\/Fi, where « is defined as a = 353" (3.54)
« o
—00
Differentiate both sides with respect to a:
a 7 17
—a? T
@ : / —.%'26 ar dor = —im (355)
—00
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and again
S 1\ [ 3\ V&
. 2 N —ax2 _ Vs
—00
and again

e (OESE e

The pattern is such that after the nth differentiation

& [eorertas () (D) (-25) ol 6

2n41)/2°

—

Note that the LHS has the form of F{x?"} but some algebra is needed to see this

+oo
/ (—1)"z2e=" dg = (—1)" [L-3-5 "2;1(2" D) an\ﬁﬂ (3.59)

Now bring back the definition of «:

+oo
_a? 1-3-5---(2n—1
/ = P LAL AL 2n( n— 1 V2™ (0%)"V 20 (3.60)
Rearrange:
+00
2n 1 2n_—ax? 2\n
E{x }:\/2— e der=1-3-5---(2n—1)(c*)", n=0,1,2,... (3.61)
o

P3.22 (a) Let y = x — my, i.e., y is a zero mean 1.v., variance o2

2. Then ®y(f) = E{e/>"/Y} =
E{ejzﬁf(x_mx)} _ e—j27rfme{ej27rfx} or ‘I)y(f) = e_jzﬂfqu)x(f).
(b) Byl f) = 2T meei20 0%

P3.23 (a)
+o00 +oo
E{ef?mfbatx2)y / /eﬂwf(xﬁm) fxixo (21, ¥2) dzidas
———
—00 —00 =fxy (21) fxg (2)
+00 +o0
B /ej2ﬂfx1fx1 (z1)dzy - / ejZﬂfxzfxz(xQ)de' (3.62)
q)xl (f) (I)XQ (f)
Therefore @y (f) = Px, (f)Px, (f).
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f (%)= f,, (%) f, (¥)

1/ 2A 1/ 2A

-A 0 A —2A -A O A 2A Y

Figure 3.11: Plots of fx, (x1) and fy(y).

(b) Convolution = fy(y) = fx,(z1) ® fx,(x2) = 7mfxl(A)fo(y — A)dA. Convolving graph-

ically gives fy(y) as shown in Fig. 3.11.

(c) @y(f) = kﬁl Doy (2) OF fy(y) = frr (1) ® fuy (29) &+ ® fcy (n)-

Above is true as long as the x;,’s are statistically independent, i.e., it does not depend on
the random variables being Gaussian. However, if Gaussian, the characteristic function
of the kth r.v. is:

By (f) = eI mme 2 i, (3.63)
n ' _i9 (" x)_222(" )2()
and (by(f) — H e*]2ﬂ'fmxke—27r2f2a'ik —e j2nf kglm k o w f kgla k (364)
k=1

n
which is a characteristic function of a Gaussian r.v., with mean my, = ) my, and
k=1

n
: 2 _ 2
variance oy = kEI Op-

n
Note that the above result is easily generalized to a weighted linear sum, i.e., y = > apXy.

k=1
n

n

Then y is Gaussian, mean my = ) apmy,, variance Jf, = > azaik where xj, are still
k=1 k=

statistically independent Gaussian random variables.

P3.24 (a) Fory to lie in the region (y,y + dy] one of three mutually exclusive events has to occur:
x has to fall in the region [z 4+ dx1,x1) or (z2,x2 + dxg] or [x3 + dzs, x3), i.e.,

Ply<y <y+dy] = Plr;+dr <x1 <x1]+ Plre < x9 < 29 + dag]
+P[l‘3 +dxs <x3< 333] (365)

In general Plz < z < z + dz| = f,(z)dz. Therefore:
fydy = fx(z1)|dzr| + fx(z2)das + fx(23)|dws]. (3.66)

(b) Infinitesimals dz;,dxs are negative quantities and the very least we should expect of a
probability is for it to be > 0.
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(c) For the specific example we have

X K3 dl
fol) = Zf Bl

no harm in putting a magnitude sign on a positive quantity, dy.

3 .
= Z Iulas) _ =2 fj(m (3.67)

dixi =1

7?4’
d x ZZ

More generally fy(y) = > ’c{x(z ) where the ;s are the real roots of g(x) =y for the
i

specific value of y.

P3.25 Consider the graph of g(z) in Fig. 3.12.

2 ‘
1 B /\ n
ot > |
\ X
_1 - o
y=X
Lol / ]
y—l—(l—x)2
_3 - 4
_4 I I I I I I
-3 -2 -1 0 1 2 3 4
Figure 3.12

Inspection shows that:

(a) For y in the range (—oo,—1) there is only one real root, namely the positive root of
l-(1-22=y=z.=1+/T—y, —co<y<-—1.

(b) At y = —1 there are an infinite number of roots (actually a noncountable infinity)
Wthh implies that P(y = —1) is nonzero. Indeed P(y = —1) = P(—o0 < x < —1) =
f fx(z)dz = Le~!. Therefore fy(y) has an impulse at y = —1 of this strength.

(c¢) For —1 < y < 0 there are two roots to the equation g(x) = y, one from the relationship
x = y; the other from the relationship 1 — (1 — x)? = y (again the positive root). The
roots are therefore x1 =y, xo =14+ /1 —y.

(d) For 0 < y < 1 there again are two roots from 1—(1—x)? = y which are x1 2 = 14/T — y.
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(e) Finally for y > 1 there are no root = fy(y) = 0.

As always
(T dg(x
fy(y) = Z M Here 9(x) =2(1 —=z). (3.68)
dg(z) dx
xr: the roots of g(z)=y | " dz -
Therefore:
o—11+vI=7l
(a) —oco <y < —1: xf,_:l—i—\/lféfy(y):%'z(il_‘y)'.
(b) y=—1: fy(y) = 3¢ 16y +1).
1 e—I1+vI=yl 1 —
(c) -1 <y<O: fy() 2|62 \/7)““2 lvl,
. _ 1e-IHVITUl | 1 e—N-vIT
() 0 <y <1 fy() = 3=y + 2 v
(e) y>1: fy(y) =0
A plot of the pdf is shown in Fig. 3.13
2.5
fy(y) A
2, -
1.5 .
1, -
1/2 615 (y+1
0.5 (y+1) |
y
=3 -2 -1 0 1 2 73
Figure 3.13

P3.26 (a) y = g(#) = cos(a+ ). Consider the graph of the nonlinearity g(#) in Fig. 3.14.

1 1

The roots are 1 =cos ™ y—a; b =1 —a+d=27r —2a— 01 =27 — a — cos™ " y.

% = —sin(a + 0).
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y
11
COSO
/\O\ el . 62 /\
-1+
>
d d d=m-a-6,

Figure 3.14: Plot of the nonlinearity y = g(0) = cos(a + 6).

fo(0)]o, N fo(9)]o,

= . 3.69
w =gt (3.69
df o, 616,
Now fo(0)|s, = fo(0)lo, = 5= (8 is uniform over (0, 2n]).
dy . -1 . . 1 N\ 5
—= —sin(a+cos™ "y —a) = —sin(cos” " y) = —y/1 —y (3.70)
do |y,
d
d—g = —sin(a+ 27 —a —cos ty) =sin(cos 1 y) = /1 — 32 (3.71)
02
Therefore
—A —1<y<l1
fy(y) = TV 1-y? T (3.72)
0, elsewhere
which plots as in Fig. 3.15.
As a check, we know
+o00 1
1 ?
[ = [ (3.73)
T/ 11—y
—00 -1
/ 1
? T
0

The LHS is sin~!(y)

removed.
No, it does not depend on .
(b) A sketch of the relationship y = cos(6+ «) where 0 < 6 < 7/9 (see Fig. 3.16) shows that

there is only one real root at #, = cos™! y —a and that y lies in the range cos(a+7/9) <
y < cosa).
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2.5 )\
UN\))
2r |
1.5 R
1r 4
0.5r ,
i
y

-15 -1 -0.5 0 05 1 “15

Figure 3.15

y

cosa \
Y-
AN
Gr T o 0
5(20 )
T
cos| —+0
o
Figure 3.16
Again j—g = —sin(a+cosly —a)= —~1—.

0=0, 1-y?

Now fo(0) = 2 [u(0) — u( — F)] and therefore fo(0)

o

where cos(a + 7/9) <y < cosa. "
Therefore
9 Tu(0) —u(cos 'y —a—T T
fyy) ==~ [0 (Cfs_ yi/ ) {u[cos(a + 5) — u(cos a)]} , (3.75)

which depends on a.

In communication models « is invariably 27 ft, i.e., y = cos(2w ft+8). The above shows
that if @ is uniform over [0, 27) then the random process is stationary (at least 1st order).
However if it is restricted then in general it becomes nonstationary.
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P3.27 (a) >0
(b) Since it is always > 0 the function g(\) = E{(x + A\y)?} cannot cross the \ axis, i.e.,

g(\) = E{x’} + 2AE{xy} + N2 E{y*} > 0. (3.76)

This means that the equation g(\) = 0 has two complex roots at

N, - 2B E VAR xy) — AEGCTEGY?] (3.77)

’ 2E{y?}

(Recall from high school that the roots of az? + bz 4 ¢ = 0 are at =tV —dac W).

For the roots to be complex the expression under the square root must be < 0. This
requires that E?{xy} < F{x*}E{y?} or E{xy} < /E{x2}E{y?}.

(¢) Equality holds when y = kx, i.e., there is a linear relationship between the random
variables x,y. (Statisticians are wont to call this a linear regression).

(d) Consider the random variables x — my and y — my. Then from (b) we have

E{x—my—my)} < JE{x=m2} E{(y —my)} = /o202 = ox0y

op PA—m)(ly —my)}
Ox0Oy -

=Px,y

But the expression in (b) should properly be written as

—VE{TEly%} < E{xy} < VEGSTE(y7) (3.78)
(or 1B {xy} | < VERYE(y?}) (3.79)

from which it follows that —1 < p < 1.

(e)

|E{x(t)x(t+7)}| < VE{x*(t)} E{=*(t+7)} (3.80)
or |Rx(7)]| < /R (0)Rx(0) = Ry(0) (3.81)

where it is assumed that the process is stationary.
P3.28 (a)

Ply<y<y+Ayz<x<z+ Azn)

Ply<y<y+Aylzr <x<az+Azx)= Pz <x <z+ Ax)

. (3.82)

(b) Assuming continuous random variables the expression becomes %.
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(c) Rewrite the expression in (a) as:

Py<y<y+Aylr<x<z+Az) Ply<y<y+Ayz<x<z+Azx)

. (3.83)

As Az, Ay — 0 the LHS becomes fy(y|x = x) (more appropriately fyx(y|x = z)) and

the RHS becomes f’}i(ié)y)

P3.29
_ Jxy(®,y) — aquadratic in x,y | = a quadratic in y.
fy(le) = fx(2) — a quadratic in x Therefore Gaussian. (3.84)
By symmetry fx(z|y) is also quadratic.
P3.30 Consider
P(r<r<r+Ar/A)
P(A < A —
(Alr <x <r+A4r) P(r<r<r+Ar)
_ P(r<r<r+Ar/A)P(A)
B P(r<r<r+Ar)
P(r<r<r+Ar|A
B (<Ar ‘)P(A) (3.55)
B P(r<r<r+Ar) ’ ’
Ar

Let Ar — 0. Therefore P(Alr =71) = %@S(A).

P3.31 To be a valid (not necessarily useful) pdf, a function must satisfy two, and only two, conditions:
(i) the area under it must be equal to one, and (ii) it must always be > 0 (nonnegative).
Therefore:

(a) (i) Satisfies both conditions. It is a non-stationary Gaussian random process (or random
2

variable for any fixed ¢), whose mean is sgn(¢) and variance is o~.
(ii) No, neither condition is satisfied. fx(0) < 0 for t < 0. Also [ fx(z;t)dz =
sgn(t) # 1.

(b) Answered above.
Note that the functions are considered to be functions of x; t is looked upon as a parameter.

P3.32 A random process is generated as follows: x(t) = eI, where a is a random variable with
pdf fa(a) = u(a) — u(a — 1) (1/seconds).

(a) Sketches of several members of the ensemble are shown in Fig. 3.17. They are generated
with the Matlab codes below. Note that the Matlab function rand generates a random
number according to a uniform distribution over [0, 1].

t=[-2:0.001:2];

for i=1:4
a=rand(1,1);
x=exp(-axabs(t));
subplot(4,1,1i);plot(t,x,’linewidth’,1.5);
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tname=[’{\bfa}=’ ,num2str(a)];

title(tname,’FontName’, ’Times New Roman’,’FontSize’,16);

grid on;

xlabel(’\itt’,’FontName’,’Times New Roman’,’FontSize’,16);

set(gca, ’FontSize’,16,’XGrid’,’on’, ’YGrid’,’on’,’GridLineStyle’,’: 7, ...
’MinorGridLineStyle’, ’none’,’FontName’,’Times New Roman’);
y1im([0,1.1]);

end
a=0.82141
17 T T T T T T =
0.8* .
-2 -15 -1 -0.5 0 0.5 1 15 2
t
a=0.4447
1F T T T T 3
0.5k il
O ! ! ! ! ! ! !
-2 -1.5 -1 -0.5 0 0.5 1 15 2
t
a=0.61543
17 T T T T T T 3
0.8* .
-2 -15 -1 -0.5 0 0.5 1 15 2
t
a=0.79194
17 T T T T T T =
0.8* .
-2 -1.5 -1 -0.5 0 0.5 1 15 2
t

Figure 3.17: Several member functions of the random process x(t) = e~2!!l.

(b) Since a ranges between 0 and 1, for a specific time, ¢, the random variable x(t) ranges
from e~ !l (when a = 1) to 1 (when a = 0).

(c) Again, similar to P3.31, we consider x to be a function of a with ¢ a parameter. The
mean and mean-squared values of x(t) are:

o0

! efa|t| 1
Bix(1)} = / (1) fa(a)da = / o= | = |t1| (1), (350
—00 0
7 ; o—2alt| |1 1
B0} - / 22(1) fa(a)da = / e llan =) = o (1-c2M). (3s7)
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Note that at ¢t = 0 the mean value is E{x(t)} = %by L7H:°Spitale% = 1 (expected
=0

intuitively), the MSV is E{x?(t)} = 1. Therefore the variance is 0, again expected

intuitively. This is not true, of course, at other values of ¢ (except t = +00).

(d) We now determine the first-order pdf of x(t).
For z < e Il or z > 1, we have fx(z;t) = 0.

For e !l < 2 < 1, the equation z = g(a) = e~ has only one solution a = —
z < 1. Furthermore

1 —[t]
|t|1nx, e <

dg(a) —g
1 =Mt 14 o =Tt (3.88)
azfmlnm azfmln:v
Therefore
Jala = —ﬁlnx) 1
1) = = —, 3.89
fx(t)(x» ) o |t|$ ( )
da 1
a:—mlnx
To conclude:
T ez <i
@ty =3 e © = 3.90
f (t)(x ) { 0, otherwise ( )

Are the 2 conditions for this to be a valid pdf satisfied?

P3.33 (a) The transfer function of the filter is H(f) = W. The 3-dB frequency is given

by f3a = ﬁ. For f3 4 = 10 kHz and Chom = 1.5 x 1072 F the resistor value is
Ryom = 10.6 x 10® =~ 10 kS2.

(b) The time constant 7 = RC is given by 7 = (Rpom + AR)(Chom + AC) ~ RyomChom +
ChomAR + Ryom AC (where the term ARAC is ignored).
The random variables AR and AC' have pdfs shown in Fig. 3.18.

fir(AR) fic (AC)
S
10
Rum
~0.05R. . 0 ooRr. °R -0iC,,. |0 0iC,, ac
Figure 3.18

The random variables x = Chom AR and y = RyomAC have the pdfs shown in Fig.
3.19:

Because x and y are statistically independent, the pdf of the random variable z = x+y
is the convolution of fx(z) and fy(y). It looks as in Fig. 3.20.

Finally, the pdf of RC is a shifted version of f,(z) and it is shown in Fig. 3.21.
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£, (x) f,(¥)
10
RuonCrom
5
Rnomcnom
y | Ly
- 05 Rnom Cnom 0 : 05 Rnom Cnom _0 1Rnom Cnom 0 O anoanom
Figure 3.19
f.(2)
5
RuonCrom
z
_0' 15 R’\om CI'IOI'T'I O 0' 15 R‘IOI’T\ Cnom
Figure 3.20
frc (RC)
25
RuonCron
O 0' 85 R‘IOI’T\ Cnom RﬂOfTI Cnom 1' 15 RﬂOfTI Cnom RC
Figure 3.21

(c) What is meant by average impulse response? Simplest is to let R = Rpopm and C' = Cpom
and let this be the average impulse response. More appropriately it should be called the
nominal impulse response.

Otherwise find the statistical average of h(t):

E{h(t)} = / / %e—% fro(R,C) dRAC

=fr(R) fc(C)
C=1.1C, R=1.05R
nom 5 1 nom 10 1
_ / 40— dR—" — ¢ 7e
C=0.9Cnom C’nom C R=0.95Rnom Rnom

Let A = %. Then d)\ = —%dR, or dR = —%d)\. The inner integral becomes:

1
10 [*=095Fnom 1 10
. / 95 Xe—)\ad)\ = Ei(—a) — Ei(—a)) ] )
nom A= g nom A= 555 Frnom A= o5 Hnom

where a = & and the Ei(-) function is defined as Ei(z) = — [ %dt.

Define the worst case impulse responses to occur when R and C to be fall at either the extreme
upper value of extreme lower value, i.e., R = 1.05R,o;n and C = 1.1Com, or R = 0.95Rom
and C = 0.9Com

SOLUTIONS PAGE 3-28



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

(d) Let x = % Then the impulse response is given by:
h(t) = xe ™ u(t).

To find the first-order pdf, treat ¢ as a parameter. Therefore we have a nonlinear mapping
from random variable x to random variable h:

h = xe *

(of course the parameter t is restricted to be > 0).

Now given fx(z) try to determine fi,(h). But the question is how to find the roots of ze™** = h
in an explicit form?

(e) The 3-dB bandwidth is given by f3 4p = 5. The mean value is

v - elefel- e i)l

1
— 5 [ gi@ar [ rec

™

1 1 1.05Rnom 1.05Rnom
= 0 InR > InC

27 Ruom 0.95Rnom ) Cnom 0.95Rnom

1 10
= — 0.1 0.201

21 Ruom ( ) Chom ( )
_ 1.005

27 Ryom Crom

To find the variance, determine the MSV of f3 4, i.e., E{f? ;5 }:

. 1 1 1 1.003 /1.010
2 —
E{fi} = ﬁE{R?}E{C?} Am2 R2,, <Cr210m>
1.013
42 R2, . C?2

nom — nom

The variance is

0.003

E{f?? dB} 1 (E{f3 dB})2 W - Ooogf??—dB nominal

nom — nom

or the standard deviation is 0.055 f3.4B nominal-

P3.34 (a) Check the two conditions for it to be a valid pdf.
The first condition: Is fx(x;t) > 0 for all  and ¢? The answer is YES.
The second condition: Is the area equal to one?

/OO fxlat)de = / [ tetilg, — 19 /Ooe—|r/|tdx
—o0 ’ oo 2 2 0
(/| ) = o2 = 2
0
So the answer is NO.

Therefore pdf is not valid. But | le=Itlle] ig a valid pdf. Asis 2|t\ e~ lzl/It
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(b) pdf is not valid.
(¢) fx(z;t)=0att=0.

P3.35 (a) For any time ¢t > 0 (where the time origin is when you start the measurement), the pdf is
a Gaussian distribution with zero mean and standard deviation o (¢) = [1—e™1%u(t) > 0.
Hence it is a valid pdf but time-varying.

(b) For t > 0, the mean is zero, while the variance is 02(t) = [1 — e~1%]2y(t), which is time
varying.
(c) Fig. 3.22 plots 0?(t). Observe that o%(t) closely approaches 1 when t = 0.5 sec (500

msec). At this point in time the first-order pdf does not change much and the process
can be considered first-order stationary.

o’(t)

0.2r ]

0 | | | |
0 0.2 0.4 0.6 0.8 1

t (sec)

Figure 3.22: Plot of o%(t).

P3.36 The mean value of x is:

T, T,
E{x}=F /W(t)g(t)dt = /E{W(t)}g(t)dt = 0. (3.91)
0 0
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The variance of x is (since mean is zero, it equals the MSV):

T, T,
o2 = E{x’}=E / w(t)g(t)dt / w(V)g(A)dA
t=0 A=0

T, T,
_ / dtg(t) / drg(\) E {w(t)w(}))
—_————
t=0 A=0 o g(1—x)
Mo g(1)
Ty
= NO/gQ(t)dt: NoEy (3.92)
2 2
0

Note: Expectation is in essence an integration operation. Therefore in interchanging the
expectation and integration (w.r.t. time) operations we are simply changing the order of
integration.

Low-pass filter

JH()
x() 0

-W 0 w

Figure 3.23: Passing a random process through a low-pass filter.

P3.37 (a) The power spectral density (PSD) of y(¢) is

N,
_ . 2 _ 707 |f|§W
S0 = san-aop={ g WSn (399)
S.(f) S (f)
N, N,
2 2
0 f W 0w f

Figure 3.24
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(b) The autocorrelation can be found as the inverse Fourier transform of the PSD:

+o0 )
Ry(r) = F HS(N}= Sy(f)e*™Tdf (3.94)
No .
= / 20e72”f7df (3.95)
W
No jorf z=2n7f No /Z”WT <
= 0 ™I (277)d iz .
- /We (2nT)df o 72WWTe x (3.96)
N, Ny sin(2
= - 2sin(2rlWr) = w 3.97)
T
= No-W -sinc(2Wr) (3.98)

The (normalized) autocorrelation function Ry (7) is sketched in Fig. 3.25.

1

0.4

0.2

R (D/(NW)

—-0.2r

_04 I I I I I

Figure 3.25: Autocorrelation function Ry (7).

(c) The DC level of y(t) is
my = E{y(t)} =mx-H(0)=0-1=0 (3.99)
The average power of y(t) is

oy = E{y*(t)} = Ry(0) = NoW (3.100)
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(d) Since the input x(t) is a Gaussian process, the output y(¢) is also a Gaussian process
and the samples y (kT;) are Gaussian random variables. For Gaussian random variables,
statistical independence is equivalent to uncorrelatedness. Thus one needs to find the
smallest value for 7 (or T§) so that the autocorrelation is zero. From the graph of Ry (1),

the answer is: )

— 101
2w (8101)

Tmin = (Ts)min =

0
-1 -0.5 0 0.5 1
f/\W (normalized frequency)

©
~

R, (D/(NW)
o o
Do

O
}T\
|

-3 -2 -1 0 1 2 3 4
T W (normalized spacing)

|
_bO

Figure 3.26: Plot of power spectral density and autocorrelation of the output process in P3.38.

P3.38 (a) As usual Sy(f) = |H(f)]2%. See Fig. 3.26 for the plot of Sy (f).
(b)

w 2
R = 7Sy = [ (1) e

-W
W 2
= NO/O <1—|I‘/If/|> cos(2m fr)df
2Ny _ sin(2rWr) 2Ny

W (27mT)? [ 2nWr ] - W(2nT)? [1 = sinc(2Wr)]

See Fig. 3.26 for the plot of Ry (7).

2
(c) DC level is zero. Average power is Ny fOW <1 — %) cos(2mfr)df = M (watts), which

can also be found from Ry (0).

SOLUTIONS PAGE 3-33



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

(d) Since Ry(7) > 0 for |7| < oo, there is no finite value of sampling period to yield statis-
tically independent noise samples.

P3.39 (a) The output noise power is NoW watts.
The input signal PSD is

2aK

F{Rs(1)} = K / N ealmle=32mTqr = TP (watts/Hz)
Output signal power is
w
2aK 2K 2rW
————df = ~—tan"! .
/_Wa2+47r2f2 ! ar < a )
Therefore ) (2 W)
2K tan™" (L%
SNR(W) = — ————°2+~.
( ) aT N()W
(b) To find the maximum,
ASNR(W) 2K | tan”' (*5%) N 27 .

2
dw amNy W AW /1+ 4ﬂzgv2

472 W2 - <27TW> 2W

which gives

1+ — — )=

a a

Let z = % Then one needs to solve v/1 + x2tan"!(z) = x. The only solution is x = 0,
i.e., W = 0. This solution could also been obtained by recognizing that, since the noise PSD
is flat and the signal power decays as 1/f2, increasing the filter bandwidth can only reduces
the SNR.

A linear filter

h(t)

x(t) 1 y(t)
—_— T —>

0 T

Figure 3.27: System under consideration in Problem 3.40.

P3.40 (a) The filter is time-invariant (linearity does not matter). The input noise process x(t) is
WSS. The output noise process y(t) therefore is also WSS.
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(b) The frequency response of the filter in Fig. 3.27 is:

o . Ty
Hm::/hmwwwz/Twww

—00 0
_ L1 efj27rft’T 1 [eijﬂ-fT \ 1]
T —j2nf 0 j2r fT
_ T e
i fT
= PO et = T a7 eyt
Jeam s

If mx is the DC component in x(t), then the DC component in y(¢) is
my = mx - H(0) = mx - sinc(0) = my

(c) If x(¢) is a zero-mean, white noise process with power spectral density Np/2, the power
spectral density of y(t) is given by:

2 /) N

Sy(F) = Self)- [HDP = 52 |25 | = Srsine?(fT)

(d) The frequency components that are not present in the output process are the components
that make Sy (f) = 0. Obviously, these components correspond to wf1T = km, or f =
E/T, k=+1,£2,....

P3.41 Consider the system in Fig. 3.28.

Figure 3.28: The system under consideration in Problem 3.41.

(a) Let the input z(¢t) and output y(t) be deterministic signals. Then

o) = Slelt) +alt—T)
- L+ doe-m (3.102)
dt dt

Obviously, the system is LTI. Since the response of an LTI system to a stationary process
is also a stationary process, it follows that y(¢) is a wide-sense stationary process.
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(b) Rewrite (3.102) as

u(t) = Slalt) + (i~ 1)

Taking the Fourier transform of both sides and using the differentiating and shifting
properties of FT gives:

Y(f) = (j2rf)[L + e 2TTX(f)
Thus, the frequency response of the system is:

H(f) = f(((j?) — (j2rf)[1 + o I2T]

(¢) Now consider the input x(¢) being a white noise process with PSD of % = Sx(f) =
2o Vf. The PSD of y(t) is:

N
Sy(f) = Sx(f) - [H(P = FH)
Since |H(f)|? = 1672 f2 cos?(w fT), it follows that
Sy (f) = 8Nom® f2 cos®(n fT)

The above (normalized) PSD is plotted in Fig. 3.29.
(d) Here we need to find frequency components such that Sy (f) = 0:

cos(mfT) =0

iS4 f:O
nfT =35 +kmk=0,4+1,42,...

Sy(f) = 8Nom?f2cos*(nfT) =0 & { F=0

= f:O
f=2t g =0,+1,42, ...

P3.42 (a) The PSD of m(¢) is found by taking the Fourier transform of the autocorrelation function

R (7):
Swlf) = FlBm() = [ Rm(me 7 7ar = [ e leinimgr
0 00
= /Ae(l—j%f)TdT+/Ae—(1+j27rf)Td7_
s 0
0 o0
= #e(lfﬂﬁfﬁ +$’e—(1+j2wf)7
1—j2nf . —(T+g27f) o
A A 24

= 3.103
1—j27rf+1+j27rf 1+ 4r2f2 ( )
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800
700
6000y n H
5000 ” ”
4000+ i

ﬂ ﬂ

3000+ i

OVHMOM\N\H

10

S (N,

fT

Figure 3.29: Plot of Sy (f).

Ideal LPF

r(t) , 1 m,(t) +1n, (t)

m(t) >$ -~ - .

n(t)

Figure 3.30: System under consideration in Problem 3.42.

(b) Since the filter is an ideal LPF of bandwidth W, the PSD of the output message is:

Sm(f) ; WS fFSW

S (f) = { 0 ; otherwise (3.104)
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2 /\
1.8¢ 1

S (/A

0.2 1

93 -2 -1 0 1 2 3

Figure 3.31: The power spectral density Sm(f).

Thus, the power of the output message is:

[eS) w

Pa, = [ Sm0)af = [ Smif)af
o “w

w w

24 24 1
p— —— - — 2 S
/ 1+47r2f2df an? X/(217r)+f2df
- 0
w
= Aemtanteen| = i @), (3.105)
s 0 ™

To find the power percentages at the filter output, note that the power of the input
message is Py, = Rm(0) = A. Therefore

W (Hz) Ph, Percentage = Py, /A
10 0.9899A 98.99%
50 0.9979A 99.79%
100 0.9989A4 99.89%
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(c) Since the PSD of the output noise is:

M . W< fF<w
pr— 2 ’ — .
Sno(f) { 0 otherwise

Then the noise power at the output of the filter is:

w
N, N,

-w

P, =

o

dB at the filter output.
2A
= Pm, = —tan" ! (27W) = A.
w

(3.106)

(3.107)

(d) Let A =4 x 1073 watts, W = 4 kHz and Ny = 10~8 watts/Hz. Determine the SNR in

This is because the bandwidth W = 4 kHz is large enough to practically pass all the

message power.
Pn, = NgW =108 x4 x 10° = 4 x 10°.

12 et 4 %1073
SNR = 1010g10T% = 1010g10r10_5 = 20dB
P3.43
Ryw(r) = E{yt)w(t+71)}=FE { [/ h(N)[s(t — ) + w(t — )\)]d)\] w(t + 7')}
—o00
_ / WOV | B {s(t = Nw(t + 7))+ E {w(t = Nyw(t +7)}| dr
—0 =0 (they are uncorrelated) :%5(74_ \)
N
= 7%(—7)
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Chapter 4

Sampling and Quantization

P4.1 The spectrum of the analog signal is given by
_ 5[0(f —500) 4+ 6(f +500)]  2[6(f — 1800) + &(f + 1800)] (volts/Hz). (4.1)

S(f) 5 i 2
S(f) (V/HZ)
25
A A
} 1 +
~1800 -500 0 500 1800 f (Hz)
Figure 4.1

The sampled spectrum Sgampled(f) is the sum of all the shifted versions by multiples of f
(and scaled by 1/Ts = fs which we will assume is understood). Ssampled(f) plots as follows:

Serea (F) (VIH2)

25
A A A A
LI * *1 * * LI
g & & 8 8°% B 58 g fe
< 1kHz >
< 2kHz >
Figure 4.2
(a) Output spectrum is
2.5[6(f —500) +o(f 4+ 500)] +  [6(f —200) + 5(f +200)] . (4.2)
This is due to ;},le analog signal This is an alias - due to undersampling
Output time signal is
5 cos (2m(500)t) + 2 cos (27(200)1) . (4.3)
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(b) Output spectrum is

2.5[6(f — 500) + 6(f + 500)] + [6(f — 1800) + 3(f + 1800)]
This is due to the analog signal

F[8(F — 200) + 5(f + 200)] + 2.5[5(f — 1500) + 8(f + 1500)] . (4.4)

Aliases

Output time signal is
5 cos (2m(500)¢) + 2 cos (2m(1800)¢) + 2 cos (27(200)t) + 5 cos (27(1500)¢) . (4.5)

P4.2 First we have the following transform pair:

S(f)
1
R S(t) = VJ.V ejzﬂﬂdf = eJZ”‘M _e_jZMM = gnzm
W j2mt Vi
W 0 W f (Ho)
Figure 4.3
Therefore
sin27W (t — nTs) _ A=t—nT, sin27WA _
/Ts ]27rftdt s / /T ]27rf()\+nTg)d)\
/ m(t — nTy ) A
sn(t)
= JT,S(f)e 9%mInTs, (4.6)
oo e.¢]
[stsoa = [1. sty ety etag
- —o0
)25
w
g TS / efj27rf(n7m)TS df
-W
_ 7 ej27r(n—m)WT5 _ e—jQWTS QW =1 Sin(ﬂ'(n _ m)) (4 7)
e j2m(n —m)Ts N w(n —m) '
_ 0 n#m (orthogonal)
N 1 n=m (normal)
P4.3 (a)
_ sin(2rWr
R (1) = F (S (1)) = NoW VD) (i), (4.8
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S (1)
w(t) Wy (1) N,/2
T
S.(D="2 watshz S, (1) =[H(D} 2 watghz W0 W f(H)

(b)

()

P4.4 °
°

Figure 4.4

No. It depends on the transfer function, H(f), and the input PSD. However if the input
is a Gaussian process then so is the output since it was obtained by the linear operations
— essentially the output is a weighted linear sum of the input, w(t).

At 7 = KkT;:

sin(2rWkTs) wr,=1 sin(27k)
2nW kT = MW 21k

= 0, k0. (4.9)

Ry (ETs) = NoW

The above means that the samples are uncorrelated. And because they are Gaussian,
they are statistically independent.

If increased then definitely correlated, except for very special cases such as if T is halved
then the set of alternate samples would be uncorrelated, etc. If decreased then if Ty is
increased by an integer multiple the samples are uncorrelated, otherwise correlated.

Statistically independent depends on the process being Gaussian and samples being
uncorrelated. If not Gaussian, nothing can be said about statistical independence even
if uncorrelated.

8-bit = 256 levels = Step size = 2/256 = 7.81 mV.

12-bit = 4096 levels = Step size = 2/4096 = 0.488 mV.

16-bit = 65,536 levels = Step size = 2/2'% = 30.5uV.

P4.5 3-bit = 8 levels; 4 on each side of zero.

fn (M)

14

Target levels
| l m

4 -3 -2 -1 0 1 2 3&
Thresholds

Figure 4.5

By inspection the uniform quantizer is the optimum one.
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Signal power is:

[\

ol = /m2fm dm—2/m2fm

1+1m
12 3

11
0] =7 (watts). (4.10)

Quantization noise power:

/ 1\%1 ; 3\2 1
2
0 1

Change variables — A=m—1/2 A=m—3/2
3 4
+/ 5\ 1, +/ ™N 1,
mTa) 12" 7o) 12
2 3 ¢
A=m—5/2 A=m—T7/2
1/2 1/2 1/2 1/2
1 1 1
. 2 L 2 - 2 - 2
= )\d)\+12/)\d)\+12/)\d)\+12/)\d)\
71/2 —-1/2 —1/2 —-1/2
1/2 1
2
= / Md) =2 / Md) = 3 (watts). (4.11)
—1/2
Therefore 3 /
Om 11/3
SNRq = E = 27/3 =5.5 or 10 loglo 5.5 = 7.4dB.
f.,(m) (Yvoalts)
1
T 13
| : . = I m (volts)
-1 _Dl-l 0 l D T, 1
4 4
Figure 4.6
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P4.6
Dy 1/4 D,
[ mfm(m)dm [ mdm+ 3 [ mdm ;
0 0 1/4 1+ 8D7
o= T Iy, -HI T 8116D (4.12)
[ fn(m)dm 1T (Di=3)3 LN
0
1
mfm(m)dm
oo Df1 (m) _1-D} 1+D i1
S T 2(1-Dy) 2 (4.13)
[ fm(m)dm
Dy
T+ T
D, = 1; 2 (4.14)
1+8D? 1+D 5
o.2Dy = Sijll +2 L= 4D%—D1—|—1:0 = D; =04478  (4.15)
T, = 0.1717; Ty =0.7239. (4.16)

P4.7 Regardless of the quantizer used, the signal power is:

1

o2 :E{mQ}:/m

1

1
2(1 —|m|)dm = 2/m2(1 —m)dm = = watts (4.17)
oMy 6

fm(m) 0

Rather than solving the 1-bit, 2-bit and 3-bit quantizers separately, we first set up general
expressions for the 0(21, D; and T; in terms of n, the number of bits used for quantization.
Before this, we observe that the pdf is symmetrical about zero and that the number of levels is
even (= 2"). Therefore the decision boundaries and target levels shall be symmetrical about
zero = need only consider the positive m axis. The picture looks as follows:

fn (M)
1

(L = number of target levels)

T TK -1

DO:O D1 e

D Dy +++D¢y D=1

Figure 4.7

General expressions for the uniform quantizer:

The decision intervals D; 1 — D; are equal and are = 1/2""! = 1/K.

The target levels T; are in the middle of the interval, i.e., T; = (D;+D;41)/2, i =0,..., K —1,
or another way of expressing T; is T; = (i+1/2)A, i =0,...,K—1,A = D;,1—D; = 1/2"" 1,

SOLUTIONS
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The quantization noise power is given by:

K—1 z+l K—1 1/2
02 = 2 / —m)dm =2 3 / A2(1— A —T;)dA
=0 D; =0 —1/2n
K-1 172" 1727 K1 .
= 2 1-T, A%dA Md| =4) (1-T,
> [u-m) / -1 (55m;)
=0 —1/2n —1/2n =0
0
1 K—-1
= 377 [Zu ~T) (4.18)
i=0
Consider
K-1 K—-1
K K K
1-7;) = K- A K—A( ) —
; 2 2
=0 =0
K -1 K
= K- =g gn2 (4.19)
2 2
oo = L g2 1 tt 4.20
. Uq = m = m watts. ( . )
It is now easy to find SNR for any number of bits:
0.2 3(2271) 4
SNR, = 7%‘ === 221 or  (2n—1)logp2 = (2n —1)3 dB. (4.21)
n 112 3 4
SNRq 21832124
SNRq(dB) | 39|15 | 21
Turning our attention to the optimum quantizer
The equations for the decision boundaries are easy to write. They are:
T, 1+ T;
DFLJ”,i:1,2,...,K—1:2"—1—1. (4.22)
2
For the target levels, consider the generic interval as shown:
The centroid of this “probability mass” is:
D1
f m(l - m)dm D?ﬂ D? D?H*D? Dit1+D; D?+1+Di+1Di+Di2
D; Di -D; _ Diga+D;
0 myam (D1 D) - 2 R
D; ~——
Jm(m)
3(Di+1+ D;) — 2(D?., + Diy1D; + D?
_ 3Din+Di) = 2(Diy; + Dina D Z), i=0,1,..., K1 (4.23)

312 = (Dit1+ Dy)]
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Figure 4.8

(Note that Dg =0, Di = 1).

The above set of K + K —1 = 2" — 1 nonlinear algebraic equations needs to be solved for the
decision boundaries and target levels. For n = 1 & 2 this can be done reasonably simply.

1-bit optimum quantizer

Only the target level, Tp, needs to be determined (Dy = 0,D; = 1)

_ 2 2 _
T, — 3(Di+ Do) —2(Dy + DiDo+ Dg) _3-2 _ 1 (4.24)
3 [2 — (D1 + Do)] 3 3
2-bit optimum quantizer
Have 22 — 1 = 3 equations in Ty, T}, Dy with Dy = 0, Dy = 1.
To + T
D, = 0; Lor 2Dy =Ty + T, (4.25)
3(D1 + Do) — 2(D% + D1Dg + D%) 3D — QD%
T, = = (4.26)
3[2 — (D1 + Do)] 3(2—Dn)
T - 3(D2 + Dl) — 2(Dg + Dy D4 + D%)
! 32— (Dy+ D1)]
_ 3(1+Dy)—-214+Dy+D}) 1+ D;—2D} (4.27)
4 3[2—(1+ Dy)] 31— Dy) ‘
Dy —2D? 1+ D;—2D?
~op, = D 1,1t L (4.28)

32— D) 3(1— D)

This simplifies to D} —4D? + 4Dy — 1 = 0. Use either roots function in Matlab or observe
that D1 = 1 is a root and therefore the polynomial factors as (D; — 1)(D% — 3D+ 1). The
340—1 _ 3.5

2 2 -

roots of the quadratic are:

Choosing 3_2‘/5 (since D must lie in [0, 1]) we have Dy = 0.382 and T = 0.176, 77 = 0.588.

3-bit optimum quantizer

There are 22 — 1 = 7 equations in the unknowns Ty, D1, T1, D2, T, D3, Ts. In particular, 3 for
the decision boundaries: Dy = %,Dg = %,Dg = %, and 4 for the target levels:
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(Do = 0,D4 = 1)

3D, — 2D}
T = ————— 4.29
Dy + Dy) — 2(D2 + Dy Dy + D?
7 — 3(D2 + D1) — 2(D3 + D2D1 + DY) (4.30)
3[2 = (D2 + Dy)
D3+ Dy) —2(D2+ D 2
7, — 3(D3 + D3) — 2(D3 4+ D3Dy + D3) (4.31)
32— (D3 + D2)]
1+ D3 —2D3
T3 = —. 4.32
s Do (4.32)

To solve the above set of nonlinear algebraic equations the function fsolve in the optimization
toolbox of Matlab was used. The obtained solution is

Dy =0.1879; Dy = 0.3920; D3 = 0.6243;
Th = 0.0907; T1 = 0.2851; 15 = 0.4990; T3 = 0.7495.

Turning to the quantization noise power, 0‘21, for the optimum quantizer we derive at first a
general expression for the noise power when m falls in the region D;, D;41. It is

Diyq Di1-T; Dy 1-T;
o2(i) = / (m —T))%(1 = m)dm "= (1 - 1)) / A2d\ — / A3dA
D; D;,—T; D;,—T;
(1-T) 1
= 3 [(Dis1 = T;)° — (Ds = T)%] + 1 [(Di = T3)" = (Diy1 — To)*]

(4.33)

K—1
and 02 =2 Y o3(i).
i=0
Programming this in Matlab gives:
= 0.0155;
q = 0.0041;
The quantization signal-to-noise ratios are therefore:

2-bit quantizer: 0(21
3-bit quantizer: o2

1-bit 2-bit 3-bit
1/6 1/6 1/6
SNRq ((1 /18)) =3 0(.0/15)5 = 10.75 0(.064)1 = 40.65
SNRy(dB) |  4.77 10.3 16.1

Remark: Compared to the uniform quantizer, the optimum quantizer gives the biggest perfor-
mance improvement at 1 bit. As the number of bits increases the performance improvement
becomes less and less = the optimum quantizer tends to be a uniform quantizer for n (number
of bits) “large”.

Matlab code

(i) Thresholds and decision levels (2-bit quantizer)
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P4.8

(i)

function F=quantizer (x)

F=[x(1) - (1 + 8*x(3)"2)/(8 + 16*x(3)); x(2) - 0.5%(1 + x(3));
x(3) - 0.5%x(x(1) + x(2))] % x_1 = T_1; x(2)=T_2; x(3)=D_1

x0=[0.25 0.75 0.5];

% initial guess - basically uniform quantizer values
options = optimset(’Display’,’iter’)

[x, fvall=fsolve(@quantizer, x0, options)

sigmaq=0; K= ;

D_vec=[0, D_1, D_2,...,D_{K-1}, 11;
T=[T_0,...,T_{K-1}1;

for i=1:1:K

a=1-T(i); b=D_vec(i+1)-T(i); c=D_vec(i)-T(i);
sigmag= a*(b"3-c"3)/3 + 0.25%(c"4 - b"4);

end

sigmaq=2*sigmaq;

(a) Since fm(m) is symmetric about zero, one only needs to compute the decision and target
values for the positive m axis:

f[l))ll“ m fm(m)dm

fg’“ fm(m)dm

T =

(c/2) fgl“'l mexp(—cm)dm fgl“'l mexp(—cm)dm

Applying integral by parts to obtain the following;:

Thus

1
/exp(—cm)dm = —Eexp(—cm)
1 1
/mexp(—cm)dm = —-—mexp(—cm) — —exp(—cm)
c c

T = Dyp1exp(—cDyq1) — Diexp(—cDy) n 1
exp(—cDy41) — exp(—cDy) c

The average signal power is

The following integrals

+o0o +oo
o2 = / m? fem(m)dm = c/ m?exp(—cm)dm
0

—00
2

2’

(c/2) é)ll“ exp(—cm)dm a f[])jll“ exp(—cm)dm

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

may be useful when computing the average quantization noise
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power:

b
Zi(a,b) = /mzexp(—cm)dm

- [exp(—cm) <"f + %— + C%)} b (4.40)
To(a,b) = / ’ mexp(—cm)dm
~ [exp(—cm) <”§ + 012)] b (4.41)

(b) One-bit uniform quantizer: L = 2,Dy = 0,D; = 400, one need to find Tp. Since
Mypy.x — +00, one can assume that my,,, will not exceed a value p with the proba-
bility € and then compute D, T; corresponding to p and e. Therefore,

P1 1
€= / §cexp(—cm)dm =35 [1 — exp(—cp)] (4.42)
0
1
= p=——In(1 — 2e). (4.43)
c
Then the target value for this case will be
1
To = ~% In(1 — 2¢). (4.44)
The average quantization noise power is:
o0
0'21 = 2/ (m — Tp)? fem(m)dm
OOO
= c/ (m — Tp)2exp(—cm)dm
0
T3
= ¢|Z1(0,+00) — 2TpZ2(0, +00) + -
1 1. 5
= - |2+In(1—2¢)+ 1 In“(1 — 2¢)| . (4.45)
c

The quantization signal-to-noise ratio is therefore:

2

2
o
SNRq = & = . 4.46
9 02 2+4+1In(1 - 2€) + L 1n?(1 - 2¢) (4.46)
(¢) One-bit optimum quantizer: L = 2, Dy = 0 and D; = +00. Use (4.38) to find Tj:
Dyexp(—cD1) — Doexp(—cDgy) 1
To = + —
exp(—cD1) — exp(—cDy) c
Diexp(—cDy) 1
exp(—cDi)—1 ¢
1
= = 4.47
: (1.47)
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1

Thus the quantizer maps all the positive values of the sampled message to - and all the
negative values to —%.
Similar to (4.45), the quantization noise power is
oo
0(21 = 2/ (m — Tp)? fem(m)dm
OOO
= c/ (m — Tp)*exp(—cm)dm
0
T2
= c |:Il (0, 4+00) — 2TpZ5(0, +00) + -0
c
1
= —. 4.48
5 (4.49)
The quantization signal-to-noise ratio is therefore:
2 2
o 2/c
SNR, = 2 = =2 4.49
d 0(21 1/c? ( )

(d) Two-bit uniform quantizer: Similar to the one-bit uniform quantizer, one has L = 4, Dy =
0,Dy = —11In(1—2¢). Thus, D = —5- In(1-2¢), Ty = — 4 In(1-2¢), T} = — 2 In(1—2e).
Two-bit optimum quantizer: L = 4, Dy = 0, Dy = 400 = Need to find Ty, 177 and D;.
Using (4.38) one has:

Diexp(—cD;) 1

T —_— - 4.50
0 exp(—cDp) — 1 * c (4.50)
1
n = Di+- (4.51)
c
Next, the equation to solve for Dy is:
To+ T
D, = 20 : 1
1 Diexp(—cDy) 1
= —-|D _— — 4.52
c |7t * exp(—cD;) — 1 * c (452)

Let x = ¢D1, then after some manipulations, the above equation becomes:
xr=2-—2"" (4.53)

Equation (4.53) can be solved by trial and error. One method is to plot 2 — 2e™* and =
versus  and look at the intersection point (see Fig. 4.9). The solution is z = 1.59 =
Dy = ‘1059 =T =D+ % = 72659 and Ty = D — 1 = 7059

C C
For these two quantizers, the average quantization noise power can be computed as
o5 =2[02(0)+o2(1)], (4.54)
where
2 c T02
O'q(O) = 5 11 (0, Dl) — ZT()IQ(O, Dl) + ? (1 — exp(—ch)) , (455)
2 ¢ i
ogq(1) = 3 T1(Dy,+00) — 211 Zo (D1, +00) + Texp(—ch) ) (4.56)

and the quantization signal-to-noise ratio can be found by SNRq = 02,/ GZ.
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P4.9
P4.10

P4.11

P4.12

1.6 1

2-2e%

P N f

0.4r 1

0 0.10.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2

Figure 4.9: Plots of 2 — 2e™" and z versus z.

To be added.
To be added.

By inspection the optimum quantizer is a uniform quantizer with decision boundaries at
EA, (k + 1)A, etc., and a target level of kA + A/2. With these values the target level is the
center of gravity of the probability mass density and the decision boundary is the arithmetic
of the two adjacent target values, i.e., the optimum equations are satisfied.

Note: This implies that as the number of quantization bits, R, increases the approximation
becomes better and better and that the uniform quantizer’s performance approaches that of
an optimum quantizer. Given the manufacturing simplicity of a uniform quantizer there is
little or no profit going to an optimum quantizer.

Ignoring for the moment the range of me,¢, the first observation is that for fm,,, (mout) to be
uniform the RHS of (P4.5) must be a constant, % = fm(m) = that g(m) is the cumulative
distribution function of m(t), i.e., g(m) = Fm(m). Fm(m) is monotonic and ranges from 0
(at —o0) to 1 (at +00). Therefore fm,,, (Mout) is uniform over [0, 1].

Pass mgyt(t) through a linear (mathematically more appropriately called affine) transforma-
tion which shifts it to lie in the [—1, 1] range.

¥(t) = 2[mout<t>—ﬂ (457)
foly) = 5 luly+ 1)~ uly ~1)]. (459)

Refuses, because the quantizer in all likelihood would not be robust enough. It would be
sensitive to the assumed pdf model for m(t).
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P4.13 Crest factor F' is defined as
_ Peak value of the signal — mpax (4.59)

F = =
RMS value of the signal Om

F=42|

(a) A sinusoid with peak amplitude of Mmmax: VRMS = Mmax/V2 =
(b) A square wave of period 7' and amplitude range [—mMmax, Mmax): VRMS = Mmax =

1 =

[F=1]
Mmax 2
0 m 2Mmax

(c) Uniform over the amplitude range [—mmax, Mmax): 02, = E{m?} =2 J.
2
Tges = Vpus = "o = | F = V3 =173
(d) Zero-mean Gaussian with variance Ufn: VeMs = om. Equation to solve for mmyayx is
2
0.99

1 M max
ex —
\V2mom /0 P < 201211

By changing the variable ¢t = ﬁLa the above can be rewritten as

2 %ﬂﬁ 42 Mmax
— e " dt =0.99 = erf =0.99

N Mmax _ erf—l(o‘gg) = 1.8214 = mpax = \/5 x 1.8214 X oy
\/Qo'm
(4.61)

= [F =25758]

(e) Zero-mean Laplacian: o2, = E{m?} = C% = Om = @ Now solve for mmax:

mmax

Mmax 0.99

;/ exp (—em)dm = —— = —exp(—cm) =0.99

0

0
—1n(0.01 4.6052
= 1 —exp(—cMmax) = 0.99 = Mpax = n( ) —
c c
(4.62)

= 2002 39563

= |F
V2

(f) Zero-mean Gamma. The pdf is

k
- (m) = - 4,
fonm) = || i exp(—Hlm) (4.63)
o2 = 2/0 m2w4:mexp(—km)dm:\/f§/0 m32exp(—km)dm  (4.64)
PAGE 4-13
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Integrate by parts to obtain:

/ m>exp(—km)dm :—%m‘q’/ exp(—km) —i—%/ m2exp(—km)dm
0
0
=0
_ 3 e = 1 > exp(—km)
2k2[m exp( k:m)o 2 J, N dm
-0
3 OOexp(—k:m)d t=vkm 3ym 2 ooe_t2dt
4k? m N 4R2VE VT Jo
VT x erf(oco) = SV (4.65)
4k‘2\/% SN—— 4]{72\/E
=1
3 _ V3

Combining (4.64) and (4.65) yields o2, =2 T Om = 3

Now Mumax is found as follows:

VEk [T exp(—km) 099 t =vVkm 1 [VEmma
— dm = — e " dt =0.99
2f Vv m 2 = \/'TT 0
= erf ( k:mmax) =0.99 = VkMmax = erf_1(0.99)
[erf~(0.99)]°  3.3174
= max — = 4.66
m ? . (4.66)
3.3174 x 2
= X2 58307 (4.67)
V3

Therefore if one was to list the signals from least “peaked” to most “peaked”, they are:
square wave, sinusoid, uniform, Gaussian, Laplacian, Gamma,

which, from either the waveshapes or the pdfs, makes some intuitive sense.

P4.14 (a) Sinusoid: mmax cos(2nf,t) = T = 1/f,. Then over half a period the average value of

|m(t)] is
T/4 1/(4f)
/ cos(2m frt)dt = 2 —m / cos(2m frt)dt = 2Mimex (4.68)
T/2 Mmax r T max r = .
~T/4 —1/(4fr)
Mmax E{jm()[} _2v2
VRms = = = =0.9 4.69
s V2 VRms ™ (4.69)
(b)
E t
E{’m(t”} = Mmax, VRMS = Mmax = M =1 (470)
VRMs
PAGE 4-14
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()

E{|ml[}

Om

Therefore

E{jm[} =

. B{jm})

Om

E{jm|}

Om

E{jm|}

Om

Mmax

1 Mmax
E{lm|} = mls——dm = 2 (4.71)
mmax
Om = 4.72
V3 (4.72)
= 0.87.
1 7 Ry I 2
|mle 2omdm Zrm Zm /e)‘d)\ = \/>am (4.73)
\V2mom 2T J ™
2
£-08 (4.74)
s
T 1
g / Im|e~™dm = - (4.75)
—0oQ
2 ) 1
V2 rom P age) = ZUME 17y (4.76)
C Om \/i
| K m| _km| _ \/7 1/2 —km
i / m|1/2€ dm ﬂ/m e dm
—00 0
ETE) 1
i I 4.
\/;(k;)?’/? 2k (4.77)
3 E 1
V3 from Pa13e) — ZUME 1 s (4.78)
2k Om V3

Listing the parameters from largest to smallest results in:

square wave, sinusoid, uniform, Gaussian, Laplacian, Gamma.

The above is the same order as in P4.13, but the parameter values are now decreasing instead

of increasing.

Note: The relationship can be used (and has been used) to design an RMS meter. The block
diagram looks as in Fig. 4.10. The advantage of this approach is a “true” RMS voltmeter
requires a squaring circuit whereas here only a fullwave rectifier is needed. The disadvantage
is that the voltmeter is good only as an RMS voltmeter for the specific signal that the signal

is calibrated.
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Fullwave Rectifier Everaging Circuit
m(t) |m(t)| Typicaly a (very) E{|m|} Scae Calibrated
—> E— . P . >
lowpass filter using ———

e.g., for sinusoid

RMS:qn:EﬂTE:LﬂE“mﬂ
0.9
Figure 4.10: Block diagram of an RMS meter.

P4.15 Eqn. (4.46) states that

3Ly % (4.79)
In?(1 + p) (1+2W E{ml} 420 )

SNRq(Ui) =

{l I} ;

From P4.14 the signal parameter is as follows:

e Gaussian: \/g;

1.
e Laplacian: ok
e Gamma: %;
e Uniform @

Matlab code for the plot:

L=256; % 8-bit quantizer

mu=255; % mu-law parameter

SPar= sqrt(2/pi); % appropriate signal parameter, entered is for Gaussian
K=3*L"2*mu"~2/ ((log(1+mu))~2) ;

SPB =[-100:1:0]; % signal power from -100 to O dB, 1 dB increments
SP=10."(SPB/10); % signal power

SNRq=K*SP./(1 + 2*mu*SPar*sqrt(SP) + mu~2#SP);

plot(SPB,10%10g10(SNRq)); % plot SNRq in dB

hold;

%(repeat for next signal model)

From the plots it can be seen that the quantizer is quite insensitive to variations in input
signal power over a wide range (=~ 40 dB) and also insensitive to the actual pdf model of the
input signal - Both desirable properties.

P4.16 Consider positive m. Note that nonlinearity is an odd function. Therefore the derivative shall
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40
30
20
)
T
x° 101
zZ
n
o,
—— Gaussian
-10 - - - Laplacian]|
‘‘‘‘‘ Gamma
----- Uniform
_2 L L 1 I
-100 -80 -60 -40 -20 0

Normalized signal power 1OI%{GE) (dB)

Figure 4.11: Plots of SNR,, for different signal models with 8-bit p-law quantizer (L = 256, u = 255).

be an even function.

Mimax dy AYmax
For 0 < < . 2L = 4.80
or = A dm  Mpax(l+1nA) ( )
Mmax dy Ymax
F < T == 4.81
o <SS Mhmax dm m(l1+1InA) (4.81)
2 A2 r2nax max
(i) - { il O<ms (152
@n A RS < S Mina
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Mmax

e G

Y2 7mmaX/Am2(1 +1In A)? /A m2,.. (1 +1nA)?
— max m d max m d
el [ P [ e
—Mmax —mmax/A
T 2 1+ 1nA)?2
n / m<an> fm(m)dm]
S max
—Mmax /A Mmax Mmax /A
(1+In A)Q 2 2 m?nax
= m* fm(m)dm + / m* fm(m)dm + 2 / fm(m)dm
—Mmax mmaX/A _mmaX/A
—P(— Mmax <m< mmax)
mmax/A
(]. + In A)2 2 / 2 m?nax Mmax Mmax
=10 — m* fm(m)dm + P(— <m< )
srz 7 A2 A A
*mmax/A
3L2 ; o2
~.SNRq = Grndl 2 /A (4.83)
i (er (e <z mps) = T g
*mmax/A
mmax/A
The term mj“;"P (—% <m < %) - P m? foa(m)dm depends on the ratio mpax/A

and on the pdf model assumed for fy,(m). In a well-engineered system mpax/A < 1 and
therefore for high o2 the SNR, = % (analogous to p-law behavior for large p). In

essence, it appears that both u-law and A-law are equally (perhaps similarly is a better
word) robust to the assumed signal model. Plots of SNR, are shown below for Laplacian and
uniform pdf models since these are fairly easy to handle analytically.

For uniform and Laplacian densities the 2 “correction” factors are:

(a) Uniform:

mmax/A
m m 1 1
P <_ max < < max) — d — 4.84
A =T 2 Mma ™= (4.84)
*mmax/A
mmaX/A mmax/A
2 _ 1 2 _ m%lax J121'1
m fm(m)dm = e m“dm = W = F (485)
*mmax/A 0

(b) Laplacian:
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First define mpyax to be the value that captures €% (percent) of the probability, given
Mmax
by 2 [ ge_c|m|dm = ¢Mmax = — In(1 — €/100). Then

—Mmax
mmax/A
0
and
mmax/A mmax/A
/ m? (%e_dm') dm=c / m2e”"dm
7mmax/A 0
1 __CMmmax Cmmax 2 Cmmax
_ 2]y ey ( ) 2 2| V. 4.87
2 { ¢ [ A ) Trma T ]} (4.87)
But 02, = 2/c? for Laplacian. Therefore
mmax/A 9
2 (¢ —clm|>d N (CmmaX)Q pflmax 4 ol L (4.88
m (26 m 5 e P + 2 + (4.88)
_mmax/A
38.1725
— Laplacian
- - -Uniform
38.17%
= 38.171%
Z
D:D'
z
9 38171
38.1705
38£I'ZI.700 —éO —éO —40 —éO 0

: 2
Signal power 10I0g(0m) (dB)

Figure 4.12: Plots of SNR, for different signal models with 8-bit A-law quantizer (L = 256,
A =87.6, e = 0.9999 for Laplacian pdf).

Plots in Fig. 4.12 show that A-law quantizer is more robust to p-law quantizer, both over
input signal power and pdf models.

P4.17 The p-law nonlinearity can be visualized in 2 different ways as illustrated in Fig. 4.13.

Consider (a) which is more of an engineering model (model (b) is left as a further exercise).
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Vi 1 g(m) Y/ R

~ Yinex ~ Yinax

(@) (b)

Figure 4.13: Visualization of p-law nonlinearity.

The pdf, fy(y), shall have two impulses, one at ¥y = ymax, the other at y = —ymax each of
strength P(mMmpax < m < 00).

In the range —mmax < m < Mmpax, there is only one root to the equation g(m) = y. Solve
this for 0 < y < Ymax. Note that because of the symmetry in fm(m) & g(m), fy(y) is an even

function.
ymax ,um mmax
1 =y = — [ 1 Y/Ymax _ 1] 4.89
111(1 + ,U) [ + mmax] Yy Mroot [ ( + M) ( )
' % — ymax 1 )u — ymax,u (4 90)
dm,, In(1+ p) (1 + ﬂ) Mmax |,y Mmax In(1 4 ) (14 p)y/Ymax
Mmax
)’mroot — mmax ln(l + /‘L) (1 + M)y/ymaxe—%[(1+M)y/ymax_]_]2 (491)
’ ’ V2T Ymax 4
Mroot
where 0 < y < ymax and fm(m) = N (0, 1).
Since fy(y) = fy(—y) we have:
2
e L LA LR I TN ST TV
fy(y) > P(—00 <m < —Mpax )0 (Y + Ymax) + P(Mmax < m < 00)6(Y — Ymax) (4.92)

=0, elsewhere

To plot let mmax be such that 99% of pdf is “captured”, which gives mma.x = 2.576 and
P(—o0 <m < —Mypax) = P(Mpmax < m < 00) = 0.005. Let ymax = 1. The plot is shown in

Fig. 4.14, which does not seem to confirm the “intuition”.

P4.18 Consider z >0, y(z) = (1+9) 175

dy 1+S dy 1+
g __ -t =~ 1 4.
dr - 04802 dr - (Ut g P (4.93)
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Figure 4.14: Pdf plot of the output of the u-law compressor when input is Gaussian.

1

1 4
Ny = 371+ 52 /(1 + S|z|)* fx(z)dx, where x = — (4.94)
— 1|
In terms of the unnormalized variable m, one has
dy dy dm dy dy 1 dy
e - — — -, 4.95
dx dm dz mmaxdm or dm  mpax dz ( )
Then
m m
Ny, = —-23 1+S5 d
q 3L2(1—|—S)2 / ( + mmax> fm(m) m
—Mmax
ke m/ Lpasdml g bml gl lml
3L2(1 + S)2 Mmax mIQnax m?nax mﬁlax "
—Mmax
2 2 3 4
Minax E{|m][} o E{|m]|"} sE{lm]"} = 4 E{|m|"}
= — [ 1+4S 6.5 45 S
3L2 1+S)2< - Mmax " m12nax * m?nax - mﬁmx

To write this in terms of 02 = 02,/m?,, note that

E E E
Edjml} = _om_E{lml} = \/U%M (as seen in P4.15, Eqn. (P4.9)) (4.96)
Mmax Mmax OOm Om
E{|m|*}
max
B{mP) _ o B{mP} _ o Bl os)
Miax Mihax O ! O '
Elml) ol B(ml) o E(ml) o)
Minax Miax  Om Y o
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3L2(1 + 5)%02
1+ 45,/o2 2l 4 65252 4 43(g2)3/2E0mE) | gaa Elml’}

SNRq — (4.100)

For a zero-mean Gaussian signal with power level o2, the quantities are:

Eglml} _ \/z; E{Lf;‘\?’} _ 2\/3 %ﬁ“’d‘} _3 (4.101)

Aside: If x is N'(0,02) then

1-3---(n—1)c"™, n even

B{x"} = { 0 i (4.102)

N 1-3---(n—1)c", n=2k
E{x|"} = \/EQ%!O_%H k41 (4.103)

Plots for S = 5,10,50,100 are shown in Fig. 4.15. Note that the performance is not that
attractive in that the SNR,, varies considerably with o2. Some reflection leads one to conclude
that this is due to the “higher” order moments presented in the N, expression, namely o3 ok
One likes no moments higher than o2 because then SNR, — constant as o2 becomes larger.
The bottom line is that any old saturating nonlinearity is not suitable in a compander. It
has to be one that results in a 02 term in N, and this is what In(-) nonlinearities of the y-law

and A-law give you.

50

40

30

20

10

SNR (dB)

of e

-100 -80 -60 -40 -20 0
Normalized signal power 1OI9goﬁ) (dB)

Figure 4.15: Plots of SNR, for 8-bit S-law quantizer with Gaussian input signal.

P4.19 Since we would like the mapping to be unique then the number of possible mappings from
the L = 2% target levels to the R-bit sequences is L! which for R = 2,4,8,16 bits are
4! = 24; 16! = 2.0923 x 10'3; 256! = Matlab says inf; 2'6! = more than 256! but still
countable. Though some of these mappings may be considered to be trivially different, there
is still a humongous number of them.
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P4.20 Let P[bit error] = P.. Then E{q?} = E{q?|no bit error}(1 — P,) + E{q?|1 bit error}P..

Assume a uniform quantizer and also a uniform pdf for the quantization error (Eqn. (4.21)).
Then E{q?no bit error} is that of Equation (4.22) and it is A%/12 (watts).

With one bit error the quantization error, q, shall still have a uniform pdf but with a nonzero
mean. The mean value depends on which bit is in error and the bit sequence considered. The
picture looks as shown in Fig. 4.16.

kA

\ m, =m; +kA

ﬁ mjm&A m,

/

/

Transmitted Because of bit error
bit pattern we demodulate to
this target level
Figure 4.16
s B{(m-m)?} = FE{(m-m;-kA)*}
= E{(m —m;)?} - E{2kA(m — m;)} + E{k*A?} (4.104)
AZ
Now E{(m —m;)?} = - (i.e., as if no bit error occurred) (4.105)
E{(m -m;j;)} = 0 (4.106)
E{k’A’} = > k’A’P[K| (4.107)
k
2
S B{q’} = oi(1-P)+ (afl - ZkAZP[k]> P,
k
= o4+ P> KA’PK]. (4.108)

k

So now it is a matter of determining the k profile along with the value of P[k]. We do this
for the three mappings of Fig. 4.19 and L = 8.

Bit pattern 000 001 010 011 100 101 110 111
NBC {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4} {1,2,4}
Gray (1,3, 7V {1,1,5} {1,3,1} {1,1,3} {1,3,7} {1,1,5} {1,3,1} {1,1,3}
FBC (1,2,1}  {1,1,3} {1,2,5} {1,2,7} {1,2,1} {1,2,3} {1,2,5} {1,2,7}

——
values of k

Now assuming that each bit sequence is equally probable and that which bit is in error is
equally probable, the P[k]| is as follows:

NBC: Pk=1]=1/3; Pk =2]=1/3;
Gray: Plk =1] = 14/24 = 7/12; Pk = 3] = 6/24 = 3/12;
FBC:  Plk=1]=11/24; Plk = 2] = 7/24;

Plk=4=1/3
Pk =5,7] =2/24 = 1/12
Plk =3,5,7] =2/24 = 1/12
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Therefore the quantization noise variance is:

NBC: E{q’} = 02 + 3[A% + 4A? + 16A?|P, = A?[{; + TP.].

Gray:  E{q’} = 02 + [{3A% + {5(9A?%) + $5(25A?) + 5(25A%)|P. = A?[{5 + 9P.)].

FBC: E{q*} = 0(214—[iA2+%(4A2)+%(9A2)+%(25A2) 2 (49A?)|P, = A?[L+8.46P,).

If P, <1073 the effect is negligible.

P4.21 (a) A= 2‘2/‘5‘66" = Vl“Q‘aS". (Note: Here the optimum quantizer is a uniform quantizer).
02 = R(T = 0) 1 (watts)

Since o2, = “‘a" = V2. =3
o2 — A2 _ Vxﬁax _ 1
9q = 12 = 12(27) - 216
(0) 35 [B {[m(k) —am(k = D}] = 0> a = F2g) = 257 =/
(c) y(k) ( ) —am(k — 1) = m(k) — ¢ /%m(k - 1).
E{y(k )} ; E{y?(k)} = (1+a?) Rm(0) —2a Ry (1) = 1 — o = 0.0198.
~—— ~——

=1 =«
y'(kTs) has a mean of zero and a variance of 0.0198. Because it is uniform we know that
the variance is (y).)?/12 = v/ .. = 0.48745.

(Vo) 02376

2
Y _ _ (4.109)
{ diff. quan. 3216 3-210
1
2 _
2 - (4.110)
no diff. quan.
% 0.2376
diff. quan.  _ 0. s = 00792 =11 dB. (4.111)
7
no diff. quan.

P4.22 The USB drive can store 8 x 107 bits.

(a) 4 kHz speech, 8 bits per sample.
The Nyquist sampling rate is 8 kHz, giving a bit rate of 8 x 8,000 = 64,000 bits/sec.

8 x 10? bits

=1.25 x 10° ds = 34.7 hrs = 1.446 d
64,000 bits,/sec 7 S seconds . s

Tp =

(b) 22 kHz audio signal, stereo, 16 bits per sample in each stereo channel.
Have 44,000 samples/sec x 16 bits/sample x 2 channels.

8 x 109 bits

= 5.682 x 10° ds = 94.7 minutes = 1.58 h
14,000 x 16 x 2 bits/sec 5.682 x 10° seconds = 94.7 minutes 58 hrs

Tp =

(c) 5 MHz video signal, 12 bits per sample, combined with the audio signal above.
Have 10 x 10% samples/sec x 12 bits/sample + 44,000 x 16 x 2bits/sec.

8 x 107 bit 8 x 107 bit
Tp = = s = x e = 65.9 seconds = 1.1 minutes

120 x 106 +1.408 x 105 121.408 x 106 bits/sec
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(d) Digital surveillance video, 1024 x 768 pixels per frame, 8 bits per pixel, 1 frame per
second.

Have (1024 x 768) pixels/frame x 8 bits/pixel x 1 frame/sec = 6,291,456 bits/sec.

8 x 10? bits

= =1.272 x 10 ds = 21.20 minut
6,291,456 bits/sec x 107 geond minutes

Tp

P4.23 We divide the range [—mmax, Mmax] into 27 equally spaced quantization regions, each of
width A = 2mp., /2%, If we place a target level in the middle of each quantization region,
the maximum value of the quantization noise is ¢max = A/2 = Mypax/ 28 The PSNR, is then
given by

PSNR, = 20log, <mmf“7<2R> = 20logy, (2F) = 6.02R (dB) (4.112)

To achieve distortion D requires R at least D/6.02, so the smallest value of R is
R =[D/6.02] bits (4.113)

Note that with this definition, the 6dB/bit rule-of-thumb hold as well.
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Chapter 5

Optimum Receiver for Binary Data
Transmission

P5.1 First consider

/OT”w;(t)th _ /OTb [ij%pw)rdt

T Ty Ty
- L / S(t)dt ~2p / 200 a2 [ S
0 0

Es VE? 0
=Fs 1 Ty
S t t)dt
= a0

P

= 1—2p2+p2:1—p2.

s5(0) N PO BT
fﬁ"’@@] Vi [fﬁ _p\}Ei]‘

s1(t)

L oat) = A a(t) = \/;—p[

VB
P52 (a)
¢1(t) | | cosf sind o1(t)
{ (ZAS;(t) ] n [ —sinf cosf } { qﬁ;(t) } (5.1)
bilt) = cos0ou(D) + sinfoa(r),
p2(t) = —sinfpi(t) + cosbpa(t), (5.2)

q£1 (t) - g%g(t) = —sin 0 cos qu% (t) + sin 6 cos 9d>%(t) + [cos2 0 — sin? 01 () Pa(t),

Ty Ty T,
/él(t)g?)g(t)dt = —sin@cos@/gb%(t)dt%—sin@cos@/gb%(t)dt
0 0 0

— —
=1 =1

Ty

+ [0052 6 — sin? 0] /gf)l(t)qbg(t)dt

0
—_——
=0

= —sinfcosf +sinfcosh =0 (5.3)
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Therefore {¢1(t), d2(t)} are orthogonal. To see if they are normal, consider first

T, T,
/ Rndt = / (cos 81 (£) + sin By (£)]2d
0 0

Ty Ty Ty
= cos?f / % (t)dt +2 cos O sin 0 / ¢1(t)a(t)dt +sin? 0 / P3(t)dt
0 0 0

%,1_/ ﬂ_/ —_———
I = =1
= cos’f +sin’f = 1. (5.4)

Similar derivation shows that ¢ (t) also has unit energy. Therefore {¢1(t), 2(t)} form
an orthonormal set.

What if the minus sign is put elsewhere, i.e., { gos¢  —sinf ] { —cost sinf ]

sind cost sinf  cos@
Are {¢p1(t), p2(t)} still orthonormal? If so does the matrix represent just a rotation?

(b) Need to find 6 such that fOT” b1(t)[s1(t) — s2(t)]dt = 0:

Ty Ty
/ Su(t) [s1() — sa(t)] dt = / [0s 051 (£) + sin O ()] [s1(t) — sa(t)] dt
0 0 . N
= cosf Sl(t)qbl (t)dt — Sg(t)¢1 (t)dt
[ o]
T T,
+sin 6 Sl(t)¢2 (t)dt — S9 (t)qbg (t)dt
[ ]
= cosf(s11 — s21) +sinf(s12 — s22) = 0. (5.5)
sin 9(812 — 822) = COS 9(821 — 811)
821 — S11
tanf = ———
812 — 822
§ = tan~ ! (5.6)

S12 — S22

Of course 6 is determined by the signal set. You must know the signal set in order to
rotate the original basis set as desired: gZA)g(t) is perpendicular to the line joining si(t)
and sa(t).
The above result of § can also be obtained geometrically (see the signal space diagram
on Fig. 5.1). Use the following fact from geometry: Given the equation of a straight
line y = mx + b, then the perpendicular to the line has a slope of —%.
The slope of the line joining s1(t) and sa(t) is $2=2!2. Therefore the slope of d1(t) is
tanf = —52L=S1L o ) = tan ! S21=S1L

822—512 7 $12—822
Since we choose 0 such that

/ B1(8) [51(£) — sa(8)] dt = 0, (5.7)
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@)

Figure 5.1: Determining the rotation angle 6.

It follows that

Ty Ty
/ s1()dr(t)dt = / so(t) 1 (t)dt
0 0
811 = o1, (5.8)

i.c., the components of s1(t) and s3(t) along ¢1(t) are the same.

1 © _(@—w? =28 1 o 2 T —
P5.3 Area = / e 27 dx ( =" ) / e T d)\ = Q( ,u> .
2mo Jr (rdr=dz)  \2m JIon o
As shown in Fig. P5.40 of the text, T'— pu > 0 (i.e., T > p) but result is true even if
T < p. Of course the argument of Q(x) is now negative and one would use the relationship

Q) =1 - Q(a).
Stated in English, the area is a Q) function whose argument is the distance from the mean to
the threshold divided by the RMS value (standard deviation).

S~

Area="?

Figure 5.2: Writing the shaded area in terms of the @) function.

Of course one must pay attention on which side of the mean the threshold lies and write the
expression accordingly. For instance in terms of the ) function what is the shaded area in
Fig. 5.27
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P54 (a) Since Si(t) = Sil(bl(t) + Siggf)g(t), 1 =1, 2, one has:
E = / Y 20 = / P s61(0) + siba()dt
3 0 i 0 % 3
Ty
- /0 (S2.02(t) + 25050201 () (1) + ARt

Ty Ty T,
= s &7 (t)dt +2s1 52 ¢1(t)ga(t)dt ~I—S?2/ P3(t)dt
0

0 0
-1 =0 =1
= sh+sh
(b) Now let
2
= cos(2mfct), 0<t<T,
sr(t) = { VT TS n (5.9)
0, otherwise
and
2 sin(2rf.t), 0<t<T,
oolt) = | V1 SNETID), O << T (5.10)
0, otherwise
Compute
T ) Ty
; D1(t)pa(t) = 7/, cos(27 f.t) sin(2m f.t)dt
1 [T 1 T
= — sin(4x f.t)dt = — cos(4r f.t
7y ) st = - g costing)|
1
= [cos(4m fcTp) — 1] (5.11)

- ATym fe

Thus, ¢1(t) and ¢o(t) are orthogonal if cos(4nf.Tp) = 1 = 4dnf. Ty = 2kn = f. = %,
where k is a positive integer (kK = 1,2,...). There must be an integer number of half
cycles of the cos and sin in the interval [0, Tp] for them to be orthogonal over the interval
of Ty, seconds. No other frequency suffices.

Finally, (fc)min = ﬁ when k£ = 1. It is graphically illustrated in Fig. 5.3.

sin

\ t
0 cos\ Ty
|

Figure 5.3: Orthogonality of sin and cos with a minimum frequency.

P5.5 Consider the following two signals s1(¢) and so(t) (this is the same signal set considered in
Example 5.5):

s1(t) = Vcos(2mfe.t)

k
so(t) = VeosQufet+6), 0<t<Ty, fo= ST k integer (5.12)
b
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(a) The energies of two signals can be computed as:

T T,
E, = / s3(t)dt —/ V2 cos®(2m fot)dt
0 0

T 2 1 /T, T
o [P [ +cosdnfet)], V [ b b }
=V /0 dt = 5 /0 dt + /0 cos(4m fot)dt

2

V2T,
= = b (5.13)

T, T,
By = / s2(t)dt = / V2 cos®(2m fot + 0)dt
0 0

T 1 A7 fot + 20 V2 o
_ V2/ [1+ cos( ;ch + )]dt =~ {/ dt +/ cos(4m fot 4 26)dt
0 0 0

V2T,
- = b (5.14)

where we have used the fact that cos(4n f.t+3) is a periodic function with a fundamental
period of Ty/k (regardless of the value of the phase ) and an integration over multiple
periods of this function equals to zero.

The two signals s1(t) and s2(t) have unit energy if Ey = Ey = VAT, _ . Therefore,

2
- . /2
V=\/%

Remark: In communications we invariably take f. to be an integer multiple of T% typ-

ically, sometimes ﬁ so the results for F; and Fj hold (and those in P5.4). Typically
f. is very large, on the order of 10° (MHz) or 10° (GHz) so that even if there aren’t an
integer number of cycles (or half cycles) in the time interval, for engineering purposes

E1 and Ej still are closely approximated by V?2T/2.

(b) Since Ey = E3 = E, the correlation coefficient of the two signals is

1 Ty V2 Ty
p = / s1(t)se(t)dt = — cos (27 fet) cos(2m fot + 0)dt
E Jo E Jo
V2 Tb Tb V2Tb
— —_— 4 c = == 1
2F |, cos@dt—l—/o cos(4r fot + 6)dt 5E cosf =cosf  (5.15)
k
= 0 since f. = 70

Two signals are orthogonal when the correlation coefficient p = 0, which is equivalent to
cost) = 0. So, 0 = k5, k=+£1,£2,43,...

(¢) Plot of p as a function of # is shown in Fig. 5.4.

(d) d=V2EyT—p = dmax = V2E\/1 - (—1) = 2V/E when p = —1, or § = 7 (antipodal

signals).

To relate 6 of part (c) to that of P5.4b note when § = —7/2 then s2(t) = V cos(2n fot —m/2) =
Vsin(2wf.t), i.e., except for a scale factor it is ¢a(t) of P5.4b. On the other hand 6 = 7/2
results in —¢(t) of P5.4b. The signal space of the signal set is shown in Fig. 5.12 of the text
and it is reproduced in Fig. 5.5.
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p =cos6
+1
n 1
0 m2 32 2n
-1

Figure 5.4: Plot of p = cos 6.

@)= \/Esin(Zﬂfct)
6=3n/2

p=0 T

s,(t) 2
qt) = \/: cos(2rrf t)

p=-1 JE locusof s, (t) as @
variesfrom 0 to 277.

s,(t)

AN

6=n/2
p=0

Figure 5.5: Signal space representation of Problem 5.5.

P5.6 (a)
1 T
p = — ViVacos(2n(fe — Af/2)t) cos(2m(f. + Af/2)t)dt
JEVE ), (2m( /2)t) cos(2m( /2)t)
ViV /Tb /‘Tb
= —— cos(2m(2f.)t)dt + cos(2r A ft)dt
o | [ eseres [ cosemasy)
=0 (integer number of cycles in T}) _ Sin(gﬂrﬁ}’Tb)
cos(x + y) + cos(z — y)

since cosx cosy =

2
_ W sin(2wA fTy) (5.16)
2\/E1\/ EQ 27TAfTb '

T
But VlT\/QTb = FE; =VFE and Vav'Ty = VE. Therefore

VE>
_ sin(2rAfTy)
p(Af) = TonAST,
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Plot of p versus the normalized frequency A fTy is shown in Fig. 5.6.

lg AfT == or Af =—— (minimum frequency separation
b

for orthogonality)

o AFT,
0 1 3/2\/ 2
p min

minimum o point = maximum distance point
between the 2 points

Figure 5.6: Plotting of p(Af).

(b) One can differentiate p with respect to the (normalized) variable A fT}, to find where the
minimum occurs. From the plot of p we exp;ect it to be between 0.5 and 0.75. Formally
let © = 20 AfTy. Then p(x) = Slgm cosz _sinz _ () (for maximum,/minimum

X
points) or z = tanx. Solve this numerlcally

Another approach (still numerical) is to set up a table of values of % between z =
21 x 0.65 and 27 x 0.75 in increments of say 0.01 and pick out value of z where the
minimum occurs.

”
The simplest approach is to trust the answer and check it by seeing if z=tan z at z = 27 x

0.715 (within acceptable engineering numerical accuracy), i.e., 2% 0.715= tan(2m x 0.715).

For AfT, = 0.715, p = —0.2172. Therefore d = /2FE(1.2172).
When p =0, d = vV2E. The distance has increased by a factor of 1.1033.

A more relevant way to “quantify” this increase is to state that for p = 0 the energy F
needs to be increased by 1.2172 to achieve the same distance between the 2 signals as in
the p = —0.2172 case. This is a 10log;((1.2172) = 0.85 dB increase in energy (& hence
power).

Nonetheless for other reasons, namely synchronization, Af is chosen so that p = 0.

Remarks:

(i) When the frequency separation Af is chosen to be Q—%b the two signals are said to

1
be “coherently” orthogonal, when Af is chosen to be kf (k > 2) they are called
“noncoherently” orthogonal. Chapter 7 discusses this further.

(ii) To obtain the signal space representation is not that straightforward, except for p = 0.
All that can be said of the top of one’s head is that the signal space is 2—dimensional,
and that the 2 signals lie at a distance of v/E (because of how we adjust V1, V3) from

the origin. One basis function can be chosen to be, say ¢1(t) = S\l/%). The other basis
function is a function of Af.

P5.7 Using the Gram-Schmidt procedure, construct an orthonormal basis for the space of quadratic
polynomials {ast? 4+ ait + ag; ag, a1, as € R} over the interval —1 <t < 1.
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It is simple to see that the equivalent problem is to find an orthonormal basis for three signals
s1(t) = 1, so(t) = t and s3(t) = t? over the interval —1 <t < 1.

The first orthonormal basis function is simply ¢;(t) = % since the energy of s1(t) = 1 over

the interval —1 <t <1is 2.

Next observe that so(t) = t is an odd function, while ¢;(t) is an even function. It follows that
s9(t) is already orthogonal to ¢1(t). Thus, we set:

s9(t) t
Pa(t) = 2 = =t
0 \/f}1 s3(t)dt \/ﬁl £2dt

Next we project s3(t) = t2 on the subspace spanned by ¢1(t) and ¢2(t). It is clear that since
s3(t) is an even function and ¢2(t) is an odd function, their product is odd, and we have
s32 = [, 53(t)pa(t)dt = 0. On the other hand,

3/2

/ N Pdt= 2
S = _— fJ—
o ~1V2 32
The orthogonal signal is given by

1

¢3(t) = s3(t) - %@(t) —0-aft) =1° — 3

Finally, the third orthonormal basis function is

mwz(ﬂ—é)mﬁﬁ5=¢f<#—§)=¢?mﬁ4»
{\/g \/Et, \/§(3t2 — 1)}

is an orthonormal basis set for the quadratic functions over [—1, 1]. The set is plotted in Fig.

5.7.

To find the coefficients of any quadratic polynomial, p(t) = ast? 4 a1t + ag, in terms of ¢1(t),
¢2(t) and ¢3(t) we find the projections of p(t) onto the 3 basis functions, i.e.,

In summary,

p(t) = p1o1(t) + paga2(t) + p3ds(t)

where

y . 3

1 1

b= [ posie= [ et v atsal a2 (518)
1 1

ps = /1p(t)¢1(t)dt = / [aot® 4+ ayt + ag] \/§(3t2 — 1)] dt = ;l\/g@. (5.19)

-1
One, of course, does not achieve very much by approximating a quadratic polynomial by
another quadratic polynomial. Of more practical interest is the situation where we are given

1
pr1r = / p(t)(f)l(t)dt _ /1 [a2t2 +ait + ao]\}idt = \/§a2 + \6&0 (5.17)
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15

-1 -0.5 0 0.5 1

Figure 5.7: Orthonormal basis set for quadratic polynomials.

a more general time function, say s(t) of finite energy, and wish to approximate it by a
quadratic polynomial over the interval of [—1,1]. Then the set of {¢1(t), p2(t), #3(t)} found
above can be used to approximate s(t) where the coefficients in the approximation s(t) =
8(t) = s101(t) + s20h2(t) + s3¢3(t) are found by:

1 1 1
s1 :/ s(t)p1(t)dt, sg = /ls(t)QSQ(t)dt, S3 = /1s(t)¢)3(t)dt.

1 _

2

Furthermore the mean-squared error [s(t) — §(¢)]° is minimum (see P5.9).

Remark: The 3 polynomials {¢1(t), p2(t), #3(t)} are normalized versions of the first three
members of what are referred to as Legendre polynomials. These are orthogonal polynomials
over [—1,1] that are solutions of Legendre’s differential equations:

d*pa(t) , dpa(t)
dr? dt

(1—12) +n(n + 1)p,(t) = 0.

The nth member is given by p,(t) = ﬁ%(ﬂ —1)" (Rodrique’s formula) and
n=m
n#m

/oo Pr(t)pm (t)dt = { 8n2+1

—0o0
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P5.8 Orthogonal :

Equal energy:

. T T 1 M 2
E = /0 sfn(t)dt:/o [sm(t)—MZsk(t)] dt

k=1
_ /OTs?n t) — OT JQWSm(t)ésk(t)dt—l-/oT ]\;2 [:1 Sk(t)]2dt

- E—% OTsm(t)[sl(t)—l—...—i—sM(t)]dt

+ ]\;z {/T [2(8) + ...+ 53, (t) + s1(8)s2(t) + - .. + sar1 (B)snr(1)] dt}

= E—% OT [51(8)sm(t) + ...+ 55 () + ...+ sm(B)snr(t)] dt

+ ]\;2{/OTS%(t)dt%—...+/OTsﬁ4(t)dt+/OTsl(t)SQ(t)dt+...+/0TsM1(t)sM(t)dt}
= E—%EJF#(MEJFO):E—%E:%(M—Q

Now let us find the correlation coefficient:

[T Ea()3a(t)
Pmn = /0 = dt

B
T M M
_ ; /0 sm(t)—]\ZZsk(t)] [sn(t)—]\zzsk(t)] dt
k=1
1T 1

M llcl M 1 M
— 2
-/ Sm (£)sn (1) Msm(t)];sk(t)—Msn(t);sk(t)—i—(M;sk(t)) dt
1 (T 1 (T M 1 (T M
= = [ sasinae— 7 [ sm(t);sk(t)dt—M/o sn(t);sk(t)dt
1 (TE ’
+ M2/0 [;sk(t) dt

1 1 1 1 1, E —E/M 1
E[ M (VAR Ve ] E( M)

The signal space plots for M = 2, 3,4 are as follows.
M = 2: Tt is easy to show that §;(¢) = M and 82(t) = s2l-n®) —3$1(t), i.e., the
signals are antipodal with energy E = E/2.
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Note that
M M 1 M M M 1 M M
D Emt) = sm(t) - i > (Z sk(t)> = sm(t) - MZsk(t) (Z 1) =0.
m=1 m=1 m=1 \k=1 m=1 k=1 mzj\l/[

Therefore the signals {$,(t) %[:1 are linearly independent since any one of them is a linear
combination of the remaining M — 1 of them. They therefore lie in an (M — 1)-dimensional

signal space at distance \/% from the origin. Further, since they are equally correlated

the angle between any 2 vectors from the origin to the signal points is the same for each pair.
Putting this all together we have for:

M = 3: A 2-dimensional signal space. Signal points are at distance ./%E from origin, laying
at a angle spacing of 120°, i.e., on vertices of an equilateral triangle.

M = 4: Lying in a 3-dimensional space, distance of %E , on the vertices of a regular tetra-

hedron.
()
5(t)
S(t) S(t) */%TE
} ° a(t) i) at)
_[E 0 E
§(1) S{0)
M=2
@(t)
M =3
S()
at)
3E
S0 &~ f---=--—2 50
@(t) M =4
A
Figure 5.8

P5.9 (a) The approximation error is simply e(t) = s(t) — §(t) = s(t) — Z]kV:1 spPr(t). Thus the
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energy of the estimation error is:

+o0 N 2
E, = / s(t) = sun(t)
o k=1

_ ES—2/+Oos(t)§(t)dt+/+oo [s161(t) + .. + syon(1)]2 dt

— 00 —00

+oo +oo
_ B2 / s(t)3(t)dt + / [262(8) +

+ 4 520 () + 515001 (D) da(t) + ...+ sn_15nON—_1(t)dn(t)]dE
+o00 oo N
= ES—Q/ dt+/ P AGLE R
—o0 k=1
o0
_ Es—z/ £)5(t dt+Z/ syor(t)
+o0
_ ES—2/ s(t)g(t)dt+zs§
- k=1
N +00 N
= B2 / s(HERA+ 3 2 (5.20)
k=1 —g k=1

Obviously E. is a function of s; and therefore s; can be chosen to minimize F.. To find the
optimal s, differentiate F. with respect to each si and set the result to zero:

ap, _ 2[00 4T )
disk N dsk + dsk
5 _2/+O° s(t)bp(t)dt + 255 = 0
+oo
ss = [ sounar

(b) Substituting [~ 0 s(#) ¢ (t)dt = sy, into (5.20), the minimum mean square approximation
error is given by:

N +oo N
(Ee)min — ES_QZSk/_ S(t)qbk(t)dt_FZSi
= 72Zsk+z i
k=1

Basically the energy of the approximation error is the 81gnal energy minus the energy in the
approximation signal.

Mz

Joules

P5.10 (a) The coefficients s;5, i, j € {1,2} are found as follows:
1 1
s = [ s®atd =1, 5= [ s@old-1
0 0
1 1
So1 = / so(t)p1(t)dt = 1, s99 = / so(t)pa(t)dt = —1.
0 0
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Note that these results can also be found by inspecting that s1(t) = ¢1(t) + ¢2(t) and
s2(t) = ¢1(t) — pa(t).

(b)
o (t) ] _ cosf sind b1(t)
[ ¢;R(t) ] B [ —sinf cosf ] [ Pa(t) ] (5.21)
S0 = (c0s0)6r(t) + (i O)a(t) " Lau(t) + Lonlt
V3

65(0) = ~(sm0)oi(0) + (cosOoa(t) “ -~ o)+ 3o (5:22)

2

The time waveforms of ¢ft(t) and ¢&(t) for = 60° are shown in Fig. 5.9.

da(t) A

0 0.5 1 0 0.5 1
@=~3) ] ] o (@-+3) t

2 2

_(1+43) |
2

Figure 5.9: Plots of ¢f(¢) and ¢ (t).

(c) Determine the new set of coefficients sﬁ, i,7 € {1,2} in the representation:

=l kA -

1
e One method is a straightforward calculation: sg = / si(t)qﬁf(t)dt. Thus
0

o 1 1+v3 1+v3 5 1 1-+/3 1-3
811 = - 2>< == ,512:7 2>< ==
2 2 2 2 2 2
1 1—-+3 1-— 1 —(1 1
o= Loy V3 _ \/3785,1:7 5y (14+/3) _ +3
2 2 2 2 2 2

FAREEE PR el
=[] [ae]
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Therefore
s11 S12 | sﬁ s{% cosf sind
so1 s | | B sk —sinf cosf
Sﬁ 5{%2 _ [ s11 s12 ] cosf sinf |
I I (R o S91 S —sinf cos6
21 522 | S21 S22 |
B [ s11 S12 | [ cos® —sinf
o | s21 S22 | | sinf  cosé
r [ 1 341 1
=600 1 1 5 —7 _ \f \f
= 1 -1 ﬁ 1 1— \f f—|—1
L 2 2

(d) Geometrical picture for both the basis function sets (original and rotated) and for the
two signal points is shown in Fig. 5.10. Note: As seen from the geometrical picture,

(1) ) si(t)
A y

/
'/ 6:600

N a0,
AN

AN

S,(t)

Figure 5.10: Geometrical representation of the basis function sets (original and rotated) and
the two signals.

st = —sf and s, = sl{. This is seen in (c) above and is true for any #. But do
not jump to conclusions that this is true all the time. It comes about because of the
locations of s1(t), s2(t) in the signal space.

(e) Determine the distance d between the two signals s1(t) and so(¢) in two ways:
(i) Algebraically:

1 0.5 1
d2—/0 [31<t)—52(t)]2dt—/0 22dt+/0522dt—4:» d=2 (5.24)

(ii) Geometrically: From the signal space plot of (d) one has d = v/2 + 2 = 2 (Note that
both signal have energy Ey = Ey = 2).

SOLUTIONS PAGE 5-14



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

(f) Thought ¢;(t) and ¢2(t) can represent the two given signals, they are by no means
a complete basis set because they cannot represent an arbitrary, finite-energy signal
defined on the time interval [0,1]. As a start to complete the basis, we wish to plot
the next two possible orthonormal functions ¢3(¢) and ¢4(t). Obviously there are may
possible choices for ¢3(t) and ¢4(t). One simple choice is shown below.

w(t) @(t)
S 2
1 1
01 L ©oo 13 ’
4 2 24
2 -z

Figure 5.11: An example of ¢3(t) and ¢4(t).

P5.11 (a) The first orthonormal basis function is chosen, somewhat arbitrarily, as ¢;1(t) = B =

%Sl(t).
Next so(t) is already orthogonal to ¢1(t). Thus, we set:
1
=, 0<t<1
sa(t) \/51
Ppa(t) = = v 1<t<2 (5.25)
fo s5(t)dt 0, elsewhere

Then project s3(t) onto ¢1(t) and ¢2(t) to have

2 /5 1 2
831:/ —dt = 2, S§32 — dt—/ —dt=0
0o V2 0 V2 1 V2

The third orthogonal signal is given by

¢/3(t) = s3(t) — \/§¢1(t) —0-o(t) = { 81, 2<t<3

, elsewhere

Since the energy of ¢(t) equal 1, one sets ¢3(t) = ¢g(t).
Finally, the fourth orthonormal basis function is obtained by fist projecting s4(t) onto

P1(t), d2(t), ¢s(t):

2 1 1 1 2_1
S41 = ; EX(_l)dt:_\/i 8422/0 ﬂX(—l)dt-i—/l EX(—l)dtZO

3
543 :/ —1x(=1)dt=1
2
The orthogonal signal is given by

B1(t) = sa(t) + V21 (t) — 0(t) — d3(t) = 0
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In conclusion, we need only 3 orthonormal basis functions to represent the signal set.
They are plotted in Fig. 5.12.

L oo<t<?2 v 0stsl 1, 2<t<3
¢ vz == ={ —L 1<t< =< 0 T
210 {07 dsewhere @) Vo 1St=2, dalt) {0, elsewhere
0, elsewhere
a) a(t)
1 1
2
0 1 2 : 0 2 3 t
_1_-

%(t)

|
NN
|
[ERN
L
:

Figure 5.12: Three basis functions.

In terms of the above basis functions, the four signals are:

s1(t) V2 00
sst) || V2 01 228
s4(t) V2 0 1 3

b) First the 3 functions are certainly orthogonal (they are what one calles “time orthogonal”
g y g
since they do not overlap in time) and obviously each of them has unit energy. The
question is do they represent the 4 time functions exactly. Well,

Sl(t) = 'Ul(t) + 'Ug(t) +0- Ug(t), Sg(t) = Ul(t) - UQ(t) +0- 'U3(t)
Sg(t) = V1 (t) + 'I}Q(t) - ’U3(t), 84(t) = —U1 (t) — vz(t) — ’U3(t)

(c) Geometrical representation of the four signals is plotted in Fig. 5.13.

P5.12 The signal set is given as:

2t <t<
s(t) = \/§Acos<Tb>, 0<t<Ty
0, otherwise

b

. 27t <t <
solt) = ASln(T>, 0<t<Ty
0, otherwise
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V5 ()

(1)

) 5

wi(t)

SAU)

- %(t)\

Figure 5.13: Geometrical representation of the 4 signals by {v(t), va(t),vs(t)}.

va(t)

A

sin

N |

Figure 5.14

(a) There is one cycle of the cos and one cycle of the sin in the interval [0, T]. Graphically:

Obviously the area of the product is zero, regardless of the amplitudes of the sine and
cos. Therefore s1(t) and sy(t) are orthogonal.
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Show mathematically:

Ty Ty
/ s1(t)se(t)dt = \/§A2/ cos 2t sin 2t dt
0 0 1y Ty

2
T 2
B, = / st(t)dt = (@> Ty = AT,
0

V2 2
Ty AN AT
B, = syt = (—=) T, = ==
e = [ o= () =5
Simply choose the basis functions {¢1(¢), ¢2(t)} to be scaled versions of s1(t) and sa(t):
i(t) = a1t _ 3cos (27Tt> 0<t<T;
YT VBRSO VL Ty, )’ e
s9(t) 2 . [2nt
t) = =/ =sin [ = )); 0<t<T
#2) VE> Tbsm<Tb>) -
a) ®(t)
A A
2 2
T, i T,
Th i Tb
2 | >t 2 T >t
0 T, 0
-2 _[2
T, T,

Figure 5.15

(b) The optimum decision rule for the minimum distance receiver is:
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@(t)
A

~
“Decide 01>

“so "

Figure 5.16

o
0y

& (VB 2 (n-VE)+13
o
0y

& “2rVE+ B 2 —2nVE+E
o

T, ATy 3T, 3421, %
—2ry Ay 2L 9 Ay 220 =
< T2 5 + 2 + 2rp 5 5 =

LAIDH
A T LzoDﬁ
\/§T1 —T9 — b = 0

<
\/E “ID”
(c) From the signal space diagram, the squared distance between the two signals is:

3A2T, A%T,
b + b

5 5 = 2A°T), = 2T, (when A = 1 volt)

3, = E\+Ey=

It follows that the bit error rate bit is:

B dor/2 \ [ V2T/2\ [T, 6
Plerror] = @ (W) —Q< N0/2> —Q< N0> <10
£l > 475 = T, > (4.75)% Ny
No
1 1 1
ShET S WmeN,  (475)2.00°F

= 4.43 x 10° bits/sec = 4.43 Mbps
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(d) To implement the optimum receiver that uses only matched filter, one needs to rotate
the basis functions as shown in the signal space diagram to obtain ¢ (t) and ¢a(t): ¢1(t)
is perpendicular to the line joining s1(¢) and s2(¢). Since

VEL  [3A%T,/2
VE: |\ AT,/2 A

tan(f) =

w |

It follows that

d2(t) = —sinfp;(t) + cosOpo(t)
2 2t . 2 . 2mt
= —\/;bcos <Tb> sin 0 + \/;bsm <Tb> cos 6
2 . 2mt 2 . 2t 0w
= \/;bsm<Tb0>:\/;bs1n(Tb3>

The block diagram of the optimum receiver is shown below:

t=T, .

Received signal .
_ceehver e, h(t) = 2ood 2T —N>r2§T
T, T, 3

r) 05

Figure 5.17

The impulse response of the filter is found as:

h(t)

I
<
[\
&
\
=
I
E
Z.
]
Y
[\
A
538
|
=
\
w3y
N—

The threshold can be found from the signal space diagram to be:
(T d T,
[Em -] b

Vaa [ B8y o L

(e) The average energy of the two signals s1(¢) and so(t) is

Ei+ FE
o Sk ST )
2
For a given (fixed) energy per bit Ejp, antipodal signalling achieves the smallest error
probability amongst all binary signalling schemes. This is because the distance between
the two signals in antipodal signalling is the largest (again, for a fixed Ej). Thus, the

two signals can be modified as:
51(t) = —32(t) = \/ Epp(t
27Tt 27t
= AT, —cos = /24 cos T ) 0<t<Ty
Ty

T, b
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s,(t) S (1)
Y NV
.Y T,
Tb
Tb
o T T ! 0o T !
2 2
_V, _y\y2
E = 3 _v B =V,
Figure 5.18
s(t)s,(t) @) @(t)
V2
V3
N 1
i3 Ll .
T, o
o T, ! o T, T, ' |0 !
2 2 -—
~— T,
2 total area
=0
Figure 5.19

P5.13 (a) To show s;(t) is orthogonal to s2(t), one needs to show that fOT” s1(t)sa(t)dt = 0.

The above is quite obvious by plotting s (t)sa(t).
Since s1(t) and sa(t) are orthogonal, choose:

== st =2 = iy

Plots of ¢1(t) and ¢2(t) are shown above.
(b) Plots of signal space diagram and the optimum decision regions are shown below:
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) 2,0 )
%) a)
“Decide 117
5@ y
“Decide 01
modifie?,/ JE
S0, B a0
0 \WE s -y |
VT,
T -X/b
& 3
E, =V7T,
Figure 5.20

The optimum decision rule is that of the minimum distance rule:

“OD”

(r1 — 521)° + (r2 — s22)° % (r1 — s11)* + (r2 — s12)*
541D77
“0>D77
& 14 (rg— /Fy)? = (n- VE)? + 13
“1D”
“OD”
< —2ro\/ Ea + E» % —2r1\/Ey + E;
“1D77
2 Tb VQTb “()>D77
& =2V Ty + V2T, + 21V 35 20
ﬁﬁ1D77
“OD”
Vv
L *?{7’ =)
ﬁ ulD”
(¢) The squared distance between the two signals:
V2T, AVAT, AT,
dyy = Ei+Ey= LV, = 2= 2 (when V' =1 volt)

3 3

The error probability of the minimum distance receiver is:

B dn/2 \ 2vT,/2V3\ T, V2 6
Plerror] = Q( N0/2) =Q <N0/2 > =Q <\/;0 \/§> <10

T, V2 5 3
— - — > 4775 =T, > (4.75)* - =N,
AR b2 (475 SN

1 2 1
=Ty = —

< =
T, — (4.75)2x3x Ny (4.75)2 x 1.5 x 108
= 2.955 x 10° bits/sec = 2.955 Mbps
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(d) Need to rotate ¢1(t) and ¢2(t) to obtain ¢;(t) and ¢o(t) as shown in the signal space
diagram: ¢1(t) is perpendicular to the line joining s;(¢) and sa(t). Since

_VE _VVT/V3 _ 1 A _ V3
tan(@)—\/E— VT, —ﬁée—gésnﬂ—i,cosﬁ— 5

To realize the optimum receiver that uses only one matched filter, one needs to obtain

¢2(t) and the threshold 7'
Pa(t) = —sinbe(t) + cosbepo(t)
1 V3
= 5810+ 6a(t)

the filter’s impulse response is h(t) = ¢o(T) — t). Both ¢o(t) and h(t) are plotted below

1) h(t) = @ (T, -t)
NE
2T L3
: 2
o T, ! o [ 1
B 2 e 2
2T, 21,
B3 B3
N N

Figure 5.21

The block diagram of the optimum receiver:

t=T,
() N szTzszE b
—> h(t) —O
f<T=h 0,
2 2‘\/5 .
Figure 5.22

where the threshold can be found from the signal space diagram to be:

d 2V T, 1 T
po ﬁElsin(z): V\/;b_V\/T;'i:V\/;b

2 6 2V3 V3 2 23
Note: One can also make use of the result obtained in Question 2 to come up with the
following implementation:

Tb “]gn E2_E1
[r0lsat) — siolar = 225
O “OD”
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t:Tb Ez_El 1D
>—=—
&» Sz(Tb_t)_ﬁ(Tb -1) —K’ E 3E1
<=2_=:0,

2

Figure 5.23

(e) Need to modify so(t) so that the Euclidean distance dg; is maximized. Since the energy
of s9(t) cannot be changed = move s3(t) to the point (—/Es,0) so that the maximized

distance is
3+1
d21:\/E2+\/E1:<\/—+ )V\/Tb

V3

50 =JEa®

T
o~ P
—Jav
Figure 5.24

P5.14 (a) The two signals are (time) orthogonal with equal energy E = AQTT (joules). The orthog-
onal basis is ¢;(t) = 31(}? & ¢o(t) = s2()

VvE vE
a) ()
ﬁ _A 2
T JE T
t t
0 I 0 I T
2 2
Figure 5.25

(b)+(c) See above plots.

(d) P[bit error] = Q (\/NEO) ) < gjgg) ) (, /W) — 106

1 1 _ -1 6 _ 1
= 3\ =103 erfc (2X10 )irb (4><10*3)[erfc_1(2><10*6)]2'

(e) Rotate the orthogonal basis by 45 .~ and look at projection along ¢&(t) = __sazai()

normalizing factor *

(f) We want so(t) as far away from s;(¢) as possible. Therefore make it antipodal, i.e.,
Sg(t) = —Sl(t).
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1,
a(t)
rl
0D
1p
r, ;0
Op
Figure 5.26
Tb
—»(%)—» J' (+)dt —»v
0 t=T,
r(t) @) . Th 1o
— =0
710 4><>—> Comparator (f)
+ Threshold = 0
Ty ; :
—»é—» j(-)dt —
o t=T, P
Figure 5.27
g
1
T
0 T2 T
e
T
Figure 5.28
r(t Ty rR 1p
0 el N0 2o |y
0 t=T, o
g
Figure 5.29

P5.15 The noise, n(t) = n, is simply a DC level but the amplitude of the level is random and is
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n(t)

s(t) r(=s®+n
0<t<T

Figure 5.30: A binary communication system with additive noise.

Gaussian distributed with a probability density function given by

1 n2
falt) = e (—QNO) (5.26)

The received signal in the first bit interval can be written as:
r(t) =s;(t)+n(t) =si(t)+n, 1 <t <T, (5.27)
(a) The autocorrelation function of the noise n(t) is
Ru(7) = E{n(t)n(t + 7)} = E{n x n} = E{n’} = Ny,

Since Ry (1) = Ny for every 7, it follows that any two noise samples, no matter how far
they are, are correlated. In fact, because the noise is modeled as a random DC level,
knowing the value of the noise at one time instant gives a full knowledge about the noise
at any other time instants.

The power spectral density of the noise is

Sn(f) = F{Bn(7)} = F{No} = Nod(f)
Note that Sn(f) # 0 only when f =0, or Sy(f) =0 for f # 0. This is of course due to

the noise being modeled as a random DC level!

(b) Consider the following signal set and the receiver (as usual, s1(t) is used for the trans-
mission of bit “0” and sa(t) is for the transmission of bit “1”). In essence, the system

s,(t) s, (1)
v
T
5 T t 3 t
-V

t=T
T ZQ >20=0
r(t) EJ-( )dt n =U,
n<0=1,

Figure 5.31

uses antipodal signalling. The decision variable is r; = % fOT r(t)dt. More specifically,

r=V+n if “0” was transmitted
ri = —V +n; if “1” was transmitted
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where the noise n; is Gaussian, zero-mean and has a variance of Ny/T. Therefore the
error probability of the receiver is:

o 22\ _of,)VT
Plerror] = Q (W) =Q N

(c¢) Consider the signal set plotted in Fig. 5.32.

s,(t) s, (t)
Vi— %
T/2 T
0 T t a t
-V

Figure 5.32: A signal set.

To achieve a probability of zero, the receiver needs to remove the noise completely. There
are many possibilities. Perhaps the simplest is to take 2 samples of r(t), at r(¢;) and
r(t2), where 0 < t; < T/2 and T/2 < ta < T, i.e., they are in the first half and second
half of the bit interval, respectively. The decision rule is as follows:

If sample r(t1) equals r(t2), then decide s;(t).

If sample r(¢1) is not equal to r(t2), then decide sa(t) (note that r(¢1) > r(t2)).
When s (¢) is transmitted, r(t) =V +n, 0 <t < T = r(t1) = r(t2).

When s3(t) is transmitted, then

R B O ]

Therefore it is possible to determine whether s1(t) or so(t) was transmitted perfectly.
Another receiver implementation is as follows:

— t=T/2
[y —

+Y -
r(t) B r>VT/2=1,

2<:T -i T <VT/2=0,
-

I( )t )

T/

2

Y

Y

Figure 5.33

The noise process in this problem is an extreme example of colored noise. Using the
signal space ideas developed in this chapter one can see that the noise lies along one
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axis only, namely that given by ¢1(t) = 81—\/%) It does not have any component along

Pa(t) = \F) This is illustrated in Fig. 5.34. This allows you to determine which signal
is sent exactly. In this context, another receiver implementation is shown in Fig. 5.34.

@)
JE s,(t)

t=T
S JE JO o SN2 77
P (0 o 22020,

Noise projectionison ¢(t) only @ (t)

Figure 5.34: Noise projection and another receiver implementation.

P5.16 (Matched Filter)

S(t) +w(t) Sou (1) + Woy (1)
——» h(t) = H(f) ——»

Figure 5.35

(a) The response of the filter to the input signal component can be written as

Sout (t) 1{5 } / S ej27rftdf
00 00 2
= sontto) = [ SHWNA] =+ lsnaliw)? = | [ s Ia

(5.28)

(b) Since the input noise is white with power spectral density (PSD) Ny/2, it follows that

the PSD of the output noise is %\H(fﬂ? The total power of the output noise Py
thus given by,

out

Pawe = | SHNPAF =50 [ (PP (529

From (5.28) and (5.29) the SNRo,¢ can be written as,
sonlto)? |5 SIHH (N 04|
Pu. S
N Y [P

SNRout = (5.30)
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(¢) Now [ [a(t) + Ab(t)]*dt > 0 (always). Considered as a quadratic in A:
aA+ B+ >0 (5.31)

with coeflicients «a, 6 and v given as:

a = /OO b2 (t)dt (5.32)
3 = 2/0o a(t)b(t)dtx (5.33)
Y = /Oo a2 (1)t (5.34)

The above inequality requires that the quadratic aA\?>4 SA+~ cannot have any real roots,
otherwise it was cross the real axis for some value of A (actually at two points) and would
be less than 0. From the formula for the roots this means that A = 3% —4ay < 0, which,
upon substituting for «, 3, v is

[ /_ Z a<t)b(t)dt}2 < /_ Z a?(t)dt /_ Z b2 (t)dt (5.35)

which is known as Cauchy-Schwartz inequality. The equality holds when a(t) = Kb(¢),
where K is an arbitrary (real) scaling factor, i.e., the shapes of a(t) and b(t) are the

same.
(d) Using Parseval’s relationship, /OO a(t)b(t)dt = /OO A(f)B*(f)df (see P2.26, page 69),
5.35 becomes 4 -
) 2 ) )
[/_ A(f)B*(f)df} < /_ IA(f)|2df/_ IB(F)IP(f)df (5.36)

where equality holds when A(f) = KB(f), K an arbitrary (real) scaling constant.
(e) Now let A(f) = H(f) and B*(f) = S(f)e’?™/t  then (5.36) becomes:

{ /_ZH(f)S(f)eJ?wftodfrg [ e [ iswrgar e

Combining (5.30) and (5.37) gives:

[ |H |2dff fdf
SNRoys < NO - )|2df / NO /2 (5.38)

(f) The maximum value of SNRg. is achieved by choosing A(f)= KB(f), ie.,
H(f) = KS*(f)e 7?7ft Finally, the corresponding impulse response of the filter is
h(t) = Ks(to —t) (5.39)

where K is any real number. Note that to arrive at the above relation, the following two
properties of the Fourier transform have been used (z(t) is a real function here):

1. Time shift: z(t —ty) < X(f)e 727fto,
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5,(1) 8,(1)
K —_— ——
| | 4 | | 4
0 T/3 2T/3 T 0 T/3  2T/3 T
_K —_———

Figure 5.36: Signal set matched to the filter’s impulse response.

2. Time reversal: z(—t) < X*(f).
In our situation we take ty to be Ty, the bit duration. Therefore h(t) = Ks(Tp — t).

P5.17 (a) The signal set would be £Kh(T}, — t) where K is a scaling factor that determines the
transmitted energy (or average power). They plot as in Fig. 5.36. This makes h(t) a
matched filter to the signal set.

(b) Assume K = 1. The transmitted energy of either signal is

T /3 /3 \? T 3 312 T,
E = / s2(H)dt = / <t> dt +/ [—t + ] dt = =2 (joules
0 1) 0 T, 1,3 L 2Ty 2 3 ( )

PIbit error] = Q (Hiff) =Q (”;ﬁ;) =Q (1/3%310_9> <1073

2 % 10°

— 71 _
Ty < 30110 2 6.98 x 10" bits/second = 69.8 Mbps

P5.18 (Antipodal signalling)

s(t)

0 T,/3  2T,/3 T,

Figure 5.37

(a) The impulse response of the filter matched to s(t) is
h(t) = s(Tp — t) = s(t) (5.40)

where to arrive at the last equality we recognize that s(t) is even about t = Tj/2.
Therefore, the impulse response h(t) looks exactly the same as s(t).
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(b) The output of the matched filter when s(t) is applied at the input is

y(t) = s(t)*h(t):/o s(\)s(t — A)dA

0 t<0
A2t 0<t<Ty/3
A%2(2T,/3 — t) T,/3 <t <2T,/3
2A%(t - 2T,/3) 2T,/3<t<T,
T ) 242(4Ty/3—t) Ty <t<4T,/3 (5:41)
A%(t — 4Ty,/3) 4Ty,/3 < t < 5T}/3
A%(2T, — 1) 5Ty/3 < t < 2Ty

{ 0 6 <t

The output y(t) is sketched in Fig. 5.38. Observe that the output peaks at the sampling
time ¢t = T, = 3. This is of course not a coincidence but due to the property of the
matched filter, namely maximizing the signal-to-noise ratio at the sampling instant (see
P5.16).

y(t)

2A7T, /3

AT, /3

0 2T, /3 T, 47,13 2T,

Figure 5.38: Output of the matched filter: only signal s(¢) is present at the input.

(c) The output of the matched filter when —s(¢) is applied at the input is the negative version
of the waveform in Fig. 5.38. This is simply because [—s(t)] % h(t) = —[s(t) = h(t)].

(d) To compute the SNR, the variance (i.e., average power) of the noise at the output of the
filter at t = Tp needs to be found. This can be accomplished as follows.
Approach 1: At the output of the matched filter and for ¢ = T}, the noise is

Ty
n = / n(A)h(T, — A)dA
0

Tb Tb
= / n(A\)s(T, — (Ty — N\))dA = / n(A)s(A\)dA (5.42)
0 0
The variance of the noise is

o2 = E[ /0 " /0 " n()\)n(v)s()\)s(v)d)\dv] . /0 " OTb E{n(\)n(v)}s(\)s(v)drd

Ty, Ty Ty
- Mo / (A —v)s(\)s(v)dAdv = Mo / s2(\)d\ = N0A2E (5.43)
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N
Approach 2: The PSD of the noise at the output of the matched filter is 70|H (f)?

N
70|S(f)|2. Then the noise power is
> N, No [T T
o2 :/ 70]S(f)|2df = 20/ s2(A)dA = N0A2§b (5.44)
—00 0

The signal-to-noise ratio (SNR) at the output of the matched filter at the sampling
instant is given by

[£y(T3)]>  (24°T;,/3)?  4AT,

SNR = = = 5.45
0'1% N()AQ% 3N ( )
(e) For antipodal signalling, the distance between the two signals is do; = 2V E = 2 2A2T"
Therefore the probability of bit error is
2A2T,
da1/2 3 4 AT,
Plerror| = = = 5.46
Finally, it follows from (5.46) and (5.45) that
Plerror] = Q (\/ SNR) (5.47)

Equation (5.47) holds for general antipodal signalling, i.e., regardless of what s(t) is
used. The relationship in (5.47) also clearly shows that for antipodal signalling over an
AWGN channel maximizing the SNR at the output of a receiving filter is the
same as minimizing the probability of error!

(f) Plot of Plerror| as a function of SNR is shown in Fig. 5.39. The minimum SNR to
achieve a probability of error of 1076 is

SNR = [Q™(107%)]? = 22.595 = 13.54 (dB) (5.48)

P5.19 (Bandwidth) Define W to be the bandwidth of the signal s(¢) if €% of the total energy of s(t)
is contained inside the band [—W, W1:

w w
[ istpar 2 [T isttas

= = — A4
| 1sas b 10 o
(a) (i) Rectangular pulse: s (t) = T%, 0<t<T,.

Sa(f) = 1 /Tb e I2mftqy — ﬂe_jﬂfTb I Ty _ o=imfTy
. VT VT 2 fTy
g \/>e_]7rfTb Sln ﬂ-fTb)

(7 fTy)

Then
sin?(n f Tb)

2
‘S(i)(f)‘ =T m2(fT,)?
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Prlerror]

-10

10

I I I I I I I

8
SNR (dB)

Figure 5.39: Plot of Plerror| as a function of SNR.

(ii) Half-sine: s(n)( ) = \/Tl (%) 0 <t < Ty Tofind Si)(f), write s(;;)(t) as

! 1),
s0) = V(0 (2 (o)) Then iy (1) = Vi)« {in (o (5 }
f{( < ))} —1/2Tb>2j UHIPT) )

and
Say(f) * Ssin(f / Ssin(f — A)dA
_ VT e_jMTbsm(m\Tb) [ (f—/\—1/2Tb)—6(f—)\+1/2Tb)]d)\
2 Joo (AT}) 2j

Using the sifting property of the impulse function we have

VT2
S(ii)(f) i 2]
. . 1
e—jﬂ'(f_ﬁ)Tb sin (7r (f gTb) Tb) B e_j”(ﬂ'ﬁ)Tb S (77 (f + 2Tb> Tb)
™ (f 2Tb> Tb ™ (f + ﬁ) Tb
Now e*j”<f*ﬁ>Tb = e ImIThei™/2 — je=imfTy and efjﬂ<f+ﬁ)Tb = —je I,

SOLUTIONS PAGE 5-33



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

sin <7T (f + ﬁ) Tb) = sin (7T} £ ) = +cos(w f1}). Therefore

VTpV2 je ™I —1 1
Say(f) = 5 T cos(m fTp) — + -
J iy f— T I+ T
- -1 N
Cn(megd) | O
_2V2VT, cos(nfTy) e
T (4f?TF -1)
Then 2 )
8Ty cos(wfT
S ()] = 22 222 AT .
‘ (11)(f)‘ 2 (4(fT)2 — 1) (5.50)
(iii) Raised cosine: s (t) = SLTZ, [1 — Cos (2%?)}, 0 <t < T It can be written as

8 (i) (1) = \/g [s(i)(t) — () (t) cos (2%:)} Therefore,

Sy (f) = ;[Saﬂf)—s(i)(f)*f{cos (2T7Tt> H

b

But F {cos <2T7:,t>} . 6(f_1/Tb)"56(f+1/T”). Again the impulse functions just sift (or if

you wish shift) the spectrum of S (f) to S (f — T%) and S <f + T%)) Therefore

S () = 2 [S(i)(f) S (f - %) + 5 (f+ ;b)]

2

Doing all the necessary algebra, one obtains:

vV 2Tb Sin(ﬂ'fTb) e*jﬂ'fTb

S(iii)(f) = V3r (fTy)[1 = (fTy)?]

(5.51)

and
2T, sin?(7 fTp)

T 3m2 (fT3)2[1 — (fT3)%2

Substituting the above into (5.49) and changing the variable A\ = fT} one has the fol-
lowing equations to solve for WTy:

1S ()| (5.52)

(i) Rectangular pulse:

W Tysin?(nfTy) ., [V sin®(wA) €
2/0 e df_2/0 = 1 (5.53)
(ii) Half-sine:
W8 Tyeos* (mfTy) ., 16 [T cos®(mA) .. €
I e M e S
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(iii) Raised cosine:

Woom, sin(rfTy) 17, 4 (YT sin?(m\) e
Al AR =T v I

(b) The above equations can only be solved numerically. Using the numerical integration
routine in MATLAB (quad or quad8 in MATLAB 5.3 and quadl in MATLAB 6.0), the
following table is obtained.

Table 5.1: Values of WT,,

€% | Rectangular | Half-Sine | Raised Cosine
90.0% 0.8487 0.7769 0.9501
95.0% 2.0740 0.9116 1.1146
99.0% 10.2860 1.1820 1.4093
99.9% 31.1677 2.7355 1.7290

Note that the bandwidth is normalized in terms of the signalling rate r, = 1/T}, (bits/second).
Asymptotically, as f becomes very large, the energy spectral densities behave as follows:
Rectangular: 1/f2; Half-sine: 1/f* and Raised cosine: 1/ f.

Thus the raised cosine decays the fastest. This is related to the number of times a
signal can be differentiated before impulses appear. In the above, impulses appear in
the rectangular pulse after the first derivative, in the half-sine after the second derivative
and in the raised cosine after the third derivative. Thus one would feel that the raised
cosine is the smoothest, then the half-sine and finally the rectangular pulse. This agrees
with the plot of all three signals in Figure 5.40.

In the frequency domain, this translates to the smoother signal occupies the lesser
amount of frequency axis (though this may also depends on the value of € used for
bandwidth definition. Note from Table 5.1 that though the raised cosine’s spectral den-
sity decays (asymptotically) the fastest, it does not start to occupying “less frequency
axis” until the energy bandwidth criterion is 99.9%, a value that is probably not of engi-
neering interest. A criterion of 95% or 99% would be more realistic values for engineering
design and analysis.

Figures 5.41 and 5.42 plot the energy spectral densities of all three signals in linear and
logarithmic scales, respectively. It can be seen that the faster the density decays with
f, the wider the main lobe. This is reasonable because all three signals have the same
energy (of 1 joule). Thus the energy of the respective signals has to wide up someplace
on the frequency axis. If not at the higher frequency then the main lobe will do.

P5.20 (a) When the two bits are equally likely (uniform source), the error performance of a digital
binary communications system only depends on the Euclidean distance between the two
signals. This distance is 2v/F for antipodal signalling, where V/E is the energy of s(t).
It follows that, for the two communication systems to have the same error performance,
the energies of the two waveforms in Figure 5.43 have to be the same. That is:
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Amplitude (scaled by U 2)
© o o PR R e
B O @ B S O ®

©
™

— Rect.
- - Half-Sine H
---- Raised cosine

o

Figure 5.40: Plot of three signals in the time domain.

[
T

o
=

o
s

Energy Spectral Densisty (joules/Hz)
o o
() o

— Rectangular
- - - Half-Sine
---- Raised Cosing

0
-3

Figure 5.41: Plot of Energy Spectral Densities of three signals.

(b) Define W to be the bandwidth of the signal s(t) if 95% of the total energy of s(t) is
contained inside the band [—-W, W]. The bandwidth of the rectangular signal has been
found in P5.19 to be W) = 2.07/T.
For the triangular signal, to find the bandwidth W; we first find S(;;)(f). To this end,
differentiate s(;j)(t) twice, find the Fourier transform of the resulting signal and divide

SOLUTIONS

PAGE 5-36



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

— Rectangular
- - - Half-Sine
--- Raised Cosineg|

Energy Spectral Densisty

(i) (i)

Figure 5.43: Two waveforms for s(t).

by (j2m f)?.
Since &2 0
Cs@lt) 2B, 4B ( T\ 2B,
g = ) o (t= 5 |+ e (= T)
and

2
j__{d S(ii)(t)} _ 2B 4Be JmIT | @e’ﬂ”ﬁ

dt? T T T

d2s;::
FLERE) 2 (1 enim) peint

ol = g - (j2r )2
B %efjﬂfT (ej”nge*jﬂfT> _ %efjwa
N (727 f)?
_ ABcos(nfT) -1
T )
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Then

(cos(mfT) = 1)* _ [ Sy (N)° 48T (cos(a fT) —1)?

2 2
Sy ()" =168 T2 f272 Eg 2 277

So the equation to find W) is

W(ii) _ 2
96T (cos(mfT)—1) df = & _0.05
7T2 0 f2T2 100
96 [WanT (cos(mA) — 1)
0

which gives W) = 1.00/T.
Since both systems have the same bit rate of 2 Mbps, the bit duration in both system
is T =1/(2 x 105) = 0.5 x 1075 seconds.

The required bandwidths of the two systems are therefore W;) = 2.07/(0.5 x 107%) =
4.14 x 10° Hz = 4.14 MHz and W3 = 1.00/(0.5 x 107%) = 2.00 x 10° Hz = 1.82 MHz.

Clearly, when the two systems have the same error performance, system-(ii) is preferred
since it requires less transmission bandwidth.

(c) Consider the system that uses s(t) in Fig. 5.43-(i). Then the error probability is

Plerror] = Q <\ / %) =Q 21:;0T =106

2A2T X
=[Q7' (107°))> =4.75°
= Sy =QT0O)P =175
475N\ 2 (4752 x 2 x 1073\ 1/?
= A:< — “> :< 2><0f5 ;1076 > = 0.6718 (volts)

P5.21 Consider a diversity system in Fig. 5.44.
(a) The decision variable r can be written as:

r = Kra+rp=2(KVa4+Vp)+ (Kwas+wp)
+V +w

Note that the signal components always have the same sign in both branches. In the
above one has

V=KVs+Vp: total signal component

w=Kwy+wp: total noise component

Both w4 and wp are zero-mean, with variances O’i and J%; respectively; furthermore
they are uncorrelated, thus, the noise w is zero-mean Gaussian random variable with
variance 02 = K 20124 + 0123.

Rewrite the decision variable r as:

r=V+w if “1” was transmitted
r=-V+w if “0” was transmitted
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Channel 4

Va wA(t) s(t)

rg =V +wy

Ve We(t)

s(t)

Channel B

Figure 5.44: A Diversity System.

Ip
The probability of error for the decision rule » = 0 is
Op
Vv KVy+V,
Prlerror] = @ () =Q _AvatVs (5.56)
o

w/KzaE‘—}-a%

(b) To minimize Pr[error] one needs to maximize

& B (KVa + Vp)? _ VE(K + «)?

K= _—=Xx_"2_ 2/ _ _4
9(K) o2 K204+ 0p o4 K2+p
B o7
where a = Vi’ 8= i. Now
dg(K) ﬁ 2(K +a)(K?+ ) — (K + a)?(2K)
dK o} (K2 + )2
B 2V2 (K + a)[K%2+ 8 — (K + a)K]
-0 (K2 + B)?
2V3 (K +a)(8—aK) 0
oh (KP+8?
2
gives K = —a or K = é = U—JQBE. Since K > 0, the optimum value of K to minimize
le} o4 VB
Prlerror] is
g B it
a o4V
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(¢) When K = K* = g we have

O'ZBV
. (K*Va+ Vp)? [aiVB }
g(K) = K*)2 2 2 2 2
( )UA+UB (@@) o2 + o2
o2 Vg A B
_ (oRVE+0AVE)?:  (0BVE+03VE)?

JBUE‘VA +UAJ%V2 O’AUB(UBVA —I—UAV2)

0’1240'23 ‘7,24 %
(5.57)
which means that 9 9 2
Vv V V
-4 _129 (5.58)

2 2
g 04 OB

Note that each ratio in the above is the signal-to-noise ratio (SNR). Thus (5.58) shows
that the best possible SNR is the sum of the SNRs in the two different branches. This
is also called the mazimal-ratio combining.

The probability of error for maximal-ratio combining is:
V2 V2

Prlerror] = Q ( 0‘24 + 2 )
A B

Remark: The diversity system considered in this assignment is a very popular model in
mobile communications when multiple antenna are used at the transmitter/receiver.

(d) If K is set to 1 then the combining of two channels A and B is called
equal-gain combining:

Va+Vp
\/0124+0125,

Of course, as shown above, equal-gain combining (although simple) is inferior to maximal-
ratio combining in terms of error performance.

Prlerror] = Q (V> —0 (5.59)

g

P5.22 Let Sl(t) «— Op, Sg(t) — 17.

(a) f(r;]llr) =5 e~clri= VI, i f(rl07) = _C""J' Since the samples are statistically indepen-
dent, the condltlonal pdfs are:

e ,7 T C s
Fora, o) =T fﬁclrﬂ Ve flr, o) = T 3¢ i,
j=1 j=1
(b) The log-likelihood ratio becomes:

Hm L g —c\rj V| m
m{ ﬁm =t } e gl = Iy = V1]
12 ]:1

Jj=
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If r; < 0 then |rj| = —rj and |rj — V| = —(r; — V). Therefore the sum becomes —cm; V.
If r; <V then |rj| =rj and |r; — V| = —(r; — V). The sum is 2CZO<7"]-<V rj —cmaV.
If r; > V then |rj| =rj and |r; — V| = (r; — V). The sum is ecm3V.

Therefore the sum becomes 2¢ ere(O,V) rj +cV(mg —mqp —ma).

But m = mg+meo+mq, therefore the sum can be written as 2c ere(o,V) rj+cV(mz—m).

Note: m is known to us beforehand but mg3 and of course r; are not. They depend on
the transmitted signal and the noise samples.

Further what if ; = 0 or V' — where should one put these samples? It should not matter
but let us place them with the m; and mj3 count, respectively.

(¢) The decision rule to maximize the error probability is:

f(Tl,. . .,Tm‘lT)lszl

f(’l”l,. 0 .,T'm‘OT)(EPQ.

In deriving this there were no assumptions made regarding the conditional pdfs. After
taking In, we have

By 1 P
Z rj—i—mgVEmV—i—fln—l

c Py
r;e(0,V) Op 2

Remark: The receiver derived is not necessarily the best there is for the given noise
model but it is the optimum on (in terms of minimizing error probability) under the
given conditions.

P5.23 (a) The observable is the number of received photons in the time interval T} seconds. There-
fore:

(s + \p)TpFe= (s tAn)Th
k! ’
[)\nTb]ke_A"Tb
k! ’

Pk photons emitted in T} seconds|1y] =

P[k photons emitted in T} seconds|07] =

The likelihood ratio test becomes:

[ + AT 5,2 (#)
T3 o5 \ P2

Taking In gives:

o A Pl p-pr A
k=1 n ATy +In =L | =) " \NT, =T,
@“(Asﬂn” "+DPJ “<A8+An> b=
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(b) Again assuming the bits are equally probable, one has

1 1
PIbit error] = iP[k > T3|07] + §P[k < Tp|17]

1 11 1
=3 [P[k > T3|07] + (1 — P[k > Ty|17])] = 5+ §p[k > Ty|07] — ip[k > Ty 1]
= 1 + 1 i ()\nTb)ke_)\nTb B [()‘S + )\n)Tb]ke_(As""/\n)Tb .

2 2 k! %l

k=T,

i k
s;sugliglyg = [%e*kn% (17 (1+;\Ti) efoTb)]
should be

ceiling,
i.e., |—Th1

The average transmitted energy due to signal photons in one bit interval is hfAsTp,
while that due to background photons is A fA,T;. Therefore the signal-to-noise ratio is
SNR = Z}?\‘Z% = i‘—i So P[bit error] depends on the SNR, but in a very complicated
manner.

P5.24 (Signal design for non-uniform sources)

(a) Simple manipulations give:

B (822 — §12)2 1-p 2Ny
VA-— = 222" g5 20
VA 2Ny p (S22 — 812)?
822 — 512 . VNoIn (ﬁ)
V2Ny V2(322 — 812)
T — <§12 - 05(‘§12 + §22) - *§12 + %ﬁQQA—[O@m In <%>
No/2 No/2

599 — 812 n VNoln (ﬁ)
V2Ny V2(522 — 312)

It then follows that:

B _T—§12 _E . T_§12
f_\/Z_\/No/2:Q<f >_Q< )

Similarly,

1—
\/Z+£ _ 322—T:§22—§12+m1n<pp>
VA V' No/2 V2Ny V2(822 — 312)

Since Q(x) =1 — Q(—x), then:
S =T\ _ |, T—32\| B
éQ( N0/2>_ [1 Q( N0/2>]_Q<\/Z+\/Z>
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Thus, the error probability can be written as:

B B
Prlerror] = \f—)—i— 1-— <\/Z+‘>
[error] pQ ( i (1-p)Q 77
Since Prlerror| is a decreasing functions of A = Prlerror| is minimized when A is maxi-
mized.
Using the energy constraint Ej, = E1p + Ea(1 — p) one can write A as the function of a
single variable F1 as follows:
E,—F EyE,—E?

 Ey—2pVErE,+ B Eit = 20 T =

2N, - 2N, (5.60)

A

Thus, the design pr(zblem is to find the optimal value of F; in the range 0 < E; < E}, /D
(E1 cannot exceed Ej/p because Ep > 0) so that A is maximum.

(b) For the case of “orthogonal” signalling, p = 0 and A is simplified to

Ey + E1(1 —2p)

A
(1—-p)2Ng

It is straightforward to see from the above equation that the maximum value of A is
Amax = Ey/(2pNp), which occurs when Ej takes on its maximum value of By = Ej/p
(and thus Es = 0). This implies the following optimal signal set:

s1(t) = \/Ep/ppr(t)
Sg(t) =0

i.e., we do not use the second basis function. In fact, we have on-off keying (OOK).

If we select By = Ey = Ej, as is usually done (“conventional” design), then A = (E,/Ny).
Since p < 0.5, Apax/A = (2p)~! > 1 with equality only when p = 0.5.

Note also that, for p = 0.5, the two solutions F; = 2E), Fy = 0 and E; = Ey = E),
are special cases of the general solution (for orthogonal signal set) E; = 2L cos? ¢,
Ey = 2F) sin? ¢, where ¢ is an arbitrary angle.

(¢) Fig. 5.45 plots the error performance of the optimum design and the conventional design
when p = 0.1. Observe that, at BER=10"?, the gain in SNR by the optimum design is
about 7.1 dB.

(d) Nonorthogonal Signals. The first and second derivatives of A in (5.60) with respect to
FE are, respectively:

dA 1 [1-2p pEy(Ey — 2E1p)

aa _ _ | =0 (5.61)
dE1 2N0 1-— P (1 — p)0'5(EbE1 — Elp)

A pr(EbE1 — E?p) + (E, — 2E1p)?

dE? 2(1 = p)>>(EyEr — Efp)SNo

It can be seen that the sign of the second derivative is determined by the sign of p.
Thus, for p > 0, A is a convex function of E; (with a minimum), while for p < 0, A is a
concave function of £ (with a maximum). Figure 5.46 plots the normalized quantity

A, = A

0.5
2No _ Ew(1=2p)+1 , (FEin— E? p
Ep 1—p 1—p
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10

—— Conventional desig
- - - Optimum design

——

10 “+ 3

BER

10 '+ \ E

10 \

10_ I \ I I
5 10
E/N, (dB)

Figure 5.45: Error performance of the optimum and conventional designs.

12

0 2 4 6 8 10
E, =E /E
in 1

Figure 5.46: Variation of A, with Ey, when p varies between —1 and +1 in the step of 0.1
(p=0.1).

SOLUTIONS PAGE 544



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

—— Conventional designg
o p=1 |-~ Optimum design ||

BER

0 5 10 15 20
E/N, (dB)

Figure 5.47: Variation of BER of the optimal and conventional systems for p > 0 (p = 0.1).

as a function of normalized Ey, Ey,, = E1/ E}, for several values of p and p = 0.1. We
can observe the convexity for p > 0 and concavity for p < 0.

Equating (5.61) to zero, the following two roots which give a minimum for p > 0 and a
maximum for p < 0 are obtained:

E, [ 1—2p ]
B, ==211- , >0
T D—4p(—p)(1— )05 g
E, 1—2p
E =211 5.62
R =" = L 02

Thus for p > 0, the maximum of A,, occurs at the edge with Ey oy = E, /Dy Eaopt =0,
Amax = Ep/(2pNp), which is OOK again.

Fig. 5.47 plots the BER as a function of E’b/NO for optimal E; and FE», and also for
conventional system (with By = Ey = Ej, hence, A = E,/(1 — p)/No) for several values
of nonnegative p and p = 0.1. We can see from this figure that for nonnegative p, the
BER of the optimal system (OOK) is much better than that of the conventional system.
For example, when the BER is 1077, the improvement in E,/Ny is about 7.1 dB for
p = 0 and is even greater for higher values of p.

For p < 0, the maximum of A occurs when E; = E opt of (5.62). From (5.62) and (5.60)
one has:

By [ 1=2p ] (5.63)

Eopt =
P 21— p) [1—4p(1 —p)(1 = p?)]*?
Substituting (5.62) and (5.63) in (5.60), we obtain the maximum value

E 1 1—2p)?2 2
b {1+ (1-2p) }_ plpl

Amax = 2N, [2]9(1 ) [1—4p(1 — p)(1 — p2)]05 [1—4p(1—p)(1—p?)]°>
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—— Conventional designg
- - Optimum design |/

p=-0.25,-0.5,-0.75,-1.0

BER

E/N, (dB)

Figure 5.48: Variation of BER of the optimal and conventional systems for p < 0 (p = 0.1).

Fig. 5.48 plots the BER as a function of Ej /Ny for optimal E; and Es, and for the conventional
system, for several values of negative p when p = 0.1. It can be seen from this figure that for
negative values of p, there is also a significant improvement in performance relative to the
conventional system. For example, when BER is 10~7, the improvement in is about 4.5 dB
for p = —1 and about 6.0 dB for p = —0.25.

Finally, if there is no constraint on the specific value of p (which should be the case when
p # 0), it is not hard to see that the optimum signal set corresponds to p = —1.

f((|my) f((|m,) f(¢|m)

AN \

i [~— C
-E -A 0 A
m, i m, B m
Figure 5.49

P5.25 (a) The decision variable can be expressed as:

T E +w, if m; was sent
= / r(t)s(t)dt = w, if mo was sent
0 —FE +w, if msg was sent

where F is the energy of +s(t) and w = fOT w(t)s(t)dt is zero-mean Gaussian random
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variable with variance o2

Thus, given m; was sent:

Plerror|m;] =

Given mg was sent:

Plerrorjms] = P(£> —A) == ( _

Given my was sent:

Plerror|ms)

Plmi] = Plmg3] =

Plerror] =

hint provided, one obtains:

P(£<A):1—Q<A;E)=Q<

_ M
=Npg,

E—A
VEN,/2
A+E
VENy/2

Pr(£<—A0r£>A):2Q<

A
VEN, /2)

The average probability of error when the a priori probabilities of the three signals are
1+ and P[mo] =

% is given by:

1 1 1
ZP[error\ml] + ZP[error|m3] + §P[error]m2]

‘o

Since Plerror] = f(A), to minimize f(A) one needs to find A from % = 0. Using the

SATEN Lo A
ENy/2 ENo/2

dQ —A+FE
VENo/2 1 ( 1 )e [ (E_A)T
—au» W/ = — X
dA ENo/2 \ V27 P ENy
1 [ (E — A)2]
= exp
vTENy E Ny
dQ(,/ENO/2> 1 < 1 )e { A2 ]
prm— _ X —_——
a4 VENo2 \ v2r) P [T EN,
Thus, setting df ( ) =0 gives:
1 (E—A)?] _
g P EN, | P ENO
1 (E— A)? A? 1 1
n(=) = = — — |E— Nyl
<o <2) EN EN, |77 2 03
. B B 1 ( ) : K
Finally, when P[m;] = P[m3] = Plma] = 3, then setting = 0 yields |A = Bl
which is independent of the noise level Ng!
SOLUTIONS PAGE 5-47




NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

P5.26
o(t) = Z [P1s1(t — kTy) + Paso(t — kTy)]
k=—o00
v(t+T,) = Z |:P151(75+Tb — kTy) + Posa(t + Ty — k‘Tb):| .
k=00 t—(k=1)Tp t—(k—1)Tp

Now change (dummy) index variable to { = k — 1. Then

[e.e]

v(t+Ty) = > [Plsl(t —1IT}) + Pasy(t — z:rb)} = v(t).

l=—00
Therefore v(t) is periodic with period Tj.

P5.27 (Regenerative Repeaters) The number of repeaters needed: K = 2000km/20km = 100.

(i) If analog repeaters are used:

2F .
Pb=Q< K]\;()):lo 6

E, K. _ 1 fypm
:FZ:E[Q L(P))? = = [@" (107%)]* = 1130 = 30.53 dB

(ii) If regenerative repeaters are used:

2Fy

P,=K —

b Q ( No )
2
Ey 17 ,(B\]* 1[.., (1076
TN 2 {Q (K)] 219 oo b1 o
P5.28 (Simulation of a binary communication system using antipodal signalling) The error prob-

ability of BPSK signalling is Plerror] = @ («/2Eb /N()). Since E, = V2T, T, = 1 second

and Nop/2 = 1 watts/Hz, one has Plerror] = Q(V), or V = Q~!(P[error]). The following
MATLAB script can be used to perform the simulation.

Pe_vec=[10"(-1) 107(-2) 107(-3) 10°(-4) 10°(-5)1;
L=[10"5,10"5,10"6,10"6,10"7];
% Numbers of information bits to run, corresponding to each Pe
for i=1:length(Pe_vec)
Pe=Pe_vec(i);
V(1)=Qinv(Pe);
% This is the sequence of information bits (0,1):
b=round(rand(1,L(i)));
% Convert bits to amplitudes levels of +V and -V volts
% and add to it AWGN with variance of 1:
r=V(i)*(2*b-1)+randn(1l,length(b));
% Receiver:
temp=sign(r);
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10 @ ‘
—=— Simulation
—e— Theory
10k 1
w10k 1
10 1
10_5 I I I I I ®
2 4 6 10 12 14

8
V/o (dB)

Figure 5.50: BER performance of BPSK signalling.

% if r=0 then arbitrarily decide that bit 1 was transmitted.

temp (find (temp==0))=1;

% This is the sequence of demodulated bits (0,1):

b_hat=(temp+1)/2;

% Estimation of the error probability:

BER(i)=length(find(b_hat-b))/length(b);
end
Fig. % Plot the experimental and theoretical probabilities of error (BER)
sim=semilogy (20*1logl10(V) ,BER, ’marker’,’x’, ’markersize’,8,’color’,’k’);
hold on;
theo=semilogy(20%1ogl10(V),Q(V), marker’,’o’, ’markersize’,8,’color’,’k’);
legend([sim theo],’Simulation’,’Theory’,+1);
xlabel (’{\itV}/{\it\sigma} (dB)’,’FontName’,’Times New
Roman’, ’FontSize’,16); ylabel(’BER’,’FontName’,’Times New
Roman’,’FontSize’,16); h=gca;
set (h, ’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’,’GridLineStyle’,’:’,. ..

’MinorGridLineStyle’, ’none’, ’FontName’,’Times New Roman’);

Fig. 5.50 plots both the theoretical and experimental BER curves. As can be seen, the two
curves are almost identical, except for Plerror] = 1075, This difference is merely due to the
insufficient data for simulation of this BER value (only 107 input bits were generated). The
difference would disappear if more bits were simulated.

The numbers of bits in error that I got after running the above script are {9992 1021 986 108 124}.
Of course these numbers will differ slightly for each execution of the script.
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Chapter 6

Baseband Data Transmission

P6.1 (a) See Fig. 6.1-(a).
(b) dx = by ® dg—1; d—1 = 0. See Fig. 6.1-(b).

b, 1 0 1 1 0 0 0 1 1 1 t

0 T, 2T, 3T, 4T, 5T, 6T, T, 8T, gT, 10T,

\%
\ t
: 1 1 1 1
T 10T,
-V NRZI waveform
/4
Initial condition (a)

dy 1 1 0 1 1 1 1 0 1 0 t

0 T, 2T, 3T, 4T, 5T, 6T, T, 8T, oT, 10T,

\Y

NRZ-L waveform (with input to modulator the “encoded” bits dj )

(b)

Figure 6.1

Note that the waveforms of (a), (b) are the same, i.e., one can implement the modulator
either as in (a) or as in (b), end result is identical.

(c) With polarity reversal at 47}, the transmitted waveform is as shown in Fig. 6.2.

(d) The question is ambiguous a bit since it may refer to either no polarity reversal or a
polarity reversal at at ¢ = 473. So do it for both situations.
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Polarity reversal

b : 10 11 (1) 0 0 1 11 t
d-1=0 | | | | | Erior (‘due to p(;larity re\‘/ersal) | | |
Figure 6.2
(i) With polarity reversal at ¢ = 4T, and d_; = 1 (assumed). The picture looks as in
Fig. 6.3
b | @ 0o 11 (1 o o 1 1 1 t
871 =1 | Ertor | | | | Eri‘or | | | | | |
Figure 6.3
(ii) With no polarity reversal at ¢t = 47}, see Fig. 6.4.
by | (0) 0 1 1 0o 0o 0 1 1 1 t
a_1:1 | Ert‘or | | | | | | | | | |
Figure 6.4

(e)
(f)

Remarks: dj sequence of (b) was used since with no polarity reversal and no noise,
dy, = dj,. Also from (c) we might expect that only 1 error would occur since assuming
d_; =1is equivalent to a polarity reversal. The conclusion is that a polarity reversal
causes one bit to be in error.
See Fig. 6.5.
— A polarity reversal leads to a bit error in the interval in which the polarity reversal
takes place. The decoder, in the absence of random noise, recovers after this interval.
In the presence of random noise, an error due to the random noise leads to a bit
error in the next interval as shall be seen in the next problem.
— Note that if the polarity reversal takes place not at t = kT then, at least in the
absence of random noise this is easily detected and can be corrected.

P6.2 Look at the modulator as first a mapping (encoding) from by to dj and then an NRZ-L
modulator.

(a)

The signals of the NRZ-L modulator are antipodal, in general with energy = Ej. The
signal space looks as in Fig. 6.6
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Inadvertent Deliberate
polarity reversal polarity reversal
\
~ / .
0 'I"b an, b a1, él’ b 6LI' b ﬁb ar, ar, 14T,
v T
d« 1 1 0 1 0 0 0 0 1 0 t
b 1 0 1 1 (1 o o (o) 1 1 t
AT 1 1 1 1 1 ¢ 1 \ \ 1 1 1
d-.=1 Error Error
Figure 6.5
a(t)
1
d =0 d =1 JT
® ° a) t
0 0 T,
- & :
(Herewelet \[E, =1)

Figure 6.6

(b) With the energy level set to 1 joule the output si is: dg = ‘1" — s = +1 volt; d =
‘0" — s = —1 volt. Using dj sequence determined in P6.1(b), the output sequence is

shown in Fig. 6.7.

(Used, sequence determined in P6.1(b))

Figure 6.7

(¢) ry = sk + wyg (volts). See Fig. 6.8

f: 0.6 -0.2 -0.8 1.2 0.6 0.8 0.2 0.2 12 -1 t
NS S S S S
i 1 @ o 1 1 1 1 @ 10 t
9 Erior Erior 10T,
Figure 6.8
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d=0
Demodulator is a bit-by-bit demodulator, and the decision rule is r;, = 0. Note the

d;. bit errors at t =T} and ¢t = 71}. See Fig. 6.9

i 1{@{@{1 o o 01@1@11 t

Error  Error Error  Error

Figure 6.9

The observation is that a bit error in &k due to random noise results in 2 bit errors in
the decoded information bits by. This is the influence of the memory in the system. If
dy, is in error then since it participates in the determination of both by and by, ie.,
bk = dk @ dk 1 and ka dk+1 & dk, then both bk, ka are both affected by dk In
other words, the error propagates but not that severely.

(d) See Fig. 6.10.

SN +1 +1 -1 +1 -1 -1 -1 +1 -1 +1 t
0 T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, aT, 10T,
Polarity reversal
My - 0.6 -02 -08 12 -14 -12 -18 22 -0.8 1 t
0 T, 2T, 3T, 4T, 5T, 6T, T, 8T, 9T, 10T,
dv 1 0 0 1 0 0 0 1 0 1 t
1 1 1 1 1 1 1 1 1 1 1
0 101,
By 1 (v (0 1 (» o o 11 1 t
da=0 O — . 10T,
Errors due to Error due to Note: polarity reversal appears to help
random noise polarity reversal noise errors!!! But be cautious — rarely

in life do 2 wrongs make 1 right.

Figure 6.10

P6.3 We assume, as we almost invariably do throughout, that the information bits are equally
likely, i.e., P[by = 0] = Py = 1/2; P[by, = 1] = P, = 1/2. In P6.6, we will discuss the more

general case.

(a) Now di = by @ dg—1. Note that dy = 0 if (by = 0 and dy_; = 0) or (bg = 1 and
dy_1 = 1), which are 2 mutually exclusive random events. Therefore,

P[dk = 0] = P[(bk =0and dg_1 = 0] + P [(bk =landdg_; = 1)] .
Using Bayes’ rule:

P[d; = 0] = P b, = 0|dj_y = 0] P[dp_y = 0] + P by = 1|dj_; = 1)] P [dy_y = 1].
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But bits by are statistically independent of the d; bits, i.e.,

1
Plby =0|dx—1 =0] =Plbr=0] = 5= P by =1|dk—1 = 1]
1 1
Pdy = 0] :2{P[dk1 =0]+ P[dx_1 :1l} N §:P[dk:1]
surely, this equals 1
(b) A
P [dj, bit in error] = Q (—é> .
No
.
~JE JE - s VT
° A t
0 0
(@=0) @=) E
d =0« | —d =1
Figure 6.11
() ()N
(ii) No. 2 wrongs do make a right as we observed in P6.2(d).
(iii) Yes.
(iv) Yes.

P [Bk error}

= P[(ak correct and dj_1 incorrect) or (ak incorrect and dj_; correct)}

mutually exclusive events

Also decisions &k, ak_l are statistically independent, since noise terms wy, wi_q are
statistically independent. Therefore,

P [f)k error] = 2P [Elk Correct} P [&k_l incorrect]

2E, 2E),
2 1— —
With NRZ-L, we have P [f)k error] =qQ (, / 2Eb> Assume that Q <\ / ZE”) < 1, which

is the practical case. Then P [bk error for NRZI} >~ 2Q ( 2%”), i.e., 2 times that of

NRZ-L. The factor 2 reflects the error propagation, i.e., whenever there is a bit error
due to random noise, the succeeding bit is also in error.

P6.4 (a) First thing is to define the state set, i.e., what is needed from the past that along with
the present input bit, by, allows one to determine the output.
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=1/b =1 +V /b =1
4z e
(O &)
ouput = -V
d =0/b=0~~-__ o ___---" d,=0/b =0 —V/q:o\\\_+_,
d, =0/ =1 -V /b =1
V4 N )4 N
encoder output  input modulator output  input
Figure 6.12

— Mapping from by to dj: state is value of dg_.
— Mapping from by to modulator level: state is previous value of modulator output.

The state diagrams then look as in Fig. 6.12
(b) The trellis looks as in Fig. 6.13

State
(pi)i/t. rli;)d' d modulator

P k=1 output value input bit b,

\L \L 0,-V/0 O\V / 0/
Vo & e o8

~ ~ -
v N > < s ~ > _ ~
/J\ N N\/ N P N _ o 0o o
~ O~ N~ _ - N -
+V .
1 1+V/0 .
— (b, =0) N

encoded bit output d,

Figure 6.13

(c) The branch “metrics” are (r, —/Ep)? and (4, ++/Eyp)? respectively, —/Ej if the branch
corresponds to the +V being transmitted and ++/E} if the level transmitted is —V (see
Fig. 6.14).

(s +JE)

Figure 6.14

Therefore the best path can be found as illustrated in Fig. 6.15.

Note that there are 4 bit errors, which is the same as in P6.2(c). Thus, in this case, the
VA does not perform better. But 1 swallow does not make a summer and more will be
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P6.5

0.6 -02 -08 12 0.6 0.8 0.2 0.2 12 -1 t

(,-1?: 016 144 324 004 016 004 064 064 004 4
rh+1)°: 256 064 004 484 256 324 144 144 48 0
k

2.56 0.8 0.84 568 3.4 428 252 3.16 720 240

R G I A s et
+ F—O—>0F L 4 s 2 L 4 2 4 L 2 s 4 @

(a)

(b)

016 160 /404 08 104 108 172 2.36 240 640

indicates that this sSurvivor path “metric”’
branch is eleminated

. the winner
The pruned trellis looks as follows:
2.40
«—o o — o e . . . .
"9 e~ e e o o o o
6.40

The path that is closest to the transmitted sequence is:

e’ e o e ° ° ® ° o
N ORI AR
\biterrors
1 0 0 1 1 1 1 1 1 0
1 1 0 1 0 0 0 0 0 1
Figure 6.15

said at the end of the problem. But next, we look at P6.4(d).
Refer to Fig. 6.16 for the solution.

Note that there are only 3 bit errors making it appear that the polarity reversal actually
helps. But again one should not jump to conclusions. For a proper evaluation of the
comparison between bit-by-bit demodulation and sequence demodulation one should
resort to simulation, say in Matlab.

Consider 2 sections of the trellis as in Fig. 6.17.

Bit pattern by_; = 0, by = 0 corresponds the possible paths as shown in Fig. 6.18.

Bit pattern by_1 = 1, by, = 0 corresponds to the possible paths shown in Fig. 6.19.
Similarly, bit patterns by_; = 0, by = 1 and by_; = 1, bgy = 1 correspond to paths
shown in Fig. 6.20.

So the bit by, is represented by the signals shown in Fig. 6.21.

Choose basis functions as in Fig. 6.22 to represent bit bg. The signal space plot looks
as in Fig. 6.23.
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i - 0.6 -02 -08 12 -14 -12 -18 2.2 -0.8 1 t

(h-1)°: 016 144 324 004 576 48 784 144 324 O
(r+1)’: 256 064 004 48 016 004 064 1024 004 4
256 08 084 568 104 108 172 1196 320 7.20

&—O&—X®& A 7S ” S B—XO———0
N NS *‘\\ c 7/‘/‘\\‘/4 S NS NGK
\\ />>\’\ //<\ />\\ //Sk />\\.//<\ />\\ //<’k />\\
F— & — X F—X @ L F—XO——F—X0@

016 160 404 088 6.64 588 892 316 640 320

Pruned trellis:

7.20
~ s N ~ //.\\ ‘\7\ “\\ . g ~
el 9o 8 9 8 e e e

3.20

Best path:
.\\ [ ] /.—.\\ o /,.—Q—.\\ [ ] //.\\ o
e’ e e o o ° e o o e
b 1 @ @ 1 @ 0 0 1 1 1
— N\
bit errors
Figure 6.16
/0 /0
v @ 7 N o
XL s ~ Pid
/J\/\/ \<
/Q/\'\/ \\ // \\
v @ W10 ‘/+V/O ®
(k—Z)Tb (k—l)Tb KT,
B b,
Figure 6.17
-V -V (k-2)T, (k-1)T, KT,
® ° ° e R
k/_v
+V
+V ny;
P P PY l ‘ | t

T—— (k-2)T, (k;l)Tb KT,

Figure 6.18

(c) The demodulator is to project r(t) onto ¢1(t), ¢2(t) to obtain sufficient statistics ry, ro
and choose the signal point they are closest to. The decision space is shown in Fig. 6.23.
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v (k=2)T, (k-1T, KT,

//—V \\ +V V | |

Corresponding output signals
for each path (or bit pattern)

Figure 6.19

+V
o——e ° o | :

N2 N/
AN /N
s N N
o ¢ e t
v
Figure 6.20
+V
b =0 ——> [ 2T, [ t or x t
~v vl b |
+V

+V
h‘ =1 |, i t or i l t

Figure 6.21
(d) As for Miller scheme, one has

N B V'E cos 45° V'E cos 45° B E 3 E
P[by is in error] = 2Q) <No/2> [1 -Q (]%/2)] =20 <\/;0> [1 Q ( N0>

To compare with the expression in P6.3(c) note that £ = 2Ej, (because we are looking
at the signal over 2 bit intervals). Therefore, the error probability is the same.

Remark: We shall use the ideas here when the fading channel and differential phase shift
keying (DPSK) is discussed - Chapter 10.
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1
2T
@)= \/Tl 1 t
0 Tb 2Tb
1
2T
a= V| 2, t

Figure 6.22
gt 1
VE « b =1

T ~JE - b =1
Figure 6.23
P6.6 Consider Table 6.1.

Table 6.1
dp,_; —1i dip —j Product ij
0— —1 0— —1 +1
0— —1 1— -1 -1
1— +1 0— —1 —1
1— +1 1— +1 +1

The average or expected value of the product ij is given by a weighted sum of the 4 possible
values of ij where the weight are given by the probability that that value occurs. Therefore,

E{dgady} = E{ii}= Y ijPli=ij)= > ijP[dy1ds=ij]
values of ij values of ij

= Z ijPldy =ildg—1 = j] P[d_1 = j]

values of ij
— Pldy =0/dy_ = 0] P[dy_1 = 0] — Pldy = 1|dy_1 = 0] P [dy_s = O]
—-P [dk = O|dk_1 = 1] P [dk—l = 1] + P [dk = Hdk—l = 1] P [dk—l = 1] .
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P6.7

Now d;, = dj_1 € by, which means that

Pldy =0|dx_1 = 0] = P[by = 0] = 1/2, since when d;_; = 0,d; = 0 iff by = 0.
Pldy=1|dx,-1 =0 =Plby=1]=1/2
Pldy =0|dy—1 =1]=Plbry=1]=1/2
Pldy =1|dg—1 =1 =Plby =0] =1/2.
Therefore,
1 1 1 1
E{dx_1dx} = B Pldi_1 =0] — B Pldi_1 =0] - / Pldy_1 =1]+ 3 Pldy_1 =1]

= 0, i.e., uncorrelated.

Since the PSD depends only on second order statistics, we conclude that the modulator sees
an input of uncorrelated bits (strictly speaking uncorrelated impulses) just as in the NRZ-L
case. Therefore the PSD of NRZI is the same as that of NRZ-L.

The above assumes that the input bits by, are equally probable. More generally, P [by = 0] =
Py and P[by =1] = P, =1 — Py. In this case the correlation becomes:

E{d;_1dy} = PyP[dj_1=0—PPldy_1=1]— PP[dg_1=0]+ PyP[dy_1 = 0]
= (P—P){P[dp_1=0]—P[dp_1=1]} #0, if Py # Pi.

Consider now the issue of statistical independence. Intuitively, one feels that because of the
functional relationship between dj, and di_1, they would be statistically dependent. Consider
the case of equally likely {by} bits. In P6.3 we showed that in this case the differential bits
{dx} are equally likely, i.e., P[dx] = P[dy_1] = 1/2.

Now consider P[d|dk—1]. Then

Pldy =0|dg—1 =0] = P[by =0] =1/2; P[d), = 1|d}_1 = 0] = P[by, = 1] =1/2
Pldy =0|dg_1 =1] = P[by = 1] =1/2; P[d), = 1|dy—1 = 1] = P[by, = 0] = 1/2

which means that P [dg|dg_1] = P [dy], i.e., they are statistically independent.

But this is the case only when the input bits are equally probable. Otherwise as shown above
the differential bits are correlated and therefore definitely not statistically independent.

Finally, if Py # Py, i.e., the input bits are not equally probable, it can be shown that as
k becomes large, the differential bits {dx} tend to be equally probable, i.e., P[dy = 1] —
1/2, P[dx = 0] — 1/2 which means that the differential bits are uncorrelated. However, in
this case they are statistically dependent since Pldg|di—1] # P[dg].

(a) See Figs. 6.24 and 6.25.

(b) Yes, it is. As in P6.1(c) assume a polarity reversal at ¢ = 47;. Then as in P6.1(c) the
demodulated czk would be reversed (or complemented) from this point on. The output
b, would be identical to that in P6.1(c), an error for the bit in interval 47}, to 5T} and
then correct decisions.

(¢) Nothing much would change. The error performance would be the same, the demodula-
tion/decoding procedure would be the same. What would change is the basis function
for the signal space diagram, the signal would now be a normalized biphase signal instead
of an normalized NRZ-L signal. The signal space diagram would look the same.
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b, : 1 0 1 1 0 0 0 1 1 1 t
0 T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, gT, 10T,
d =b 0d_: 1 1 0 1 1 1 1 0 1 0 t
d, = 1 1 1 1 1 1 1 1 1 1 1
10T,
Figure 6.24
V p—
t
T, 2T, 3T, T, 8T, aT, 10T,
-V
Figure 6.25

P6.8 Error performance is independent of the antipodal signal set. Assuming, of course, the same
energy levels and an AWGN channel. The basis function for the signal space would be a
normalized version of the signal and the demodulator would project the received signal onto
this basis function to generate the sufficient statistic. After this the sufficient statistic is
processed the same, regardless of the antipodal signal set.

The PSD would depend on the actual signals used and would be T%|S( f)|? where S(f) =
F{s(t)}.

P6.9 (a) See Fig. 6.26.

b : 1 0 1 1 0 0 0 1 1 1 t
o T, o, &, 4, S, 6, 7, &, o 1o,
Y%
| | t
6 T, 4T, 5T, 6T, 1dTb

-V
Figure 6.26

(b)
()

Yes and no. Depends on how one demodulates. See (c) as to how one demodulates so
that the modulation is immune to polarity reversals.

Note that a Op results in one of 2 signals namely +so(¢) and a 17 results in one of +s;(t)
(see Fig. 6.27).
Therefore the signal space looks as shown in Fig. 6.28.

Demodulate by projecting the received signal onto ¢o(t), ¢1(t) to generate sufficient
statistics rg, r; and decide according to the decision boundaries shown in the signal
space diagram.
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$ () s(t)

Y% Y%
t T t
0 T 0 J
Ry
Figure 6.27
-s@®
Qr(t) JE
I(o,JE) ol
nL=r,
1,
0D
(-VE,0) - O; E,0) - 0, =30
—0® " o — @ =—
b« =0 0 b« =0 r JE
0, -
1, ==l
T(o, ~E) - 1,
Figure 6.28

(d) By symmetry

Plerror| = P[rg,r; fall in 1p region | O7]
- \/Ecos 45° V'E sin 45° B £
(R e (V)] (/%)

n{f)

Remark: Signal space is identical to that of Miller modulation and hence the error
performance is the same. The actual transmitted sequence and resultant PSD is however
different from Miller.

P6.10 Let 07 — so(t) and 17 — s1(t) where so(t) L s1(t), each of energy E. Polarity reversals
mean that Op — +so(¢t) and 17 — +s1(¢). The modification to the demodulator to obtain
polarity reversal immunity is to modify the decision regions in the signal space from Fig. 6.29
to Fig. 6.30. Note that the price you pay is a factor of 2 in the error probability expression.
However, it only applies if there no polarity reversals. If there are, then you gain a lot.

P6.11 (a) See Fig. 6.31. Yes, immune to polarity reversal.
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s

(/ir(t):\/E
I(O,JE) ol
r=r,
1,
E,0) - 0
"ot =30
¢ *— r%(t) JE
0D
_ E
P[error]—Q[ NoJ
Figure 6.29
_s®
(qr(t)_\/E
E(O,JE) o1

(—E;O)eq 00 s

T(o, ~E) 1,

Figure 6.30

(b) See Fig. 6.32. The sufficient statistic is r = fteTb r(t)o(t)dt.
(c) f(rl07) ~ N(0,No/2), f(r|ir,~V) ~ N(=VE,No/2); f(r[lr,+V) ~ N(VE, No/2).

Therefore,

Frlin) ~ %N(—\/E, No/2) + %N(\/E, No/2).
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b : 1 0 1 1 0 0 0 1 1 1 t
0 T, 2T, 3T, 41, 5T, 6T, 7T, 8T, 9 10T,
\%
S (t): y
t
1 : : :
0 T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, or, 10T,
-V
Figure 6.31
- E R 1T O And OT \/E R l]-
—e ° o— ¢t)
0
1
VT
0 T
Figure 6.32
f(rlo;)
r
Figure 6.33
(d) The LRT is:
—(r—VE)? —(r+VE)?
L1 o20/2 —i-%e 2No/D |
f(r|lp) 2 [Vamy/No/2 V2my\/No/2 L
0 - —r2 21
f(r|07) 15w 0p
V2my/No/2
2VE _2\/E7,1
eNo e N DB
= —eNo
2 o
D
WE \'2 &
< cosh \/>r zeNO.
Ny on

(e) f(£0) ~ N(0,4E/N3); f(l|=V) ~ N(=2E/No, 4E/N§); f(L|+V)

~ N(2E /Ny, AE/N?).
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F(C]v) £(¢[0) F (V)
\
_in_l;: T, 0 T 2N_I§
L, i 0, i L,
Figure 6.34
T
Plerror | 0 = 2Q| —0—=—
o 1] = 20 (70
1 1
Plerror | 17] = §P[error | 10, +V] + §P[error | 17, —=V] = Plerror | 17, +V]

= P[_Th < £ < Th| 1T’+V] = P[K < Th‘ 1Ta+v] - P[E < _Th‘ 1Ta+v]
2F 2F
_ o Xt o Mt
2vE /Ny 2V E/Ny
P6.12 (a) Since we are only interested in what bit was transmitted, not the signal levels, £V, 0 we
determine the region(s) of r where either Py f(r| — V) or Psf(r| + V) is > P»f(r|0). In

this region(s) we decide that a 1 was transmitted, in the remaining region(s) we decide
a 0 was transmitted.

Let 02 = Ny/2. Then

1 _e+vE)?
Fol-v) = e o
2mo
1 r?
f(T\O) = e 202
2mo
1 r?
Fol+v) =
2ro
Now
1 1 (r—VE)? 1 1 r?
PBf(T| + V) > PQf(T|0) = — e 202 > — e 202
4./ 270 2\ 270
algebra) \/E 2
In the above region of r choose a 1 transmitted, i.e., 1p.
Similarly,
1 1 cvE? 11 2 o2 VE
Pif(r|-V) > Py f(r|0) = - e 22 > — e 22 =>r< —|—=mn2+—1.
lf(‘ ) 2f(|) 4@0_ 2@(] (\/E 9
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In this region of » we decide on a 1 being transmitted, i.e., 1p.

Note: The 2nd result we would expect from the symmetry of the problem. Also the
2

factor 2= In2 arises from the fact that P, # P (or P3).

o
Therefore — (

2]\\;% In2 + @) <r< (2]\[7% In2 + @) choose 0, otherwise choose 1.

Multiply the decision rule of (P6.8) by %f, i.e., scale the decision space:
— <ln2 + N%)) < %OET =/ < (1112 + Nﬂo) choose 0 transmitted
otherwise choose 1 transmitted

The new decision variable £ is Gaussian with a mean value equal to

(%

No

) X (mean value of r)

depends on the signal transmitted

and a variance equal to (E)

% ) x (variance of r). Therefore,
0

==t
Mo
— 72

—2F 2F 2K 2F 2F
f(£|_V)NN<NO’NO>; f(£|0)~/\/<0,NO>; f(l|+V)~N<NO,NO>.

To aid in deriving the error probabilities, let us sketch the decision regions(s) as in Fig.
6.35.

HURY) f(|0) f(C]+V)
B R i N
— ~— ¢
2 T, 0 T, =
L i 0y i L
Figure 6.35

In2 4 2%

Plerror [07] = P[(£>T1)|0r or (£ < —T1)] =2P[€ > T1|07] = 2Q #

VN
Plerror|ly] = P[{-T1 <€ <Ti|—V xmitted} or {—71 < £ < T1|+ V xmitted}]

2P[{—T1 < £ < Ti| +V xmitted}]

2F, 2F,
v/ var v/ var
5 % —In2 6TEOI’ +1In2
Rl — S
4By 4B,
L No No
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Pbit error] = P[bit 0 in error|P[07] 4+ P[bit 1 in error|P[ly]
1 1
= QP[error |07] + §P[err0r [17]

P6.13 (a) The sketch(es) looks as follows in Fig. 6.36.

f(r|-v) f(r|0) f(r|+Vv)

\g\ N4

_/ r

\/

0

|
By
v NI%

5
i

Y

1L, 0, 1L
Figure 6.36

The decision rule is
—@ <r< @, choose 0
otherwise, choose 1.

a vVE/2'\ E,
Plerror |07] = 2Q (m/2> =2Q < N{))
E, E,
(V&)< 5]
P[bit error] = %P [error |O7] + %P [error |17]

(1) o

P6.14 (a) Yes, there should be. The first one, that of P6.11.
(b) Matlab works to be added.

Plerror [17] = 2

P6.15 (a) What we need to know to from the past is whether the previous level to represent a 1p
is +V or —V. Choose these as the states and the state diagram is shown in Fig. 6.37.

(b) Fig. 6.38 shows a trellis diagram.
P6.16 Change the mapping rule as follows (See Fig. 6.39:

e A 0 is always mapped to a level of 0 volts.

e A 1 is mapped to a pulse of level +V, if previous it was mapped to a pulse of level —V

and vice versa.
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+V/
- - +11 T~
Previous Previous
level was -V level was +7/
/0, Thee_ L -7 0I0
-V /1,
Figure 6.37

State

- ~ ~
> N S '< > 7 )
~ RN P -
~ - N~ _ - ~ Ve
-V | = @ &
0, T, 2T, 31,
———— 1
Figure 6.38
\Y
t
0
T / ’ '
0 —» t 1
0 5 T \
T
: y t
0 T,
-V
Figure 6.39
2
N
1
N
t : t
0 L T, 0 s T
@ (b)
Figure 6.40

In essence nothing much changes. The main difference is the basis function used to represent
the signals transmitted. Here it would be the function in Fig. 6.40(a) instead of the one in
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Fig. 6.40(b).

If we adjust V' here so that the energy level for AMI-RZ is the same as for AMI-NRZ then
all error expressions and error performances for the 3 (including that of P6.13) demodulation
methods are identical. If the voltage levels are kept the same then the energy E (and hence

Ey) is halved for AMI-RZ.
Another difference would be in the PSD.

P6.17 (a) See Fig. 6.41.

+l

T, 2T, 3T, 4T, 5T, 6T, T, 8T, 9T,
Figure 6.41
(b) See Fig. 6.42.
1, 0 1,
L L L J Energy
0 £ E
Figure 6.42

(c¢) Let the sufficient statistics be

I, = intensity, or some measure of it, in the 1st half

I> = intensity, or some measure of it, in the 2nd half.

Then a possible decision rule would be as illustrated in Fig. 6.43.

Il + 0Op
j}—» %0 (or athreshold of +%)
<

Figure 6.43

Take the polarity inversion to mean that the laser is off when it is on and vice versa. Then
the above decision rule is not insensitive to polarity inversion. Indeed the decision would
by the following

always be 1p. However it can be modified to be polarity insensitive
decision rule:

R §
[ — o] 2 +
1p

10T,
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P6.18 (a) So k, the number of counted photons in time interval T}, is our sufficient statistic.
ko—AnT}
P[k photons emitted in a T} interval |17, 17 represented by laser off] = ()‘”Tb)kifb
. . . ko—(As+An)T,
P[k photons emitted in a T} interval |17, 17 represented by laser on] = [AstAn) T T ’

1 [[(A +)\n)Tb]ke (AsH+2n)Ty n ()\nTb)kefAnTb}

P[k photons emitted in a T} interval |1p] = =

k! k!

Tpk *(As+>\n)* Tp\k *Anﬂ
Pk photons emitted in a T}, interval [07] = 3 [[(/\SH\") 2 2 Png)e ]

The likelihood ratio test (LRT) is:

1 ()\ +>\ )kae—(/\5+)\n)Tb _|_)\ka ATy 1>D

- =1
2 g+ A )E e et 4 Ty e F o
k
(S
o - z 27 — 2*k+1
{<1+3\{L) oA T,,/2+1] “AnTy/2 0p
A\
<1 + )\n> b+1 1p
N o(k=1) z AnTh/2.
Op

|:<1 + &)k e~ AsTh/2 1 1:|
An

(b) Unfortunately, an analytical expression for the error performance of the receiver in (a)
appears to be intractable. Nonetheless one can resort to simulation.

P6.19 (a) See Fig. 6.44.

+]

Figure 6.44

(b) Yes. But again depends on how decision rule is implemented. But basically if the
demodulator decides on whether the laser is on or off for the whole bit interval OR on
for only 1/2 the bit interval then the modulation is immune to polarity reversals.

(¢) Let the axis be the energy of the transmitted pulse. The signals then plots as in Fig.
6.45.

(d) Let the states be

(i) previous 1 represented by +1, i.e., laser on for the whole bit interval,
(ii) previous 1 represented by 0, i.e., laser off for the whole bit interval.

The state diagram is shown in Fig. 6.46.
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1L o 1
@ ® L Energy
0 £ E
Figure 6.45
laser onfor T, sec./1;
/”——_» T~
Previous 17 Previous 1
laser on for 2nd half /0, 'lfy"{ZZZ‘,"j,? L?f:i??g laser on for 1st half /0,
D 0/0;
laser off for T, sec./1;
Figure 6.46
P6.20 (a) Plcy =1] = Pley, = —1] = 1; Ple,, = 0] = 3.
(b) E{ci} =0P[c,=0] + lP[ck =1+ 1Plcpy =1 =3

Consider now E{cici+1}. Set up a table (see Table 6.2) for the possibilities for ¢, cgi1
and the product. ... F{crcr41} = —1(1/4) +0(1/4) +0(1/4) + 0(1/4) = —-1/4

Table 6.2
by b1 Plbg,bria] e Ch+1  CkCri1  Plekcri1] = Plbrbyi]
11 1/4 { X } = 1 1/4
0 1 1/4 { 8 e 0 1/4
10 1/4 { 8 } - 0 1/4
0 0 1/4 {0 0} — 0 1/4

Now consider £{ciCrin}, n > 1 and the Table 6.3. If the bits by are statistically
independent and equally probable then each of combinations of cg, ¢y, is equally
probable, i.e., P[ciCrin] = 1/9.

o E{ckcrint = 1(1/9) —1(1/9) — 1(1/9) + 1(1/9) = 0. Therefore they are uncorrelated.
Now Equation (5.127) in the textbook states that:

S( Z R —]27rmeb

m=—0oQ
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Table 6.3
Ck Cit+n CkChin
1 1 1
1 -1 —1
1 0 0
-1 1 -1
-1 -1 1
-1 0 0
0 1 0
0 —1 0
0 0 0

where R.(m) is the autocorrelation we have just determined and

T, '
P(f) = F{NRZ signal} :/ Ve I2mftqy
0
_ YV immy ™Iy — e=ImI T
- onf 2
sin(m fTp)
Ty)
= |P()? V2T2sm (7T
PR = VTS
Finally,
T y .
S(f) = V2Tb81?ﬂ_§:;f)2b) [Rc(—l)eﬂ”fTb + Re(0) + Rc(l)e—JwaTb] '
b

1 1
:—1[2 cos(2m fTy)] + 3

=sin2 (mfTy)

P6.21 (a) The decision rule of (6.14) is compute d; = \/fOnTb [r(t) — Si(t)]?dt for each possible
transmitted sequence and choose the smallest. Since d; is obviously > 0 this decision
rule can be restated as compute d? for each possible transmitted sequence and choose
the smallest, i.e.,

compute

nTb nTb nTb

d? :/ r2(t)dt2/ r(t)SZ-(t)dt+/ SZ(t)dt, i=1,...,M = 2",
0 0 0

and choose smallest.

Now the term fDnTb r2

fOnT” S2(t)dt is the same regardless of i, i.e., for Miller modulation each transmitted
signal (sequence) has the same energy. It may also be discarded. Therefore the decision
y

(t)dt is the same for each ¢ and can be discarded. Similarly
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P6.22

(a)

rule can be stated as:
Compute
’I’LTb
—2/ r(O)Ss(B)dE, i = 1,...,m = 2",
0
and choose smallest.

The factor 2 does not affect which ¢ yields the smallest relative value. Multiplying though
by —1 changes the smallest into largest. Therefore the decision rule is:

Compute
nTb

/ r(t)Si(t)dt, i =1,...,m=2",
0

and choose smallest.

iy noo ()
Writing this as Z/ i (t)Si;(t)dt = Z[ry),réﬂ] [ S’('}) ] we get the desired re-
j=1 (I-DTp j=1 i2

sult.

The steps are essentially the same as before, except now one computes the crosscorre-
lation between the signal projections and the signal components along a branch, adds
to the surviving value of the state from which the branch emanates and compares with
all the incoming path values at the state on which the branch terminates. Choose the
largest and discard all others. Do this for each state.

Table 6.4: Cross correlation table: r1s1 4+ ros9

(81, 82) 0—1Ty, Tp,— 20T, 21T, — 3T, 31, — 41,
s1(t) — (1,0) —0.2 0.2 —0.61 —1.1
s2(t) — (0,1) —04 —0.8 0.5 0.1
s3(t) — (=1,0) 0.2 —0.2 0.61 1.1
84(15) — (0, —1) 0.4 0.8 —-0.5 —0.1

Trellis showing the branch correlations, i.e., rgj)sg) + Téj)sg), is in Fig. 6.47.

The pruned trellis showing the survivors & partial path correlations is in Fig. 6.48.

To compare with the minimum distance approach remember that the minimum distance
corresponds to maximum correlation, i.e., the relationship is an inverse one.

By error probability, what is meant is bit error probability. We are not all that interested
in symbol error probability. From the symmetry, we can say that

PIbit error] = P[bit error |0r] = P[bit error |s1(t)] (or Pbit error |sa(t)]).

A bit error occurs when s1(t) is transmitted whenever the sufficient statistics (r1,r2) are
closer to either s3(t), s4(t) then to s1(t) (or s2(t)). The geometrical picture looks as in
Fig. 6.49.

Clearly,

PIbit error] = Q (\@jﬁ??) =Q ( ]5/0) .
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Input bit=0

— — = Input bit=1
st | 1
st)| T 7T
sO| 17
S4(t) E':L

0, r® (2, @ B9, P K9,
-02, -04 +02, -038 -.61, +05 -11 +01

Figure 6.47

04 0.39 -0.29

s)| —1

s;(t)

I

i

S,(t)

s:(t)

i

Figure 6.48

(b) Matlab works to be added.

P6.23 Matlab works to be added.
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S(1) JE s
— e NN 1
4
. ///\F
Error occursiif Tg \
(.r2) fall here \ xmitted signal
s:(t) T
Figure 6.49
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Chapter 7

Basic Digital Passband Modulation

P7.1

P7.2

P7.3

A
Antenna diameter: d = 1 /g c 3 % 103
3 x 108 T

wave length: A = L 2 f f

/ /

(a) Direct coupling:
3 x 108
= 4kH =" _—18 10*(m) = 18.75(k

f z= d 1 A< 10° 8.75 x 10°(m) 8.75(km)

(b) Via modulation with carrier frequency f. = 1.2GHz

3 x 108 3 x 108
=d= =
Af, 4% 1.2 % 109

= 62.5 x 1073(m) = 6.25(cm)
The above results clearly show that carrier-wave or passband modulation is an essential step
for all systems involving radio transmission.
Express NRZ signal in terms of NRZ-L signal as follows:
SNRZ(t) = 1/2 [SNRZ—L(t) + 1} (71)

Note that the factor 1/2 scales the autocorrelation by (1/2)? = 1/4, the constant 1 shifts
(vertically) the autocorrelation by 1 and syrz-r1.(t) has an autocorrelation of Rgy,, . (7).
Putting all this together we have

Lei(-8), s
%7 |T’>Tb

=

Repz (T) = [RSNRZ,L (1) + 1] = {

Try to generalize this: Let y(t) = K[x(t)+ A] where K, A are constants. x(¢) has mean value
mx and autocorrelation, Rx(7). What then is Ry (7)?

Consider (7.41), P[mg|m;]. This probability is the volume under f(72,71|m;) in the 1st
quadrant as shown below. Note that given m, o and r; are statistically independent Gaus-

sian random variables, variance = %, and means —/ %, g/%, respectively. The volume is
therefore

/Oo - f(f2|m1)f(f1|m1)df2df1 = [/OO f(fQ’ml)df2:| I:/Oo f(fllml)dfl]
7o=0 J71=0 79=0 71=0
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o0 o0
P[m2|m1] = 1/ [§] 2<E}) de 41——/ e 2(5770) dfl
\/ﬂ\/@ #2=0 \/ﬂ\/g #1=0

- [-o(r)] o (%F) - [=e(®)]e (R)

Graphically the 2 integrals above compute the areas illustrated in Fig. 7.1

2" integral

=G

(1)

Figure 7.1: Areas to compute P[mga|m1].

Similarly P[ms|m1] is given by the volume under f(73,71|m) in the 2nd quadrant, i.e., by
the product of the areas in Fig. 7.2.

oy

1 :Q[EJ:Q(EJ

Plm,/m]=0° \/5:

/
7
h
JAN

Figure 7.2: Areas to compute P[mg|m1].

Finally P[mg4|m1] = P|mga|m;] — as can be seen graphically.

P7.4 (a) As in the case of QPSK with Gray mapping, to determine the bit error probability for
the above mapping it is necessary to distinguish between the different message errors
(or signal errors). Again because of symmetry it is sufficient to consider only a specific
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&)
s,(t)
Bit Pattern Signal Transmitted
JE'
53(t) Sl(t) 00 Sl(t)
0 at) 11 sa(t)
10 S3 (t)
01 S4(t)
s,(t)
Figure 7.3: QPSK modulation.
signal, say s1(t). Then the different error probabilities are
B 2F 2F
Plsso(t)]s1(t)] = @ <\/ Ng ) 1-Q ( Vo ) (7.2)
2F
Plss(t)|s:1(t)] = @ ( Nb> (7.3)
0
2F 2F
P = ) - = 4
sl = Q (w/ = ) Q («/ - ) (1.4)
Note that the above result does not depends on the specific mapping. Then the bit error
probability is given by
PIbit error] =
=1.0P[ 52(15)|51(t) + 0.5P[s4(t)|s1(t)] + 0.5P[s3(t)|s1(t)] =
2Eb 2F
=15 ,/ 21/ === =15 — 7.5
(b) Recall that the bit error probability of QPSK employing Gray mapping is @ (1 / %)
Compared to (7.5) we see that with anti-Gray mapping the bit error probability is
increased by a factor of 3/2. The plots of both error probabilities are shown in Figure
7.4.
P7.5 (a) Since the symbols are equiprobable and the channel is AWGN the demodulator is a

minimum distance one. The decision boundary and decision regions are shown in Fig.
7.5.
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NGUYEN & SHWEDYK

Prlerror]

— Gray mapping
/L.~ — Anti-Gray mapping
10 I I 1
0 2 4 8 10
Eb/N0 (dB)

Figure 7.4: Error performance of QPSK with Gray and Anti-Gray mapping.

r @)= \/Tzssin(zmct)

Decision region

He for s(t)
b, b, >
01 d, \11 :
S,(t) s,(t)
77/ 6 2
@A) = | = cos(2rf p)
r T,
si(t) S,(t)
bb, bb,
00 10
o, O,

Figure 7.5: Asymmetric QPSK.
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(b) In Fig. 7.5, di = v/Escosf and dy = \/Fssinf, where § = /6.

P[symbol error] = 1 — Pr[symbol correct]
= 1 — Pr[symbol correct|s;(t)] (due to symmetry)
=1— P[(ry,r2) € Ri|s1(t)] =1 — Pr; > 0]s1(¢)]P[ra > 0]s1(1)]

d1 d2
o) e (75m)
_ di da (4 do
- ( N0/2> +Q< N0/2> Q<U>Q< N0/2>
2F; 2F, . 2F, 2F; .
:Q< No cos@)—l—Q( N &nﬁ)—Q(HNO )QQ/NO

P[b; in error] = P[by in error|si(t)] = P[(r1,r2) € Ro or R3|s1(t)]

= Plr; < 0|s1(t)] = ( ) (

Pl[bs in error] = Q < ]%/2> =Q ( 2]55 sin9> . (7.7)
0 0

With 6§ = 7/6, sinf = % < cosf = @ Since the @Q-function is a monotonically
decreasing function of its argument, P[b; in error] < P[bz in error| and thus bit b; is
more protected than bit bs.

Note that in general, if 0 < § < 7/4, then bit b; is more protected. If 7/4 < 0 < 7/2,
then by is more protected. And if 0 = 7 /47

E, E, o
Plby in error] = Q [ /1.5~ | <107 = 1.5=2 > [Q7'(107%)]* = 3.09?
No No

3.092 3.09%
= By > = -No= " x 1076 = 6.37 x 107° (joules). (7.8)

:1—

) |

Similarly,

Choose equality to keep F; as small as possible.

P7.6

Sending: s(t) = cos(2nf.t); fo=1.2GHz
Receiving: r(t) = cos[2mf.(t + Ty)] = cos(2m fot + 2w f.Ty)

where Ty is the propagation delay corresponding to the distance d. Assuming ideal electro-

d
magnetic propagation at the speed of light, then T; = —, where ¢ = 3 x 10%m/s.
c
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(a) If the mobile user moves in-line away from the base station (to point B), or in-line toward
the base station (to point C), then the difference in propagation delay is:

d

C

/

T, =+
= The difference in phase shift is:

= 427

, o fod
A0 = 2mfT = 42l
C

2me C 3 x 108
/ - = = > —
=d = = T igxip ~ 0P =em

Thus a movement of only 25cm causes a maximum phase rotation of 27 radian.

(b) Of course we do not care about a 27 phase rotation because it does not change the
transmitted signal. Typically, a phase rotation of 7/2 or 7 is a more serious problem (as
will be seen in Problem 7.7). The minimum distances of user’s movement to cause a %
and 7 phase rotations are as follows:

A0 = m/2=d =d/4=25/4=6.25cm
A0 = m=d =d/2=25/2=125cm

If BPSK is used then it would appear that moving your cell phone from one ear to another
would (depending on the size of your head) have a severe effect on the receiver performance.
One should either track the incoming phase, say by a phase-locked loop which is the subject
of Chapter 12 or consider modulation/demodulation techniques that are present in the face
of phase uncertainty — this is the subject of Chapter 10.

pr.7

sti(t) + w(t) = 0+ w(t) R
r(t) = { Sg(t) +w(t) = VE écos(%rfct +0)+w(t) : “1p”

Without the noise, the receiver sees one of the two signals
st(t) =0 D 407

sB(t) = VE, /T% cos(2rft +6) : “lp”
Write s&(t) as follows:

2 2
sB(t) = <\/E cos 0) \/ T cos(2m fet) + (\/E sin 0) T sin(2m fet) .
b b
~— —
$1(t) P2(t)
Thus, for an arbitrary 6 two basis functions are required to represent s¥*(¢) and s&(t) as shown
in Fig. 7.6(a).

(a) If the receiver assumes that § = 0, then the optimum decision boundary is a line per-
pendicular to ¢;(t) and at vE/2 distance from sf(t) (see Figure 7.6-(a)). With this
receiver, the decision is based on ry:

Ty 0_|_W1 . “OT”
= t t)dt =
n= [Crama={ e
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() ()
locusof sh(t) | 4 TR
150 )
EA I
| j
s.(t) 6 i s.(t) Z
. e . — a0
\ D /
~vE
2
decisi’gn’ﬁoundary
;;;;;;;;;;; decision boundary | takingphase uncertainty
assuming 6 =0 into account
(a) (b)

Figure 7.6: Signal space diagram for ASK with phase uncertainty.

where, as usual, wj is a zero-mean Gaussian random variable with variance Np/2. The
decision rule can be expressed as

17
r, = VE/2 (7.9)
07

The error performance of the receiver that implements the above decision rule can be
calculated as follows:

Plerror] = P[07]P[r1 > VE/2|s1(t)] + P[17]P[r1 < VE/2|s2(t)]
_ 1Q< VE/2 > +%Q (@cose—\/ﬁ/2>

2 No/2 No/2

= 0.5Q (1 / 2]EV0> +0.5Q (ﬁ[cosﬁ - 0.5]> (7.10)

Equation (7.10) shows that Perror] increases as 6 increases from 0 to . This implies that
the phase uncertainty degrades the error performance of the optimum receiver designed
for ASK assuming no phase shift.

— For 0 = 30° = cosf = @ Then

Plerror] = 0.5Q («/2]]”:,0) +0.5Q ( 21]30(\/5 - 1))

— For 0 = 60° = cosf = % Then
E 1
P =0.5 — -
[error] Q (1/ 2N0> +7
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Prlerror]

E/N, (dB)

Figure 7.7: Error performance of ASK under phase uncertainty.

— For 8 =90° = cosf = 0. One has

Plerror] = 0.5Q <\/2§0> +0.5Q (— 253[0)

030 1/ ) +03 1-0 (/35 )

The result for § = 90 is expected. Since in this case the 2 signals have the same
projection along ¢ (t), i.e., they are indistinguishable. We would expect that the
best we can do is to guess, since r; gives no information about which signal was
transmitted and the error probability should be 1/2.

Fig. 7.7 plots the error performance of the conventional optimum receiver for dif-
ferent values of 6 as calculated above. It is clear that the knowledge of the phase
0 is crucial for the implementation of the “conventional” optimum receiver. All the
receivers discussed in the text so far require this knowledge and they are called the
“COHERENT” receivers. For coherent receivers, a circuit known as phase-locked
loop (PLL) needs to be built to estimate the phase of the incoming signals (see
Chapter 12).

(b) Without PLL, the receiver needs to partition the signal space into two regions that are
robust to the phase uncertainty. A rather obvious choice for the decision boundary is a
circle centered at s(¢) and with some diameter D as shown in Fig. 7.6-(b). In essence,
this receiver makes the decision based on the output energy, not the voltage values.

=0.5

An interesting question is “what is the optimum value of D to minimize the probability
of error for the above receiver?”. Finding the answer to this question involves Rician and
Rayleigh probability density functions (see Chapter 10). It can be shown that the optimum
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value of D is:

vE <1+4N”>. (7.11)

D=—
NG E

The above shows that the optimum “threshold” depends on the actual noise level (channel
condition). Typically E/Ny > 1 or Ny/E < 1 and D is well approximated by

E
R —. 7.12
5 (7.12)
t=T,

Tb M’

[()dt —o

° Compute o

r(t) s s Decision
—> re+r, —
ﬂ(t) t=T 2

; a and compareto D

b r

Je) PN

0

@ (1)

Figure 7.8: Implementation of the noncoherent receiver for ASK.

The receiver in Fig. 7.8 does not require the phase information and it is called the “nonco-
herent” receiver. With D given by (7.12), it can be shown that the error probability of the
noncoherent receiver is approximately:

E

Plerror] =~ Qe_ No

The above performance is also plotted in Fig. 7.7 for comparison. Observe that there is a
loss of about 1 to 2 dB in SNR compared to coherent receiver. However, the noncoherent
receiver is much simpler to implement since it does not require a PLL.

A final remark is that the notation E in this question is the energy of signal sa(t); not the
average energy per bit. The average energy per bit for this case is Fy = E/2.

P7.8 (a) See Fig. 7.9.

(b) The receiver in this case projects onto the ¢;(t) axis to get r1 and compares r; to a
1p
threshold of 0, i.e., rq 20 where it is assumed that 17 < s7 (t), 07 < s3 (¢).
Op
The signal projection is either +k+/FEjcos@ and the noise projection has a variance of

No/2. Therefore
Plerror] = @ (%) =Q (k:\/QNEObcos€> .
0

SOLUTIONS PAGE 7-9



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

A
locus of s (t) ™. g
s (t)
—e
-E
s
locus of sf*(t)
Figure 7.9
Tb
t), r,= r(t t)dt
%() z 'L ()%() Z,: decide 1,
0 b . r,=(tand)r,
D k\/E s (t $_/
g
" a(t)
S (t) 0 T
WE |\ o 1. n= [ at)d
2 tan@ '
ZZ
Figure 7.10

(c) See Fig. 7.10.

t=T,
Ty r
J.(- )dt—o ‘—»
. r.r,0Z
2
I’(t) @(t) = T_bcos(2n'fct) ChOOSéllT.
Otherwise
t=T choose 0,
b M
. J(-)en—s

0= 2 sn(znty)

Figure 7.11
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Remark: Another receiver, and a simpler one, is one that needs only ONE projection.
What is it?

P7.9 Signal space diagrams at the transmitter and receiver are shown below:

a(t)

Figure 7.12

(b) The symbol error probability can be determined as follows:

3
Plerror] = Z Plerror|s! (t)|P[s] (t)] = Plerror|s! (t)] = Plerror|s] (t)]
=0

The above is obvious given the symmetry of both the transmit and receive signals and

the fact that the four transmit signals are equally likely. Given si (t) was transmitted,
one has
r(t) = si(t) +w(t); 0<t<T,

Therefore,

r; = s&l +wy = k+/ E, cos (a + %) + wq

ro = 5&2 + wy = k+/ Esin (a—i— %) + wWo
where w; and wy are i.i.d Gaussian random variables with zero mean and variance %
Thus:
Plerror|st (t)] = 1 — P[correct|sd (t)] = 1 — P[(r1,r2) € Rolsd (t)]

1= P[ry > 0]s§ (1) P[r2 > 0] (¢)]

10 kv/Essin (o + m/4)
VNo/2

- 1-

10 k\/Escos (a + m/4)
Vv No/2

:Q<k‘sin(a—|—7r/4) 2]€)S>+Q<kcos(a+7r/4) QNEOS)

-Q <ksin (a+7/4) QNEOS> Q (k:cos (a+7/4) 2}5;)
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Note that the third term in the above expression can be safely ignored.

(¢) To compute the bit error probability, need to compute the following message error prob-
abilities given that sf () (or message mo = 00) was transmitted:

P[m1|m0] = P[I‘l < O|’I7’L0]P[I‘2 > O|m0]
2F, . 2F,
= Q(kcos(a—i—w/ll)w No) 1—Q<ksm(o¢+7r/4)1/ N0>
P[m2|m0] = P[I‘l < O|’I7’L0]P[I‘2 < O‘Tno]

= Q(kcos(a+7r/4) 2]5i)S>Q<ksin(a+ﬂ/4) 2}555)

P[m3|m0] = P[I‘l > O|m0]P[r2 < O‘Tno]

= Q(ksin(a+7r/4) QNE;S> [1—Q<kcos(oz+7r/4) 2}\%)

Finally:
P[bit eITOI"] = O.5P[m1]mo] + 1.0P[m2]m0] + 0.5P[m3\m0]

=05 [Q <kcos(a+ﬂ/4)\/%> +Q (k‘sin(a+7T/4) 2}\%)

The bit error error probability of QPSK with no phase and attenuation uncertainty is

(7.13)

FEy 2F
PIbit error] = Q ( N()) =Q ( Nob> (7.14)
Thus, as long as a # 0 and/or k # 1, one of the arguments of @ functions in (7.13) is

smaller than 1/1%‘ Therefore, it makes the bit error probability in (7.13) worse than

that in (7.14).
P7.10 (a) See Fig. 7.13.

[E2T R~ - e S
/ 0\ / 0\ / N\ / \
/ \ / \ / \ / \
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/ \ / \ / \ / \
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-
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<
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-
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Figure 7.13

Signal #1 has a discontinuity = PSD decays asymptotically as 712
Signal #2 has a discontinuity after 1 differentiation = PSD decays asymptotically as
1

F.
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(b) To determine the PSDs, shift the signal set by = L (to the left) and use the modulation
model (for antipodal signalling) in Fig. 7.14, where h(t) = v/Ep,/ = - cos(2m fet) or h(t) =

\/Eb,/ﬁ sin(2m fet), |t] < %

T T o H ( f ) Modulated

PN l o h(t) Output
S (F)=|H ()] S, () wattsHz

Figure 7.14

To find H(f) express h(t) as K [e/27/et £ e=32m/el] where K = /Epy/ = % + sign for
signal set #1; K = /' E} Tb (Z) — sign for signal set #2.
Then [H(f)]> = |K|?|F {/2™fet £ 327/t |2 Note |K|*> = —b is the same for either

signal set.
Tz
]_-{ej27rfct ie—j?ﬂfct} ( /; {ej27rfct :l:e—j27rfct}e—j27rftdt
s
Ty
_ / 2 {eﬂw(f—fc)t n e—j27r(f+fc)t} dt
)
2
ejQﬂ(f*fC)Tb 1 4 e*jZW(f*fC)Tb 1 ej27r(f+fC)Tb — e*JQﬂ'(fJFfC)Tb 1
a J2 m(f = fe) o J2 m(f+ fe)
sinm(f—fc)T sinw(f+fe)Th

(7.15)

Now f. = Jﬁ (usual assumption). Therefore sinnw(f — f.)T, = sin(nfTy — km) =
sin(m fT3) cos{lm) and sin7(f + fo)Tp = sin(nfTy + k) = sin(nwfTp) cos(km). There-
fore the Fourier transform becomes

1 1

sin(m fT) cos(k) [f —7 + i fc:| = sin(7 fT;) cos(km) {(f i '};?g f ;‘2 — fc)] :

So for signal set #1, it is (sinm fT} cos(km)) [fQ fﬂ} while for signal set #2, it is =

(sin fTy cos(km)) [fff‘;@] Therefore the PSD of signal set #1 is

| 42 By 4
|K|? sin® (7 fT5) l:(.fQ_fc2)2:| - T]%San(ﬂfTb) [(fQ—fcz)z] ’

and that of signal set #2 is:
4 2
e

E, 412
=R WT“[ . ]

(f? =12
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where cos?(kr) = 1.

Observe that the PSD of signal set #1 o fl—Q and that of signal set #2 o % for large f,
as expected.

(¢) Need to set up equations for plotting. Note that

Aff AP AP e (fT)°
(FP=J22 (=B (P =R UG- ()
nd 4f? 4f2T (T2
c _ c™b — 4Tb2 Cc

(f2=F27 (P77 — k2)? [(fTb)? — (feTo)?]*

Therefore the two PSDs are:

(fTp)?
[(fT)? = (fcT1p)*]?
(chb)2
[(fT5)? — (fTp)*]?

The normalized PSDs, normalized by (2E,T}p) are plotted in Fig. 7.15. The Plots are
versus f1y, with f.T} as a parameter. Observe that as more and more cycles (i.e., f.T} is
larger and larger) the difference between the two PSDs becomes negligible. The reason
is that the maximum slope is larger and larger (ignoring the discontinuity for signal set
#1).

(d) So how do we reconcile this? I.e., how does one reconcile that the PSD ignores phase
information (a statement made in Chapter 3) and that phase appears to play a role in
the slope of the PSD, at least in this case.

(2B, Ty) sin® (7 fTp) [ } (signal set #1)

(2E,Ty) sin? (7 fT3) [ } (signal set #2)

P7.11 (a)

) - () - 5)

- o (ﬁ?) _ (V2SR (716

which is the same as in the case of that p is actually 1/2. Here SNR = E;/Np.

(b) Now the receiver knows that p # 1/2. It needs to adjust the threshold accordingly to
minimize Plerror|. The optimal threshold is found as follows:

L (VBN

\/2my/No/2 1§ 1—p (7.17)
1 o—(+VEy)?/No 0< P ’
\/27r,/N0/2 b
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Normalized PSD (dB)
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2 207 AAAL
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Figure 7.15: Normalized PSDs of two signal sets.
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~JE, « 0;

\/E g 1T
. ot) = \/7005(2711‘4)
Tb

0 «rs0 =—— N—=r20-1,

Figure 7.16: Decision regions of the BPSK demodulator with the assumption of p = 1/2.

f(r10;) f(rit)

e

@)

VB -0 N JE -1,

fp<— R—=>5h

el

ASNR

Figure 7.17: Decision regions of the optimum BPSK demodulator when p is known at the
receiver.

. \/F + Th \/E - Th
Plerror] = »)Q ( No ) + pQ <N0/2 )
_ e 1+ ski ln 773) 0 1-— 4SNR11n <1pp>
fx/ST V2V/SNR
_ g L (1P
_ [\fSNm — ! < - )D
+pQ (\/i [\/SNR—ZL\/;\ITIn(l;p)D (7.18)

As a small check, when p = 1/2 one has Plerror] = @ (\/5\/ SNR), as expected.

(c) The error performance curves based on the demodulator of (a) and that of (b) for
p=0.6,0.7,0.8,0.9 are shown in Fig. 7.18. Observe that the error performance curves
are quite insensitive to the a priori probability value p.

P7.12 close all;
clear all;
[y,fs,nbits]=wavread(’Filename’);
#Normalize the values in y
y=2"(nbits-1)+2" (nbits-1)*y;
% Change each floating point value to an unsigned integer
if nbits==
y=uint8(y) ;
elseif nbits==16
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— 10 ]
o
s,
& 10 :
—&— Question (a)
—oe— Question (b), p=0.6
10 °}| —=— Question (b), p=0.7
—— Question (b), p=0.8
% x - Question (b), p=0.9
10 : . : :
0 2 4 6 8 10
SNR (dB)

Figure 7.18: Error performance of BPSK demodulators with different values of the a priori
probability p.

y=uint16(y);
elseif nbits==32
y=uint32(y);
elseif nbits==64
y=uint64(y);
else
fprintf (’The number of bits per sample used in...
this wav file is out of the range !’);
exit
end
% Count the number of bit 1s and Os
count_bit1=0;
count_bit0=0;
L=numel (y) ;
for 1=1:L
sample=bitget(y(1),1:nbits);
count_bitl=count_bitl + sum(sample);
count_bitO=count_bit0O + nbits - sum(sample);
end
fprintf (’\n Number of bits per sample: $\%d$’,nbits);
fprintf (’\n Number of bit 1s: $\%d$’,count_bitl);
fprintf (’\n Number of bit Os: $\%d$’,count_bit0);
fprintf (’\n Percentage of bit 1s: $\%3.2f$’,100*count_bitl/(L*nbits));
fprintf (’\n Percentage of bit Os: $\%3.2f$’,100*count_bit0/(L*nbits));

The following are results for the wave file tested:

Number of bits per sample: 16
Number of bit 1s: 2832449
Number of bit Os: 2132159
Percentage of bit 1s: 57.05
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Percentage of bit 0Os: 42.95

P7.13 mark_vec=[’"?;’0’;’s’;°d’]; color_vec=[’r’;’b’;’m’;’g’];
L=1000; % number of QPSK symbol;
Pevec=[10"(-1),10"(-2),10"(-3),10"(-4)]; for h=1:4
Pe=Pevec(h);
sigma=(Qinv(Pe)*sqrt(2))~(-1);
text_title=[’{\itL}=’,num2str(L),’;Pr[bit error]=’,num2str(Pe)];
b=round(rand(1,2*L)); % This is the binary information sequence

for i=1:L
BP=b((i-1)*2+1:i*2); % Take two bits at a time to map to a QPSK symbol
if BP==[0 0]

phi_1(i)=1;phi_2(i)=0;
elseif BP==[0 1]
phi_1(i)=0;phi_2(i)=1;
elseif BP==[1 1]
phi_1(i)=-1;phi_2(i)=0;
elseif BP==[1 0]
phi_1(i)=0;phi_2(i)=-1;
end
ri=phi_1(i)+sigma*randn(1,1);
r2=phi_2(i)+sigma*randn(1,1);
figure(h); % Plot in a seperate figure for each value of Pr[error]
plot(rl,r2, marker’ ,mark_vec(bi2de(BP)+1,:), ’markersize’,6, ’markerfacecolor’,...
color_vec(bi2de(BP)+1,:),’color’,color_vec(bi2de(BP)+1,:));
hold on;
figure(5); % Plot in the same figure for all four values of Pr[error]
subplot(2,2,h);
plot(rl,r2, marker’ ,mark_vec(bi2de(BP)+1,:), markersize’,6, ’markerfacecolor’,...
color_vec(bi2de(BP)+1,:),’color’,color_vec(bi2de(BP)+1,:));
hold on;
end
x=[-3:0.01:3];
figure(h);
plot(x,x,x,-x, ’marker’,’none’,’color’,’k’,’linewidth’,1.5);
title(text_title,’FontName’,’Times New Roman’,’FontSize’,16)
xlabel (’{\it\phi}_1({\itt})’, ’FontName’,’Times New Roman’,’FontSize’,16);
ylabel (’{\it\phi}_2({\itt})’,’FontName’,’Times New Roman’,’FontSize’,16);
hil=gca;
set(hl,’FontSize’,16,’XGrid’,’on’,’YGrid’,’on’, ’GridLineStyle’,’:’, ...
’MinorGridLineStyle’, ’none’,’FontName’,’Times New Roman’);
axis([-3 3 -3 3]);axis equal;
figure(5);
subplot(2,2,h);
plot(x,x,x,-x, ’marker’,’none’,’color’,’k’,’linewidth’,1.5);
title(text_title, ’FontName’,’Times New Roman’,’FontSize’,16)
xlabel (’{\it\phi}_1({\itt})’, ’FontName’,’Times New Roman’,’FontSize’,16);
ylabel (’{\it\phi}_2({\itt})’, ’FontName’,’Times New Roman’,’FontSize’,16);
hil=gca;
set(hl,’FontSize’,16,’XGrid’,’on’,’YGrid’, ’on’, ’GridLineStyle’,’:’, ...
’MinorGridLineStyle’, ’none’,’FontName’,’Times New Roman’);
axis([-3 3 -3 3]);axis equal;
end

Note that the program is by no means “optimal”’. Your program may be different, even
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though they accomplish the same task.

L=500;Pr[bit error]=0.1

0
o,®

L=500;Pr[bit error]=0.01
3 T T T

Figure 7.19

Fig. 7.20 plots the received QPSK signals in the signal space diagram. It is clear that with a
higher signal-to-noise ratio the received signals stay closer to the corresponding transmitted
signals. This makes it easier for the demodulation, hence a smaller bit or symbol error
probability.

P7.14 (a) BASK signal set is:

i 0 7.19
{1T : VE T%[u(t) —u(t — Tp)] cos 27 f .t (7.19)
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L=500;Pr[bit error]=0.001
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Figure 7.20

which maybe rewritten as:

Op : R {Oej27rfct} = SBB(t) =0
{ 1r: R {\/E\/sz[u(t) —u(t - Tb)]eﬂ“fct} = spp(t) = VE

2
They are plotted in Fig. 7.21.

Z[u(t) - u(t — Ty)

(7.20)
In baseband the signal is NRZ or BASK is NRZ modulation shifted up by the carrier
frequency, f. Hz.
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Ses (1)
e E\/% )

0 T T,
0 ()
Figure 7.21

(b) BPSK signal set is:

Or: —VE [u( ) — u(t — Ty)] cos(2m f.t)
1 F\f (t) — ult — Tp)] cos (27 fut)

which maybe written as:

{oT; { f\fu —ut—Tb)]eJ%fc} = spp(t) = —vEpy /2 [u(t) — ult — Tp)]

b

s R{VE () = u(t = Tt L = spp(t) = VB[ Z[u(t) - u(t = T)

b

The baseband signals are shown in Fig. 7.22.

Sie (t)
VE |2 ot
Tb
0 g t
.
Figure 7.22

In baseband the signal set is that of NRZ-L or BPSK is NRZ-L modulation shifted up
by the carrier frequency, f. Hz.

Or:  VEpy/7; Cos27rf1t
Ir: VEu/7 cos27rf2t

The signal set can be rewritten as:

Oor :+ R {\/ET,\/TTb[u(t) —u(t — Tb)]ej%flt} :
Ir i R {\/E,\/TTb[u(t) ot - Tb)]eﬂ”f?t}
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(i) Let fs = fi. Then immediately, when for Oy :  spp(t) = vV Ej T%[u(t) —u(t —Tp)].

2 . . ,
For 17, write the passband signal as: R{ V Epy/ ?[u(t) — u(t — Tp)]e/?rf2te=i2m Nt eﬂ’rflt}
b

.
Or : spp(t) = JE\/TTbMt) —u(t —Tp)] (7.21)
b sm(t) = VB alt) — (e — TR (122)

= V[ 2 (0~ o) feos2n( Sy — )t + Jsin2e(a — )1} (729

(ii) Let fs = fo. Basically the roles of fi and fo are interchanged. Therefore from (i):
Or : spp(t) = \/E,\/?b [w(t) — u(t — Ty)] {cos 2m(fo — f1)t — jsin2m(fa — f1)t}
s () = V2 ) <t T)

(iii) Let f, = £9/2. Then
o st = VB () -t - ot (e ()

f2;f1>t

=spp(t) :JF\/TZ[u(t —u(t—Tb)]e_jQW(

i s {ﬁ”\f ) — u(t — Tyt a2 (2! -ﬂﬂ(@fe-ﬂﬂ(hz“)t}

(58)
=spp(0)=vEy,/ £ [u(t)—u(t— )¢’
Or if we let Af = fo — f1 be the frequency separation then:

Op sB(t) = \/E>b\/T7b[u(t) —u(t — Tb)]e_jz’r(%)t
lp = seB(t) = m\/gb[u(t) —u(t — Ty))e? (5

To plot the signals in baseband, let fo—f; = Af = T%’ the minimum frequency separation
for “noncoherent” orthogonality. The various signals are plotted in Figs. 7.23, 7.24 and
7.25.

Remarks:

(i) In passband the transmitted energy is 0 or E (for BASK) or E} (for BPSK or
BFSK). What is the energy in the equivalent baseband signal(s)? Note — for a
complex signal, z(t), the energy is given by [ |z(t)|*dt = [ x(t)z*(t)dt. How
would you explain the factor of 27

(i) BPSK, BFSK are antipodal and orthogonal (with the proper choice of fo — f1). Are
these characteristics preserved in baseband?
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Figure 7.25: Case (iii): fs = flszQ

(iii) What would happen in (b) to the sgg(t)’s if instead of fs = f., the shift frequency,
also commonly called representation frequency, is chosen to be fs = f. 4+ fofiset? Try
to draw some general conclusions or go to P7.15.

P7.15 One gets a real equivalent baseband signal if the shift or representation frequency, fs, is
chosen so that passband signals’ Fourier transform has the following properties: its magnitude
function, |Spp(f)|, is even about fs and its phase function, ZS(f), is odd about fs or |S(f —
fs)‘ = ’S(_f - fs)| and 45(]0 - fs) = _45(_.]0 - fs)

Otherwise the equivalent baseband signal is complex.

So given the spectrum of a passband signal as in Fig. 7.26, how would you choose f; to have
a real equivalent baseband signal?

TO CONCLUDE —- THE CHOICE OF THE REPRESENTATION FREQUENCY IS ARBI-
TRARY AND IS YOUR DECISION. BUT THERE ARE GOOD, BAD & UGLY CHOICES.

P7.16 Let the QPSK signals be represented by the following signal set:
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Isps(f)l\

M
I f

0 \\//
N
0Sx ()
Figure 7.26
00 — ﬁf cos(27 fut) choosing Js=le  spp(t) = VEsy/ & [ult) — u(t — T)]
01 — Efcos(%rfaf +7) sBB(t) = VEs\/ 7 [u(t) — u(t — T,)]e’2
10 — m\/; cos(2m fut + ) sm(t) = VB[ 2 u(t) — u(t — T,)ei™
11 — \/78\/%(:08 (27 fot + 2F) spp(t) = VEs %[u(t) —u(t—T,)]e ™72

What do the plots of the baseband signals look like?
What happens to the baseband signals if the transmitted signal set is shifted by say 6 radians?

Before going to Problems 7.17 to 7.20 we first become comfortable with Equation (7.4). The
term Sp(f — fs) represents Sp(f) shifted to the right by fs Hz, while the term Sp(—f — fs)
represents Sp(f) flipped around the vertical axis, i.e., Sp(—f) and then (because of the flip
or —f argument) shifted to the left by fs Hz. Summing the two gives Sy (f). Here we worked
from Sp(f) to Su(f) but one can work the other way. As another graphical example consider
Sn(f) as shown in Fig. 7.27.

Figure 7.27

Whatever it is, Sy(f), is real positive and even and therefore a valid PSD. To determine the
PSD of the equivalent baseband process the representation frequency, fs, must be chosen.
Let us choose it to be # Then the PSD of the equivalent baseband process is shown in
Fig. 7.28.

A word about the auto correlation function. It is as usual the inverse Fourier transform of
the PSD, i.e., Rg(7) = [ Sp(f)e/?™7df.

Note that the PSD of Fig. 7.31 results in a complex auto-correlation function while the PSD
above results in a real auto-correlation function.

Real or complex depends on the shape of the passband PSD and also on the choice of f;.
A complex auto-correlation function means that the equivalent baseband process is complex.
Keep in mind that it is the passband process that is the physical (real) process, the baseband
process is first an equivalent one, i.e., a mathematical construct.
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S(f)
1A
f
_[ f,- f1j 0‘ ( f, - flj
2 2
Figure 7.28

Some questions you can ask yourself are: What is the equivalent baseband process PSD when
fs above is chosen to be = f17, = fo7 When would the auto-correlation function be real?

P7.17 (a) Let Su(f) be as in Fig. 7.29. Let H(f) be as in Fig. 7.30. Certainly |H(f)|?> = Su(f).
Choose fs = f1 which implies that Hg(f) is as in Fig. 7.31

S.(f)
~S(1) ~87(1)
/\ /\ f
-f, -f, 0‘ f, f,
Figure 7.29
H(f)

f

) |H(f)| (+)
VS (f)?_<(<enfunction) /\vf\\lsn (f)
_fz\\\ // _fl 0 fl\\\ ,/ fz

i \DH(f)\_/ >

(odd function)

Figure 7.30

Hg (1)
v/|HB(f)|

/
/

4 f
\\\////‘R f,— 1,

OH, (f)

0

Figure 7.31

Now show that indeed H(f) = Hg(f — fs) + Ha(—f — fs)*. Term Hp(f — fs) of course
gives the spectrum in Fig. 7.32
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(the part of the positivef axis)

| — f
0 'f1 \\ // f2
N/
Figure 7.32

Now Hp(—f — fs) is again a flip of Hg(f) about the vertical axis and a shift to the left
by fs = f1 Hz. The result is shown on the left of Fig. 7.33

v v ‘
A HB(_f_fS) ~ HB(_f_fS)
2 \\ // \\
| | f
_fz \\ //_fl 6 f _fz\\ / _fl 6
ﬁ \// \\// )\
OHg (- = f;) OHg (- = f5)

Figure 7.33

But we want the overall phase function ZH(f) to be an odd function (h(t) is real).
Therefore conjugate (not as a French verb but as complex conjugate) Hg(—f — fs) —
Hg(—f — fs)*. This flips the phase over since if z = |z[e/4*, z* = |z]|e/(-4") = La* =
—Zz. Therefore the result is as shown on the right of Fig. 7.33.
Remarks:

e The reason that there was no complex conjugate in Eqn. (P7.4) is because Sy, (f) is

a PSD and hence the phase is zero (always).
e Different f; can be chosen. You may wish to see what is the effect?
(e) np(t) = ™2™/t [%° w(t — \)hp(N)e/?™+*dX. Should be a baseband process. Facetious

answer would be because of the subscript B in np(t).

More seriously —n(t) is a passband process with its PSD lying “around” fs Hz. Therefore
np(t) should be a baseband process with its PSD “around” 0 Hz and shifted up and
down by e/2™fst to lie around f, Hz.

(f) n/(t) = R{np(t)} =R { { [ wi(t — Nhs(V)e?™FsAd A} e—j27rfst}

o) = -7 fmn(0} = -2 { | [

—00

[e.o]

w(t — )\)hB()\)ejQ’rfsAd)\} eﬂ“fst}.
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P7.18 (a) They are Gaussian because they are obtained by linear operations.

B {np(t)np(t + 7)) = E{ [{ | - A)theﬂwfsm} f]

=—0Q

{/ w(t+71— u)hB(u)ejgﬂfS“du} e_jgﬂfs(t'”)}

=—00
_ e—j27rfs e—j27rfs (t+7')

/ / E{w (t—=Nw(t+7—u)} hp(w)e? ATV dy hg(X)dA

(t—u+X) (w(t) is white noise)

hp(T+A)ei27fs(t+20)  (Impulse sifts out value at 7—A=0 => u=7+\)

— o J2mfs(2t4T) /OO he(A)hs(T + )\)ej%fsfej?ﬂ(?fs))\d)\
A=—00

= e JAmlst / he(\)hs (T + A)e?2m DA\
A=—00

Now Fourier transform with respect to 7:

Fr R (t,7)}

=—00 =—00

= e JAmSst / [ / hs(\)hg (T + /\)eﬂ”@fs)’\d)\] e 2T dr
T A

_ e—j47rfst/ hB()\)ejQW(Qfs))\ |:/ hB(T + A)e—j2w2f7d7:| dx
A=—00 T=—00

Se(f — fs) + Sp(—f — fs)=| (O = [Ha(f — fs) + Hy(=f = fo)I?
(He(f — fs) + He(—f — f)I[Hs(f — fs) + H(—f — [s)]
HB(f_fs)ng(_f_fs)+HB(f_fs)HB(_f_fs)+HB( f fs)

B(f — fs)

=|Hs(f—fs)|?=SB(f—fs) 0 0
+H]§(f - fs)HB(_f - fs)
=|Hp(—f—fs)[?=Sp(~f—fs)

<. Se(f) = |He(f)

(c) We know that H(f) = Hg(f — fs) + Hjy(—f — fs). Therefore we show that

which means h(t) = 2R {hg(t)

F {272 {hB(t)eﬂ”fst}} — H(f)

ej%fst}. To show this express the real operation as
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T+ a*

follows; R {z} = 5

F{ht)} =H(f) = ]—“{hB(t)ej??Tfst + h*B(t)e—jQWfst}

= /OO hy(t) el fste=a2mft qp 4 /oo hﬁ(t)e_j%fste_ﬂ’rftdt
~——
—o0 —00

e—i2n(f—fst)t

Hp(f—fs) :[/w hB(t)e—jQW(—f—fs)tdt]
HB(_f_fs)
HE (—f—s)

or H(f) = Hp(f — fs) + H5(—f — fs) as we wished to show.

(d) n(t) = [ w(t — Vh(A)dA = [ w(t — A) [R {hp(\)er2mtd\}] dA
Interchange the integral and R {} operation. Note that w(-) is real and can be “pulled”
inside the R {} operation. Therefore

n(t) =R { /A OO_OO w(t — )\)hB(A)eﬂ“fsAd)\} .

Change the variables in the inner bracket to u = 7 4+ A. It becomes

o0
e/ / hp(w)e ™y = /" Hy(f)
U=—00

F{ Ry (t,7)} = e 4/ Hy(f) / dAhp(\)e 92—/ =2/

A=—00

Hp(—f—214)

But H(f) and Hg(—f —2fs) do not overlap = product is zero. Therefore Ry, (t,7) =0
But, on the other hand, ng(t) = n;(t) — jng(t). Therefore

E{ng(t)ng(t+7)} = E{[nr(t)—jng(®)]n(t +7) - jno(+7)l}
= [E{ni(@)ns(t+7)} — E{ng(t)ng(t + 7)}]
—J [E{ns(t)nr(t +7)} + E{ng(t)ng(t + 7)}]
= [Ri(1) = Rq(7)] = j [Ri(r) + Rq(7)]
But we just showed that this expectation is equal to zero. Therefore R;(7) = Rqg(r)
and Ry q(1) = —Rq,1(7)
Consider now:

E{ns(t)ng(t+7)} = E{ [/A:OO
[ /u ) w(t + 7 — u)hg(v)e!> v du] e (t+7)}

=—0Q

o0

wi(t — T)hg()\)eﬂ”fs)‘d)\] e It

e [T ) AR S) iy (W) () 72750 dA

(T—u+M) as impulse occurs at u=7+A
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Considering the integral w.r.t. wu, the impulse sifts out the value of the integral at
u = T + A. Therefore

E{n*B(t)nB(t + 7')} = ej27rfs7'/ h*B()\)hB(T + )\)e—j27rfs()\f7'f)\)d)\
A=—00

_ /:O R\ his (7 + A)dA.

=—0

Now Fourier transform the above w.r.t 7, call it Sg(f):

saf) = [ [T nsomatr+ nar] e

=—00 =—00

_ /:O [ /TOO hB(T+A)e—J’2“deT] R (A\)dA

=—00 =—00

Change variable in the 7 integral to u = 7 + A. It becomes

/ hB(u)efj%rf(uf)\)du _ ej27rf)\/ hB(u)eijqudu _ ej27rf/\HB(f)

h*B()\)ejz”fAd)\] = Hp( f)[ / he(X)e 72 AdN
A

=—00

[e.9]

- sulr) = Halr) | [

=—00

Hg(f)
<. Se(f) = He(f)Hg(f) = [Hp(f)|* watts/Hz
(e) From (a) we have that R;(7) = Rg(7) and R;g(7) = —Rg (7). In (b) we find out that
E{n}(t)ng(t + 7)} is the inverse Fourier transform of Sg(f), i.e., = [ Sg(f)e 2™/7df.
But it also equals
E{nr(t) + jno®)]ns(t + 7) — jng(t + 7)1} = [R1(7) + R ()] + j[—R1.Q(7) + Rq.1(7)]
or

2R;() — j2R1o(7) = / h Sg(f)e7?T7df

or (2Rq(7)+j2Rq,i1(7))

= /oo Se(f)cos(2m fr)df —l—j/oo Sp(f)sin(2w fr)df

= Ri(r) = Rolr)= ;/_Oo Su(f) cos(2m fr)df
Rio(r) = —Rou(r) =3 [ Sa(f)sin(znfrias

(f) It is even. The crosscorrelation function are 0, since Sg(¢)sin(27f7) is an odd function
and the area under it is zero. Therefore the I & () processes are statically independent.

P7.19
Y(f) = X(f)H(f) = [XB(f_ fs) +X§(_f_fs)”HB(f_ fs) +H]§(_f_fs)}
= XB(f*fs)HB(f*fs)JFXE(*f*fs)HE(*f*fs)
+XB(f_fs)HE(_f_fs)+XI§(_f_fs)HB(f_fs)

=0 =0
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But Y (f) can be also written as Y (f) = Ys(f — fs) + Y5 (—f — fs), ie.,

YB(f - fs) + Y];(_f - fs) = XB(f - fS)HB(f - fs) + X];(—f - fs)HE(_f - fs)
= Ys(f —fs) = Xs(f — fo)H(f — f5) = Ys(f) = Xs(f)Hs(f)
= yB(t) =B (t) X hB(t)

P7.20 hB(t) = SB(Tb - t).

SOLUTIONS PAGE 7-30



Chapter 8
M-ary Signaling Techniques

P8.1 (a) Basically the procedure is to take the previous Gray code, flip it over to create a bottom
half. Insert a leading zero in the top half and the leading one in the bottom half. So for
3-bit sequences, one obtains:

(0 0 0
leading zeros 8 (1) 1 top half

010

1 10

. 1 11

leading ones 101 bottom half
(1 0 0
(b)

a; az a3 a4 as b1 bQ b3 b4 b5
0O 0 0 0 O 0O 0 0 0 O
0O 0 0 0 1 0O 0 0 0 1
0O 0 O 1 O 0O 0 0 1 1
0O 0 0 1 1 0O 0 0 1 0
0O 0 1 0 O 0O 0 1 1 0
0O 0 1 0 1 0O 0 1 1 1
O 0 1 1 O 0O 0 1 0 1
0O 0 1 1 1 0O 0 1 0 O
0O 1 0 0 O 0O 1 1 0 0
0O 1 0 0 1 0O 1 1 0 1
0O 1 0 1 0 o 1 1 1 1
0O 1 0 1 1 0O 1 1 1 0
0O 1 1 0 O 0O 1 0 1 0
0O 1 1 0 1 0O 1 0 1 1
0O 1 1 1 o0 0O 1 0 0 1
0O 1 1 1 1 0O 1 0 0 0

For the bottom half: flip the top half over and set b;=1.

(¢) The direct method appears to be more straightforward since it appears that you do
not need to generate the previous Gray bit codes to get the final one. But in reality
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there is no difference. One can adapt the inductive method to produce a Gray code by
considering the pattern of zeros and ones in successive columns - Left as an exercise.

P8.2 (4-ASK modulation)

(a)+(b) With M =4,

A A 2
P[symbol error] = gQ (M) = N =Q! <3P[symbol error]) . (8.1)
The results of \/QATO’ Q ( \/QATO) ,Q (\/B'QAT()) ,Q ( 52%\[0) corresponding to different
P[symbol error] are given in the Table 8.1.
Table 8.1
. A A 3A 5A
P[symbol error] JoNG Q (m) Q <\/W) Q (\/m)
10! 1.5011 | 6.67 x 1072 | 3.35 x 1079 | 3.06 x 10~
102 2.4747 | 6.67 x 1072 | 5.67 x 1071 | 1.81 x 107
1073 3.2087 | 6.67 x 10~% | 3.10 x 10722 | 3.17 x 10778
1074 3.8202 | 6.67 x 1077 | 1.04 x 1073% | 1.28 x 10!
(c) It is clear that
A 3A
P[{01}p|{00}r] = @ . -Q .
{01} pl{00}1) ( s =
A 3A A
Q< 2N0) Q< 2N0> Q(\/QNo) (82
Similarly, one can find that
3A 5A 3A
P[{11}p{00} ] = o) - ~Q(—=), 8.3
e - o(25)-o(E)o() o
5A
Plfiobolfoots] = @ (o). 8.9

It can be seen from the signal space that the same set of conditional symbol error
probabilities applies for the case that symbol 10 is transmitted. The set will be different
when either {01} or {11} is transmitted.

Compared with @ < \/QATO) the term Q (\/?)QATO) and Q) (\/SQATO) are negligible at any level

of P[symbol error| and can be ignored. It is the error that occurs when a signal is
mistaken with a nearest neighbor that dominates. Therefore, in terms of neighbors the
most important ones are the nearest ones.

SOLUTIONS PAGE 82
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P83 (a)
P[bit error] = P[bit error| {00}7]P[{00}r] + P[bit error| {01} P[{01}7]
+P[bit error| {11}7|P[{11}7] 4+ P[bit error| {10}7]|P[{10}7]
PI{00}4] = P[{01}q] = PI{11}x] = P{{10}2] =
P[bit error| {00}7] = P[bit error| {10}7]
P[bit error| {01}7] = Plbit error| {11}]
Pbit error] = 1 Plbit error| {00}7] + 1P[bit error| {01}7]
et 3o ) ()
[ () =2l |+ 22 ()
o o )2 o) -0 )
e
- - o) o ) ()
(b) Due to symmetry Plb; in error] = Plby in error|b; — 0]

P[b; in error|by = 0] =P [r; >0

+P |:I'[>0

A A
= —— — P = — —
ST 2 , b1 0] [ST 5

A A
ST—*L bl—O]P[ST:sQ

— P[by in error] — % [Q <\/2ATO> +Q (\;’%ﬂ .

P[by in error] =

P[by in error|by = 0] =

P[bs in error|by = 1]

Plby in error]

Plby in error|by = 0]P[ba = 0] + P[b2 in error|by = 1]P[bs = 1]

3A 3A
=" bh=0|P =_—
ST = 2 bQ 0:| |:ST 9

2o () o () (2) =2 () - ()

2P[r1<—Aorr1>A

[ A<rr<A

b =0)

o
2o (am) 2 ()] (3) =2 () 2 ()
2 (Gaw) - (aw) 2 ()
°(vaw) 20 () 20 ()
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The arithmetic averaging of the two individual bit error probabilities gives:

Plbit error] — %Q <\/2AW0> +Q (\/32%[) - i@ (\/52%() (same as in ().

The first observation is that the individual bit errors are not the same, the probability
of by being in error is higher by approximately a factor of 2. The overall bit error
probability is somewhere between the two individual bit error probabilities. If one makes
the reasonable approximations based on the result of P8.2(b) then

A
PI[bit error] = fQ ( \/W)
Pl inerror] = 2 (—2
in error] = =
! 2 \ V2N,
A
P[by in error] = @Q ( m)
Using the approximate expression we have P|bit error| = %Q ( \/2AT0)’ which is close to

the exact expression.

P8.4 (a) From Fig. 8.27 in the textbook, one can obtain the decision rule for bit by as follows:

by=0
1l 2 A (8.5)
ba=1

(b) Denote si(t) = {00}, s2(t) = {01}, s3(t) = {11}, s4(t) = {10}. The error probabilities
can be calculated as:

P[by in error] = P[by in error|s;(t)]

(vaw) @ (vaw) < (aw) @ (m).
(vaw) @ (o) €

-

s
Il
—

NI == =

O O

P[by in error] = P[b in error|s;(t)] = = (P[bz in error|s;(t)] + P[b2 in error|sa(t)])

*(Gaw) - (o) + < (Gaw) < (G|

o) bR (R w

Then the average bit error probability can be calculated as

N

“-

@
Il
—_

1
4
1
2

P[b; in error] 4+ P[bs in error]
2

- o) hol) o) e

The error probabilities are identical to those of P8.3.

P[bit error] =

SOLUTIONS PAGE 84
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P8.5

00 01 11 10
] oo ° r
_3A A 0 A 3A
2 2 2 2
Figure 8.1

(a) With symbol demodulation, P[b; in error] remains unchanged from P8.3(a) since the

pattern for by is identical. On the other hand,

Plby in error]

Plbs in error|by = 0]

= PIbit error]

Pl[by in error|by = 0]P[ba = 0] + P[b2 in error|by = 1]

Plby = 1]

1
—PIbs in error|by = 0] + §P[b2 in error|by = 1]

P[—A<I‘]<0

A
ST:—?)27b2:O:| P|:ST:—

—|—P-r1>AsT——32Ab2 ]P[ST——?)QA@:O}
—|—P-—A<I']<0ST:A,b2:0:|P|:ST:§b2:0:|
+P_r1>AsT—2 :0] [T }
1 A
212(am) -2 () -2 (G
3A A
@ (Gm) - (7w @( )
3A 5A

)
HENRIE SRNE
o)1) e (5

Compared with Gray coding the bit error probability is somewhat larger, basically

A
V2N,

2

) as compared to %Q ( a

m), but not dramatically so.

(b) Now consider demodulation directly to the bits. The decision rules are:

{

b
rr
b

1

0
0

T AV

(rr<—=A)or (0<r;<A)=0by=0
(_

In terms of error probabilities, P[b; in error] should be the same as in P8.4(b).

A<ry<0)or(r;>0)=b =1

PIby in error]

SOLUTIONS
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is determined as follows:

PIby in error|by = 0]

+P

+P

+P

P|:—A<I']<0
r; > A
-A<rr<0

rr > A

3A 3A
ST = —7,b2 = O:| P |:ST S 7

2
A A
ST:—?)2,b2:0:|P|:ST: 3

A A
. — P A —
ST B ,bQ 0:| I:ST = B

b =0)

by =
220}

b =0)

A A
ST—Q,b2—0:|P|:ST——§b2—O:|

R RICIRICE
“le(iam) -2 (am)] 2 (vam) |
- 3o(umm) () 22 ()
Plbs in errorfby — 1] — %p [r1<—A sT:—jbzzq
+%P :O<A<r[ ST:§,b2:1:|
+%P :r1<—A sT:%,bQ: ]
+;P_O<r1<A sT 32A,b2_1]
- Bl ()
5
(o) + [ (vam) - (Gl
- 52(7am) -2 (i) +52 (Vams)
Plbs in ervor] = Pby in errorlby = 0] + _ Plbs in errorlby = 1]
- 2o(m) -eom) e ()

PIbit error]

—

1
Plb2 in error] + §P [by in error]

2
2 12 () 20 (o) +22 ().

*(vaw) 19 (am) 19 (i)

Again, the result is the same as demodulating to the symbol.
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bb,b,
Ll
000 001 011 010 110 111 101 100
° ® ° e ° ) ) r
_A _5A _3a _A 0 A 3 kS A
2 2 2 2 2 2 2 2
Figure 8.2
P8.6 (a)
b1=0 bo=1
rr z 0; 77 z 2A; If {|r;] > 3A or |r;| < A} = b3 =0, else bg = 1.
bi=1 b2 =0

Graphically, the decision regions are illustrated in Fig. 8.3.

0 A 2A 3A
° ° ° o - e ° ° ° r
000 001 011 010 110 111 101 100
‘ =0 b=1
I
b=o | b =1 =0
b, =0 - b =1 -t b, =0 -t b =1 ><—b3:0
Figure 8.3
(b) Consider first bit by:
P[by in error] = P[by in error|by = 0]P[b; = 0]
+P[by in error|by = 1|P[by = 1]
= P[by in error|by = 0] (by symmetry)
TA  BA 3A A
P[r1>0 st is one of 5 T o T g gt 0}
TA 5A 3A A
i e e el [ S
XP{STISOIleof 55 5 g |7 0}
=1/4
1 A 3A 5A TA
= Plb i = - + .
imeror = 5 [0 (75) +@ (7o) +@ (Gwe) @ (7o)

Now consider bit by:

P[by in error]

P[b2 in error|by = 0] P[ba = 0]
+P[bs in error|by = 1]P[by = 1]
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P[bs in error|by = 0] =

P [—2A <rr<2A

><P{9Tisoneof—7A —% % E

=1/4

= o () e () e (am) o () | ()

Plb in error|by = 1] =

A A A 3A
P |r; < —2A or r; > 2A| sp is one of —3—,——,—,3—,172:1
2 2°27 2
. 3A A A 3A
XP[STISOHGOf T35 g b2:1:|

ol e () o) o)1)

Plby in error] = ;[m <\/2AW0>+2Q<\/32AT0>+Q<\/52AT0)
(o) @ () @ () |

Lastly consider bit bs:

Plbs in error|bs = 0] =

A A ATA
P[—3A<r1<—A0rA<rI<3A sTlsoneof—??7 509 72,63:0}
. A A ATA
X P sTlsoneof—T, 503 63—0}

e
ol

2 (e
(w

l—|
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P[bs in error|bs = 1] =

5A  3A 3A HA

EP [(rl < —=3A)or (A <rr<A)or(r;>3A)|srisone of — —, ——, —, — bs = 1}

- b folahe) () -o( ) a3
o) ole) - () o)

- 3ol o) o)
()< ()

= ) ia(5) ()
() ) () o)

Using the result of P8.2 we ignore, with confidence, all terms except Q) (

oo ) There-

fore:

P[b; in error] = iQ (\/2ATO>
1
2

Plby in error] = =Q <\/2AT0>
Plb3 in error] = @ <\/2AT>

A 7 A
Plbit = - - )
[bit crror] Q (\/2]\7 ) 12¢ <,/2N0)
P8.7 Consider rectangular QAM of A bits with A; bits assigned to the I axis, A\g bits to the @ axis

(A = Ar + Ag). Gray code the A\;, A\g bit patterns separately, concatenate them and assign
the corresponding bit pattern to the I, () signal.

C»D\'—‘

Example: A\; = A\g = 2. Gray code for either axis is 00,01,11,10. Therefore the result is as
shown in Fig. 8.4.

P8.8 (a) See Fig. 8.4 for the bit pattern bybabsbs. Then the decision rules are:

b1=1 by =0 b3=1 by=0
rg = 0 rql = > 8 r; 20 v = > A
Q < ) Q 2 I = ) I 2

b1=0 b2 1 b3=0 b4 1

Note: rr,rg are statistically independent Gaussian random variables, variance Ny/2 and
a mean value which depends on the transmitted signal.

(b) Since rectangular 16-QAM is basically 2 independent 4-ASK modulations the results of
P8.2 apply directly.

SOLUTIONS PAGE 89
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P8.9

Q axis,
1000 1001 1011 1010
g ) e o ®

11
{
([ J

1
Y
o

| | axis

A, Gray code
01
. 1
. 1
| o
"
>
. |

00 01 10
bbb, H
A, Gray code

Figure 8.4

(c) Make this bit a by or bs bit.

(a) Constellation (a): The average symbol energy is equal to the squared distance of any

signal from the origin. In terms of A this is Fy = (ﬁf = 1.71A2 joules/symbol.

Constellation (b): The sum of the squared distances of each signal from the origin is

=4 <AT2 + %) +4 (% + %) = 12A2%. The average energy is E, = % = 1.5A?

joules/symbol.

2
Constellation (c): Again sum of the squared distances is = 4 (ATQ + %) +4 (A + QA) =
(8 4+ 4v/2)A2. Therefore Es = 1 + gAQ = 1.71A? joules/symbol.

Constellation (d): Sum of the squared distances is 2 <AT2) +2 (%) +4 <AT2 + A2> =
10A2%. Therefore E, = 108A2 = 1.25A2 joules/symbol.

So from most efficient to least efficient the ranking is (d), (b), (c), (a).

Note: Since each symbol (in each constellation) represents 3 bits, the average bit energy,
Ey, = E4/3 joules/bit.

(b) See Fig. 8.5.
(c) See Fig. 8.6.
(d) The triangular constellation is most efficient at 1.125A2 joules/symbol, which is

1.2

better than the best constellation in Fig. 8.28.
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@(t)

Gray code for Q-axis bits

Gray code for /-axis bits

Figure 8.5
»(t)
®
[} ® [ J
AN
= a0
[ ] &< | [ ]
These signals are most
° susceptible to error. They have
the least space to maneuver in,
at least the corresponding
received signal does.
Figure 8.6

P8.10 (a) Fig. 8.7 shows the signal constellation with the signals to be Gray coded numbered. A
solution is also given and explained on the figure.

(b) Assume that all the 16 signal points are equally likely. The optimum decision boundaries
of the minimum distance receiver are also sketched in Fig. 8.7.
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([ ] Q6 ([
[ B
L @ @ @ L @
12 7 2 4 5 10
@3
o @3 [
T 9
A graph of the signals to be Gray coded and The 4-bit Gray code is:
their nearest neighbours looks as follows: 0000 _ 1
1-6-11 0001 2
l 0011 - 3 Somewhat heuristically
2,712 0010 - 4 assign the bit patterns to
signals as shown. The
! 0100 remaining 4 bit patterns
3-8-9 0110 -5 can be arbitrarily
! 0111 - 10  assigned to the 4
4,510 0101 - 7 remaining signals.
1101 - 12
1100
1111
1110
1010 - 11
1001 - 9
1011 - 8
1000 - 6

Figure 8.7: V.29 constellation and “Gray mapping”.
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P8.11 (a) The two constellations have roughly the same symbol error performance since the mini-
mum distance for both constellations is 2.

To see which one is more power-efficient, one needs to compute the average (or total)
energies for the two constellations.

E@ﬁ:%§Mﬂ§+3%+(ﬁ+¢%+2®?+ﬁn]:uuupm%)

By = 16 {40V + (VB4 27 + (V3 + 4 + (V2 + 6)°]} = 24.49 (joules)

From the above results it can be seen that constellation (a) is much more power-efficient
than constellation (b).

(b) See Fig. 8.8. Gray code by trial and error - but intelligent trial and error.

@(t)

?0100
+0101
+0111

01
0000 | 0001 | 0011 | 0010x | {110 | 1111 | 1101 | 1100
o o o & o oo =g
AN /
10

Figure 8.8

(c) See Fig. 8.8. The four outer (corner) signals are least susceptible to error since they
have the least nearest neighbors, hence and the most space for the received signal to
roam in.

P8.12 (a) By observation, dpi, is maximized when Ay = A, = A (= dpin), which means that

A/2 o
tanf = SX2 = 1 =0 =18.4°,

(b) Gray code “vertical bits” and “horizontal bits” separately and then concatenate them.
The result is shown in Fig. 8.9.

(c) For the present constellation: Fs = (%dmin)Q + (%almin)2 = g (dmin)2 = dpin = 0.63VE;.
For 8-PSK the geometry looks like in Fig. 8.10 and dyi, = 0.765+v/F, which is better.
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@ (1)
100 101 111 110
, ° ° e Ui @
>
‘2 Tdmin
e}
t
5 000 001 011 010
> ° ° ° °
00 01 11 10
horizonta bits —
Figure 8.9
0
4 dpin = 24/E, sin(22.5°) = 0.765,/E,
0f
Figure 8.10
A
2 2
Grin o, B S p2 g =30
2 4 4
A
Figure 8.11

P8.13 (a) See Fig. 8.11.
— Have 6 signals with energy = = oules.
(b) Have 6 signals with gy = d? 3A2 joul

min
— 1 signal with zero energy.

2
— 1 signal with (dpi, cos 300)2 + (S’d%) = (% + %) 3A2% = 9A2. Therefore

[6(3) +9] A% 27
8 -8
E;(joules/signal) 9

E, = = —A? joules/bit.
b 3( bits/signal) 8 Joules/bi

E, = A?  joules/signal.

(c) See Fig. 8.12.

(d) No, not possible. The signal at the origin has 6 nearest neighbors. Not possible to find
six 3-bit patterns that differ from its 3-bit pattern by only 1 bit. At most there are three
3-bit patterns.
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decision
boundaries

4
%

°
Figure 8.12
Q
1010 1000
0010 0000
1110 1100 0100
0110
R A
/12 I
R,
A
ot 111 1101 0101
0011 0001
1011 1001

Figure 8.13: The 16APSK constellation used in DVB-S2.

P8.14 (a) From Fig. 8.13, one can calculate Ry, Ry in terms of A as follows:

A T

5 Ry sin 5= Ry Tsin % 93 (8.9)
A
A = RiV2= R == =0.707A. 8.10
1 1= (8.10)
The average symbol energy is:

EW = % (12R3 + 4R}) = %6 (44.79A% + 2A%) = 2.9245A%. (8.11)
SOLUTIONS PAGE 8-15
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(b)

Q

Figure 8.14: The modified 16APSK constellation.

Similarly, from Fig. 8.14, R;, Ry can be calculated as:

A
Rl = ——— =1307A. (8.12)
2sin g
Ro = —° 1 Acos™ —2.073A (8.13)
2 = 2tan T cos = = 2. ) )

The average symbol energy is:
@) 1 2 N _Lpa 2
Es = E (8R1 + 8R2) - 5 (Rl + RQ)
1
= 35 (1.708A% + 4.297A%) = 3.003A%. (8.14)

Since the minimum distances of both constellations are the same, the two constellations
perform approximately identically in AWGN. The modified constellation has a larger
average energy (E§2) > Egl)). Therefore it is less power-efficient compared to DVB-52
16APSK.

Furthermore, the demodulator for the (8,8) signal constellation appears to be more
complicated than that of the (4,12) constellation. But to back this up you should propose
block diagrams of the demodulators.

The (8,8) constellation cannot be Gray coded. This is based on the observation that 3
signals which are at equal distance (dpyin) from each other, i.e., lie on the vertices of an
equilateral triangle, cannot be Gray coded. This is true regardless of the length of the
bit sequence.

Proof:

1) Let a, b, ¢ be 3 unique n-bit sequences.
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2) Let a and b differ in one bit, say in the jth position.

3) Now suppose ¢ differs from a by only one bit. This cannot be in the jth position
because then it would be identical to b. So let it differ in the ith position.

4) But this means that ¢ differs from b in the jth and ith positions, hence violating the
Gray mapping rule. Remember Gray code means that 2 binary sequences that are
at minimum distance differ by only one bit.

The (4,12) constellation, however, can be Gray coded. See a Gray code table for 4-bit

sequences in Fig. 8.15.

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
111
1110
1010
1011
1001
1000

0000

0100 '\ For the signals on the
1100 / inner circle

1000

0001

0011

0010

0110

0111

0101 For the signals on the
1101 | outer circle
1111

1110
1010
1011
1001

Figure 8.15

P8.15 (a) The probability of symbol error can be written as

P[symbol error]

P[(error on I axis) or (error on Q axis)]
P|[(error on I axis)] 4+ P|(error on Q axis)]

—P](error on I axis) and (error on Q axis)]

Now PJ[(error on I axis)] is that of M-ASK with M = M; = 2™ (number of signal

components along I axis).

Similarly P[(error on Q axis)] is that of M-ASK with M = Mg = 27e.

Finally P[(error on I axis) and (error on Q axis)] = P[(error on I axis)]P[(error on Q axis)]
because the 2 events are statistically independent. This is because the noise components
wr, wq along the respective I and Q axes are statistically independent.

Using Eqn. (8.18) on page 307 we obtain

P[symbol error] =

My

2(M1—1)Q< A >+2(MQ—1)Q< A >

v2Ny Mg

V2N,

4(Mp - 1)(Mg — 1) 2( A >

M; Mg V2N,

SOLUTIONS
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Since it is more meaningful to express the error probability in terms of Ej, the average
transmitted energy per bit, we find the relationship between Ej and A. First we deter-
mine the average transmitted energy per symbol (or signal). Now the transmitted signal
can be written as

) A |2 i A |2
sii(t) = (22—1—M1)§ ?cos(2wfct)+(2z—1—MQ)5 fcos(%rfct)
S S
i=1,2,..., My =2"; j=1,2..., Mg=2"

The energy of the (i, j)th signal is E;; = (2i—1—M7)?4 T +(25—1— MQ)2A Therefore

M; Mg QMIMQ
By = M Y Ey = DY [@i—1— M)+ (25 — 1 - Mg)?]
I Qz 1 =1 mz 1 j5=1

Consider the sum M1 j]\/fl(% — 1 — Mj)? (other sum is the same except My, Mg
are interchanged). It equals {ZMI [4i% — 4(1 + Mp)i+ (1 + My)?] Zj\i@l 1}. Using the
identities > j_; 122 = M Sk = %ﬂ) and straightforward algebra, the
sum becomes M, Where M = M- Mg = 27,

More algebra yields Eg = %2 {MI2 + Mé — 2} joules/symbol.

Now Ep = joules/bit which means that A = 2v3y/log, ME, . Therefore

log 7 \/M2+M2 -2

2(M;—1 logs M E
P[symbol error] = (I)Q< _ blogyM b)

M; M} +M3 -2 No
L 2(Mg — 1)Q< 6logy M Eb>

MQ MI2—|—M(022—2 Ny

M M?+M3 -2 No

AM; - 1)(Mg - 1), ( 6log, M Eb>
It is worthwhile, because of all the algebra, to see if the above error probability expres-
sion reduces to (8.47), page 320 of the text for square QAM, i.e., M; = Mg = VM. Also

plots of P[symbol error| versus & for non-square QAM are also of interest. To reduce

the possibilities consider the spec1a1 case of \f = Mg +1= A1 = ﬁ, Ag = %, A odd.

Special case but the most practical one. Left as a further exercise.

It is also of interest to see how the average energies divide between the inphase and
quadrature axes.

Along the quadrature axis we have

& A2 A?
(2i —1— MI)2T = E(Mg? —1) joules/“quadrature symbol”

1

Eq=—
2 b 2

Similarly E; = %Z(MI2 —1) joules/“inphase symbol”.
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Note Eg + E; = E; (as would be expected); further for square QAM, E; = Eg = %,
i.e., the energy is divided evenly.

Now consider non-square QAM

Er M?P-1 221

T T W2 1 92 _

Now let A\ = Ag + 1. Then the ratio becomes
— =" Xodd.

As X becomes large, ]% — 4, indeed it does this quite rapidly.

(b) The union upper bound is obtained by simply ignoring the overlapping regions, i.e.,
P[(error on I axis) and (error on Q axis)] or the Q?(-) term.

P8.16 In general,

M
Plsymbol error] = > Pf[error|s;(t)] P[si(t)]
=1

M
1
= Z P [error|s;(t)] (since signals are equally probable)
i=1
< P[worst-case conditional error]

From the geometry the worst-case conditional error occurs when an “inner” signal is trans-
mitted and equals the volume under the 2-dimensional pdf in the region outside the square
or 1 — (volume under pdf inside the square). See Fig. 8.16.

[ A |
[~ —1
- 7
7
Z
Z
Z
A % PY
é signal point
é
7
v 7

Loy

&)
—
0
o
=
)
oo
—
D

2
Volume under pdf inside the square = [1 —2Q <2 ﬁ)] . Therefore,
0

2
P[symbol error] <1 — [1 -2Q (2\/%/2>] :
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P8.17

P8.18

Now from P8.15, A = —23VEs 1t then follows that

\/M3+ME—2

2
6 F
Psymbol error] < 1 — [1 - 20 <\/(M12 + M - 2)]\70)] ‘

A somewhat looser upper bound can be obtained by noting that 2M < M12 + Mé < 2M2.
For square QAM, M? + Mé = 2M and the result, Eqn. (8.48), follows immediately. For
non-square QAM where M? + Mé < 2M? the reasoning is as follows:

Replacing M? + Mé by 2M? = the argument of the Q(-) function is smaller = that Q(-) is
larger = 1 — 2Q(-) is smaller = [1 — 2Q(-)]? is smaller = 1 — [1 — 2Q(-)]? is larger =

2
P[symbol error] <1 — [1 -2Q ( (2]\426€82)N0>] . (8.15)

6 Fs 3E, o 3\E
Note that @MZ-2)Ny — (M2-1)No (M2—1I3N0'

Remark: We show that indeed M12 + Mé > 2M or 22M 4222 > 2.9) Let \; = Ag+k k>
1 = A = 2E Ag = 255, Then 2% + 2% = 222k 4 2227F = 2%(2% 4 27%) and since
2F + 27% > 2 for any k > 1, then indeed M? + Mé > 2M. The inequality M? + Mé < 2M?
is quite obvious.

The verification involves 2 changes of variable. First in the integral w.r.t. A, let x = ,/N%)\.
The integral becomes
Vi 2

_de

=—00

Now let y = ,/Nlorl. Then

PJcorrect

_2dx

R T

Finally observe that Es = AE, = logy M E} and that Plerror| = 1 — P[correct].

The transmitted signal can be written as:

Sz‘(t) = (j: Eb)¢1(t)+(:i: Eb)(bg(t)-i" . ‘—l-(ﬂ: Eb)¢j(t)+' . "F(i Eb)(b)\(t), 1= 1, 2, c. ,M,

where the jth component is ++/E} if the jth bit of the transmitted bit sequence is 1 and
Ey if the jth bitis 0; j =1,2,...,A.

The demodulator consists of projecting the received signal () = s;(t)+w(t) onto ¢1(t), 2(t),

.., ®xA(t) to generate the sufficient statistics r1,79,...,7), and using minimum distance to
carve up the decision space. Geometrically this consists of choosing the signal point that
lies in the quadrant that ri,79,...,7) fall in (convince yourself of this for A = 2 and A = 3;
perhaps A = 4 if you are really ambitious).
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Now because of symmetry (and the fact that the signals are equally probable), one has

Plerror] = Plerror|a specific signal or bit sequence] = 1 — P|correct|a specific signal]

Choose for the specific signal the bit sequence (111 ---11), or (v Ep, /Ep, V' Ep, -+ , v/ Ep, V Ep),
the signal that lies in the first quadrant. Now,

PJcorrect|this specific signal] = P[r; > 0,r2 > 0,--- ,ry > 0]

where the r;’s are Gaussian, mean value /Ej, variance Ny/2 and statistically independent.

Therefore,
a [2E
PJcorrect|this specific signal] = H Plr; > 0] = [1 -Q < b>
No

J=1

Plerror] =1 — [1 —-Q (\/?Eolj

Remark: The signal points also lie on the surface of a hypersphere of radius v/ AEp.

Finally,

P8.19 (a) Simply put, the transmission bandwidth is halved. It is directly proportional to the
dimensionality of the signal space.

(b) The sufficient statistics are generated by projecting the received signal onto the % or-
thonormal bases (which are s;(t) normalized to unit energy) to obtain r1,72,...,7j,...,7a/2.
Statistically r; is Gaussian with variance of % and a mean value of 0, ++v/Ej, or —+/E,.
Zero if the transmitted is not £s;(t), ++/E, if the transmitted signal is +s;(t) and —/E}
is the transmitted signal is —s;(t). Note that we assume, for convenience, that the signal
s;(t) has energy Ej. To obtain the decision rule consider just the special case of M =4
and generalize from there.

L<h @)1, =1
JE, @ s(1)
Choose — 5 (t) Choose s, (t)
-5(1) s(t)

@ ® awm,n
E O JON B

-JE, T -s,(t)

Figure 8.17

r1 > 0 choose s1(t)

The decision rule is: If |ri| > |ra| and
r1 < 0 choose —s1(t)

To generalize:

Compute |rj],7 =1,2,..., % Determine maximum |r;|,j =1,2,..., % Then the
decision is s;(t) if r; > 0 and —s;(t) if r; < 0.
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(¢) Due to the symmetry of the decision space we have

P[symbol error] = P[symbol error|any specific transmitted signal]

= 1 — P[correct decision|any specific transmitted signal].

Choose the specific transmitted signal to be s1(t). Then s1(t) is chosen if

(riy >0)and (—r1 <ry<rj)and (—r; <rg<rj)and --- and (—r; <r

<rp).

S

To determine the probability of the above happening, fix the random variable r1 at a
specific value, say r1 = 71 > 0. Note that the probability of this is fy, (r1]s1(¢))dr; =
N (\/Eb, 5 ) dry. Then the probability of the event

[(—7‘1 <ry<ry)and (—r; <rg<rj)and --- and (—r; <rm < T1)|81(t)]

)

M
is given by [[,2, P [—r1 <r; < ri|s1(t)] where the random variables are Gaussian, zero-
mean (given that the transmitted signal is s1(t)), variance N and statistically indepen-
dent.

Therefore the probability becomes

%_1 %_1
[ 2
e 2<N0/2) dr; = {1 -2Q (7’1 ﬂ
\/7 /NO [Tl NO

Now 0 < r; < o0, i.e., we find the weighted sum of the above, weighted by the probability

of ri =ry:
Al ()]
1-2 1 >:| e No 1
TNo Jr=0 No

It would be useful to plot and compare the above error probability with that of orthogonal
modulation (such as M-FSK), either for the same number of signal points, or the same
dimensionality of the signal space.

Plsymbol error] =1 —

P8.20 (a) See Fig. 8.18.

(b) It can be seen from Fig. 8.18 that the USSB waveform does not have the desirable
property of constant envelope of BPSK signal. This is the price one has to pay for a
reduced (half) bandwidth of the USSB signal.

P8.21 One has to establish a bandwidth definition and also the error probability at which the
signalling techniques are compared. In the text (Section 8.7 and Fig. 8.26) the bandwidth W
is defined as the reciprocal of the symbol duration. Other possible definition that could have
been used are null-to-null bandwidth, 95% power bandwidth and so on. The error probability
used to determine the SNR is 1075,

(a) Using Eqn. (8.33), (TWb)FSK = ZIO%M, we have

o 2FSK: (1) = 2822 _ .
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(a) BPSK signal

0 1 1 0 1 0
V o .
0
-V
0 Th 2Th 3Th 4Tb 5Thb 6Th
t
(b) USSB-BPSK signal
0 1 1 0 1 0
V o .
0
_V - ,
0 Tb 2Th 3Th 4Tb 5Th 6Th
t
Figure 8.18

o 4FSK: () = 2loe22 _
And using Fig. 8.23 we have at P[symbol error] = 107°:
o 2.FSK: £+ = 12.6 dB.
0
o 4FSK: £t =10.2 dB.
0
(b) The coordinates for the plot are given below.

(i) For FSK, use Fig. 8.83 to determine % and Eqn. (8.83) for 7&. The results are:

w
M = 8 16 32 64
@102 = 51 45 42 3.5 (dB)
L£@10”" = 104 93 85 7.8 (dB)
(1%) = 0.75 0.5 0.3125 0.1875 (bits/sec/Hz)

(ii) For PSK, use Fig. 8.15 and Eqn. (8.39) for M = 64 to determine % Use Eqn.
(8.81) for 3. The results are:

M = 2 4 8 16 32 64
@107 = 44 53 84 13 18 227 (dB)
®@1077 = 1125 116 148 195 245 29.7 (dB)
(1%) = 1 2 3 4 5 6  (bits/sec/Hz)
(iii) For QAM, use Fig. 8.20 to determine f,g and use Eqn. (8.81) for {##. The results
are:
M = 4 16 64
@107 = 53 97 144 (dB)
£@10”" = 114 156 20 (dB)
(1%) = 2 4 6  (bits/sec/Hz)
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Ts — T W
The plots on power-bandwidth plane are shown in Fig. 8.19. Note that the points shift
toward Shannon’s capacity curve for a larger value of SER. This does not mean that it
is beneficial to increase the SER requirement. It merely says that one can approach the
Shannon’s curve easier by lowering the transmission reliability requirement. Shannon’s
work, however, promises to approach the curve with an arbitrarily low SER!

Note for QAM: W = L L :bgﬁﬁ@:logzM.

10

SER=107
R

rbNV (bits/s/Hz)
'_\

$ M=6a ~e-PSK [l
- = -QAM
0.1 I I I I _ ’1_ FSK ]
-10 -5 -1.60 5 10 15 20 25 30
SNR per bitEb/N0 (dB)

Figure 8.19

P8.22 (a) Invoking the sampling theorem we have 2W samples/sec.

(b) The answer in (a) means that in 7" seconds there are 2W7T independent time samples;
independent in the sense that they are all needed to represent the time signal.

(c) Any set of orthogonal functions are linearly independent in the usual mathematical
sense that there is no set of nonzero coefficients {c1, co,...,cn}, N being the number of
orthogonal functions such that fo:l ckdr(t) = 0. Each orthogonal function can provide
an independent sample. Since we need 2WT independent samples then it follows that
one needs 2WT orthogonal functions.

T .
(7 jerr g, ST ST)
SRECT(f) /g e dt=VT A fT

and in passband this becomes

vr [Sin(fr(f — fJT) | sin(m(f + fo)T)
2 TI'(f - fc)T ﬂ-(f + fc)T
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P8.23

(a)

From the sketch of the above function it is (or should be) readily seen that the null-to-
null bandwidth is W = % Hz. This means that WT = 2 and that 2WT =4, i.e., we can
fit 4 orthogonal time functions in this bandwidth.

Remark: The above derivation is very heuristic, it however agrees well with the sophis-
ticated mathematical analysis given by Landau, Pollack & Slepian. Their definition of
bandwidth is different; remember no time-limited signal can be bandlimited - the Gor-
dian knot of signal analysis. The achieved result however agrees very well with their
conclusions. Perhaps the moral is: one should not let sophisticated mathematics stand
in the way of good engineering. Always keep in mind math for engineers is a tool, albeit
a very important one.

To show that two time functions are orthogonal over an interval of T' seconds, one needs
to show that [,_, s1(t)s2(t)dt = 0. Since here we are dealing with sinusoids we can
dispense with the integration by recalling that an integer number of cycles of a sinusoid
in the time interval 7' means the area (or the integral of it) under it is zero. Recall
further the following trig identities:

1

cosTeosy = 3 [cos(z + y) + cos(z — y)]
1

sinzsiny = 3 [cos(z — y) — cos(z + y)]
1

cosxsiny = 5 [sin(x + y) — sin(x — y)]

i) = o) )~ () o o )

I (P N PR N s 0 O U N e
= 4 S1n T 2Sll’l 7TT 2Sll’l 7TT

The sinusoids have 1, (k+ 1), (k — 1) cycles, respectively, over T sec and therefore the
area under them is 0. Therefore ¢/ (¢) and ¢,(¢) are orthogonal.

Show ¢ (t) L ¢3(t)

o) (t)p5(t) = cos® (?) cos (27 f.t) sin (27 fot) = % [1 + cos <2T7Tt>] sin <27r§j>

1 k 1 kE+1 1 k—1
4{sin <27th>—i—2$in <27r ; t)+2sin <27r T t)}

Here there are k, (k+1), (k—1) cycles respectively over T sec = area = 0 = ¢/ (t) L ¢4(1).

Show ¢ (1) L ¢4(1)

& ()P (t) = cos (gf) sin (7;) cos (27 f.t) sin (2w ft) = %sin <2;t) sin (27r§t>

1 k—1 k+1
= 8{cos<27r T t>—cos<27r T t)}
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= (k—=1), (k+1) cycles over T = area = 0 = ¢ (t) L ¢}(¢).

Show ¢5(t) L ¢3(t)

&5 (t)p5(t) = sin (7;) cos (?) cos (27 f.t) sin (27 f.t)

Note this product is the same as ¢ (t)¢/(t). Therefore it follows that the area under
@h(t)ph(t) is zero over T sec and that ¢5(t) L ¢5(t).

Show ¢5(t) L ¢}(t)

oh(t)P4(t) = sin? (gf) cos (27 f.t) sin (27 f.t)
= [1 — cos? <%t>] cos (27 f.t) sin (27 f.t)
= cos (27 ft) sin (27 f.t) — cos? <7;) cos (27 fct) sin (2 f.t)

The area under the first term is 0 over T sec because as noted in the problem the two
carriers are orthogonal over T sec. The second term is the same as ¢ (t)¢5(t) and we
have shown that this area is zero. Therefore ¢(t) L ¢/(t).

Show ¢3(t) L ¢)(t)

o) = cos (T )sn () sin® e

= cos (?) sin (?) —cos (?) sin (?) cos® (27 f.t)

area=0 because p1(t) L p2(t) area=0, from ¢ (t) L ¢4 (t)

Therefore ¢4(t) L ¢)i(t).

Remark: Given n functions, one needs to check (n —1)! conditions to see that they form
an orthogonal set. Here n =4 and (n — 1)! = 3! = 6 conditions.

(b) Though one should find the normalizing factor for each basis function, we’ll determine
it for the 15 one and trust the gods (or intuition) it is the same for the other three.
Now

T

[ @oya = [
RO [

Therefore multiply each basis function by \/% = % to normalize.

!

cos? (?) cos? (2m f.t) dt

!

ERSE

(c) Let ¢;(t) = %gbg(t),i =1,2,3,4,—L <t < L. See Fig. 8.20.
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P8.24

(d)

(a)

——» b,

—lbObleQ b b4|+1b4|+2b4|+3b4|+4 o Demulti leXCI‘ —p b4i+1
ﬂ ’\ g P > b4i+2
L . > b,

4T, =T, =T input bit sequence

NRZ-L modulators

L=+/E,

,—10,12,...

Figure 8.20

The transmitted signal s(t) is given by

t) = £/ Eyi () £ /Eya(t) = /Epds(t) + /Eppa(t)

where it is ++/E if the bit is 1 and —+/E} if the bit is 0 (assumed).

The signal space is 4 dimensional, with basis functions ¢;(t), ¢ = 1,2,3,4. The sig-
nals lie on the vertices of a four-dimensional hypercube with coordinates ranging from

(—V'Ey, —/Ey, —/Ey, —/E}) to (+v/Ey, +v/Ey, +v/Ey, +v/E}) corresponding to bit pat-
terns (0000) to (1111) (assumlng that 0 — —/Ep, 1 < /Ep).

There are 16 signals, one on each vertex. The minimum distance between two signals
occurs when a pair differ in only one component and is equal to 2v/Ej.

Finally the number of nearest neighbors is 4. Note that in an n-dimensional hypercube
any vertex has n nearest vertices.

The generation of the sufficient statistics is the same for the symbol demodulator and for
the bit demodulator(s). See Fig. 8.21. The difference between the two is in the decision
rule.

The decision rule for the symbol demodulator is: determine which quadrant 71,72, 73,74
fall in and choose the signal (or bit pattern it represents) that lies in that quadrant.

For example, if (r; > 0,72 < 0,73 > 0,r4 > 0) choose signal (++/Ey, —v/Ep, +v/Ep, +v/Ep)
(or bit pattern 1011).
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t=KT,
a)

%
‘

@(t)

%
%

o ..
r(t) Decision Decision

210 r rule
BN

—
—
.
~
S

@)

%
%

Figure 8.21

For the bit demodulator the decision rule is:

ba;=1 byir1=1 bgito=1 byiy3=1
> > > >
71 = O, 9 = O, T3 = 0, T4 = 0.
bg;=0 bgi+1=0 b4i+2=0 bai+3=0

(b) Due to symmetry we have

P[symbol error] = P[symbol error|a specific signal]

= 1 — PJcorrect|a specific signal]

specific signal (+\/E,+\/E,+\/E ,+ Eb>]

= 1—-P [correct

P [correct

(+\/Eba+\/Eb7+\/Eba+ Eb)]
:P|:T120,7‘220,T320,7"420‘ <+\/Ea+\/ﬁba+\/Eb7+ Eb):|

Under the given conditions the random variables r; are Gaussian with mean +/FEj, vari-
ance Np/2, and statistically independent. The probability is therefore

00 (z— )2 4
L ) o B
V2m\/No/2 Jo No
2F !
P[symbol error] =1 — [1 -Q \/b)
No

2F
P[bit error for the bit demodulator] = @ < Nb>
0

4

Therefore

| S
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Note that the above result is just a special case of the more general result derived in
P8.18 for a hypercube constellation.

The bit error probability of the symbol demodulator is the same as that of the bit demod-
ulator. To see this consider bit by;, i.e., the one that corresponds to sufficient statistic r;.
A symbol error is caused by any one of r1,r9, 73,74 or any subset of them being of the
wrong sign. However bit by; would still be correct if r; is of the right polarity regardless

of what 79, 73,74 are. The probability of this is @ (\ / %)

The bit error probability of Q?PSK is the same as BPSK and QPSK/OQPSK/MSK.

P8.25 (a) Substituting in for the ¢;(¢)’s and collecting terms we have:

AVE D t t t t
s(t) = \/Tb { <b1 cos % + by sin 7;) cos (2 fet) + <b3 cos % + by sin 7;) sin (27rfct)}
The envelope is given by (ignoring the constant 2\/\F?):

1
2

(t) = | (b1 cos =% + bysin - " (byeos ™ - bsin ™)
e(t) = 1008 7 + basin 75 508 7+ bysin

Using the fact that cos? x + sin? x = 1 (always) and that b? = 1, one has

1 1
2 ort] 2
e(t) = |:2 + 2(b1b2 + b3b4) CcOs ﬂ% sin 7;:| = [2 + 2(b1b2 + b3b4) sin ;Tf:|

t 12
= 24 2(()162 + bgb4) sin L . (8.16)
2T,

Plot of e(t) for all three different combinations of b1bs + b3bs is shown in Fig. 8.22.

(b) Need bibg + bsby =0 = by = —%. Price paid is a reduction in the information rate.
Instead of 4 information bits transmitted every 7' seconds, there are only 3 information
bits transmitted now.

The coding scheme is represented by the following table:
Real Number Arithmetic H Bolean Algebra

ba bz by by || b2 b3 by | by
-1 -1 1 +1) 0 0 01
-1 -1 1 170 0 1] 0
-1 1 -1 -1 0 1 0| O
-1 1 1 +1) 0 1 1|1
1 -1 -1 -1 1 0 0| O
1 -1 1 41 1 0 1|1
1 1 -1 +144 1 1 0|1
1 1 1 1971 1 1] 0

Note that b; = 1 if there is an even number of ones, otherwise b = 0. The encoder can
be implemented by the following logic:

by = by ® b3 by

SOLUTIONS PAGE 829



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

b b,+bb,=0

e(t)

0 4Th 8Th 12Th

Figure 8.22

(c) Eight — one for each 3-bit allowable bit pattern.

dinin = [(2 Eb)2 + (2 Eb)QF — 2v2\/Ep.

(Note that signals closest together differ in 2 components).
(d) The block diagram is the same as that of P8.24(a). One difference could be that the
sufficient statistics for by (bs;) does not need to be generated. Only bits be, b3, by represent

information. The bit error probability is Q (w / %)

0

(e) Yes, it can be used for error detection. After demodulating the bits to 131,132,133,134,

determine if 31 = 132 @ 133 @ 54. If this is not true then an error has been made. Note that
the error could be on the “redundant” bit b;. If the relationship is satisfied then either
no errors are made or an undetectable number of errors have been made. You may wish
to convince yourself that an odd number errors (i.e., 1 or 3) are detectable while an even
number (2 or 4) are not.

P8.26 (a) Consider E {s;(t)s;(t+ 7)}, i # j. This, with a bit of creativity in notation, is:
cos cos 7T(t + T)
IDSRANE S E T R
k=—o00l=—00

But E{b;zb;;} =0 Vi, j;i # j. Therefore any two signals are uncorrelated.
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Ry (1) = E{si(t)si(t+7)} = i i E{blkb”}cos{%}cos{w}

k=—o00l=—00 4Tb
> > mt m(t+ T
R, (1) = Z Z E {bsibs;} cos {4Tb} cos {(ZITI,)}

k=—o00l=—00
But E{bi;by;} = E {bsibg;}, since both = 1 if k = [ and = 0 if k # [. Therefore the

two autocorrelations are the same.

Use the same argument to show that Ry, (7) = Rs, (7).
(¢) The PSD component due to si(t) (or s3(t)) is ﬁ|H(f)|2.

To find H(f), determine F {cos (%ﬁ)} and F {u(t + 2T}) — u(t — 2T})} which are
% o(f — 8—%}) +o(f+ 8—1%)] and ﬂ%%m, respectively.
Now convolve and simplify to obtain:

cos (47 fTy)

H(f) = — i Sl 7
(f) N anf Ty 2

For sa(t), h(t) = sin (%) [u(t + 2Tp) — u(t — 27T3)] and we now convolve
2% [5(f - 8—%}) +4(f+ ﬁ)} and %]%:fm. This gives

167Ty, T} cos (4 fTy)
H(f) = . 5 2
The overall PSD is
1+ 64(fTp)?
72Ty cos® (4 fT) + 64(/Th) 5 (watts/Hz).

(4 fT3)? - 5]

(d) Plot of the resultant PSD is shown in Fig. 8.23.
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Power spectral densisty (dB)
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_50,

-60
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Figure 8.23
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Chapter 9

Signaling Over Bandlimited Channels

P9.1 A bandwidth of 4 kHz in the passband (i.e., around f.) means that in baseband we have 2 kHz
of bandwidth. Since a bit rate of 9600 bit/second means that at minimum ﬁ = 2 = 4800 Hz
of bandwidth is needed to transmit with zero ISI, obviously an M-ary modulation is required
to reduce the bandwidth requirement. Since QAM has been specified as the modulation
paradigm, determine the number of bits a symbol needs to carry (or represent) to achieve not
only zero ISI but also a § > 0.5 (the roll-off factor spec.). Do this by trial and error: start
with A = 3, i.e., 3 bits/symbol. Then the symbol transmission rate is ry = %% =

3200 symbols/sec. Using the hint this means that the required bandwidth needed for zero ISI

is i = 5 = 1.6 kHz. Since we have 2 kHz this means that we have an excess of bandwidth

with the excess being 0.4 kHz. But is this enough to achieve a 3 > 0.5. Let’s check this
1+8  rs

T 0.4
=24+ 23=2kH = — =02 .
oT, 2+25 z= [ 16 0.25 < 0.5

Back to the drawing board. (An auxiliary question is: When the developer of the drawing
board made an error in the drawing board what did she go back to?)

Try A = 4. Now rg = @ = 2400 symbols/sec. Since % = 1.2 kHz we have 800 Hz (or 0.8
kHz) excess bandwidth = 1.2 kHz + 0.8 kHz = 2 kHz = = % = % > 0.5 so this spectrum
is satisfied, i.e., 16-QAM is the modulation to use.

Finally need to satisfy the bit error probability of 1076, To do this consider the 16-QAM
modulation as 2 4-ASK modulation, i.e., 2 bits on the inphase axis, 2 bits on the quadrature
axis. From Eqn. (8.27) we have

P[symbol error] = 2P[bit error] = 2 x 107°
And from Fig. 8.8, using the M = 4 curve, this means % ~ 14.5 dB or 10" = 28.2 so
Ep = 28.2 x 1078 joules. The average transmitted power is

by AE,
P = — =
av TS TS

=4 x28.2x 1078 x 2400 = 2.707 x 1073 (watts) = 2.707 (mW)  (9.1)

P9.2 First in “baseband” the channel looks like in Fig. 9.1, where h.(t) = hL(t)2cos(27 f.t);
fe = 1.8 kHz. We therefore have 1.5 kHz if bandwidth to play with.

(a) Now Ty = AT, or A = 22 = 3800 = 4 bits/symbol = 16-QAM.

Ts
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He(f)

f (kHz)
-1.5 kHz 0 1.5 kHz

Figure 9.1

This means that 2—%5 = %S = 1.2 kHz is the minimum bandwidth needed to achieve zero

ISI. But we have 1.5 kHz of bandwidth or an excess of 0.3 kHz. Therefore 8 can be
larger than 0. Utilizing the entire bandwidth, 3 is determined from:

1+ﬁ_E
oT, 2

(1+8)=12014+8)=15=3=0.25

(b) In “passband” the spectrum looks as in Fig. 9.2 (showing just the positive frequency
portion).

£
/ \ f (kH2)

0O 03 06 09 18 27 30 33

Figure 9.2

P9.3 With 75% excess bandwidth, then 3 = 0.75. Now,

Sr(f)|2 Ky |Sr(f)|2
Hp(f)| = 0 () = 22 280
e = e T K e

Assume Ky = K, and that Sg(f) is raised-cosine. Therefore

. NT. < 025
|1+acos(27rfTS)|%’ ‘f| - 2T
nTs 0.25
HR(f) — HT(f) — Ts cos [ 1.5 <|f|_2'1;s>} , % < ’f| < 1.75
|1+ cos (2mfTs)| 2 Ts — = 2T
0, f] > 57

Note that 1 4+ acos (2w fTs) for 0 < f < 12—:,7155 = & plots as in Fig. 9.3 (where it is assumed
that 0 < a < 1).
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1+a 1+acos(l.75m)

° % &

Figure 9.3

P9.4 (a)
Ho(f) =1+ 5 [ peTf0] 5 (1) o S(f)
Therefore

Y(f) = S()Ho(f) = S(f) + 5S(H)? 10 + 25 (fe 2T,

Now, multiplying S(f) by e/>7f% means a time shift of ty seconds in the time domain
(see Table 2.3 — Property 2). Therefore

o
—s
2
Remark: The fact that s(¢) is bandlimited to W Hz is necessary. Otherwise we could
not make use of the property. Why?

(b) The output of the matched filter, based on the hint is

(t+to) + 5 5(t — to)

yo(t) = /OO [S(A) + %S(A + o) + %S(A - tg)} s(t— (T — A))dA.

—00

And at t = kT:

[e.9]

yo(kT) = /OO s(V)s((k — 1T — A)dA + % / s\ — to)s((k — 1)T — \)dx

—00 —00

+% /_Z s+ t0)s((k — 1)T — A)dA

(c) If to = T, the above becomes

o0

yo(kT) = /OO s(V)s((k — 1)T — \)dA + ;‘/ s\ = T)s((k — 1)T — A)dA

—00 —00

+% /_Z sO - T)s((k — )T — A)dA

Change variables in the last two integrals to A — T — A and A + T — A, respectively.
Then

[e.9]

yo(kT) = /oo s(N)s((k — 1T — A)dA + ;‘/ s(\)s((k — 2)T — A)dA

—00 —00

+5 /_oos(/\)s(kT—)\)d)\
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Let z(t) = s(t) * s(t —T'). Then the above can also be written as:
yo(kT) = 2(kT) + Sa((k = VT) + Sa((k+1)T)

where the first term is the desired signal component, while the last two terms account
for ISI.

P9.5 (a) The sufficient statistic is
Ir:ry = +/Ep+0.25vEp + wy,

Op:ry, = —/E,£025VEy+ wy
—_— =~

due to IST N(O,%)

The decision space looks as shown in Fig. 9.4. By symmetry, we have

P[bit error] = %Q (%) 4 %Q <1-2]5V\0//E?>

1 9E,\ 1 25 I,
<) (/7

E &

N

-125/E, -0.75/E, 0  075/E, 1.25E,
< | >
0, L
Figure 9.4
(b) With no ISI, one has Pbit error] = @ ( Vﬁ%’). The two error probabilities are plotted
in Fig. 9.5. Observe that at the bit error probability of 1075 the difference in SNR is
about 2.2 dB.

P9.6 (a) Solve questions of this type graphically (usually), i.e., slide Sg(f) along the f axis until
the sum results in a constant level between —ﬁ to %Tb Hz. See Fig. 9.6.

(b) No. Spectrum would not be flat in 0 to 2—%} Hz.
(c) Excess bandwidth is 1 kHz.

P9.7 (a) To transmit with zero-ISI we need to find a signalling rate r, = 1/T}, bits/sec such that
in the frequency band —%2 = —ﬁ <f< ﬁ = 2 (Hz) the spectrum Sg(f) and its
aliases Sgp (f — T%,) and Sg (f + T%)) add up to a constant value. For the two spectra
given, the answers are (see Figs. 9.7 and 9.8):

rp, = 2 x 2000 = 4000 bits/sec = 4 kbps for (a)
ry, = 2 x 1500 = 3000 bits/sec = 3 kbps for (b)

Remark: One could also determine 2 from the frequency at which Sg(f) has the required
symmetry about 2 (which is?).
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— no ISI
- - -with ISI
g |
o
E
T ]
\
10_6 I I I L I I \\
0 2 4 6 8 10 12 14
E/N, (dB)
Figure 9.5
excess bandwidth first alias
f (H2)
-3 kHz -1kHz 0 1kHz 3kHz 4kHz
%T % =1, = 4000 bits/sec
b b
Figure 9.6
first dlias
1 — i
0.5 | A .
| Lt (kH2)
-3 -2 -1 0 1 / 3 \
i = ri =2 r, = i =4
2, 2 T,
Figure 9.7
PAGE 9-5
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1 first dlias

P2 AN
e A
.~ s
i A
i .~
S
..
..

f (kH2)

-3 0 T 3
1 i

e 1

2T, r, = T
Figure 9.8

(b) Clearly the excess bandwidths are

3000 — 2000 = 1000 Hz (or 50%) for (a)
3000 — 1500 = 1500 Hz (or 100%) for (b)

(c) See Fig. 9.9.

Raised-cosine; 5=0.5

f (kHz)

Figure 9.9

(d) The raised-cosine spectrum is preferred because its eye diagram is considerably more
open. The wide opening is desirable under synchronization error and additive white
Gaussian noise in order to minimize the effect of ISI. Note that the relative shapes of
the two eye diagrams are expected since the RC spectrum is smoother than the other
spectrum for the same bit rate and excess bandwidth.

P9.8 As mentioned on page 348, Sr(f) should have a certain symmetry about the ﬁ point.
Graphically, at least for Sg(f) functions that have zero phase, this symmetry can be checked
by checking to see if Sr(f) is: i) flat from 0 to some f; < 2—%%; ii) the portion from f; to

T%, — f1 has odd symmetry about the (27?1&’ %) point; iii) is zero for f > T%) — f1. Applying
this to the four spectra given:
i) Yes. Choose 5+ to be 28 Hz = r, = 2B bits/second.
2T, 3 3

ii) Yes. Choose 5= to be £ Hz = r, = B bits/second.
2T, 2
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(iii) Yes. Here ﬁ = % Hz = r, = 4B bits/second.

(iv) No. The required symmetry does not exist on the f axis.

P9.9 See Table 9.1.

Table 9.1
k= 0 1 2 3 4 5 6 7 8 9 10 11 12
b = 1 1 0 0 1 0 1 0 1 1 0 1
d = 0 1 0 0 0 1 1 0 0 1 0 0 1
Ve= -V 4V -V -V -V VvV VvV -V -V V -V -V V (ignore noise)
Y = 0 0o -2V =2V 0 2V 0 =2V 0 0 =2V 0
b = 1 1 0 0 1 0 1 0 1 1 0 1
P9.10 (a)
00 N-1
SEeD () = ST S(kT)8(t — KTy) = Y skd(t — KTy)
k=—o00 k=0
Therefore
S(sampled Z Sk/ 5(t — KTy)e 72 Ftdt = Z spe—i2n Ik T

From the sampling theorem, Section 4.11, pages 136-139, Eqn. (4.5) we know that

[e.9]

> sn(f-g) =i

k=—o00

Ignoring the aliases, i.e., considering only k = 0 term:

led _ o
g \ TbSSampe )(f) = Zévzol Tysie j2 f/’ch7 _ < f< 2Tb
r(f) =
0, otherw1se.
(b)
= il ,
sp(t) = F YSr(f)} = Tbsk/ lb o~ i2mfRTy i2mft f
k=0 ~a7,
N-1 L
= Tbsk/ b g2t ka)fdf
k=0 —37,
N-1

. 1 . 1
ej27r(t—ka)ﬁ - e—]QF(t—kJTb)fﬁ

[l
ol
i hg
=
2

j2m(t — kTp)
N-1  gin (le(t - k:Tb)>
= Sk} p=
— 7, (t = KT})
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P9.11 (a)

1 . .
57 12 fTy, _ —j2nfTy )
sr(t) = j2T / b<e - >ef2“ftdf
_1 27
2T},

After integration this becomes

T, sin (Tib(t + Tb)> sin <%b(t - Tb))
s t+T)  (t-Tp)

SR(t) =

Now sin (le(t + Tb)) = sin (Tib(t — Tb)) = —sin (;E—:) SO

T,  (wt\ [ -1 1) 21psin (:%f) 2 sin (%f)
< >{t+Tb t—Tb}_ T 2T 7w (:\?_
(#) -1

sg(t) decays as t% which is expected since Sgr(f) needs to be differentiated twice to
produce an impulse(s). Use the duality concept and the result of P2.41:
sp(kTy) =0at k=0,+2,£3,4+4,.... At k = %1, i.e., £T}, sp(£Tp) becomes 8. Using
L’Hospitale’s rule we have s(1p) = —1, s(—13) = +1.

(b) Ignoring any random noise: yr = Vi1 + Vix—1 Associate value Vi1 with bit bg. Vi1 is
due to bit bi_s and an ISI term, i.e., the interference comes not from the previous bit
but from the one before it. Since V3 = £V , there are three received levels, £2V and 0.

(¢) As a precoder form dy = by @ dj_». See Fig. 9.10
b T dy

\
A

Y

Delay 2 units

Figure 9.10

(d) 2.1 dB. Note that this is very similar to duobinary.
P9.12 (a) Using the result of P9.10, Eqn. P9.3,

Q(ej27rfTb+efj27rfTb)

7 [2 4 ) — 27, (1 + cos(2n/T3)
Sr(f) =19 = 2T3(1 + cos® wf Ty, — sin? 7w fT,) = 4Ty cos® 7 f Ty, —ﬁ <f< Q—%b
0, otherwise.

(b) It decays as t% Need to differentiate Sr(f) three times before an impulse(s) appears.
(¢) yx = Vik—1 + 2Vi + V11 (ignoring the random noise).
(d) There are five levels, =4V, £2V, 0.
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P9.13

(e)

To design the encoder, one wants a unique y; to correspond to bg. Note further that
there are 2 interfering terms which implies that dy = f(bg,dk—1,di—2). Given this let
us build a truth table of (bg,dg_1,dr—2) and the corresponding dj, so that a unique y
is produced. Finally let by = 0 correspond to the levels 0,4V and b; = 1 to the level
+2V.

by dip_1 dp_o = dy Y1 = Vi—o + 2V 1+ Vi
0 0 0 0 =-2—-1—-1=-4
0 0 1 1 =—-2414+1= 0
0 1 0 0 =4+2—-1—-1= 0
0 1 1 1 =424+14+1=+4
1 0 0 1 =—-2-1+1=-2
1 0 1 0 =-241—-1=-2
1 1 0 1 =42—-1+1=+42
1 1 1 0 =4+241-2=+42

Note that if yp_1 = £4V or 0 then by = 0 and if yp_; = £2V then by = 0. Therefore
the decision space looks as in Fig. 9.11:

| | | | | Vi
-4 | - 0 vl N

Figure 9.11

Note further that we are assuming, as usual, that the random noise sample wy, is Gaus-

sian, zero-mean and of variance o2, (watts).

To determine the SNR degradation, we need to determine <}7/—22) from Eqn. (9.37)
where |Sg(f)| = 4Ty cos? (7 fT;,). Therefore

V2 [Ny (%

() = PrT, O/ZTb ATy, cos®(m fTy)
o2 2 J_ 1
w max 2Tb

Note that cos?(m f1},) = 5[1+cos(2m fT})] and do the integration to get (Z—;) = gTTTOb.
ax

w/ m

2

Therefore the probability of error is @) ( I;R%b) (ignoring constant factors before the
Q(+) function(s)).
PrT,

Compared with the ideal binary case where Plerror] ~ @ (w/ NG ), we see that Pp

needs to be increased by a factor of 4 which implies an SNR degradation 10log;;4 = 6
dB.

(a) The Fourier transform of the sampled spectrum

geampled oy — T FA5(t+ Ty) + 26(t) — 8(t — Tp)}
= T {—eﬂ”fTb +2— e*jQ”fT”} = 2T}[1 — cos(2m fT})]
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The spectrum of the continuous time signal is

Ceas? _ ;2 < 1
Sulf) = 211 — cos™(m fT})] = 4Ty sin*(w fTy),  |f| < 575
0, otherwise.

(b) The spectrum of Sg(f) looks as in Fig. 9.12. Since it has a discontinuity, sr(t) decays
1
as T

4T,

_ 0
/o, Ja,
Figure 9.12

(c) Without random noise y, = —Vj—1 + 2V}, — Vi1 where V; = £V.

(d) The sampled output yr = —(£V) 4+ 2(£V) — (£V). Looking at all combinations s, =
—4V, =2V,0,+2V,+4V, i.e., there are 5 levels.

(e) To establish the coder’s table, note that there are 2 interfering terms which implies that
a coded bit should depend on 2 previous coded bits as well as the present information
bit, i.e., di = f(bg,dk—1,dg—2). Further we wish by = 0 and by, = 1 to be associated
with levels that are distinct. Let by = 0 correspond to the levels 0,£4V and b = 1
correspond to levels +2V'. Therefore

by drp1 dpo = di Yp-1= Vi o+ Vi1 + Vi
0 0 0 0 =—1-2—-1=-4
0 0 1 0 =-142-1= 0
0 1 0 1 =4+1-241= 0
0 1 1 1 =4+14+241=+4
1 0 0 1 =—-1-241=-2
1 0 1 1 =—14241=+2
1 1 0 0 =4+1-2-1=-2
1 1 1 0 =4+14+2—-1=+42
(f) Using Eqn. (9.39) we have

2
V2 No (7% PrT,
<> =PrT, ,/O/QTZ’ 2Ty [1 — cos(2r fT3)] df| = L2
o2 2 J_ o 2
w max 2Tb

so Plerror] ~ Q (, / ZTTI;") = a 6 dB degradation in SNR.

P9.14 See Fig. 9.13. The eye diagram with the duobinary signalling (left figure) is significantly
more open, reflecting the fact that its overall impulse response, sp(t), decays as 1/t?, while
that of P9.11 decays as 1/t.

SOLUTIONS PAGE 9-10
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VON

y(Nv

2.0

Figure 9.13: Eye diagrams with the duobinary modulation (left) and with the spectrum of
P9.11 (right). Note that for duobinary modulation the sampling times need to be delayed by

/2.

Eye Digram for P9.15 witRC = 0.21'b
Note that the eye is quite wide open

0.8

0.6

0.4r

y(t) (hormalized)
=

Sampling Time

0 0.2

P9.15 See Figs. 9.14, 9.15, 9.16.

1.2 14 16 1.8 2

Figure 9.14
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Eye Diagram For P9.15 wifRC = Tb

lF
0.8

0.6

0.4

0.2

y(t) (normalized)
o

Sampling Time

Figure 9.15

Eye Diagram For P9.1RC = 2Tb
Note that the eye is closed - very severe ISI

0.8

0.6

0.4

0.2

y(t) (normalized)
o

Sampling Time

1.2 1.4 1.6 1.8 2

Figure 9.16
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Chapter 10

Signaling Over Fading Channels

P10.1

P10.2

The two equations of interest are

1 1
Plerror|pask = §e_T3/NO + 5

)

where T}, is the threshold used in BASK and E = 2FE,, and

1
Plerror|grsk = ie_Eb/ZNO
When one chooses T}, = @ = —V22E’7 then Plerror|pask simplifies to:

1 1
Plerror|gask = §e_Eb/2N0 + 3

E, [E,
1o <21/N0,,/N0>

(10.1)

(10.2)

Since the first term in the above expression is Plerror|grsk, while the second term is always

positive for finite Ej/Np, it follows immediately that Plerror]gask > Plerror|grsk.

The plot of the normalized optimum threshold, namely T,Enormahzed) = \/T%b
2

is shown in Fig.

10.1. The plot shows that 7} > @ = \/%. This fact can be shown mathematically as

follows.

Start with Ty, = QNT%IO_I (eE/NO) where E = 2E,. Therefore

N, E 1
T, = 2\/%]0—1 <e2Eb/NO> _ 71? — ;! <62Eb/N0>
” (%)

T(normalized) T I(;l (e2Eb/No)

h B, 2B,
2 No

or

Now e?¢% = [y(z) + 23 22, Ix(z) cos(kf) and Ij(x) > 0 for all k > —1 and x > 0.

Therefore with 6 = 0 we have e¢* = Iy(z) + 2> poq Ix(z) > Ip(x), which also means

Iy ' (e®) > a, Vo > 0. Therefore T,Enormalized) > 1.



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

18

= = =
ol o ~

Normalized optimum threshold value
=
D

13
12
11
1 1 1 1
0 5 10 15 20
E/ N, (dB)
Figure 10.1

P10.3 The transmitted signal set and signal space are as follows:

1 : s(t) = VEcos(2nf.t)
Or : s(t)=0 (10.3)

0, 1, \/7
@.(t) = |—cos(27ft)
0 JE L

The received signal set and signal space is

17 : r(t) = VEacos(2nfet — ) + w(t)

Or : r(t)=0+w(t) (10.4)
0, 1, \/7
oo @)=, |=cos(2rrf .t - 6)
0 a\/E L

Since we assume «, 6 are estimated accurately for each transmission, we use # to set the basis
function ¢r(t) appropriately and « to set the threshold. The decision rule is

b o/E B,
r =2 — = o\ —
o 2 2

Ty
where By = £ and r = / r(t)pr(t)dt.
0
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Note that f(r|07) ~ N (0,22) and f(r|17) ~ N (ay/2Ep, &2). Conditioned on 6 and a, the

error probability is given by

Plerror|0,a] = Q (%) -0 (a %)

The error probability depends on the specific value o (but not on the specific value of ) that

the random variable a assumes during the a specific transmission. Now « takes on values
200 ,—a

from 0 to oo according to the Rayleigh pdf, fo(a) = Fe */oFu(a). To find the overall
oF

average error probability, average the conditional bit error probability over fq(a), i.e., find

Plerror] = /OOOQ (a ffZ) fala)da = ;/000 [1 —erf (a\/?l;)] fala)da

where we have substituted Q(z) = % [1 —erf (i)} It follows that

Perusing Gradstyn & Ryzhik we notice, page 649, Eqn. 6.287-1, that

2®(Br)e " dr = ———  [Re(s) > —Re(8?), Re(n) > 0]
/0 2u\/p + 52
where ®(z f “e " dt (G&R, p.930, Eqn. 8.250-1), i.e., ®(z) = erf(x).
Identifying 6 = 5\}’0 W= —1f, and substituting we get
/ 2
1 1 o Eb/2NO
Plerror] = 575 r (10.5)

\/1+ 0%Ep /2Ny

Interpreting o FEb as the received energy per bit and comparing with coherent BFSK (Eqn.
(10.80)) we see that coherent BASK’s performance is identical to that of coherent BFSK and
both are 3 dB less efficient than coherent BPSK (Eqn. (10.81)).

As aside, the following shows that J%Eb is indeed the average received energy per bit. During
any transmission the received energy is Egp(a) = 3(0) + 3(a’E) = a*(2E) = o?E,.
Therefore the average received energy per bit is

2

_ o
)\—0—2
F

O¢2 [e.o]
E{Eg(a)} = / {Qae °F } da 7=" U%Eb/ e\ = 0% E, (joules/bit).
0
—_——

Note that this is true for both BPSK and BFSK.
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P10.4 We use the approach developed in Section 10.3.3. The main difference is that not only is
the received phase, 8, random but so is the received amplitude which is scaled by . Eqn.
(10.42) which expresses the received signals over 2 bit intervals becomes:

+ /2 acos(2m fot — 0) [u(t) — u(t — 2Tp)] + w(t), “Or”

r(t) =
D7\ ey B cos(anst — 0) (u(t) —u(t — T0) — [ult ~T3) — ut ~ 2T} + wit), 5"

Rewrite this as

+./ % % np7cos(2mfet) + npgsin(2m fet)] [u(t) — u(t — 2Ty)] + w(t), “Or”
r(t) =4+ 2E" [np 1 cos(2m fet) + np g sin(27 fet)]

{[u(t) —u(t —Tp)] — [u(t — Ty) — u(t = 2Tp)]} + w(t), “1p”
where np; = acos @, npg = asin @ are statistically independent, zero-mean Gaussian ran-

2
. . . . . o
dom variables with identical variance TF

Again we need the 4 basis functions of Eqn. (10.43) to generate the sufficient statistics. These
are as in (10.44), (10.45), the difference being that rather than cos, sin @ we have a cos#,
asing, ie., ngr, npg.

The sufficient statistics are therefore

ri; =+2Enpr +wi g rir = —V2Enp + Wi g
O - ri.Q =V2Emnpg +wig OR rQ = —V2Emnpg +wig
oy =Wwarg royg=war
roQ = w20 \r27Q = W2
ri g =wirs (1‘1,1 =WiJ
1r: e =wie OR e =Wwie
roj = \/2—E—an,I +wor ro = —\/EHF,I + wWa s
r2,Q = V2Empq + w20 r2Q = —V2Empq + wa,q

Observe that, regardless of the case considered, ry r,r1 q,r2,T2 ¢ are statistically indepen-
dent Gaussian random variables. Consider the case of Or, i.e., f(r1, I,rl Q:72.1,72,0|07). In
this situation ry ; is a zero-mean Gaussian random variable of variance 02 Eyo? o+ ]\27 So is
ri . This is regardless of whether +v2E, or —/2E}, is considered. ry,Ta () are zero-mean

Gaussian random variables of variance o7 = NO

With 17 the situation is reversed, i.e., r1 7,119 ~ N(0,0%) and ra 1,129 ~ N(0,03).

The likelihood ratio test

flrun, g ran,raqllr) 1o 1

frir,r,Q,r2,1,7m2,0/07) o5

becomes 2 2 2 2 2 2 2 2
efr1,1/201efrl,Q/QUI677‘2,1/2‘72675,@/202 1p
21
2 2 2 2 2 2 2 2 <
e_rl,1/202e_Tl,Q/QUQQ_TQJ/Zol e_TQvQ/201 0n

Taking the natural logarithm, gathering terms and rearranging, the test simplifies to

1 1\ 11
(rir+730) <—U2+2> 2 (17 +77 ) < U+2>
2

01/ 0p 2 07
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Now 0% > 02 = —L + 2 > 0 = can cancel this function from both sides without affecting
the inequality relatlonshlp Therefore the decision rule becomes

1p
2 2 2 2
T30 120 02 it
D

The above makes intuitive sense. Since both the phase and the amplitude information is
destroyed by the fading channel the only way to distinguish as to whether a 1 or 0 was
transmitted is to look at whether there is more energy in the {¢2,1(t), $2.0(t)} plane or in the
{¢1,1(t), #1,0(t)} plane, which is what the above decision rule does.

The decision rule can be rewritten as

1p
2 2 2 2
\/7"2,1 +r30 2 \/7“1,1 +71 0
Op
which looks at the envelope of the received signal in the appropriate plane.

To obtain the error performance, the “energy form” of the decision rule is preferred. Also for
purposes of error performance the variables in the decision rule are considered to be random,

e., it is written as
1

% —r21+r2Q r11+r1Q =4
Due to symmetry the error probability can be written as
Plerror| = Plerror|0r] = P[€y > £1|07]

Under the condition that a zero is transmitted the random variable £y is Chi-square with
2 degrees of freedom and parameter o} while £; is also Chi-square, 2 degrees of freedom,

2
parameter ;.

Now fix £ at a specific value, say €1 = ¢1. Then

P[ - B 00 B 00 e—€2/20f e
eI‘I‘Of’OT,fl = 51] = /Zl fg2(€2|OT)dEQ = /gl 72F(1)0’%d€2 =€ 1
Sweep £; over all possible values, weighted, of course, by the probability of that value occur-
ring, i.e.,
Plerror|07] = /00 Plerror|0r, €1 = 01] fe, (41|07)dl; = /OO e_€1/2‘7%ﬂd€1
0 ’ ' 0 2T'(1)o3
1 1 1 1
— - Z—% = 14 Ebcr]%(-)i—/];fo/z 92 14 o‘FEb (10.6)

Comparison of (10.6) with the performances of coherent BFSK and coherent BPSK (Equns.
(10.80) and (10.81) in Section 10.4.3) is shown in Fig. 10.2. Observe that noncoherently-
demodulated DBPSK performs basically the same as coherently demodulated BFSK.
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10
¥
&
w0 ©o 2« ;
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2, o ®
= -3 =
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o X
[}
o o @
10 o ¥
% Coherently demodulated BFSK q
O Coherently demodulated BPSK
_s|/_2 Noncoherently demodulated DBP$K
10 T T T T Il Il

0 5 10 15 20 25 30 35
Received SNR per bit (dB)

Figure 10.2

P10.5 (a) The received signal is

Ip: ri(t) = \/EI’)\/TTI)OA]- cos(2mfct — 6;) + w(t)
Or: r;(t) = _\/Eé\/?baj cos(2m fot — 0;) + w(t)

where (j—1)T, <t < jTy, j=1,2,...,N.

Though the terminology is somewhat ambiguous, indeed one might say misleading, co-
herent demodulation means that not only the phase 6; is estimated perfectly (at least
perfectly enough for engineering purpose) but so is the attenuation factor o;.

With 6; known, a set of sufficient statistics is generated by projecting the received
signal(s) onto the N basis functions of ,/T%cos(%rfct —-05), (G-1T, <t < T,
j=1,2,...,N. They are:

17 r; = E{)O{j + W;
Op : rj = _\/El/;aj +w;
where j =1,2,...,N. The r;’s are i.i.d. Gaussian random variables of means £/ Epo;

and variance 02 = Ny/2. The LRT

f(Tlarza" . 7TN‘1T) 1>D
<
f(?“l,?"z, . ,TN‘OT) 0p

1
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becomes
Y, (A ) e (= v/Ejey)/20?
j=1 2o 1>D 1
Ny 1\ o (ri+/Eja;) /202 o
j=1 2wo

Taking the In and simplifying gives the following decision rule:

N 1

D
E Oéj’l“j Z 0.
j=1

Op

Remark: The above decision rule is actually known as the mazimum-ratio-combining
(MRC) detection rule. This is because the signal-to-noise ratio of the decision variable
is maximized (the proof is left as a further problem).

In developing the receiver, the a;’s were assumed to be known (i.e., perfectly estimated
at the receiver). To determine the error performance, however, we consider many, many
transmissions (typically > 10%) and the a;’s will take on a gamut of values, i.e., they are
considered to be random variables with a Rayleigh pdf.

Start the calculation of the error performance by observing that due to symmetry
Plerror| = Plerror|17] = Plerror|07]
and that

N
Plerror|0p] = P €= Zajrj > O‘OT
j=1

To evaluate the above, start by assuming the a;’s take on a specific set of values and
then average over all possible values. That is, let @ = (o, 0,...,ay) = @ =
(al, g, ... ,OzN). Then

N
Plerror|07, @ = @] =P |£= Zajrj > 007, o =@
j=1

Note that the quantities a;jrj = — /Eéajz +a;w; are statistically independent Gaussian
variables of mean —\/E,’)a? and variance oz?No /2. Therefore £ is a Gaussian random

variable whose mean is m = — /L Z;V: 1 ajz and variance o2 = % Z;V: 1 a?. Therefore,
1 o0
Plerror|07, @ = @] = / e~ (Hm)*/20% 40 — @ (@) =Q
2mo Jo o

But, as mentioned, the above error expression is for a specific set of o;’s and we view the
a;’s as random. Therefore the error expression should be averaged over all possible values
of the a;’s with a weighting provided by the joint pdf of the a;’s, i.e., fo(@). Though
this can be done, here we take a (slightly) different approach. Namely let 3 = Z;V: 1 a?

where fo,(a;) = %e_o‘?/ 7% u(ay) are the statistically independent Rayleigh random

variables. Now recognize that each a? can be represented as a sum of squares of two
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i.i.d. Gaussian random variables. As such, 3 is essentially a sum of squares of 2N i.i.d.
Gaussian random variables.

The pdf of 3 can be readily determined from Eqn. (10.90), i.e.,

1 g
fp(B) = mﬁj\] et/ Fu(B).
Therefore
Plerror] = P[error|0T]=/;00Q %Eoéﬁ f8(B)ds
o By 7
- a2N/ﬂ:0Q N vy T

. . El . :
By changing variables x = Wg (3, the above expression can be rewritten as
#N—1g—z/SNR

Plerror] = /OOOQ (\/ﬁ) mdx

/52
where SNR = Ej’v—? Now Q (V2z) = \/% fyoi\/ﬂ e~¥*/2dy and therefore

00 1 00 ) l,N—le—z/SNR
Plerror] = / {*/ eV /Qdy} v o odz
e=0 LV21 Jy=y2z SNR™ (N —1)!

The above integral essentially finds the volume under the 2-dimensional function (sur-
face) of g(z,vy) N-1o=2/SNRe—4*/2 i the region illustrated as in Fig.
10.3.

_ 1
= VZr(N-1)SNRN ¥

Y " Region for integration

Figure 10.3

The key to performing the integration is to change the order of integration, i.e., sweep
first w.r.t. « and then w.r.t. y as illustrated in Fig. 10.4.
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Y I Region for integration

2
y=+2x 0rx=y4

d sweeping first w.r.t. y from +/2x

to o and then w.r.t. to x from 0 to oo

sweeping first w.r.t. x from 0

to y*/2 and then w.r.t. to y from 0 to co

Figure 10.4

Therefore:

sN-1o—2/SNR 272
Plerror] = dz > e ¥ /4d
[ ] /y:() RV 271'/ 0 SNRN —1)! Y

Yy
2

Consider the inner integral / eN-le=2/ SNRdaﬁ, which looks like an incomplete Gamma
=0
function, and from G&R, page 317, Eqn. 3.381.1 with u =

-N

2
1
2,IJ:N,u:mweget

the integral to be (SNR) ¥ (N, m) where (-, ) is the incomplete Gamma function.

Therefore:

Plerror] = ——— — /OO iy (v, L V4
TN e Jn© T\ sk )Y

Using the relationship from G&R, page 940, Eqn. 8.352.1 with 1 +n = N, = = %
the incomplete Gamma function becomes:

y? 2 Nl y2k
N Yool Rm S
7< ’QSNR> S R kzo 2*SNRFAI

Therefore the error probability can be written as:

r

5 y2k:

Plerro d — 3+ 358R )Y S A— |
ferror] " Vor / Y \/271’/ SNRFK! ¥

0

B
Il

2
Now \/%7 fyoio eTdy = 3 (half the area of a zero-mean, unit variance Gaussian pdf) and

changing variables in the 2nd integral, A = %, simplifying, etc., we get

1 o0 1 SNR+1
Plerror] = — — )\k_ief( SNR ))‘d)\
[error] 2 2\/7?;:0 SNRkk!/,\ 0
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The integral looks now like a complete Gamma function and from G&R, page 317, Eqn.
3.381.4 with v — 1 = k — % =7 =Fk+ %, wo= Sgﬁgl we see that the integral is
—L T (k+ 1) where I'() is the complete Gamma function.

()

Now T (k+ 1) = ¥¥(2k — 1)!! (Notation: (2k — 1)1l = 1-3-5---(2k — 3) - (2k — 1)).
Using this relationship and after some algebra, one gets:

1 1% (26—

Plerror] =3 = 2 £ [12FSNRF (

SNR \Ftz
FRT1)

SNR SNR

+ 1
Define parameter 1 = /gyg 7 = SNR = 17 and (SNR+1> 7 = (uz)kJr? = 2kt

In terms of p, the error probability is
N-1

1 1= k=D (1—p2\" o0,
Plerror] = 375 Z ok ( 2 ) 1
k=0

k k
Now (1;§LQ> _ <PTM) (HTN> 2k2k 1. Therefore

N-1 k k
1 1 (2k — ! 1—p 1+ p
Plerror] = A7 E x ok < 5 > < 5 L

k=0

. 2k—1)!! 1.3-5---(2k—3)-(2k—1 2:4-6---(2k—2)-(2k
Write A1 — O o But 246+ (2k — 2) - (2k) =

okl = BEUN — BRL 1 (26 Bipally,

P[error]:;—;];i;:(i{{) (1;“>k<1;“>ku (10.7)

except we want to write it in the form of (P10.1)!

[\

We next show that (10.7) is indeed the same as (P10.1) by induction. This means that
we first confirm that (10.7) and (P10.1) are the same for N = 1 (quite obvious) and
assume that they also the same for N = L, i.e.,

S () (2 (BRI
10.8

Then we need to show that (10.7) and (P10.1) are indeed the same for N = L+ 1. This
is accomplished with the following manipulations:

[0 ) (5
RO 0 ) ()

SOLUTIONS PAGE 10-10

DN |

Ho




NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

L
Using the assumption of (10.8) this can be written as (where the term (1_7“) is factored

out):
1 L [L-1 m L
— 1 Z L—-1+m\ [(1+4+pu 121 1+p (10.9)
2 2\ m 2 2\ L 2 ) " '
Now
L-14m\  (L-1+m)!L+m L  (L+m)! L
m  mi(L-1)! L L+m  mlLl L+m

SESIETE
Therefore (10.9) becomes
() [ B )
2 = m 2 m 2
ey

z_:l m  (L+m\ (14 p\" k=m-1 Lz:_2 k+1 [L+k+1\ [1+p\"!
L+m\ m 2 N L+k+1\ k+1 2

3
]

m=0 k=-—1
& k1 [L4k+1 (14p)\
- ~L+k+1\ k+1 2

But

k+1 (L+k+1\  k+1 (L+k+1)! (L+k)! [(L+k
L+k+1\ k+1 ) L+k+1 Li(k+1)! LK  \ &k

Changing the dummy index k to m we get (10.10) in the following form:

(2 ECC £ ey

IR GICR

L
where the term %(Qf) (%) is added and subtracted.

Since, obviously

1+M m+1_ 1_{_”ml+'u _1 1_’_# m+'u 1_|_Ium
2 - 2 2 2/ 2 2 2 2
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(10.11) can be written as

(SO S o (5 -5 () (%)

)00

Gathering terms appropriately (10.13) becomes

() B LE 0 )]

which (finally) equals:

RG]

m=0
(¢) With approximations, (10.13) with L = N — 1 becomes
1\ (N—1+k 1 (2N -1\ 1
P | = 1* —_—
ferror] <4SNR> kzzo ( k ) Ly ( N ) SNRY

The error probability decreases as the Nth power of the signal-to-noise ratio. N is
usually called the diversity gain (or order) of the system. Note that this performance
behavior is the same as with noncoherent FSK. But there is a 3 dB saving in power but
at the expense of a more complicated receiver since the phase and attenuation need to
be estimated.

P10.6 To be added.

P10.7 (a) A constant does not vary very much, indeed not at all. Therefore its variance is equal to
0. Further the expected or average value of a constant is the constant itself'. Therefore
the amount of fading is AF = 0/constant = 0.

o0
(b) var{a?} = E{a’} — E*{a®}. F{a?} = 0% / oPe "7k da and after a change of vari-
£ Jo
o0

able this becomes 012;/0 Ae NN = 0%, E{a?} = éfooo afe=*/7Fda and with the
o0

same change of variable this becomes of / Me AN = 207 Therefore
0

AF = 2600 1,

(0%)?

(c) First find a general expression for E{a™} and then evaluate it for n = 4 and n = 2.

E{a"} = [ qt2m—lemma®/o® g
L(m)a®™ Jo

1For an anecdote about a totally absurd proof that the expected value of a constant is the constant, contact the
second author.
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Let A — ";02‘2. Then

mmo_n+2mf2

o tom—2 o n
E{a"} = A2 e Ma=—-T =
ta) L'(m)o2m (m2tZn=2) m/o Coede I'(m)mn/2 (m+ 2)
For n =2,
2 2 F(m)
Ela?) = -2 pm+1)=2"22 2
o =m0 = Taom =
For n =4,
4 4 4
n_o_ 7 _omtl _ a9
EF{a }_F(m)mQF(m+2)_ =0 +m

Therefore AF = % Note that when m = 1 the Nakagami distribution is Rayleigh and

as m — 00, it tends to a Gaussian pdf. Plots of the Nakagami-m pdf for various values
of m are shown in Fig. 10.5.

Normalized Nakagamin Distribution (With0'2=l)

3 :
—m=1 (Rayleigh
---m=2
2.57 ,‘\" o m=4 4
P S R Rt m=10
P
T
2r 1 ' :
f !
f '
28 . ¥ |
1 e
PO
1r s N .
P AL
A \3‘
’ 1 Y
0.5 i % 1
’ 1 \/‘
/,/ /'I ‘. \,\ ~
0 i e | N S~ 3 .
0 0.5 1 1.5 2 2.5 3
a
Figure 10.5

P10.8 (a) If the phase is 7 radians then the sign(s) of the transmitted signal is reversed, i.e., a bit
zero is represented by a signal pattern where the transmitted signal in the (k — 1)th bit
interval and kth bit interval are the same: either (—, —) or (4+,+). On the other hand,
for bit one the pattern is (+, —) or (—, +). In essence, nothing changes.

(b) Start by observing that we want dj, = dj_; if the present bit by, = 0 and dj, = djp_; if
b = 1. The truth table for dj, dg_1, by is

di—1 b, di,
0 (7 rad) 0 0 (m rad)
0 (7 rad) 1 0 (0°)
1 (0°) 0 1(0°)
1 (0°) 1 0 (m rad)
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From the truth table one sees (easily) that dy = di_1 @ bg. In block diagram form this
means

bk dk

[y
'

(]
N
J

T\

ey Delay
(T, second)

Remark: The above is what is discussed in Chapter 6, Section 6.6, differential modula-
tion, pages 251-252.

(c) Let ¢ (t) = T%) cos(27m f.t) be the orthogonal basis for the (kK — 1)th bit interval

and ¢()(t) = /2 cos(2r f.t) for the kth bit interval. Then the signal space plot of the

b

signal set of (10.40) becomes

@)
JE

-JE, r

It is identical (perhaps one should say isomorphic) to the signal space plot for Miller
modulation.

(d) Based on (b), consider the following coherent demodulation: first demodulation to dy
and then to by. The block diagram looks as follows:

1

kJT_b dr
r(t) 4>?_> ()dt—o ;—> 0
(k-DT, t= ka (ka[:)
2 Comparator Delay
\/T: cog(277f t) (T, seconds)
b

Inverse of mapping
at modulator

d,

A

Of course it is possible to demodulate by projecting r(t) onto {¢*=1(t),#*(t)} (the
signal space of bit di) and choosing the closest signal point. But this would require two
matched filters (or two correlators).
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(e) First, observe that Plerror] = Plerror|07]. Second, note that by, is in error if (i) dj_; is
in error and dj, is correct or (ii) if dj,_1 is correct and dj, is in error, i.e., if both dg, dj_;
are correct then Ek is correct and if both cfk, cik_l are incorrect then l;k is also correct
(who said “two wrongs do not make a right”).

Since the events czk_l, cik are statistically independent (remember noise is white and
Gaussian) and the 2 events (i), (ii) above are mutually exclusive, one has

) o)) o)

Plerror] = 2Q (\/W JNof2

Plots of the error performance for this phase uncertainty model and that of (10.48) are
shown in Fig. 10.6. Observe that coherent demodulation saves about 0.5 dB in Ej/N.

-1

10
107 E
—10°F E
o
3]
i
o 10—47 N
10° .
- --DBPSK Y
_g| L—— Coherently demodulated DBP$K \
10 T I I I Il \ Il
0 2 4 6 8 10 12 14
Eb/N0 (dB)
Figure 10.6

(f) CDDBPSK perhaps.
Remark: Because of the memory introduced by the differential mapping one can de-
termine a state diagram, a trellis and use Viterbi’s algorithm to perform a sequence
demodulation. Left as exercise or convince yourself that Fig. 6.19 is applicable here.

P10.9 (a) One possible relative phase change, A¢, mapping is as follows:

00 — A¢p=0 (radians)
™

11 — A¢p=nm
3 T
10 — A :—(or——>
¢ 2 2
(b) Since there is memory, let us assume an initial condition of 0 radians. Parse the sequence
into 2 bit sequences and determine the transmitted phase sequence.
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01 11 11 00 01 10 10

5 m 5 0 ... (transmitted phase)

s
0 2 2

0

initial condition

B
no

As can be seen and as expected, the absolute transmitted phase has no meaning. It is
the relative (or differential) phase that conveys the information.

(¢) The trellis looks as shown below, where the state is defined as the previous transmitted
phase. Note that the trellis is fully developed after one T interval.

State Output phase
d, (rad) ( Input 2 bit sequence

(K-DT, KT,

(d) Because of the memory of one symbol interval we shall look at the signal in the previous
symbol interval along with the present symbol interval. A signal in a symbol interval lies
in 2 dimensions, that of {\/sz cos(2m f.t), \/sz sin(2m fct)}, which means 4 dimensions
are needed to represent the signal over 2 symbol intervals. Along each dimension the
signal component takes on one of 2 possible value (£+/E}p). Therefore there are 2¢ = 16
possible signals lying in the 4-dimensional signal space. Each signal lies in one of the 16
quadrants, indeed each quadrant has only 1 signal lying in it.

Remark: More detail as to the actual signal points is provided in the next problem.

(e) Start by considering the following “truth table”, perhaps it is more appropriately called
a desired table.
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bro b1 di,Q di,1
Phase stays the same
0 0 = as the previous phase = d-1.@ i1
Phase changes Now how dj, g, di.; behave depends
0 1 - . = L ’
by +3 radians on the bit pattern d_1 g, dg—1,1
dr—10 dip—11
1 1 dp—1,0 dr—1,1
0 0 dp—1,0 di—1,1
1 0 dip—1,0 dr—11
0 1 dp—1,0 dr—1,1
1 0 N Phase changes Again change in dj g, dj,; depends
by —3F radians on the bit pattern dp_1.¢g, dr—1,1
dr—1,0 dip—1,1
1 1 dr-1,Q drp—1,1
0 0 dp—1,0 di—11
1 0 dp-1,0 dr—11
0 1 drp—1,0 di—1,1

Phase changes e —
L 1 R by +x radians = 1@ i
Remark: To see the above relationships between the {dy, g, dj 1} bits and the {dy_1.¢o, dk—1,1}
bits, especially for the 01, 10 bit patterns for by g,br ; you may wish to sketch a few

(I, Q) signal space diagrams.

Now to form the Boolean expressions. Let us first consider the inphase bit dj ;. The
formation shall not proceed by formal logic design procedures but more by intuition, in
other words by (hopefully) intelligent trial and error.

The first observation is that the pattern for the dj ; bit is similar for two subsets of the
bi,@,bi,r bit pattern, namely (00,11) and (01,10). So let us start with the expression
bi,o @ bg,r which would create a selector bit of 0 or 1, respectively for the two subsets.
Consider subset (00,11). Expression by g @ by shall be equal to 1 in this case. Note
that by r @ dip—1,r has as its output diy_1,;r when by ; = 0 and d_; ;r when by 1 = 1. So
AND this with by g ® by ; and the subset (00,11) is accounted for. Thus far we have
dr,; = (b, ® br,r) AND (bgr @ dg—1,1)-
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To account for the 2nd subset, OR the above expression with an expression to be deter-
mined for the 2nd subset. Since when the 2nd subset is relevant, the above expression
is 0, we can develop this expression independently.

To see what this expression is, consider the table below where just dj ; is considered and
the Boolean expressions (by g ® di—1,g) and (bg s ® dix—_1,1) are also shown.

beo brr di—1,Q die—11 d 1 bk @ di—1,9) (br,r ® di—1,0)
0 1 1 1 dp,; = dg—11 =0 1 0

0 0 dpg=dp11=1 0 1

1 0 dig =dg—17=0 1 0

1 1 dpr=dg17=1 0 1
1 0 1 1 dig=dg—17=1 0 1

0 0 dig =dg—17=0 1 0

1 0 dig=dg—15=1 0 1

0 1 dyr=dp—17=0 1 0

Note that both “track” the dj, ; bit, albeit one in a complementary fashion. Therefore
form the following Boolean expression for the 2nd subset: (by @by 1) AND (br,o © di—1,0)-
The final overall expression for the inphase bit is

die,r = (b, @® br,r) AND (bg,r @ di—1,1)] OR [(br, ® br,r) AND (b ® di—1,q)]

Remark: One could also use (by; @ dx—1,¢). Do it? Also convince yourself that (by 1 @
di—1,1) or (b ® dr—1,1) are not appropriate to be used. For the quadrature bit reason
as above, or use “symmetry”, or guess, to get

dk’Q = [(bkyQ & bk}]) AND (ka D dkfl,Q)] OR [(bk’Q & bk’[) AND (bk,[ D dkfl,Q)]

P10.10 (a) There are four basis functions, namely

2
Gr1(t) =4/ T cos (2 fct)

s (k—1)Ts<t<kTs

5 (present symbol interval)
ro(t) =4/ T sin(27 f.t)

S

and
Gr—1,1(t) = cos(2m fet)
(h—2)To<t<(k—1)T,
(previous symbol interval)

(JSk_l’Q (t) = Sin(271’fct)

ﬁ\wm
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(b) 2%, i.e., 16 possible bit patterns.
(c) 2* quadrants.

(d) Using Table 10.2 of P10.9
bp—s bp_o br_1 bi Previous phase Present phase

0 0 0 0 i

ii)

iii)

iv)

S E
Rt e

Since the present 2 bits are 00, the present phase is the same as the previous phase, i.e.,
does not change.

Wf—l,g (t) ¢lQ (t)
JE JE,
A1 (0) Q.0
-JE, 0 ’ -JE, 0 ’
Signal iii)
@ Q(t) aQ Q(l‘)
“VE, ~E,
Vs @, (0) VE, @,
0 0
Signal iv)
[/ 0 (t) 4 Q(l‘)
E ~JE, E,
0 VE, @1, (0) o JE, .0

Figure 10.7

To determine which quadrant(s) the signals fall in, the notation needs to be clarified
further. Let the components along a specific axis be £1 as implied and let the axes be
ordered as follows: (¢x—1,1, Pk—1,Q, Pk, 1> Pk,0). Then the quadrants in this notation are:

i) (+1,+1,+1,4+1) | or if we let 1111 | or in decimal, 15

i) (1, +1 1 +1) —1 < bit 0, +1 <> bit 1 0101 | taking the left 5
iii) (—1 —1) | then in binary 0000 | most bit as being 0
iv) (+1 1 +1 —1) | the quadrants are 1010 | the least significant 10

(e) The previous phase can still be any one of the 4 values, (F,2F, 2% TT) and since the

present 2 bits are 00, which means A¢ = 0, the present phase is also one of (7, %TW’ %r, %r)
as in (d).
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(f)
brp—3s br_o br_1 by Previous phase Present phase
0 0 0 1 1) % 57
i) i E
%11) ry T
iv) T X

Signal space
i)

@—1@(0 @,Q(t)
JE, JE,
B,y (1) @,
o JE -JE, 0
ii)
@—1,Q(t) ﬂ,Q(t)
JE
N0 B N0
-JE, 0 0
-
iii)
B @)
& G, () B
0 0
-5 -
. Bao®) Bt
iv)
JE
15 By (1) @, ®
0 0 JE,
N
Figure 10.8
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The signals fall in the following quadrants

Quadrant Binary Decimal
i) (+1,+1,-1,41) 1101 13
ii) (—1,+1,—1,—1) 0100 4
iii) (-1, -1, +1 —1) 0010 2
V) (41, —1.41,4+1) 1011 11

If the previous bits by_3bi_o are 01, 10, or 11 we still have the same set of signals. As

in (e), the previous phase can still be any of the 4 values and the present phase is a
‘relative” shift of 7 with respect to these 4 values.

Consider now

bp—3 bp_o br_1 bi Previous phase Present phase
0 0 11 i) s

i)
ii)
)

CoEr

v

SRS g
[ 3l
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Signal space

i)
@—1,9(0 @,Q(’)
VB
—_ E})
@1, (0) v @.(0)
0 JE, 0
i)
ﬂ—l,Q(t) @,Q(t)
JE,
Eb
B, () Vs @.(0)
5o 0
iii)
@—1,Q([) @‘Q(t)
VB
- E
JE, G140 @.(0
0 o V&
B
iv)
A0 Ao
N
Eb
JE @14 (0) @.(0)
0 -JE, 0
Figure 10.9
Quadrant Binary Decimal
i) (+1,41,-1,-1) 1100 12
i) (=1,+1,4+1,—-1) 0110 6
iii) (—-1,-1,+1,+1) 0011 3
iv) (+1,-1,—1,41) 1001 9
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When by_3bi_o are 01, 10, or 11, same argument as before, i.e., have the same signal

set.

Finally, consider

br—3z br_o br_1 by Previous
0 0 1 0 i

SR g

phase

Present phase
T

2l
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Signal space

i)
@—1,Q(t) @,Q(t)
JE,
Eb
A1, () VE, @, ()
0 JE, 0
~JE,
ii)
Bo10(0) Bo(0)
JE, JE,
1(0) /()
JE o "l o JE
iii)
B 0(0) @)
JE
— Eb
I A1, () @
0 -JE, 0
iv)
00 Bo(0)
E, -JE,
) A1, () VE @0
0 0

Figure 10.10

Binary Decimal

Quadrant
i) (+1,41,+1,-1) 1110
i) (-1, +1 +1,+1) 0111
111) (—1, 1 +1) 0001
iv) (+1, —1) 1000

14
7
1
8

Again by_3br_o = 01,10, 11 results in the same set of signal points for bx_1b; = 10.
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(g) To develop the demodulator, observe that the signal points lie as follows for the various
possibilities of by_1by,

br_1bg 00 01 11 10

15 13 12 14

5 4 6 7

Quadrant — 0 9 3 1
10 11 9 8

The observation is that they lie in disjoint quadrants (or disjoint quadrant subsets).
Therefore, to make a decision on the symbol b;_1b; decide which quadrant the received
signal lies in, more accurately which quadrant the sufficient statistics lie in, and choose
the bi_1br symbol that belongs to this quadrant.

The sufficient statistics are the projection of r(t) onto the basis functions ¢y (),
Pr-1,0(t), dr1(t), drq(t). The block diagram looks as follows:

(k1)1 PN
—H%)—> ()r——0
<k—'[m =k =17,
W{*l,] (t)
(=D Decide which
| Mi——o - q
421 t=(k-DT, quadrant 7;,, 7,
r(t) 900 sl fallin f—p bibi
; (-DT, X and choose
—>§>—> [ —— the symbol b,b,_,
*k-2)T, s
@.(0)
(k=D
(*)dt —gtr
% (k—'[m =T,
Bo()
Figure 10.11
Remarks:

(i) The above block diagram is a minimum-distance receiver, i.e., the signal point r(¢) is
closest to is chosen and the symbol b;b;_1 it corresponds to is decided on. Remember
we are in white Gaussian noise.

(ii) As an example quadrant 6 is chosen and symbol bibr_1 = 11 is decided on if
(r1,r <0) and (r1,o > 0) and (r2; > 0) and (r2 ¢ < 0).
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P10.11 From Problems 10.8 and 10.9 let us make the following observations:

(i)

(i)

(iii)

The received signal over two symbol intervals can be written as:

r(t) = £/ Eybr-1,1(t) £ VEbr-1,0(t) £ VEybi1(t) £ VEpbrgt) + w(t)

Therefore the sufficient statistics rys,r1 g, r2 7, T2, are of the form +VE, +w, ie.,
statistically independent Gaussian random variables of mean ++/E}, and variance Ny/2.
Note that Ej is readily interpreted as the transmitted energy per bit.

Because, as usual, the information bits b, are assumed to be equally probable and
statistically independent which leads to symmetry in the transmitted (and received)
signal space. We have

P[symbol error] = P[symbol error|b;b;_1 = 00]
Indeed we can refine this further as:
P[symbol error] = P[symbol error|a specific quadrant signal transmitted]

Let us choose as a specific quadrant signal the one that corresponds to quadrant 5, or
(=1,41,—1,41) or the signal —\/qubk_l,[(t)—i-\/ Eb(ﬁk_l’Q(t) —\/Eb(ﬁk’](t)—i-\/ Eb(f)k@(t).
A symbol error is made if r1 7,71,0,72,1,72,¢ fall in quadrants 1, 2, 3, 4, 6, 7, 8, 9, 11,
12, 13, 14.

Note that if ry 7,71,Q, 72,1, 72,0 fall in quadrants 0, 10, or 15, though an error is made in
the transmitted signal, a correct decision is still made on the transmitted information
bits bibr_1 = 00.

So one needs to calculate the volume under f(ry r,7r1.Q,72,1,72,Q|signal in quadrant 5) in
the quadrants in which a symbol error is made. This can be done (almost) by inspection.
Consider the volume in quadrant 2, i.e., quadrant (—1,—1,+1,—1). Note that there is
agreement in 2 of the components, in this case specifically 71 7,72 ¢ and disagreement
in 2 components, namely r1 ¢,71,7. The “contributions” to the volume when there are
agreement and disagreement are shown below:

reement

Disag/
/

0

Figure 10.12

Quantified mathematically,

2F
Agreement “contribution” = 1—Q< b)
No
2F
Disagreement “contribution” = Q( Nb>
0
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The volume in this quadrant is then a product of the four “contributions”, 1 agreement
and 3 disagreements in this case. The contribution of this quadrant volume to the total

volume is therefore [1 - Q (\ / 2Eb>} Q3 (\ / 2Eb>. Based on this reasoning, set up the

following table where the argument \/QTEOZ’ of the Q(-) function is understood.

’ Quadrant ‘ Decimal ‘ Error volume contribution
(—1,4+1,—1,+1) (5) (1-Q)Q?
(-1,-1, +1 —1) (2) (1-Q)@*
( a+1a 1) (4) (1 1 ) Q)SQ
(+1,— 1,+1 +1) (11) 1-Q)Q?
(+1,+1, —1,+1) (13) 1-Q)?°Q
(-1,-1,-1,+1) (1) (1-Q)9°Q
(— 1,+1 +1 +1) (7) 1-Q)3>Q
(+1,— —1) (8) (1-Q)Q°
(+1,+1 +1 —1) (14) 1-Q)Q?
(=1, —1,+1,+1) (3) (1-Q)%Q?
(— 1,+1 +1,—1) (6) (1-Q)%Q?
(+1, -1, -1, +1) | (9) (1-Q)e?
(+1,+1, —1,-1) (12) (1-Q)%Q?

The probability of symbol error is the sum of the above volumes, remember the events
are mutually exclusive. A little algebra yields

P[symbol error] = 4 [Q ( 253’) —20? (\/?%) +20° (\/?ib) o ( 2N]£Zb>
(10.14)

Remark: An error expression is given in “Telecommunication Systems Engineering”, W.
C. Lindsay & M. K. Simon, Doves, 1973, p. 246. The derivation is quite different.
Compare. Also the Viterbi algorithm can be applied here. Left as an exercise.

For comparison, the symbol error probability of coherently-demodulated QPSK is given

from Eqns. (7.39) and (7.40) in the text as:
2F ? 2F, 2F
P[symbol error] = 1 — [1 -Q (1 / Nob> =2Q <1/ Nob> Q? (1/ N0b> (10.15)

Fig. 10.13 shows plots of (10.14) and (10.15). Observe that coherently-demodulated
QPSK outperforms coherently-demodulated DQPSK over the whole range of Ey/Ny. At
high SNR (i.e., high Ej,/Ny), the difference in E}/Np to achieve the same symbol error
probability is quite small, about 0.2 dB only.
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10 =T

107 E
S10°% 4
(]
©
Qo
g
n 104 i
2 10

10°F E

- - -Coherently demodulated QPSK \
_s| _|—— Coherently demodulated DQP$K \
10 I I I T Il Il
0 2 4 6 8 10 12 14
EJ/N, (dB)

Figure 10.13

P10.12 (a) 16-QAM symbols are 4-bit sequences. Consider 2 contiguous symbols

B_7b-eb 5B | Besb-ob-D,
(k=DT, KT, T,=4T,

Arbitrarily, let by _1b; be the differentially encoded bits, which determine the transmitted
phase, i.e.,

br—1bx,
00 Transmitted phase = Previous xmitted phase
01 Transmitted phase = Previous xmitted phase +7/2
01 Transmitted phase = Previous xmitted phase +
01 Transmitted phase = Previous xmitted phase +37/2 (or —7/2)

(b) The remaining 2 bits, b,_3bi_o amplitude modulate the transmitted sinusoid by +A /2, +3A/2.

Write the transmitted sinusoid as 4 / T% cos(2m fet+ o) where @y, = w/4,3mw /4,57 /4, Tr /4
radians (yp is the relative phase as determined by bgbr_1). In the symbol interval
{(k —1)Ts, kTs} the transmitted signal lies in the signal space as follows:
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(1)

bits b,
ay, @, | O a1
©y, ©, | 00 a0
0° ©0)° [ ‘0o ‘o a0 = T£cos(27rfct)
Af s
[ ] [ ] 2 + [ ] [ ]
@y (o) 1) (11 @ (t) = T£sin(2ﬂfct)

Figure 10.14

Remark: Which quadrant the transmitted signal lies in depends on what the differential
encoding tells one.

(c) 64-QAM has 6-bit signals by_5bg_4bk_3bp_2bk_1br. Again we let by_1by be the differen-
tially encoded bits while the bits by_5b;_4br_3br_o amplitude modulate the transmitted
carrier by +A/2,+3A/2,+5A /2, +7A /2. Showing only one quadrant of the transmitted
signal space:

@ (1)
° ° ° e  Tomap thebits
bbb ab—

. o . o UseaGray code mapping
[ ] o [ J o

e

z 1 T [ ] [ J [ J [ J

o o a ()
2
@) = |= cos(27f )

@) = TE sin(2rrf t)

S

Figure 10.15

Again the transmitted signal space occupies all 4 quadrants. The signal points in the
other 3 quadrant are rotated version of the ones shown in the first quadrant. The bits

bi—5b—4bk_3b;_2 would amplitude modulate the carrier 4/ T% cos(2m fet + ¢ ), where @y,
is the differential phase determined by bg_1by.
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(d) To generalize to any square QAM, proceed as above. Simply take the first 2 bits and
differentially encode the phase. The remaining bits then amplitude modulate the carrier.

Out of curiosity which, if any, of the 16-QAM constellations in Fig. 8.17 lend themselves
to differentially encoding (against k7 /2 phase ambiguity)?

(e) Modulator:

%)
+= +=
b, PAM 2’ 2 .
modulator g
(27f t)
%3l NRZ-L
B-sBoBl b, > Differential B T J vy s
—» S/P Oy, deg 69_>
h<—1 R mapper 2 A
g < T, <J
dk—l,Q
B PAM
modulator { A 3A}
+= +=
2 2

Figure 10.16

Demodulator: The block diagram consists of 2 parts. One of these demodulates the
differential bits bipbr_1, and is that of P10.10(g) where one looks at the signal over 2
symbol intervals (k — 2)T5 to (k — 1)Ts. Decide which of the 16 quadrants the (4)
sufficient statistics fall in and then determine the differential bits bybj_1.

The second part demodulates the “amplitude bits”. It carves up the signal space of (b)
using a minimum-distance criterion (as we are in AWGN).

& —_decison

boundaries

i

[ ]
[ )
Nl
<~
[}

Figure 10.17
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P10.13

(a)

The received signal space has 4 basis functions, namely

¢1,1(t) = \/TTbCOS(%rflt)? (10.16)
$1,0(t) = \/Z sin(2m f1t); (10.17)
P2,1(t) = \/?b cos(2m fat); (10.18)
P2,(t) = \/TTb sin(2m fat). (10.19)
In terms of these basis functions the received signal can be written as
07 r(t) = VE161.1(t) + VEanpori(t) + VEmposrot) + wt),  (10.20)
17 v(t) = VE162,1(t) + VEanp oo, (t) + VEmpgeag(t) + w(t),  (10.21)

where the fading parameters np; = acos 0, nr g = asin 0 are statistically independent
Gaussian random variables, zero mean, variance 0% /2.

Project r(t) onto the 4 basis functions to obtain a set of sufficient statistics:

Or: r1= VE1+ VEmpr+ wig Ip: r1 = W11
ro = \/EHF,Q + w19 ro = W1,Q
ry = Wo | r3= Ei + VEmp;+ wag
ry = W2.Q ry = VEmpg + wagq

where w1 1, W1 g, Wa 1, Wa @, due to the AWGN, are the usual statistically independent,
zero-mean Gaussian random variables, variance o2 = N /2. Note that whether O or
17 the sufficient statistics rq,ro,rs3, ry are statistically independent Gaussian random
variables.

The LRT is therefore (as usual, bits are assumed equally probable):

e

s
Il
—

f(rillr) 4

>}

[

(10.22)

SAIV

f(xil0r)

—
=
=)
~

-
I
—

Ignoring the v/27 factor which cancels out top and bottom and letting o7 = EQO'% /2 +
No/2, the LRT is

7 r3 _(3—VED? rd
%efﬁ %ef 202 Uie 207 Uie 207 1>D
L ! =1 10.23
(r1—y/E1)? r3 r2 2o ( )
1o 207 1, 20721,551, 55 P
O'te t ot t o'e 2 oe 2
Canceling and taking In, we get:
[T)\2 2 2 2 1p .2 2 [T)\2
(r1 — VEL) rp r3 r; 2 15 (r3—VE) Ty
o} o; o of 5 0 o o} op
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P10.14(a-d)

Rewrite this as:

3 (3-VE)? 13 13 2} (i -VE)? 1} 1}
2T o2 T2 22 2T 9,2 g2 g2 (10.25)
o oy [ (o 0p o 2015 g g

After some algebra, namely consisting of completing the square by adding and subtract-
ing terms, the decision rule can be written as:

2 1
VE D VE
<r3 + ;) 412 2 (r% + —;> +r3 (10.26)

<
co; oy co;
— 1 1 2 2 2 VEL 2vE10>
where ¢ = = = > 0. Also note that co; = Ey0%/20° = w? T Thhel = m.

Therefore the decision rule can be written as

2

(3 4+m)? 41 (r3 +m) +r3.

SAIVS

The parameter m reflects the direct LOS path, which results in a “DC” received com-
ponent.

Though it is easy enough to find the characteristic functions of what should read x2
and y2, ic., E{e/**’} and E{e/Y’} where x ~ N (m,02) and y ~ N(0,02), and then
multiply the 2 characteristic functions, the difficulty is in finding the inverse transform.

Specifically,
o
j2wx2 1 w2 _le=m)?
D2 (w) =E{ej } = 5 e/ e” 27 dx
mo J
1 m?
T Vi 1o
and )
]_ elf‘gwch
Pow=—r——r0=>0,w) = —"—
() V1= j2wo? =() (1 - j2wo?)
o0 m2
1 e (1—j2wo?) .
. - —Jjwzq,
2 = o / 1—j2wo?)”
—00

Unfortunately, we are not able to perform this integration.

Well, if one fails in one approach, try another one. Consider random variable z =
/x2 + y? where x, y are statistically independent Gaussian random variables, common
variance, o2, and mean msy, my, respectively. First let us find the probability distribution
function F,(z) = P[z = x? + y? < z]. Graphically this is finding the probability that z
falls in the region indicated in Fig. 10.18.
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y
\ ,
0 X

Figure 10.18

This probability is

1 _(ﬁfﬁ—mx)2 _(y*my)z
5o e 202 e 22 dxdy (10.28)
zZ

Now change to polar coordinates: p? = 22 + y?; dady = pdpda; x = pcosa; y = psina
and region Z is 0 < p < z; 0 < a < 2.

/ fxy(z,y)dedy =
Z

z

mxpcosatmypsina (mi«km;)
271'0 2° “fe . e 27 pdpda
p=0a=
2
'mx+my) p(mx cos a+my sin a)
3 202 e o2 da| dp (10.29)
p=0 a=0

Write my cosa + mysina as |/m2 4 m2 cos (a — tan~! %) and recognize the inner
X

/m2 2
integral to be Iy (W’) Therefore

m2 m2 A
oty 2 [ pyfmErm?
Fo(z) = ——— ———— | dp (10.30)

3 pe 202 IO
g (o

p=0

But what is desired is the probability density function f,(z) = dF,(z)/dz. Differentiating
the expression for F,(z) with respect to z, (using Leibnitz rule), we get

5 (Pem2em?) zy/mi +m3
fz(2) - Iy | ———— | (of course it is =0 for z < 0) (10.31)

= —e 202
o2

which is (P10.10) with myx = m and my, = 0.
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(e) We have m? =
one has

Plots of op fz(2,) with op = 1 and various values of k are shown in Fig. 10.19. As k

K)O’F
(1+k)

less and less of a factor.

increases the pdf tends to a Gaussian pdf. This is expected since the fading becomes

Normalized Rician Distribution (with 0'2:=1)

and 02 = ﬁ Substituting and simplifying by letting z,, = z/oF,

oF fa(zn) = 22, (K + 1)e7(23’+1+%)(1+'€)10 (2zn k(1 + K,))

25 I
. —— k=0 (Rayleigh)
o k=1
I
2 I Vo e K=4
L K=16

1 1

h \

] [

15 ! '

! !

N 1~ \
Y— ; '

1 o 3

- N {

2 ~ N I
O S \\
SR
05 i N
1 VR
’ 1 VO
2 % SN
O = I N R o I
0 0.5 1 15 2 25 3
z
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Chapter 11

Advanced Modulation Techniques

P11.13

(a)

Because in general s;(t) and sa(t) are correlated, two orthornormal basis functions ¢ (t)
and ¢9(t) are required to completely represent them. Since the four signals y (), y2(t),
y3(t) and y4(t) are just linear combinations of s1(¢) and s5(t), they can also be represented
as linear combinations of ¢;(t) and ¢2(t). Thus the dimensionality of the four signals is
two. One possible set of orthornormal functions ¢ (¢) and ¢9(t) are given below (using
Gram—Schmidt procedure):

¢1(t) = Sl(t)l
Pa(t) = 752(&—#51(@ (11.1)

V1= p? 1— p?

First the two signature waveforms s;(t) and s2(¢) can be written in terms of the the
basis functions as follows:

{ Sl(t) = <Z>1(t) (11 2)
s2(t) = po1(t) + /1 — p?da(t) .

It follows that the four signals {y1(t),y2(t),y3(t), ya(t)} can be written as follows:

y1(t) +s1(t) + s2(t) (L+p)p1(t) + /1 — p>pa(t)

y2(t) = +s1(t) —s2(t) = (1—p)oi(t) — \/1 - p2¢z(t) (11.3)
ys(t) = —s1(t) +s2(t) = —(1—p)g1(t) + /1= p?pa(t) '
ya(t) —s1(t) = s2(t) = —(1+p)r(t) — /1= p?pa(t)

These four signals are plotted in Fig. 11.1-(a)

The joint optimum receiver for this CDMA system is a minimum distance receiver,
which jointly demodulate the transmitted bits of both user 1 and user 2 based on the
signal (y1(t), y2(t), y3(t) or ys4(t)) that is closest to r(t). The decision boundary and
the decision regions for this minimum distance receiver when p = 0.5 are shown in Fig.

11.1-(b). Note that for p = 0.5 one has y/1 — p? = 0.866.
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®(t)
J1-p?
t
Y3(t)/f () , ya(t)
-a+p) 1-p s
-@@-p) |0 P 1+p at)
Vs(t) & o 1)
- 1_p2
@
o,(t)
t
w2 A ® 3.0
15/ \51(/")/
/\0.5 0 05  100\15 g0
V(1) ® ~0.866 ® v,
(b)

Figure 11.1: Two-User CDMA: (a) Signal space plot for four possible received signals in the
absence of the background noise, (b) Decision regions of the jointly minimum distance receiver
when p = 0.5.
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Chapter 12

Synchronization

P12.1 The attenuation affects the received energy, £, which is now o2 Ej. From equations (12.1), (12.2)

with VEp, — av/ Ep.

BPSK: P[bit error] = @Q (a“QNEbcos 6’) ) (12.1)
0

QPSK: P[bit error] = 1Q (a @(COSQ — sin 9))
2 Ny
1 2E, .
= —_— . 12.
+2Q (a N, (0050+81n9)> (12.2)

P[bit error]
P[bit error]

0 5 10 0 5 10
E/N, (dB) E/N, (dB)

BPSK,0=20; a=[1:-0.02:0.8] (from left to right) BPSK,08=30; a=[1:-0.02:0.8] (from left to right

107 107
S S
o o
3 10" 3 10"
o o
10° 10° : :
0 5 0 5 10
E/N, (dB) E/N, (dB)
Figure 12.1
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QPSK,6=0°; 0=[1:-0.02:0.8] (from left to right) QPSK,8=10°; 0=[1:-0.02:0.8] (from left to right,

10° 10°
S S
Fa} @
510" 5 10"
o o
10° : ‘ 10° : ‘
0 5 10 0 5 10
E/N, (dB) E/N, (dB)

QPSK,0=20; a=[1:-0.02:0.8] (from left to right) QPSK,8=30; ai=[1:-0.02:0.8] (from left to right

P[bit error]
P[bit error]

0 5 10 0 5 10
E/N, (dB) E/N, (dB)

Figure 12.2

The Matlab plots allow one to make design judgements as to the margins needed for trans-
mitted power and phase locked loop performance based usually on worst-case scenarios.

Note that this is always somewhat of a subjective judgement. For instance — what error
probability does one choose to make the decision(s)?

P12.2 (a) Refer to Figure 12.3. Note that 21 =d — (i — 1)A where d = r cos(a + 0).

= % [(2i = 1)2 + (25 — 1)2] " cos <tan_1 (Z — i) + 9) —A(i—1)

xo+x1 = A= 39 =1iA — % [(2i — 12+ (25 — 1)2}1/2 cos (tan_l <2‘7_i> + 0>
Z_

Similarly, d; = rsin(a+0), yo =d; — (7 — 1)A.
1

cyp = % [(2i — 1)2 + (25 — 1)2]*sin (tan—l (2‘2:1) n 9> ~A@i—1)

Y1 =A—ys=jA— % [(2i = 1)* + (25 = 1)7] W sin (tanl <3Z : ;> i 6>

(b) The error probabilities are determined by finding a volume under a 2-dimensional Gaus-
sian pdf in the appropriate regions. Because the 2 Gaussian random variables (nr, ng if
you wish) are statistically independent (each of variance Ny/2 and a mean determined
by the signal point under consideration) the volume(s) are a product of 2 @-functions
and basically determined by inspection from the geometrical picture. Let 02 = Ny /2.
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Q (2j-12

tana'=—A2

@-93
A a1 (2] D)
(2i-03 A TOTE G

(j-DA r :%[(Zi ~2+ (2§ -]
0, !
A

(-5a (@2-97

Figure 12.3
@)

Yy

@ Y @

@D

Figure 12.4

Inner signals (refer to Figure 12.4)
Need to find the volumes under the 2-D Gaussian pdf in the 4 regions I, II,I1I,1V.

These are:
Volume I = Q <%) (12.3)
Volume II = [1 —Q (%) —Q (%)] Q (%) (12.4)
Volume I1] = Q (%) (12.5)
Volume IV = [1 —Q (%) —Q (%)] 0 (%) . (12.6)

The total volume is of course the sum, and therefore:
Piner[symbol error] = @ <%) +Q (?)
+[e(T)+e(P)]-a(5)-e(F)]- w2n
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Outer-vertical signals (refer to Figure 12.5)

O,
Yy
ol
X
()
Figure 12.5
Volume I = Q (%) (12.8)
Volume I = {1 -Q (%)] Q (%) (12.9)
Volume 111 = [1 —Q (%)] 0 (%) (12.10)
Pouter—v|[symbol error] = @ (%) + [Q (%) +Q (%)} [1 —Q (%)} (12.11)
Outer-horizonal signals (refer to Figure 12.6)
%
" @
@
Figure 12.6
Volume I = Q (%) (12.12)
Volume I] = [1 - Q (%)} Q (%) (12.13)
Volume IT1 = |1-Q (%)} Q (%) (12.14)
Puter—u[symbol error] = @ (%) + {Q <%> +Q (%)} [1 -Q <%)} (12.15)
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Corner signals (refer to Figure 12.7)

Y
o’
(@)
Figure 12.7
Volume I = Q(%) (12.16)
e 1= - 0(2)] (%) o

Peorner[symbol error] = @ (%) +Q (%2) [1 -Q (?)} (12.18)

(¢) Consider the (i, )th signal, i.e., the signal at [(2i — 1)%, (25 — 1)%]. Its energy is E;; =
A72(21' -1)2+ A72(2‘7' —1)? joules. (Note - phase rotation does not affect energy, therefore
ignore 0).

Ny Ng A
Ny =2M/2 Ng = 27e/?
B, = 4 ZZEZ]P&gnaI ij] ){: A +)\QQM — 9\
:;

(4 quadrants) i=1 j=1 &

oA

N; Ng

AQ
- _ZZ[ (20 —1)? T(zj - 1)2} (joules/symbol)
=1 j=1
A2 N Neo N; No
- DD @it )+ Y (4 -4+ 1) (12.19)
i=1 j=1 i=1 j=1
Now
- n(n+1)(2n+ 1)
> k= Zk2 .
k=1 6

After some algebra and by realizing that > _;_; 1 = n, we get

AZN;Ng

E. =
# 3M

[(AN? — 1) + (4N — 1)] (12.20)

But N;Ng = 20 2e)/2 = (2)\)1/2 _ L2

2A2 E 2A2
- Ey= IN2 4+ 9N2 —1) = E, = —° = ON? +2N2 —1
svar N 2NG — 1) = By = o0 = o0 (N 2N — 1)
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With square QAM, we have A\ = A\g = A\/2 = N? = (2)‘/4)2 ( )1/2 vM NQ

B - (4\/M—1> joules /bit (12.21)
S YWo TS ! ‘
1/2

or A = _SWML (12.22)

2 (4\/M— 1)

Remark: Can express A as a function of A and M only for square QAM.

(d) The expression for P[symbol error] is quite lengthy. To simplify it, at least notationally
note that the distances z1, xs, y1, y2 are functions of ¢, j which means the error probabil-
ities in (b) are functions of 4, j. So write Piyper|error] as Ppper[error, i, j], Pouter-v|error]
as Poyter-v]error, i, j], and so on. Then

only 1 quadrant

considered
4 Nr—1 NQ—].
P[symbol error] = M Z Z -Pinner [error, ia ]]
i=1 j=1
symbols are
equally probable
Ngo—-1
+ Z Pouter—\/[erroryi = ij]
j=1
Nr—1
+ Z Pouter-H[errora 1,] = NQ] + Pcorner[eI"I'OI",’i =Ny,j = NQ]} (1223)
i=1

e) Use the expression for A in terms of E;/Ny derived in (¢) and the general expression of
g
(d) to guide you in writing the Matlab program.

P12.3 (a) See Fig. 12.8.
(b)

Plerror] = ( —cos 9) (12.24)
Q

(\/ ) fo(6)do
2Eb 1 Ay, cos@
Q ( N COS 9) 72%[@(Am)e dé

— 2on /Q(,/cow) Am cosb g, (12.25)

There is no “closed-form” integration available. Therefore resort to numerical integra-
tion. Specifically, make use of the routine quadl in Matlab. Plots of P[bit error| for
different values of A, are shown in Fig. 12.9.

E{P[error]} =

SOLUTIONS PAGE 12-6
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1,®)

P[bit error]

Tikhonov Distribution

1.8‘ :
[ — N )
1.6*\ o 'Am=1 “
1 1
147‘] ----- A =10 !',
[ - -\ =20 L
12F i
El !
1F 3 v
1 '
i !
0.8r i A
v 1
o6 4
. v N
v B
v 3
04F 1 G
AL e
02p ' ~. SARE RN
— —= =T
LT T - S
0 = 1 <
0 pi 2% pi
6

No phase error

Hoon A =10
m
--N =20
m
0 6 8 10 12 14
Eb/No (dB)
Figure 12.9

Note that for A,,, = 0, i.e., the uniform pdf case, the performance breakdowns completely,
equivalent to flipping a coin to make a decision. This is expected since the phase (which
carries the information) is completely random.

SOLUTIONS
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P12.4 The demodulator looks like:

r(t)=+/E, \E cos(27zf t) +w(t) =T

r 1o
()t —"" v Z 0
0 0
ECOS(ZIT(f +4f)t)
T, ¢
Figure 12.10
Performing the integration one gets:
Sin(Qﬂ'AfTb) AfTb
=+ E 1 12.26
r Y oxArT, | 22t an] Y (12.26)

where

Ty
w = / \/TTCOS @Cr(fe+ Af)t)w(t)dt
b
0

is a Gaussian r.v., zero-mean and a variance that, strictly speaking, is not Ny/2. We shall
take it to be Ny/2 as a very good approximation.

Remark: The interested reader may wish to show that the variance, E{w?}, is given by

% [1 + %}. Since f, is on the order of 105 to 10° while T} on the order of 1073

to 1074, the second term is neglected.

Therefore the error probability is given by:

Pbit error] = Q (\ / 2}5{:’%) , (12.27)

where the approximation 1 + % ~ 1 is used for the signal part of r.

From the plot, take AfT, < 0.1 (at an error rate of ~ 107°). Then if Ty ~ 1073 = Af <
0.1(10%) = 102, i.e., 100Hz. So the oscillator specification would read 16Hz £100Hz. Need to
be quite accurate and stable. Note that as Tj becomes smaller (i.e., a higher bit rate ) the
allowable frequency deviation is larger.

SOLUTIONS PAGE 12-8
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AfTb:[0.0l:0.0Z:O.ZO] (curves are from left to right)

P[bit error]

6 I I !

6 8 10 12 14
E/N, (dB)

Figure 12.11

P12.5 The demodulator’s block diagram looks as shown in Fig. 12.12, where
fi= faif 1p.

fi = f1 if OT and

O e

()= E, | cos 2rft) +w ; w | B
b > \/T:COS( 2r(f,+0f)t) N e
b Op
t=T,
r
Jo ()t —"6——»
\/%cos( 2r( f2+Af)t)
Figure 12.12
PAGE 12-9
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The sufficient statistics ri,rsy are:

Ty
Op: r;= \/Ez%b /cos(27rf1t) cos (2m(f1 + Afi)t)dt
0

Ty
2
+\/;b0/cos @r(fi +Af)t) w(t)dt

_ sin(2n(fi+ AT sin (2mAfiT3)
= \/ETb 27T(f1 + Afl)Tb * \/Eb 27TAf1Tb

An easy assumption to make is to ignore the 1st term since f; >> 1, typically ~ 10% — 10°.
Therefore,

w1 (12.28)

sin (271’Af1Tb)
prg E—
VT AT,

On the other hand,

Ty
ro = \/E,;b /cos(27rf1t) cos (27 (fo + Afo)t)dt
0

Ty
;b cos (2m(fa + Afo)t) w(t)dt
sm 27‘(‘ f1 + fg + Afg)Tb) sin (27T(f2 — f1 + AfQ)Tb)
_\F T(fi + fo+ Af2)Th tVE 2w(fo— h+ AR,

(12.29)

Again the 1st term is easily ignored. To ignore the 2nd term is more problematical. Let
fa — fi = 1/Tp, the minimum separation for (noncoherent) orthogonality. Then the term
becomes /E ;lgfja% If AfoT, << 1, say < 0.1, then +/ b% < 0.09/E} and is
ignored in the plots. Therefore ro = wo.

Similarly for 17:

\/E;Sin (27T(f2 + f1+ Afl)Tb) n \/ESin (27r(f1 — fo+ Afl)Tb)
2r(fo+ f1 + AfH)T 2r(f1 — fa + Af1)T,
_ =sin (27A foT3) where again the double
r =V 2 A fo'Ty 2 frequency term is ignored

r =

+ w1 & wp

(12.30)
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The received signal space looks as follows:

r2
Jgi@égak )
mesz \\\ rl - r2
0D
\dl
0 3 .

Sin(27AfT,)

V& omiT,

Figure 12.13

The terms w1y, wo are zero-mean Gaussian random variables. However because of the fre-
quency offsets they are not of variance Ny/2 (see the solution to P12.4). Further they are
correlated because cos (27 (f1 + Af1)t), cos (27 (f2 + Af2)t) are not orthogonal. However, this
correlation is

sin (27T(f2 + f1 + Afg + Afl)Tb) sin (27T(f2 — f1 + AfQ — Afl)Tb)

2w (fa+ fr + Afa+ Af1)Ty 27 (fs— L+ Ao — ATy
n2m(Afy — A
~ 27Sr (12+((A];32 — Agl))zéb) (note that fo — f1 =~ ;})) (12.31)

And since it is reasonable to assume that Afs ~ Af; then the correlation is negligible and
ignored, i.e., wi,wo are treated as zero-mean statistically independent Gaussian random
variables of variance Ny/2.

Therefore

\ 1 dy 1 da
P[bit error] = 2@ (\/W) + 2@ (\/W) (12.32)

If we assume (which we do for the plots) that Afo ~ Afi ~ Af = dy = dy~d

. _ d _ Eb Sin(Qﬂ'AfTb)
P[bit error] = Q <\/W> =d (\/;O%AJCTI;> (12.33)

where d = E, Slgig?{ﬁ’ cos(45°). Plots are those of P12.4 except for a 3dB (loss) factor. See
Fig. 12.14.
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Aflsz AfZsz AT b:[0.01:0.02:0.20] (curves are from left to right)

10 \

107}
=10
S
o
E
a0

10°F

6 I I L I I I
10 0 2 4 6 8 10 12 14
E /N, (dB)
Figure 12.14
P12.6 The block diagram looks as follows:
ot Vv, (t) = t v, (t) =h(t) O t
(t) Phase (1) =g(w( ))> het) 5(t) =h(t) D g (¢()
detector

() = Kyeo [ Vo(A)dA
VCO  f—

Figure 12.15

Now (t) = 6(¢) — p(t) or ¥(t) + ¢(t) = 8(t).

dy(t) | de(t)  do(t)
T e dt

Bt 150 = Kqnoft) = Kueoh(t) » 601}

dﬁit) + Kyeoh(t) * g[(t)] = di(;).

SOLUTIONS
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P12.7 The impulse response of the loop filter of Figure 12.7(a) is h(t) = 0(¢). Therefore the differ-
ential equation becomes
do(t)

d
T + chog(l/ﬁ) = Aw or ﬁit) =Aw — chog(T/J)-

(a) The sawtooth characteristic looks as follows:

aw)
Vd
-2 0 2
/ﬂ 7 I Y
_Vd

Figure 12.16

The phase plane is
dy /dt

KycoVy tAw

>

: 37
2ir Y

=77

%
N

—KyeoVy HAW

- : stable operating point
o : unstable operating point

steady state error =

VCO “d

Figure 12.17

Remark: Vy/m can be called the gain of the phase detector.
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(b) The triangular characteristic looks as follows:

aw)

The phase plane is

A : stable operating point

steady state error = &Y, o : unstable operating point

Vi COVd

Figure 12.19

Remark: One feature of the above 2 characteristics is that their implementation is
accomplished by digital circuits. See Gardner, “Phaselock techniques”, for a discussion.

SOLUTIONS PAGE 12-14



NGUYEN & SHWEDYK A FIRST COURSE IN DIGITAL COMMUNICATIONS

P12.8 (a)

ity R
+ O—»— AN o+
Y, () =sing(t) cC=— %
Y N

Figure 12.20

Using i(t) = 0999 and KVL, we have

di
vin(t) = vo(t) + RCLUSt(t) (12.34)
Now (refer to Fig. 12.10b): 9(t) = (t) — @(t) and @ (t) = Kieep J* vo(A)dA.
_ . de(®) _ o) _ duo(t)
= (,O(t) - Q(t) - lb(t), dt - KloopUO(t)a dt2 - loop dr
_ode() _ 0@ dg() () _ () ()
e dt ae 7 odez2 o de? dt?
Therefore
dwg(t) _ RC d%p(t) 1 de(t) .
RO=g— T oot) = Koop 42 | Kigop dt siny(?)
RC d%y(t) 1 dy(t) . _ RC d%0(¢) 1 dé(¢)
Kooy A2 Fogy at VD= B0 T Ryt
Pot) 1Y) | Ky . d20() 1 do()
T Twe @ T ore W= Tg@ TRe @
The state variables are t(t) and t(t) = %gt). We can write the state equation(s) in two

different ways. The standard approach is to define z = 4 (t) and y = %(t)

+~ as the state
variables. Then the two state equations are:

dz _dy _

a a Y

d d2 1 dey(t Kioo

ﬁ—i—_iw_ 1 psinw(t):%[—y—KloopSinx]

dt  dt2  RC dt RC

One can then solve (numerically) the above two 1st order nonlinear differential equations
for state variables x,y (i.e., v, w) and plot the phase plane, namely w versus .
The other approach is to obtain directly a differential equation for 1/} with ¢ as the
independent variable and solve this numerically. Proceeding as in the text (see page
518) we get:

Ay 1 Kiepsing

dp ~ RC RC

Remark: For the state (or phase) plane we assumed that the forcing function 6(t) is
zero. Have only non-zero initial conditions.
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(c) The phase plane plots are shown in Fig. 12.21 for Koo, = 1/2 and Kigep = 2 and with
RC =1.

RC=1;K =1/2 RC=1;K =2
loop loop
4 T 4 T

Derivative of the phase errofp(@)/dt
Derivative of the phase errorp@)/dt

_4_ﬂ— i 6 i T _4_7T i 6 i -

Phase errol)(1) (radians) Phase errop(1) (radians)

Figure 12.21

P12.9 Use the Laplace transform to obtain the transfer function and then convert to the time domain
using the relationship between operators of s « E

i(t)

+
Vin(8) Vo(9)
1
sC
o 1T .-
Figure 12.22
Vo R+ 1+ sRC

Vi R+Ri+— 1+s(R+R)C
= (R1 + R)CsVy(s) + Vo(s) = RCsVin(s) + Vin(s)
d’Uo(t) dvin(t)

= (Ry + R)CT +vo(t) = RC 1

+ Vin (t)

As in P12.8, using the relationships: vin(t) = siney(t); ¢(t) = Kioop ft vo(N)dX; p(t) =
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0(t) — 1 (t) and observing that d”idi“t(t) = cos w(t)%gt) we get

d?(t) 14 RC cost(t) di(t) Kioop
dt? (R + R)C dt (R + R)C

d20(t) N 1 do(t)
dt2  (Ri+R)C dt

siny =

The state equations are obtained as follows. Let x = ¢ and y = %’ be the state variables.
Then the two state equations are:

dz _

a7

dy 14 RC cosx Kioop .

dy _ _ 12.35
dt Ri+R)C 7 (Ri+r)C" (12:35)

Or the differential equation for ¢ as a function of ¥ is

di/'}__l—FRCcosz/J_ Kigop  sina
dy  (Ri+R)C (R1+ R)C ¢ '

(12.36)

Remarks:
(i) As a quick (partial) check let R = 0 and Ry — R. Then equations (12.35), (12.36)
should agree with those of P12.8.
(ii) Ome can write the state equations (12.35) with a non-zero forcing function, if desired.

(iii) One can use numerical methods to solve the nonlinear 1st order differential equation
of (12.35) to obtain ¢, and plot ¢ versus 1. It seems preferable to solve (12.36) and
obtain 1 as a function of ¥. Why?
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The phase plane plots are shown in Fig. 12.23 for Koo, = 1/2 and Kjpep = 2 and with

R,C=RC =1

R C=RC=1;K,  =1/2
1 loop

4 :

Derivative of the phase errop@)/dt

Derivative of the phase errop@)/dt

—T

0
Phase erroy(1) (radians)

™

Figure 12.23

R1C:RC:1; K

=2

loop

0
Phase errofy(t) (radians)

™

Remarks: For the interested reader, generic Matlab codes to generate the phase plane plots

of P12.9 are given below.

t_range=[0:0.05:20];

d_phase_error=[-3.5:0.5:3.5, -107(-4),10"(-4)]1;

PLL=inline(’ [-0.5*(1+cos(y(2)))*y(1)-(2)*0.5%sin(y(2));y(1)]1’,’t’,’y’);

% Set R_1C=RC=1, parameter K_loop is entered in this expression

for i=1:length(d_phase_error);
if d_phase_error(i)<0
phase_error=pi;

else

phase_error=-pi;

end

ini_con=[d_phase_error (i) ,phase_error];
[T,Y]=0de45(PLL,t_range,ini_con);

x=Y(:,2);fx=Y(:,1);

figure(1);
if d_phase_error(i)<0
plot(x,fx,’k’,’linewidth’,0.5,’linestyle’,’--") ;hold on;
else
plot(x,fx,’k’,’linewidth’,0.5,’linestyle’,’~’) ;hold on;
end

end
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P12.10 The transfer function of the inverting (ideal) operational amplifier is

Vols)  Zss) R+ R .
B RCs )~

— 12.37
V) Zu() | R R 12:37)
Let a — 4= and Ry = R, we have the desired transfer function of H(s) = 1+%. The negative
sign is easily accounted for by inserting an unity-gain inverting amplifier.

P12.11 The question is what straight line to use. Let us use the simplest one. Choose its slope to be

that of sin at the origin, which is dfiizw = 1. Over the range (—7/6,7/6) the maximum

‘q/;:o

error occurs at m/6 and is 7/6 — sin(7/6) = 0.024 = % error = 0*(}264 x 100 = 4.5%.
P12.12 (a) ¢(s) = KOy (g): w(s) = O(s) — (s).
KioopH () KioopH (5)/s
o(s) = R 0(s) - pla)] = ple) = 1 g i 0(s) = T(3)0(s)
For the reader knowledgeable in control theory the above result follows immediately by
considering ¢(s) as the output of a (linear) unity feedback system with M as the
forward loop transfer function.
(b) W(s) =0O(s) — ¢(s) = O(s) = T(s)O(s) = [L = T(s)] O(s).
P12.13
Aw by Koo s
O8)=—+—; T(Rh=F——; 1 -T(8) = ———
(5) 52 + s’ () s + Kioop () s + Kioop
A 0 A A 0
U(s) = - + 0 == _ u + 0
8(5 + Kloop) s+ Kloop Kloops Kloop(s + Kloop) s+ Kloop
A
Y(t) = o (1 — e Kioont) () 4 Gpeoowty(1).
Kloop
The steady-state error is Kﬁ:p which agrees.

Matlab work to be done for ¢(0) = 7/4, —7/10; wg = 0.1,0.5.

For the plot of the transient response, write the error expression in terms of wy = KAI“’ and
oop

tn = Kioopt. Note that 0y = ¢(0), ¥(t) = wa(1 — e~ ™) +(0)e .

KloopH(S)/s

P12.14 From P12.12 we have ¥(s) = [1 — T'(s)] ©(s) where T'(s) = TR ()]s
oop

S 82

=1-"T(s) = =
() s+ KioopH(3) 8% 4+ Kioop(s + a)
52 Aw + sty sty + Aw
52 + Kloop(s + a) 52 B 52 + Kloop(s + a)

= lim s¥(s) = 0 = lim ¥(t) = steady-state error.
s—0 t—o0

L W(s) =

Result agrees with that of text - see discussion on page 517.
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P12.15 (a)
(b)
P12.16 (a)

From P12.9 we have

1
H(s) = R s+ R1C
Rl + RS+ (Rl-‘rR)C
R 1 1
T R+R “TRC"T (RIFRC
T(s) = K]OOPH(S) _ Kloop(s +a)
s+ KioopH(s)  s(s+b) + Kigop(s + a)
. Kloop(s + a)
52 + (Kloop + b)S + aKloop
s(s +b)
1-T =
(s) 5+ (Kioop + b)5 + aKjo0p
A
B(s) = s(s +b) Aw + sty
52 + (Kloop + b)S + aKloop s2
) (s 4+ b)(Aw + sbp) bAw
1 g = —
= om0 (5) 500 52 + (Kioop + b)s + aKioop  aKioop
R Aw
= the steady-stat .
Ri+ R Kooy (the steady-state error)
Compared to the Ist-order loop the steady state error is reduced by the factor Rﬁ =

However compared to the perfect integrator it is non-zero since the filter does not “real-
ize” the perfect integrator but only approximates it. This approximation becomes better
as R; increases relative to R (perfect when R; — o0). But practically Ry can only be
made so large otherwise the high gain amplifier used for compensation shall start giving
problems.

The phase detector output is:
[V sin (wet + 6(t)) + ny(t) coswet + ng(t) sinwct] K cos (wet + to(t))
Using the trigonometric identities

cos(x + y) + cos(x — y) sin(z + y) + sin(z — y)

COS X COSY = > and sinxcosy = 5
and ignoring the 2w, terms which are fairly easily filtered out, we get
KV . K K .
Vou(t) = —5-sin (6(1) — (1)) + 5 nr(t) cosip(t) — 5 mg(t)sin (1)

Define the noise term n’(t) = &n;(t) cosp(t) — Sng(t)sinp(t). The phase detector
output is vout(t) = KV

5 sin (¢(t)) + n’'(t) and the block diagram follows immediately.
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(¢) The output of the phase detector is vy(t) = Asint(t). The output of the loop filter or
input to the VCO is

vin(t) = Kh(t) * Asina(t) + Kh(t) * n'(t)

o(t) = / Uin(\)dA = d*(’;it) -

and  ¥(t) = 0(t) — o(t) = dcgit) _ diit) B dz(piit)

N d‘gf) +KA / h(t — A)sinp(A)dA = %(tt) - K / h(t — A)n(A)dA

The reasoning that n’(t) can be modeled as a Gaussian process, indeed as a “white”
Gaussian process can be found in “Principles of Coherent Communication” by A.J.
Viterbi (McGraw-Hill); section 2.7, pages 28-34.

P12.17 (a)

E{p(t)} =FE {/Kh()\) * n’(A)d)\} = K/Kh()\) «E{n'(\)}d\=0

since E{n’(\)} = 0. Remember that expectation is a linear operation, as in inte-
gration and convolution, so the operations can be interchanged. Further, F {1 (t)} =

—E{-9y()} = -E{e(t)} = 0.
(b) The block diagram relating ¢(t) to n'(¢) is

n'(t) + J“( )at Kh(t) P(t)
44— 69—» 0 —> : i)
(o U jw Ko #(ie)

Figure 12.24

The transfer function relating ¢ (jw) to n’(jw) is
KHGo)jo o | KHw)i
1+ AKH(jw)/jw ® 1+ AKH(jw)/jw
Obviously Sy(w) = Sp(w).
(b) Multiply the transfer function (top and bottom) by A

2
‘ Sy (w)  (watts/Hz).

W) = AKH(jw)/jw " ¢ () = L | AEH(W)/jw ? No
e T A1+ AKH(w) fjw) | "M T A2 T+ AKH(jw)/jw| 2
= LT = 5()
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where T'(jw) is the closed loop transfer function as seen by the following block diagram.

O ) 40)
—_— 9_> A Kht) —f [()at >
—A

Figure 12.25

o0

1
gfp = % Sy(w)dw = /S,/, )dw (using even property of a PSD)
NOBloop
= /2A2|T]w| dw— /|Tjw] dw == (watts).

P12.18 Raising the signal to the nth power (ignore noise) means
VB (8] = (VE) o

Of course it is desirable to raise it to the smallest possible power to get a (non-zero) constant
value, more specifically a (non-zero) constant positive real value for all k. It follows that
n=m.

P12.19 Again one wishes to create a (non-zero) constant positive real value for all &;. It follows that
n = LCM{k;}. Here LCM means the least common multiple. For example, for Fig. 12.26,
m = LCM{4, 8,12} = 24. (Taking C =3, k1 =4, ka =8, k3 =12).

P12.20 Every woman for herself here.
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