Sampling Theorem
Lecture Outline

* In this this, and the next few lecture, we will address the
subject of pulse code modulation, where an analog
source can be converted Into a dlgltal waveform via
sampllng guantization, and binary encoding.

"his lecture focuses on Ideal Sampling and the Sampling
neorem.

ne phenomenon of aliasing is explained in detail.

*In the next lecture, we will present two other sampling
techniques, which are natural and flat-topped sampling.



Pulse Code Modulation

» Sources are of two types; analog and digital. For an analog source, the input transducer is used to
convert the physical message generated by the source into a time-varying electrical signal called the
message signal (like the human voice). This is a continuous time continuous amplitude signal.

* An analog source can be converted into digital via sampling, quantization, and encoding. This process
Is called pulse code modulation

Pre-aliasing filter Digital (L-Levels) Binary
cgr?t'hijﬁil?;- Low-pass PCM signal
time message —>  fiter [ Sampler = Quantizer —== Encoder —== applied to
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»Sampler: If W is the highest frequency component in a signal, then the sampling rate required to
reconstruct the message from its samples should follow the Nyquist Rate where f, > 2W.

» The output of the sampler is a continuous amplitude discrete time signal.

» Quantizer: Converts the continuous amplitude samples x(kT) into discrete level samples X (kT5)
taken from a finite set of L possible values X = {X7, X5, ..., X }.

»Binary Encoder: Each quantized level is represented by » = log, L binary digits
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Sampling Techniques

* Sampling: is the process by which a continuous time continuous amplitude
signal is converted into a discrete time continuous amplitude signal.

There are three types of sampling:
* |deal sampling: To be presented in this lecture
* Natural sampling: To be discussed in the next lecture
* Flat-topped sampling (sample and hold): To be discussed in the next lecture.
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ldeal Sampling: The Periodic Train of Impulses
 Periodic Signals: A periodic signal g(t) is expanded in the complex Fourier series form as:

0.0)

* g(t) = an_oo C,e/m®t = J{g(t) = an_oo Cn 0(f —nfy)
Example: Consider the following train of impulses g(t) = Z::—oo 6(t —mT)

Solution: The Fourier coefficients are obtained by integrating over one period of g(t).

To/2

e C, = Lf_T ,9(t) e Inwotdr = = = fo ; Note that the sifting property has been used.
TO 0/ TO

* Therefore, the complex Fourier series of g(t) is
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Remark 1: Note that the signal is periodic in the
time domain and its Fourier transform is periodic
in the frequency domain.

Remark 2: This sequence will be found useful
when the sampling theorem is considered later in
this lecture. 4



ldeal Sampling

* ldeal Sampling: The message m(t), with Fourier transform M(f), which is band-limited to W
Hz, is multiplied by a periodic sequence of ideal impulses with period T, to produce the
sampled signal m¢(t).
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me() = ) m(kT,)8(t - kT,)
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ldeal Sampling

0.0)

cmg(8) = m(Dg(©) =m(t) £ St -mTe) = ¥ m(kT)8(t — KTy)
e Recall the Fourier transform pair: G(f) = J(g(t)) = Tl ®© o 8(f —nfy)

1 : . .
* Hence, m.(t) = m(t) T—Z,‘if:_oo e/"@ot- product of two functions in the time
0
domain.

* The Fourier transform of mg(t) is the convolution of M(f) and G(f)

0.0)

e My(f) = M(f) * G(f) = M(f) * = an_w 5(f — nf.)

S

M) =7 Y M(f-nf)

n=-—oo



Ideal Sampling: f¢ > 2W

1
Ms(f) =T_

> M(f - nf,)

n=-—oo

* Let M(f) be as given in the figure. When f¢ > 2W, M (f) will look like
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The Sampling Theorem

* A bandlimited signal with no frequency components above W Hz can be
recovered uniquely from its samples taken every T ; seconds provided that
fe = 2W,where f, = 1/T, is the sampling rate is samples/sec.

* The message m(t) can be recovered from m(t) using an ideal LPF with
bandwidth W.

* The Sampling frequency f, = 2W , is called the Nyquist rate. It represents
the minimum rate at which a signal must be sampled in order to
reconstruct it from its samples without distortion.

* When the sampling rate is less than the Nyquist rate, a distortion type of
noise called Aliasing results.



Sampling Theorem and Aliasing

e Let M(f) be the Fourier transform of the message m(t).
* When f, < 2W, M (f) will look like

/

Ms(f) =5 Yo MU —1f).

M (f\

—W
Ms(f) 1

iz

0 w

M —1s)

m(t)

—w T

LPF

y(t)

L

fs+W fS * +W

Y|

Y(f) = LP{M(f) + M(f — fs) + M(f + f5)}

Y() # = M()

S

- y(®) = —m(t)

0 W Ts 9



Sampling Theorem: Example f; > 2W
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Sampling Theorem and Aliasing : f; < 2W
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Output contains the message frequencies: 10, 20, 30
Hz. In addition to aliasing frequencies within message
bandwidth (45— 20) =25 and (45-30)= 15

y(t) = k{3cos2m(10)t+2cos2m(20)t+cos2m(30)t
+2cos2m(25)t + cos2m(15)t



Sampling Theorem and Aliasing : Example f; < 2W
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Natural Sampling
Lecture Outline

* Sampling: is the process by which a continuous time continuous amplitude
signal is converted into a discrete time continuous amplitude signal.

* There are three types of sampling: Ideal sampling, natural sampling, and
flat-topped sampling.

* |deal sampling, the sampling theorem, and the phenomenon of aliasing
were presented in the previous lecture.

* This lecture focuses on natural sampling and the sampling theorem.

* In the next lecture, we consider
* Flat-topped sampling (sample and hold).
* Time division multiplexing (TDM)



The Periodic Train of Rectangular Pulses: Fourier Series

 Example: Find the trigonometric Fourier series of the periodic rectangular signal defined
over one period T, as:

_|HA, /2 <t < 1/2
9(t) = {O, otherwise
* Solution: The FSis given as g(t) ~ ag + Ym=1(a, cosnwyt + b,, sinnwyt)
. aO=Tl _ngg(t) dt = ag = At/Ty; T/T, is called the duty cycle of the pulse train.
0
* b, = Efr/z g(t) sin(zﬂ t)dt = 0; g(t)is an even function of t
To *—7/2 To
e q =2 (%2 Zmn e Zmn — 24 Gin™™
an = f_T/Zg(t) cos( - t) dt = - J, '~ Acos( - t) dt = a, = —sin( I )
. an=0whenn=ﬁ,@,ﬁ, g(t)) A
T T T
* This is demonstrated on the next slide
~To/2 ~7/2 0 2 1,/2 T



The Periodic Train of Rectangular Pulses: Time and Frequency

The Fourier series of the pulse trainis: g(t) ~ay + ).,,-1(a,, cos2nnfyt)

The Fourier transform is : G(f) = agd(f) + z aT" [6(f —nfy) +6(f +nfy)]
n=1
g(t)
Example: g ———————————————
* fo=10Hz; T, =0.1 o
e Duty cycle — = 0.2
TO —0.25-
* a, = 0when:
. . & & & -0.75 -
- T ’ T ’ T o _LDDE;CI I}.IE I}.I4 I}.IG I}.IS
 n=25,10,15, ..
* Spectrallines at 5f,, 10f,, ... > |G(f)
vanish ay = At/T, as = ayp =0
20 nnt :i '
anzaﬂn(T_O) ol L | | Ll |
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Natural Sampling

* Natural Sampling: The message m(t), with Fourier transform M(f), which is band-limited to
W Hz, is multiplied by a periodic sequence of pulses with period T to produce the sampled
signal mg(t).

w W

+1 Frequency f; ) lm(t) M(f)
g% m(t) / \ .

T ms(t) = m(t)g(t)

0 0 0 0 »> m(t) ms(t)
T 2Ty 3T 4T, +1: ~m(£/
mg(t) = m(t) wheng(t)=1 | l—‘-m(t)
mg(t) = 0 when g(t) =0 0 0!l '0 ‘ 0
Next, we find M. (f) in terms of M(f) . | mit)™
and f; = 1/T; - it 4




Natural Sampling: f¢ > 2W
» mg(t) = m(t)g(t) = m(t){ao + Xp=1 a, cos2mnfst}
e m.(t) =m(t)g(t) = aom(t) + )1 a, m(t) cos 2nnf,t

*M(f) = aoM() + ) SEM(f = nfo) +M(f +nf)
n=
« When f > 2W, M (f) will look like fs—W=W=f; 22W
| LPF M,(f)
2/2M(f 2»\% { al/ZM(f-l_fsE aoM(f) \ A/ZM(f ]& /Z/ZM(f 2
—w fs fs+tW —w O wr-w s fo+w

mg (t) y(t) Y(f) = aOM(f) Message recovered
- LPF - without distortion
SoM{) y(t) = agm(t)

W 0 w : >




The Sampling Theorem

* A bandlimited signal with no frequency components above W Hz can be
recovered uniquely from its samples taken every T ; seconds provided that
fe = 2W,where f, = 1/T, is the sampling rate is samples/sec.

* The message m(t) can be recovered from m(t) using an ideal LPF with
bandwidth W.

 The Sampling frequency fs = 2W, is called the Nyquist rate. It represents the
minimum rate at which a signal must be sampled in order to reconstruct it
from its samples without distortion.

* When the sampling rate is less than the Nyquist rate, a distortion type of
noise called Aliasing results.



Natural Sampling: f¢ < 2W
* Let m(t) be the baseband signal with bandwidth W Hz. Assume that f, < 2W
* Need to find M, (f) and the filtered signal.

M) = agM(P) + Y M = nfo) + M +nf)] / \
n=—oo aOM(f)

W 0 W

V() = LP{agM(f) + S M(f = fo) + 2 M(F + £} fs—W<Ws>f, <2W

g—fil M+ £5)\ / Lm(f - A\
— i

—fo-w Ts  forw0 fo-w s fetW

m.(t) iy )T
B LPE _@_. Y(f) # agM(f) / W Distortion due to

y(t) = agm(t) aliasing is observed

W 0 |14



Natural Sampling Example: f, > 2W
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Flat-Topped Sampling

Lecture Outline

* This lecture continues the coverage of the techniques via which a
continuous message signal can be sampled, as part of a PCM system

* Sampling: is the process by which a continuous time continuous amplitude
signal is converted into a discrete time continuous amplitude signal.

* There are three types of sampling: Ideal sampling, natural sampling, and
flat-topped sampling.

* |deal sampling, natural sampling, the sampling theorem, and the
phenomenon of aliasing were presented in the previous two lectures.

* In this lecture, we address the following topics
* Flat-topped sampling (sample and hold).
* Time division multiplexing (TDM)



Flat-topped sampling (zero order hold sampling)

 The sample and hold circuit performs the task of sampling.

Sampling  Discharge  Holding The message m(t) is bandlimited to W Hz.

Switch Switch  Capacitor
o D 5 . o ° Thesample and hold circuit consists of two field effect
_J JD transistor (FET) switches and a capacitor.
m(t) C . * Thesampling switch is closed for a short duration by a short
Ver V;_ S T pulse applied to the gate G1 of the transistor. During this
period, the capacitor C is quickly charged up to a voltage equal
O 1 . 'e) to the instantaneous sample value of the incoming signal m(t) .
=  The sampling switch is opened ag_§ the capacitor C holds the
charge.
o ”’“;\g 20
T
T m(0 /f)f/{ N /
~ s — 7
Ve
T 1 T, ) Tc —pz_q— 0 ZTS wi > 1
Sampling frequency f; = 1/T = 15 < B




Flat-topped sampling (zero order hold sampling)

Sampling  Discharge Holding  The discharge switch is then closed by a pulse applied to its
b Switch s Switch  Capacitor gate G2 att=r1.
O—— I -+ O * Dueto this, the capacitor Cis discharged to zero volts.
m(e) - JD  The discharge switch is then opened and thus the capacitor
Y l __C ' has no voltage.
G1 o— —_ . . :
V * Hence the output of the sample and hold circuit consists of a
G2 S
sequence of flat topped samples
O ® O  http://technical123b.blogsnot.com/2016/11/pulse-amolitude-modulation-
— o pam.html
m(?)
VGl NT ) ms(t)
NS _ 1 1 1T
m0)_1 N
| Ts //
Ve

A
~

- T e 0 ZTJ \Q
N B B — T [«
Sampling frequency f; = 1/T . -



http://technical123b.blogspot.com/2016/11/pulse-amplitude-modulation-pam.html

Flat-topped sampling

* Let h(t) be a basic unit amplitude pulse
defined as:

.Mﬂ={10<t<a

0 otherwise
* In flat-topped sampling, the sampler
generates a sequence of equally spaced
rectangular pulses whose amplitudes are
proportional to the message signal m(t)
at the sampling times m(kTy).

* The sampled signal is represented as
ms(t) = 2% m(kTs)h(t — kTy)

: modeling

A
=

my(1)

)

zn\ii

W




g(t)

m(0)

2 m(kT,)8(t — kT)

m(Ts)

Flat-topped sampling: modeling
* The sampled signal is represented as m(t) = ).*°, m(kT,)h(t — kT )

 Using the identity, 6(t — kT) * h(t) = h(t — kT,)
* Multiplying both sides by m(kT ) we get, m(kT)8(t — kT,) = h(t) = m(kT,)h(t — kT,)
* Therefore, m.(t) can be expressed as: m¢(t) = h(t) * )., m(kT,)6(t — kT,)

» Taking the Fourier transform, and recognizing that the second term corresponds to an ideally
sampled sequence, we get

* M(f) = H(f) ;- 3% M(f — kf'5); where H(f) = Tsinc(f1)

4+ mQ2Ty)

h(t >
1 ( ) m(t) = Z m(kTs)h(t — KT )
my(2) N
Ts m(ZTs)
0 t 0 — m(0) )
h(t) — I
0 T, g

2T



Flat-topped sampling: spectrum and message recovery
* My(f) = H(P) - 2% M(f — kf); H(f) = tsinc(f7)

* Here, we observe that the spectrum of the flat-topped sampled signal corresponds to the
spectrum of the ideally sampled signal multiplied by the Fourier transform of the
rectangular pulse Tsinc(ft).

* When m.(t) is passed through a low pass filter with bandwidth W, the output is y(t)

Spectrum of the message Spectrum of the ideally sampled sequence
M(f+fs) M) M(f-fs)
M(f)
> 2W
mg(t) P y(®) ‘ \ ‘ I ‘ ‘ fs
W0 W 4 2, S WO W 2, -
Spectrum of the rectangular pulse Spectrum of the sample and hold signal

Ideal LPF

h<
G
=
\—/
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ﬂ
52
=
)
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~
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=
ISR
>
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~
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>
)
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=
~
—
Cn
“
o
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Flat-topped sampling: equalization

* The LPF filter output is ¥ (f) = —tsinc(fr)M(f).

* Notethat Y(f) +# kM(f) = Distortion.

* The distortion is due to the finite width 7 of the sampling pulse.

* When the message BW W <« 1/t, the distortion is negligible. As T increases, the

distortion becomes more pronounced.

* Even though the signal is sampled at a rate f; > 2W, a distortion is observed.

* A distortion-free signal can be obtained by using an equalizing filter whose transfer
function is the reciprocal of the Fourier transform of the unit pulse

m(t) .

“Mea = 70p

LPF

m(t) Here,
——— . f.>2W

* H(f) = Atsinc(f1)

Equalization implemented at the receiver



Flat-topped sampling: single tone example
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If the message is a single-
tone signal, no distortion
"~ effect is observed.
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Flat-topped sampling: multi-tone example
Example: Repeat the previous example with fs = 10 Hz; Duty cycle Ti = 0.5,7 = 0.5(T;) = 0.05
0

Now, let, m(t) = cos 2mt + cos 2n3t . M(f) = [6(f_1);5(f+1)] n [5(f—3);5(f+3)]

 The spectrum of the sampled signal is as shown in the figure below.
* The output of the LPFis y(t) = kqcos 2ntt + k,cos 23t + km(t)
* Amplitude distortion is observed

| LPF |
m(t) y(t)
H(f)M(f)
0.25 - o | 1
1 b [t B kq = tsinc((1)

04 M — H _ZM —k - 1 | ““"'n 1 — ‘tsmc( ’l')

owi M) =HDT ) MU ~kf) ] A v

0.15 i ! : e

| I .
0.10 - I [
— : : .
0.05 - | : HHH
0.00 A R Y I T 1
3 1 1 3 el

C005 fomm—==m=TT T




Time Division Multiplexing (TDM)
e Time Division Multiplexing (TDM): A techniqgue which allows multiple users to use the same channel
by assigning each user a portion of the transmission time without interfering with other users.

e Let N be the number of sources. The time axis is divided into N slots and each slot is allocated to a
source.
e Each source transmits only during its slot, avoiding the possibility of a collision.

e When a user transmits during its slot, it utilizes the entire B.W. of the channel and this B.W. will be
made available to the next user during the succeeding time slot.

e The collection of the N slots is called a
e TDMA requires some form of synchronization.
e The number of signal samples transmitted per second should be larger than the Nyquist rate.
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Pulse Communication Pulse
'—» LLPF ——>» 2

— — Data
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Time Division Multiplexing: Example

mq(t) = cos2nt m,(t) = sin2mnt f® =30 fmi=fm =1
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Uniform Quantization
Lecture QOutline

* Quantization is defined as the process of converting the continuous
amplitude sample x(kT;) of a message signal x(t) into a discrete amplitude
X taken from a finite and countable set of L possible values.

* In this lecture
* We introduce the concept of quantization.
Define the uniform quantizer
Derive the average quantization noise of the uniform quantizer.
Find the signal to quantization noise ratio.
Present a number of illustrative examples



Pulse Code Modulation: Overview

e Sources are of two types: analog and digital.

« An analog source can be converted into digital via sampling, quantization, and binary encoding. This
process Is called pulse code modulation

Pre-aliasing filter Digital (M-Levels) Binary
ngﬁ;ﬁiﬁ;_ Low-pass PCM signal
time message —>1  filter ——= Sampler —== Quantizer —== Encoder —> applied to
signal channel input

kT. N C — [110101011000011 110 1
. x( S) X {xl,xz, "'le} [—l—ﬂ_ﬂ ﬂ H— —H—H ﬂ .
/\_ﬁ f o0 o O,
»Sampler: If W is the highest frequency component in a signal, then the sampling rate required to
reconstruct the message from its samples should follow the Nyquist rate where f¢ > 2W.

» Three types of sampling were discussed in previous lectures; ideal, natural, and flat-topped.
» The output of the sampler is a continuous amplitude discrete time signal.

» Quantizer: Converts the continuous amplitude samples x(kT) into discrete level samples X (kT5)
taken from a finite set of L possible values X = {X7,%5, ..., X }.

»Binary Encoder: Each quantized level is represented by » = log, L binary digits



Quantization: Basic Definitions
Quantization: is defined as the process of converting the continuous amplitude sample x(kTy)
of a message signal into a discrete amplitude X (kT) taken from a finite and countable set of L
possible values X = {x7, x5, ..., X }.

* The dynamic range of the quantizer is the range of values for which the quatizer is designed,
Xmin <x< Xmax

* This range is partitioned into L intervals such that if x(kT;) € R;, the quantizer output will be a
level X; = {X1,X3,..., X}

* The gauntizer output is called a representation or reconstruction level
* The boundary points separating adjacent regions are called decision or threshold levels.

* The spacing between representation levels is called the step size (A)

{ } T & i &
X = 1X1,X2, ..., X], X X X Y
x(kT,) . ; : it e R
— Quantizer —— Xmin \ v ) \ """ / /mm' X
) X —X_.
_ max min . .
Xmin < X < Xmax Step size A= 7 Quantization threshold



The Uniform Quantizer: Input-Output Characteristic

* A quantizer is called uniform when the L regions are of equal length A and the spacing
between representation levels is uniform and equals to A.

* The input-output characteristic of a uniform quantizer (midrise type) is shown below for L=8.

If the dynamic range of the quantizer varies between x,,,;,, < X < X0y, then A = Tmax”Tmin

L
* When the spacing between the adjacent levels Joutput, £=0(x)
is made small, X(kT,) can be made practically 7
distineuishable f LT 3-Bit (8-level) )
indistinguishable from x(kTy). Uniform 2 4.
* There is always a loss of information associated  Quantizer ”
with the quantization process. Therefore, it is :
not possible to completely recover the o %'_1 o L
sampled signal from the quantized signal. o U
x(kT,) y = (5.5 T} | s
—| Quantizer —— 2 (Quantization Error:
42 d=(x-%)=(x-0(x))
e - (x - y)- _T.'L



Example: the one-bit quantizer

* Example: The signal x(t) = cos(2mt) is uniformly sampled at a rate of 20 samples
per second. The samples are applied to a sign detector, whose input-output

characteristic is defined as: 0.5 |
-1
0.5, 0<<x<1 >
y(t)_{—o.s, -1<x<0 \ os P

* The next figures depict the input samples to the sign detector, the quantized output,
and the quantization error definedas e = (x — y).

1—-(-1
* Here, A = ( )=1; -
x(kTy) y = {X1, %2}
— Quantizer —
t= 0 0.0500 0.1000 0.1500 0.2000 0.2500
x(t)=1.0000 0.9511 0.8090 0.5878 0.3090 0.0000
y= 0.5 0.5 0.5 0.5 0.5 0.5 N
e= 0.5 0.4511 0.3090 0.0878 -0.191 -0.5 x;=-0.5 Xx3;=0.5
Notethat —-<e<2=-0.5<e<0.5 0 t
| 1 >
- + X
1 A O 1



« Example: The signal x(t) = cos(2mt) is uniformly

Quantization: the one-bit quantizer

sampled at a rate of 20 samples per second. e wEsempeasgal . ]
08| a s | a a |
* The samples are applied to a sign detector.
* Binary digits are assigned to the quantizer output. = B - R
t= 0 0.0500 0.1000 0.1500 0.2000 0.2500 se20 oeashpirnnL 0751
x(t) =1.0000 0.9511 0.8090 0.5878 0.3090 0.0000 s . vptprlpn T
y= 05 0.5 0.5 0.5 0.5 15110 A Y N A S B
e= 0.5 0.4511 0.3090 0.0878 -0.191 -0.5 I R
A A 0 0.1 0.2 0.3 04 9.5 0.6 0.7 0.8 0.9 1
Note that —E<e<§=>—0.5<e<0.5 Jie
R SRR U ST NANSSRRRRAE NONUUU SOOI S S J ?-Qual?ﬂizer Outfput[
I {1 S Y A S A
o o8 111211 ——
S
= Q
3 1
N :
W 04
G A n | |
) ——<e<-=>-05<e<05 ] L
‘ 2 ‘ 0 0.1 0.2 0.3 0.4 TE).S 0.6 0.7 0.8 0.9 1

Time



Quantization: the two-bit quantizer

* Example: The signal x(t) = cos(2mt) is sampled uniformly at a rate of 20 samples per
second. The samples are applied to a four-level uniform quantizer with input-output
characteristic

( X =-075 %=-025 x3=025 %;=0.75

0.75, 05<x<1 00 01 10 11
025 0<x<0.5
() = 025 —05<x<0 1 | o | 0 | 05 s
—0.75, ~1<x <05 b '

* The next figures depict the quantizer operation, the input samples to the sign
detector, the quantized output, and the quantization error definedas e = (x — y).

t= 0 0.0500 0.1000 0.1500 0.2000 0.2500 x(kTs) y = {X],%3,%3, %3}
x(t)=1.0000 0.9511 0.8090 0.5878 0.3090 0.0000 ——!| Quantizer ———
y = 0.75 0.75 075 075  0.25 0.25

e= 0.25 0.2011 0.059 -0.1622 0.059 -0.25

Note that —§<e<§:>—0.25<e<0.25 Azl_i_l):

0.5



* Example: The signal x(t) = cos(2mt) is sampled
uniformly at a rate of 20 samples per second. The
samples are applied to a four-level uniform quantizer

Quantization: the two-bit quantizer

* Binary digits are assigned to the quantizer output

t= 0 0.0500 0.1000 0.1500 0.2000 0.2500
x(t) =1.0000 0.9511 0.8090 0.5878 0.3090 0.0000
y = 0.75 0.75 0.75 0.75 0.25 0.25
e= 0.25 0.2011 0.059 -0.1622 0.059  -0.25
Note that —§<e<§:~—0.25<e<0.25

Sample Value

04

-0.6

08

‘A A
—E<e<—=>—0.25<e<0.25

. | ‘
0.1 02 03 04 05 06 07 08
Time

Sample Value

Sample Value

\ I \
) S O NS SRR SO S | I Sampled Signal]......... S S —_—




Example: Quantizer Design

* Design an 8-level uniform quantizer with a dynamic range of (-4, +4) V. Here,
you need to specify the thresholds and the representation values.

* How many binary digits are needed to represent the samples? (3 bits)

* Find the representation value and the quantization error when a 1.64 V sample
is applied to the quantizer.

-9 _ 4
8

* SinceL=8,thenn=3. L =2";n= log,(L)

* When x=1.64,y=1.5,and theerroris:e = (x —x) =(1.64 —1.5) = 0.14.

e Solution: A =



Example: continued

* Find the binary representation corresponding to the sample -2.1 V if natural binary encoding
is employed (-2.5; 001)

* Are there other binary encoding formats?

I_ IE j;- -Tq_ Tj Tﬁ _T— TS
] —e—F—eo—F—o—|—o—|—o—J———> m
l D, i D, i D, i D; i D, i D, i D, i Dy
Ordinal: 0 1 2 3 4 5 6 7
NBC: 001 010 011 100 101 110 111
Gray: 000 001 011 010 110 111 101 100
FBC: 011 010 001 000 100 101 110 111
-3.5 2.5 -1.5 -0.5 0.5 1.5 2.5 3.5



Quantization Noise

* The quantization error per sample is the difference between the input and output of the
quantizer, i.e., e = (x — X)

* The time average of the mean squared error %f(x — X)?dt ; (Time Average)

. . A
* The maximum error (also referred to as the resolution) = | > |

* When A is small, the error, e, is assumed to be a uniform random variable over the interval
— A2 < e < A|2.

* The average quantization error (distortion) over all samples of the signal is
e D=E(x—-%)°=E(e?)>D = %fjAA//ZZ(e)Z de = D = A*|12 (Statistical Average)

* Remark: Note that D depends on the design of the quantizer and not on the signal applied to
it, as we will see in the next two examples.

p(E) If a process is assumed ergodic, then
Time Average = Statistical Average

1/A

11



SQNR: Signal Matches Dynamic Range of a Uniform Quantizer
Example: Let the sinusoidal signal x(t) = Acos(2mf,t) be applied to a uniform quantizer with a
dynamic range (—A, A). We need to find the SQNR.
Solution: The average power, P, , in x(t) is: P,, = A*|2
A?%/2
A%/12

The signal power to quantization noise ratio: SQNR =
Here, A = 2A/L. If L = 2", then the SOQNR become: SQNR = ng = 322“
In dB, the SONR, becomes: SQNR = 10log% =6.02n+ 1.76 (dB)

SONR increases exponentially with the number n of bits per sample.

There is a 6-dB improvement in SQNR for each bit added to represent the sample values

—A X A Xz ZA A3 37 ALy

_ Xmax — Xmin
| | | | A= -

Xmin X1 Xo X1 _1 Xmax
%(t) Strong signal applied to a uniform quantizer

x(t) Weak signal applied to a uniform quantizer



x(t) = (10)cos(2m(10)t)

Quantizer: (-10, 10);
n = 3 bits (8 levls)

_20_25
8_ .

Ideally sampled Signal
fs =100

Quantized Signal

Filter B.W = fs/2=50

Recovered Signal

-8.75

Amplitude {volts)

Amplitude (volts,

Amplitude (volts)

Amplitude {volts)

=

-6.25

Example: Signal Matches Dynamic Range of a Uniform Quantizer
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Example: Weak Signal Applied to a Uniform Quantizer

* Example: Now, let the sinusoidal signal x(t) = A/2cos(2mf,t) be applied to the same
uniform quantizer of the previous example, with a dynamic range (—A4, A). We need to find
the SONR.

(4/2)%/2 12 o 12
> — —L = —
A2 /12 32 32

* IndB, the SONR, becomes: SONR = 10log%x = 6.02n — 4.77

* Solution: SQNR = 220

* Remark: If the message signal x(t) is a random signal, with an amplitude probability density
function fy(x) and zero mean (E(X) = 0), then the SQNR is given as:

E(X2)  [Coo X? fx(x)dx

* SONR = = , Beyond the scope of this lecture.
¢ E(x-%)2 E(x—%)2 » BEY P
—_A X1 A X2 20 X3 gp XL 4
I I _ Xmax — Xmin
I I A= L
Xmin X1 Xo X1 _1 Xmax
%(t) Strong signal applied to a uniform quantizer

x(t) Weak signal applied to a uniform quantizer



x(t) = (cos(2m(10)t)
Quantizer: (-10, 10);
n = 3 bits (8 levls)

A—ZO—ZS
=5 =2

Ideally sampled Signal
fs =100

Quantized Signal
A A
— Tt 1.25,-1.25

Filter B.W = fs/2=50

Recovered Signal

-8.75

Amplitude (volts)

-6.25

Amplitude (volts)

Amplitude (volts)

Example: Weak Signal Applied to a Uniform Quantizer
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A Problem with the Uniform Quantizer
Problem: Let the sinusoidal signal x(t) be applied to a uniform quantizer with a dynamic range (—A4, A)

We have seen in the previous examples that the SQNR depends on the signal power. As the signal power
decreases, the SQNR decreases (quantization noise is constant). Quality deteriorates

* Case 1: x(t) = Acos(2mf4t), strong signal applied to the quantizer: SQNR1 = %LZ ; with probability 0.2
1

e Case2: x(t) = gcos(anzt), weak signal applied to the quantizer: SQNR2 = %LZ = iSQNRl with probability 0.3

e Case3: x(t) = %cos(angt), weak signal applied to the quantizer: SQNR3 = %Lz = %SQNRl with probability 0.5
The average quantization noise is :

E(SQNR) = (0. Z)EL2 + (0. 3)£L2 + (0. 5)1—16L2 — 0.4437512

Solution: Use non-uniform quantization (the subject of the next lecture), the use of which will ensure an almost
constant SQNR for strong as well as weak signal components.

—A X1 A X2 20 X3 gp XL A
X — Xmi
I : ! : N A= max - min
Xmin X1 Xo X1 _1 Xmax
» g4Q . Strong signal applied to a uniform quantizer

x(t) Weak signal applied to a uniform quantizer




Non-uniform Robust Quantization
Lecture Outline
* In this lecture
* We define the non-uniform robust quantizer

* Define the p-law compressor and expander
characteristics

* Show the improvement in SQONR of non-uniform
guantization over uniform quantization.

* Present a number of illustrative examples



Quantization: Basic Definitions

* Quantization: is defined as the process of converting the continuous amplitude sample x(kT;) of a message
signal into a discrete amplitude X(kT) taken from a finite and countable set of L possible values {x|.

* The dynamic range of the quantizer is the range of values for which the quatizer is designed, x,,,in < X < X;max

* This range is partitioned into L intervals such that if x(kT;) € R;, the quantizer output will be a level x; =
{x1, %2, ..., X1}

* The gauntizer output is called a representation or reconstruction level

 The boundary points separating adjacent regions are called decision or threshold levels.

* The spacing between representation levels is called the step size (A)

* A quantizer is called uniform when the L regions are of equal length A and the spacing between representation
levels is uniform and equals to A, where A = Xmax~Xmin

L
= {x1 X1} 7z @ & 2

X1, er ey X, X X X X
x(kT,) . : . it s L,
——1 Quantizer — xmfrr \ ) N xmm X

Y /

\ X . —X .
_ max min . .
Xmin < X < Xmax Step size A= 7 Quantization threshold



Drawback of the Uniform Quantizer
* The Drawback of the uniform quantizer:

* The uniform quantizer is easy to build; however, it is not optimal when the input signal is weak most of the time. Here,
the signal does not use the entire set of available quantization levels.

* Maximum SQNR is achieved when the signal strength matches the dynamic range of the quantizer.
« Demonstration: Let the sinusoidal signal x(t) be applied to a uniform quantizer with a dynamic range (—A4, A)

 We have seen in the previous lecture that the SQNR depends on the signal power. As the signal power

: . . P
decreases, the SQNR decreases, since the quantization noise is constant (SQNR = Az/x12)
* Let: x(t) = Acos(2mf,t), SQNR1 = %LZ ; with probability 0.1 SQNR? SQNR1
. x(t) = 2 cos(2mf,t), SQNR2 = gLZ - iSQNRl with probability 0.2 SQNR1/4
. x(t) = %COS(ZTL'f3t), SQNR3 = %LZ = %SQNRl with probability 0.7 SQNR1/16
7 ;) X3 X, >
_A X1 A X2 20 %3 3A L4 e A/4 A/ A x
1 I | I __ “‘max min
I i | | > A= L
Xmin X1 X2 XL-1 Amax
’ x(¢) ) Strong signal applied to a uniform quantizer
x(t)

. ) Weak signal applied to a uniform quantizer




Two Remarks:

Drawback of the Uniform Quantizer

The average SQNR is:

E(SQNR) = (0.1)SQNR1 + (825QVR1 | (07)SQNR1

4 16
The average SQNR is closer to that of the smallest value of the SQNR.

= (0.19375)SQNR1

The overall performance is not satisfactory .

Small amplitudes will be subjected to more distortion than large
amplitudes.

The non-uniform quantization, the subject of this lecture, will ensure an
almost constant SQNR for strong as well as weak signal components.

SQNR

 SQNR is higher than I SQNRZ' SQA:RII
that of.the uniform soNR3
quanrtizer,. =00 | Average SQNR uniform
* The SQNR is almost
the same for all >
A/A A)2 A *

signal levels
Non-uniform Quantizer

P(x)

1&

Uniform Quantizer

0.7

0.2

0.1

SQNR
1 SQNR1
SQNR1/4
SQN41/16t
A/4 A)2 A x

A/4  A/2

A

v



x(t) = (10)cos(2m(10)t)

Quantizer: (-10, 10); -
n = 3 bits (8 levls) ™

20
=—=2.5

8 -

|| ||||| |
I|HI ||||l

;

0 01

Ideally sampled Signal
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Example: Signal Matches Dynamic Range of a Uniform Quantizer
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x(t) = (cos(2m(10)t)
Quantizer: (-10, 10);
n = 3 bits (8 levls)

A—ZO—ZS
=5 =2

Ideally sampled Signal
fs =100

Quantized Signal
A A
— Tt 1.25,-1.25

Filter BW = fs/2=50

Recovered Signal

Only two levels are
utilized
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Example: Weak Signal Applied to a Uniform Quantizer
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Uniform and Non-uniform Robust Quantization
* |n practical applications, especially speech signals, small sighal amplitudes occur more often
than large signal amplitudes. This means that for the same signal, small amplitudes will be
subject to distortion more than large amplitudes. That is, larger amounts of distortion have a

higher probability of occurrence.

* The non-uniform robust quantizer, which employs the p-law can
* Provide a SQNR that is somewhat constant and independent of the signal strength
* Provide a SQNR that is also independent probability distribution of the sampled input signal

To minimize the MSE, certain types of

fx(x)
\ qguantizers require knowledge of the
pdf of the signal amplitude pdf of the signal to be quantized.
. 0.15 0.2 0.2 0.15 m
1 0.5 P | : | : 7 005, |

| | | | | | i |

4 3 2 1 0 2 3 4 X
35 2.5 1.5 0.5 0.5 1.5 2.5 3.5
I I 1 1 1 1 1 .
I | I
| | | | 0 | 2 3 . X



Non-uniform Robust Quantization

* We will use a type of non-uniform quantizers, called companding, that does not require
knowledge of the pdf of the signal to be quantized, and yields an almost uniform SQNR
over a wide range of signal variations.

* The process of pre-distorting the signal at the transmitter is known as (signal) compression.
At the receiver, this process is reversed to remove distortion and is known as (signal)
expansion. The two operations together, are typically, referred to as companding (or
compansion).

* The compressor is a nonlinear operation that amplifies weak signal values more than it
amplifies large signal values, thus stretching the signal over more representation levels. This
will enhance weak signal levels and improve their SONR. Large signal levels will also suffer
from distortion, but the overall effect on the signal is an improvement in SQNR.

 Since the probability of smaller amplitudes is higher than the larger amplitudes, the overall
result is an improvement.

* In North America, u -law companding (with u = 255) is the standard.



Robust (Non-uniform) Quantization

* In summary, companding is performed as follows:
* Compress the signal using the u-law. The output is approximately uniformly distributed.
* Apply the compressed sample to a uniform quantizer
* Transmit the quantized sample to the receiver.
* Apply the received sample to the expander. The output is the desired signal value.

AUQ‘U x(kTy) % = {xAl’T’ -k

x(t)

Sampler Uniform —~ | Binary Modulator
fs=2W [, ;| COMPressor 53559 Quantizer |05 | Encoder 100

Xmin < X < Xmax (101, 110, 001)

Channel
% x=1{x1,%x5,..,%}

, X
X (t) Reconstruction l Binar
0.01568 Expander Filter P 2 Y « Demodulator

0.5 (LPF) 100 Decoder

(101, 110, 001)



Non-uniform Robust Quantization

i1+ u 5, LA ( *_ (1 ))) 1] /p sgn(x)
— max 7 = |€XP| = n(l+u - i sgnx
Y = Ymax In(1+ ) sgn(x) Y max X max
= compressor 4 = 255 y, —— expander g = 255
Y3 .
2 21
e output S 17
i X & ’
s 2 X
= Input § o
g 5 . Input
© g
_2 y =
x =0.01, y=0.3557, 36 times - Input to expander is a
7 x =1,y =3; 3-times 5 one of the uniform
4 X =4,y =4, same value quantizer levels
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Non-uniform Robust Quantization

* Example: If a sample of magnitude 0.01 is applied to a 3-bit uniform quantizer
with a dynamic range (-4, 4) V. Find the quantizer output, the quantization
error, and the value of the sample at the receiving side.

* If the sample is applied to quantizer that employs companding, find the value
of the received sample, and the quantization error.

* Uniform Quantization: when x =0.01, X = 0.5; This is the same voltage that is
supposed to be received, assuming no transmission error.

* The erroris: [x — x| =10.01 — 0.5| = 0.49
.~ 0.5-0.01
* The % of erroris: X = o1 100% = 4900% .
* The error is 49 times the sample value.
0.01
-3.5 2.5 1.5 0.5 ﬁ 0.5 1.5 2.5 3.5



Non-uniform Robust Quantization
* Non-uniform Quantization: when x = 0.01 is applied to the u-law,

n[1+p(72-)]  In[1+255(%%)]
"Y = Ymax T inien ln(1+2554) =0.3557

* The 0.3557 is applied to the uniform quantizer, whose output is 0.5.
e The 0.5V is encoded as 100 and transmitted. Assume no transmission errors.

* At the receiver, the 0.5 is applied to the expander (the inverse u-law characteristic)

+ 2 = [exp (=2 (In(1 + 255))) — 1] /255 = y' = 0.01568

* Received sampley’ = 0.01568

* Theerroris: |x—7y'| =10.01 —0.0157| = 0.0057

* Error: 0'0152'10157 100% = 57%

0.01
-3.5 2.5 1.5 0.5 N 0.5 1.5 2.5 3.5
| | | | | | | |
4 9 g 001 5 4 011 0 10 1 101 2 110 3 11
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Uniform and Non-uniform Robust Quantization: More Values

Sample Value

Uniform Quantizer Non-uniform Quantizer

Output

0.5

0.5

1.5

2.5

3.5

% Error

0.01 — 0.5

0fy — 0
0.01 100% = 4900%

007 =05 10% = 7079
0.07 0= 0

1.7 —-1.5

29 —-2.5

3.8 —-3.5

100% = 7.89¢
3.8 /o /o

Output

0.0157

0.1098

1.9922

1.9922

1.9922

% Error
0.01 — 0.0157 100% = 579
0.01 0T 207
0.07 — 0.1098 100% = 56. 8%
0.07 0= OO0
1.7 — 1.9922
100% =17.18%
1.7
2.9 —1.9922
100% = 31.3%
2.9
3.8 —1.9922
38 100% = 47.5%



Uniform and Non-uniform Robust Quantization

* This figure shows a
5 111 /./\
weak and a strong - \\I 111 |
signal applied to a | - % }1 ¢ R
uniform and a non- 101 / | Weak signal
uniform quantizer. As 100 7/ = k e :8(')
/

we can see, the non- 1T NS AT 011 |

. . 0Ll N < Z 7 } Smallest step-size
uniform quantizer = 010

: 010

represents both signals d 001

. LY
qwte adequately. i Strong signali/ \ /

000 i '\ /f 000
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Differential Pulse Code Modulation

The quantizers, that we studied so far, are memoryless, in the sense that
quantization is done on a sample-by-sample basis. Each sample i1s quantized and
encoded into n binary digits, regardless of any correlation with other samples.

A differential pulse-code modulation (DPCM) quantizer quantizes the difference
between a sample and a predicted value of that sample. Here, correlation between
successive samples is utilized.

The prediction 1s based, in general, on past m samples of the signal. If successive
samples are highly correlated, the predictor output will be very close to the next
sample value, and hence the prediction error will be small.

An error with a small variance further means that fewer bits (r<n) are needed to
represent the error.

At the receiver, a predictor similar to the one used at the transmitter 1s used to
reconstruct the original waveform
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DPCM: Basic Operation

Encode each difference into r bits
Comparator
Sampled eln] €qlnl DPC
input Quantizer > Encoder [—>=
wav
m[n]
+
+ | I [ [ T
08- . : ’ : ’ 1 f ’
06 |
. : © 02 : : ; i
< Prec_jlc:tlcrn s
filter =, |11
m[n] 8 oal
06
_0_5_.....3_.
(a) A
6 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Time
_l_
Input —=={ Decoder >, - = Qutput
+
Prediction

filter s




DPCM: Linear Prediction Filter

[t is a discrete-time, finite-duration impulse response filter (FIR), which consists of three
blocks:

T T T T T T

Py — I Sampled Signal Y -

1. Set of p ( p: prediction order) unit-delay elements (z')

2. Set of multipliers with coefficients wiwa,...w,

Sample Value

3. Set of adders (Y )

This filter expresses the predicted value of the sample at time (nT) as a linear os
combination of the past p samples of the signal. S N

x(n) =wx(n—1) + wyx(n — 2) + -+ wyx(n — p)

The coefficients w,, w,, ..., w, are chosen so as to minimize the mean square error
- 2
E(x(n) — x(n))~.

x[n—-1] x[n—-2] xln—p+1]
llrlpmﬂ"l" -1 -1 CRCEE -1 xln—pl
x[n] - ‘ - ‘ | = ‘
- “ - K\ .-'f '\‘" s --h
O O C O
“/ P P ,’{\ Prediction
H\H_E,JI—)- . v s 4-4\;’!: :"'"xi)_"" T
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DPCM: Linear Prediction Filter

x[n-11] x[n - 2] xln - ,f;- +1]

Input
.rlrfrl — 1 —r 1 T z 11[::—;1]
. - P
I |

B Sampled Signal | oo 11" 1"'; )

e I S L S (w1) ) e p-
LI I S _____3___________';j}ﬁfﬁﬁf’fﬁﬁfﬁ - I o
' ; ; ; | “/ . ,’{\ Prediction
; 3 ; i i i i i 1 ; : H E i+ _:...|

Nl e M) fi

, _ e = E((x(n) — x(n))%: prediction error

Substituting £(n) = wyx(n — 1) + wx(n — 2) + -+ + wyx(n — p), the prediction error

becomes:

e = E((x(n) —wyx(n — 1) + wox(n — 2) + - + wpx(n — p))°

Expanding € and taking expectation of all terms, we get:

p

> p
e = E(x(n)?) - ZZWIE[I(HJI(H- i)] +ZZWW- E[x(n —D)x(n —j)]

i=1 j=



DPCM: Linear Prediction Filter

x[n-1] x[n-2] [n-p+1]

Input '

_.,-[[?,] D :—l _r :—l T f,_l xln—pl
-~ I -, r f ."
®» @ slw

I L Prediction

H\\E/:l—}- —.".H E I—}- E J—:- Tn

Recognize that: R, (i) = E[x(n)x(n — i)] is the autocorrelation function of x(t).

Differentiating € with respect to w;, setting the derivative to zero, and solving, we get

(assuming p=3)

Rx(_l) Rx(ﬂ) Rx(l) = Rx(z)

Rx(o) Rx(l) Rx(z) [E:] Rx(l) R(l) — R(TS)
R.(-2) R.(~1) R,(0) R.(3) R(2) = R(2Ty)

If p=1, the above equation reduces to
w; = Rx(l)f Rx(ﬂ)

Note that: R, (—=1) = R,(1), R,(=2) = R,(2), R, (1) = R (T,), R, (2) =
Rx(ZTs)ﬂ Rx(g) = Rx(BTs) .



DPDM: Transmitter and Receiver

Comparator Encode each difference into r bits
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DPCM: Autocorrelation Function

R is an even function
R(0) =A

R(0.5)=A/2
R(1)=0

A(l1+t)

'
[
o
92

— 44—
o
192
[
~



DPCM: Concluding Summary

Difference between e At transmitter:
sample and its estimate « Samples are known
Sample  Estimate is known since estimate is a
/ linear function of the samples.
* Transmit
oo 1 Estimate * Difference= Sample — Estimate
i
i of Sample * At receiver:
I * Receive Difference

* Construct Estimate

e Sample = Estimate + Difference



Delta Modulation

Remark: Before you attend this lecture, please attend the previous one on DPCM.

Delta modulation (DM), is a special case of Differential Pulse Code Modulation (DPCM).

The order of the prediction filter in delta modulation is p=1 and represents only the
qguantized value of the previous sample. The number of quantization levels is two.

In this scheme, the system transmits the sign of the difference between the current sample
and the quantized value of the previous sample. The sign is represented by a single bit.

Comparator

e ln]

Sampled — elnl
input N Quantizer Encoder p—= E::;E';ﬂ
min) + -
-+

Prediction in DPCM is made R 4 A DPCM Transmitter
based on p previous samples. """ | =)
In delta modulation p=1. | Prediction
filter
m g [n]
ML R
)

Input —=={ Decoder E. == Qutput
DPCM Receiver
Prediction

filter
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Delta Modulation: Basic Idea
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Delta Modulation: The Transmitter Side

The transmitter side consists of the comparator, the one bit quantizer, the encoder,
and the accumulator.

The accumulator (an integrator) adds the new quantized difference (+A or -A) to
the old predicted value to generate the new predicted value.

The output of the predictor is a staircase approximation of the message signal.

Comparator

Sampled +

message signal
mln]

mgln - 1]
Predicted Value / — I

 +

|
|
+ |
! I Quantized Error +A
|
- -1 l or-A
|

mqlu|

elnl | onebit | <™ oo ov Digit 1if error = +A
: NCOQEr pe— « . .
quantizer wave  Digit O if error=-A

Analog value of the error Accumulator



Delta Modulation: The Transmitter Side
Let m[n]=m(nT,) , n=0,+1,+2,...
where T, is the sampling period and m(nT,) is a sample of m(t). The error signal is
e[n]=m[n]—m,[n—1]
e,[n]=Asgn(e[n] ); quantized error
My [n] =m, [n _1] +€, [n]
where m,[n] is the quantizer output ,e,[n] is the quantized version of e[n], and A is the step size

Comparator

fq[u]

om Digit 1if error = +A

Sampled +

el | One-bit

Encoder =

message signal quantizer wave  Digit O if error = - A
{
/ th[H - 1]
Predicted Value I I T
+ |
mq [n o 1] + ; |
» .
I Quantized Error +A
-1 | or-A
= |
|

Analog value of the error Accumulator



Delta Modulation: The Receiver Part

The receiver part consists of the decoder, the accumulator, and a low pass filter.
The decoder interprets a zero as —A and one as +A. These deltas represent the

differences between current and previous samples.
The accumulator regenerates the predicted staircase signal.

The low pass filter smoothens the predicted signal by removing high frequency

Reconstructed
message signal

components.
The reconstructed signal m,(t) is the same as the predicted signal used at the transmitter
side
M = LA or — A
eqin] = +Aor — A |
Sampled QI[ | My |[n] Low-pass
channel —==| Decoder = filter
output | * |
| " |
|
-1 |
m, [ﬂ — 1] :

S

Accumulator



m, [n] =M, [n _1]+eq [n]

= m,[n] :Aiznl:sgn(e[i])
:iznl:eq [I]

Sampled
channe| =—
output

Decoder

_—

Delta Modulation: The Receiver Part

S

Accumulator

Low-pass
filter

Reconstructed
message signal



Delta Modulation: Basic Operation

Encoder p—==—

" m(1) m(t): analog input signal

Staircase

4)‘ T Le T appriijr?:]ati[m

Binary
sequence

at modulator
output

c o 1 o 1 1 1 1 1 O 1 O O O O O O



Slope Overload Distortion and Granular Noise

* Slope overload distortion is due to the fact that the staircase approximation m_(t) can't
follow closely the actual curve of the message signal m(t ). In contrast to slope-overload
distortion, granular noise occurs when A is too large relative to the local slope
characteristics of m(t). granular noise is similar to quantization noise in PCM.

* |tseems that a large A is needed for rapid variations of m(t) to reduce the slope-overload
distortion and a small A is needed for slowly varying m(t) to reduce the granular noise. The
optimum A can only be a compromise between the two cases.

* To satisfy both cases, an adaptive DM is needed, where the step size A can be adjusted in
accordance with the input signal m(t) (not to be covered in this lecture)

Granular noise

AN

Slope-overload
distortion

m (1)

Staircase
approximation

mq(r)

—::-L}-r:—‘




Slope Overload

Slope overload occurs when the signal changes at a rate faster than that of the predicted signal.
To avoid slope overload, we must have

A dam(t
2 > max| Y,
T, dt

When m(t) = A,,cos(2nf,,t), the condition for avoiding slope overload becomes
2> 2hmfin; OR A2 20Ty Amfrn

S

As we can see, slope overload depends on three factors:
 Sampling frequency (larger sampling, reduces the effect)
 Message amplitude (larger amplitude, increases the effect)
 Message frequency (larger message frequency, increases the effect

Granular noise

Slope-overload
distortion

m (1) ——

Staircase

v
approximation A
mq(r) f S— T




Adaptive Delta Modulation

* The step size in delta modulation affects the quality of the transmitted
waveform (slope overload or granular noise).

* A larger step-size is needed in the steep slope of modulating signal
* a smaller step size is needed where the message has a small slope

* In adaptive delta modulation, the step size is adjusted via a feedback
control signal so as to reduce both slope overload and granular noise
effects.

* ADM quantizes the difference between the value of the current sample
and the predicted value of the next sample. It uses a variable step height
to predict the next values, for the faithful reproduction of the fast varying
values.



Delta Modulation: Example
* Draw the output of the DM given that the input corresponds to

x(t) = 1.1t + 0.05 when the input is sampled att=0, 1, 2, 3,4, 5, ...
and A=1.

Sample_d + elnl One-bit "-f["] . DM Dlglt 1if error = +A
messﬁiflgnal o\ Quantizer = ENCo%er = yave Digit 0 if error=- A
—_-__-_.. W.,I|JJ -1 }
Predicted Value AT
I . |
B | oy !
- | .
: / | Quantized Error +4
! _ =yl I : or-A
I ) J mq|u| J:
sl Anclre valie cf the arpnp | b—————m
Analog value of the error Accumulat
2_1 L —
g
&
=
=
‘a
e .

3
Time [sec)
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Delta Demodulation: Example

* Reconstruct a staircase signal at the receiver side of a delta demodulator with A
when the received data sequenceis1111001111010111.

| I |

I
— e (n]=+Aor — A
Sampled ql[ ] Y\ mq[n] Low-pass Reconstructed
channel —==| Decoder t : ;
[ %N filter message signal
output | + |
- | : —
! 1 -1 e |
m,[n — 1] : |
| | l |
Accumulator
|
| I | | | | |
2 a4 [ 10 12 14 16
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Line Encoding

The assignment of pulses (an electrical signal) to the binary digits that come out of
the PCM or DPCM system.

Line coding encodes the bit stream for transmission through a line, or a cable.

It is used for communications between the CPU and peripherals, and for short-
distance baseband communications, such as the Ethernet.

source destination

. - dt . .
digital —»| Encode 0 = Decoder —» digital
data low-pass channel data

(digital signal)
Two Design Considerations

e DC Component in Line Coding: Some line coding schemes have a residual (DC)

component, which is generally undesirable.
o Transformers do not allow passage of DC component.
o DC component = extra energy — useless!

Self-Synchronization (clocking): To correctly interpret signal received from
sender, receiver’s bit interval must exactly correspond to sender’s bit intervals
o If receiver clock is faster/slower, bit intervals not matched = receiver
misinterprets signal

o Self-synchronizing digital signals include timing information in itself, to
indicate the beginning & end of each pulse

Amplitude Sent

41,0, 1., 1.0 .,0 .0 .1, I SR B O

Time

Received

Dr. Wael Hashlamoun-Birzeit University
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Unipolar Line Coding (Unipolar non-return to zero)

e Uses only one non-zero and one zero voltage level to represent binary digits 1 and
0
e Simple to implement, but obsolete due to two main problems:
o Presence of a DC component.
o Lack of synchronization for long series of 1-s or 0-s
Amplitude

~

0 0 0

Time

Polar Line Coding: Polar non-return to zero

e Uses two non-zero voltage level to represent digits 1 and digit 0. +ve for 1 and —ve
for 0

e No DC component is present

e Poor synchronization for long series of 1-s or 0-s

110 0 i1

-

Time

Pl
o,
N
-

i
i
1
1
1
1
1
1
1
0
1
'
i
i
T
0

Polar Non-return to Zero
Polar Line Coding: Polar return to zero

e Uses two non-zero voltage level to represent digits 1 and digit 0. +ve for 1 and —ve
for 0. Must return to zero halfway through each bit interval.

e No DC component is present.

e Perfect synchronization for long series of 1-s or 0-s.

e Twice the bandwidth required for polar non-return to zero, B. W !

pulse width'

Dr. Wael Hashlamoun-Birzeit University
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Value
A

These transitions can be used
for synchronization.

Manchester Line Coding

e Inversion at the middle of each bit interval is used for both synchronization and bit
representation

¢ Digit 0 = neg-to-pos transition, 1 = pos-to-neg transition

e Perfect synchronization for long series of 1-s or 0-s

e There is always transition at the middle of the bit, and maybe one transition at the
end of each bit.

o Fine for alternating sequences of bits (10101), but wastes bandwidth for long runs
of 1-s or 0-s.

e Used by IEEE 802.3 (Ethernet).

e No DC component is present.

e Twice the bandwidth required for polar non-return to zero. Two pulses are used to
represent one bit.

H
B
o

Manchester
Time

_4____,._________
L
T T YT TI ST ST

.-..I.....-' Tessesprnnsssnneg”

Manchester Encoding
Bipolar Line Coding

e Uses two non-zero and zero voltage level for representation of two data levels.
e 0 =zero level; 1 = alternating positive and negative level.

Dr. Wael Hashlamoun-Birzeit University
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o If first bit 1 is represented by a positive amplitude, second will be represented by
negative amplitude, third by positive, etc.

e Less bandwidth required than with Manchester coding (for any sequence of bits).

e Loss of synchronization is possible for long runs of 0-s.

e No DC component is present.

Amplitude

0 : 1 0 0 1 1 1 1 0

N i / i Ti;m

(The Is are positive and negative alternately)

2B1Q (2 Bipolar to 1Quaternary) Line Coding

e Data patterns of size 2 bits are encoded as one signal element belonging to a four-
level signal.

e Data is sent two time faster than with polar non-return to zero.

e Receiver has to discern 4 different thresholds

, 10 ,00 ,00 ,10 11
Binary Input  Output Voltage - : : i —
00 -3 : I : |
+1 ! |
01 =1 0 T =
= il : : | Time
11 3 -3 4 | : ' : :
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