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Electrical engineering education has undergone some radical changes during the past cou-
ple of decades and continues to do so. A modern undergraduate program in electrical
engineering includes the following two introductory courses:

& Signals and Systems, which provides a balanced and integrated treatment of contin-
uous-time and discrete-time forms of signals and systems. The Fourier transform (in
its different forms), Laplace transform, and z-transform are treated in detail. Typi-
cally, the course also includes an elementary treatment of communication systems.

¥ Probability and Random Processes, which develops an intuitive grasp of discrete and
continuous random variables and then introduces the notion of a random process
and its characteristics.

Typically, these two introductory courses lead to a senior-level course on communication
systems.

The fourth edition of this book has been written with this background and primary
objective in mind. Simply put, the book provides a modern treatment of communication
systems at a level suitable for a one- or two-semester senior undergraduate course. The
emphasis is on the statistical underpinnings of communication theory with applications.

The material is presented in a logical manner, and it is illustrated with examples,
with the overall aim being that of helping the student develop an intuitive grasp of the
theory under discussion. Except for the Background and Preview chapter, each chapter
ends with numerous problems designed not only to help the students test their understand-
ing of the material covered in the chapter but also to challenge them to extend this material.
Every chapter includes notes and references that provide suggestions for further reading.
Sections or subsections that can be bypassed without loss of continuity are identified with
a footnote. )

A distinctive feature of the book is the inclusion of eight computer experiments using
MATLAB. This set of experiments provides the basis of a “Software Laboratory”, with
each experiment being designed to extend the material covered in the pertinent chapter.
Most important, the experiments exploit the unique capabilities of MATLAB in an instruc-
tive manner. The MATLAB codes for all these experiments are available on the Wiley Web
site: http://www.wiley.com/college/haykin/.

The Background and Preview chapter presents introductory and motivational ma-
terial, paving the way for detailed treatment of the many facets of communication systems
in the subsequent 10 chapters. The material in these chapters is organized as follows:

# Chapter 1 develops a detailed treatment of random, or stochastic, processes, with
particular emphasis on their partial characterization (i.e., second-order statistics). In
effect, the discussion is restricted to wide-sense stationary processes. The correlation
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PREFACE

properties and power spectra of random processes are described in detail. Gaussian
processes and narrowband noise feature prominently in the study of communication
systems, hence their treatment in the latter part of the chapter. This treatment nat-
urally leads to the consideration of the Rayleigh and Rician distributions that arise
in a communications environment.
Chapter 2 presents an integrated treatment of continuous-wave (CW) modulation
(i.e., analog communications) and their different types, as outlined here:
(i) Amplitude modulation, which itself can assume one of the following forms (de-
pending on how the spectral characteristics of the modulated wave are specified):
# Full amplitude modulation
& Double sideband-suppressed carrier modulation
& Quadrature amplitude modulation
¥ Single sideband modulation
» Vestigial sideband modulation
(ii) Angle modulation, which itself can assume one of two interrelated forms:
» Phase modulation
& Frequency modulation
The time-domain and spectral characteristics of these modulated waves, methods for
their generation and detection, and the effects of channel noise on their performances
are discussed.
Chapter 3 covers pulse modulation and discusses the processes of sampling, quan-
tization, and coding that are fundamental to the digital transmission of analog sig-
nals. This chapter may be viewed as the transition from analog to digital commu-
nications. Specifically, the following types of pulse modulation are discussed:
(i) Analog pulse modulation, where only time is represented in discrete form; it
embodies the following special forms:
# Pulse amplitude modulation
& Pulse width (duration) modulation
# Pule position modulation
The characteristics of pulse amplitude modulation are discussed in detail, as it is
basic to all forms of pulse modulation, be they of the analog or digital type.
(ii) Digstal pulse modulation, in which both time and signal amplitude are repre-
sented in discrete form; it embodies the following special forms:
# Pulse-code modulation
& Delta modulation
# Differential pulse-code modulation
In delra modulation, the sampling rate is increased far in excess of that used in pulse-
code modulation so as to simplify implementation of the system. In contrast, in
differential pulse-code modulation, the sampling rate is reduced through the use of
a predictor that exploits the correlation properties of the information-bearing signal.
(iii) MPEG/audio coding standard, which includes a psychoacoustic model as a key
element in the design of the encoder.

Chapter 4 covers baseband pulse transmission, which deals with the transmission of
pulse-amplitude modulated signals in their baseband form. Two important issues are
discussed: the effects of channel noise and limited channel bandwidth on the perfor-
mance of a digital communication system. Assuming that the channel noise is additive
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and white, this effect is minimized by using a matched filter, which is basic to the

design of communication receivers. As for limited channel bandwidth, it manifests

itself in the form of a phenomenon known as intersymbol interference. To combat
the degrading effects of this signal-dependent interference, we may use either a pulse-
shaping filter or correlative encoder/decoder; both of these approaches are discussed.

The chapter includes a discussion of digital subscriber lines for direct communication

between a subscriber and an Internet service provider. This is followed by a deriva-

tion of the optimum linear receiver for combatting the combined effects of channel
noise and intersymbol interference, which, in turn, leads to an introductory treatment
of adaptive equalization.

Chapter 5 discusses signal-space analysis for an additive white Gaussian noise chan-

rel. In particular, the foundations for the geometric representation of signals with

finite energy are established. The correlation receiver is derived, and its equivalence
with the matched filter receiver is demonstrated. The chapter finishes with a discus-
sion of the probability of error and its approximate calculation.

Chapter 6 discusses passband data transmission, where a sinusoidal carrier wave is

employed to facilitate the transmission of the digitally modulated wave over a band-

pass channel. This chapter builds on the geometric interpretation of signals presented
in Chapter 5. In particular, the effect of channel noise on the performance of digital

communication systems is evaluated, using the following modulation techniques:
(i) Phase-shift keying, which is the digital counterpart to phase modulation with
the phase of the carrier wave taking on one of a prescribed set of discrete values.

(ii) Hybrid amplitude/phase modulation schemes including guadrature-amplitude
modulation (QAM), and carrierless amplitude/phase modulation (CAP).

(i) Frequency-shift keying, which is the digital counterpart of frequency modulation
with the frequency of the carrier wave taking on one of a prescribed set of discrete
values, ‘

(iv) Generic multichannel modulation, followed by discrete multitone, the use of
which has been standardized in asymmetric digital subscriber lines.

In a digital communication system, timing is everything, which means that the re-

ceiver must be synchronized to the transmitter. In this context, we speak of the

receiver being coherent or noncoherent. In a coherent receiver, provisions are made
for the recovery of both the carrier phase and symbol timing. In a woncoberent
receiver the carrier phase is ignored and provision is only'made for symbol timing.

Such a strategy is dictated by the fact that the carrier phase may be random, making

phase recovery a costly proposition. Synchronization techniques are discussed in the

latter part of the chapter, with particular emphasis on discrete-time signal processing.

Chapter 7 introduces spread-spectrum modulation. Unlike traditional forms of mod-

ulation discussed in earlier chapters, channel bandwidth is purposely sacrificed in

spread-spectrum modulation for the sake of security or protection against interfering
signals, The direct-sequence and frequency-hop forms of spread-spectrum modula-
tion are discussed.

Chapter 8 deals with multiuser radio communications, where a multitude of users

have access to a common radio channel. This type of communication channel is well

represented in satellite and wireless communication systems, both of which are dis-
cussed. The chapter includes a presentation of link budget analysis, emphasizing the
related antenna and propagation concepts, and noise calculations.

Chapter 9 develops the fundamental limits in information theory, which are embod-

ied in Shannon’s theorems for data compaction, data compression, and data trans-
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mission. These theorems provide upper bounds on the performance of information
sources and communication channels. Two concepts, basic to formulation of the
theorems, are (1) the entropy of a source (whose definition is analogous to that of
entropy in thermodynamics), and (2) channel capacity.

# Chapter 10 deals with error-control coding, which encompasses techniques for the
encoding and decoding of digital data streams for their reliable transmission over
noisy channels. Four types of error-control coding are discussed:

(i) Linear block codes, which are completely described by sets of linearly indepen-
dent code words, each of which consists of message bits and parity-check bits.
The parity-check bits are included for the purpose of error control.

(ii) Cyclic codes, which form a subclass of linear block codes.

(iiiy Convolutional codes, which involve operating on the message sequence contin-
uously in a serial manner.

(iv) Turbo codes, which provide a novel method of constructing good codes that
approach Shannon’s channel capacity in a physically realizable manner.

Methods for the generation of these codes and their decoding are discussed.

The book also includes supplementary material in the form of six appendices as
follows:

v

Appendix 1 reviews probability theory.

Appendix 2, on the representation of signals and systems, reviews the Fourier trans-

form and its properties, the various definitions of bandwidth, the Hilbert transform,

and the low-pass equivalents of narrowband signals and systems.

Appendix 3 presents an introductory treatment of the Bessel function and its modified

form. Bessel functions arise in the study of frequency modulation, noncoherent de-

tection of signals in noise, and symbol timing synchronization.

Appendix 4 introduces the confluent hypergeometric function, the need for which

arises in the envelope detection of amplitude-modulated signals in noise.

» Appendix S5 provides an introduction to cryptography, which is basic to secure
communications.

» Appendix 6 includes 12 useful tables of various kinds.

¥

'y
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As mentioned previously, the primary purpose of this book is to provide a modern
treatment of communication systems suitable for use in a one- or two-semester under-
graduate course at the senior level, The make-up of the material for the course is naturally
determined by the background of the students and the interests of the teachers involved.
The material covered in the book is both broad and deep enough to satisfy a variety of
backgrounds and interests, thereby providing considerable flexibility in the choice of
course material. As an aid to the teacher of the course, a detailed solutions manual for all
the problems in the book is available from the publisher.

§ Acknowledgments

I wish to express my deep gratitude to Dr. Gregory J. Pottie (University of California, Los
Angeles), Dr. Santosh Venkatesh (University of Pennsylvania), Dr. Stephen G. Wilson (Uni-
versity of Virginia), Dr. Gordon Stiiber (Georgia Institute of Technology}, Dr. Venugopal
Veeraralli (Cornell University), and Dr. Granville E. Ott (University of Texas at Austin)



PREFACE xi

for critical reviews of an earlier version of the manuscript and for making numerous sug-
gestions that have helped me shape the book into its present form, The treatment of the
effect of noise on envelope detection presented in Chapter 2 is based on course notes made
available to me by Dr. Santosh Venkatesh, for which I am grateful. I am grateful to Dr.
Gordon Stiiber for giving permission to reproduce Figure 6.32.

I am indebted to Dr. Michael Moher (Communications Research Centre, Ottawa)
for reading five chapters of an earlier version of the manuscript and for making many
constructive comments on turbo codes. I am equally indebted to Dr. Brendan Frey (Uni-
versity of Waterloo, Ontario) for his invaluable help in refining the material on turbo
codes, comments on low-density parity-check codes, for providing the software to plot
Fig. 9.18, and giving me the permission to reproduce Figures 10.27 and 10.33. I am grate-
ful to Dr. David Conn (McMaster University, Ontario) for his critical reading of the Back-
ground and Preview Chapter and for making suggestions on how to improve the presen-
tation of the material therein.

I also wish to thank Dr. Jean-Jacque Werner (Lucent Technologies, Holmdel), Dr.
James Mazo (Lucent Technologies, Murray Hill), Dr. Andrew Viterbi (Qualcom, San Di-
ego), Dr. Radford Neal (University of Toronto, Ontario), Dr. Yitzhak (Irwin) Kalet (Tech-
nion, Israel), Dr. Walter Chen (Motorola), Dr. John Cioffi (Stanford University), Dr. Jon
Mark (University of Waterloo, Ontario), and Dr. Robert Dony (University of Guelph,
Ontario); I thank them all for their helpful comments on selected sections in the book.
Corrections and suggestions for improvements to the book made by Dr. Donald Wunsch
II (University of Missouri) are also appreciated. ]

I'am grateful to my graduate student Mathini Sellathurai (McMaster University) for
performing the computer experiments in the book, and Hugh Pasika (McMaster Univer-
sity) for many useful comments on the Background and Preview Chapter and for doing
the computations on some graphical plots in the book. Proofreading of the page proofs
by Mathini Sellathurai and Alpesh Patel is much appreciated.

I am particularly grateful to my editor at Wiley, Bill Zobrist, for his strong support
and help throughout the writing of the book. I am indebted to Monique Calello, Senior
Production Editor at Wiley, for her tireless effort in overseeing the production of the book
in its various stages. I thank Katherine Hepburn for advertising and marketing the book.
I thank Karen Tongish for her careful copyediting of the manuscript, Katrina Avery for
her careful proofreading of the page proofs, and Kristen Maus for composing the index
of the book.

Last but by no means least, as always, I am grateful to my Technical Coordinator,
Lola Brooks, for her tireless effort in typing the manuscript of the book. I also wish to
record my gratitude to Brigitte Maier, Assistant Librarian, and Regina Bendig, Reference
Librarian, at McMaster University, for helping me on numerous occasions in tracing ref-
erences for the bibliography,

Simon Haykin
Ancaster, Ontario
January, 2000






# BACKGROUND AND PREVIEW : 1

Analog and Digital Types of Communication 21
Shannon’s Information Capacity Theorem 23

Random Processes 31

Mathematical Definition of a Random Process 32
Mean, Correlation, and Covariance Functions 35

Transmission of a Random Process Through a Linear Time-Invariant Filter 42

Representation of Narrowband Noise in Terms of In-phase and Quadrature

Representation of Narrowband Noise in Terms of Eﬁvelope and Phase

1.  The Communication Process 1
2.,  Primary Communication Resources: 3
3. Sources of Information 3
4.  Communication Networks 10
“§.  Communication Channels 15
6. Modulation Process 19
7.
8.
9. A Digital Communication Problem 24
10.  Historical Notes 26
Notes and References 29
[ CuaptEr 1
1.1  Introduction 31
1.2
1.3  Stationary Processes 33
1.4
1.5  Ergodic Processes 41
1.6
1.7  Power Spectral Density 44
1.8  Gaussian Process 54
1.9 Noise 38
1.10 Narrowband Noise 64
1.11
Components 64 -
1.12
Components 67
1.13 Sine Wave Plus Narrowband Noise 69
1.14

Computer Experiments: Flat-Fading Channel 71



xiv  CONTENTS

1.15 Summary and Discussion 75
Notes and References 77
Problems 78
CHAPTER 2 Continuous-Wave Modulation
2.1 Introduction 88
2.2 Amplitude Modulation 90
2.3 Linear Modulation Schemes 93
2.4  Frequency Translation 103
2.5  Frequency-Division Multiplexing 105
2.6  Angle Modulation 107
2.7  Frequency Modulation 109
2.8  Nonlinear Effects in FM Systems 126
2,9  Superheterodyne Receiver 128
2,10 Noise in CW Modulation Systems 130
2.11 Noise in Linear Receivers using Coherent Detection 132
2.12 Noise in AM Receivers using Envelope Detection 135
2.13 Noise in FM Receivers 142
2.14 Computer Experiments: Phase-locked Loop 157
2.15 Summary and Discussion 162

Notes and References 165
Problems 166

ECnarTER 3 Pulse Modulation

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
311
3.12
3.13
3.14
3.15

Introduction 183

Sampling Process 184

Pulse-Amplitude Modulation 188

Other Forms of Pulse Modulation 191
Bandwidth—Noise Trade-off 193

Quantization Process 193

Pulse-Code Modulation 201

Noise Considerations in PCM Systems 209
Time-Division Multiplexing 211

Digital Multiplexers 214

Virtues, Limitations, and Modifications of PCM 217
Delta Modulation 218

Linear Prediction 223

Differential Pulse-Code Modulation 227
Adaptive Differential Pulse-Code Modulation 229

88

183



CONTENTS  xv

3.16 Computer Experiment: Adaptive Delta Modulation 232
3.17 MPEG Audio Coding Standard 234
3.18 Summary and Discussion 236
Notes and References 238
Problems 239
CHAPTER 4 Baseband Pulse Transmission ' 247
4.1  Introduction 247
4.2 Matched Filter 248
4.3 Error Rate Due to Noise 253
4.4  Intersymbol Interference 259
4.5  Nyquist’s Criterion for Distortionless Baseband Binary Transmission 261
4.6  Correlative-Level Coding 267
4.7  Baseband M-ary PAM Transmission 275
4.8  Digital Subscriber Lines 277
4.9  Optimum Linear Receiver 282
4.10 Adaptive Equalization 287
4.11 Computer Experiments: Eye Patterns 293
4.12 Summary and Discussion 296
Notes and References 297
Problems 300
ECuAPTER 5 Signal-Space Analysis 309
5.1 Introduction 309
5.2 Geometric Representation of Signals 311
5.3 Conversion of the Continuous AWGN Channel into a Vector Channel 318
54  Likelihood Functions 322
5.5  Coherent Detection of Signals in Noise: Maximum Likelihood Decoding 322
5.6  Correlation Receiver 326
5.7 Probability of Error 328
5.8  Summary and Discussion 337
Notes and References 337
Problems 338
§CuariEr 6 Passband Digital Transmission 344
6.1 Introduction 344
6.2 Passband Transmission Model 348
6.3 Coherent Phase-Shift Keying 349



xvi CONTENTS

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12

6.13
6.14
6.15
6.16

§Cm37

Hybrid Amplitude/Phase Modulation Schemes 368

Coherent Frequency-Shift Keying 380

Detection of Signals with Unknown Phase 403

Noncoherent Orthogonal Modulation 407

Noncoherent Binary Frequency-Shift Keying 413

Differential Phase-Shift Keying 414

Comparison of Digital Modulation Schemes Using a Single Carrier 417
Voiceband Modems 420

Multichannel Modulation 431

Discrete Multitone ~ 440

Synchronization 448

Computer Experiments: Carrier Recovery and Symbol Timing 458
Summary and Discussion 464

Notes and References 465

Problems 468

Spread-Spectrum Modulation 479

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

f CuarTER 8

Introduction 479

Pseudo-Noise Sequences 480

A Notion of Spread Spectrum 488

Direct-Sequence Spread Spectrum with Coherent Binary Phase-Shift Keying 490
Signal-Space Dimensionality and Processing Gain 493
Probability of Error 497

Frequency-Hop Spread Spectrum 499

Computer Experiments: Maximal-Length and Gold Codes 505
Summary and Discussion 508

Notes and References 509

Problems 509

Multiuser Radio Communications 512

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Introduction 5§12

Multiple-Access Techniques 513

Satellite Communications 514

Radio Link Analysis 517

Wireless Communications 529

Statistical Characterization of Multipath Channels 533
Binary Signaling over a Rayleigh Fading Channel 542
TDMA and CDMA Wireless Communication Systems 547
Source Coding of Speech for Wireless Communications 550



CONTENTS  xvii

8.10 Adaptive Antenna Arrays for Wireless Communications 553
8.11 Summary and Discussion 559

Notes and References 560

Problems 562

§Cuapter 9 Fundamental Limits in Information Theory 567

9.1 Introduction 567
9.2 Uncertainty, Information, and Entropy 568
9.3  Source-Coding Theorem 574
9.4  Data Compaction 575
9.5  Discrete Memoryless Channels 581
9.6 Mutual Information 584
9.7  Channel Capacity 587
9.8  Channel-Coding Theorem 589 - ;
9.9  Differential Entropy and Mutual Information for Continuous Ensembles 593
9.10 Information Capacity Theorem 597
9.11 Implications of the Information Capacity Theorem 601
9.12 Information Capacity of Colored Noise Channel 607
9.13 Rate Distortion Theory 611
9.14 Data Compression 614
9.15 Summary and Discussion 616
Notes and References 617
Problems 618

ICuarrer 10 Error-Control Coding 626

10.1 Introduction 626
10.2 Discrete-Memoryless Channels 629
10.3 Linear Block Codes 632
10.4 Cyclic Codes 641
10.5 Convolutional Codes 654
10.6 Maximum Likelihood Decoding of Convolutional Codes, 660
10.7 Trellis-Coded Modulation 668 ’
10.8 Turbo Codes 674
10.9 Computer Experiment: Turbo Decoding 682
10.10 Low-Density Parity-Check Codes 683
10.11 Irregular Codes 691
10,12 Summary and Discussion 693
Notes and References 694
Problems 696



xvidi CONTENTS

APPENDIX 1 Probability Theory 703

APPENDIX 2 Representation of Signals and Systems 715

APPENDIX 3 Bessel Functions 73§

APPENDIX 4 Confluent Hypergeometric Functions 740

APPENDIX 5 Cryptography 742

APPENDIX 6 Tables 761

GLOSSARY 771
BIBLIOGRAPHY 777

INDEX 792



BACKGROUND
AND PREVIEW

The background and preview material presented herein sets the stage for a statistical

treatment of communication systems in subsequent chapters. In particular, we describe the

following:

» The communication process.

» Primary communication resources, namely, transmitted power and channel bandwidth.
» Sources of information.

W The two primary types of switching: circuit switching and packet switching.

» Communication channels for the transportation of information-bearing signals from the
transmitter to the receiver.

» The modulation process, which is basic to communication systems.
» Analog and digital types of communication systems.
W Shannon’s information capacity theorem.

» A digital communications problem.

The chapter concludes with some historical notes, as a source of motivation for the
reader.

§ The Communication Process

Today, communication enters our daily lives in so many different ways that it is very easy
to overlook the multitude of its facets. The telephones at our hands, the radios and tele-
visions in our living rooms, the computer terminals with access to the Internet in our offices
and homes, and our newspapers are all capable of providing rapid communications from
every corner of the globe. Communication provides the senses for ships on the high seas,
aircraft in flight, and rockets and satellites in space. Communication through a wireless
telephone keeps a car driver in touch with the office or home miles away. Communication
keeps a weather forecaster informed of conditions measured by a multitude of sensors.
Indeed, the list of applications involving the use of communication in one way or another
is almost endless.



2 ® BACKGROUND AND PREVIEW

In the most fundamental sense, communication involves implicitly the transmission
of information from one point to another through a succession of processes, as described
here:

1. The gencration of a message signal: voice, music, picture, or computer data, .

2. The description of that message signal with a certain measure of precision, by a set
of symbols: electrical, aural, or visual.

. The encoding of these symbols in a form that is suitable for transmission over a
physical medium of interest.

4. The transmission of the encoded symbols to the desired destination.

. The decoding and reproduction of the original symbols.

. The re-creation of the original message signal, with a definable degradation in qual-
ity; the degradation is caused by imperfections in the system.

W

@ W

There are, of course, many other forms of communication that do not directly involve
the human mind in real time. For example, in computer communications involving com-
munication between two or more computers, human decisions may enter only in setting
up the programs or commands for the computer, or in monitoring the results.

Irrespective of the form of communication process being considered, there are three
basic elements to every communication system, namely, zransmitter, channel, and receiver,
as depicted in Figure 1. The transmitter is located at one point in space, the receiver is
located at some other point separate from the transmitter, and the channel is the physical
medium that connects them. The purpose of the transmitter is to convert the message signal
produced by the source of information into a form suitable for transmission over the
channel. However, as the transmitted signal propagates along the channel, it is distorted
due to channel imperfections. Moreover, noise and interfering signals (originating from
other sources) are added to the channel output, with the result that the received signal is
a corrupted version of the transmitted signal. The receiver has the task of operating on
the received signal so as to reconstruct a recognizable form of the original message signal
for a user.

There are two basic modes of communication:

1. Broadcasting, which involves the use of a single powerful transmitter and numerous
receivers that are relatively inexpensive to build. Here information-bearing signals
flow only in one direction.

2. Point-to-point communication, in which the communication process takes place over
a link between a single transmitter and a receiver. In this case, there is usually a
bidirectional flow of information-bearing signals, which requires the use of a trans-
mitter and receivér at each end of the link.

Communication System

1 I
Source of | . . { User of
information [ 3 Transmitter Receiver N T information
! Estimate of |
signal | message |
: signal |
w |
| Channel [
| Transmitted Received |
: signal signal I

FIGURE 1 FElements of a communication system.
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The broadcasting mode of communication is exemplified by radio and television, and the
ubiquitous telephone provides the means for one form of point-to-point communication.
Another example of point-to-point communication is the link between an Earth station
and a robot navigating the surface of a distant planet.

All these different communication systems as well as others not mentioned here share
a common feature: The underlying communication process in each and every one of them
is statistical in nature. Indeed, it is for this important reason that much of this book is
devoted to the statistical underpinnings of communication systems. In so doing, we develop
an exposition of the fundamental issues involved in the study of different communication
methodologies and thereby provide a natural forum for their comparative evaluations.

I Primary Communication Resources

In a communication system, two primary resources are employed: transmitted power and
channel bandwidth. The transmitted power is the average power of the transmitted signal.
The channel bandwidth is defined as the band of frequencies allocated for the transmission
of the message signal. A general system design objective is to use these two resources as
efficiently as possible. In most communication channels, one resource may be considered
more important than the other. We may therefore classify communication channels as
power limited or band limited. For example, the telephone circuit is a typical band-limited
channel, whereas a space communication link or satellite channel is typically power
limited. ‘

When the spectrum of a message $ignal extends down to zero or low frequencies, we
define the bandwidth of the signal as that upper frequency above which the spectral content
of the signal is negligible and therefore unnecessary for transmitting information. For
example, the average voice spectrum extends well beyond 10 kHz, though most of the
average power is concentrated in the range of 100 to 600 Hz, and a band from 300 to
3100 Hz gives good articulation. Accordingly, we find that telephone circuits that respond
well to this latter range of frequencies give quite satisfactory commercial telephone service.

Another-important point that we have to keep in mind is the unavoidable presence
of noise in a communication system. Noise refers to unwanted waves that tend to disturb
the transmission and processing of message signals in a communication system. The
sources of noise may be internal or external to the system.

A quantitative way to account for the effect of noise is to introduce signal-to-noise
ratio (SNR) as a system parameter. For example, we may define the SNR at the receiver
input as the ratio of the average signal power to the average noise power, both being
measured at the same point. The customary practice is to express the SNR in decibels
(dBs), defined as 10 times the logarithm (to base 10) of the power ratio. For example,
signal-to-noise ratios of 10, 100, and 1,000 correspond to 10, 20, and 30 dBs, respectively.

I Sources of Information

The telecommunications environment is dominated by four important sources of infor-
mation: speech, music, pictures, and computer data. A source of information may be
characterized in terms of the signal that carries the information. A signal is defined as a
single-valued function of time that plays the role of the independent variable; at every
instant of time, the function has a unique value. The signal can be one-dimensional, as in
the case of speech, music, or computer data; two-dimensional, as in the case of pictures;
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three-dimensional, as in the case of video data; and four-dimensional, as in the case of
volume data over time. In the sequel, we elaborate on different sources of information.

(i) Speech is the primary method of human communication. Specifically, the speech

=

communication process involves the transfer of information from a speaker to a

listener, which takes place in three successive stages:

® Production. An intended message in the speaker’s mind is represented by a speech
signal that consists of sounds (i.e., pressure waves) generated inside the vocal tract
and whose arrangement is governed by the rules of language.

® Propagation. The sound waves propagate through the air at a speed of 300 m/s,
reaching the listener’s ears,

B Perception, The incoming sounds are deciphered by the listener into a reccived
message, thereby completing the chain of events that culminate in the transfer of
information from the speaker to the listener.

The speech-production process may be viewed as a form of filtering, in which a sousnd
source excites a vocal tract filter. The vocal tract consists of a tube of nonuniform
cross-sectional area, beginning at the glottis (i.e., the opening between the vocal
cords) and ending at the /ip. As the sound propagates along the vocal tract, the
spectrum (i.e., frequency content) is shaped by the frequency selectivity of the vocal
tract; this effect is somewhat similar to the resonance phenomenon observed in organ
pipes. The important point to note here is that the power spectrum (i.e., the distri-
bution of long-term average power versus frequency) of speech approaches zero for
zero frequency and reaches a peak in the neighborhood of a few hundred hertz. To
put matters into proper perspective, however, we have to keep in mind that the
hearing mechanism is very sensitive to frequency. Moreover, the type of communi-
cation system being considered has an important bearing on the band of frequencies
considered to be “essential” for the communication process. For example, as men-
tioned previously, a bandwidth of 300 to 3100 Hz is considered adequate for com-
mercial telephonic communication.
The second source of information, music, originates from instruments such as the
piano, violin, and flute. The note made by a musical instrument may last for a short
time interval as in the pressing of a key on a piano, or it may be sustained for a long
time interval as in the example of a flute player holding a prolonged note. Typically,
music has two structures: a melodic structure consisting of a time sequence of sounds,
and a harmonic structure consisting of a set of simultaneous sounds. Like a speech
signal, a musical signal is bipolar. However, a musical signal differs from a speech
signal in that its spectrum occupies a much wider band of frequencies that may extend
up to about 15 kHz. Accordingly, musical signals demand a much wider channel
bandwidth than speech signals for their transmission.

The third source of information, pictures, relies on the human visual system for its

perception. The picture can be dynamic, as in television, or static, as in facsimile.

Taking the case of television first, the pictures in motion are converted into electrical

signals to facilitate their transport from the transmitter to the receiver. To do s0,

each complete picture is sequentially scanned. The scanning process is carried out in

a TV camera. In a black-and-white TV, the camera contains optics designed to focus

an image on a photocathode consisting of a large number of photosensitive elements.

The charge pattern so generated on the photosensitive surface is scanned by an elec-

tron beam, thereby producing an output current that varies temporally with the way

in which the brightness of the original picture varies spatially from one point to
another. The resulting output current is called a video signal. The type of scanning
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used in television is a form of spatial sampling called raster scanning, which converts
a two-dimensional image intensity into a one-dimensional waveform; it is somewhat
analogous to the manner in which we read a printed paper in that the scanning is
performed from left to right on a line-by-line basis. In North American analog tele-
vision, a picture is divided into 523 lines, which constitute a frame. Each frame is
decomposed into. two interlaced fields, each of which consists of 262.5 lines. For
convenience of presentation, we will refer to the two felds as I and II. The scanning
procedure is illustrated in Figure 2. The lines of field I are depicted as solid lines, and
those of field IT are depicted as dashed lines. The szart and end of each field are also
included in the figure. Field I is scanned first. The scanning spot of the TV camera
moves with constant velocity across each line of the field from left to right, and the
image intensity at the center of the spot is measured; the scanning spot itself is partly
responsible for local spatial averaging of the image. When the end of a particular
line is reached, the scanning spot quickly flies back (in a horizontal direction) to the
start of the next line down in the field. This flyback is called the horizontal retrace.
The scanning process described here is continued until the whole field has been ac-
counted for. When this condition is reached, the scanning spot moves quickly (in a
vertical direction) from the end of field I to the start of field II. This second flyback
is called the vertical retrace. Field I is treated in the same fashion as field I. The time
taken for each field to be scanned is 1/60 s. Correspondingly, the time taken for a
frame or a complete picture to be scanned is 1/30 s. With 525 lines in a frame, the
line-scanning frequency equals 15.75 kHz. Thus, by flashing 30 still pictures per
second on the display tube of the TV receiver, the human eye perceives them to be
moving pictures. This effect is due to a phenomenon known as the persistence of
vision. During the horizontal- and vertical-retrace intervals, the picture tube is made
inoperative by means of blanking pulses that are generated at the transmitter. More~
over, synchronization between the various scanning operations at both transmitter
and receiver is accomplished by means of special pulses that are transmitted during
the blanking periods; thus, the synchronizing pulses do not show on the reproduced
picture, The reproduction quality of a TV picture is limited by two basic factors:

1. The number of lines available in a raster scan, which limits resolution of the

picture in the vertical direction.
2. The channel bandwidth available for transmitting the video signal, which limits
resolution of the picture in the horizontal direction.

Start of field |

Start of field I

. A
End of field | End of field Il

FIGURE 2 Interlaced raster scan.
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For each direction, resolution is expressed in terms of the maximum number of lines
alternating between black and white that can be resolved in the TV image along the
pertinent direction by a human observer. In the NTSC (National Television System
Committee) system, which is the North American standard, the parameter values
used result in a video bandwidth of 4.2 MHz, which extends down to zero frequency.
This bandwidth is orders of magnitude larger than that of a speech signal. Note also
that whereas a speech signal is bipolar, a video (television) signal is inherently positive
(i.e., unipolar).

In color TV, the perception of color is based on the three types of color recep-
tors (cones) in the human eye: red, green, and blue, whose wavelengths are 570 nm,
535 nm, and 445 nm, respectively. These three colors are referred to as primary
colors because any other color found in nature can be approximated by an additive
mixture of them. This physical reality is indeed the basis for the transmission of color
in commercial TV broadcasting. The three primary colors are represented by the
video signals #z(2), m(t), and mp(t), respectively. To conserve bandwidth and pro-
duce a picture that can be viewed on a conventional black-and-white {monochrome)
television receiver, the transmission of these three primary colors is accomplished by
observing that they can be uniquely represented by any three signals that are inde-
pendent linear combinations of #i5(t), m(t), and mp(t). The three signals are as
follows:

® A luminance signal, m; (t), which produces a black-and-white version of the color
picture when it is received on a conventional monochrome television receiver.

> A pair of signals, #1;(t) and m(t), called the chrominance signals, which indicate
the way the color of the picture departs from shades of gray.

The luminance signal #;(t) is assigned the entire 4.2 MHz bandwidth. Owing to
certain properties of human vision, tests show that if the nominal bandwidths of the
chrominance signals #;(¢) and m(¢) are 1.6 MHz and 0.6 MHz, respectively, sat-
isfactory color reproduction is possible.

Turning next to a facsimile (fax) machine, the purpose of this machine is to
transmit still pictures over a communication channel (most notably, a telephone
channel). Such a machine provides a highly popular facility for the transmission of .
handwritten or printed text from one point to another; transmitting text by facsimile
is treated simply like transmitting a picture. The basic principle employed for signal
generation in a facsimile machine is to scan an original document {picture) and use
an image sensor to convert the light to an electrical signal.

Finally, personal computers (PCs) have become an integral part of our daily lives.
We use them for electronic mail, exchange of software, and sharing of resources. The
text transmitted by a PC is usually encoded using the American Standard Code for
Information Interchange (ASCI), which is the first code developed specifically for
computer communications. Each character in ASCII is represented by seven data bits
constituting a unique binary pattern made up of Os and 1s; bit is acronym for binary
digit. Thus a total of 27 = 128 different characters can be represented in ASCII. The
characters are various lowercase and uppercase letters, numbers, special control sym-
bols, and punctuation symbols commonly used such as @, $, and %. Some of the
special “control” symbols, such as BS (backspace) and CR {carriage return), are used
to control the printing of characters on a page. Other symbols, such as ENQ (enquiry)
and ETB (end of transmission block), are used for communication purposes. (A com-
plete listing of ASCII characters is given in Table A6.1.) The seven data bits are
ordered starting with the most significant bit b, down to the least significant bit &,
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FIGURE 3 The bit format for sending asynchronous serial data used in the RS-232
standard.

as illustrated in Figure 3. At the end of the data bits, an extra bit &4 is appended for
the purpose of error detection. This error-detection bit is called a parity bit. A se-
quence of eight bits is referred to as abyte, or an octet. The parity bit is set in such
a way that the total number of 1s in each byte is odd for odd parity and even for
even parity. Suppose, for example, the communicators agree to use even parity; then
the parity bit will be a 0 when the number of 1s in the data bit is even and a 1 when
it is odd. Hence, if a single bit in a byte is received in error and thereby violates the
even parity rule, it can be detected and then corrected through retransmission. Per-
sonal computers are often connected via their RS (recommended standard)-232 ports.
When ASCII data (in fact, all character data) are transmitted through these ports, a
start bit, set to 0, and one or more stop bits, set to 1, as shown in Figure 3, are added
to provide character framing. When the transmission is idle, a long series of 1s is
sent so as to keep the circuit connection alive. In Figure 3, symbols 0 and 1 are
designated as “low” and “high,” respectively. They are also sometimes referred to
as “space” and “mark,” respectively; the latter terminology comes from the days of
telegraphy. The text prepared on a PC is usually stored and then transmitted over a
communication channel (e.g., a telephone channel) with a single character being sent
at a time. This form of data transmission is called asynchronous transmission, as
opposed to synchronous transmission in which a whole sequence of encoded char-
acters is sent over the channel in one long transmission. Encoded characters produced
by a mixture of asynchronous and synchronous terminals are combined by means
of data multiplexers. The multiplexed stream of data so formed is then applied to a
device called a #odem (modulator-demodulator) for the purpose of transmission
over the channel.

In summary, computer-generated data and television signals are both wide-
band signals, in that their power content occupies a wide range of frequencies. An-
other important characteristic of data communication between personal computers
is burstiness, which means that information is usually transmitted from one terminal
to another in bursts with silent periods between bursts. Indeed, data traffic involving
computers in one form or another tends to be of a bursty nature. This is to be
contrasted with traffic in a digital transmission network due o voice or interactive
video, which, relatively speaking, is continuous.

Another way in which we use the computer is to download compressed forms
of text, audio, and video data from a service provider at a remote location. Data
compression provides a practical means for the efficient storage and transmission of
these kinds of data. A data compression system consists of an encoder and a decoder,
where the compression of an incoming data stream and its reconstruction are pet-
formed, respectively. Basically, there are two forms of data compression:

1. Lossless compression operates by removing the redundant information contained
in the data of interest. The compression is said to be lossless because it is com-
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pletely reversible in that the original data can be reconstructed exactly. Lossless
compression is also referred to as data compaction.

2. Lossy compression involves the loss of information in a controlled manner; the
compression may therefore not be completely reversible. Lossy compression is,
however, capable of achieving a compression ratio higher than that attainable
with lossless methods,

For digital text, lossless compression is required. In this context, we mention the

Lempel-Ziv algorithm, which is intrinsically adaptive and capable of encoding

groups of source symbols that occur frequently. It achieves a compression of ap-

proximately 55 percent on ordinary English text, which, loosely speaking, corre-
sponds to the compression that would be achieved by encoding pairs of letters, The

Lempel-Ziv algorithm is a form of entropic coding, or source coding, which is dis-

cussed in Chapter 9.

In many other applications, lossy compression is usually the preferred approach
as its use can substantially reduce the data size without significantly altering the
perceptual quality of an image or audio signal. For such applications, this form of
data compression is acceptable, and in high-throughput data-transmission applica-
tions such as the Internet, it is a necessity. But in some other applications such as a
clinical setting, the quality of a medical image (e.g., digital x-ray radiograph) must
not be degraded on reconstruction,

For digital audio and video applications involving storage or transmission to
be viable in today’s marketplace, we need standard compression algorithms that
enable the interoperability of equipment produced by different manufacturers. In this
context, we mention three prominent standard compression algorithms that cater to
different needs:

& The JPEG image coding standard® is designed to compress full-color or grayscale
images of natural, real-world scenes by exploiting known limitations of the human
visual system; JPEG stands for Joint Photographic Experts Group. At the input to
the encoder, picture elements, or pixels, are grouped into 8 X 8 blocks, which are
applied to a relative of the Fourier transform known as the discrete cosine trans-
form (DCT)?. The DCT decomposes each block of pixels into a set of 64 coeffi-
cients that closely satisfy two related objectives:

1. The coefficients should be as uncorrelated as possible.

2. The energy of the input signal should be packed into the smallest number of

coefficients possible.

The next operation in the encoder is that of quantization, where each of the 64
DCT coefficients is rounded off. In JPEG, quantization is performed in conjunction
with a quantization table supplied by the user as an input to the encoder. Fach
element of the table is an integer from 1 to 255 that specifies the step size of the
DCT coefficients, which, in turn, permits the representation of each quantized
DCT coefficient by an 8-bit code word. Basically, the purpose of quantization is
to discard information that is not perceptually discernible. Quantization is a nany-
to-one mapping and therefore the principal source of lossiness in the encoder. The
final operation in the encoder is that of Huffman coding, which is a form of
entropic (source) coding also discussed in Chapter 9. Huffman coding achieves
additional data compression in a lossless manner by encoding the quantized DCT
coefficients in accordance with their statistical characteristics. At the decoder, data
reconstruction is performed through a sequence of operations that are the inverse
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of those.in the encoder, namely, Huffman decoding, dequantization in accordance

with the quantization table, and finally the inverse DCT.

The MPEG-1/video coding standard* is designed primarily to compress video sig-

nals at 30 frames per second (fps) into bit streams running at the rate of 1.5

megabits per second (Mb/s); MPEG stands for Motion Photographic Experts

Group. The MPEG-1 video coding standard achieves this design goal by exploiting

four basic forms of redundancy inherently present in video data:

1. Interframe (temporal) redundancy.

2. Interpixel redundancy within a frame.

3. Psychovisual redundancy.

4. Entropic coding redundancy.

It is the exploitation of interframe redundancy that distinguishes MPEG-1 from

JPEG. In principle, neighboring frames in typical video sequences are highly cor-

related. The meaning of this high correlation is that, in an average sense, a video

signal does not change rapidly from one frame to the next, and as a result, the
difference between adjacent frames has a variance (i.e., average powet) that is
much smaller than the variance of the video signal itself. Accordingly, the inter-
frame redundancy can be significantly reduced to produce a more efficiently com-

pressed video signal. This reduction is achieved through the use of prediction o

estimate each frame from its neighbors; the resulting prediction error is transmitted

for motion estimation and compensation. The prediction is nonlinear by virtue of
the nature of the problem. As with-JPEG, the interpixel redundancy is reduced
through the combined use of the DCT, quantization, and lossless entropic coding.

The net result is that full-motion.video becomes a 1.5 Mb/s stream of computer

data that can be stored on compact discs or integrated with texts and graphics.

Most important, the full-motion video and associated audio can be delivered over

existing computer and telecommunication networks, which, in turn, makes it pos-

sible to fulfill the need for video-on-demand on the Internet.

The MPEG-1/audio coding standard® is based on perceptual coding, which is a

waveform-preserving process; that is, the amplitude-time waveform of the decoded

audio signal closely approximates that of the original audio signal. In basic terms,
the encoding process encompasses four distinct operations:

1. Time-frequency mapping, whereby the input audio signal is decomposed into
multiple subbands.

2. Psychoacoustic modeling, which simultaneously operates on the input audio
signal to compute certain thresholds using known rules from the psychoacous-
tic behavior of the human auditory system.

3. Quantization and coding, which, in conjunction with the psychoacoustic
model, works on the output of the time-frequency mapper so as to maintain
the noise resulting from quantization process at an inaudible level.

4. Frame-packing, which is used to format the quantized audio samples into a
decodable bit stream.

The psychoacoustic model builds on a perceptual phenomenon known as auditory

masking. Specifically, the human ear does nor perceive quantization noise in a

given frequency band if the average noise power lies below the masking threshold

(i.e., the threshold of just noticeable distortion). For a given frequency band of

interest, the masking threshold varies with frequency across that band. The min-
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imum masking threshold is the one that is employed in the psychoacoustic model
on a band-by-band basis. For example, the net result of using the MPEG-1 stan-
dard on the two audio channels of a stereo program is that each digitized audio
signal, coming in at the rate of 768 kilobits per second (kb/s), is compressed to a
rate as low as 16 kb/s. (The incoming data rate of 768 kb/s corresponds to a
sampling rate of 48 kHz, with each sample being represented by a 16-bit code
word.) Thus the MPEG-1/audio coding standard is suitable for the storage of
audio signals in inexpensive media or their transmission over channels with hrmted
bandwidth, Whlle at the same time maintaining perceptual quality.

f Communication Networks®

A communication network (or simply network), illustrated in Figure 4, consists of an
interconnection of a number of routers made up of intelligent processors (e.g., microproc-
essors). The primary purpose of these processors is to route data through the network,
hence the name. Each router has one or more bosts attached to it; hosts are devices that
communicate with one another. The network is designed to serve as a shared resource for
moving data exchanged between hosts in an efficient manner and to provide a framework
to support new applications and services.

The telephone network is an example of a communication network in which circuit
switching is used to provide a dedicated communication path, or circuit, between two
hosts. The circuit consists of a connected sequence of links from source to destination. For
example, the links may consist of time slots for which a common channel is available for
access by a multitude of users. The circuit, once in place, remains uninterrupted for the
duration of transmission. Circuit switching is usually controlled by a centralized hierar-
chical control mechanism with knowledge of the network’s organization, To establish a
circuit-switched connection, an available path through the network is seized and then
dedicated to the exclusive use of the two hosts wishing to communicate. In particular, a
call-request signal must propagate all the way to the destination and be acknowledged
before transmission can begin. Then, the network is effectively transparent to the users.
This means that during the connection time, the bandwidth and resources allocated to the
circuit are essentially “owned” by the two hosts until the circuit is disconnected. The circuit

Boundary
of subnet

Hosts

FIGURE 4 Communication network.
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thus represents an efficient use of resources only to the extent that the allocated bandwidth
is properly used. Although the telephone network is used to transmit data, voice constitutes
the bulk of the network’s traffic. Indeed, circuit switching is well suited to the transmission
of voice signals, since voice gives £ise to a stream traffic and voice conversations tend to
be of long duration (about 2 minutes on the average) compared to the time required for
setting up the circuit {about 0.1 to 0.5 seconds). Moreover, in most voice conversations,
there is information flow for a relatively large percentage of the connection time, which
makes circuit switching all the more suitable for voice conversations.

In circuit switching, a communication link is shared between the different sessions
using that link on a fixed allocation basis. In packet switching, on the other hand, the
sharing is done on a demand basis, so it has an advantage over circuit switching in that
when a link has traffic to send, the link may be more fully utilized.

The network principle of packet switching is “store and forward.” Specifically, in a
packet-switched network, any message larger.than a specified size is subdivided prior to
_transmission into segments not exceeding the specified size. The segments are commonly
referred to as packets. The original message is reassembled at the destination on a packet-
by-packet basis. The network may be viewed as a distributed pool of network resources
(i.e., channel bandwidth, buffers, and switching processors) whose capacity is shared dy-
namically by a community of competing hosts wishing to communicate. In contrast, in a
circuit-switched network, resources are dedicated t6 a pair of hosts for the entire period
they are in session. Accordingly, packet switching is far better suited to a computer-
communication environment in which bursts of data are exchanged between hosts on an
occasional basis. The use of packet switching, however, requires that careful control be
exercised on user demands; otherwise, the network may be seriously abused.

The design of a data network (i.e., a network in which the hosts are all made up of
computers and terminals) may proceed in an orderly way by looking at the network in
terms of a layered architecture, regarded as a hierarchy of nested layers. Layer refers to a
process or device inside a computer system, designed to perform a specific function. Nat-
urally, the designers of a layer will be intimately familiar with its internal details and
operation. At the system level, however, a user views the layer merely as a “black box™
that is described in terms of inputs, outputs, and the functional relation between outputs
and inputs. In a layered architecture, each layer regards the next lower layer as one or
more black boxes with some given functional specification to be used by the given higher
layer. Thus, the highly complex communication problem in data networks is resolved as
a manageable set of well-defined interlocking functions. It is this line of reasoning that has
led to the development of the open systems interconnection (OSl)” reference model by a
subcommittee of the International Organization for Standardization. The term open refers
to the ability of any two systems conforming to the reference model and its associated
standards to interconnect.

In the OSI reference model, the communications and related-connection functions
are organized as a series of layers, or levels, with well-defined interfaces, and with each
layer built on its predecessor. In particular, each layer performs a related subset of primitive
functions, and it relies on the next lower layer to perform additional primitive functions.
Moreover, each layer offers certain services to the next higher layer and shields the latter
from the implementation details of those services. Between each pair of layers, there is an
interface. It is the interface that defines the services offered by the lower layer to the upper
layer.

The OSI model is composed of seven layers, as illustrated in Figure 3; this figure also
includes a description of the functions of the individual layers of the model. Layer k on
system A, say, communicates with layer k on some other system B in accordance with a
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set of rules and conventions, collectively constituting the layer & protocol, where k = 1,
2, ... 7. (The term protocol has been borrowed from common usage, describing conven-
tional social behavior between human beings.) The entities that comprise the correspond-
ing layers on different systems are referred. to as peer processes. In other words, commu-
nication is achieved by having the peer processes in two different systems communicate
via a protocol, with the protocol itself being defined by a set of rules of procedure. Physical
communication between peer processes exists only at layer 1. On the other hand, layers 2
through 7 are in virtual communication with their distant peers. However, each of these
six layers can exchange data and control information with its neighboring layers (below
and above) through layer-to-layer interfaces. In Figure 5, physical communication is shown
by solid lines and virtual communication by dashed lines.
Qur primary interest in this book is in the physical layer of the OSI model.

& INTERNET

Any discussion of computer networks naturally leads to the Internet. In the Internet par-
adigm, the underlying network technology is decoupled from the applications at hand by
adopting an abstract definition of network service. In more specific terms, we may say the
following;:

# The applications are carried out independently of the technology employed to con-
struct the network. .

» By the same token, the network technology is capable of evolving without affecting
the applications.

The Internet architecture, depicted in Figure 6, has three functional blocks: hosts,
subnets, and routers. The hosts constitute nodes of the network, where data originate or
where they are delivered. The routers constitute intermediate nodes that are used to cross
subnet boundaries. Within a subnet, all the hosts belonging to that subnet exchange data
directly; see, for example, subnets 1 and 3 in Figure 6.

Like other computer networks, the Internet has a layered set of protocols. In partic-
ular, the exchange of data between the hosts and routers is accomplished by means of the
Internet protocol (IP), as illustrated in Figure 7. The IP is a universal protocol that resides
in the network layer (i.e., layer 3 of the OSI reference model). It is simple, defining an
addressing plan with a built-in capability to transport data in the form of packets from
node to node. In crossing a subnetwork boundary, the routers make the decisions as to
how the packets addressed for a specified destination should be routed. This is done on
the basis of routing tables that are developed through the use of custom protocols for

FIGURE 6 An interconnected network of subnets.



14

# BACKGROUND AND PREVIEW

AP AP AP AP
TCP/UDP TCP/UDP TCP/UDP TCP/UDP
Hid IP P iP

AP: Application protocol UDP: User datagram protocol
TCP: Transmission control protocol 1P Internet protoco!

FIGURE 7 [llustrating the network architecture of the Internet.

exchanging pertinent information with other routers. The net result of using the layered
set of protocols is the delivery of best effort service. That is, the Internet offers to deliver
each packet of data, but there are no guarantees on the transit time experienced in delivery
or even whether the packets will be delivered to the intended recipient.

# BROADBAND NETWORKS

With the ever-increasing demand for new services (e.g., video on demand, multimedia
communications) and the availability of key enabling technologies (e.g., optical fibers,
digital switches), the telephone network is evolving into an all-purpose broadband network
known as the broadband integrated services digital network (B-ISDN). The underlying
technology that makes B-ISDN possible is a user-network interface protocol called the
asynchronous transfer mode (ATM). ATM is a high-bandwidth, low-delay, packet-like
technique used for switching and multiplexing; it is independent of the physical means of
transport. The low-delay feature of the technique is needed to support real-time services
such as voice. The high-bandwidth feature is required to handle video on demand. Simply
put, ATM is both a technology that is hidden from the users and a connection-oriented
service that is visible to the users.

As the name implies, ATM is not synchronous (i.e., tied to a master clock). It allows
for the transport of digital information in the form of small, fixed-size packets called cells.
The key feature of ATM to note here is that the connection-oriented service preserves call
sequencing, which means that no reassembly of cells is needed prior to presenting the traffic
stream to the destination host. The deployment of a cell-switching technology in B-ISDN
is a gigantic break with the traditional use of circuit switching in the telephone network.

The primary purpose of ATM is to allocate network resources (i.e., bandwidth, buf-
fers, and processing horsepower) efficiently so as to guarantee the expected guality of
service (QoS) for each connection. QoS is measured in terms of three parameters:

# Cell loss ratio, defined as the ratio of the number of cells lost in transport across the
network to the total number of cells pumped into the network.

# Cell delay, defined as the time taken for a cell of a particular connection to transit
across the network.

> Cell delay variation, defined as the dispersion or jitter about the mean cell delay.

Quality of service offered in B-ISDN is to be contrasted with best effort service offered by
the Internet.
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TABLE 1 Hierarchy
of SONET daia rates

Level® Data Rate (Mb/s)
0C-1 51.84
0C-3 155.52
0C-9 466.56
0C-12 622.08
0C-18 933.12
0C-24 1,244.16
0C-36 1,866.24
0C-48 2,488.32

*0C stands for optical carrier level.

After their generation, the ATM cells are structured for transport across the network.
The cells in B-ISDN are placed on an optical transmission system called the synchronous
optical network (SONET);® optical fibers are discussed in the next section. SONET uses
time-division multiplexing, whereby the entire bandwidth of an optical fiber is devoted to
different incoming data streams on a time-shared basis, hence the need for a synchronous
operation. SONET is controlled by a master clock with an accuracy of about 1 part in
10°. Thus bits of data are sent on a SONET line at extremely precise intervals, controlled
by the master clock. Nevertheless, SONET permits the irregular time arrivals of ATM
cells. '

The basic SONET frame is a block of 810 bytes put out every 125 us for an overall
data rate of 51.84 Mb/s. Having 8000 frames every second exactly matches the sampling
rate of 8 kHz, which is the standard sampling rate for the digital transmission of voice
signals across the telephone network. The basic data rates of 51.84 Mb/s are synchronously
byte-interleaved to generate a hierarchy of data rates, as summarized in Table 1.

§ Communication Channels

The transmission of information across a communication network is accomplished in the
physical layer by means of a communication channel. Depending on the mode of trans-
mission used, we may distinguish two basic groups of communication channels: channels
based on guided propagation and those based on free propagation. The first group includes
telephone channels, coaxial cables, and optical fibers. The second group includes wireless
broadcast channels, mobile radio channels, and satellite channels. These six channels are
described in what follows.

(i) As mentioned earlier, a typical telephone network uses circuit switching to establish
an end-to-end communication link on a temporary basis. The primary purpose of
the network is to ensure that the telephone transmission between a speaker at one
end of the link and a listener at the other end is an acceptable substitute for
face-to-face conversation. In this form of communication, the message source is the
sound produced by the speaker’s voice, and the ultimate destination is the listener’s
ear, The telephone channel, however, supports only the transmission of electrical
signals. Accordingly, appropriate transducers are used at the transmitting and re-
ceiving ends of the system. Specifically, a microphone is placed near the speaker’s
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mouth to convert sound waves into an electrical signal, and the electrical signal is
converted back into acoustic form by means of a moving-coil receiver placed near
the listener’s ear. Present-day designs of these two transducers have been perfected
so as to respond well to frequencies ranging from 20 to 8000 Hz; moreover, a pair
of them can be compactly packaged inside a single telephone set that is easy to speak
into or listen from. The telephone channel is a bandwidih-limited channel. The re-
striction on bandwidth arises from the requirement of sharing the channel among a
multitude of users at any one time. A practical solution to the telephonic commu-
nication problem must therefore minimize the channel bandwidth requirement, sub-
ject to a satisfactory transmission of human voice. To meet this requirement, the
transducers and channel specifications must conform to standards based on subjec-
tive tests that are performed on the intelligibility, or articulation, of telephone signals
by representative male and female speakers. A speech signal (male or female) is es-
sentially limited to a band from 300 to 3100 Hz in the sense that frequencies outside
this band do not contribute much to articulation efficiency. This frequency band may
therefore be viewed as a rough guideline for the passband of a telephore channel
that provides a satisfactory service, as illustrated in Figure 8 for a typical toll con-
nection. Figure 84 shows the insertion loss of the channel plotted versus frequency;
insertion Joss (in dB) is defined as 10 log;o(Po/P;), where P, is the power delivered
to a load from a source via the channel and P, is the power delivered to the same
load when it is connected directly to the source. Figure 8b shows the corresponding
plot of the envelope (group) delay (in milliseconds) versus frequency; envelope delay
is defined as the negative of the derivative of the phase response with respect to the
angular frequency @ = 2mf. The plots of Figure 8 clearly illustrate the dispersive
nature of the telephone channel.

The telephone channel is built using twisted pairs for signal transmission. A
twisted pair consists of two solid copper conductors, each of which is encased in a
polyvinylchloride (PVC) sheath. Typically, each pair has a twist rate of 2 to 12 twists
per foot, and a characteristic impedance of 90 to 110 ohms. Twisted pairs are usually
made up into cables, with each cable consisting of many pairs in close proximity to
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Figune 8 Characteristics of typical telephone connection: () Insertion loss. (b) Envelope delay.
(Adapted from Bellamy, 1991.)
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each other. Twisted pairs are naturally susceptible to electromagnetic interference
(EMI), the effects of which are mitigated through twisting the wires.
A coaxial cable consists of an inner conductor and an outer conductor, separated by
a dielectric insulating material. The inner conductor is made of a copper wire encased
inside the dielectric material. As for the outer conductor, it is made of copper, tinned
copper, or copper-coated steel. Typically, a coaxial cable has a characteristic imped-
ance of 50 or 75 ohms. Compared to a twisted-pair cable, a coaxial cable offers a
greater degree of immunity to EMI. Moreover, because of their much higher band-
width, coaxial cables can support the transmission of digital data at much higher bit
rates than twisted pairs. Rates up to 20 Mb/s are feasible using coaxial cables, with
10 Mb/s being the standard.

Whereas the use of a twisted pair has been confined mainly to point-to-point
service, a coaxial cable can operate as a multiple-access medium by using high-
impedance taps. A common application of coaxial cables is as the transmission me-

dium for local area networks in an office environment.

Another common application of coaxial cables is in cable-television systems,

also known as community-antenna television (CATV) systems. In this application
coaxial cables are used to distribute television, audio, and data signals from the head
end to the subscribers. The bead end is the central originating unit of the CATV
system, where all signals are carried and processed.
An optical fiber is a dielectric wave guide that transports light signals from one place
to another just as a twisted-wire pait or a coaxial cable transports electrical signals.
It consists of a central core within which the propagating electromagnetic field is
confined and which is surrounded by a cladding layer, which is itself surrounded by
a thin protective jacket.” The core and cladding are both made of pure silica glass,
whereas the jacket is made of plastic. Optical fibers have unique characteristics that
make them highly attractive as a transmission medium. In particular, they offer the
following unique characteristics:

» Enormous potential bandwidth, resulting from the use of optical carrier frequen-
cies around 2 % 10" Hz; with such a high carrier frequency and a bandwidth
roughly equal to 10 percent of the carrier frequency, the theoretical bandwidth of
a lightwave system is around 2 X 10"* Hz, which is very large indeed.

& Low transmission losses, as low as 0.1-dB/km.

¥ Immunity to electromagnetic interference, which is an inherent characteristic of
an optical fiber viewed as a dielectric waveguide.

& Small size and weight, characterized by a diameter no greater than that of a human
hair.

> Ruggedness and flexibility, exemplified by very high tensile strengths and the pos-
sibility of being bent or twisted without damage.

Last, but by no means least, optical fibers offer the potential for low-cost line com-
munications since they are fabricated from sand, which, unlike the copper used in
metallic conductors, is not a scarce resource. The unique properties of optical fibers
have fuelled phenomenal advances in lightwave systems technology, which have, in
turn, revolutionized long-distance communications and continue to do so.

Wireless broadcast channels support the transmission of radio and television signals.
The information-bearing signal, representing speech, music, or pictures, is modulated
onto a carrier frequency that identifies the transmitting station; modulation is de-
scribed in the next section. The transmission originates from an antenna that acts as
the transition or matching unit between the source of the modulated signal and
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electromagnetic waves in free space. The objective in designing the antenna is to
excite the waves in the required direction or directions, as efficiently as possible.
Typically, the transmitting antenna is mounted on a tower to provide an unob-
structed view of the surrounding area, as far afield as possible. By virtue of the
phenomenon of diffraction, which is a fundamental property of wave motion, radio
waves are bent around the earth’s surface. Propagation beyond the line of sight is
thereby made possible, albeit with somewhat greater loss than is incurred in free
space.

At the receiving end, an antenna is used to pick up-the radiated waves, estab-

lishing a communication link to the transmitter. Most radio receivers are of the
superheterodyne type. This technique consists of down-converting the received signal
to some convenient frequency band, called the intermediate frequency (IF) band, and
then recovering the original information-bearing signal by means of an appropriate
detector.
A mobile radio channel extends the capability of the public telecommunications net-
work by introducing mobility into the network by virtue of its ability to broadcast.
The term sobile radio is usually meant to encompass terrestrial situations where a
radio transmitter or receiver is capable of being moved, regardless of whether it
actually moves or not. The major propagation effects encountered in the use of a
mobile radio in built-up areas are due to the fact that the antenna of the mobile unit
may lie well below the surrounding buildings. Simply put, there is no “line-of-sight™
path for communication; rather, radio propagation takes place mainly by way of
scattering from the surfaces of the surrounding buildings and by diffraction over and/
or around them. The end result is that energy reaches the receiving antenna via more
than one path. In a mobile radio environment, we thus speak of a muitipath phe-
nomenon in that the various incoming radio waves reach their destination from
different directions and with different time delays. Indeed, there may be a multitude
of propagation paths with different electrical lengths, and their contributions to the
received signal could combine in a variety of ways. Consequently, the received signal
strength varies with location in a very complicated fashion, and so a mobile radio
channel may be viewed as a linear time-varying channel that is statistical in nature.
Finally, a satellite channel adds another invaluable dimension to the public telecom-
munications network by providing broad-area coverage in both a continental and
an intercontinental sense. Moreover, access to remote areas not covered by conven-
tional cable or fiber communications is also a distinct feature of satellites. In almost
all satellite communication systems, the satellites are placed in geostationary orbit.
For the orbit to be geostationary, it has to satisfy two requirements. First, the orbit
is geosynchronous, which requires the satellite to be at an altitude of 22,300 miles;
a geosynchronous satellite orbits the Earth in 24 hours (i.e., the satellite is synchro-
nous with the Earth’s rotation). Second, the satellite is placed in orbit directly above
the equator on an eastward heading (i.e., it has zero inclination). Viewed from Earth,
a satellite in geostationary orbit appears to be stationary in the sky. Consequently,
an Earth station does #ot have to track the satellite; rather, it merely has to point its
antenna along a fixed direction, pointing toward the satellite. By so doing, the system
design is simplified considerably. Communications satellites in geostationary orbit
offer the following unique system capabilities:

& Broad-area coverage.
& Reliable transmission links.
» Wide transmission bandwidths.



Modulation Process 19

In terms of services, satellites can provide fixed point-to-point links extending over
long distances and into remote areas, communication to mobile platforms (e.g., air-
craft, ships), or broadcast capabilities. Indeed, communications satellites play a key
role in the notion of the whole world being viewed as a ““global village.” In a typical
satellite communication system, a message signal is transmitted from an Earth station
via an uplink to a satellite, amplified in a transponder (i.e., electronic circuitry) on
board the satellite, and then retransmitted from the satellite via a downlink to another

Earth station. With the satellite positioned in geostationary orbit, it is always visible

to all the Earth stations locdted inside the satellite antenna’s coverage zones on the

Earth’s surface. In effect, the satellite acts as a powerful repeater in the sky. The most

popular frequency band for satellite communications is 6 GHz for the uplink and

4 GHz for the downlink. The use of this frequency band offers the following

attributes:

» Relatively inexpensive microwave equipment.

* Low attenuation due to rainfall; rainfall is a primary atmospheric cause of signal
loss.

> Insignificant sky background noise; the sky background noise {due to random
noise emissions from galactic, solar, and terrestrial sources) reaches its lowest level
between 1 and 10 GHz.

In the 6/4-GHz band, a typical satellite is assigned a 500 MHz bandwidth that is

divided among 12 transponders on board the satellite. Each transponder, using ap-

proximately 36 MHz of the satellite bandwidth, corresponds to a specific radio chan-
nel. A single transponder can carry at least one color television signal, 1200 voice
circuits, or digital data at a rate of 50 Mb/s.

To summarize, a communication channel is central to the operation of a com-
munication system. Its properties determine both the information-carrying capacity
of the system and the quality of service offered by the system. We may classify com-
munication channels in different ways:

& A channel may be linear or nonlinear; a wireless radio channel is linear, whereas
a satellite channel is usually (but not always) nonlinear.

& A channel may be time invariant or time varying; an optical fiber is time invariant,
whereas a mobile radio channel is typically time varying,.

& A channel may be bandwidih limited or power limited (i.e., limited in the available
transmitted power); a telephone channel is bandwidth limited, whereas an optical
fiber link and a satellite channel are both power limited.

Now that we have some understanding of sources of information and com-
munication channels, we may return to the block diagram of a communication sys-
tem shown in Figure 1.

LModulation Process

The purpose of a communication system is to deliver a message signal from an information
source in recognizable form to a user destination, with the source and the user being
physically separated from each other. To do this, the transmitter modifies the message
signal into a form suitable for transmission over the channel. This modification is achieved
by means of a process known as modulation, which involves varying some parameter of
a carrer wave in accordance with the message signal. The receiver re-creates the original
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message signal from a degraded version of the transmitted signal after propagation through
the channel. This re-creation is accomplished by using a process known as demodulation,
which is the reverse of the modulation process used in the transmitter. However, owing
to the unavoidable presence of noise and distortion in the received signal, we find that the
receiver cannot re-create the original message signal exactly. The resulting degradation in
overall system performance is influenced by the type of modulation scheme used. Specifi-
cally, we find that some modulation schemes are less sensitive to the effects of noise and
distortion than others.

We may classify the modulation process into continuous-wave modulation and pulse
modulation. In continuous-wave (CW) modulation, a sinusoidal wave is used as the car-
rier. When the amplitude of the carrier is varied in accordance with the message signal,
we have amplitude modulation (AM), and when the angle of the carrier is varied, we have
angle modulation. The latter form of CW modulation may be further subdivided into
frequency modulation (FM) and phase modulation (PM), in which the instantaneous fre-
quency and phase of the carrier, respectively, are varied in accordance with the message
signal.

In pulse modulation, on the other hand, the carrier consists of a periodic sequence
of rectangular pulses. Pulse modulation can itself be of an analog or digital type. In analog
pulse modulation, the amplitude, duration, or position of a pulse is varied in accordance
with sample values of the message signal. In such a case, we speak of pulse-amplitude
modulation (PAM), pulse-duration modulation (PDM), and pulse-position modulation
(PPM). -

The standard digital form of pulse modulation is known as pulse-code modulation
(PCM) that has no CW counterpart. PCM starts out essentially as PAM, but with an
important modification: The amplitude of each modulated pulse (i.e., sample of the original
message signal) is quantized or rounded off to the nearest value in a prescribed set of
discrete amplitude levels and then coded into a corresponding sequence of binary symbols.
The binary symbols 0 and 1 are themselves represented by pulse signals that are suitably
shaped for transmission over the channel. In any event, as a result of the quantization
process, some information is always lost and the original message signal cannot therefore
be reconstructed exactly. However, provided that the number of quantizing (discrete am-
plitude) levels is large enough, the distortion produced by the quantization process is not
discernible to the human ear in the case of a speech signal or the human eye in the case of
a two-dimensional image. Among all the different modulation schemes, pulse-code mod-
ulation has emerged as the preferred method of modulation for the transmission of analog
message signals for the following reasons:

» Robustness in noisy environments by regenerating the transmitted signal at regular
intervals.

& Flexible operation.

> Integration of diverse sources of information into a common format.

# Security of information in its transmission from source to destination.

In introducing the idea of modulation, we stressed its importance as a process that
ensures the transmission of a message signal over a prescribed channel. There is another
important benefit, namely, multiplexing, that results from the use of modulation. Multi-
plexing is the process of combining several message signals for their simultaneous trans-
mission over the same channel. Three commonly used methods of multiplexing are as
follows:

& Frequency-division multiplexing (FDM), in which CW modulation is used to trans-
late each message signal to reside in a specific frequency slot inside the passband of
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the channel by assigning it a distinct carrier frequency; at the receiver, a bank of
filters is used to separate the different modulated signals and prepare them individ-
ually for demodulation.

> Time-division multiplexing (TDM), in which pulse modulation is used to position
samples of the different message signals in nonoverlapping time slots.

¥ Code-division multiplexing (CDM), in which each message 51gnal is identified by a
distinctive code.

In FDM the message signals overlap with each other at the channel input; hence the system
may suffer from crosstalk (i.e., interaction between message signals) if the channel is non-
linear. In TDM the message signals use the full passband of the channel, but on a time-
shared basis. In CDM the message signals are permitted to overlap in both time and
frequency across the channel.

Mention should also be made of wavelength-division multiplexing (WDM), which
is special to optical fibers. In WDM, wavelength is used as a new degree of freedom by
concurrently operating distinct portions of the wavelength spectrum (i.e., distinct colors)
that are accessible within the optical fiber. However, recognizing the reciprocal relation-
ship that exists between the wavelength and frequency of an electromagnetic wave, we
may say that WDM is a form of FDM.

| Analog and Digital Types of Communication

Typically, in the design of a communication system the information source, communica-
tion channel, and information sink (end user) are all specified. The challenge is to design
the transmitter and the receiver with the following guidelines in mind:

» Encode/modulate the message signal generated by the source of information, transmit
it over the channel, and produce an “estimate” of it at the receiver output that satisfies
the requirements of the end user.

& Do all of this at an affordable cost.

We have the option of using a digital or analog communication system.

Consider first the case of a digital communication system represented by the block
diagram of Figure 9, the rationale for which is rooted in information theory. The functional
blocks of the transmitter and the receiver, starting from the far end of the channel, are
paired as follows:

¥ Source encoder-decoder.
» Channel encoder-decoder.
» Modulator-demodulator.

The source encoder removes redundant information from the message signal and is re-
sponsible for the efficient use of the channel. The resulting sequence of symbols is called
the source code word. The data stream is processed next by the channel encoder, which
produces a new sequence of symbols called the channel code word. The channel code word
is longer than the source code word by virtue of the controlled redundancy built into its
construction. Finally, the modulator represents each symbol of the channel code word by
a corresponding analog symbol, appropriately selected from a finite set of possible analog
symbols. The sequence of analog symbols produced by the modulator is called a waveform,
which is suitable for transmission over the channel. At the receiver, the channel output
(received signal) is processed in reverse order to that in the transmitter, thereby recon-
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FIGURE 9 Block diagram of digital communication system.

structing a recognizable version of the original message signal. The reconstructed message
signal is finally delivered to the user of information at the destination. From this description
it is apparent that the design of a digital communication system is rather complex in
conceptual terms but easy to build. Moreover, the system is robust, offering greater tol-
erance of physical effects (e.g., temperature variations, aging, mechanical vibrations) than
its analog counterpart.

In contrast, the design of an analog communication system is simple in conceptual
terms but difficult to build because of stringent requirements on linearity and system ad-
justment. For example, voice communication requires nonlinear distortion products at
least 40 dB below the wanted message signal. In signal-processing terms, the transmitter
consists of a modulator and the receiver consists of a demodulator, the details of which
are determined by the type of CW modulation used.

The conceptual simplicity of analog communications is due to the fact that analog
modulation techniques, exemplified by their wide use in radio and television, make rela-
tively superficial changes to the message signal in order to prepare it for transmission over
the channel. More specifically, there is no significant effort made by the system designer
to tailor the waveform of the transmitted signal to suit the channel at any deeper level.
On the other hand, digital communication theory endeavors to find a finite set of wave-
forms that are closely matched to the characteristics of the channel and which are therefore
more tolerant of channel impairments. In so doing, reliable communication is established
over the channel. In the selection of good waveforms for digital communication over a
noisy channel, the design is influenced solely by the channel characteristics. However, once
the appropriate set of waveforms for transmission over the channel has been selected, the
source information can be encoded into the channel waveforms, and the efficient trans-
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mission of information from the source to the user is thereby ensured. In summary, the
use of digital communications provides the capability for information transmission that is
both efficient and reliable.

From this discussion, it is apparent that the use of digital communications requires
a considerable amount of electronic circuitry, but nowadays clectronics are inexpensive,
due to the ever-increasing availability of very-large-scale integrated (VLSI) circuits in the
form of silicon chips. Thus although cost considerations used to be a factor in selecting
analog communications over digital communications in the past, that is no longer the case.

Despite the trend toward the ever-increasing use of digital communications, a strong
case can be made for the study of analog communications for two important reasons:

1. As long as we hear and see analog communications around us via radio and televi-
sion, we need to understand how these communications systems work. Moreover,
the study of analog modulation motivates other digital modulation schemes.

2. Analog devices and circuits have a natural affinity for operating at very high speeds
and they consume very little power compared to their digital counterparts. Accord-
ingly, the implementation of very high-speed or very low-power communication sys-
tems dictates the use of an analog approach.

Shannon’s Information Capacity Theorem

The goal of a communication system designer is to configure a system that transports a
message signal from a source of interest across a noisy channel to a user at the other end
of the channel with the following objective:

The message signal is delivered to the user both efficiently and reliably, subject to
certain design constraints: allowable transmit power, available channel bandwidth,
and affordable cost of building the system.

In the case of a digital communication system, reliability is commonly expressed in terms
of bit error rate (BER) or probability of bit error measured at the receiver output. Clearly,
the smaller the BER, the more reliable the communication system is. A question that comes
to mind in this context is whether it is possible to design a communication system that
operates with zero BER even through the channel is noisy. In an ideal setting, the answer
to this question is an emphatic yes. The answer is embodied in one of Shannon’s celebrated
theorems,® which is called the information capacity theorem.

Let B denote the channel bandwidth, and let SNR denote the received signal-to-noise
ratio. The information capacity theorem states that ideally these two parameters are related
as

C = B log,(1 + SNR) b/s (1)

where C is the information capacity of the channel. The information capacity is defined
as the maximum rate at which information can be transmitted across the channel without
error; it is measured in bits per second (bfs). For a prescribed channel bandwidth B and
received SNR, the information capacity theorem tells us that a message signal can be
transmitted through the system without error even when the channel is noisy, provided
that the actual signaling rate R in bits per second, at which data are transmitted through
the channel, is less than the information capacity C.
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Unfortunately, Shannon’s information capacity theorem does not tell us how to de-
sign the system. Nevertheless, from a design point of view, the theorem is very valuable
for the following reasons:

1. The information capacity theorem provides a bourd on what rate of data transmis-
sion is theoretically attainable for prescribed values of channel bandwidth B and
received SNR., On this basis, we may use the ratio

7I=C

as a measure of the efficiency of the digital communication system under study. The
closer 7 is to unity, the more efficient the system is.

2. Equation (1) provides a basis for the trade-off between channel bandwidth B and
received SNR. In particular, for a prescribed signaling rate R, we may reduce the
required SNR by increasing the channel bandwidth B, hence the motivation for using
a wideband modulated scheme {e.g., pulse-code modulation) for improved noise
performance.

3. Equation (1) provides an idealized framework for comparing the noise performance
of one modulation scheme against another.

¢ A Digital Communication Problem

When we speak of a digital communication system having a low bit error rate, say, the
implication is that only a small fraction in a long stream of binary symbols is decoded in
error by the receiver. The issue of the receiver determining whether a binary symbol sent
over a noisy channel is decoded in error or not is of fundamental importance to the design
of digital communication systems. It is therefore appropriate briefly to discuss this basic
issue so as to motivate the study of communication systems.

Suppose we have a random binary signal, m(t), consisting of symbols 1 and 0, that
are equally likely. Symbol 1 is represented by a constant level +1, and symbol 0 is rep-
resented by a constant level —1, each of which lasts for a duration T. Such a signal may
represent the output of a digital computer or the digitized version of a speech signal. To
facilitate the transmission of this signal over a communication channel, we employ a simple
modulation scheme known as phase-shift keying. Specifically, the information bearing
signal #1(t) is multiplied by a sinusoidal carrier wave A, cos(2rf£), where A, is the carrier
amplitude, £, is the carrier frequency, and ¢ is time. Figure 104 shows a block diagram of
the transmitter, the output of which is defined by

o) = {Ac cos2mfr)  for symbol 1

2
—A, cos(27f.t) for symbol 0 )

where 0 = ¢ = T. The carrier frequency f;, is a multiple of 1/T.
The channel is assumed to be distortionless but noisy, as depicted in Figure 105. The
received signal x(¢) is thus defined by

x(t) = s(t) + wl(t) (3)

where w(t) is the additive channel noise.
The receiver consists of a correlator followed by a decision-making device, as de-
picted in Figure 10c. The correlator multiplies the received signal x(¢) by a locally generated
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carrier cos(27f.t) and then integrates the product over the symbol interval 0 < ¢t < T,
producing the output

T
Yy = fo x(t) cos(2wf.t) dt (4)
Substituting Equations (2) and (3) into (4) and invoking the assumption that the carrier
frequency f. is a multiple of 1/T,, we obtain (after the simplification of terms)

+?c +wr  for symbol 1
Yr = (5)

—éz— +wr  for symbol 0

where wr is the contribution of the correlator output due to the channel noise w(). To
reconstruct the original binary signal #(¢), the correlator output yr is compared against a
threshold of zero volts by the decision-making device, the operation of which is based on
the following rule:

If the correlator output y; is greater than zero, the receiver outputs symbol 1;
otherwise, it outputs symbol 0.

With this background, we may now discuss/raise some basic issues. First, from Fou-
rier analysis we find that the time-bandwidth product of a pulse signal is constant. This
means that the bandwidth of a rectangular pulse of duration T'is inversely proportional
to T. The transmitted signal in Figure 104 consists of the product of this rectangular signal
and the sinusoidal carrier A, cos(2#f.£). The multiplication of a signal by a sinusoid has
the effect of shifting the Fourier transform of the signal to the right by £, and to the left
by an equal amount, except for the scaling factor of 1/2. It follows therefore that the
bandwidth of the transmitted signal (¢}, and therefore the required channel bandwidth,
is inversely proportional to the reciprocal of the symbol duration T. For the problem at
hand, the reciprocal of T is also the signaling rate of the system in b/s.
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There are, however, some other issues that require theoretical considerations:

1. What is the justification for the receiver structure of Figure 10c?

2. The noise contribution - is the value of a random variable W produced by sampling
a certain realization w(t) of the channel noise at time ¢ = T in accordance with
Equations {3) and (4). How do we relate the statistics of the random variable W to
the statistical characteristics of the channel noise?

3. The receiver of Figure 10¢ makes occasional errors due to the random nature of the
correlator output. That is, the receiver decides in favor of symbol 0 given that symbol
1 was actually transmitted, and vice versa. What is the probability of decision errors?

Moreover, there are some important practical issues that need attention:

1. Channel bandwidth is a highly valuable resource. How do we choose a modulation
scheme that conserves bandwidth in a cost-effective manner? .
The binary signal m(z) may include redundant symbols introduced into it throu,
the use of channel encoding so as to provide protection against channel noise. How
do we design the channel encoder in the transmitter and the channel decoder in the
receiver so as to come very close to Shannon’s information capacity theorem in a
physically realizable manner?

The locally generated carrier in the receiver of Figure 10c¢ is physically separate from
the carrier source used for modulation in the transmitter. How do we synchronize
the receiver to the transmitter with respect to both the carrier phase and symbol
timing so as to justify the use of Equation (4) as the basis of decision-making in the
reconstruction of the original binary signal?

2

»

The theoretical and practical issues raised here in the context of the simple digital
communication system of Figure 10 are addressed in the following chapters of the book.

i Historical Notes!!

A preview of communications would be incomplete without a history of the subject. In
this final section of this introductory chapter we present some historical notes on com-
munications; each paragraph focuses on some important and related events. It is hoped
that this material will provide a sense of inspiration and motivation for the reader.

In 1837, the telegraph was perfected by Samuel Morse, a painter. With the words
“What hath God wrought,” transmitted by Morse’s electric telegraph between Washing-
ton, D.C., and Baltimore, Maryland, in 1844, a completely revolutionary means of real-
time, long-distance communications was triggered. The telegraph is the forerunner of dig-
ital communications in that the Morse code is a variable-length ternary code using an
alphabet of four symbols: a dot, a dash, a letter space, and a word space; short sequences
represent frequent letters, whereas long sequences represent infrequent letters. This type
of signaling is ideal for manual keying. Subsequently, Emile Baudot developed a fixed-
length binary code for telegraphy in 1875. In Baudot’s telegraphic code, well-suited for
use with teletypewriters, each code word consists of five equal-length code elements, and
each element is assigned one of two possible states: a mark or a space {i.c., symbol 1 or 0
in today’s terminology).

In 1864, James Clerk Maxwell formulated the electromagnetic theory of light and
predicted the existence of radio waves; the underlying set of equations bears his name. The
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existence of radio waves was established experimentally by Heinrich Hertz in 1887. In
1894, Oliver Lodge demonstrated wireless communication over a relatively short distance
(150 yards). Then, on December 12, 1901, Guglielmo Marconi received a radio signal at
Signal Hill in Newfoundland; the radio signal had originated in Cornwall, England, 1700
miles away across the Atlantic. The way was thereby opened toward a tremendous broad-
emng of the scope of communications. In 1906, Reginald Fessenden, a self-educated aca-
demic, made history by conducting the first radio broadcast.

In 1875, the telephone was invented by Alexander Graham Bell, a teacher of the
deaf. The telephone made real-time transmission of speech by electrical encoding and
replication of sound a practical reality. The first version of the telephone was crude and
weak, enabling people to talk over short distances only. When telephone service was only
a few years old, interest developed in automating it. Notably, in 1897, A. B. Strowger, an
undertaker from Kansas City, Missouri, devised the automatic step-by-step switch that
bears his name; of all the electromechanical switches devised over the years, the Strowger
switch was the most popular and widely used.

In 1904, John Ambrose Fleming invented the vacuum-tube diode, which paved the
way for the invention of the vacuum-tube triode by Lee de Forest in 1906, The discovery
of the triode was instrumental in the development of transcontinental telephony in 1913
and signaled the dawn of wireless voice communications. Indeed, until the invention and
perfection of the transistor, the triode was the supreme device for the design of electronic
amplifiers. )

In 1918, Edwin H. Armstrong invented the superbeterodyne radio receiver; to this
day, almost all radio receivers are of this type. In 1933, Armstrong demonstrated another
revolutionary concept, namely, a modulation scheme that he called frequency modulation
(FM); Armstrong’s paper making the case for FM radio was published in 1936.

The first all-electronic television system was demonstrated by Philo T. Farnsworth
in 1928, and then by Vladimir K. Zworykin in 1929. By 1939, the British Broadcasting
Corporation (BBC) was broadcasting television on a commercial basis.

In 1928, Harry Nyquist published a classic paper on the theory of signal transmission
in telegraphy. In particular, Nyquist developed criteria for the correct reception of tele-
graph signals transmitted over dispersive channels in the absence of noise. Much of Ny~
quist’s early work was applied later to the transmission of digital data over dispersive
channels.

In 1937, Alec Reeves invented pulse-code modulation (PCM) for the digital encoding
of speech signals. The technique was developed during World War II to enable the en-
cryption of speech signals; indeed, a full-scale, 24-channel system was used in the field by
the United States military at the end of the war. However, PCM had to await the discovery
of the transistor and the subsequent development of large-scale integration of circuits for
its commercial exploitation.

In 1943, D. O. North devised the matched filter for the optimum detection of a
known signal in additive white noise. A similar result was obtained in 1946 independently
by J. H. Van Vleck and D. Middleton, who coined the term matched filter.

In 1947, the geometric representation of signals was developed by V. A. Kotel’nikov
in a doctoral dissertation presented before the Academic Council of the Molotov Energy
Institute in Moscow. This method was subsequently brought to full fruition by John M.
Wozencraft and Irwin M. Jacobs in a landmark textbook published in 1965.

In 1948, the theoretical foundations of digital communications were laid by Claude
Shannon in a paper entitled “A Mathematical Theory of Communication.”” Shannon’s
paper was received with immediate and enthusiastic acclaim. It was perhaps this response
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that emboldened Shannon to amend the title of his paper to *“The Mathematical Theory
of Communication” when it was reprinted a year later in a book co-authored with Warren
Weaver. It is noteworthy that prior to the publication of Shannon’s 1948 classic paper, it
was believed that increasing the rate of information transmission over a channel would
increase the probability of error; the communication theory community was taken by
surprise when Shannon proved that this was not true, provided that the transmission rate
was below the channel capacity. Shannon’s 1948 paper was followed by some significant
advances in coding theory, which include the following:

# Development of the first nontrivial error-correcting codes by M. J. E. Golay in 1949
and Richard W. Hamming in 1950.

# Development of turbo codes by C. Berroun, A. Glavieux, and P. Thitimajshima in
1993; turbo codes provide near-optimum error-correcting coding and decoding per-
formance in the Shannon sense.

The transistor was invented in 1948 by Walter H. Brattain, John Bardeen, and Wil-
liam Shockley at Bell Laboratories. The first silicon integrated circuit (IC) was produced
by Robert Noyce in 1958. These landmark innovations in solid-state devices and integrated
circuits led to the development of very-large-scale integrated (VLSI) circuits and single-
chip microprocessors, and with them the nature of signal processing and the telecommu-
nications industry changed forever.

The invention of the transistor in 1948 spurred the application of electronics to
switching and digital communications. The motivation was to improve reliability, increase
capacity, and reduce cost. The first call through a stored-program system was placed in
March 1958 at Bell Laboratories, and the first commercial telephone service with digital
switching began in Morris, Illinois, in June 1960. The first T-1 carrier system transmission
was installed in 1962 by Bell Laboratories.

During the period 1943 to 1946, the first electronic digital computer, called the
ENIAC, was built at the Moore School of Electrical Engineering of the University of Penn-
sylvania under the technical direction of J. Presper Eckert, Jr., and John W. Mauchly.
However, John von Neumann’s contributions were among the earliest and most funda-
mental to the theory, design, and application of digital computers, which go back to the
first draft of a report written in 1945. Computers and terminals started communicating
with each other over long distances in the early 1950s. The links used were initially voice-
grade telephone channels operating at low speeds {300 to 1200 brs). Various factors have
contributed to a dramatic increase in data transmission rates; notable among them are the
idea of adaptive equalization, pioneered by Robert Lucky in 1965, and efficient modula-
tion techniques, pioneered by G. Ungerboeck in 1982. Another idea widely employed in
computer communications is that of automatic repeat-request (ARQ). The ARQ method
was originally devised by H. C. A. van Duuren during World War II and published in
1946. It was used to improve radio-telephony for telex transmission over long distances.

From 1950 to 1970, various studies were made on computer networks. However,
the most significant of them in terms of impact on computer communications was the
Advanced Research Project Agency Network (ARPANET), first put into service in 1971.
The development of ARPANET was sponsored by the Advanced Research Projects Agency
of the U.S. Department of Defense. The pioneering work in packet switching was done on
ARPANET. In 1985, ARPANET was renamed the Internet. The turning point in the evo-
lution of ‘the Internet occurred in 1990 when Tim Berners-Lee proposed a hypermedia
software interface to the Internet, which he named the World Wide Web.'? Thereupon, in
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the space of only about two years, the Web went from nonexistence to worldwide popu-
larity, culminating in its commercialization in 1994. How do we explain the explosive
growth of the Internet? We may answer this question by offering these reasons:*?

& Before the Web exploded into existence, the ingredients for its creation were already
in place. In particular, thanks to VLSI, personal computers (PCs) had already become
ubiquitous in homes throughout the world, and they were increasingly equipped with
modems for interconnectivity to the outside world.

# For about two decades, the Internet had grown steadily (albeit within a confined
community of users), reaching a critical threshold of user-value based electronic mail
and file transfer.

> Standards for document description and transfer, hypertext markup language
(HTML), and hypertext transfer protocol (HTTP) had been adopted.

Thus, everything needed for creating the Web was already in place except for two critical
ingredients: a simple user interface and a brilliant service concept.

In 1955, John R. Pierce proposed the use of satellites for communications. This
proposal was preceded, however, by an earlier paper by Arthur C. Clark that was pub-
lished in 1945, also proposing the idea of using an Earth-orbiting satellite as a relay point
for communication between two Earth stations. In 1957, the Soviet Union launched Sput-
nik I, which transmitted telemetry signals for 21 days. This was followed shortly by the
launching of Explorer I by the United States in 1958, which transmitted telemetry signals
for about five months. A major experimental step in communications satellite technology
was taken with the launching of Telstar I from Cape Canaveral on July 10, 1962. The
Telstar satellite was built by Bell Laboratories, which had acquired considerable knowl-
edge from pioneering work by Pierce. The satellite was capable of relaying TV programs
across the Atlantic; this was made possible only through the user of maser receivers and
large antennas.

The use of optical means (e.g., smoke and fire signals) for the transmission of infor-
mation dates back to prehistoric times. However, no major breakthrough in optical com-
munications was made until 1966, when K. C. Kao and G. A. Hockham of Standard
Telephone Laboratories, U.K., proposed the use of a clad glass fiber as a dielectric wave-
guide. The laser (an acronym for light amplification by stimulated emission of radiation)
had been invented and developed in 1959 and 1960. Kao and Hockham pointed out that
(1) the attenuation in an optical fiber was due to impurities in the glass, and (2) the intrinsic
loss, determined by Rayleigh scattering, is very low. Indeed, they predicted that a loss of
20 dB/km should be attainable. This remarkable prediction, made at a time when the
power loss in a glass fiber was about 1000 dB/km, was to be demonstrated later. Nowa-
days, transmission losses as low as 0.1 dB/km are achievable.

The spectacular advances in microelectronics, digital computers, and lightwave sys-
tems that we have witnessed to date, and that will continue into the future, are all re-
sponsible for dramatic changes in the telecommunications environment; many of these
changes are already in place, and more changes will evolve as time goes on.

E NoTES AND REFERENCES
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The JPEG image coding standard is discussed in the papers by Wallace (1991); see also the
article by T. A. Ramstad in the handbook edited by Madisetti and Williams (1998).

. The discrete cosine transform (DCT) and its inverse for a block of 8 X 8 source image

samples are respectively defined by
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For a full treatment of the DCT, see Rao and Yip (1990).

. The MPEG-1 video coding standard is discussed in the paper by Gall {(1991); see also the

article by A. M. Tekalp in the handbook edited by Madisetti and Williams {1998}, which
discusses the follow-up versions of the MPEG video coding standard.

. The MPEG-1 audio coding standard is discussed in the papers by Brandenburg and Stoll

{1994) and Pan (1993}; see also the article by P. Noll in the handbook edited by Madisetti
and Williams (1998), which also discusses the follow-up versions of the MPEG audio
coding standard. In particular, the widespread use of the more current standard, MPEG-3
audio, is resulting in a level of piracy that may dwarf the earlier problems of “bootleg”
cassette tapes.

. For a detailed discussion of communication networks, see Tanenbaum (1996).

. The OSI reference model was developed by a subcommittee of the International Organi-

zation for Standardization (ISO) in 1977. For a discussion of the principles involved in
arriving at the seven layers of the OSI model and a description of the layers themselves,
see Tanenbaum (1996).

. SONET was originally proposed by Telcordia Technologies Inc. (then known as Bellcore)

and standardized by the American National Standards Institute {ANSI). Later, CCITT
approved a SONET standard and issued a set of parallel recommendations called synchro-
nous digital hierarchy (SDH). The differences between SONET and SDH are of a minor
nature.

. For a thorough and precise analysis of the propagation of light waves in an optical fiber,

we need to treat it as a dielectric waveguide and use Maxwell’s equations to carry out the
analysis; such an analysis is highly mathematical in nature. For a readable account of the
analysis, see Chapter 3 of Green, Jr. (1993).

For a semitechnical overview of Shannon’s theorems on information theory presented in a
highly readable fashion, see the book entitled Silicon Dreams by Lucky (1989).

For a readable account of the history of communications, see Lebow (1995).
For a historical account of the development of the Internet, see Leiner et al. (1997).

For an insightful essay on new telecommunications services and how society reacts to their
development, see Lucky (1997). This paper points to Mezcalf’s law, according to which it
seems as if any new telecommunications service must take a long time for it to build to
universal acceptance. Lucky cites the World Wide Web as a startling counterexample to
Metcalf’s law and gives the reasons why.



BANDOM PROCESSES

This chapter presents an introductory treatment of stationary random processes with
emphasis on second-order statistics. In particular, it discusses the following issues:

» The notion of a.random process.
P The requirement that bas to be satisfied for a random process to be stationary.

» The partial description of a random process in terms of its mean, correlation, and
covariance functions.

¥ The conditions that bave to be satisfied for a stationary random process to be ergodic, a
property that enables us to substitute time averages for ensemble averages.

¥ What happens to a stationary random process when it is transmitted through a linear
time-invariant filter?

» The frequency-domain description of a random process in terms of power spectral density.
» The characteristics of an important type of random process known as a Gaussian process.
» Sources of noise and their narrowband form.

» Rayleigh and Rician distributions, which represent two speczal probability distributions
that arise in the study of communication systems.

g 1.1 Introdsction

The idea of a mathematical model used to describe a physical phenomenon is well estab-
lished in the physical sciences and engineering. In this context, we may distinguish two
classes of mathematical models: deterministic and stochastic. A model is said to be deter-
ministic if there is no uncertainty about its time-dependent behavior at any instant of time.
However, in many real-world problems the use of a deterministic model is inappropriate
because the physical phenomenon of interest involves too many unknown factors. Nev-
ertheless, it may be possible to consider a model described in probabilistic terms in that
we speak of the probability of a futute value lying between two specified limits. In such a
case, the model is said to be stochastic or random. A brief review of probability theory is
presented in Appendix 1.

Consider, for example, a radio communication system. The received signal in such
a system usually consists of an information-bearing signal component, a random interfer-
ence component, and channel noise. The information-bearing signal component may rep-
resent, for example, a voice signal that, typically, consists of randomly spaced bursts of
energy of random duration. The interference component may represent spurious electro-
magnetic waves produced by other communication systems operating in the vicinity of the
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radio receiver. A major source of channel noise is thermal noise, which is caused by the
random motion of the electrons in conductors and devices at the front end of the receiver.
We thus find that the received signal is random in nature. Although it is not possible to
predict the exact value of the signal in advance, it is possible to describe the signal in terms
of statistical parameters such as average power and power spectral density, as discussed
in this chapter.

1.2 Mathematical Definition
of a Random Process

In light of these introductory remarks, it is apparent that random processes have two
properties. First, they are functions of time. Second, they are random in the sense that
before conducting an experiment, it is not possible to exactly define the waveforms that
will be observed in the future.

In describing a random experiment it is convenient to think in terms of a sample
space. Specifically, each outcome of the experiment is associated with a sample point. The
totality of sample points corresponding to the aggregate of all possible outcomes of the
experiment is called the sample space. Each sample point of the sample space is a function
of time. The sample space or ensemble composed of functions of time is called a random
or stochastic process.* As an integral part of this notion, we assume the existence of a
probability distribution defined over an appropriate class of sets in the sample space, so
that we may speak with confidence of the probability of various events.

Consider, then, a random experiment specified by the outcomes s from some sample
space S, by the events defined on the sample space 8, and by the probabilities of these
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FIGURE 1.1 An ensemble of sample functions.
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events. Suppose that we assign to each sample point s a function of time in accordance
with the rule:

Xz, s), ~-T=t=T (1.1)

where 2T is the total observation interval. For a fixed sample point s;, the graph of the
function X{(t, s;) versus time ¢ is called a realization or sample function of the random
process. To simplify the notation, we denote this sample function as

x;(t) = X{t, s;) (1.2)

Figure 1.1 illustrates a set of sample functions {x;()|j = 1, 2, . .., #}. From this figure,
we note that for a fixed time #, inside the observation interval, the set of numbers

{alte)s %2(te); - - -5 walte)} = (Xt 51), Xitao 52}, - -+ Xty 5}

constitutes a randomn variable. Thus we have an indexed ensemble (family) of random
variables {X(z, s)}, which is called a random process. To simplify the notation, the custom-
ary practice is to suppress the s and simply use X(z) to denote a random process. We may
now formally define a random process X(z) as an ensemble of time functions together with
a probability rule that assigns a probability to any meaningful event associated with an
observation of one of the sample functions of the random process. Moreover, we may
distinguish between a random variable and a random process as follows:

» For a random variable, the outcome of a random experiment is mapped into a
number.

# For a random process, the outcome of a random experiment is mapped into a wave-
form that is a function of time.

I 1.3 Stationary Processes

In dealing with random processes encountered in the real world, we often find that the
statistical characterization of a process is independent of the time at which observation of
the process is initiated. That is, if such a process is divided into a number of time intervals,
the various sections of the process exhibit essentially the same statistical properties. Such
a process is said to be stationary. Otherwise, it is said to be nonstationary. Generally
speaking, a stationary process arises from a stable physical phenomenon that has evolved
into a steady-state mode of behavior, whereas a nonstationary process arises from an
unstable phenomenon.

To be more precise, consider a random process X(z) that is initiated at = —. Let
X{t:1), X{t2), . . ., X(t;) denote the random variables obtained by observing the random
process X(t) at times 4, B, . . . , t;, respectively. The joint distribution function of this set
of random variables is Fx,), ... x@(%1, - - -, %2). Suppose next we shift all the observation
times by a fixed amount 7, thereby obtaining a new set of random variables X(z; + ),
X{t, + 7),..., X(t, + 7). The joint distribution function of this latter set of random
variables is Fx, +r), ..., x(t+n{®1, - « + » %¢). The random process X(#) is said to be stationary
in the strict sense or strictly stationary if the following condition holds:

FX(t1+7),..., X(t,{—lur)(xl) ey Xg) = Fx(m,.,., X(tk)(xls <oy Xg) (1.3)
for all time shifts 7, all k, and all possible choices of observation times #,, . . . , ;. In other
words, a random process X(t), initiated at time t = —«, is strictly stationary if the joint

distribution of any set of random variables obtained by observing the random process X(t)
is invariant with respect to the location of the origin t = 0. Note that the finite-dimensional
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distributions in Equation (1.3) depend on the relative time separation between random
variables but not on their absolute time., That is, the random process has the same prob-
abilistic behavior through all time.

Similarly, we may say that two random processes X(t) and Y(z) are jointly strictly
stationary if the joint finite-dimensional distributions of the two sets of random variables
X(t), - .., X(t,) and Y1), . . ., Yit}) are invariant with respect to the origin ¢ = 0 for all
k and j and all choices of observation times ¢, . .., and 23, ..., ¢}

Returning to Equation {1.3), we may distinguish two situations of special interest:

1. For k = 1, we have
Fxin(x) = Fxiernix) = Fx(x) forall t and 7 (1.4)
That is, the first-order distribution function of a stationary random process is inde-
pendent of time.
2. For k = 2 and 7 = —t;, we have
FX(tl),X(tl)(xla xy) = Fxm),xurm(xu X3) for all t; and (1.5)

That is, the second-order distribution function of a stationary random process de-
pends only on the time difference between the observation times and not on the
particular times at which the random process is observed.

These two properties have profound implications for the statistical parameterization of a
stationary random process; this issue is discussed in Section 1.4

B~ ExaMPLE 1.1

Consider Figure 1.2, depicting three spatial windows located at times 2y, £, £3. We wish to
evaluate the probability of obtaining a sample function x(t) of a random process X(#) that
passes through this set of windows, that is, the probability of the joint event

A={on<Xr)=b) i=123
In terms of the joint distribution function, this probability equals
P(A) = Fx‘(tl),xuz),x<¢3)(b1, by, b3) — qu,),X(a),x(rs)(ah 2, a3)

Suppose now the random process X(#) is known to be strictly stationary. An implication
of strict stationarity is that the probability of the set of sample functions of this process passing
through the windows of Figure 1.3z is equal to the probability of the set of sample functions
passing through the corresponding time-shifted windows of Figure 1.3b. Note, however, that
it is not necessary that these two sets consist of the same sample functions. &
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FIGURE 1.2 Illustrating the probability of a joint event.
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FiGURE 1.3 Illustrating the concept of stationarity in Example 1.1.

1.4 Mean, Correlation,
and Covariance Funcilions

Consider a strictly stationary random process X(t). We define the #zean of the process X(t)
as the expectation of the random variable obtained by observing the process at some time
t, as shown by

rx(t) = E[X(t)]

- (1.6)
= f_& X fxnix) dx
where fx,(x) is the first-order probability density function of the process. From Equation
{1.4) we deduce that for a strictly stationary random process, fy,(x) is independent of
time ¢. Consequently, the mean of a strictly stationary process is a constant, as shown by

wx(t) = ux  forallt (1.7)

We define the autocorrelation function of the process X(t) as the expectation of the product
of two random variables, X{#,) and X(£,), obtained by observing the process X{¢) at times
t; and ¢,, respectively. Specifically, we write

Rx(t, t;) = E[X(#)X{t2)]
@ e (1.8)
= f_w f_m x1x2fx(t1),x(z2)(x1, x3) dxydx,

where fy().xp(X1, X2} is the second-order probability density function of the process.
From Equation (1.5), we deduce that for a strictly stationary random process,
Fxepxun(®1, x2) depends only on the difference between the observation times #; and .
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This, in turn, implies that the autocorrelation function of a strictly stationary process
depends only on the time difference t, — t, as shown by

Rx(ty, ) = Rylt: — ty) for all ¢, and %, (1.9)
Similarly, the autocovariance function of a strictly stationary process X(t) is written as

Cx(ts, 1) = E[(X(t1) — px)(X{82) — px)]
= Rx(t, — t) — pk
Equation (1.10) shows that, like the autocorrelation function, the autocovariance function
of a strictly stationary process X(#} depends only on the time difference ¢, — #. This
equation also shows that if we know the mean and autocorrelation function of the process,
we can uniquely determine the autocovariance function. The mean and autocorrelation
function are therefore sufficient to describe the first two moments of the process.
However, two important points should be carefully noted:

(1.10)

1. The mean and autocorrelation function only provide a partial description of the
distribution of a random process X(¢).

2. The conditions of Equations {1.7) and (1.9), involving the mean and autocorrelation
function, respectively, are not sufficient to guarantee that the random process X{t)
is strictly stationary.

Nevertheless, practical considerations often dictate that we simply limit ourselves to a
partial description of the process given by the mean and autocorrelation function. The
class of random processes that satisfy Equations (1.7) and (1.9) has been given various
names, such as second-order stationary, wide-sense stationary, or weakly stationary pro-
cesses. Henceforth, we shall simply refer to them as stationary processes.”

A stationary process is not necessarily strictly stationary because Equations (1.7)and
(1.9) obviously do not imply the invariance of the joint (k-dimensional) distribution of
Equation (1.3) with respect to the time shift 7 for all k. On the other hand, a strictly
stationary process does not necessarily satisfy Equations (1.7) and (1.9} as the first- and
second-order moments may not exist. Clearly, however, the class of strictly stationary
processes with finite second-order moments forms a subclass of the class of all stationary
processes.

PROPERTIES OF THE AUTOCORRELATION FUNCTION

For convenience of notation, we redefine the autocorrelation function of a stationary pro-
cess X{t) as

Ry(r) = E[X(t + DX(#)] forallt (1.11)
This autocorrelation function has several important properties:

1. The mean-square value of the process may be obtained from R () simply by putting
7= 0 in Equation {(1.11), as shown by

Rx(0) = E[X*(1)] (1.12)
2. The autocorrelation function Rx(7)is an even function of =, that is,
Rx{r) = Rx(~7) (1.13)

This property follows directly from the defining equation (1.11). Accordingly, we
may also define the autocorrelation function Rx(7) as

Rx(r) = E[X(5)X(t — 7]
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FiGURE 1.4 Tllustrating the autocorrelation functions of slowly and rapidly fluctuating random
PrOCeSSeS.

3. The autocorrelation function Ry(7) has its maximum magnitude at 7 = 0, that is,
|Rx(7)| = Rx(0) (1.14)

To prove this property, consider the nonnegative quantity

E[(X(r + 7 £ X(N)P] = 0
Expanding terms and taking their individual expectations, we readily find that

E[X2(t + 7] = 2E[X(t + 9X(1)] + E[X?()] = 0
which, in light of Equations (1.11) and (1.12), reduces to
2Rx(0) * 2Rx(7) = 0

Equivalently, we may write

—Rx(0) = Ry(1) = Rx(0)
from which Equation (1.14) follows directly.

The physical significance of the autocorrelation function Rx(7) is that it provides a
means of describing the interdependence of two random variables obtained by observing
a random process X(#) at times 7 seconds apart. It is therefore apparent that the more
rapidly the random process X(#) changes with time, the more rapidly will the autocorre-
lation function Rx(7) decrease from its maximum Rx(0) as 7 increases, as illustrated in
Figure 1.4. This decrease may be characterized by a decorrelation time 7, such that for
T > 7y, the magnitude of the autocorrelation function Rx(r) remains below some prescribed
value. We may thus define the decorrelation time 7, of a stationary process X(#) of zero
mean as the time taken for the magnitude of the autocorrelation function Ry (1) to decrease
to 1 percent, say, of its maximum value Rx{0).

& ExaAMPLE 1.2 Sinusoidal Wave with Random Phase
Consider a sinusoidal signal with random phase, defined by
X(t) = A cos(27fit + ©) (1.15)

where A and f, are constants and © is a random variable that is uniformly distributed over
the interval [—, 7], that is,

1
fol®) = {zﬂ’ TEo=m (1.16)
0, elsewhere
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FIGURE 1.5 Autocorrelation function of a sine wave with random phase.

This means that the random variable ® is equally likely to have any value 6 in the interval
[, 7]. Each value of @ corresponds to a sample in the sample space of the random process
X@).

The process X{(z) defined by Equations (1.15) and (1.16) may represent a locally gen-
erated carrier in the receiver of a communication system, which is used in demodulation of
the received signal. In particular, the random variable ® denotes the phase difference between
this locally generated carrier and the sinusoidal carrier wave used to modulate the message
signal in the transmitter.

The autocorrelation function of X(2) is

Rx(7) = E[X(t + X(2)]
= E[A? cos(2wft + 2mfr + ©) cos(2mft + B)]

2

A A2
=5 E[cos{4nft + 2uf.r + 20)] + 5 E[cos(2#f,7)]

A2 (71 A?
= — = cos{4mf.t + 2afr + 260) dO + — cos(2af.7)
2 Jonlw 2

The first term integrates to zero, and so we get

Ryl = ézi cos(2mf,7) (1.17)

which is plotted in Figure 1.5. We see therefore that the autocorrelation function of a sinu-
soidal wave with random phase is another sinusoid at the same frequency in the “r domain”
rather than the original time domain. <

# ExaMPLE 1.3 Random Binary Wave

Figure 1.6 shows the sample function x(t) of a process X(t) consisting of a random sequence
of binary symbols 1 and 0. The following assumptions are made:

1. The symbols 1 and 0 are represented by pulses of amplitude +A and —A volts, respec-
tively, and duration T seconds.

2. The pulses are not synchronized, so the starting time #; of the first complete pulse for
positive time is equally likely to lie anywhere between zero and T seconds. That is, ¢,
is the sample value of a uniformly distributed random variable T, with its probability
density function defined by

1
e =
frjed =472 O=0=T
0, elsewhere
3. During any time interval (n — 1)T < t — #; < nT, where 7 is an integer, the presence
of a 1 or a 0 is determined by tossing a fair coin; specifically, if the outcome is heads,
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FIGURE 1.6 Sample function of random binary wave.

we have a 1 and if the outcome is tails, we have a 0. These two symbols are thus equally
likely, and the presence of a 1 or 0 in any one interval is independent of all other
intervals.

Since the amplitude levels —A and +A occur with equal probability, it follows imme-
diately that E[X(t}] = O for all ¢, and the mean of the process is therefore zero.

To find the autocorrelation function Rx{z;, £;), we have to evaluate E[X(2,)X(2,)], where
X(t,) and X(¢,) are random variables obtained by observing the random process X{t) at times
t, and t;, respectively.

Consider first the case when |, — t;| > T. Under this condition the random variables
X(z,) and X(t,) occur in different pulse intervals and are therefore independent. We thus have

EX(t)X(t)] = EX@JIEX(E] =0, [t —#[>T

Consider next the case when | £, — #;| < T, with £, = 0 and ¢; < £,. In such a situation
we observe from Figure 1.6 that the random variables X(t,) and X(#;) occur in the same pulse
interval if and only if the delay t, satisfies the condition ¢, < T — |#, — t;|. We thus obtain
the conditional expectation:

A gy <T— |t~

0, elsewhere

E[X(n) X8t = {

Averaging this result over all possible values of z,, we get

T— 84}

A A*f TAts) dty

T- [~k A2
= —dt
,[) T %

E[X(t)X()] = j

=A2<1 —M), lte =8| < T

By similar reasoning for any other value of ¢, we conclude that the autocorrelation function
of a random binary wave, represented by the sample function shown in Figure 1.6, is only a
function of the time difference T = #;, — t;, as shown by

{7l
Ryl?) = A2<1 - T) lrl<T (1.18)

0, I =T

This result is plotted in Figure 1.7. <



40

CHAPTER 1 RANDOM PROCESSES

Ry(r)

AZ

T
~-T 0 T

FIGURE 1.7 Autocorrelation function of random binary wave.

s CRrOSS-CORRELATION FUNCTIONS

Consider next the more general case of two random processes X(t) and Y(¢) with auto-
correlation functions Rx(t, #) and Ry(t, u), respectively. The two cross-correlation func-
tions of X(t) and Y(¢) are defined by

Rxylt, u) = E[X(2)Y{u)] (1.19)
and
Ryx(t, ) = E[Y(£)X(x)] (1.20)

where # and # denote two values of time at which the processes are observed. In this case,
the correlation properties of the two random processes X(¢) and Y{#) may be displayed
conveniently in matrix form as follows:

Rxlt,u)  Rult, u)]
Ryx(t, u) Ryl(t, u)

R(t, u) = [

which is called the correlation matrix of the random processes X(¢) and Y{z). If the random
processes X(¢) and Y(t) are each stationary and, in addition, they are jointly stationary,
then the correlation matrix can be written as

_ | Rx(7) Rxy(7)
R(T)_[Ryxm Rym] (1.2

where 7=t — u.

The cross-correlation function is not generally an even function of 7 as was true for
the autocorrelation function, nor does it have a maximum at the origin. However, it does
‘obey a certain symmetry relationship as follows (see Problem 1.9):

Rxy(1) = Ryx(—7) (1.22)

B ExampLE 1.4 Quadrature-Modulated Processes

Consider a pair of quadrature-modulated processes X,(t) and X,(¢) that are related to a sta-
tionary process X(#) as follows:

X1(t) = X(¢) cos(2mft + O)

X(t) = X(¢) sin(2nft + @)
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where f, is a catrier frequency, and the random variable ® is uniformly distributed over the
interval [0, 27]. Moreover, @ is independent of X(t). One cross-correlation function of X,(z)
and X,(¢} is given by

Rya(m) = E[X1()X5(t — 7)]
= E[X(t)X(t — ) cos(2nf.t + ®) sin2nft — 27for + O)]
E[X(t)X(t — 7)]E[cos(2mf.t + ®) sin(27ft — 2mf.7 + B)] (1.23)
iRX(ME[sin(4mft — 27fr + 20) — sin(2wf.1))]
—4R() sin(2mf.7)

I

where, in the last line, we have made use of the uniform distribution of the random variable
® representing phase. Note that at 7 = 0, the factor sin(27f,7) is zero and therefore

R1x(0) = E[X, ()X, (2]
=0
This shows that the random variables obtained by simultaneously observing the quadrature-

modulated processes X;(#) and X,(¢) at some fixed value of time ¢ are orthogonal to each
other.

§ 1.5 Ergodic Processes

The expectations or ensemble averages of a random process X(¢) are averages ““across the
process.” For example, the mean of a random process X(¢) at some fixed time £, is the
expectation of the random variable X(t,) that describes all possible values of the sample
functions of the process observed at time ¢ = #,. Naturally, we may also define long-term
sample averages, or time averages that are averages ‘““along the process.” We are therefore
interested in relating ensemble averages to time averages, for time averages represent a
practical means available to us for the estimation of ensemble averages of a random pro-
cess. The key question, of course, is: When can we substitute time averages for ensemble
averages? To explore this issue, consider the sample function x(¢) of a stationary process
X(t), with the observation interval defined as —T = ¢ < T, The DC value of x(¢) is defined
by the time average

1

5T ). x(t) dt (1.24)

us(T) =

Cleatly, the time average . (T) is a random variable, as its value depends on the obser-
vation interval and which particular sample function of the random process X(z) is picked
for use in Equation (1.24). Since the process X(¢t) is assumed to be stationary, the mean of
the time average p.(T) is given by (after interchanging the operation of expectation and
integration):

E[pAT j E[x()] dt

1 (7 '
=57 f_T ux dt (1.25)

= Mx
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where px is the mean of the process X(z). Accordingly, the time average u.(T) represents
an unbiased estimate of the ensemble-averaged mean . We say that the process X(#) is
ergodic in the mean if two conditions are satisfied:

= The time average u,(T) approaches the ensemble average ux in the limit as the
observation interval T approaches infinity; that is,
lim p(T) = ux
T
> The variance of u,(T), treated as a random variable, approaches zero in the limit as
the observation interval T approaches infinity; that is,

lim var[p(T)] = 0
Toseo

The other time average of particular interest is the autocorrelation function R..(t, T)
defined in terms of the sample function x(t) observed over the interval —T < ¢t < T.
Following Equation (1.24), we may formally define the time-averaged autocorrelation
function of a sample function x(¢) as follows:

T
R T) =— 1.2

An T) = 55 | ale + () de (126)
This second time-average should also be viewed as a random variable with a mean and
variance of its own. In a manner similar to ergodicity of the mean, we say that the process
x(t) is ergodic in the autocorrelation function if the following two limiting conditions are
satisfied:

lim R (1, T) = Ry(7)

T

lim var[R,(r, T)] = 0
Tose

We could, of course, go on in a similar way to define ergodicity in the most general
sense by considering higher-order statistics of the process X(£). In practice, however, er-
godicity in the mean and ergodicity in the autocorrelation function, as described here, are
often (but not always) considered to be adequate. Note also that the use of Equations
{1.24) and (1.26) to compute the time averages u,(T) and R, (2, T) requires that the process
X(t) be stationary. In other words, for a random process to be ergodic, it has to be sta-
tionary; however, the converse is not necessarily true.

1.6 Transmission of a Random Process
. Through a Linear Time-Invariant Filter

Suppose that a random process X(¢) is applied as input to a linear time-invariant filter of
impulse response h(t), producing a new random process Y(¢) at the filter output, as in
Figure 1.8. In general, it is difficult to describe the probability distribution of the output
random process Y(t), even when the probability distribution of the input random process
X(t) is completely specified for —o0 <t < o,

In this section, we determine the time-domain form of the input—output relations of
the filter for defining the mean and autocorrelation functions of the output random process
Y(t) in terms of those of the input X(¢), assuming that X(t) is a stationary process.
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X() —> response —> F(?)
h{e)

FIGURE 1.8 Transmissjon of a random process through a linear time-invariant filter.

The transmission of a process through a linear-time-invariant filter is governed by
the convolution integral; for a review of this operation, see Appendix 2. For the problem
at hand, we may thus express the output random process Y(t) in terms of the input random
process X(t) as

Yi) = f, b(r)X(t — m) dn
where 7, is the integration variable. Hence, the mean of Y(¢) is
py(t) = E[Y(?)]
o (1.27)
= E|:f_ b(m)X( — ) d71:|

Provided that the expectation E[X(¢#)] is finite for all # and the system is stable, we may
interchange the order of expectation and integration in Equation (1.27) and so write

prte) = | hlrELX(e ~ ) dr
(1.28)

= [:: h(r)ux(t — ) dny

When the input random process X(¢) is stationary, the mean ux(¢) is a constant uy, so
that we may simplify Equation {1.28) as follows:

Ky = Hx f_m b(m) dny
= pxH(0)

(1.29)

where H(0) is the zero-frequency (DC) response of the system. Equation (1.29) states that
the mean of the random process Y(t) produced at the output of a linear time-invariant
system in response to X(¢) acting as the input process is equal to the mean of X(¢) multiplied
by the DC response of the system, which is intuitively satisfying.

Consider next the autocorrelation function of the output random process Y(z). By
definition, we have

Ry(t, u) = E[Y(5)Y(u)]

where ¢ and # denote two values of the time at which the output process is observed. We
may therefore use the convolution integral to write

Rylt, u) = E|:fj ()Xt — 7)) dny fj b(m)X(u — 1) d'r{l (1.30)
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Here again, provided that the mean-square value E[X?(t)] is finite for all # and the system
is stable, we may interchange the order of the expectation and the integrations with respect
to 7 and 7, in Equation (1.30), obtaining
Ryt ) = | driblm) [ dmb(mBIX( ~ )Xo = ]
- N (1.31)
= J dmb{r) J drb(m)Rx(t — T, 4 — T)

When the input X{(z) is a stationary process, the autocorrelation function of X(z) is only a
function of the difference between the observation times f — 7; and # — 7. Thus, putting
7=t — u in Equation (1.31), we may write

Ry{7) = J’i, ij b(r)P{m) Rt — 7 + ») dr dn (1.32)

On combining this result with that involving the mean wy, we see that if the input to a
stable linear time-invariant filter is a stationary process, then the output of the filter is also
a stationary process.

Since Ry(0) = E[Y?(#)], it follows that the mean-square value of the output random
process Y(t) is obtained by putting 7 = 0 in Equation (1.32). We thus get the result

Even = | [ brbieRatn, — ) dry dry (1.33)

which is a constant.

§ 1.7 Power Spectral Density

Thus far we have considered the characterization of stationary processes in linear systems
in the time domain. We turn next to the characterization of random processes in linear
systems by using frequency-domain ideas. In particular, we wish to derive the frequency-
domain equivalent to the result of Equation {1.33) defining the mean-square value of the
filter output.

By definition, the impulse response of a linear time-invariant filter is equal to the
inverse Fourier transform of the frequency response of the system; a review of the Fourier
transform is presented in Appendix 2. Using H(f) to denote the frequency response of the
system, we may thus write

b{r) = J‘w H(f) exp(j2mfn) df (1.34)

Substituting this expression for b(r) into Equation (1.33), we get

v =] [ [ | H) expljzmpr df}h(‘rz)Rx(Tz - m) dr, dn,
(1.35)

= [ armup | dnptn) [ Rt - m) explizapny dn
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In the last integral on the right-hand side of Equation (1.35), define a new variable
T=1 -7 ’

Then we may rewrite Equation (1.35) in the form

E1Ye) = [ dfHy) [ dnbin) expliznfr) [ Ryto) exploiamfr) dr (136

However, the middle integral on the right-hand side in Equation (1.36) is simply H*(f),
the complex conjugate of the frequency response of the filter, and so we may simplify this
equation as

=

E[Y*n)] = Lﬁ df | H(f)|? L,, Ryl7) exp(—j2uf7) dr (1.37)

where | H(f)| is the magnitude response of the filter. We may further simplify Equation
(1.37) by recognizing that the last integral is simply the Fourier transform of the auto-
correlation function Rx(7) of the input random process X(z). This prompts us to introduce
the definition of a new parameter

Sx{f) = f_m Rx(7) exp(~j2nfr) dr (1.38)

The function Sx{f) is called the power spectral density, or power spectrum, of the station-
ary process X(t). Thus substituting Equation (1.38) into (1.37), we obtain the desired
relation:

E1vie] = [ HO)PSp) df (1.39)

Equation (1.39) states that the mean-square value of the output of a stable linear time-
invariant filter in response to a stationary process is equal to the integral over all frequen-
cies of the power spectral density of the input process multiplied by the squared magnitude
response of the filter. This is the desired frequency-domain equivalent to the time-domain
relation of Equation (1.33).

To investigate the physical significance of the power spectral density, suppose that
the random process X{¢) is passed through an ideal narrowband filter with a magnitude
response centered about the frequency f., as shown in Figure 1.9; that is,

* fl<3A
(f)[={1’ IEZARE;

1.40
0, |f*r]>af 1.49)

i |
L e 0 L L
Af Af

FiGURE 1.9 Magnitude response of ideal narrowband filter.
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where Af is the bandwidth of the filter. Then from Equation (1.39) we find that if the
filter bandwidth Af is sufficiently small compared to the midband frequency f, and Sx(f)
is a continuous function, the mean-square value of the filter output is approximately

E[Y*(t)] = (2Af)Sx(f) (1.41)

The filter, however, passes only those frequency components of the input random process
X(t) that lie inside a narrow frequency band of width Af centered about the frequency
+f.. Thus Sx(f.) represents the frequency density of the average power in the random
process X(t), evaluated at the frequency f = f.. The dimensions of the power spectral
density are therefore in watts per Hertz (W/Hz).

% PROPERTIES OF THE POWER SPECTRAL DENSITY

The power spectral density Sx{f) and the autocorrelation function Rx{7) of a stationary
process X(t) form a Fourier-transform pair with 7 and f as the variables of interest, as
shown by the pair of relations

™

Sx(f) = j_w Rx(7) exp(—j2mfr) dT (1.42)
Relr) = | Sulf) exptjzmf) df (1.43

Equations (1.42) and (1.43) are basic relations in the theory of spectral analysis of random
processes, and together they constitute what are usually called the Einstein—Wiener—
Kbhintchine relations.®

The Einstein—~Wiener—Khintchine relations show that if either the autocorrelation
function or power spectral density of a randon process is known, the other can be found
exactly. But these functions display different aspects of the correlation information about
the process. It is commonly accepted that for practical purposes, the power spectral density
is the more useful “parameter.”

We now wish to use this pair of relations to derive some general properties of the
power spectral density of a stationary process.

Property 1

The zero-frequency value of the power spectral density of a stationary process equals the
total area under the graph of the autocorrelation function; that is,

Sx(0) = j:o Rx(7) dr (1.44)

This property follows directly from Equation (1.42) by putting f = 0.

Property 2

The mean-square value of a stationary process equals the total area under the graph of
the power spectral density; that is,

E[X*t)] = ,L Sx{f) df (145)

This property follows directly from Equation (1.43) by putting 7 = 0 and noting that
Rx(0) = E[X*(z)].
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Property 3
The power spectral density of a stationary process is always nonnegative; that is,

Sx(f) =0 for all f (1.46)

This property is an immediate consequence of the fact that, in Equation (1.41), the
mean-square value E[Y?(¢)] must always be nonnegative.

Property 4

The power spectral density of a real-valued random process is an even function of fre-
quency; that is,

Sx(=f) = Sx(f) (1.47)

This property is readily obtained by substituting —f for f in Equation (1.42):
Sx(~f) = [ Rut) explizmfe) dr
Next, substituting —7 for 7, and recognizing that Ry(—17) = Rx(7), we get

Sx(—f) = f Rx(7) exp(~j27fr) dr = Sx(f)

which is the desired result.

Property 5

The power spectral density, appropriately normalized, has the properties usually associated
with a probability density function.

The normalization we have in mind here is with respect to the total area under the
graph of the power spectral density (i.e., the mean-square value of the process). Consider
then the function

patf) = 2D (1.48)
[ sapar

In light of Properties 2 and 3, we note that px{f) = 0 for all f. Moreover, the total area
under the function px(f) is unity. Hence, the normalized form of the power spectral den-
sity, as defined in Equation {1.48), behaves similar to a probability density function.

Sx(f)
Sx

& FExampLE 1.5 Sinusoidal Wave with Random Phase (continued)

Consider the random process X(¢) = A cos(2mf.t + ©), where @ is a uniformly distributed
random variable over the interval [—r, 7). The autocorrelation function of this random pro-
cess is given by Equation (1.17), which is reproduced here for convenience:

2
Ry(7) = ‘[;— cos(2mf.r)



48 CHAPTER 1 # RANDOM PROCESSES

Se(f)

AZ AZ
kA )

f

/] 0 T

FIGURE 1.10 Power speciral density of sine wave with random phase; 8(f) denotes the delta
function at f = 0.

Let 8(f) denote the delta function at f = 0; for the definition of the delta function and its
properties, see Appendix 2. Taking the Fourier transform of both sides of the relation defining
Ry{7), we find that the power spectral density of the sinusoidal process X(z) is

Sx{f} = AT [8(f — £ + 8(f + £)] (1.49)

which consists of a pair of delta functions weighted by the factor A%4 and located at * £, as
illustrated in Figure 1.10. We note that the total area under a delta function is one. Hence,
the total area under Sx(f) is equal to A%*/2, as expected. <

B ExampiE 1.6 Random Binary Wave (continued)

Consider again a random binary wave consisting of a sequence of 1s and Os represented by
the values +A and —A, respectively. In Example 1.3 we showed that the autocorrelation
function of this random process has a triangular waveform, as shown by

.
i) = Al(l - I_T|> Il =T
0, 7| =T

The power spectral density of the process is therefore

Sx(f) = J:T A"‘(l - i;—‘) exp(—72mf7) dr

Using the Fourier transform of a triangular function (see Table A6.3), we obtain

Sx{f) = A°T sinc®(fT) (1.50)
which is plotted in Figure 1.11. Here again we see that the power spectral density is nonneg-
ative for all f and that it is an even function of f. Noting that Rx(0) = A” and using Property

2, we find that the total area under Sx(f), or the average power of the random binary wave
described here, is A%, which is intuitively satisfying.

The result of Equation (1.50) may be generalized as follows. We note that the energy
spectral density (i.e., the squared magnitude of the Fourier transform) of a rectangular
pulse g(t) of amplitude A and duration T is given by

ef) = A*T? sinc®(fT) (1.51)
We may therefore rewrite Equation (1.50) in terms of €,(f) simply as
(S
Sx(f) = —— (1.52)

T
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FIGURE 1.11 Power spectral density of random binary wave.

Equation (1.52) states that for a random binary wave in which binary symbols 1 and 0
are represented by pulses g(¢) and —g(t), respectively, the power spectral density Sx(f) is
equal to the energy spectral density B,(f) of the symbol shaping pulse g(t), divided by the
symbol duration T.

& ExampLE 1.7 Mixing of a Random Process with a Sinusoidal Process

A situation that often arises in practice is that of mixing (i.e., multiplication) of a stationary
process X(t} with a sinusoidal wave cos(27f.t + ®), where the phase @ is a random variable
that is uniformly distributed over the interval [0, 27]. The addition of the random phase ®
in this manner merely recognizes the fact that the time origin is arbitrarily chosen when
X(¢) and cos(27f.t + @) come from physically independent sources, as is usually the case. We
are intetested in determining the power spectral density of the random process Y(t), defined
by

Y(t) = X(t) cos(2@ft + ©) (1.53)

Using the definition of autocorrelation function of a stationary process and noting that the
random variable © is independent of X(z), we find that the autocorrelation function of Y{z) is
given by
Ry(7) = E[Y(r + nY(2)]

= E[X(t + 7) cos(2af,t + 2mfr + O)X(t) cos(2wf.t + O)]

= E[X(t + NX()|E[cos(2nf.t + 2af.m + O) cos(2nf.t + O)] (1.54)

= IRx{NE[cos(2nf.7) + cos(dmft + 2mfir + 20)]
1Rx(7) cos(2mfr)

Because the power spectral density is the Fourier transform of the autocorrelation function,
we find that the power spectral densities of the random processes X{(z) and Y{(z) are related as
follows:

Sylf) = 3Sx(f = f) + Sxlf + £] (1.55)

According to Equation (1.55), the power spectral density of the random process Y(t) defined
in Equation (1.53) is obtained as follows: We shift the given power spectral density Sx{f) of
random process X() to the right by f;, shift it to the left by fc, add the two shifted power
spectra, and divide the result by 4. <
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# RELATION AMONG THE POWER SPECTRAL DENSITIES
oF THE INPUT AND OuTPUT RANDOM PROCESSES

Let Sx{f) denote the power spectral density of the output random process Y(¢) obtained
by passing the random process X(¢) through a linear filter of frequency response H(f).
Then, recognizing by definition that the power spectral density of a random process is
equal to the Fourier transform of its autocorrelation function and using Equation (1.32),
we obtain

$u4f) = | Rotr) expl—jaase) dr
(1.56)

= f_: f:, f:: blr)b{(n)Rx(T — 1, + ™) exp(—j2af1) d7y d73 dT

Let T — 7 + 7 = 7, or, equivalently, 7 = 7, + 7, — 7. Then by making this substitution
in Equation (1.56), we find that §x(f) may be expressed as the product of three terms: the
frequency response H(f) of the filter, the complex conjugate of H(f), and the power spec-
tral density Sx(f) of the input random process X(t). We may thus simplify Equation (1.56}
as

Sylfy = HUYH*(f}Sx(f) (1.57)

Finally, since | H(f) | = H(f)H*(f), we find that the relationship among the power spectral
densities of the input and output random processes is expressed in the frequency domain
by writing

Sy(f) = [HUf)*8x(f) (1.58)

Equation (1.58) states that the power spectral density of the output process Y(t) equals
the power spectral density of the input process X(t) multiplied by the squared magnitude
response of the filter. By using this relation, we can therefore determine the effect of passing
a random process through a stable, linear, time-invariant, filter. In computational terms,
Equation (1.58) is usually easier to handle than its time-domain counterpart of Equation
(1.32), involving the autocorrelation function.

# RELATION AMONG THE POWER SPECTRAL DENSITY
AND THE MAGNITUDE SPECTRUM OF A SAMPLE FUNCTION

We now wish to relate the power spectral density Sx(f) directly to the spectral properties
of a sample function x(¢) of a stationary process X(z) that is ergodic. For the sample
function x(t) to be Fourier transformable, however, it must be absolutely integrable; that
is ‘

f |x()| dt < o0 (1.59)
This condition can never be satisfied by any stationary sample function x(¢) of infinite
duration. In order to use the Fourier transform technique, we consider a truncated segment
of x(t), defined over the observation interval —T =< ¢t < T, say. Thus, using X(f, T) to
denote the Fourier transform of the truncated sample function so defined, we may write

T
X(f, T) = f_T x(t) exp(—j2mft) dt (1.60)
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Assuming that the process x(¢) is also ergodic, we may evaluate the autocorrelation
function Rx(7} of X{¢) using the time-average formula (see Section 1.5)
1 (T
Rx(7n) = lim — Tx(t + 7)x(t) dt (1.61)
T bt
It is customary to view the sample function x(¢) as a power signal (i.e., a signal with finite
average power). Hence, we may formulate the following Fourier-transform pair:
T

T x(t + x(t) dt = % |X(f, T)|* (1.62)

The parameter on the left-hand side is a time-averaged autocorrelation function. The pa-
rameter on the right-hand side is called the periodogram, whose dimensions are the same
as those of the power spectral density. This terminology is a misnomer, however, since the
periodogram is a function of frequency, not period. Nevertheless, it has wide usage. The
quantity was first used by statisticians to look for periodicities such as seasonal trends in
data.

Using the formula for the inverse Fourier transform in the Fourier-transform pair of
Equation (1.62), we may express the time-averaged autocorrelation function of the sample
function x(¢) in terms of the periodogram as

T

=1
o7 ), xe + Tix(e) de = L o7 | XU T2 explj2fT) df (1.63)

Hence, substituting Equation (1.63) into ( 1.61), we get

Ry(r) = fim } 2T
For a fixed value of the frequency f, the periodogram is a random variable in that
its value varies in a random manner from one sample function of the random process to
another. Thus, for a given sample function x(t), the periodogram does not converge in any
statistical sense to a limiting value as T tends to infinity. As such, it would be incorrect to
interchange the order of the integration and limiting operations in Equation (1.64). Sup-
pose, however, that we take the expectation of both sides of Equation (1.64) over the
ensemble of all sample functions of the random process and recognize that for an ergodic
process the autocorrelation function Rx(7) is unchanged by such an operation. Then, since
each sample function of an ergodic process eventually takes on nearly all the modes of
behavior of each other sample function, we may thus write

|X(f, T)|* exp(j2mfr) df (1.64)

=

Ry{r) = lim 1 E| | X(f, T)|?] exp(j27fr) df (1.65)

Tseo &

Now we may interchange the order of the integration and limiting operations and so obtain

* 1
Relr) = | { lim —— EI| X/, T)IZJ} exp(j2mfr) df (1.66)

Hence, comparing Equations (1.66) and (1.43), we obtain the desired relation between
the power spectral density Sx(f) of an ergodic process and the squared magnitude spectrum
IX(f, T)|? of a truncated sample function of the process:

I

1
Sx(f) = lim 7 ELXE DI

(1.67)

]

T
lim 1 E[ J x(t) exp(~—j2mft) dt

Teweo 2T
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It is important to note that in Equation (1.67) it is not possible to let T — o before taking
the expectation. Equation (1.67) provides the mathematical basis for estimating* the power
spectral density of an ergodic random process, given a sample function x(z) of the process
observed over the interval [T, T].

B CROSS-SPECTRAL DENSITIES

Just as the power spectral density provides a measure of the frequency distribution of a
single random process, cross-spectral densities provide a measure of the frequency inter-
relationship between two random processes. In particular, let X(2) and Y(z) be two jointly
stationary processes with their cross-correlation functions denoted by Ry y{71) and Ryx(7).
We then define the cross-spectral densities Sxv(f) and Syx(f) of this pair of random pro-
cesses to be the Fourier transforms of their respective cross-correlation functions, as
shown by

Sxy(f) = Ln Rxy(7) exp(—j2mfr) dr (1.68)

and

Syx(f) = Lﬂ Ryx{7) exp(—j2mf7) dr (1.69)

The cross-correlation functions and cross-spectral densities thus form Fourier-transform
pairs. Accordingly, using the formula for inverse Fourier transformation we may also
write

Rxy(1) = f_m Sxv(f) exp(j2mfT) df (1.70)
and

Ryx(7) = L Syx(f) exp(j2nfr) df (1.71)

The cross-spectral densities Sxv(f) and Syx(f) are not necessarily real functions of
the frequency f. However, substituting the relationship

Ryxy(1) = Ryx(—7)

into Equation (1.68) and then using Equation (1.69) we find that Sxy(f) and Syx(f) are
related by

Sxyl(f) = Syx(—f) = Syx{f) (1.72)

# ExampPLE 1.8

Suppose that the random processes X(2) and Y(z} have zero mean, and they are individually
stationary. Consider the sum random process

Z(t) = X(t) + Y{(n)

The problem is to determine the power spectral density of Z(z).
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The autocorrelation function of Z(t) is given by
Rz(t, u) = E[Z(1)Z(u)]
= E[(X(z) + YEN(X(n) + Y(a))]
.= E[X(O)X()] + E[X(1)Y(u)] + E[Y()X(s)] + E[Y(£)Y()]
= Rxft, u) + Rxv(t, u) + Ryx(t, u) + Rylt, »)
Defining 7 = ¢ — 4, we may therefore write
Rz{7) = Rx{7) + Rxy{7) + Ryx{7) + Ryl7) (1.73)

when the random processes X(¢) and Y(z) are also jointly stationary. Accordingly, taking the
Fourier transform of both sides of Equation {1.73), we get

Sz(f) = Sx(f) + Sxx(f) + Syx(f) + Su(f) (1.74)

We thus see that the cross-spectral densities Sxv(f) and Syx(f) represent the spectral compo-
nents that must be added to the individual power spectral densities of a pair of correlated
random processes in order to obtain the power spectral density of their sum.,

When the stationary processes X(z) and Y(2) are uncorrelated, the cross-spectral densities
Sxy(f) and Syx(f) are zero, and so Equation (1.74) reduces as follows:

S2(f) = Sx{f) + S¥{f) (1.75)

We may generalize this latter result by stating that when there is a multiplicity of zero-mean
stationary processes that are uncorrelated with each other, the power spectral density of their
sum is equal to the sum of their individual power spectral densities.

¥ ExampPLE 1.9

Consider next the problem of passing two jointly stationary processes through a pair of sep-
arate, stable, linear, time-invariant filters, as shown in Figure 1.12. In particular, suppose that
the random process X(t) is the input to the filter of impulse response 44(¢) and that the random
process Y(t) is the input to the filter of impulse response b,(¢). Let V(z) and Z(z) denote the
random processes at the respective filter outputs. The cross-correlation function of V() and
Z(1) is therefore

Ryz(t, #} = E[V{#)Z{u)]

= EU_m by(m)X(t — m) dm .L hao(m) Y — 1) de]
0 (1.76)
= Jln Jlm bt m)E[X(t — 7)Y — )] d1y dry
= _(_m J_m by(t)ha(1)Ryy(t — T, 4 — ) d7y dTy
where Rxv{¢, ) is the cross-correlation function of X(z) and Y(¢). Because the input random

processes are jointly stationary (by hypothesis), we may set 7= ¢ — # and so rewrite Equation
(1.76) as follows:

Ryzl7) = Lx Lx by(t)ba(T)Roy(7T — 7 + 7o) dry dmy (1.77)

X0 —> O v Y — B —7(

FIGURE 1.12 A pair of separate linear time-invariant filters.
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Taking the Fourier transform of both sides of Equation (1.77) and using a procedure
similar to that which led to the development of Equation (1.39), we finally get

Svzlf) = HylfIH3(F)SxAf) (1.78)

where H,(f) and H.(f) are the frequency responses of the respective filters in Figure 1.12, and
H3(f) is the complex conjugate of Ha(f). This is the desired relationship between the cross-
spectral density of the output processes and that of the input processes. b

l 1.8 Gaussian Process

The material we have presented on random processes up to this point in the discussion
has been of a fairly general nature. In this section, we consider an important family of
random processes known as Gaussian processes.®

Let us suppose that we observe a random process X(¢) for an interval that starts at
time ¢ = 0 and lasts until # = T. Suppose also that we weight the random process X{t) by
some function g(¢) and then integrate the product g()X(t) over this observation interval,
thereby obtaining a random variable Y defined by

Y= fo g)X(t) dt (1.79)

We refer to Y as a linear functional of X(t). The distinction between a function and a
functional should be carefully noted. For example, the sum Y = =X, 4,X,, where the a; are
constants and the X; are random variables, is a linear function of the X;; for each observed
set of values for the random variables X;, we have a corresponding value for the random
variable Y. On the other hand, in Equation (1.79) the value of the random variable Y
depends on the course of the argument function g(t)X(t) over the entire observation in-
terval from O to T. Thus a functional is 2 quantity that depends on the entire course of
one or more functions rather than on a number of discrete variables. In other words, the
domain of a functional is a set or space of admissible functions rather than a region of a
coordinate space.

If in Equation (1.79) the weighting function g(¢) is such that the mean-square value
of the random variable Y is finite, and if the random variable Y is a Gaussian-distributed
random variable for every g(z) in this class of functions, then the process X{z) is said to be
a Gaussian process. In other words, the process X(z) is a Gaussian process if every linear
functional of X(¢) is a Gaussian random variable.

We say that the random variable Y has a Gaussian distribution if its probability
density function has the form

- 1 _(}’ - py)
frly) = Vonoe exp[ Fye) :| (1.80)

where gy is the mean and 6% is the variance of the random variable Y. A plot of this
probability density function is given in Figure 1.13 for the special case when the Gaussian
random variable Y is #ormalized to have a mean py of zero and a variance 0% of one, as
shown by

_ 1 ¥
fY(y) - mexp< 2)

Such a normalized Gaussian distribution is commonly written as N(0, 1).
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FIGURE 1.13 Normalized Gaussian distribution.

A Gaussian process has two main virtues. First, the Gaussian process has many
properties that make analytic results possible; we will discuss these properties later in the
section. Second, the random processes produced by physical phenomena are often such
that a Gaussian model is appropriate. Furthermore, the use of a Gaussian model to describe
the physical phenomena is usually confirmed by experiments. Thus the frequent occurrence
of physical phenomena for which a Gaussian model is appropriate, together with the ease
with which a Gaussian process is handled mathematically, make the Gaussian process very
important in the study of communication systems.

# CENTRAL LiviT THEOREM

The central limit theorem provides the mathematical justification for using a Gaussian
process as a model for a large number of different physical phenomena in which the
observed random variable, at a particular instant of time, is the result of a large number
of individual random events. To formulate this important theorem, let X,, i = 1,2, ...,
N, be a set of random variables that satisfies the following requirements:

1. The X; are statistically independent.
2. The X; have the same probability distribution with mean px and variance o%.

The X; so described are said to constitute a set of independently and identically distributed
(i.i.d.) random variables. Let these random variables be normalized as follows:

Y= 2 X - px), i=1,2,...,N
Ox

so that we have

E[lYi=0
and

var[Y}] = 1

Define the random variable

VN=

S
iz
=
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The central limit theorem states that the probability distribution of Vi approaches a nor-
malized Gaussian distribution N(0, 1) in the limit as the number of random variables N
approaches infinity.

It is important to realize, however, that the central limit theorem gives only the
“limiting” form of the probability distribution of the normalized random variable Vy as
N approaches infinity. When N is finite, it is sometimes found that the Gaussian limit gives
a relatively poor approximation for the actual probability distribution of V, even though
N may be quite large.

PROPERTIES OF A GAUSSIAN PROCESS

A Gaussian process has some useful properties that are described in the sequel.

Property 1
If a Gaussian process X(t) is applied to a stable linear filter, then the random process Y(1)
developed at the output of the filter is also Gaussian.

This property is readily derived by using the definition of a Gaussian process based
on Equation (1.79). Consider the situation depicted in Figure 1.8, where we have a linear
time-invariant filter of impulse response »(¢), with the random process X() as input and
the random process Y(¢) as output. We assume that X(#) is a Gaussian process. The random
processes Y(2) and X(¢) are related by the convolution integral

fl’)t"T 7) dT, 0=t< o (1.81)

‘We assume that the impulse response b(¢) is such that the mean-square value of the output
random process Y(t) is finite for all # in the range 0 = ¢ < = for which Y{(#) is defined. To
demonstrate that the output process Y(z} is Gaussian, we must show that any linear func-
tional of it is a Gaussian random variable. That is, if we define the random variable

zZ= fgy fl’,'t—T 7) drdt (1.82)

then Z must be a Gaussian random variable for every function gy{t), such that the mean-
square value of Z is finite. Interchanging the order of integration in Equation (1.82), we
get

Z = L g(nX(7) dr (1.83)

where

= f: gy(th(t — 7) dr (1.84)

Since X(¢) is a Gaussian process by hypothesis, it follows from Equation (1.83) that Z
must be a Gaussian random variable. We have thus shown that if the input X() to a linear
filter is a Gaussian process, then the output Y{#) is also a Gaussian process. Note, however,
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that although our proof was carried out assuming a time-invariant linear filter, this prop-
erty is true for any arbitrary stable linear system.

Property 2

Consider the set of random variables or samples X(t,), X(t2), . .., X(t,), obtained by
observing a random process X(t) at times ty, tay . . ., L, If the process X(t) is Gaussian,
then this set of random variables is jointly Gaussian for any n, with their n-fold joint
probability density function being completely determined by specifying the set of means

Bxey = EX@), i=1,2,...,n

and the set of covariance functions
Cxlte, 1) = E[(X(te) — pxe)(X(2) — Bxey)]s ki=1,2,...,n

Let the #-by-1 vector X denote the set of random variables X(#,), . . . , X{¢,) derived from
the Gaussian process X(¢) by sampling it at times #,, . . ., #,. Let x denote a value of X,
According to Property 2, the random vector X has a multivariate Gaussian distribution
defined in matrix form as

1 1
Fxep. . xep( X1y + o0 s X2) = W exP(‘E (x — w) ¥ x — l-'-)) (1.85)

where the superscript T denotes transposition and
K = mean vector
_ T
- [I-Lla I-"29~~~9I-Ln]
¥ = covariance matrix
= {Cx(te, t)}i =1
3! = inverse of covariance matrix

A = determinant of covariance matrix ¥

Property 2 is frequently used as the definition of a Gaussian process. However, this
definition is more difficult to use than that based on Equation (1.79) for evaluating the
effects of filtering on a Gaussian process.

We may extend Property 2 to two (or more) random processes as follows. Consider
the composite set of random variables X(z,), X(z,), . .., X{(t,), Y(u), Y(), . .., Y(u,,)
obtained by observing a random process X(¢) at times {t;,i = 1,2, ..., #n}, and a second
random process Y(¢) at times {u, & = 1, 2, ..., m}. We say that the processes X(¢) and
Y(t) are jointly Gaussian if this composite set of random variables is jointly Gaussian for
any # and . Note that in addition to the mean and correlation functions of the random
processes X(t) and Y(t) individually, we must also know the cross-covariance function

E[X(t) — mxe) (Y1) — pveen)] = Rxvltis #e) — MxgepMviy
for any pair of observation instants (;, #;). This additional knowledge is embodied in the
cross-correlation function, Rxy(t;, #,), of the two processes X(t) and Y(z).
Property 3

If a Gaussian process is stationary, then the process is also strictly stationary.

This follows directly from Property 2.
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Property 4

If the random variables X(t,), X(t,), . . . , X{t,), obtained by sampling a Gaussian process
X(t) at times ty, ta, . . . , t,, are uncorrelated, that is,

El(X(#) — pxcu)(X(t) — pxe)] = 0, i+k
then these random variables are statistically independent.

The uncorrelatedness of X(ty), ..., X(t,) means that the covariance matrix ¥ is a
diagonal matrix as shown by

o7 o

where
of = E[(X(t) — EX@®))*], i=1,2,...,n

Under this condition, the multivariate Gaussian distribution of Equation (1.85) simplifies
to

where X; = X(t;) and

fxfx) = L exp| — b = I'in)z)
Xari mﬂ'i P 20_{2

In words, if the Gaussian random variables X(t,), . . . , X(z,) are uncorrelated, then they
are statistically independent, which, in turn, means that the joint probability density func-
tion of this set of random variables can be expressed as the product of the probability
density functions of the individual random variables in the set.

g 1.9 Noise

The term noise is used customarily to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication systems and over which we have
incomplete control. In practice, we find that there are many potential sources of noise in
a communication system. The sources of noise may be external to the system (e.g., at-
mospheric noise, galactic noise, man-made noise), or internal to the system. The second
category includes an important type of noise that arises from spontaneous fluctuations of
current or voltage in electrical circuits.® This type of noise represents a basic limitation on
the transmission or detection of signals in communication systems involving the use of
electronic devices. The two most common examples of spontaneous fluctuations in elec-
trical circuits are shot noise and thermal noise, which are described in the sequel.

g2 SHOT NOISE

Shot noise arises in electronic devices such as diodes and transistors because of the discrete
nature of current flow in these devices. For example, in a photodetector circuit a current
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pulse is generated every time an electron is emitted by the cathode due to incident light
from a source of constant intensity. The electrons are naturally emitted at random times
denoted by 7, where —% < k < o, It is assumed that the random emissions of electrons
have been going on for a long time. Thus, the total current flowing through the photo-
detector may be modeled as an infinite sum of current pulses, as shown by

@

X = 2 ht—m (1.86)

k=

where 4(t — 7) is the current pulse generated at time 7. The process X(#) defined by
Equation (1.86) is a stationary process called shot noise.

The number of electrons, N(t), emitted in the time interval [0, £] constitutes a discrete
stochastic process, the value of which increases by one each time an electron is emitted.
Figure 1.14 shows a sample function of such a process. Let the mean value of the number
of electrons, v, emitted between times ¢ and ¢ + #, be defined by

E[V] = Mo (1.87)
The parameter A is a constant called the rate of the process. The total number of electrons
emitted in the interval {t, £ + t;], that is,
v= Nt + ) — N(z)
follows a Poisson distribution with a mean value equal to Afy. In particular, the probability

that k electrons are emitted in the interval [#, ¢ + £,] is defined by

k
Plv=k) = (—Alg—)— e Mo k=0,1,... (1.88)

Unfortunately, a detailed statistical characterization of the shot-noise process X(t)
defined in Equation (1.86) is a difficult mathematical task. Here we simply quote the results
pertaining to the first two moments of the process:

» The mean of X(t) is

px = A J._mm h(t) dr (1.89)

where A is the rate of the process and 4(t) is the waveform of a current pulse.
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Ficure 1.14 Sample function of a Poisson counting process.
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» The autocovariance function of X(z) is
Cx(r) = A f_ h(B)h(t + 7) dt (1.90)

This second result is known as Campbell’s theorem.

For the special case of a waveform h(t) consisting of a rectangular pulse of amplitude
A and duration T, the mean of the shot-noise process X{(z) is AAT, and its autocovariance
function is

MKT = |1]), |7l <T

Cxln = {o, rl=T

which has a triangular form similar to that shown in Figure 1.7.

THERMAL NOISE

Thermal noise is the name given to the electrical noise arising from the random motion of
electrons in a conductor. The mean-square value of the thermal noise voltage Vo ap-
pearing across the terminals of a resistor, measured in a bandwidth of Af Hertz, is, for all
practical purposes, given by

E[VZy] = 4kTR Af volts® (1.91)

where k is Boltzmann’s constant equal to 1.38 X 1072 joules per degree Kelvin, T is the
absolute temperature in degrees Kelvin, and R is the resistance in ohms. We may thus
model a noisy resistor by the Thévenin equivalent circuit consisting of a noise voltage
generator of mean-square value E[V#y] in series with a noiseless resistor, as in Figure
1.154. Alternatively, we may use the Norton equivalent circuit consisting of a noise current
generator in parallel with a noiseless conductance, as in Figure 1.156. The mean-square
value of the noise current generator is

1
E[IfN] = 2 E[Vin]
= 4kTG Af amps®

where G = 1/R is the conductance. It is also of interest to note that because the number
of electrons in a resistor is very large and their random motions inside the resistor are
statistically independent of each other, the central limit theorem indicates that thermal
noise is Gaussian distributed with zero mean.

(1.92)

E[I4] C) gc

ElViy

(@) 6]

FIGURE 1.15 Models of a noisy resistor. (a) Thévenin equivalent circuit. (b) Norton equivalent
circuit.
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Noise calculations involve the transfer of power, and so we find that the use of the
maximum-power transfer theorem is applicable to such calculations. This theorem states
that the maximum possible power is transferred from a source of internal resistance R to
a load of resistance R, when R, = R. Under this matched condition, the power produced
by the source is divided equally between the internal resistance of the source and the load
resistance, and the power delivered to the load is referred to as the available power. Ap-
plying the maximum-power transfer theorem to the Thévenin equivalent circuit of Figure
1.15a or the Norton equivalent circuit of Figure 1.155, we find that a noisy resistor pro-
duces an available noise power equal to kT Af watts.

= WHITE NOISE

The noise analysis of communication systems is customarily based on an idealized form
of noise called white noise, the power spectral density of which is independent of the
operating frequency. The adjective white is used in the sense that white light contains equal
amounts of all frequencies within the visible band of electromagnetic radiation. We express
the power spectral density of white noise, with a sample function denoted by w/(t), as

Swlf) = — (1.93)

2
which is illustrated in Figure 1.164. The dimensions of N, are in watts per Hertz. The
parameter Ny is usually referenced to the input stage of the receiver of a communication
system. It may be expressed as

N, = kT, (1.94)

where k is Boltzmann’s constant and T, is the equivalent noise temperature of the receiver.”
The equivalent noise temperature of a system is defined as the temperature at which a
noisy resistor has to be maintained such that, by connecting the resistor to the input of a
notseless version of the system, it produces the same available noise power at the output
of the system as that produced by all the sources of noise in the actual system. The im-
portant feature of the equivalent noise temperature is that it depends only on the param-
eters of the system.

Since the autocorrelation function is the inverse Fourier transform of the power
spectral density, it follows that for white noise

N,
=25

Relr) =~

() (1.95)

Swf) Ry ()

K

% 5(r)

0 . 0
(a) )

FiGURE 1.16 Characteristics of white noise. (z) Power spectral density. () Autocorrelation
function.
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That is, the autocorrelation function of white noise consists of a delta function weighted
by the factor No/2 and occurring at T = 0, as in Figure 1.165. We note that Ry(7) is zero
for 7 # 0. Accordingly, any two different samples of white noise, no matter how closely
together in time they are taken, are uncorrelated. If the white noise w(t) is also Gaussian,
then the two samples are statistically independent. In a sense, white Gaussian noise rep-
resents the ultimate in “randomness.”

Strictly speaking, white noise has infinite average power and, as such, it is not phys-
ically realizable. Nevertheless, white noise has simple mathematical properties exemplified
by Equations (1.93) and (1.95), which make it useful in statistical system analysis.

The utility of a white noise process is parallel to that of an impulse function or delta
function in the analysis of linear systems. Just as we may observe the effect of an impulse
only after it has been passed through a system with a finite bandwidth, so it is with white
noise whose effect is observed only after passing through a similar system. We may state,
therefore, that as long as the bandwidth of a noise process at the input of a system is
appreciably larger than that of the system itself, then we may model the noise process as
white noise.

¥ ExampLE 1.10 Ideal Low-Pass Filtered White Noise

Suppose that a white Gaussian noise w{f) of zero mean and power spectral density No/2 is
applied to an ideal low-pass filter of bandwidth B and passband magnitude response of one.
The power spectral density-of the noise 7(¢) appearing at the filter output is therefore (see

Figure 1.17)
No
Swfy=12> “B<f<B (1.96)
0, |f|>B

The autocorrelation function of #(z) is the inverse Fourier transform of the power spectral
density shown in Figure 1.17a:

B
Ny .
Ryl = — exp(j2@f7) df
J 52 (1.97)
= NyB sinc(2B7)

This autocorrelation function is plotted in Figure 1.17b. We see that Ry(7) has its maximum
value of NyB at the origin, and it passes through zero at 7 = *k/2B, where k = 1,2, 3, - - -.

Sy(f) Ryl7)
Ny
2 NgB
P N v NL_ -
-B 0 B 73 1 /1 0 1) 1 3
2B B\/ZB 23\/8 2B
(@ )

FIGURE 1.17 Characteristics of low-pass filtered white noise. (@) Power spectral density. (b) Auto-
correlation function.
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Since the input noise w(t) is Gaussian (by hypothesis), it follows that the band-limited
noise n(z) at the filter output is also Gaussian. Suppose now that #{2) is sampled at the rate of
2B times per second. From Figure 1.17b, we see that the resulting noise samples are uncor-
related and, being Gaussian, they are statistically independent. Accordingly, the joint proba-
bility density function of a set of noise samples obtained in this way is equal to the product
of the individual probability density functions. Note that each such noise sample has a mean
of zero and variance of NyB. k|

= ExampLE 1.11 Correlation of White Noise with a Sinusoidal Wave

Consider the sample function

r
w'(t) = ‘/%,L w(t) cos(2wf.t) dt (1.98)

which is the output of a correlator with white Gaussian noise w(t) and sinusoidal wave
V2T cos(27f.t) as inputs; the scaling factor V2/T is included here to make the sinusoidal
wave input have unit energy over the interval 0 < ¢ = T. (This problem was encountered in
the Background and Preview chapter but was not elaborated on at that time.) With the noise
w(t) having zero mean, it immediately follows that the correlator output 1 (2) has zero mean,
too. The variance of the correlator output is defined by

2 (T (T
o =E [fjo jo w(t;) cos(2mfot wl(t,) cos(2mfity) di, dtz]
-2 j i j TE t 2 2 dt, d
=Tl ) [w(thw(ta)] cos(2mfity) cos(2af.ty) d, di,

2 T T
= TL L Ruydty, t3) cos(2mf.ty) cos(2mfty) diy dt,

where Rylt;, t,) is the autocorrelation function of the white noise w(t). But from Equation
(1.95):

N,
Rulty, t2) = —29 8t — 1)

where Ny/2 is the power spectral density of the white noise w/(#). Accordingly, we may simplify
the expression for the variance ¢? as

H—-&-EITITB(t—t) (2erf.;) cos(2afts) dt, dt.
=3 Tl b 1 2) cos(2mfity) cos(2mft,) dty dt,
We now invoke the sifting property of the delta function, namely,

[ st o0 i = g10)

where g(#) is a continnous function of time, assuming the value g(0) at time ¢ = 0. Hence, we
may further simplify o? as
— NO 2 i 2
o = 3 T, 0 (27f.t) dt
- No
2

(1.99)

where it is assumed that the frequency f, of the sinusoidal wave input is an integer multiple
of the reciprocal of T.
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Sy(f)

-8B ., f.+E 0 fo-B fo fotB
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FIGURE 1.18 (&) Power spectral density of narrowband noise. (b) Sample function of narrow-
band noise.

: 1.10 Narrowband Noise

The receiver of a communication system usually includes some provision for preprocessing
the received signal. The preprocessing may take the form of a narrowband filter whose
bandwidth is just large enough to pass the modulated component of the reccived signal
essentially undistorted but not so large as to admit excessive noise through the receiver.
The noise process appearing at the output of such a filter is called rnarrowband noise. With
the spectral components of narrowband noise concentrated about some midband fre-
quency *f. as in Figure 1.184, we find that a sample function »{#) of such a process appears
somewhat similar to a sine wave of frequency f,, which undulates slowly in both amplitude
and phase, as illustrated in Figure 1.185.

To analyze the effects of narrowband noise on the performance of a communication
system, we need ‘a mathematical representation of it. Depending on the application of
interest, there are two specific representations of narrowband noise:

1. The narrowband noise is defined in terms of a pair of components called the in-phase
and guadrature components.

2. The narrowband noise is defined in terms of two other components called the en-
velope and phase.

These two representations are described in what follows. For now it suffices to say that
given the in-phase and quadrature components, we may determine the envelope and phase
components, and vice versa: Moreover, in their own individual ways, the two represen-
tations are not only basic to the noise analysis of communication systems but also to the
characterization of narrowband noise itself.

1.11 Representation of Narrowband Noise
in Terms of In-Phase and Quadrature Components

Consider a narrowband noise n(z) of bandwidth 2B centered on frequency f,, as illustrated
in Figure 1.18. In light of the theory of band-pass signals and systems presented in Ap-
pendix 2, we may represent 7(¢) in the canonical (standard) form:

n(t) = n(t) cos(2mf.t) — nglt) sin(2nf.2) (1.100)
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where #,(2) is called the in-phase component of n(t), and ng(#) is called the guadrature
component of n(t). Both #;(t) and #g(t) are low-pass signals. Except for the midband
frequency f,, these two components are fully representative of the narrowband noise 7(z).

Given the narrowband noise #(t), we may extract its in-phase and quadrature com-
ponents using the scheme shown in Figure 1.194. It is assumed that the two low-pass filters
used in this scheme are ideal, each having a bandwidth equal to B (i.e., one-half the band-
width of the narrowband noise 7(¢}). The scheme of Figure 1.194 follows from the rep-
resentation of Equation (1.100). We may, of course, use this equation directly to generate
the narrowband noise #(¢), given its in-phase and quadrature components, as shown in
Figure 1.19b. The schemes of Figures 1.194 and 1.195 may thus be viewed as narrowband
noise analyzer and synthesizer, respectively.

The in-phase and quadrature components of a narrowband noise have important
properties that are summarized here:

1. The in-phase component 7,(¢) and quadrature component no(t) of narrowband noise
n(t) have zero mean.

2. 1f the narrowband noise #(¢) is Gaussian, then its in-phase component ;(t) and
quadrature component n,(¢) are jointly Gaussian.

3. If the narrowband noise #(z) is stationary, then its in-phase component ;(f) and
quadrature component 7,(¢) are jointly stationary.

4. Both the in-phase component #,(¢) and quadrature component #5(z) have the same
power spectral density, which is related to the power spectral density Sy(f) of the
narrowband noise #(t) as

Sxlf) = Snglf) = {

where it is assumed that S(f) occupies the frequency interval £. — B=<|f|< f. + B,

and f. > B.

The in-phase component 7;(¢) and quadrature component 74t} have the same vari-

ance as the narrowband noise n(t).

6. The cross-spectral density of the in-phase and quadrature components of narrow-
band noise #(t) is purely imaginary, as shown by

SMf—f)+Sdf+f), -B=f=B

1.101
0, otherwise ( )

5

Snnolf) = =Snpny(f) (1.102)
_UISNF+f) = Suf-f), -B=f=B
0, otherwise
Low-pass ) (0
+
(1) g 2€OS (27f 1) cos 2wfn nls)
Low-
WOES | ) gl
-2 sin (2mf,.1) sin (2#f,.1)
(a) 0]

FIGURE 1.19 (a) Extraction of in-phase and quadrature components of a narrowband process.
(b) Generation of a narrowband process from its in-phase and quadrature components.
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7. Tf the narrowband noise n(t) is Gaussian and its power spectral density Sx(?) is sym-
metric about the mid-band frequency f., then the in-phase component #;(t} and
quadrature component 7(?) are statistically independent.

For further discussions of these properties, the reader is referred to Problems 1.28 and
1.29.

& ExavpLE 1.12 Ideal Band-Pass Filtered White Noise

Consider 2 white Gaussian noise of zero mean and power spectral density No/2, which is
passed through an ideal band-pass filter of passband magnitude response equal to one, mid-
band frequency £., and bandwidth 2B. The power spectral density characteristic of the filtered
noise #(2) will therefore be as shown in Figure 1.20a. The problem is to determine the auto-
correlation functions of #(t) and its in-phase and quadrature components.

The autocorrelation function of 7(¢) is the inverse Fourier transform of the power spec-
tral density characteristic shown in Figure 1.20a:

—fﬂ+B ND ) fo+B NO .

R = [, R explizmpn df + [, 5 exoliaafn 4f
= N,B sinc(2B7)[exp(—j2afr) + exp(j2mfr] (1.103)
= 2N,B sinc(2B7) cos(27f.7)

which is plotted in Figure 1.20b.

The spectral density characteristic of Figure 1.204 is symmetric about *f.. Therefore,
we find that the corresponding spectral density characteristic of the in-phase noise component

_fc 0 £ (4

be— 2B —>

Sy, () =S (1)

No

T

-B 0 B

b) (e}

FIGURE 1.20 Characteristics of ideal band-pass filtered white noise. (z) Power spectral density.
(b) Autocorrelation function. (c) Power spectral density of in-phase and quadrature components.
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7y(t) or the quadracure noise component 74 (2) is as shown in Figure 1.21¢. The autocorrelation
function of n{t} or ng(?) is therefore (see Example 1.10):

Ru(7) = Ru,(7) = 2NoB sinc(2B7) (1.104)
<

1.12 Representation of Narrowband Noise
in Terms of Envelope and Phase Components

In Section 1.11 we considered the representation of a narrowband noise #(¢) in terms of
its in-phase and quadrature components. We may also represent the noise 7(¢) in terms of
its envelope and phase components as follows:

n(t) = r(t) cos2mft + ¢(#)] (1.105)
where
(t) = [5}(t) + np{e)]"* (1.106)
and
Y 1]
$(t) = tan l[n[(t)] (1.107)

The function 7(¢) is called the envelope of n(t), and the function () is called the phase of
n(t).

The envelope (t) and phase y(#) are both sample functions of low-pass random
processes. As illustrated in Figure 1.18b, the time interval between two successive peaks
of the envelope 7(2) is approximately 1/B, where 2B is the bandwidth of the narrowband
noise #(t).

The probability distributions of 7(z) and ¥(z) may be obtained from those of #,(z)
and n(t) as follows. Let N; and N denote the random variables obtained by observing
{at some fixed time) the random processes represented by the sample functions #,(z) and
ng(t), respectively. We note that Ny and N, are independent Gaussian random variables
of zero mean and variance ¢, and so we may express their joint probability density func-
tion by

1 nr + n2
Tronplnss ng) = exp| ————2 (1.108)
270 207

Accordingly, the probability of the joint event that N; lies between #; and », + dn; and
that N lies between n, and g, + dnyg (i-e., the pair of random variables N; and Np lies
jointly inside the shaded area of Figure 1.214) is given by

1 "+ n}
Fung(nn no) dny dng = py— exp(— 797 ) dny dng (1.109)
Define the transformation (see Figure 1.214)
n; = rcosy (1.110)
Hg = rsiny i (1.111)

In a limiting sense, we may equate the two incremental areas shown shaded in Figures
1.214 and 1.215b and thus write

dny dng = rdr dyr (1.112)
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FIGURE 1.21 Illustrating the coordinate system for representation of narrowband noise: {a) in
terms of in-phase and quadrature components, and (b) in terms of envelope and phase.

Now, let R and ¥ denote the random variables obtained by observing (at some time ¢} the
random processes represented by the envelope 7(¢) and phase #(#), respectively. Then,
substituting Equations (1.110)—(1.112}) into (1.109), we find that the probability of the
random variables R and ¥ lying jointly inside the shaded area of Figure 1.21b is equal to

.7 r?
T2 P\ 53 dr dis

That is, the joint probability density function of R and ¥ is

r 7‘2
faulro ) =55 exp(—ﬁ) (1.113)

This probability density function is independent of the angle #, which means that the
random variables R and W are statistically independent. We may thus express fr w(r, ¥)
as the product of fz(r) and fy(i). In particular, the random variable ¥ representing phase
is uniformly disiributed inside the range 0 to 2, as shown by

1
felt) =420 O=¥=27 (1.114)
0, elsewhere

This leaves the probability density function of the random variable R as

r 7? -
fulr) = 1P T3z =0 (1.115)

0, elsewhere

where o2 is the variance of the original narrowband noise (). A random variable having
the probability density function of Equation (1.115) is said to be Rayleigh distributed.®
For convenience of graphical presentation, let

(1.116)
(1.117)

S al=
e
=

folv) =
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o 1 2 3

FIGURE 1.22 Normalized Rayleigh distribution.

Then we may rewrite the Rayleigh distribution of Equation (1.115) in the #normalized form

vl

frlv) = "e"P(T)’ v=0 (1.118)
0, elsewhere
Equation (1.118) is plotted in Figure 1.22. The peak value of the distribution fy(1) occurs
at v=1 and is equal to 0.607. Note also that, unlike the Gaussian distribution, the Rayleigh
distribution is zero for negative values of v. This is because the envelope 7(£) can assume
only nonnegative values.

Sine Wave Plus Narrowband Noise

Suppose next that we add the sinusoidal wave A cos(27f.#) to the narrowband noise n(z),
where A and f; are both constants. We assume that the frequency of the sinusoidal wave
is the same as the nominal carrier frequency of the noise. A sample function of the sinu-
soidal wave plus noise is then expressed by
x(t) = A cos(2wf.t) + nlr) {1.119)
Representing the narrowband noise #(¢) in terms of its in-phése and quadrature compo-
nents, we may write
x(t) = ni(t) cos(2mft) — ngl) sin(2wf,z) (1.120)
where
ni(t) = A + n(t) (1.121)
We assume that n(¢) is Gaussian with zero mean and variance o®. Accordingly, we may
state the following;
1. Both nj{¢) and ng(t) are Gaussian and statistically independent.
2. The mean of #j{t) is A and that of ny(#) is zero.
3. The variance of both #}(t) and n(t) is 0.
We may therefore express the joint probability density function of the random variables
N} and N,,, cotresponding to #;(t) and ng(t), as follows:
s 1 (n; — AY + nd
fN;,NQ(nI: ”Q) = [y exp[— 202

(1.122)
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Let 7(t) denote the envelope of x(£) and y(t) denote its phase. From Equation (1.120),
we thus find that

r(t) = {[ni(OF + np (O} (1.123)
and
W(r) = tan*l["—?ﬂ] (1.124)
ni(t)

Following a procedure similar to that described in Section 1.12 for the derivation of the
Rayleigh distribution, we find that the joint probability density function of the random
variables R and ¥, corresponding to 7(¢) and y(t) for some fixed time ¢, is given by

\ P4 A2 - 24
Fralrs ) =57 exp(—’ T ””)

(1.125)

We see that in this case, however, we cannot express the joint probability density function
Frulr, ¥) as a product fr(r)fu(d). This is because we now have a term involving the values
of both random variables multiplied together as 7 cos . Hence, R and ¥ are dependent
random variables for nonzero values of the amplitude A of the sinusoidal wave component.

We are interested, in particular, in the probability density function of R. To determine
this probability density function, we integrate Equation (1.125) over all possible values of
 obtaining the marginal density

27

frlr) = o Jrlr, ¥) dy

24 A%\ (7 (A
= ﬁ,ﬁ exp(—rzT) L exp(?r cos l,[l) dy

The integral in the right-hand side of Equation {1.126) can be identified in terms of the
defining integral for the modified Bessel function of the first kind of zero order (see Ap-
pendix 3); that is,

(1.126)

1 20
Iylx) = 2 J:) exp(x cosy) dif (1.127)

Thus, letting x = Ar/o?, we may rewrite Equation (1.126) in the compact form:

flr) = }% exp(—%f)b(%) . (1.128)

This relation is called the Rician distribution.”
As with the Rayleigh distribution, the graphical presentation of the Rician distribu-
tion is simplified by putting

v=" (1.129)
a= A (1.130)

T
fo(v) = afelr) (1.131)
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Ffr

FIGURE 1.23 Nommalized Rician distribution.

Then we may express the Rician distribution of Equation (1.128) in the normalized form
v + 2

fvlv) = uexp(— >Ig(au) (1.132)

which is plotted in Figure 1.23 for the values 0, 1, 2, 3, 5, of the parameter 4. Based on
these curves, we may make the following observations:

1, When 4 is zero, the Rician distribution reduces to the Rayleigh distribution.
2. The envelope distribution is approximately Gaussian in the vicinity of v = 4 when «

is large, that is, when the sine-wave amplitude A is large compared with o, the square
root of the average power of the noise #(z).

1.14 Computer Experiments:
Flat-Fading Channel

In this section we use computer simulations to study a multipath channel characterized by
Rayleigh fading, examples of which arise in wireless communications and long-range radio
transmission via the ionosphere. Fading occurs because of interference between different
versions of the transmitted signal, which reach the receiver at correspondingly different
times. The net result is that the received signal can vary widely in both amplitude and
phase. Under certain conditions, the statistical time-varying nature of the received signal’s
envelope is closely described by a Rayleigh distribution as demonstrated herein.

Figure 1.24 presents a model of a multipath channel. It consists of a large collection
of scatterers randomly positioned in space, whereby a single incident beam is converted
into a correspondingly large number of scattered beams at the receiving antenna. The
transmitted signal is set equal to A cos(27f.t). It is assumed that all the scattered beams
travel at the same mean velocity. However, they differ from each other in amplitude and
phase by virtue of differences in path loss and path delay. Thus the kth scattered beam is

-given by A, cos(2f.t + @,), where the amplitude A, and phase 9, are random variables
that vary slowly with time. Moreover, the ©, are all independent of one another and
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FiGURE 1.24 Model of a multipath channel.

uniformly distributed inside the interval [0, 27]. The type of fading exhibited by the mul-
tipath channel described herein is referred to as “flat fading” because the spectral char-
acteristics of the transmitted signal are completely preserved at the channel output. How-
ever, the strength of the channel output changes with time due to random fluctuations in
the gain of the channel caused by the multipath phenomenon.

Summing the contributions of all the scatterers, assumed to be N in number, we may
express the random process representing the received signal as

N
X(t) = D A, cos(2mfit + @) {1.33)
E=1
which may be rewriten in the equivalent form
X(t) = X; cos(2af.t) — Xg sin(27f.2) (1.134)
where the X; and X are respectively defined by
N
X, = 2 Agcos0, (1.135)
£=1
and
N
Xg= > Asin®, (1.136)
=1

For convenience of presentation and without loss of generality, we may assume that A,
lies in the closed interval [—1, 1] for all k.

Experiment 1. Gaussian Distributions

From the central limit theorem we note that as the number of scatterers, N, approaches
infinity, both X; and X, should approach Gaussian random variables. To test the validity
of this statement, the probability distributions of the in-phase component X; and quad-
rature component Xg are computed for N = 10, 100, 1000, and 10,000. To test the
validity of the central limit theorem, we need a measure of the goodness-of-fit that tests
the equivalence of the measured probability distribution of the sampled data for varying
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N to the theoretical Gaussian distribution. One way of performing such a test is to use
central moments of a distribution (up to order 4) to define the following two parameters:

2
M3
- 1.137
B 3 ( )
and
p=b (1.138)
H2

where p, ps, and 4 are the second, third, and fourth central moments, respectively. The
parameters B; and 3, together provide a measure of the skezwness of the distribution under
test. The closer the values B; and B, for the measured distribution are to the corresponding
ones for the theoretical distribution, the better is the goodness-of-fit. For a Gaussian ran-
dom variable X of mean px and variance 0% we have

M2 = 0%
s =0
Hq = 30'§(
which yield
Bi=0
and
B=3

Table 1.1 presents the values of 8, and B, computed for both the in-phase component X;
and quadrature component X, for varying N. Comparing these values with the corre-
sponding ones for a Gaussian distribution, we clearly see that as the number of scatterers,
N, increases the distributions of both X; and X, do approach a zero-mean Gaussian
distribution in accordance with the central limit theorem.

f TaBLE 1.1 B Values for in-phase and quadrature components

(a) Measured Distribution

Number of Scatterers, N
10 100 1000 10,000
In-phase component X, B 0.2443 0.0255 0.0065 0.0003
B 2.1567 2.8759 2.8587 3.0075
Quadrature component X, B1 0.0874 0.0017 0.0004 0.0000
B2 1.9621 2.7109 3.1663 3.0135

(b) Theoretical Distribution: Gaussian
B=0
B.=3
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Experiment 2. Rayleigh Distribution

In Equation (1.134) the random process X{2) is expressed in terms of its in-phase and
quadrature components. Equivalently, we may express X(#) in terms of its envelope and
phase as

X{(t) = R cos(2mft + ¥) (1.139)
where
R=VX?+ X} (1.140)
and
X
= tan~ 1| 22
V¥ = tan (Xz) (1.141)

Note that in the experiments considered here the in-phase component X;, quadrature
component X, envelope R, and phase ¥ are all independent of time.

If X; and X approach Gaussian random variables for increasing N, then from the
theory presented in Section 1.12 we note that the envelope R will approach a Rayleigh
distribution, and the phase ¥ will approach a uniform distribution. In Figure 1.25 we
present the actual probability density function of 7 for data generated for the case of
N = 10,000, with 100 histograms and 100 ensemble averages being computed. This figure
also includes the theoretical curve. There is close agreement between these two curves,
substantiating the assertion that the envelope R of the received signal approaches a Ray-
leigh distribution.

Figure 1.26 illustrates the effect of Rayleigh fading on the waveform of the received
signal x{t), a sample function of X(¢), for the case of a sinusoidal transmitted signal with
unit amplitude (i.e., A = 1) and frequency f, = 1 MHz. Specifically, the transmitted signal
and the corresponding received signal are shown in parts 4 and b of Figure 1.26, respec-
tively. Comparing these two waveforms, we see that transmission through the multipath

0.7 T T T 1
0.6
05

0.4

fylv)

0.3

0.2

0.1

FIGURE 1.25 Probability density function of the envelope of random process X(t): comparing
theory and experiment.



j 115

115  Summary and Discussion 75

0.5H i
']
-]
2
3 or 1
£
=4
054 -
1 . ; . . . . . . .
o] 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time(s) x 10°

(a)

1 T T T T T T T T T

Amplitude

w.
sk
b
o
o

o] 0.5 1 1.5 2 25 3.5
Time(s) % 108
3]

FIGURE 1.26 Effect of Rayleigh fading on a sinusoidal wave. (4) Input sinusoidal wave.
(b) Waveform of the resulting signal.

channel of Figure 1.24 has resulted in a received signal whose amplitude and phase com-
ponents vary randomly with time, as expected.

Summary and Discussion

Much of the material presented in this chapter has dealt with the characterization of a
particular class of random processes known to be stationary and ergodic. The implication
of (wide-sense) stationarity is that we may develop a partial description of a random
process in terms of two ensemble-averaged parameters: (1) a mean that is independent of
time, and (2) an autocorrelation function that depends only on the difference between the
times at which two observations of the process are made.!° Ergodicity enables us to use
time averages as “estimates™ of these parameters. The time averages are computed using
a sample function (i.e., single realization) of the random process.

Another important parameter of a random process is the power spectral density, The
autocorrelation function and the power spectral density constitute a Fourier-transform
pair. The formulas that define the power spectral density in terms of the autocorrelation
function and vice versa are known as the Einstein-Wiener-Khintchine relations.

In Table 1.2 we present a graphical summary of the autocorrelation functions and
power spectral densities of important random processes. All the processes described in this
table are assumed to have zero mean and unit variance. This table should give the reader
a feeling for (1) the interplay between the autocorrelation function and power spectral
density of a random process, and (2) the role of linear filtering in shaping the autocorre-
lation function or, equivalently, the power spectral density of a white noise process.

The latter part of the chapter dealt with a noise process that is Gaussian and nar-
rowband, which is the kind of filtered noise encountered at the front end of an idealized
form of communication receiver. Gaussianity means that the random variable obtained by
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deusities of random processes of zero mean and unit variance

i TaBLE 1.2  Graphical summary of autocorrelation functions and power spectral

Type of Process, X(t)

Autocorrelation Function, Rx(t)

Power Spectral Density, Sx(f)

Sinusoidal process of unit
frequency and random
phase

Random binary wave of unit
symbol-duration

RC low-pass filtered white
noise

Ideal low-pass filtered white
noise

Ideal band-pass filtered
white noise

RLC-filtered white noise
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observing the output of the filter at some fixed time has a Gaussian distribution. The
narrowband nature of the noise means that it may be represented in terms of an in-phase
and a quadrature component. These two components are both low-pass, Gaussian pro-
cesses, each with zero mean and a variance equal to that of the original narrowband noise.
Alternatively, a Gaussian narrowband noise may be represented in terms of a Rayleigh-
distributed envelope and a uniformly distributed phase. Each of these representations has
its own specific area of application, as shown in subsequent chapters of the book.

I NOTES AND REFERENCES

1. For a rigorous treatment of random processes, sce the classic books of Doob (1953), Loéve
(1963), and Cramér and Leadbetter (1967).

2. There is another important class of random processes commonly encountered in practice,
the mean and autocorrelation function of which exhibit periodicity, as in

wx(ty + T) = px(ty)
Rx(ts + T, t, + T) = Ry(ty, t2)

for all ¢, and #,. A random process X(#) satisfying this pair of conditions is said to be
cyclostationary (in the wide sense). Modeling the process X{z) as cyclostationary adds a
new dimension, namely, period T to the partial description of the process. Examples of
cyclostationary processes include a television signal obtained by raster-scanning a random
video field, and a modulated process obtained by varying the amplitude, phase, or fre-
quency of a sinusoidal carrier. For detailed discussion of cyclostationary processes, see
Franks (1969), pp. 204214, and the paper by Gardner and Franks (1975).

3. Traditionally, Equations (1.42) and (1.43) have been referred to in the literature as the
Wiener-Khintchine relations in recognition of pioneering work done by Norbert Wiener
and A. L Khintchine; for their original papers, see Wiener {1930) and Khintchine (1934).
A discovery of a forgotten paper by Albert Einstein on time-series analysis (delivered at the
Swiss Physical Society’s February 1914 meeting in Basel) reveals that Einstein had discussed
the autocorrelation function and its relationship to the spectral content of a time series
many years before Wiener and Khintchine. An English translation of Einstein’s paper is
reproduced in the IEEE ASSP Magazine, vol. 4, October 1987. This particular issue also
contains articles by W. A. Gardner and A. M. Yaglom, which elaborate on Einstein’s
original work.

4. For further details of power spectrum estimation, see Blackman and Tukey (1958), Box
and Jenkins (1976), Marple (1987), and Kay (1988).

5. The Gaussian distribution and associated Gaussian process are named after the great math-
ematician C. F. Gauss. At age 18, Gauss invented the method of least squares for finding
the best value of a sequence of measurements of some quantity. Gauss later used the method
of least squares in fitting orbits of planets to data measurements, a procedure that was
published in 1809 in his book entitled Theory of Motion of the Heavenly Bodies. In con-
nection with the error of observation, he developed the Gaussian distribution. This distri-
bution is also known as the normal distribution. Partly for historical reasons, mathemati-
cians commonly use the term normal, while engineers and physicists commonly use the
term Gaussian.

6. For a detailed treatment of electrical noise, see Van der Ziel (1970) and the collection of
papers edited by Gupta (1977).

An introductory treatment of shot noise is presented in Helstrom (1990). For a more de-
tailed treatment, see the paper by Yue, Luganani, and Rice {1978).
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Thermal noise was first studied experimentally by J. B. Johnson in 1928, and for this reason
it is sometimes referred to as the Johnson noise. Johnson’s experiments were confirmed
theoretically by Nyquist (1928).

. The noisiness of a receiver may also be measured in terms of the so-called noise figure. The

relationship between the noise figure and the equivalent noise temperature is developed in
Chapter 8.

8. The Rayleigh distribution is named after the English physicist J. W. Strutt, Lord Rayleigh.

10.

E PROBLEMS

. The Rician distribution is named in honor of Stephen O. Rice for the original contribution

reported in a pair of papers published in 1944 and 1945, which are reproduced in Wax
(1954). :

The statistical characterization of communication systems presented in this book is con-
fined to the first two moments, mean and autocorrelation function (equivalently, autoco-
variance function) of the pertinent random process. However, when a random process is
transmitted through a nonlinear system, valuable information is contained in higher-order
moments of the resulting output process. The parameters used to characterize higher-order
moments in the time domain are called cusulants, and their multidimensional Fourier
transforms are called polyspectra. For a discussion of higher-order cumulants and polys-
pectra and their estimation, see the paper by Nikias and Raghuveer (1987).

Stationarity and Ergodicity

1.1 Consider a random process X(#) defined by

X(t) = sin(27f.t)

in which the frequency . is a random variable uniformly distributed over the interval
[0, W]. Show that X(t) is nonstationary. Hint: Examine specific sample functions of the
random process X{#) for the frequency f = W/4, W/2, and W, say.

1.2 Consider the sinusoidal process

1.3

X(#) = A cos(27f.t)
where the frequency f, is constant and the amplitude A is uniformly distributed:
1, 0=a=1
fala) = {0, otherwise

Determine whether or not this process is strictly stationary.
A random process X(¢) is defined by

X(#) = A cos(2nf.t)
where A is a Gaussian-distributed random variable of zero mean and variance ¢7. This
random process is applied to an ideal integrator, producing the output

Y(t) = J’;X('r) dr

(a) Determine the probability density function of the output ¥{¢) at a particular time 2.
{b) Determine whether or not Y{(#) is stationary.
{c) Determine whether or not Y(¢) is ergodic.

1.4 Let X and Y be statistically independent Gaussian-distributed random variables, each with

zero mean and unit variance. Define the Gaussian process
Z(t) = X cos(2mt) + Y sin(271)
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{a) Determine the joint probability density function of the random variables Z(¢;) and
Z(t,) obtained by observing Z(t) at times ¢, and t,, respectively.
(b) Is the process Z{t) stationary? Why?

Correlation and Spectral Density Functions

1.5 Prove the following two properties of the autocorrelation function Rx(7) of a random
process X(t):
(a) If X(#) contains a DC component equal to A, then Rx(7) will contain a constant
component equal to A%,
(b) If X(z) contains a sinusoidal component, then Rx{7) will also contain a sinusoidal
component of the same frequency.
1.6 The square wave x(t) of Figure P1.6 of constant amplitude A, period Ty, and delay ¢,
represents the sample function of a random process X(t). The delay is random, described
by the probability density function

1
Ti’ -%Toﬁtd~5To
frfits) =90 .
0, otherwise

(a) Determine the probability density function of the random variable X(t,) obtained by
observing the random process X(t) at time ;.

(b) Determine the mean and autocorrelation function of X{(t) using ensemble-averaging.

(c) Determine the mean and autocorrelation function of X(t) using time-averaging.

(d) Establish whether or not X(2) is stationary. In what sense is it ergodic?

k0]
—j 2] L— Ty ‘J

FIGuRE P1.6

1.7 A binary wave consists of a random sequence of symbols 1 and 0, similar to that described
in Example 1.3, with one basic difference: symbol 1 is now represented by a pulse of
amplitude A volts and symbol 0 is represented by zero volts. All other parameters are the
same as before. Show that for this new random binary wave X{z):

(a) The autocorrelation function is

A*  A? [7]
L4800 <
R ( ) 17<T
AZ
.Z-:

Rx(7) =
[7|=T
(b) The power spectral density is

2

$uf) = 5 81) + L sinc(fT)

What is the percentage power contained in the DC component of the binary wave?



80 CuHarTER 1 @ RANDOM PROCESSES

1.8 A random process Y() consists of a DC component of V/3/2 volts, a periodic component
g(t), and a random component X{t). The autocorrelation function of Y{t) is shown in
Figure P1.8.

{a) What is the average power of the periodic component g{t)?
(b) What is the average power of the random component X(z)?

Ry(n)
{volts)?

]
|
T

| i I |

| | i I

I | | | |
~B5T -4T -31 -2T -T 0 T 2r 3r ar 5T
Ficure P1.B

1.9 Consider a pair of stationary processes X(f) and Y(z). Show that the cross-correlations
Ryxv(1} and Ryx{7) of these processes have the following properties:
(a) Rxy(1) = Ryx(—17)
{b) |Rxy(7)| = 2[Rx{0) + Ry{0)]
where Rx(7) and Ry{1) are the autocorrelation functions of X(¢) and Y(¢), respectively.
1.10 Consider two linear filters connected in cascade as in Figure P1.10. Let X () be a stationary
process with autocorrelation function Ry(7). The random process appearing at the first
filter output is V(#) and that at the second filter output is Y{(z).
(a) Find the autocorrelation function of Y().
(b) Find the cross-correlation function Ryy(7) of V(t) and Y{(2).

V@)
X2 () —=m h(0) YD)

Ficure P1.10

1.11 A stationary process X{(¢) is applied to a linear time-invariant filter of impulse response
h(t), producing an output Y(z).
(a) Show that the cross-correlation function Ryx(7) of the output Y(¢) and the input X(¢)
is equal to the impulse response b(7) convolved with the autocorrelation function
Rx(7) of the input, as shown by

Ryx(7) = f_ B()Ry(T — u) du
Show that the second cross—corrélation function Ryy(7) equals
Ryylr) = L h(—u)Rx(T — u) du

(b) Find the cross-spectral densities Syx(f) and Sxy(f).
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(c) Assuming that X(¢) is a white noise process with zero mean and power spectral density
Ny/2, show that

Rox(r) = 22 b

Comment on the practical significance of this result.
1.12 The power spectral density of a random process X(#) is shown in Figure P1.12, It consists

of a delta function at f = 0 and a triangular component.

(a) Determine and sketch the autocorrelation function Rx(7) of X(¢).

(b) What is the DC power contained in X(£)?

(c) What is the AC power contained in X{(z)?

(d) What sampling rates will give uncorrelated samples of X(¢)? Are the samples statis-
tically independent?

S¢lf)
8(f)
1.0

~fo Y fo
FiGURE P1.12

1.13 A pair of noise processes 7,(¢) and #,(¢) are related by
ny(t) = ny(t) cos(2mfr + 6) — n,(t) sin(27wft + 6)

where f, is a constant, and 8 is the value of a random variable & whose probability density
function is defined by

1
folo) = (37> O=O0=2T
0, otherwise

The noise process 7,(t) is stationary and its power spectral density is as shown in Figure
P1.13. Find and plot the corresponding power spectral density of #,(z).

Sy )

-W 0 w
Figure P1.13

1.14 A random telegraph signal X(t), characterized by the autocorrelation function
Rx(7) = exp(—2v|7|)
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where vis a constant, is applied to the low-pass RC filter of Figure P1.14. Determine the
power spectral density and autocorrelation function of the random process at the filter
output.

R
Input C II Output

Ficure P1.14

1.15 A running integrator is defined by

where x(t) is the input, ${2) is the output, and T is the integration period. Both x{t) and
y(t) are sample functions of stationary processes X(t) and Y(z), respectively. Show that
the power spectral density of the integrator output is related to that of the integrator input
as

SAf) = T2 sinc*(fT)Sx{f)

1.16 A zero-mean stationary process X(¢) is applied to a linear filter whose impulse response
is defined by a truncated exponential:

ae™*, 0=t=T
0, otherwise

Show that the power spectral density of the filter output Y{(#) is defined by

Sy(f) = 42%4772# (1 — 2 exp(—aT) cos(2wfT) + exp(—2aT))Sx(f)

where Sx{f) is the power spectral density of the filter input.
1.17 The output of an oscillator is described by
X(#) = A cos(2mft — ©)

where A is a constant, and f and © are independent random variables. The probability
density function of ® is defined by

1
MO =1z 0E0=2T
0, otherwise

Find the power spectral density of X(#) in terms of the probability density function of the
frequency f. What happens to this power spectral density when the frequency f assumes
a constant value?
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Gaussian Processes

1.18 A stationary, Gaussian process X(t) has zero mean and power spectral density Sx(f).
Determine the probability density function of a random variable obtained by observing
the process X(t) at somme time 2.

1.19 A Gaussian process X(#) of zero mean and variance g% is passed through a full-wave
rectifier, which is described by the input-output relation of Figure P1.19. Show that the
probability density function of the random variable Y(#,), obtained by observing the ran-
dom process Y(t) at the rectifier output at time #,, is as follows:

%iex _y_z =0
Frealy) = T oy p 20%/)° y=

0, y<0

Ficure P1.19

1.20 Let X(¢) be a zero-mean, stationary, Gaussian process with autocorrelation function
Rx(7). This process is applied to a square-law device, which is defined by the input~output
relation

Y(t) = X*@)
where Y(¢) is the output.
(a) Show that the mean of Y{z) is Rx(0).
(b) Show that the autocovariance function of Y(z) is 2R%(7).

1.21 A stationary, Gaussian process X(¢) with mean px and variance 0% is passed through two
linear filters with impulse responses #,(z) and b(#), yielding processes Y{(z) and Z(z), as
shown in Figure P1.21.

(a) Determine the joint probability density function of the random variables Y(t;) and
Z{(ty).

(b} What conditions are necessary and sufficient to ensure that Y{#;) and Z(z,) are statis-
tically independent?

0] i 40

X

B 70

Ficure P1.21
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1.22 A stationary, Gaussian process X(#) with zero mean and power spectral density Sx(f) is
applied to a linear filter whose impulse response 4(¢} is shown in Figure P1.22. A sample
Y is taken of the random process at the filter output at time T.

(a) Determine the mean and variance of Y.
(b) What is the probability density function of Y?

126}

i

[} T
FiGURE P1.22

Noise
1.23 Consider a white Gaussian noise process of zero mean and power spectral density No/2
that is applied to the input of the high-pass RL filter shown in Figure P1.23.

(a) Find the autocorrelation function and power spectral density of the random process
at the output of the filter.

{(b) What are the mean and variance of this output?

Input L Output

FIGURE P1.23

1.24 A white noise w(t) of power spectral density No/2 is applied to a Butterworth low-pass
filter of order n, whose magnitude response is defined by

1
T+ (ffT
(a) Determine the noise equivalent bandwidth for this low-pass filter. (See Appendix 2
for the definition of noise equivalent bandwidth.)
(b) What is the limiting value of the noise equivalent bandwidth as # approaches infinity?
1.25 The shot-noise process X{¢) defined by Equation (1.86) is stationary. Why?

1.26 White Gaussian noise of zero mean and power spectral density No/2 is applied to the
filtering scheme shown in Figure P1.26a. The frequency responses of these two filters are
shown in Figure P1.265. The noise at the low-pass filter output is denoted by (z).

{a) Find the power spectral density and the autocorrelation function of »(z).
(b) Find the mean and variance of »(z).

[H()|
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(c) What is the rate at which #(z) can be sampled so that the resulting samples are essen-
tially uncorrelated?

=R IH (£}

Band-pass Low-pass 1.0 1.0

— filter filter oot [ 1|77~
Hif) HAf) ()
! !
g f
cos (27f,1) —fe 0 Jf: L J 0 L d
28 2B
)

(a}

FIGURE P1.26

1.27 Let X(t} be a stationary process with zero mean, autocorrelation function Rx(7}, and
power spectral density Sx{f). We are required to find a linear filter with impulse response
h(t), such that the filter output has the same statistical characteristics as X(¢) when the
input is white noise of power spectral density Ny/2.
{a) Determine the condition which the impulse response 4(¢) must satisfy to achieve this
requirement.
(b) What is the corresponding condition on the frequency response H(f) of the filter?

Narrowband Noise

1.28 In the noise analyzer of Figure 1.19a, the low-pass filters are ideal with a bandwidth equal
to one-half that of the narrowband noise #(#) applied to the input. Using this scheme,
derive the following results:

(a) Equation (1.101), defining the power spectral densities of the in-phase noise com-
ponent #(t) and quadrature noise component #g(t) in terms of the power spectral
density of n(z).

(b) Equation (1.102), defining the cross-spectral densities of 7;(¢) and n(#).

1.29 Assume that the narrowband noise n(t) is Gaussian and its power spectral density Sn(f)
is symmetric about the midband frequency f.. Show that the in-phase and quadrature
components of »(t) are statistically independent.

1.30 The power spectral density of a narrowband noise n(z) is as shown in Figure P1.30. The
carrier frequency is 5 Hz.

(a) Find the power spectral densities of the in-phase and quadrature components of 7(2).

(b) Find their cross-spectral densities.

Sy(f)
(W/Hz)

fHz)

FiGuURE P1.30
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1.31 Consider a Gaussian noise #(¢) with zero mean and the power spectral density Sx{f)
shown in Figure P1.31.
(a) Find the probability density function of the envelope of n(t).
(b) What are the mean and variance of this envelope?

Sy(f)
N
2
T
28 >
Ficure P1.31

Computer Experiments

1.32 In this computer experiment we study the statistical characterization of a random process

X(t) defined by
X(t) = A cos(2wft + ©) + W(2)

where the phase @ of the sinusoidal component is a uniformly distributed random variable
over the interval [—, 7], and W{#) is a white Gaussian noise component of zero mean
and power spectral density No/2. The two components of X(#) are statistically indepen-
dent; hence the autocorrelation function of X{(z) is

A? N,
Rx{r) = 5 cos(2af,m) + —2—0 8(7)

This equation shows that for | 7| > 0 the autocorrelation function Rx(7) has the same

sinusoidal waveform as the signal component of X{z).

The purpose of this computer experiment is to perform the computation of Rx{r)
using two different methods:

{a) Ensemble averaging. Generate M = 50 randomly picked realizations of the process
X(t). Hence compute the product x(¢ + 7)x(z) for some fixed time £, where x{t) is a
realization of X(z). Repeat the computation of x{¢ + 7)x(z) for the M realizations of
X(2), and thereby compute the average of these computations over M. Repeat this
sequence of computations for-different values of 7.

(b) Time averaging. Compute the time-averaged autocorrelation function

i (T
R, T) = —=, t+ t) dt
A7 T) 3T _Tx( 7)x(t) d
where x{t) is a particular realization of X(t), and 2T is the total observation interval.
For this computation, use the Fourier-transform pair:

R.(r, T) = o | Xal)
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where | X{f)|%/2T is the periodogram of the process X(t). Specifically, compute the
Fourier transform X(f) of the time-windowed function
) x(t), -T=t=T
x{2) =
T 0, otherwise

Hence compute the inverse Fourier transform of | XH{f}|*2T.

Compare the results of your computation of Rx{7} using these two approaches.

1.33 In this computer experiment we continue the study of the multipath channel described in
Section 1.14. Specifically, consider the situation where the received signal includes a line-
of-sight component, as shown by

N
X(t) = 2, A cos(2mfit + ©) + a cos(2mf)
i1
where a cos(27f2) is the directly received component. Following the material presented

in Section 1.14, compute the envelope of X(¢) for N = 10,000, and 2 = 0, 1, 2, 3, 5.
Compare your results with the Rician distribution studied in Section 1.13.



CONTINUOUS-WAVE
MODULATION

In this chapter we study continuous-wave modulation, which is basic to the operation of

analog communication systems. The chapter is divided into two related parts. In the first
part we study the time-domain and frequency-domain descriptions of two basic families of
continuous-wave modulation:

» Amplitude modulation, in which the amplitude of a sinusoidal carrier is varied in
accordance with an incoming message signal.

B Angle modulation, in which the instantaneous frequency or phase of the sinusoidal carrier

is varied in accordance with the message signal.

The second part of the chapter focuses on the effects of channel noise on the performance
of the receivers pertaining to these modulation schemes.

Advantages and disadvantages of the different methods of continuous-wave

modulation are highlighted in light of the material presented herein.

i 2.1 Introduction

88

The purpose of a communication system is to transmit information-bearing signals through
a communication channel separating the transmitter from the receiver. Information-
bearing signals are also referred to as baseband signals. The term baseband is used to
designate the band of frequencies representing the original signal as delivered by a source
of information. The proper use of the communication channel requires a shift of the range
of baseband frequencies into other frequency ranges suitable for transmission, and a cot-
responding shift back to the original frequency range after reception. For example, a radio
system must operate with frequencies of 30 kHz and upward, whereas the baseband signal
usually contains frequencies in the audio frequency range, and so some form of frequency-
band shifting must be used for the system to operate satisfactorily. A shift of the range of
frequencies in a signal is accomplished by using modulation, which s defined as the process
by which some characteristic of a carrier is varied in accordance with a modulating wave
(signal). A common form of the carrier is a sinusoidal wave, in which case we speak ofa
continuous-wave modulation® process. The baseband signal is referred to as the modulat-
ing wave, and the result of the modulation process is referred to as the modulated wave.
Modulation is performed at the transmitting end of the communication system. At the
receiving end of the system, we usually require the original baseband signal to be restored.
This is accomplished by using a process known as demodulation, which is the reverse of
the modulation process.

In basic signal-processing terms, we thus find that the transmitter of an analog com-
munication system consists of a modulator and the receiver consists of a demodulator, as
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Messagé Modulated Channel Estimate of
signal | Modulater 3 wave output = Demodulater message signal

Sinusoidal
catrier wave

@)

FiGURE 2.1 Components of a continuous-wave modulation system: (a) transmitter, and (b)
receiver.

depicted in Figure 2.1. In addition to the signal received from the transmitter, the receiver
input includes channel noise. The degradation in receiver performance due to channel noise
is determined by the type of modulation used.

In this chapter we study two families of continuous-wave (CW) modulation systems,
namely, amplitude modulation and angle modulation. In amplitude modulation, the am-
plitude of the sinusoidal carrier wave is varied in accordance with the baseband signal. In
angle modulation, the angle of the sinusoidal carrier wave is varied in accordance with the
baseband signal. Figure 2.2 displays the waveforms of amplitude-modulated and angle-
modulated signals for the case of sinusoidal modulation. Parts {g) and (b) of the figure
show the sinusoidal carrier and modulating waves, respectively. Parts (¢} and (d) show the

(d) Time —>

FIGURE 2.2 Tlustrating AM and FM signals produced by a single tone. (¢} Carrier wave. (b)
Sinusoidal modulating signal. {c) Amplitude-modulated signal. (d) Frequency-modulated signal.
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corresponding amplitude-modulated and frequency-modulated waves, respectively; fre-
quency modulation is a form of angle modulation. This figure clearly illustrates the basic
differences between amplitude modulation and angle modulation, which are discussed in
what follows.

2.2 Amplitude Modulation
P

Consider a sinusoidal carrier wave c(t) defined by
c(t) = A, cos(2mf.t) (2.1}

where A_ is the carrier amplitude and f, is the carrier frequency. To simplify the exposition
without affecting the results obtained and conclusions reached, we have assumed that the
phase of the carrier wave is zero in Equation (2.1). Let #(¢) denote the baseband signal
that carries the specification of the message. The source of carrier wave ¢(t) is physically
independent of the source responsible for generating m(t). Amplitude modulation (AM) is
defined as a process in which the amplitude of the carrier wave c(t) is varied about a mean
value, linearly with the baseband signal m(t). An amplitude-modulated (AM) wave may
thus be described, in its most general form, as a function of time as follows:

s(t) = A1 + km(t)] cos(27f.t) (2.2)

where k, is a constant called the amplitude sensitivity of the modulator responsible for the
generation of the modulated signal s(z). Typically, the carrier amplitude A, and the message
signal m(t) are measured in volts, in which case k, is measured in volt ™.

Figure 2.3a shows a baseband signal m(t), and Figures 2.3b and 2.3¢ show the cor-
responding AM wave s(t) for two values of amplitude sensitivity k, and a carrier amplitude
A, = 1 volt. We observe that the envelope of s(t) has essentially the same shape as the

baseband signal m(t) provided that two requirements are satisfied:
1. The amplitude of k#(t) is always less than unity, that is,
|kanit)| <1  forall ¢t (2.3)

This condition is illustrated in Figure 2.3b; it ensures that the function 1 + km(t)
is always positive, and since an envelope is a positive function, we may express the
envelope of the AM wave () of Equation (2.2) as A[1 + km(¢)]. When the am-
plitude sensitivity k, of the modulator is large enough to make | km(t)| > 1 for any
t, the carrier wave becomes overmodulated, resulting in carrier phase reversals when-
ever the factor 1 + k,m(t) crosses zero. The modulated wave then exhibits envelope
distortion, as in Figure 2.3¢. It is therefore apparent that by avoiding overmodula-
tion, a one-to-one relationship is maintained between the envelope of the AM wave
and the modulating wave for all values of time-—a useful feature, as we shall see later
on. The absolute maximum value of kgn(t) multiplied by 100 is referred to as the
percentage modulation.

The carrier frequency f. is much greater than the highest frequency component W of
the message signal m(t), that is

L

f.>> W 2.4y

We call W the mmessage bandwidth. If the condition of Equation {2.4) is not satisfied,
an envelope cannot be visualized (and therefore detected) satisfactorily.
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FiGURE 2.3 Illustrating the amplitude modulation process:h(a) Baseband signal m(t). (b) AM
wave for | km(t)| < 1 for all t. (¢) AM wave for | k,m(t)| > 1 for some ¢.

From Equation (2.2), we find that the Fourier transform of the AM wave s(#) is given
by

SU) =B tair o + o+ 21+ B g - )+ Mg ) 29)

Suppose that the baseband signal m(z) is band-limited to the interval —W = f = W, asin
Figure 2.4a. The shape of the spectrum shown in this figure is intended for the purpose of
illustration only. We find from Equation (2.5) that the spectrum S(f) of the AM wave is
as shown in Figure 2.4b for the case when f. > W. This spectrum consists of two delta
functions weighted by the factor A./2 and occurring at *f;, and two versions of the
baseband spectrum translated in frequency by =f. and scaled in amplitude by k,A /2.
From the spectrum of Figure 2.4b, we note the following:

1. As a result of the modulation process, the spectrum of the message signal m(t) for
negative frequencies extending from — W to 0 becomes completely visible for positive
(i.e., measurable) frequencies, provided that the carrier frequency satisfies the con-
dition f, > W; herein lies the importance of the idea of “negative” frequencies.

2. For positive frequencies, the portion of the spectrum of an AM wave lying above the
carrier frequency f, is referred to as the upper sideband, whereas the symmetric
portion below . is referred to as the Jower sideband. For negative frequencies, the
upper sideband is represented by the portion of the spectrum below —f. and the
lower sideband by the portion above —f.. The condition f, > W ensures that
the sidebands do not overlap.
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FIGURE 2.4 (a) Spectrum of baseband signal. (b) Spectrum of AM wave.

3. For positive frequencies, the highest frequency component of the AM wave equals
f. + W, and the lowest frequency component equals f, — W. The difference between
these two frequencies defines the transmission bandwidth By for an AM wave, which
is exactly twice the message bandwidth W, that is,

By =2W : (2.6)

@ VIRTUES AND LIMITATIONS OF AMPLITUDE MODULATION

Amplitude modulation is the oldest method of performing modulation. Its greatest virtue
is the simplicity of implementation:

» In the transmitter, amplitude modulation is accomplished using a nonlinear device.
For example, in the switching modulator discussed in Problem 2.3, the combined
sum of the message signal and carrier wave is applied to a diode, with the carrier
amplitude being large enough to swing across the characteristic curve of the diode.
Fourier analysis of the voltage developed across a resistive load reveals the generation
of an AM component, which may be extracted by means of a band-pass filter.

5 In the receiver, amplitude demodulation is also accomplished using a nonlinear de-
vice. For example, we may use a simple and yet highly effective circuit known as the
envelope detector, which is discussed in Problem 2.5. The circuit consists of a diode
connected in series with the parallel combination of a capacitor and load resistor.
Some version of this circuit is found in most commercial AM radio receivers. Pro-
vided that the carrier frequency is high enough and the percentage modulation is less
than 100 percent, the demodulator output developed across the load resistor is nearly
the same as the envelope of the incoming AM wave, hence the name “envelope
detector.”

Recall, however, that transmitted power and channel bandwidth are our two primary
communication resources, and they should be used efficiently. In this context, we find that
the standard form of amplitude modulation defined in Equation (2.2) suffers from two
major limitations:

1. Amplitude modulation is wasteful of power. The carrier wave c(t) is completely
independent of the information-bearing signal m(z). The transmission of the carrier
wave therefore represents a waste of power, which means that in amplitude modu-
lation only a fraction of the total transmitted power is actually affected by m(z).
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2. Amplitude modulation is wasteful of bandwidth. The upper and lower sidebands of
an AM wave are uniquely related to each other by virtue of their symmetry about
the carrier frequency; hence, given the magnitude and phase spectra of either side-
band, we can uniquely determine the other. This means that insofar as the transmis-
sion of information is concerned, only one sideband is necessary, and the commu-
nication channel therefore needs to provide only the same bandwidth as the baseband
signal. In light of this observation, amplitude modulation is wasteful of bandwidth
as it requires a transmission bandwidth equal to twice the message bandwidth.

To overcome these limitations, we must make certain modifications: suppress the
carrier and modify the sidebands of the AM wave. These modifications naturally result in
increased system complexity. In effect, we trade system complexity for improved use of
communication resources. The basis of this trade-off is linear modulation, which is dis-
cussed in the next section. In a strict sense, full amplitude modulation does not qualify as
linear modulation because of the presence of the carrier wave.

i 2.3 Linear Modulation Schemes

In its most general form, linear modulation is defined by
s(t) = s;(t) cos(27f.t) — sp(t) sin(27f.) (2.7)

where s;(t) is the in-phase component of the modulated wave s(t), and sq(?) is its quad-
rature component. Equation (2.7) is recognized as the canonical representation of a nar-
rowband signal, which is discussed in detail in Appendix 2. In linear modulation, both
s7(2) and sp(#) are low-pass signals that are linearly related to the message signal m(z).

Indeed, depending on how these two components of s(2) are defined, we may identify
three types of linear modulation involving a single message signal:

1. Double sideband-suppressed carrier (DSB-SC) modulation, where only the upper and
lower sidebands are transmitted.

2. Single sideband (SSB) modulation, where only one sideband (the lower sideband or
the upper sideband) is transmitted.

3. Vestigial sideband (VSB) modulation, where only a vestige (i.e., trace) of one of the
sidebands and a correspondingly modified version of the other sideband are
transmitted.

Table 2.1 presents a summary of the definitions of these three special forms of linear
modulation: There are two important points to note from Table 2.1:

1. The in-phase component s,(z) is solely dependent on the message signal #(z).
2. The quadrature component sg(t) is a filtered version of m(t). The spectral modifi-
cation of the modulated wave s(z) is solely due to sg(2).

To be more specific, the role of the quadrature component (if present) is merely to interfere
with the in-phase component, so as to reduce or eliminate power in one of the sidebands
of the modulated signal s(z}, depending on how the quadrature component is defined.
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§ TaBLE 2.1 Different forms of linear modulation

In-Phase Quadrature
Component  Component
Type of Modulation si(t) sqlt) Comments
DSB-SC mt) 0 m(t) = message signal
SSB:*
(a) Upper sideband m(t) i) #1(t) = Hilbert transform of m(z)
transmitted -
(b) Lower sideband Im(p) —3hi(t)
transmitted
VSB:
{a) Vestige of lower sideband m(t) () m’(t) = output of the filter of
transmitted frequency response Hg(f)
(b} Vestige of upper Im(t) —3m'(¢) due to m(t).
sideband transmitted For the definition of Hg(f),

see Eq. (2.16)

“For the mathematical description of single sideband modulation, see Problem 2.16.

# DOUBLE SIDEBAND-SUPPRESSED CARRIER (DSB-SC) MODULATION

This form of linear modulation is generated by using a product modulator that simply
multiplies the message signal m{t) by the carrier wave A, cos(27f.2), as illustrated in Figure
2.5a. Specifically, we write

s(t) = Aan(t) cos(27f.t) (2.8)

m{2)

DSB-SC
(—> modulated wave
5{8) = Apmle) cos 2nf8)

] . [

Carrier
A, cos (2xf,1)

Baseband Product
signal m{s} modutator

(a) (b)

s(8)

Phase reversals

€]

FIGURE 2.5 (a) Block diagram of product modulator. (b) Baseband signal. (¢) DSB-SC modu-~
lated wave.
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FIGURE 2.6 (a) Spectrum of baseband signal. (b) Spectrum of DSB-SC modulated wave.

Figure 2.5¢ shows the modulated signal s(¢) for the arbitrary message waveform of Figure
2.5b. The modulated signal s(t) undergoes a phase reversal whenever the message signal
m(t) crosses zero. Consequently, the envelope of a DSB-SC modulated signal is different
from the message signal; this is unlike the case of an AM wave that has a percentage
modulation less than 100 percent.

From Equation (2.8), the Fourier transform of s(¢) is obtained as

S(f)y = %Ac[M(f - f+ M+ )] (2.9)

For the case when the baseband signal m(¢) is limited to the interval =W = f = W, as in
Figure 2.6a, we thus find that the spectrum S(f) of the DSB-SC wave s(#) is as illustrated
in Figure 2.6b. Except for a change in scale factor, the modulation process simply translates
the spectrum of the baseband signal by *f.. Of course, the transmission bandwidth re-
quired by DSB-SC modulation is the same as that for amplitude modulation, namely, 2W.

COHERENT DETECTION

The baseband signal m(#) can be uniquely recovered from a DSB-SC wave s(t) by first
multiplying s(¢) with a locally generated sinusoidal wave and then low-pass filtering the
product, as in Figure 2.7. It is assumed that the local oscillator signal is exactly coherent
or synchronized, in both frequency and phase, with the carrier wave ¢(t) used in the prod-
uct modulator to generate s(¢). This method of demodulation is known as coberent detec-
tion or synchronous demodulation.

It is instructive to derive coherent detection as a special case of the more general
demodulation process using a local oscillator signal of the same frequency but arbitrary
phase difference ¢, measured with respect to the carrier wave c(t). Thus, denoting the local

v{s)
Product Low-pass
s = moduator Hiter [ vold
A cos 2uf,r + &)
Local
oscillator

Ficure 2.7 Coherent detector for demodulating DSB-SC modulated wave.
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FiGure 2.8 Illustrating the spectrum of a product modulator output with a DSB-SC modulated
wave as input.

oscillator signal by A! cos(27f.t + #), and using Equation (2.8) for the DSB-5C wave s(z),
we find that the product modulator output in Figure 2.7 is

v(t) = AL cos(2mf.t + ¢)s(t)
= AA! cos(2mf.t) cos2mft + ¢)mt) (2.10)

= %ACAL cos(4mf.t + d)ym(t) + %AL.AQ cos ¢ mft)
The first term in Equation (2.10) represents a DSB-SC modulated signal with a carrier
frequency 2f., whereas the second term is proportional to the baseband signal m(t). This
is further illustrated by the spectrum V{f) shown in Figure. 2.8, where it is assumed that
the baseband signal m(t) is limited to the interval —~W =< f = W. It is therefore apparent
that the first term in Equation (2.10) is removed by the low-pass filter in Figure 2.7,
provided that the cut-off frequency of this filter is greater than W but less than 2f, — W.
This requirement is satisfied by choosing f. > W. At the filter output we then obtain a
signal given by

v, (t) = %AL.A; cos ¢ mift) (2.11)

The demodulated signal v,(t} is therefore proportional to #(t) when the phase error ¢
is a constant. The amplitude of this demodulated signal is maximum when ¢ = 0, and
it is minimum (zero) when ¢ = *m/2. The zero demodulated signal, which occurs for

= */2, represents the quadrature null effect of the coherent detector. Thus the phase
error ¢ in the local oscillator causes the detector output to be attenuated by a factor equal
to cos ¢. As long as the phase error ¢ is constant, the detector provides an undistorted
version of the original baseband signal m(t). In practice, however, we usually find that the
phase error ¢ varies randomly with time, due to random variations in the communication
channel, The result is that at the detector output, the multiplying factor cos ¢ also varies
randomly with time, which is obviously undesirable. Therefore, provision must be made
in the system to maintain the local oscillator in the receiver in perfect synchronism, in both
frequency and phase, with the carrier wave used to generate the DSB-5C modulated signal
in the transmitter. The resulting system complexity is the price that must be paid for
suppressing the carrier wave to save transmitter power.

# CostAas RECEIVER

One method of obtaining a practical synchronous receiver system, suitable for demodu-
lating DSB-SC waves, is to use the Costas receiver” shown in Figure 2.9. This receiver
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-80°
phase-shifter

J, sin (2af.r + ¢)
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modulator > filter

%AC sin ¢ m(s)

@-channel

FIGURE 2.9 Costas receiver.

consists of two coherent detectors supplied with the same input signal, namely, the incom-
ing DSB-SC wave A, cos(2#f,¢)m(t), but with individual local oscillator signals that are
in phase quadrature with respect to each other, The frequency of the local oscillator is
adjusted to be the same as the carrier frequency f., which is assumed known a priori. The
detector in the upper path is referred to as the in-phase coherent detector or I-channel,
and that in the lower path is referred to as the quadrature-phase coherent detector or
Q-channel. These two detectors are coupled together to form a negative feedback system
designed in such a way as to maintain the local oscillator synchronous with the carrier
wave. -

To understand the operation of this receiver, suppose that the local oscillator signal
is of the same phase as the carrier wave A, cos(27f.t) used to generate the incoming
DSB-SC wave. Under these conditions, we find that the I-channel output contains the
desired demodulated signal m(t), whereas the Q-channel output is zero due to the quad-
rature null effect of the Q-channel. Suppose next that the local oscillator phase drifts from
its proper value by a small angle ¢ radians. The I-channel output will remain essentially
unchanged, but there will now be some signal appearing at the Q-channel output, which
is proportional to sin ¢ = ¢ for small ¢. This Q-channel output will have the same polarity
as the I-channel output for one direction of local oscillator phase drift and opposite po-
larity for the opposite direction of local oscillator phase drift. Thus, by combining the
I- and Q-channel outputs in a phase discriminator (which consists of a multiplier followed
by a low-pass filter), as shown in Figure 2.9, a DC control signal is obtained that auto-
matically corrects for local phase errors in the voltage-controlled oscillator.

It is apparent that phase control in the Costas receiver ceases with modulation and
that phase-lock has to be reestablished with the reappearance of modulation. This is not
a serious problem when receiving voice transmission, because the lock-up process normally
occurs so rapidly that no distortion is perceptible.

QUADRATURE-CARRIER MULTIPLEXING

The quadrature null effect of the coherent detector may also be put to good use in the
construction of the so-called quadrature-carrier multiplexing or quadrature-amplitude
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FIGURE 2.10 Quadrature-carrier multiplexing system. (@) Transmitter. (b) Receiver.

modulation (QAM). This scheme enables two DSB-SC modulated waves (resulting from
the application of two physically independent message signals) to occupy the same channel
bandwidth, and yet it allows for the separation of the two message signals at the receiver
output, It is therefore a bandwidth-conservation scheme.

A block diagram of the quadrature-carrier multiplexing system is shown in Figure
2.10. The transmitter part of the system, shown in Figure 2.10a, involves the use of two
separate product modulators that are supplied with two carrier waves of the same fre-
quency but differing in phase by —90 degrees. The transmitted signal s(t) consists of the
sum of these two product modulator outputs, as shown by

s(t) = Agmy(t) cos(2mf.t) + Aamy(t) sin(2mf ) (2.12)

where #,(t) and m,(t) denote the two different message signals applied to the product
modulators. Thus s(t) occupies a channel bandwidth of 2W centered at the carrier fre-
quency f,, where W is the message bandwidth of m,(t) or my(t). According to Equation
(2.12), we may view Agn(2) as the in-phase component of the multiplexed band-pass
signal s(¢) and —An,(t) as its quadrature component.

The receiver part of the system is shown in Figure 2.10b. The multiplexed signal s()
is applied simultaneously to two separate coherent detectors that are supplied with two
local carriers of the same frequency but differing in phase by —90 degrees. The output of
the top detector is A ,(t), whereas the output of the bottom detector is A.#1,(z). For the
system to operate satisfactorily, it is important to maintain the correct phase and frequency
relationships between the local oscillators used in the transmitter and receiver parts of the
system.

To maintain this synchronization, we may send a pilot signal outside the passband
of the modulated signal. In this method, the pilot signal typically consists of a low-power
sinusoidal tone whose frequency and phase are related to the carrier wave c(t); at the
receiver, the pilot signal is extracted by means of a suitably tuned circuit and then trans-
lated to the correct frequency for use in the coherent detector.

B SINGLE-SIDEBAND MODULATION

In single-sideband modulation, only the upper or lower sideband is transmitted. We may
generate such a modulated wave by using the frequency-discrimination method that con-
sists of two stages:
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» The first stage is a product modulator, which generates a DSB-SC modulated wave.

= The second stage is a band-pass filter, which is designed to pass one of the sidebands
of this modulated wave and suppress the other.

From a practical viewpoint the most severe requirement of SSB generation using the fre-
quency discrimination method arises from the unwanted sideband. The nearest frequency
component of the unwanted sideband is séparated from the desired sideband by twice the
lowest frequency component of the message (modulating) signal. The implication here is
that for the generation of an SSB modulated signal to be possible, the message spectrum
must have an energy gap centered at the origin, as illustrated in Figure 2.114. This require-
ment is naturally satisfied by voice signals, whose energy gap is about 600 Hz wide (i.e.,
it extends from 300 to +300 Hz). Thus, assuming that the upper sideband is retained,
the spectrum of the SSB modulated signal is as shown in Figure 2.115.

In designing the band-pass filter used in the frequency-discriminator for generating
a SSB-modulated wave, we must meet the three basic requirements:

& The desired sideband lies inside the passband of the filter.
¥ The unwanted sideband lies inside the stopband of the filter.

& The filter’s transition band, which separates the passband from the stopband, is twice
the lowest frequency component of the message signal.

This kind of frequency discrimination usually requires the use of highly selective filters,
which can only be realized in practice by means of crystal resonators.

To demodulate a SSB modulated signal s(z), we may use a coherent detector, which
multiplies 5(¢) by a locally generated carrier and then low-pass filters the product. This
method of demodulation assumes perfect synchronism between the oscillator in the co-
herent detector and the oscillator used to supply the catrier wave in the transmitter. This
requirement is usually met in one of two ways:

# A low-power pilot carrier is transmitted in addition to the selected sideband.
¥ A highly stable oscillator, tuned to the same frequency as the carrier frequency, is
used in the receiver.

In the latter method, it is inevitable that there would be some phase error ¢ in the local
oscillator output with respect to the carrier wave used to generate the incoming SSB mod-
ulated wave. The effect of this phase error is to introduce a phase distortion in the de-
modulated signal, where each frequency component of the original message signal under-
goes a constant phase shift ¢. This phase distortion is tolerable in voice communications,
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FIGURE 2.11 (a) Spectrum of a message signal m(t) with an energy gap of width 2f, centered
on the origin. (b) Spectrum of corresponding SSB signal containing the upper sideband.
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because the human ear is relatively insensitive to phase distortion. In particular, the pres-
ence of phase distortion gives rise to a Donald Duck voice effect. In the transmission of
music and video signals, on the other hand, the presence of this form of waveform distor-
tion is utterly unacceptable.

VESTIGIAL SIDERAND MODULATION

In vestigial sideband (VSB) modulation, one of the sidebands is partially suppressed and
a vestige of the other sideband is transmitted to compensate for that suppression. A popular
method for generating a VSB-modulated wave is to ‘use the frequency discrimination
method. First, we generate a DSB-SC modulated wave and then pass it through a band-
pass filter, as shown in Figure 2.12; it is the special design of the band-pass filter that
distinguishes VSB modulation from SSB modulation. Assuming that a vestige of the lower
sideband is transmitted, the frequency response H(f) of the band-pass filter takes the form
shown in Figure 2.13. To simplify matters, only the response for positive frequencies is
shown here. This frequency response is normalized, so that at the carrier frequency £, we
have |H(f}| = 1/2. The important feature to note from Figure 2.13 is that the cutoff
portion of the frequency response around the carrier frequency f, exhibits odd symmetry.
That is, inside the transition interval f, — f, = | f| = f. -+ £, the following two conditions
are satisfied:

1. The sum of the values of the magnitude response |H(f)| at any two frequencies
equally displaced above and below f, is unity.
2. The phase response arg(H(f)) is linear. That is, H(f) satisfies the condition

Hf-f)+Hf+f)=1 for-Wsf=W (2.13)
Note also that outside the frequency band of interest (i.e., | f| > f. + W), the frequency

response H(f) may have an arbitrary specification. Accordingly, the transmission band-
width of VSB modulation is

Br=W+ f, (2.14)

where W is the message bandwidth, and £, is the width of the vestigial sideband.
According to Table 2.1, the VSB modulated wave is described in the time domain as

1 1 e
s(t) = 3 Agn(t) cos(2nf.t) * 3 Agn'(t) sin(2nf.t) (2.15)
where the plus sign corresponds to the transmission of a vestige of the upper sideband,
and the minus sign corresponds to the transmission of a vestige of the lower sideband. The
signal #'(2) in the quadrature component of s(t) is obtained by passing the message signal

DSB-SC
modulated VsB
Message Product wave Band-pass
signal m(») modulator filter, H{f) 2 mOS:‘!Iited

[

A, cos (2mf1)
carrier wave

FIGURE 2.12 Filtering scheme for the generation of VSB modulated wave.
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FIGURE 2.13 Magnitude response of VSB filter; only the positive-frequency portion is shown.

m(t) through a filter whose frequency response Hy(f) satisfies the following requirement
(see Problem 2.20):

Holf) = jIH(f — f) = H(f + £)] for -W=f=<W (2.16)

Figure 2.14 displays a plot of the frequency response Hq(f), scaled by 1/7. The role of the
quadrature component determined by H(f) is to interfere with the in-phase component
in Equation (2.15) so as to pattially reduce power in one of the sidebands of the modulated
wave s(t) and retain simply a vestige of the other sideband, as desired.

It is of interest to note that SSB modulation may be viewed as a special case of
VSB modulation. Specifically, when the vestigial sideband is reduced to zero (i.e., we set
f., = 0), the modulated wave s(t) of Equation (2.15) takes the limiting form of a single-
sideband modulated wave.

TELEVISION SIGNALS

A discussion of vestigial sideband modulation would be incomplete without a mention of
its role in commercial television (TV) broadcasting. The exact details of the modulation
format used to transmit the video signal characterizing a TV system are influenced by two
factors:

1. The video signal exhibits a large bandwidth and significant low-frequency content,
which suggest the use of vestigial sideband modulation.

2. The circuitry used for demodulation in the receiver should be simple and therefore
inexpensive; this suggests the use of envelope detection, which requires the addition
of a carrier to the VSB-modulated wave.

1
LHy(p)
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FIGURE 2.14 Frequency response of a filter for producing the quadrature component of the
VSB modulated wave.
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With regard to point 1, however, it should be stressed that although there is indeed
a basic desire to conserve bandwidth, in commercial TV broadcasting the transmitted
signal is not quite VSB modulated. The reason is that at the transmitter the power levels
are high, with the result that it would be expensive to rigidly control the filtering of side-
bands. Instead, a VSB filter is inserted in each receiver, where the power levels are low,
The overall performance is the same as conventional vestigial-sideband modulation, except
for some wasted power and bandwidth. These remarks are illustrated in Figure 2.15. In
particular, Figure 2.15a shows the idealized spectrum of a transmitted TV signal. The
upper sideband, 25 percent of the lower sideband, and the picture carrier are transmitted,
The frequency response of the VSB filter used to do the required spectrum shaping in the
receiver is shown in Figure 2.15b.

The channel bandwidth used for TV broadcasting in North America is 6 MHz, as
indicated in Figure 2.15b. This channel bandwidth not only accommodates the bandwidth
requirement of the VSB modulated video signal but also provides for the accompanying
sound signal that modulates a carrier of its own. The values presented on the frequency
axis in Figures 2.152 and 2,155 pertain to a specific TV channel. According to this figure,
the picture carrier frequency is at 55.25 MHz, and the sound carrier frequency is at 59.75
MHz. Note, however, that the information content of the TV signal lies in a baseband
spectrum extending from 1.25 MHz below the picture carrier to 4.5 MHz above it.

With regard to point 2, the use of envelope detection (applied to a VSB modulated
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FIGURE 2.15 (a) Idealized magnitude spectrum of a transmitted TV signal. (b) Magnitude re-
sponse of VSB shaping filter in the receiver.
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wave plus carrier) produces waveform distortion in the video signal recovered at the de-
tector output. The distortion is produced by the quadrature component of the VSB mod-
ulated wave; this issue is discussed next.

The use of the time-domain description given in Equation {2.15) enables the deter-
mination of the waveform distortion caused by the envelope detector. Specifically, adding
the carrier component A, cos(27f,t) to the VSB-modulated wave of Equation (2.15), the
latter being scaled by a factor k,, modifies the modulated signal applied to the envelope
detector input as ’

s(t) = Ac[l + %kam(t)] cos(2mf.t) = % k,Aam'(t) sin(27f1) 2.17)

where the constant k, determines the percentage modulation. The envelope detector out-
put, denoted by a(t), is therefore

1 2 1 245172
a(t) = Ac{[l + 2 kam(t):| + [5 kam’(t):| }

2412 2.18
1 %k“m’(t) ( )
= Ac[l + - k,,m(t)] 1+
2 1
1+ E k. mit)

Equation (2.18) indicates that the distortion is contributed by #'(t), which is responsible
for the quadrature component of the incoming VSB-modulated signal. This distortion can
be reduced by using two methods:

» Reducing the percentage modulation to reduce the amplitude sensitivity k,.
# Increasing the width of the vestigial sideband to reduce ' (¢).

Both methods are in fact used in practice. In commercial TV broadcasting, the width of
the vestigial sideband (which is about 0.75 MHz, or one-sixth of a full sideband) is deter-
mined to keep the distortion due to '(t) within tolerable limits when the percentage
modulation is nearly 100.

§ 2.4 Frequency Translation

The basic operation involved in single-sideband modulation is in facta form of frequency
translation, which is why single-sideband modulation is sometimes referred to as freguency
changing, mixing, or beterodyning. This operation is clearly illustrated in the spectrum of
the signal shown in Figure 2.11b compared to that of the original message signal in Figure
2.11a. Specifically, we see that a message spectrum occupying the band from f, to f, for
positive frequencies in Figure 2.114 is shifted upward by an amount equal to the carrier
frequency f, in Figure 2.11b, and the message spectrum for negative frequencies is trans-
lated downward in a symmetric fashion.

The idea of frequency translation described herein may be generalized as follows.
Suppose that we have a modulated wave s,(¢) whose spectrum is centered on a carrier
frequency f;, and the requirement is to translate it upward in frequency such that its carrier
frequency is changed from f; to a new value f,. This requirement may be accomplished
using the mixer shown in Figure 2.16. Specifically, the mixer is a device that consists of a
product modulator followed by a band-pass filter.
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FIGURE 2.16 Block diagram of mixer.

To explain the action of the mixer, consider the situation depicted in Figure 2.17,
where, for the purpose of illustration, it is assumed that the mixer input s,(t) is an AM
signal with carrier frequency f; and bandwidth 2W. Part (4) of Figure 2.17 displays the
AM spectrum S,(f) assuming that f; > W. Part {b) of the figure displays the spectrum
S'(f) of the resulting signal s'(2) at the product modulator output.

The signal s'{2) may be viewed as the sum of two modulated components: one com-
ponent represented by the shaded spectrum in Figure 2.17b, and the other component
represented by the unshaded spectrum in this figure. Depending on whether the incoming
carrier frequency f; is translated upward or downward, we may identify two different
situations, as described here:

Up conversion. In this case the translated carrier frequency f, is greater than the
incoming carrier frequency fi, and the required local oscillator frequency f; is there-

fore defined by
Lh=hth
or '
fi=f~h
814

(@

§°(f)

% ft 0 At
e e L

FiGURE 2.17 (a) Spectrum of modulated signal s, (¢} at the mixer input. (b) Spectrum of the
corresponding signal s'(t) at the output of the product modulator in the mixer.
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The unshaded part of the spectrum in Figure 2.175 defines the wanted modulated
signal s,(z), and the shaded part of this spectrum defines the image signal associated
with s,(t). For obvious reasons, the mixer in this case is referred to as a frequency-
up converter.

Down conversion. In this second case the translated carrier frequency f; is smaller
than the incoming carrier frequency f;, and the required oscillator frequency f; is

therefore defined by
L=h~-f

or

f=fi—f

The picture we have this time is the reverse of that pertaining to up conversion. In
particular, the shaded part of the spectrum in Figure 2,176 defines the wanted mod-
ulated signal s,(t), and the unshaded part of this spectrum defines the associated
image signal. The mixer is now referred to as a frequency-down converter. Note that
in this case the translated carrier frequency f; has to be larger than W (i.e., one half
of the bandwidth of the modulated signal) to avoid sideband overlap.

The purpose of the band-pass filter in the mixer of Figure 2.16 is to pass the wanted
modulated signal s,(¢) and eliminate the associated image signal. This objective is achieved
by aligning the midband frequency of the filter with the translated carrier frequency f; and
assigning it a bandwidth equal to that of the incoming modulated signal s, (z).

It is important to note that mixing is a linear operation. Accordingly, the relation of
the sidebands of the incoming modulated wave to the carrier is completely preserved at
the mixer output.

i 2.5 Frequency-Division Multiplexing

Another important signal processing operation is multiplexing, whereby a number of in-
dependent signals can be combined into a composite signal suitable for transmission over
a common channel. Voice frequencies transmitted over telephone systems, for example,
range from 300 to 3100 Hz. To transmit a number of these signals over the same channel,
the signals must be kept apart so that they do not interfere with each other, and thus they
can be separated at the receiving end. This is accomplished by separating the signals either
in frequency or in time. The technique of separating the signals in frequency is referred to
as frequency-division multiplexing (FDM), whereas the technique of separating the signals
in time is called time-division multiplexing (TDM). In this section, we discuss FDM sys-
tems, and TDM systems are discussed in Chapter 3.

A block diagram of an FDM system is shown in Figure 2.18. The incoming message
signals are assumed to be of the low-pass type, but their spectra do not necessarily have
nonzero values all the way down to zero frequency. Following each signal input, we have
shown a low-pass filter, which is designed to remove high-frequency components that do
not contribute significantly to signal representation but are capable of disturbing other
message signals that share the common channel. These low-pass filters may be omitted
only if the input signals are sufficiently band limited initially. The filtered signals are applied
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FIGURE 2.18 Block diagram of FDM system.

to modulators that shift the frequency ranges of the signals so as to occupy mutually
exclusive frequency intervals. The necessary carrier frequencies needed to perform these
frequency translations are obtained from a carrier supply. For the modulation, we may
use any one of the methods described in previous sections of this chapter. However, the
most widely used method of modulation in frequency-division multiplexing is single side-
band modulation, which, in the case of voice signals, requires a bandwidth that is ap-
proximately equal to that of the original voice signal. In practice, each voice input is usually
assigned a bandwidth of 4 kHz. The band-pass filters following the modulators are used
to restrict the band of each modulated wave to its prescribed range. The resulting band-
pass filter outputs are next combined in parallel to form the input to the common channel.
At the receiving terminal, a bank of band-pass filters, with their inputs connected in par-
allel, is used to separate the message signals on a frequency-occupancy basis. Finally, the
original message signals are recovered by individual demodulators. Note that the FDM
system shown in Figure 2.18 operates in only one direction. To provide for two-way
transmission, as in telephony, for example, we have to completely duplicate the muli-
plexing facilities, with the components connected in reverse order and with the signal
waves proceeding from right to left.

» EXAMPLE 2.1

The practical implementation of an FDM system usually involves many steps of modulation
and demodulation, as illustrated in Figure 2.15. The first multiplexing step combines 12 voice
inputs into a basic group, which is formed by having the #th input modulate a carrier at
frequency f, = 60 + 4n kHz, where » = 1, 2, . . ., 12. The lower sidebands are then selected
by band-pass filtering and combined to form a group of 12 lower sidebands (one for each
voice input). Thus the basic group occupies the frequency band 60 to 108 kHz. The next step
in the FDM hierarchy involves the combination of five basic groups into a supergroup. This
is accomplished by using the #th group to modulate a carrier of frequency f, = 372 + 48#
kHz, where n = 1,2, . . ., 5. Here again the lower sidebands are selected by filtering and then
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FIGURE 2.19 Hlustrating the modulation steps in an FDM system.

combined to form a supergroup occupying the band 312 to §52 k. Thus a supergroup is
designed to accommodate 60 independent voice inputs. The reason for forming the supergroup
in this manner is that economical filters of the required characteristics are available only over
a limited frequency range. In a similar manner, supergroups are combined into mastergroups,
and mastergroups are combined into very large groups. %

| 2.6 Angle Modulation

In the previous sections of this chapter, we investigated the effect of slowly varying the
amplitude of a sinusoidal carrier wave in accordance with the baseband (information-
carrying) signal. There is another way of modulating a sinusoidal carrier wave, namely,
angle modulation in which the angle of the carrier wave is varied according to the baseband
signal. In this method of modulation, the amplitude of the carrier wave is maintained
constant. An important feature of angle modulation is that it can provide better discrim-
Ination against noise and interference than amplitude modulation. As will be shown later
in Section 2.7, however, this improvement in performance is achieved at the expense of
increased transmission bandwidth; that s, angle modulation provides us with a practical

means of exchanging channel bandwidth for improved noise performance. Such a trade-
off is not possible with amplitude modulation, regardless of its form.

& BAsic DEFINITIONS

Let 0,(z) denote the angle of a modulated sinusoidal carrier, assumed to be a function of
the message signal. We express the resulting angle-modulated wave as

s(t) = A, cos[6.(2)] (2.19)
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where A, is the carrier amplitude. A complete oscillation occurs whenever 0;(2) changes
by 2 radians. If 8,(t) increases monotonically with time, the average frequency in Hertz,
over an interval from ¢ to £ + At, is given by

0,(t + At) — 6;(1)

27 At (220)

Fadt) =

We may thus define the instantaneous frequency of the angle-modulated signal s(¢) as
follows:

£

Il
g
~h
&
P
=

I

. 6t + Ag) — 6,{r)
AI?EJ [ 27 At ] 221)
1 de(t)

T 2m dt

Thus, according to Equation (2.19), we may interpret the angle-modulated signal
s(t) as a rotating phasor of length A, and angle 8;(t). The angular velocity of such a phasor
is d6,(t)/dt measured in radians per second, in accordance with Equation (2.21). In the
simple case of an unmodulated carrier, the angle 9;(¢) is

0:(t) = 27fit + &b,

and the corresponding phasor rotates with a constant angular velocity equal to 27f,. The
constant ¢, is the value of 8,{(t) at ¢ = 0.

There are an infinite number of ways in which the angle 0;(¢) may be varied in some
manner with the message (baseband) signal. However, we shall consider only two com-
monly used methods, phase modulation and frequency modulation, defined as follows:

1. Phase modulation (PM) is that form of angle modulation in which the angle 0,(t) is
varied linearly with the message signal m{t), as shown by

0,(t) = 2mft + kymit) (2.22)

The term 277f.¢ represents the angle of the unmodulated carrier; and the constant k,
represents the phase sensitivity of the modulator, expressed in radians per volt on
the assumption that m(t) is a voltage waveform. For convenience, we have assumed
in Equation (2.22) that the angle of the unmodulated carrier is zero at t = 0. The
phase-modulated signal s(¢) is thus described in the time domain by

s{) = A, cos[2mf.t + kym(t)] (2.23)

b

Frequency modulation (FM) is that form of angle modulation in which the instan
taneous frequency f,(t) is varied linearly with the message signal mit), as shown by

filt) = f. + kenl(2) (2.24)

The term f, represents the frequency of the unmodulated carrier, and the constant
k represents the frequency sensitivity of the modulator, expressed in Hertz per volt
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(a) &)
FIGURE 2.20 Tlustrating the relationship between frequency modulation and phase modulation.
(a) Scheme for generating an FM wave by using a phase modulator. (b) Scheme for generating a
PM wave by using a frequency modulator.

on the assumption that #(t) is a voltage waveform. Integrating Equation (2.24) with
respect to time and multiplying the result by 27, we get

0,(t) = 2mf.t + 2mky J’O m{7) dr (2.25)

where, for convenience, we have assumed that the angle of the unmodulated carrier
wave is zero at £ = 0. The frequency-modulated signal is therefore described in the
time domain by

s(t)y = A, cos[erfJ + 27kaJ’O m(7) dq':l (2.26)

A consequence of allowing the angle 6,(t) to become dependent on the message signal
m(t) as in Equation (2.22) or on its integral as in Equation (2.25) is that the zero crossings
of a PM signal or FM signal no longer have a perfect regularity in their spacing; zero
crossings refer to the instants of time at which a waveform changes from a negative to a
positive value or vice versa. This is one important feature that distinguishes both PM and
FM signals from an AM signal. Another important difference is that the envelope of a PM
or FM signal is constant (equal to the carrier amplitude), whereas the envelope of an AM
signal is dependent on the message signal.

Comparing Equation (2.23) with (2.26) reveals that an FM signal may be regarded
as a PM signal in which the modulating wave is [!m(7) d7 in place of m(t). This means
that an FM signal can be generated by first integrating »(¢) and then using the result as
the input to a phase modulator, as in Figure 2.204. Conversely, a PM signal can be gen-
erated by first differentiating #2(f) and then using the result as the input to a frequency
modulator, as in Figure 2.20b. We may thus deduce all the properties of PM signals from
those of FM signals and vice versa. Henceforth, we concentrate our attention on FM

signals.

i 2.7 Frequency Modulation

The FM signal s(¢) defined by Equation (2.26) is a nonlinear function of the modulating
signal (), which makes frequency modulation a nonlinear modulation process. Conse-
quently, unlike amplitude modulation, the spectrum of an FM signal is not related in a
simple manner to that of the modulating signal; rather, its analysis is much more difficult
than that of an AM signal.
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How then can we tackle the spectral analysis of an FM signal? We propose to provide
an empirical answer to this important question by proceeding in the following manner:

> We consider the simplest case possible, namely, that of a single-tone modulation that
produces a narrowband FM signal.

> We next consider the more general case also involving a single-tone modulation, but
this time the FM signal is wideband.

We could, of course, go on and consider the more elaborate case of a multitone FM signal,
However, we propose not to do so, because our immediate objective is to establish an
empirical relationship between the transmission bandwidth of an FM signal and the mes-
sage bandwidth. As we shall subsequently see, the two-stage spectral analysis described
here provides us with enough insight to propose a solution to the problem.

Consider then a sinusoidal modulating signal defined by

m(t) = A,, cos(2mf,t) (2.27)
The instantaneous frequency of the resulting EM signal equals

fi(t) = . + kA, cos(27f,t)

= f. + Af cos(27f,t) (2.28)

where
Af = kA, (2.29)

The quantity Af is called the frequency deviation, representing the maximum departure

of the instantaneous frequency of the FM signal from the catrier frequency f.. A funda-

mental characteristic of an FM signal is that the frequency deviation Af is proportional

to the amplitude of the modulating signal and is independent of the modulation frequency.
Using Equation {2.28), the angle 6;(¢) of the FM signal is obtained as

0,(t) = 27 jo fiin dr
A (2.30)
= 2af,t + T]C sin(2f,.t)

.

The ratio of the frequency deviation Af to the modulation frequency f,, is commonly called
the modulation index of the FM signal. We denote it by B, and so write

Af
= 2.31
B 7. (2.31)
and

8,(t) = 27f.t + B sin(27f,t) (2.32)

From Equation (2.32) we see that, in a physical sense, the parameter 8 represents the phase
deviation of the FM signal, that is, the maximum departure of the angle 6;(¢) from the
angle 27f.t of the unmodulated carrier; hence, g is measured in radians.

The FM signal itself is given by

s(t) = A, cos|2mf,t + B sin{2mf,,1)] (2.33)
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Depending on the value of the modulation index 8, we may distinguish two cases of
frequency modulation: ]

& Narrowband FM, for which 8 is small compared to one radian.
» Wideband FM, for which B is large compared to one radian.

These two cases are considered next, in that order.

# NARROWBAND FREQUENCY MODULATION

Consider Equation {2.33), which defines an FM signal resulting from the use of a sinusoidal
modulating signal. Expanding this relation, we get

s(t) = A. cos(2mf.t) cos[B sin(27f,.t)] — A, sin(27f.t) sin[B sin(27f,t)] (2.34)

Assuming that the modulation index B is small compared to one radian, we may use the
following approximations:

cos[B sin(27f,.£)] = 1
and ‘
sin[B sin2f,t)] = B sin(27f,.¢)
Hence, Equation (2.34) simplifies to
s(8) = A, cos(2mf.t) — BA., sin(27f.t) sin(27f,2) (2.35)

Equation (2.35) defines the approximate form of a narrowband FM signal produced by a
sinusoidal modulating signal A,, cos(2f,.z). From this representation we deduce the mod-
ulator shown in block diagram form in Figure 2.21. This modulator involves splitting the
carrier wave A, cos(2f£) into two paths. One path is direct; the other path contains a
—90 degree phase-shifting network and a product modulator, the combination of which
generates a DSB-SC modulated signal. The difference between these two signals produces
a narrowband FM signal, but with some distortion.

Ideally, an FM signal has a constant envelope and, for the case of a sinusoidal mod-
ulating signal of frequency f,,, the angle 6;(z) is also sinusoidal with the same frequency.

Narrowband

Modulating
FM wave

wave

Product - /E\

modulator

Integrator

A sin (2mf,2)

-50°
phase-shifter

Carrier wave
A, cos (27f,1)

Narrowband phase modulator

FiGURE 2.21 Block diagram of a method for generating a narrowband FM signal.
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But the modulated signal produced by the narrowband modulator of Figure 2.21 differs
from this ideal condition in two fundamental respects:

1. The envelope contains a residual amplitude modulation and, therefore, varies with
time.

2. For a sinusoidal modulating wave, the angle 8,() contains harmonic distortion in
the form of third- and higher-order harmonics of the modulation frequency f,,.

However, by restricting the modulation index to 8 =< 0.3 radians, the effects of residua]
AM and harmonic PM are limited to negligible levels.
Returning to Equation (2.35), we may expand it as follows:

s(t) = A, cos(27f,2) + % BAJcos[2m(f, + f)t] — cos[2m(f. — £t} (2.36)

This expression is somewhat similar to the corresponding one defining an AM signal,
which is as follows:

samlt) = A, cos(2mft) + %I»LAL-{COS[Z‘lT(fc + f)t] + cos2m{f, — futl}  (2.37)

where g is the modulation factor of the AM signal. Comparing Equations (2.36) and
(2.37), we see that in the case of sinusoidal modulation, the basic difference between an
AM signal and a narrowband FM signal is that the algebraic sign of the lower side fre-
quency in the narrowband FM is reversed. Thus, a narrowband FM signal requires essen-
tially the same transmission bandwidth (i.e., 2f,.) as the AM signal,

We may represent the narrowband FM signal with a phasor diagram as shown in
Figure 2.224, where we have used the carrier phasor as reference. We see that the resultant

Sum of side-~
frequency phasors
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. frequency frequency
Carrier _
(@)
fn
~—
Upper side- ~
frequency AN
N
Carrier N Sum of
ks : side-frequency
// phasors
Lower side- s
frequency //
-
fm

)

FIGURE 2.22 A phasor comparison of natrowband FM and AM waves for sinusoidal modula-
tion. (a) Narrowband FM wave. (b) AM wave.
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of the two side-frequency phasors is always at right angles to the carrier phasor. The effect
of this is to produce a resultant phasor representing the narrowband FM signal that is
approximately of the same amplitude as the carrier phasor, but out of phase with respect
to it. This phasor diagram should be contrasted with that of Figure 2.22b, representing
an AM signal. In this latter case we see that the resultant phasor representing the AM
signal has an amplitude that is different from that of the carrier phasor but always in phase
with it.

2 WIDEBAND FREQUENCY MODULATION

We next wish to determine the spectrum of the single-tone FM signal of Equation (2.33)
for an arbitrary value of the modulation index 8. In general, an FM signal produced by a
sinusoidal modulating signal, as in Equation (2.33), is in itself nonperiodic unless the
carrier frequency f; is an integral multiple of the modulation frequency f,,. However, we
may simplify matters by using the complex representation of band-pass signals described
in Appendix 2. Specifically, we assume that the carrier frequency f. is large enough (com-
pared to the bandwidth of the FM signal) to justify rewriting this equation in the form

s(z) = Rel[A, exp(j2mf.t + jB sin(2mf,.1))]
= Re[8(z) exp(j27f.2)]
where 3(z) is the complex envelope of the FM signal s(z), defined by
§(t) = A, exp[jB sin(2af,t)] (2.39)

Thus, unlike the original FM signal s(t), the complex envelope (¢} is a periodic function
of time with a fundamental frequency equal to the modulation frequency f,,. We may
therefore expand §(¢) in the form of a complex Fourier series as follows:

(2.38)

5(t) = i ¢, explj2mnf,.t) (2.40)

H=—co

where the complex Fourier coefficient ¢, is defined by

124,
Cp = f,,,f 5(t) exp(—j2mnf,z) dt

-1124,,

12, (2.41)
= 1A | expliB sin2nfy) — mnfn de
Define a new variable:
x = 27 (2.42)
Hence, we may rewrite Equation {2.41) in the new form
¢y = Ey explj(B sin x — nx)] dx (2.43)

The integral on the right-hand side of Equation (2.43), except for a scaling factor, is
recognized as the nth order Bessel function of the first kind® and argument 8. This function
is commonly denoted by the symbol J,(8), as shown by

JB) = 5= | explj(B sin x = mc] de 2.4
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Accordingly, we may reduce Equation (2.43) to
Cp = Ac]ﬂ(B) (2'45>

Substituting Equation (2.45) in (2.40), we get, in terms of the Bessel function [,.(B), the
following expansion for the complex envelope of the FM signal:

= Ac 2 JdB) expli2mnf) (2.46)
Next, substituting Equation (2.46) in (2.38), we get

= 0

s(t) = A, - Re[ > JAB) exp[i2w(f. + nf,,,)t]] (2.47)

Interchanging the order of summation and evaluation of the real part in the right-hand
side of Equation (2.47), we finally get

sit) = A, D, JAB) cos2m(f, + nf.)t] (2.48)

n=—o0

This is the desired form for the Fourier series representation of the single-tone FM signal
s(t) for an arbitrary value of 8. The discrete spectrum of s(z) is obtained by taking the
Fourier transforms of both sides of Equation (2.48); we thus have

Sif) ==° 2 JABIS(S — f. = ufu) + 3(f + fo + nfn)] (2.49)

In Figure 2.23 we have plotted the Bessel function J,,{8) versus the modulation index
B for different positive integer values of 7. We can develop further insight into the behavior
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FIGURE 2.23 Plots of Bessel functions of the first kind for varying order.
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of the Bessel function J,,(8) by making use of the following properties (see Appendix 3 for
more details):

L. JAB) = (=1)"]_.{B) for all #, both positive and negative (2.50)

2. For small values of the modulation index 8, we have

Jo(B) =1
~B
Ji(B) = 3 (2.51)

3. 2 JHp =1 (2.52)

Thus, using Equations (2.49)-(2.52) and the curves of Figure 2.23, we may make
he following observations:

1. The spectrum of an FM signal contains a carrier component and an infinite set of
side frequencies located symmetrically on either side of the carrier at frequency sep-
arations of f,, 2f,, 3f,s, - - - . In this respect, the result is unlike that which prevails
in an AM system, since in an AM system a sinusoidal modulating signal gives rise
to only one pair of side frequencies.

For the special case of B small compared with unity, only the Bessel coefficients J,(8)

and J;(B) have significant values, so that the FM signal is effectively composed of a

carrier and a single pair of side frequencies at f, = f,,. This situation corresponds to

the special case of narrowband FM that was considered earlier.

3. The amplitude of the carrier component varies with 8 according to Jo(8). That is,
unlike an AM signal, the amplitude of the carrier component of an FM signal is
dependent on the modulation index 8. The physical explanation for this property is
that the envelope of an FM signal is constant, so that the average power of such a
signal developed across a 1-ohm resistor is also constant, as shown by

1

P= EA% (2.53)

g

When the carrier is modulated to generate the FM signal, the power in the side
frequencies may appear only at the expense of the power originally in the carrier,
thereby making the amplitude of the carrier component dependent on . Note that
the average power of an FM signal may also be determined from Equation (2.48),
obtaining

P=241 3 ) (2.54)

n=—o0

Substituting Equation (2.52) into (2.54), the expression for the average power P
reduces to Equation (2.53), and so it should.

» EXAMPLE 2.2

In this example, we wish to investigate the ways in which variations in the amplitude and
frequency of a sinusoidal modulating signal affect the spectrum of the FM signal. Consider
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FIGURE 2.24 Discrete amplitude spectra of an FM signal, normalized with respect to the carrier
amplitude, for the case of sinusoidal modulation of fixed frequency and varying amplitude. Only
the spectra for positive frequencies are shown.

first the case when the frequency of the modulating signal is fixed, but its amplitude is varied,
producing a corresponding variation in the frequency deviation Af. Thus, keeping the mod-
ulation frequency f,, fixed, we find that the amplitude spectrum of the resulting FM signal is
as shown plotted in Figure 2.24 for 8 = 1, 2, and 5. In this diagram we have normalized the
spectrum with respect to the unmodulated carrier amplitude.

Consider next the case when the amplitude of the modulating signal is fixed; that is, the
frequency deviation Af is maintained constant, and the modulation frequency f,, is varied.
In this case we find that the amplitude spectrum of the resulting FM signal is as shown
plotted in Figure 2.25 for B = 1, 2, and 5. We see that when Af is fixed and 8 is increased,
we have an increasing number of spectral lines crowding into the fixed frequency interval
f. = Af <|f| < f.+ Af. That is, when 8 approaches infinity, the bandwidth of the FM wave
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FIGURE 2.25 Discrete amplitude spectra of an FM signal, normalized with respect to the carrier
amplitude, for the case of sinusoidal modulation of varying frequency and fixed amplitude. Only
the spectra for positive frequencies are shown.

approaches the limiting value of 2Af, which is an important point to keep in mind for later
discussion. <

# TRANSMISSION BANDWIDTH oF FM SIGNALS

In theory, an FM signal contains an infinite number of side frequencies so that the band-
width required to transmit such a signal is similarly infinite in extent. In practice, however,
we find that the FM signal is effectively limited to a finite number of significant side
frequencies compatible with a specified amount of distortion. We may therefore specify
an effective bandwidth required for the transmission of an FM signal. Consider first the
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case of an FM signal generated by a single-tone modulating wave of frequency £, In such
an FM signal, the side frequencies that are separated from the carrier frequency f. by an
amount greater than the frequency deviation Af decrease rapidly toward zero, so that the
bandwidth always exceeds the total frequency excursion, but nevertheless is limited. Spe-
cifically, for large values of the modulation index B, the bandwidth approaches, and is
only slightly greater than, the total frequency excursion 2Af in accordance with the situ-
ation shown in Figure 2.25. On the other hand, for small values of the modulation index
B, the spectrum of the FM signal is effectively limited to the carrier frequency f. and one
pair of side frequencies at f; * f,;, so that the bandwidth approaches 2f,,. We may thus
define an approximate rule for the transmission bandwidth of an FM signal generated by
a single-tone modulating signal of frequency f,, as follows:

Br = 2Af + 2f, = ZAf(l + ;1‘3) (2.55)

This empirical relation is known as Carson’s rule®

For an alternative assessment of the bandwidth requirement of an FM signal, we
may use a definition based on retaining the maximum number of significant side frequen-
cies whose amplitudes are all greater than some selected value, A convenient choice for
this value is 1 percent of the unmodulated carrier amplitude. We may thus define the
transmission bandwidih of an FM wave as the separation between the two frequencies
beyond which none of the side frequencies is greater than 1 percent of the carrier amplitude
obtained when the modulation is removed. That is, we define the transmission bandwidth
a8 anfins Where f,, is the modulation frequency and 7, is the largest value of the
integer 7 that satisfies the requirement |7.4B)] > 0.01. The value of 7., varies with the
modulation index 8 and can be determined readily from tabulated values of the Bessel
function J,(B). Table 2.2 shows the total number of significant side frequencies (including
both the upper and lower side frequencies) for different values of B, calculated on the 1
percent basis explained herein. The transmission bandwidth By calculated using this pro-
cedure can be presented in the form of a universal curve by normalizing it with respect to
the frequency deviation Af and then plotting it versus B. This curve is shown in Figure
2.26, which is drawn as a best fit through the set of points obtained by using Table 2.2.
In Figure 2.26 we note that as the modulation index B is increased, the bandwidth occupied

TABLE 2.2 Number of significani side
frequencies of a wideband FM signal for varying

modulation index
Modulation Index Number of Significant Side Frequencies
anax
0.1 2
0.3 4
0.5 4
1.0 ) 6
2.0 8
5.0 16
10.0 28
20.0 50

30.0 70
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FIGURE 2.26 Universal curve for evaluating the 1 percent bandwidth of an FM wave.

by the significant side frequencies drops toward that over which the carrier frequency
actually deviates. This means that small values of the modulation index B are relatively
more extravagant in transmission bandwidth than are the larger values of B.

Consider next the more general case of an arbitrary modulating signal m(z) with its
highest frequency component denoted by W. The bandwidth required to transmit an
FM signal generated by this modulating signal is estimated by using a worst-case tone-
modulation analysis. Specifically, we first determine the so-called deviation ratio D, defined
as the ratio of the frequency deviation Af, which corresponds to the maximum possible
amplitude of the modulation signal m(£), to the highest modulation frequency W; these
conditions represent the extreme cases possible. The deviation ratio D plays the same role
for nonsinusoidal modulation that the modulation index B plays for the case of sinusoidal
modulation. Then, replacing B by D and replacing f,, with W, we may use Carson’s rule
given by Equation (2.35) or the universal curve of Figure 2.26 to obtain a value for the
transmission bandwidth of the FM signal. From a practical viewpoint, Carson’s rule some-
what underestimates the bandwidth requirement of an FM system, whereas using the uni-
versal curve of Figure 2.26 yields a somewhat conservative result. Thus, the choice of a
transmission bandwidth thar lies between the bounds provided by these two rules of thumb
is acceptable for most practical purposes.

B EXAMPLE 2.3

In North America, the maximum value of frequency deviation Af is fixed at 75 kHz for
commercial FM broadcasting by radio. If we take the modulation frequency W = 15 kHz,
which is typically the “maximum” audio frequency of interest in FM transmission, we find
that the corresponding value of the deviation ratio is

D=>=
15 d

Using Carson’s rule of Equation (2.55), replacing B by D, and replacing f,, by W, the ap-
proximate value of the transmission bandwidth of the FM signal is obtained as

Br = 2(75 + 15) = 180 kHz
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On the other hand, use of the curve of Figure 2.26 gives the transmission bandwidth of the
FM signal to be

By = 32Af = 3.2 X 75 = 240 kHz

In practice, a bandwidth of 200 kHz is allocated to each FM transmitter. On this basis,
Carson’s rule underestimates the transmission bandwidth by 10 percent, whereas the universa]
curve of Figure 2.26 overestimates it by 20 percent. A |

# GENERATION OF FM SigNALs

There are essentially two basic methods of generating frequency-modulated signals,
namely, direct FM and indirect FM. In the direct method the carrier frequency is directly
varied in accordance with the input baseband signal, which is readily accomplished using
a voltage-controlled oscillator. In the indirect method, the modulating signal is first used
to produce a narrowband FM signal, and frequency multiplication is next used to increase
the frequency deviation to the desired level. The indirect method is the preferred choice
for frequency modulation when the stability of carrier frequency is of major concern as in
commercial radio broadcasting, as described next.

Indirect FM®

A simplified block diagram of an indirect FM system is shown in Figure 2.27. The
message {baseband) signal m() is first integrated and then used to phase-modulate a
crystal-controlled oscillator; the use of crystal control provides frequency stability. To
minimize the distortion inherent in the phase modulator, the maximum phase deviation
or modulation index B is kept small, thereby resulting in a narrowband FM signal; for the
implementation of the narrow-band phase modulator, we may use the arrangement de-
scribed in Figure 2.21. The narrowband FM signal is next multiplied in frequency by means
of a frequency multiplier so as to produce the desired wideband FM signal.

A frequency multiplier consists of a nonlinear device followed by a band-pass filter,
as shown in Figure 2.28. The implication of the nonlinear device being memoryless is that
it has no energy-storage elements. The input-output relation of such a device may be
expressed in the general form

v{t) = as(t) + aps?(t) + ¢ + a,s™(t) (2.56)

where a4, 4, . . . , 4, are coefficients determined by the operating point of the device, and
n is the bighest order of nonlinearity. In other words, the memoryless nonlinear device is
an nth power-law device. The input s(t) is an FM signal defined by

s(f) = A, cosl:Zﬂ'fct + Zﬂkf‘[;) mir) dT:I

Baseband Narrowband .
signal Integrator 3=  phase  [—=| E;i?{:sﬂg éFst(ignal
m{z) modulator

Crystal-

controlled

oscillator

FI1GURE 2.27 Block diagram of the indirect method of generating a wideband FM signal.
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FIGURE 2.28 Block diagram of frequency multiplier.

whose instantaneous frequency is
fi@) = fo + kpn(t) (2.57)

The mid-band frequency of the band-pass filter in Figure 2.28 is set equal to #f,, where f,
is the carrier frequency of the incoming FM signal s(¢). Moreover, the band-pass filter is
designed to have a bandwidth equal to » times the transmission bandwidth of s(z). In
Section 2.8 dealing with nonlinear effects in FM systems, we describe the spectral contri-
butions of such nonlinear terms as the second- and third-order terms in the input—output
relation of Equation (2.56). For now it suffices to say that after band-pass filtering of the
nonlinear device’s output v(t), we have a new FM signal defined by

st} = AL cos[Z'n'nfct + 2mnk; J‘O m(7) d7:| (2.58)

whose instantaneous frequency is
ity = nf. + nkan(t) (2.59)

Thus, comparing Equation {2.59) with (2.57), we see that the nonlinear processing circuit
of Figure 2.28 acts as a frequency multiplier. The frequency multiplication ratio is deter-
mined by the highest power # in the input-output relation of Equation (2.56), character-
izing the memoryless nonlinear device.

# DEMODULATION OF FM SIGNALS

Frequency demodulation is the process that enables us to recover the original modulating
signal from a frequency-modulated signal. The objective is to produce a transfer charac-
teristic that is the inverse of that of the frequency modulator, which can be realized directly
or indirectly. Here we describe a direct method of frequency demodulation involving the
use of a popular device known as a frequency discriminator, whose instantaneous output
amplitude is directly proportional to the instantaneous frequency of the input FM signal.
In Section 2.14, we describe an indirect method of frequency demodulation that uses
another popular device known as a phase-locked loop.

Basically, the frequency discriminator consists of a slope circuit followed by an en-
velope detector. An ideal slope circuit is characterized by a frequency response that is
purely imaginary, varying linearly with frequency inside a prescribed frequency interval.
Consider the frequency response depicted in Figure 2.294, which is defined by

Br

jlvra(f—]‘c-k?), fc—B?Tstfﬁ-kB?T

HO =omo(y+ £- %), -h-Br=rzpef 060

0, elsewhere
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FIGURE 2.29 (1) Frequency response of ideal slope circuit. (b) Frequency response of the slope
circuit’s complex low-pass equivalent. (c) Frequency response of the ideal slope circuit comple-
mentary to that of part (a).

where 4 is a constant. We wish to evaluate the response of this slope circuit, denoted by
s1(t), which is produced by an FM signal s(¢) of carrier frequency f, and transmission
bandwidth Br. It is assumed that the spectrum of s(z) is essentially zero outside the fre-
quency interval f, — B{/2 < | f| = f. + Br/2.

We may simplify the analysis of the frequency discriminator by invoking the iso-
morphism between a real-valued band-pass filter and a correspondirg complex-valued
low-pass filter. This isomorphism is discussed in Appendix 2. According to the material
presented in that appendix, we may replace the band-pass filter with frequency response
H,(f) with an equivalent low-pass filter with frequency response H.(f) by doing two
things:

1. We shift H,(f) to the right by f., where £, is the midband frequency of the band-
pass filter; this operation aligns the translated frequency response of the equivalent
low-pass filter with that of the band-pass filter.

2. We set H,(f — f.) equal to 2H,(f) for f > 0.
Thus for the problem at hand we get
Hy(f - f) =2H:f), f>0 (2.61)
Hence, using Equations (2.60) and (2.61), we get

, B B B
Ay(f) = 74”“<f S ) -y Er=g 2.62

0, elsewhere

which is plotted in Figure 2.29b.
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The incoming FM signal s(t) is defined by Equation (2.26), which is reproduced here
for convenience:

s(t) = A, cos[Zﬂ'fct + 27k, fo m(7) d7:|

Given that the carrier frequency f, is high compared to the transmission bandwidth of the
FM signal s(¢}, the complex envelope of s(z) is

i) = A, exp|:j2'rrkf L m(1) d'r:| (2.63)

Let §,(¢) denote the complex envelope of the response of the slope circuit defined by
Figure 2.29a due to §(z). Then, following the material presented in Appendix 2, we may
express the Fourier transform of §,(¢) as follows:

= 1 . -
3,1) = 3 B(PS()
(2.64)
Br\. Br B
j27m(f + ~2-)S(f), ~r=f=t
0, elsewhere

where §(f) is the Fourier transform of 3(t). From Fourier analysis we know that multipli-
cation of the Fourier transform of a signal by j27f is equivalent to differentiating the
signal in the time domain; see item 8 of Table A6.2. Hence, from Equation (2.64) we
deduce

() = a[d;(:) + jﬂBTE(t):| (2.65)
Substituting Equation (2.63) into {2.65), we get
5.(t) = /'11'B-[aA£|:1 + Z’kam(t):| exp|:/27rkf fo m(7) d'r:| (2.66)
T

The desired response of the slope circuit is therefore

s1(t) = Rel$,(2) exp(j27f.?)]

t (2.67)
= m7BaA,| 1 + 2ky mit) | cos| 2mfit + 2wk,f mir) dr + =
Bt [ 2
The signal s;{¢) is a hybrid-modulated signal in which both amplitude and frequency of
the carrier wave vary with the message signal (). However, provided that we choose

2k
=%f
B m(t)

then we may use an envelope detector to recover the amplitude variations and thus, except
for a bias term, obtain the original message signal. The resulting envelope-detector output
is therefore

<1 for all ¢

|5,(8)] = wBTaAc[l + Z’Tkjf m(t):| (2.68)

The bias term 7Byad, in the right-hand side of Equation (2.68) is proportional to
the slope  of the transfer function of the slope circuit. This suggests that the bias may be
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Slope circuit Envelope
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Slope circuit Envelope
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FIGURE 2.30 Block diagram of frequency discriminator.

removed by subtracting from the envelope-detector output | §(¢) | the output of a second
envelope detector preceded by the complementary slope circuit with a frequency response
H,(f) as described in Figure 2.29¢. That is, the two slope circuits are related by

Hy(f) = Hy(~f) (2.69)

Let s,(¢) denote the response of the complementary slope circuit produced by the incoming
FM signal s(2). Then, following a procedure similar to that just described, we may write

|5()| = TrB-[aAE[l _ 2y m(t)] (2.70)
Br

where 5,(t) is the complex envelope of the signal s,(¢). The difference between the two

envelopes in Equations (2.68) and (2.70) is

solt) = |5u(t)| = [&:(0)]

4k A (1) @7

which is a scaled version of the original message signal () and free from bias.

We may thus model the ideal frequency discriminator as a pair of slope circuits with
their complex transfer functions related by Equation (2.69), followed by envelope detectors
and finally a summer, as in Figure 2.30. This scheme is called a balanced frequency
discriminator.

FM STEREO MULTIPLEXING®

Stereo multiplexing is a form of frequency-division multiplexing (FDM) designed to trans-
mit two separate signals via the same carrier. It is widely used in FM radio broadcasting
to send two different elements of a program (e.g., two different sections of an orchestra,
a vocalist and an accompanist) so as to give a spatial dimension to its perception by a
listener at the receiving end.

The specification of standards for FM stereo transmission is influenced by two
factors:

1. The transmission has to operate within the allocated FM broadcast channels.
2. It has to be compatible with monophonic radio receivers.

The first requirement sets the permissible frequency parameters, including frequency de-
viation. The second requirement constrains the way in which the transmitted signal is
configured.

Figure 2.31a shows the block diagram of the multiplexing system used in an FM
stereo transmitter. Let »2,(t) and #1,(t) denote the signals picked up by left-hand and
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FiGURE 2.31 (a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in receiver of FM
stereo.

right-hand microphones at the transmitting end of the system. They are applied to a
simple matrixer that generates the sum signal, m(t) + m,(t), and the difference signal,
my(t) — m,(t). The sum signal is left unprocessed in its baseband form; it is available for
monophonic reception. The difference signal and a 38-kHz subcarrier (derived from a 19-
kHz crystal oscillator by frequency doubling) are applied to a product modulator, thereby
producing a DSB-SC modulated wave. In addition to the sum signal and this DSB-SC
modulated wave, the multiplexed signal #(t) also includes a 19-kHz pilot to provide a
reference for the coherent detection of the difference signal at the stereo receiver. Thus the
multiplexed signal is described by

m(t) = [my(t) + m,(t)] + [m; — m,(t)] cos(4nf.t) + K cos(2mf.t) (2.72)

where f, = 19 kHz, and K is the amplitude of the pilot tone. The multiplexed signal #(z)
then frequency-modulates the main carrier to produce the transmitted signal. The pilot is
allotted between 8 and 10 percent of the peak frequency deviation; the amplitude K in
Equation (2.72) is chosen to satisfy this requirement.

At a stereo receiver, the multiplexed signal m(¢) is recovered by frequency demodu-
lating the incoming FM wave. Then m(t) is applied to the demultiplexing system shown
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in Figure 2.31b. The individual components of the multiplexed signal (t) are separated
by the use of three appropriate filters. The recovered pilot (using a narrowband filter tuned
to 19 kHz) is frequency doubled to produce the desired 38-kHz subcarrier. The availability
of this subcarrier enables the coherent detection of the DSB-5C modulated wave, thereby
recovering the difference signal, »4(t) — m,(t). The baseband low-pass filter in the top
path of Figure 2.31b is designed to pass the sum signal, z,(t) + ,{z). Finally, the simple
matrixer reconstructs the left-hand signal #2() and right-hand signal #,(t), except for
scaling factors, and applies them to their respective speakers.

§ 2.8 Nonlinear Effects in FM Systems

In the preceding two sections, we studied frequency modulation theory and methods for
its generation and demodulation. We complete the discussion of frequency modulation by
considering nonlinear effects in FM systems.

Nonlinearities, in one form or another, are present in all electrical networks. There
are two basic forms of nonlinearity to consider:

1. The nonlinearity is said to be stromg when it is introduced intentionally and in a
controlled manner for some specific application. Examples of strong nonlinearity
include square-law modulators, hard-limiters, and frequency multipliers.

2. The nonlinearity is said to be weak when a linear performance is desired, but non-
linearities of a parasitic nature arise due to imperfections. The effect of such weak
nonlinearities is to limit the useful signal levels in a system and thereby become an
important design consideration.

In this section we examine the effects of weak nonlinearities on frequency modulation,
Consider a communications channel, the transfer characteristic of which is defined
by the nonlinear input—output relation

w(t) = ay () + avi(t) + asv(t) (2.73)

where u,(t) and v,(2) are the input and output signals, respectively, and a4, 43, and a5 are
constants; Equation (2.73) is a truncated version of Equation (2.56) used in the context
of frequency multiplication. The channel described in Equation (2.73) is said to be me-
moryless in that the output signal v,(f) is an instantaneous function of the input signal
u(t) (i.e., there is no energy storage involved in the description). We wish to determine the
effect of transmitting a frequency-modulated wave through such a channel. The FM signal
is defined by

y(t) = A, cos|2nf;t + ¢(t)]

where

¢ ()= 2wk L m(T) dr

For this input signal, the use of Equation (2.73) yields

v(t) = @ A, cos[2fit + ¢ ()] + axAZ cos?[2aft + (2)]

4
+ a3 A cos’[2mft + o{2)] @
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Expanding the squared and cubed cosine terms in Equation (2.74) and then collecting
common terms, we get

1
y,(t) = 3 a A2 + (a1Ac + %a;Ai) cos[2mf.t + & (1)]

+ %a;_A% cos[4nf.t + 2¢(2)] (2.75)

+ %aaAE cos[6mft + 3¢(t)]

Thus the channel output consists of a DC component and three frequency-modulated
signals with carrier frequencies f., 2f., and 3f.; the latter components are contributed by
the linear, second-order, and third-order terms of Equation (2.73), respectively.

To extract the desired FM signal from the channel output v,(¢), that is, the particular
component with carrier frequency, f,, it is necessary to separate the FM signal with this
carrier frequency from the one with the closest carrier frequency, 2f,. Let Af denote the
frequency deviation of the incoming FM signal v,{2), and W denote the highest frequency
component of the message signal m(t). Then, applying Carson’s rule and noting that the
frequency deviation about the second harmonic of the carrier frequency is doubled, we
find that the necessary condition for separating the desired FM signal with the carrier
frequency f, from that with the carrier frequency 2f, is

2 — QAf + W) > £+ Af + W
or
£ > 3Af + 2W (2.76)

Thus, by using a band-pass filter of midband frequency f, and bahdwidth 2Af + 2W, the
channel output is reduced to

w(t) = (alAc + %@Ai) cos[2mf.t + ()] (2.77)
We see therefore that the only effect of passing an FM signal through a channel with
amplitude nonlinearities, followed by appropriate filtering, is simply to modify its ampli-
tude. That is, unlike amplitude modulation, frequency modulation is not affected by dis-
tortion produced by transmission through a channel with amplitude nonlinearities. It is
for this reason that we find frequency modulation used in microwave radio systems: It
permits the use of highly nonlinear amplifiers and power transmitters, which are particu-
larly important to producing a maximum power output at radio frequencies.

An FM system is extremely sensitive to phase nonlinearities, however, as we would
intuitively expect. A common type of phase nonlinearity that is encountered in microwave
radio systems is known as AM-to-PM conversion. This is the result of the phase charac-
teristic of repeaters or amplifiers used in the system being dependent on the instantaneous
amplitude of the input signal. In practice, AM-to-PM conversion is characterized by a
constant K, which is measured in degrees per dB and may be interpreted as the peak phase
change at the output for a 1-dB change in envelope at the input. When an FM wave is
transmitted through a microwave radio link, it picks up spurious amplitude variations due
to noise and interference during the course of transmission, and when such an FM wave
is passed through a repeater with AM-to-PM conversion, the output will contain unwanted
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phase modulation and resultant distortion. It is therefore important to keep the AM-to.

PM conversion at a low level. For example, for a good microwave repeater, the AM-tq.
PM conversion constant K is less than 2 degrees per dB.

2.9 Superheterodyne Receiver’
P Y

In a broadcasting system, irrespective of whether it is based on amplitude modulation of
frequency modulation, the receiver not only has the task of demodulating the incoming
modulated signal, but it is also required to perform some other system functions:

¥ Carrier-frequency tuning, the purpose of which is to select the desired signal (i,
desired radio or TV station).

» Filtering, which is required to separate the desired signal from other modulated sig-
nals that may be picked up along the way.

¥ Amplification, which is intended to compensate for the loss of signal power incurred
in the course of transmission.

The superbeterodyne recejver, or superhet as it is often referred to, is a special type of
receiver that fulfills all three functions, particularly the first two, in an elegant and practical
fashion. Specifically, it overcomes the difficulty of having to build a tunable highly selective
and variable filter. Indeed, practically all radio and TV receivers now being made are of
the superheterodyne type.

Basically, the receiver consists of a radio-frequency (RF) section, a mixer and local
oscillator, an intermediate-frequency (IF) section, demodulator, and power amplifier. Typ-
ical frequency parameters of commercial AM and FM radio receivers are listed in Table
2.3. Figure 2.32 shows the block diagram of a superheterodyne receiver for amplitude
modulation using an envelope detector for demodulation.

The incoming amplitude-modulated wave is picked up by the receiving antenna and
amplified in the RF section that is tuned to the carrier frequency of the incoming wave.
The combination of mixer and local oscillator (of adjustable frequency) provides a bet-
erodyning function, whereby the incoming signal is converted to a predetermined fixed
intermediate frequency, usually lower than the incoming carrier frequency. This frequency
translation is achieved without disturbing the relation of the sidebands to the carrier; see
Section 2.4. The result of the heterodyning is to produce an intermediate-frequency carrier

defined by
fir = fro = frr (2.78)

where f1o is the frequency of the local oscillator and fgg is the carrier frequency of the
incoming RF signal. We refer to fi as the intermediate frequency (IF), because the signal

E TABLE 2.3 Typical frequency parameters of AM and FM

radio receivers

AM Radio EM Radio
REF carrier range 0.535-1.605 MHz 88-108 MHz
Midband frequency of IF section 0.455 MHz 10.7 MHz

IF bandwidth 10 kHz 200 kHz
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FIGURE 2.32 Basic elements of an AM radio receiver of the superheterodyne type.

is neither at the original input frequency nor at the final baseband frequency. The mixer—
local oscillator combination is sometimes referred to as the first detector, in which case
the demodulator is called the second detector.

The IF section consists of one or more stages of tuned amplification, with a band-
width corresponding to that required for the particular type of modulation that the receiver
is intended to handle. The IF section provides most of the amplification and selectivity in
the receiver. The output of the IF section is applied to a demodulator, the purpose of which
is to recover the baseband signal. If coherent detection is used, then a coherent signal
source must be provided in the receiver. The final operation in the receiver is the power
amplification of the recovered message signal.

In a superheterodyne receiver the mixer will develop an intermediate frequency out-
put when the input signal frequency is greater or less than the local oscillator frequency
by an amount equal to the intermediate frequency. That is, there are two input frequencies,
namely, | fio = frr|, which will result in fz at the mixer output. This introduces the
possibility of simultaneous reception of two signals differing in frequency by twice the
intermediate frequency. For example, a receiver tuned to 0.65 MHz and having an IF of
0.455 MHz is subject to an image interference at 1.56 MHz; indeed, any receiver with this
value of IF, when tuned to any station, is subject to image interference at a frequency of
0.910 MHz higher than the desired station. Since the function of the mixer is to produce
the difference between two applied frequencies, it is incapable of distinguishing between
the desired signal and its image in that it produces an IF output from either one of them.
The only practical cure for image interference is to employ highly selective stages in the
RF section (i.e., between the antenna and the mixer) in order to favor the desired signal
and discriminate against the undesired or image signal. The effectiveness of suppressing
unwanted image signals increases as the number of selective stages in the RF section in-
creases, and as the ratio of intermediate to signal frequency increases.

The basic difference between AM and FM superheterodyne receivers lies in the use
of an FM demodulator such as limiter-frequency discriminator. In an FM system, the
message information is transmitted by variations of the instantaneous frequency of a
sinusoidal carrier wave, and its amplitude is maintained constant. Therefore, any varia-
tions of the carrier amplitude at the receiver input must result from noise or interference.
An amplitude limiter, following the IF section, is used to remove amplitude variations
by clipping the modulated wave at the IF section output almost to the zero axis. The
resulting rectangular wave is rounded off by a band-pass filter that suppresses har-
monics of the carrier frequency. Thus the filter output is again sinusoidal, with an ampli-
tude that is practically independent of the carrier amplitude at the receiver input (see
Problem 2.42).
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§ 2.10 Noise in CW Modulation Systems

Up to this point in our discussion we have focused attention on the characterization of
continuous-wave (CW) modulation techniques, entirely from a deterministic perspective,
In the remainder of the chapter, we study the effects of channel noise on the reception of
CW modulated signals and thereby develop a deeper understanding of the behavior of
analog communications.

To undertake such a study we follow the customary practice by formulating two
models:

1. Channel model, which assumes a communication channel that is distortionless but
perturbed by additive white Gaussian noise (AWGN).

2. Receiver model, which assumes a receiver consisting of an ideal band-pass filter fol-
lowed by an ideal demodulator appropriate for the application at hand; the band-
pass filter is used to minimize the effect of channel noise.

These simplifying assumptions are made in order to obtain a basic understanding of the
way in which noise affects the performance of the receiver. Moreover, they provide a
framework for the comparison of different CW modulation-demodulation schemes.

Figure 2.33 shows the noisy receiver model that combines the above two assump-
tions. In this figure, s(t) denotes the incoming modulated signal and w/(¢) denotes the
channel noise. The received signal is therefore made up of the sum of s(£) and w(2); this is
the signal that the receiver has to work on. The band-pass filter in the model of Figure
2.33 represents the combined filtering action of the tuned amplifiers used in the actual
receiver for the purpose of signal amplification prior to demodulation. The bandwidth of
this band-pass filter is just wide enough to pass the modulated signal s(¢) without distor-
tion. As for the demodulator in the model of Figure 2.33, its details naturally depend on
the type of modulation used.

B SIGNAL-TO-NOISE RATIOS: BASIC DEFINITIONS

Let the power spectral density of the noise w/(t) be denoted by N,/2, defined for both
positive and negative frequencies; that is, N, is the average noise power per unit bandwidth
measured at the front end of the receiver. We also assume that the band-pass filter in the
receiver model of Figure 2.33 is ideal, having a bandwidth equal to the transmission band-
width Br of the modulated signal s(¢) and a midband frequency equal to the carrier fre-
quency f.. The latter assumption is justified for double sideband—suppressed carrier (DSB-
SC) modulation, full amplitude modulation (AM), and frequency modulation (FM); the
cases of single sideband (SSB) modulation and vestigial sideband (VSB) modulation require
special considerations. Taking the midband frequency of the band-pass filter to be the
same as the carrier frequency f., we may model the power spectral density Sn(f) of the
noise #(t), resulting from the passage of the white noise w(¢) through the filter, as shown

Modulated + x(5)
signal ﬂ?ﬁ Barf]i?t';ass Demodulator —>2:J;r?:;‘
s(0
+

Noise
wiz)

FIGURE 2.33 Receiver model.
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in Figure 2.34. Typically, the carrier frequency f. is large compared to the transmission
bandwidth By. We may therefore treat the filtered noise n(t) as a narrowband noise rep-
resented in the canonical form

n(t) = ny(t) cos(2mf.t) — ne(t) sin(27f t) (2.79)

where #;(¢) is the in-phase noise component and ng(t) is the quadrature noise component,
both measured with respect to the carrier wave A, cos(27f,t). The filtered signal x(z) avail-
able for demodulation is defined by )

x(2) = s(t) + n(t) (2.80)

The details of s(¢) depend on the type of modulation used. In any event, the average noise
power at the demodulator input is equal to the total area under the curve of the power
spectral density Sxn(f). From Figure 2.34 we readily see that this average noise power is
equal to NyBr. Given the format of s(t), we may also determine the average signal power
at the demodulator input. With the demodulated signal 's(¢) and the filtered noise (r(t)
appearing additively at the demodulator input in accordance with Equation (2.80), we
may go on to define an iuput signal-to-noise ratio, (SNR);, as the ratio of the average
power of the modulated signal s(t) to the average power of the filtered noise n(t).

A more useful measure of noise performance, however, is the output signal-to-noise
ratio, (SNR) o, defined as the ratio of the average power of the demodulated message signal
to the average power of the noise, both measured at the receiver output. The output signal-
to-noise ratio provides an intuitive measure for describing the fidelity with which the de-
modulation process in the receiver recovers the message signal from the modulated signal
in the presence of additive noise. For such a criterion to be well defined, the recovered
message signal and the corruptive noise component must appear additively at the demod-
ulator output. This condition is perfectly valid in the case of a receiver using coherent
detection. On the other hand, when the receiver uses envelope detection as in full AM or
frequency discrimination as in FM, we have to assume that the average power of the filtered
noise #(t) is relatively low to justify the use of output signal-to-noise ratio as a measure of
receiver performance.

The output signal-to-noise ratio depends, among other factors, on the type of mod-
ulation used in the transmitter and the type of demodulation used in the receiver. Thus it
is informative to compare the output signal-to-noise ratios for different modulation-
demodulation systems. However, for this comparison to be of meaningful value, it must
be made on an equal basis as described here:

& The modulated signal s{) transmitted by each system has the same average power.
& The channel noise w(t) has the same average power measured in the message band-

width W.
()
i B
_____ 2 [« 5>
I ! 7
~fe o] Te

FIGURE 2.34 Idealized characteristic of band-pass filtered noise.
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FIGURE 2.35 The baseband transmission model, assuming a message signal of bandwidth W,
used for calculating the channel signal-to-noise ratio.

Accordingly, as a frame of reference we define the channel signal-to-noise ratio, (SNR),
as the ratio of the average power of the modulated signal to the average power of channel
noise in the message bandwidih, both measured at the receiver input. This definition is
illustrated in Figure 2.35.

For the purpose of comparing different continuous-wave (CW) modulation systems,
we normalize the receiver performance by dividing the output signal-to-noise ratio by the
channel signal-to-noise ratio. We thus define a figure of merit for the receiver as follows:

. . (SNR)o
Figure of merit (SNRJc (2.81)
Clearly, the higher the value of the figure of merit, the better will the noise performance
of the receiver be. The figure.of merit may equal one, be less than one, or be greater than
one, depending on the type of modulation used, which will become apparent from the
discussion that follows.

2.11 Noise in Linear Receivers
Using Coherent Detection

From Sections 2.2 and 2.3 we recall that the demodulation of an amplitude-modulated
wave depends on whether the carrier is suppressed or not. When the carrier is suppressed
we usually require the use of coherent detection, in which case the receiver is linear. On
the other hand, when the amplitude modulation includes transmission of the carrier, de-
modulation is accomplished simply by using an envelope detector, in which case the re-
ceiver is nonlinear. In this section we study the effect of noise on the performance of a
linear receiver. The more difficult case of a nonlinear receiver is deferred to Section 2.12.

Consider the case of DSB-SC modulation Figure 2.36 shows the model of a DSB-SC
receiver using a coherent detector. The use of coherent detection requires multiplication
of the filtered signal x(#} by a locally generated sinusoidal wave cos(27f;z) and then low-
pass filtering the product. To simplify the analysis, we assume that the amplitude of the
locally generated sinusoidal wave is unity. For this demodulation scheme to operate sat-
isfactorily, however, it is necessary that the local oscillator be synchronized both in phase
and in frequency with the oscillator generating the carrier wave in the transmitter. We
assume that this synchronization has been achieved.

The DSB-SC component of the filtered signal x(z) is expressed as

s(t) = CA, cos(2mf.t)m(t) (2.82)

where A, cos(27f.t) is the sinusoidal carrier wave and #(t) is the message signal. In the
expression for s(t) in Equation (2.82) we have included a system-dependent scaling factor
C, the purpose of which is to ensure that the signal component s(¢} is measured in the same
units as the additive noise component »(2). We assume that m(¢) is the sample function of
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FIGURE 2.36 Model of DSB-SC receiver using cohérent detection.

a stationary process of zero mean, whose power spectral density Sy(f) is limited to a
maximum frequency W; that is, W is the message bandwidth. The average power P of the
message signal is the total area under the curve of power spectral density, as shown by

w
p=[_supndr (2.83)

The carrier wave is statistically independent of the message signal. To emphasize this
independence, the carrier should include a random phase that is uniformly distributed over
27 radians. In the defining equation for s(2) this random phase angle has been omitted for
convenience of presentation. Using the result of Example 1.7 of Chapter 1 on a modulated
random process, we may express the average power of the DSB-SC modulated signal
component s(¢) as C2A2P/2. With a noise spectral density of Ny/2, the average noise power
in the message bandwidth W is equal to WN,. The channel signal-to-noise ratio of the
DSB-SC modulation system is therefore

C2A2P
2WN,

where the constant C? in the numerator ensures that this ratio is dimensionless.

Next, we wish to determine the output signal-to-noise ratio of the system. Using the
narrowband representation of the filtered noise #(t}, the total signal at the coherent detec-
tor input may be expressed as

x(t) = s(t) + n(t)
CA, cos(2mf t)m(t) + ni{t) cos(2mf.t) — ng(t) sin(2xf.t)
where #,(¢) and #ng(t) are the in-phase and quadrature components of »{t) with respect to

the carrier. The output of the product-modulator component of the coherent detector is
therefore

(SNR)¢pse = (2.84)

(2.85)

vu(t) = x(t) cos(2wf.t)
= 3CAm(t) + 3n(2)
+ 3[CAm(t) + n,(2)] cos(4mf.t) — 3nolE) sin(4mf.t)
The low-pass filter in the coherent detector in Figure 2.36 removes the high-frequency
components of v(t), yielding the receiver output .
y() = 3CAm(t) + 1ni(t) (2.86)
Equation (2.86) indicates the following:

1. The message signal ##(¢) and in-phase noise component #;(¢) of the filtered noise n(t)
appear additively at the receiver output.
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2. The quadrature component nq(#) of the noise #(z) is completely rejected by the co-
herent detector.

These two results are independent of the input signal-to-noise ratio. Thus, coherent detec.
tion distinguishes itself from other demodulation techniques in an important property: The
output message component is unmutilated and the noise component always appears ad-
ditively with the message, irrespective of the input signal-to-noise ratio.

The message signal component at the receiver output is CA m(z)/2. Therefore, the
average power of this component may be expressed as C?A2P/4, where P is the average
power of the original message signal m(z) and C is the system-dependent scaling factor
referred to earlier.

In the case of DSB-SC modulation, the band-pass filter in Figure 2.36 has a band-
width By equal to 2W in order to accommodate the upper and lower sidebands of the
modulated signal s(#). It follows therefore that the average power of the filtered noise n(t)
is 2WN,. From the discussion of narrowband noise presented in Section 1.11, we know
that the average power of the {low-pass) in-phase noise component #,(¢) is the same as
that of the {(band-pass) filtered noise (). Since from Equation (2.86) the noise component
at the receiver output is 7,(£)/2, it follows that the average power of the noise at the recetver
output is

(;‘_)ZZWNO = %WNO

The output signal-to-noise for a DSB-SC receiver using coherent detection is therefore

C2A2P/4
{SNR)o, psesc = WNJ2 .
_ CAZP #7)
2WN,
Using Equations (2.84) and (2.87), we obtain the figure of merit
(SNR)o =1 (2.88)

(SNR)c¢ DSB-SC N

Note that the factor C? is common to both the output and channel signal-to-noise ratios,
and therefore cancels out in evaluating the figure of merit.

Following through the noise analysis of a coherent detector for SSB, we find that,
despite the fundamental differences between it and the coherent detector for DSB-SC mod-
ulation, the figure of merit is exactly the same for both of them; see Problem 2.49.

The important conclusions to-be drawn from the discussions presented in this section
and Problem 2.49 are two-fold:

1. For the same average transmitted or modulated signal power and the same average
noise power in the message bandwidth, a coherent SSB receiver will have exactly the
same output signal-to-noise ratio as a coherent DSB-SC receiver.

2. In both cases, the noise performance of the receiver is exactly the same as that ob-
tained by simply transmitting the message signal in the presence of the same channel
noise. The only effect of the modulation process is to translate the message signal to
a different frequency band to facilitate its transmission over a band-pass channel.

Simply put, neither DSB-SC modulation nor $SB modulation offers the means for a trade-
off between improved noise performance and increased channel bandwidth. This is a se-
rious problem when high quality of reception is a requirement.
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2,12 Noise in AM Receivers
Using Envelope Deiection

The next noise analysis we perform is for an amplitude modulation (AM) system using an
envelope detector in the receiver, as shown in the model of Figure 2.37. In a full AM signal,
both sidebands and the carrier wave are transmitted, as shown by

s(t) = A1 + k,m(t)] cos(2nf.t) (2.89)

where A, cos(27f.t) is the carrier wave, m(t) is the message signal, and k, is a constant
that determines the percentage modulation. In the expression for the amplitude-modulated
signal component s(t) given in Equation (2.89), we see no need for the use of a scaling
factor, because it is reasonable to assume that the carrier amplitude A_ has the same units
as the additive noise component.

The average power of the carrier component in the AM signal s(t) is A%/2. The
average power of the information-bearing component Ak 7(t) cos(2mf.t) is AZk2P/2,
where P is the average power of the message signal sn(f). The average power of the full
AM signal s(z) is therefore equal to A2(1 + k2P)/2. As for the DSB-SC system, the average
power of noise in the message bandwidth is WN,. The channel signal-to-noise ratio for
AM is therefore

AX1 + k2P)
(SNR)g,am = 2WN, (2.90)

To evaluate the output signal-to-noise ratio, we first represent the filtered noise #(#)
in terms of its in-phase and quadrature components. We may therefore define the filtered
signal x(¢) applied to the envelope detector in the receiver model of Figure 2.37 as follows:

x(t) = s(t) + n(t)

= [A, + Akm(t) + n;(t)] cos(2mf.8) ~ nglt) sin(2wf.z) (2.91)

It is informative to represent the components that comprise the signal x{z) by means of
phasors, as in Figure 2.384. From this phasor diagram, the receiver output is readily ob-
tained as

envelope of x(z)
= {[A. + Aknlt) + m(O)] + npe)}

) (2.92)

The signal y(¢) defines the output of an ideal envelope detector. The phase of x{(t) is of no
interest to us, because an ideal envelope detector is totally insensitive to variations in the
phase of x(z).

The expression defining y(¢) is somewhat complex and needs to be simplified in some
manner to permit the derivation of insightful results. Specifically, we would like to ap-
proximate the output y(z) as the sum of a message term plus a term due to noise. In general,
this is quite difficult to achieve. However, when the average carrier power is large com-

Output
> signal
¥

AM signal Band-pass ) Envelope
s(t) fitter detector

Noise
w(t)

FIGURE 2,37 Model of AM receiver.
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FIGURE 2.38 (a) Phasor diagram for AM wave plus narrowband noise for the case of high car-
rier-to-noise ratio. (b) Phasor diagram for AM wave plus narrowband noise for the casc of low
carrier-to-noise ratio.

pared with the average noise power, so that the receiver is operating satisfactorily, then
the signal term A_[1 + km(2)] will be large compared with the noise terms #;(£) and ng(t),
at least most of the time. Then we may approximate the output ¥(¢) as (see Problem 2.51);

y(t) = A, + Ak m(t) + ny(t) (2.93)

The presence of the DC or constant term A, in the envelope detector output y(2) of
Equation (2.93) is due to demodulation of the transmitted carrier wave. We may ignore
this term, however, because it bears no relation whatsoever to the message signal »(t). In
any case, it may be removed simply by means of a blocking capacitor. Thus if we neglect
the DC term A, in Equation {(2.93), we find that the remainder has, except for scaling
factors, a form similar to the output of a DSB-SC receiver using coherent detection. Ac-
cordingly, the output signal-to-noise ratio of an AM receiver using an envelope detector
is approximately

AZkSP
2WN,

(SNR)o, am = (2.94)

Equation (2.94) is, however, valid only if the following two conditions are satisfied:

1. The average noise power is small compared to the average carrier power at the
envelope detector input.

2. The amplitude sensitivity k, is adjusted for a percentage modulation less than or
equal to 100 percent.

Using Equations (2.90) and (2.94), we obtain the following figure of merit for amplitude
modulation:

(SNR)o k2P

(SNR)c| apg 1 + k2P (2.93)

Thus, whereas the figure of merit of a DSB-SC receiver or that of an SSB receiver using
coherent detection is always unity, the corresponding figure of merit of an AM receiver
using envelope detection is always less than unity. In other words, the noise performance
of a full AM receiver is always inferior to that of a DSB-SC receiver. This is due to the
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wastage of transmitter power, which results from transmitting the carrier as a component
of the AM wave.

i ExaMPLE 2.4 Single-Tone Modulation

Consider the special case of a sinusoidal wave of frequency f,, and amplitude A, as the
modulating wave, as shown by :

m(t) = A, cos(2nf,.t)
The corresponding AM wave is
s(t) = A1 + p cos(2wf,t)] cos(2amf.t)

where yu = k,A,, is the modulation factor. The average power of the modulating wave m(t) is
(assuming a load resistor of 1 ohm)

P =1Az

Therefore, using Equation (2.95), we get

1,40
(SNR)s| 2 kan
(SNR)C AM B l 242
L= 2 kads (2.96)
,u.l
= 2+

When 4 = 1, which corresponds to 100 percent modulation, we get a figure of merit equal
to. 1/3. This means that, other factors being equal, an AM system (using envelope detection)
must transmit three times as much average power as a suppressed-carrier system (using co-
herent detection) to achieve the same quality of noise performance. <

# THRESHOLD EFFECT

When the carrier-to-noise ratio is small compared with unity, the noise term dominates
and the performance of the envelope detector changes completely from that just described.
In this case it is more convenient to represent the narrowband noise #(t) in terms of its
envelope 7(¢) and phase i(£), as shown by

n(t) = r(t) cos[2mfr + W(t)] (2.97)

The corresponding phasor diagram for the detector input x(z) = s{£) + s() is shown in
Figure 2.38b, where we have used the noise envelope as reference, because it is now the
dominant term. To the noise phasor 7(t) we have added a phasor representing the signal
term A.[1 + km(t)], with the angle between them being equal to the phase ({z) of the
noise #(t). In Figure 2.38b it is assumed that the carrier-to-noise ratio is so low that the
carrier amplitude A, is small compared with the noise envelope 7(t), at least most of the
time. Then we may neglect the quadrature component of the signal with respect to the
noise, and thus find from Figure 2.385 that the envelope detector output is

y(t) = r{t) + A, cos[g(r)] + Akm(t) cos[(r)] (2.98)

This relation reveals that when the carrier-to-noise ratio is low, the detector output has
no component strictly proportional to the message signal #2(2). The last term of the ex-
pression defining y(¢) contains the message signal 7(z) multiplied by noise in the form of
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cos[(#)]. From Section 1.11 we recall that the phase (¢} of the narrowband noise n(t) is
uniformly distributed over 2 radians. It follows therefore that we have a complete loss
of information in that the detector output does not contain the message signal m(t) at all.
The loss of a message in an envelope detector that operates at a low carrier-to-noise ratia
is referred to as the threshold effect. By threshold we mean a value of the carrier-to-noise
ratio below which the noise performance of a detector deteriorates much more rapidly
than proportionately to the carrier-to-noise ratio. It is important to recognize that every
nonlinear detector {e.g., envelope detector) exhibits a threshold effect. On the other hand,
such an effect does #ot arise in a coherent detector.

A rigorous mathematical analysis of the threshold effect for the general case of an
AM wave is beyond the scope of this book. In the next subsection we simplify matters by
considering the case of an unmodulated carrier. Despite this simplification, we can still
develop a great deal of insight into the threshold effect experienced in an envelope detector,

General Formula for (SNR)g in Envelope Detection™
Consider an envelope detector whose input signal is defined by
x(t) = A, cos(2mf.t) + n(t) (2.99)

where A, cos(2mf.t) is the unmodulated carrier and #(t) is the sample function of band-
limited, zero-mean, white Gaussian noise N(t). The power spectral density of N{t) is

Ny -
Swy =17 frlf—fl=W (2.100)
0 otherwise

Representing the narrowband noise »{t) in terms of its in-phase component #,(t) and
quadrature component 7,(t), we may express the noisy signal at the detector input as

x(t) = (A, + n(t)) cos(2mf.t) — ng(t) sin(27wf2) (2.101)

The noise components 7;(t) and nq(t) are zero-mean, jointly Gaussian, mutually indepen-
dent low-pass random processes with identical power spectral densities (see Equation
1.101):

Snlf = f) +Sxf + £ for|fl=W

2.102
0 otherwise ( )

Snlf) = Sxolf) = {

For the problem at hand, the input signal consists of an unmodulated carrier with
average power equal to AZ/2. The average noise power at the detector input is

ok = 2WN, (2.103)
The carrier-to-noiser ratio is therefore defined by
AZj2
p= o
A2 (2.104)
~ 4WN,

We may think of p as an input signal-to-noise ratio for the problem described herein.

*A reader who is not interested in the mathematical details of how noise affects the envelope detection of an
AM signal may skip the material up to Eq. (2.124) and read the two limiting cases of the formula in that equation.
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However, determination of the output signal-to-noise ratio is a more difficult un-
dertaking because the envelope detector cutput

¥(t) = VA, ¥ m(0)? + nd(2) (2.105)

is a nonlinear combination of signal and noise terms. With no clear-cut separation between
signal and noise at the detector output y(t), how then do we isolate the contribution of
the signal s(¢) to y{t) from the contribution due to the noise (t)? To resolve this issue, we
adopt a beuristic approach based on signal averaging. Specifically, we introduce the fol-
lowing two definitions: v

1. The mean output signal, s,, is the difference between the expectation of y(z) in the
combined presence of signal and noise and the expectation of y(z) in the presence of
noise alone, as shown by

so = Efy(t)] — E[y.(t) (2.106)
where y(¢) is itself defined by Equation (2.105) and yo(t) is defined by
Yolt) = Vud(t) + n(2) (2.107)

2. The mean output noise power is the difference berween the mean-square value of the
detector output y(t) and the square of the mean value of y(z), as shown by

var[y(#)] = E[y*(#)] — (Ely()])* (2.108)

On this basis, we define the output signal-to-noise ratio as
52
SNR), = ————— 2.109
(SNR)o = e (2.109)
From Section 1.12, we recall that the envelope detector output due to noise alone is
Rayleigh distributed; that is

2

Yy 2 =0
fry) = ok exP( 20%1)’ y= (2.110)
0 otherwise

The expectation of y,(t) is therefore

Ely,(8)] J’ yfv,y

Z
¥y
- ocrlexP< 20 )dy

From the definition of the gamma function for real positive values of the argument x, we
have

(2.111)

I(x) = J’o 277! exp(—z) dz (2.112)
We may therefore rewrite Equation (2.111) as

Efy,(1)] = \/:‘aaNr@)

m
e

(2.113)
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where we have used the value I'(3/2) = V2. To calculate the mean signal s, at the
detector output, we also need the expectation of y(¢). Due to the combined presence of
signal and noise, we recall from Section 1.13 that y(?) is Rician distributed, as shown by

Y y2 + A?
£ =3 o, exp( 20% Io 1?’11 fory=0 (2.114)
0 otherwise

where I,(*) is the modified Bessel function of the first kind of zero order (see Appendix 3),

Hence,
@ 2 2 2
. = _y AN, (Ay
Ely(2)] L =y exp( 207, )I(,(a%] dy (2.115)

Putting Ay/0% = u and recognizing that p = A%/20%, we may recast this expectation in
the form

2

E[y()] = (2(;% exp(—p) L ? exp(—z—p)lo(u) du (2.116)

The integral in Equation (2.116) can be written in a concise form by using cornfluent
hypergeometric functions; see Appendix 4. In particular, using the integral representation

. Tomi2)(  (m . 1
J:)u 1 exp(—b2u?)o{n) du = 2 (1F1(5;15W)> (2.117)

with m = 3, T(m/2) = V@2 and b> = 1/4p, we may express the expectation of y(z) in
terms of the confluent hypergeometric function ;F;(3/2;1;p) as

E[y(s) ]—fcmexp( )(11%(%;1;;))) (2.118)

We may further simplify matters by using the following identity:
exp(—u}(iFilasBsu)) = 1F1(B — a5B5—n) {2.119)

and so finally express the expectation of y(t} in the concise form

Ely(z) ]_fUN(1F1(“%'1'—p>) (2.120)

Thus using Equations {2.113) and (2.120) in Equation (2.106) yields the mean output

signalas
s, = — T F,| —=:1:— -1 (!]Zl)
a 2 Ny 141 23 3P - .

whose dependence on the standard deviation oy of the noise #(z) is testimony to the
intermingling of signal and noise at the detector output.
Following a similar procedure, we may express the mean-square value of the detector

output y(t) as
WL3 "yl +A2
Byl = J) 2 e -2 )0 (%

= 203 GF(=115-p))

) o
(2.122)
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Hence using: Equations (2.120) and (2.122) in Equation (2.108) yields the mean output
noise power as .

var[y(1)] = Zo%v(lm—l;l;—'p) - ’f(lFl(—%;l;— )) ) (2.123)

Finally, using Equations (2.121) and (2.123) in Equation (2.109) yields the output
signal-to-noise ratio for the envelope detection problem at hand as

(11:1(_%;1;_17) - 1)
1 2
(4/7T)<1F1(—1;1;—P)) - (11;1(“5;1;* ))

Equation (2.124) is the general formula for the output signal-to-noise of an envelope
detector whose input consists of an unmodulated carrier and band-limited, white Gaussian
noise. Two limiting cases of this general formula are of particular interest:

(SNR)o = (2.124)

1. Large carrier-to-noise ratio. For large p, we may use the following asymptotic for-
mula (sec Appendix 4)

1
11.71(_5;1;_ ) o~ \/g for p = = (2.125)

Moreover, the following identity
F(-Lli-p) =1+ p (2.126)

holds exactly for all p. Accordingly, the use of Equations (2.125) and (2.126) in
Equation (2.124) yields the following approximate formula for the output signal-to-
noise ratio:

(SNR)o =p forp—> = (2.127)

where we have ignored contributions due to o' and p° in the numerator of Equation
{2.124) as being subdominant compared to p for large p. Equation (2.127) shows
that for large carrier-to-noise p the envelope detector behaves like a coherent detector,
in that the output signal-to-noise ratio is proportional to the input signal-to-noise
ratio.

2. Small carrier-to-noise ratio. For small p, we have (see Appendix 4)

Filasc—p) =1 — gp for p— 0 (2.128)

Hence, using this asymptotic formula, we may approximate the output signal-to-
noise ratio for small p as
2
(SNR),, =~ —"P___
16 — 4 (2.129)
= (,91p? forp— 0

where, in the denominator, we have ignored contributions due to p and p? as being
subdominant compared to p° for small p. Equation (2.129) shows that for a small
carrier-to-noise ratio, the output signal-to-noise ratio of the envelope detector is pro-
portional to the squared input signal-to-noise ratio.
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FIGURE 2.39 OQutput signal-to-noise ratio of an envelope detector for varying carrier-to-noise
ratio.

The conclusions drawn from the two limiting cases considered herein are that an
envelope detector favors strong signals and penalizes weak signals. The phenomenon of
weak signals being penalized by the detector is referred to as weak signal suppression,
which is a manifestation of the threshold effect.

Using the formula of Equation (2.124), in Figure 2.39 we have plotted the output
signal-to-noise ratio (SNR), of the envelope detector versus the carrier-to-noise ratio p
using tabulated values of confluent hypergeometric functions. This figure also includes the
two asymptotes for large p and small p. From Figure 2.39 we see that the output signal-
to-noise ratio deviates from a linear behavior around a carrier-to-noise ratio of 10 dB (i.e.,
p = 10).

§ 2.13 Noise in FM Receivers

Finally, we turn our attention to the noise analysis of a frequency modulation (FM) system,
for which we use the receiver model shown in Figure 2.40. As before, the noise w/(t) is
modeled as white Gaussian noise of zero mean and power spectral density Ny/2. The

x{1) v{s) | Baseband
FM Band-pass P N Output
. " it — low-pass —= .
signal () e/ filter Limiter Discriminator fi[tper signal
Noise

wl?)

FIGURE 2.40 Model of an FM receiver.
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received FM signal s(#) has a carrier frequency £, and transmission bandwidth Br, such
that only a negligible amount of power lies outside the frequency band f, + B,/2 for
positive frequencies, and similarly for negative frequencies.

As in the AM case, the band-pass filter has a midband frequency f. and bandwidth
Br and therefore passes the FM signal essentially without distortion. Ordinarily, By is
small compared with the midband frequency f,, so that we may use the narrowband
representation for #(z), the filtered version of channel noise w/(t), in terms of its in-phase
and quadrature components.

In an FM system, the message signal is transmitted by variations of the instantaneous
frequency of a sinusoidal carrier wave, and its amplitude is maintained constant. Therefore,
any variations of the carrier amplitude at the receiver input must result from noise or
interference. The amplitude fimiter, following the band-pass filter in the receiver model of
Figure 2.40, is used to remove amplitude variations by clipping the modulated wave at
the filter output almost to the zero axis. The resulting rectangular wave is rounded off by
another band-pass filter that is an integral part of the limiter, thereby suppressing har-
monics of the carrier frequency. Thus, the filter output is again sinusoidal, with an am-
plitude that is practically independent of the carrier amplitude at the receiver input.

The discriminator in the model of Figure 2.40 consists of two components:

1. A slope network or differentiator with a purely imaginary frequency response that
varies linearly with frequency. It produces a hybrid-modulated wave in which both
amplitude and frequency vary in accordance with the message signal.

2. An envelope detector that recovers the amplitude variation and thus reproduces the
message signal.

The slope network and envelope detector are usually implemented as integral parts of a
single physical unit.

The postdetection filter, labeled “baseband low-pass filter” in Figure 2.40, has a
bandwidth that is just large enough to accommodate the highest frequency component of
the message signal. This filter removes the out-of-band components of the noise at the
discriminator output and thereby keeps the effect of the output noise to a minimum.

The filtered noise 7(t) at the band-pass filter output in Figure 2.40 is defined in terms
of its in-phase and quadrature components by

n(t) = ny(t) cosQuf.t) — nylt) sin2wfe)

Equivalently, we may express #(t) in terms of its envelope and phase as

n(t) = r(t) cos[(2mf.t) + W(2)] (2.130)
where the envelope is
r(t) = [n}{t) + nd ()] (2.131)
and the phase is
— can-1] ()
¥{t) = tan [m(t)] (2.132)

The envelope 7(t) is Rayleigh distributed, and the phase (¢} is uniformly distributed over
21 radians (see Section 1.12).
The incoming FM signal s(¢) is defined by

s(t) = A, cosI:Zﬂ'f,;t + 27k, fo m(T) d'T:| (2.133)
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where A, is the carrier amplitude, f. is the carrier frequency, & is the frequency sensitivigy,
and #(#) is the message signal. Note that, as with the standard AM, in FM there is g
need to introduce a scaling factor in the definition of the modulated signal s(2), since it j5
reasonable to assume that its amplitude A, has the same units as the additive noise com.
ponent n(t). To proceed, we define

o (t) = 2mky Lm(r) dr {2.134)

We may thus express s(f) in the simple form
s(t) = A, cos[2mf.t + ¢(2)] (2.135)

The noisy signal at the band-pass filter output is therefore

x(t) = s(t) + nlt)

A, cos[2mft + $(2)] + r(t) cos2mf.r + ¥(t)] (2.136)

It is informative to represent x(¢) by means of a phasor diagram, as in Figure 2.41. In this
diagram we have used the signal term as reference. The phase 6(¢) of the resultant phasor
representing x(z) is obtained directly from Figure 2.41 as

#(1) sin[y(t) = $(1)] }
A, + 7() cos[g(t) — ¢(2)]

The envelope of x(t} is of no interest to us, because any envelope variations at the band-
pass filter output are removed by the limiter.

Our motivation is to determine the error in the instantaneous frequency of the carrier
wave caused by the presence of the filtered noise n(¢). With the discriminator assumed
ideal, its output is proportional to ' (£)/27m where ¢'(2) is the derivative of 8(t) with respect
to time. In view of the complexity of the expression defining 6(t), however, we need to
make certain simplifying approximations, so that our analysis may yield useful results.

We assume that the carrier-to-noise ratio measured at the discriminator input is large
compared with unity. Let R denote the random variable obtained by observing (at some
fixed time) the envelope process with sample function 7(f) [due to the noise (£)]. Then, at
least most of the time, the random variable R is small compared with the carrier amplitude
A,, and so the expression for the phase §(¢) simplifies considerably as follows:

o) = () + tarrl{ (2.137)

" ginlg) - (o) 2.134)

e

oz) = ¢ (r) +

or, using the expression for ¢ (¢) given in Equation (2.134),

B(z) = 2k, f m(r) dr + rit) sin[y(t) — & (t)] (2.139)
0 A,
Resultant
r(a)
T 4 wit) - e} ]

FIGURE 2.41 Phasor diagram for FM wave plus narrowband naise for the case of high carrier
to-noise ratio.
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The discriminator output is therefore

‘U(t) = i iaﬁ
27 dt
(2.140)

= km(t) + ny(t)
where the noise term 7,(¢) is defined by

d
nalt) = 5 = 2 i) smlwe) — #(0) @.141)

We thus see that provided the carrier-to-noise ratio is high, the discriminator output v(z)
consists of the original message signal (¢) multiplied by the constant factor &, plus an
additive noise component #,(t). Accordingly, we may use the output signal-to-noise ratio
as previously defined to assess the quality of performance of the FM receiver. Before doing
this, however, it is instructive to see if we can simplify the expression defining the noise
nd(t).

From the phasor diagram of Figure 2.41, we note that the effect of variations in the
phase () of the narrowband noise appear referred to the signal term ¢ (£). We know that
the phase (¢} is uniformly distributed over 27 radians. It would therefore be tempting to
assume that the phase difference Y(z) — ¢ (£) is also uniformly distributed over 2 radians.
If such an assumption were true, then the noise #,4(t) at the discriminator output would
be independent of the modulating signal and would depend only on the characteristics of
the carrier and narrowband noise. Theoretical considerations show that this assumption
is justified provided that the carrier-to-noise ratio is high.” Then we may simplify Equation
(2.141) as:

1 d
3o 3 1) sinlu(e)]) 2.142

However, from the defining equations for #(¢) and (t), we note that the quadrature com-
ponent 7,(t) of the filtered noise n(t) is

nglt) = 7(t) sinfyr(z)] (2.143)

Therefore, we may rewrite Equation (2.142) as

1,(t) =

_ dng(t)
T 2mA, 4t

This means that the additive noise n,(t) appearing at the discriminator output is deter-
mined effectively by the carrier amplitude A, and the quadrature component ng(t) of the
narrowband noise nit).

The output signal-to-noise ratio is defined as the ratio of the average output signal
power to the average output noise power. From Equation (2.140), we sce that the message
component in the discriminator output, and therefore the low-pass filter output, is & m(t),
Hence, the average output signal power is equal to k2P, where P is the average power of
the message signal m(t).

To determine the average output noise power, we note that the noise n4(t) at the
discriminator output is proportional to the time derivative of the quadrature noise com-
ponent ng(t). Since the differentiation of a function with respect to time corresponds to
multiplication of its Fourier transform by j27f, it follows that we may obtain the noise
process #,{t) by passing ng(t) through a linear filter with a frequency response equal to

puf _if
27A, A,

(2.144)

n4(t)
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This means that the power spectral density Sy (f) of the noise n,4(t) is related to the powey
spectral density Sx,(f) of the quadrature noise component ot} as follows:

fZ
Snf) = P SNQ(f) (2'145)

With the band-pass filter in the receiver model of Figure 2.40 having an ideal fre.
quency response characterized by bandwidth Br and midband frequency f., it follows that
the narrowband noise () will have a power spectral density characteristic that is similarly
shaped. This means that the quadrature component rg(?) of the narrowband noise (f)
will have the ideal low-pass characteristic shown in Figure 2.424. The corresponding power
spectral density of the noise 7,(z} is shown in Figure 2.42b; that is,

Nof? Br
suifi={az> 1=3 (2.146)
0, otherwise

In the receiver model of Figure 2.40, the discriminator output is followed by a low-pass
filter with a bandwidth equal to the message bandwidth W. For wideband FM, we usually
find that W is smaller than By/2, where By is the transmission bandwidth of the FM
signal. This means that the out-of-band components of noise 7,(¢) will be rejected. There-
fore, the power spectral density Sy (f) of the noise 7,(t) appearing at the receiver output
is defined by

Nof?
suify ={ar M=V (2.147)
0, otherwise

as shown in Figure 2.42¢. The average output noise power is determined by integrating
the power spectral density Sy (f) from —W to W. We thus get the following result:

N (Y
Average power of output noise = = v frdf

A?
2.148
AN WP (2149
3A2
SNg(f) S ) Sy ()
No
% f
_Br 0 Br ! _Br 0 Br ! W 0 v
7z 2 2 2
(@ (O] (c}

FIGURE 2.42 Noise analysis of FM receiver. (#) Power spectral density of quadrature compo-
nent #5(t) of narrowband neise (). (b) Power spectral density of noise n,(t) at the discriminator
output. (¢) Power spectral density of noise n,(t) at the receiver output.
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Note that the average output noise power is inversely proportional to the average carrier
power A%/2. Accordingly, in an FM system, increasing the carrier power has a moise-
quieting effect.

Earlier we determined the average output signal power as k2P. Therefore, provided
the carrier-to-noise ratio is high, we may divide this average output signal power by the
average output noise power of Equation (2.148) to obtain the output signal-to-noise ratio

3AZkZP

2N, W3

The average power in the modulated signal s(t) is A2/2, and the average noise power in

the message bandwidth is WN,. Thus the channel signal-to-noise ratio is
AZ

2WN,

Dividing the output signal-to-noise ratio by the channel signal-to-noise ratio, we get the
following figure of merit for frequency modulation:
(SNR)o|  3k2P

(SNR)¢|py  W?

From Section 2.7 we recall that the frequency deviation Af is proportional to the
frequency sensitivity k, of the modulator. Also, by definition, the deviation ratio D is equal
to the frequency deviation Af divided by the message bandwidth W. In other words, the
deviation ratio D is proportional to the ratio kP*/W. It follows therefore from Equation
(2.151) that the figure of merit of a wideband FM system is a quadratic function of the
deviation ratio. Now, in wideband FM, the transmission bandwidth B is approximately
proportional to the deviation ratio D. Accordingly, we may state that when the carrier-
to-noise ratio is high, an increase in the transmission bandwidth By provides a correspond-
ing quadratic increase in the output signal-to-noise ratio or figure of merit of the FM
system.The important point to note from this statement is that, unlike amplitude modu-
lation, the use of frequency modulation does provide a practical mechanism for the ex-
change of increased transmission bandwidth for improved noise performance.

(SNR)o,rnt = (2.149)

(SNR)c,pv = (2.150)

(2.151)

¥ ExampiE 2.5 Single-Tone Medulation

Consider the case of a sinusoidal wave of frequency f,, as the modulating signal, and assume
a peak frequency deviation Af. The modulated FM signal is thus defined by

s(t) = A, cos[Zﬂ'fct + -?—f sin(Zmet)]

"

Therefore, we may write
{3
A
2k J; m(t) dr = f—f sin(27f,,t)
Differentiating both sides with respect to time and solving for #(z), we get

mit) = & cos(27f,,t)
ky
Hence, the average power of the message signal m(z), developed across a 1-ohm load, is
_ (afp
P= 2k3
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Substituting this result into the formula for the output signal-to-noise ratio given in Equatioy
(2.149), we get

3AZAfY

(SNR)oem = NG
_ 3AZ8%
4N, W

where B = Af/W is the modulation index. Using Equation (2.151) to evaluate the correspond.

ing figure of merit, we get
sl
m 2\W

=3
—2'3

(SNR)o
(SNR)c

(2.152)

It is important to note that the modulation index g = Af/W is determined by the bandwidth
W of the postdetection low-pass filter and is not related to the sinusoidal message frequency
fs €xcept insofar as this filter is usually chosen so as to pass the spectrum of the desired
message; this is merely a matter of consistent design. For a specified system bandwidth W, the
sinusoidal message frequency f,, may lie anywhere between 0 and W and would yield the same
output signal-to-noise ratio.

It is of particular interest to compare the noise performance of AM and FM systems,
An insightful way of making this comparison is to consider the figures of merit of the two
systems based on a sinusoidal modulating signal. For an AM system operating with a sinu-
soidal modulating signal and 100 percent modulation, we have (from Example 2.4):

(SNR)o 1

(SNR)c| e 3

Comparing this figure of merit with the corresponding result described in Equation (2.152)
for an TM system, we see that the use of frequency modulation offers the possibility of im-
proved noise performance over amplitude modulation when

B >4
that is,
V2
B> —3-‘ = 0471

We may therefore consider 8 = 0.5 as defining roughly the transition between narrowband
FM and wideband FM. This statement, based on noise considerations, further confirms
a similar observation that was made in Section 2.7 when considering the bandwidth of
FM waves.

g CAPTURE EFFECT

The inherent ability of an FM system to minimize the effects of unwanted signals {e.g+
noise, as just discussed) also applies to interference produced by another frequency:
modulated signal whose frequency content is close to the carrier frequency of the desired
FM wave. However, interference suppression in an FM receiver works well only when the
interference is weaker than the desired FM input. When the interference is the stronget
one of the two, the receiver locks onto the stronger signal and thereby suppresses the
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desired FM input. When they are of nearly equal strength, the receiver fluctuates back and
forth between them. This phenomenon is known as the capture effect, which describes
another distinctive characteristic of frequency modulation.

i FM THrRESHoOLD EFFECT

The formula of Equation (2.149), defining the output signal-to-noise ratio of an FM re-
ceiver, is valid only if the carrier-to-noise ratio, measured at the discriminator input, is
high compared with unity. It is found experimentally that as the input noise power is
increased so that the carrier-to-noise ratio is decreased, the FM receiver breaks. At first,
individual clicks are heard in the receiver output, and as the carrier-to-noise ratio decreases
still further, the clicks rapidly merge into a crackling or sputtering sound. Near the break-
ing point, Equation (2.149) begins to fail by predicting values of output signal-to-noise
ratio larger than the actual ones. This phenomenon is known as the threshold effect.® The
threshold is defined as the minimum carrier-to-noise ratio yielding an FM improvement
that is not significantly deteriorated from the value predicted by the usual signal-to-noise
formula assuming a small noise power.

For a qualitative discussion of the FM threshold effect, consider first the case when
there is a no signal present, so that the carrier wave is unmodulated. Then the composite
signal at the frequency discriminator input is

x(2) = [A; + #:(1)] cos2mf,t) — nolt) sin(2wf.t) (2.153)

where 7;(z) and ng(t) are the in-phase and quadrature components of the narrowband
noise 7(t) with respect to the carrier wave. The phasor diagram of Figure 2.43 displays
the phase relations between the various components of x(2) in Equation (2.153). As the
amplitudes and phases of #;(¢) and n(¢) change with time in a random manner, the point
Py [the tip of the phasor representing x(¢)] wanders around the point P, (the tip of the
phasor representing the carrier). When the carrier-to-noise ratio is large, #;(¢) and no(t)
are usually much smaller than the carrier amplitude A, and so the wandering point P, in
Figure 2.43 spends most of its time near point P,. Thus the angle 6(¢) is approximately
no(tyA. to within a multiple of 2. When the carrier-to-noise ratio is low, on the other
hand, the wandering point P; occasionally sweeps around the origin and 6(¢) increases or
decreases by 247 radians. Figure 2.44 illustrates how in a rough way the excursions in 6(t),
depicted in Figure 2.444, produce impulselike components in 6'(2) = d@/dt. The discrim-
inator output v(¢) is equal to &' (¢)/2. These impulselike components have different heights
depending on how close the wandering point P, comes to the origin O, but all have areas
nearly equal to *2 radians, as illustrated in Figure 2.44b. When the signal shown in
Figure 2.44b is passed through the postdetection low-pass filter, corresponding but wider
impulselike components are excited in the receiver output and are heard as clicks. The
clicks are produced only when §(t) changes by +27 radians.

0
1 A, P, ) oo

FIGURE 2.43 Phasor diagram interpretation of Equation (2.153).
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Fi1GURE 2.44 Tlustrating impulselike components in ') = 46(r)/dt produced by changes of 27
in 6(); (a) and (b) are graphs of &(t) and # (t), respectively.

From the phasor diagram of Figure 2.43, we may deduce the conditions required for
clicks to occur. A positive-going click occurs when the envelope #(£) and phase (¢} of the
narrowband noise n{t) satisfy the following conditions:

1) > A,
Yi) < = ylt) + dp(o)
dylt)

>
dt 0

These conditions ensure that the phase §(t) of the resultant phasor x(¢) changes by 27
radians in the time increment 4¢, during which the phase of the narrowband noise increases
by incremental amount dys(t). Similarly, the conditions for a negative-going click to occur
are as follows:
r{t) > Ac
W(t) > —a > g(t) + dv(o)
dy(r)

<
dt 0

These conditions ensure that §() changes by —2 radians during the time increment dt.
The carrier-to-noise ratio is defined by
A2

= 2.154)
P~ 2B,:N, {

As p is decreased, the average number of clicks per vnit time increases. When this numbes
becomes appreciably large, threshold is said to occur.
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The output signal-to-noise ratio is calculated as follows:

1. The output signal is taken as the receiver output measured in the absence of noise.
The average output signal power is calculated assuming a sinusoidal modulation that
produces a frequency deviation Af ‘equal to B1/2, so that the carrier swings back
and forth across the entire input frequency band.

2. The average output noise power is calculated when there is no signal present; that
is, the carrier is unmodulated, with no restriction imposed on the value of the carrier-
to-noise ratio p.

On this heuristic basis, theory!" yields Curve I of Figure 2.45 presenting a plot of the
output signal-to-noise ratio versus the carrier-to-noise ratio when the ratio B;/2 Wis equal
to 5. This curve shows that the output signal-to-noise ratio deviates appreciably from a
linear function of the carrier-to-noise ratio p when p is less than about 10 dB. Curve II of
Figure 2.45 shows the effect of modulation on the output signal-to-noise ratio when the
modulating signal (assumed sinusoidal) and the noise are present at the same time. The
average output signal power pertaining to curve Il may be taken to be effectively the same
as for curve I. The average output noise power, however, is strongly dependent on the
presence of the modulating signal, which accounts for the noticeable deviation of curve II
from curve L. In particular, we find that as p decreases from infinity, the output signal-to-
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FIGURE 2.45 Dependence of output signal-to-noise ratio on input carrier-to-noise ratio for FM
reciever. In curve 1, the average output noise power is calculated assuming an unmodulated car-

rier. In curve II, the average output noise power is calculated assuming a sinusoidally modulated
carrier. Both curves I and II are calculated from theory.
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noise deviates appreciably from a linear function of p when p is about 11 dB. Also whey
the signal is present, the resulting modulation of the carrier tends to increase the averag,
number of clicks per second. Experimentally, it is found that occasional clicks are hearg
in the receiver output at a carrier-to-noise ratio of about 13 dB, which appears to be only
slightly higher than what theory indicates. Also it is of interest to note that the increase iy .
the average number of clicks per second tends to cause the output signal-to-noise ratio t,
fall off somewhat more sharply just below the threshold level in the presence of
modulation.

From the foregoing discussion we may conclude that threshold effects in FM receivers
may be avoided in most practical cases of interest if the carrier-to-noise ratio p is equal ¢
or greater than 20 or, equivalently, 13 dB. Thus using Equation (2.154) we find that the
loss of message at the discriminator output is negligible if

A2
< Z 2
2B.N, 0

or, equivalently, if the average transmitted power AZ/2 satisfies the condition

AZ
55 = 20B:N, (2.155)

To use this formula, we may proceed as follows:

1. For a specified modulation index 8 and message bandwidth W, we determine the
transmission bandwidth of the FM wave, Br, using the universal curve of Figure 2.2¢
or Carson’s rule.

2. Tor a specified average noise power per unit bandwidth, Ny, we use Equation (2.155)
to determine the minimum value of the average transmitted power AZ/2 that is nec-
essary to operate above threshold.

& FM THREsSHoLD REDUCTION

In communication systems using frequency modulation, there is particular interest in re-
ducing the noise threshold in an FM receiver so as to satisfactorily operate the receiver
with the minimum signal power possible. Threshold reduction in FM receivers may be
achieved by using an FM demodulator with negative feedback!? (commonly referred to as
an FMEB demodulator), or by using a phase-locked loop demodulator. Such devices are
referred to as extended-threshold demodulators, the idea of which is illustrated in Figure
2.46. The threshold extension shown in this figure is measured with respect to the standard
frequency discriminator (i.e., one without feedback).

The block diagram of an FMFB demodulator? is shown in Figure 2.47. We see that
the local oscillator of the conventional FM receiver has been replaced by a voltage
controlled oscillator (VCO) whose instantaneous output frequency is controlled by the
demodulated signal. In order to understand the operation of this receiver, suppose for the
moment that the VCO is removed from the circuit and the feedback loop is left open
Assume that a wideband FM signal is applied to the receiver input, and a second ™
signal, from the same source but whose modulation index is a fraction smaller, is applied
to the VOO terminal of the mixer. The output of the mixer would consist of the difference
frequency component, because the sum frequency component is removed by the band-pasé
filter. The frequency deviation of the mixer output would be small, although the frequency
deviation of both input FM waves is large, since the difference between their instantaneou’
deviations is small. Hence, the modulation indices would subtract and the resulting F
wave at the mixer output would have a smaller modulation index. The FM wave wit
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FIGURE 2.46 FM threshold extension.

reduced modulation index may be passed through a band-pass filter, whose bandwidth
need only be a fraction of that required for either wideband FM, and then frequency
demodulated. It is now apparent that the second wideband FM signal applied to the mixer
may be obtained by feeding the output of the frequency discriminator back to the VCO.

It will now be argued that the signal-to-noise ratio of an FMFB receiver is the same
as that of a conventional FM receiver with the same input signal and noise power if the
carrier-to-noise ratio is sufficiently large. Assume for the moment that there is no feed-
back around the demodulator. In the combined presence of an unmodulated carrier
A, cos(27f.t) and narrowband noise

n(t) = n(t) cos(2mf.t) — nglt) sin2wf.t)

the phase of the composite signal x(z) at the limiter-discriminator input is approximately
equal to ng(t)/A,, assuming that the carrier-to-noise ratio is high. The envelope of x(z) is
of no interest to us, because the limiter removes all variations in the envelope. Thus the
composite signal at the frequency discriminator input consists of a small index phase-
modulated wave with the modulation derived from the component n(t) of noise that is
in phase quadrature with the carrier. When feedback is applied, the VCO generates a
frequency-modulated signal that reduces the phase-modulation index of the wave in the
band-pass filter output, that is, the quadrature component n5() of noise. Thus we see that
as long as the cartier-to-noise ratio is sufficiently large, the FMFB receiver does not respond
to the in-phase noise component #;(t), but that it would demodulate the quadrature noise
component #g(t) in exactly the same fashion as it would demodulate signal modulation.

Received Lo Baseband
FM —=  Mixer Ea?q-pass_> Limiter- L] oopass Output
wave lter discriminator filter signal
Voltage-
controlfed
oscillator

FIGURE 2.47 FM demodulator with negative feedbhack.
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Signal and quadrature noise are reduced in the same proportion by the applied feedback,
with the result that the baseband signal-to-noise ratio is independent of feedback. For large
cartier-to-noise ratios, the baseband signal-to-noise ratio of an FMFB receiver is then the
same as that of a conventional FM receiver.

The reason that an FMFB receiver is able to extend the threshold is that, unlike ,
conventional FM receiver, it uses a very important piece of @ priori information, namely,
that even though the carrier frequency of the incoming FM wave will usually have large
frequency deviations, its rate of change will be at the baseband rate. An FMFB demody.
lator is essentially a tracking filter that can track only the slowly varying frequency of 5
wideband FM signal, and consequently it responds only to a narrowband of noise centereq
about the instantaneous carrier frequency. The bandwidth of noise to which the FMFp
receiver responds is precisely the band of noise that the VCO tracks. The end result is that
an FMFB receiver is capable of realizing a threshold extension on the order of 5-7 dB,
which represents a significant improvement in the design of minimum power FM systems,

Like the FMFB demodulator, the phase-locked loop (discussed later in Section 2.14)
is also a tracking filter and, as such, the noise bandwidth to which it responds is precisely
the band of noise tracked by the VCO. Indeed, the phase-locked loop demodulator offers
a threshold extension capability with a relatively simple circuit. Unfortunately, the amount
of threshold extension is not predictable by any existing theory, and it depends on signal
parameters. Roughly speaking, improvement by a few (on the order of 2 to 3) decibels is
achieved in typical applications, which is not as good as an FMFB demodulator.

g PRE-EMPHASIS AND DE-EMPHASIS IN FM

Equation {2.147) shows that the power spectral density of the noise at the output of an
EM receiver has a square-law dependence on the operating frequencys; this is illustrated in
Figure 2.484. In Figure 2.48b, we have included the power spectral density of a typical
message source; audio and video signals typically have spectra of this form. In particular,
we see that the power spectral density of the message usually falls off appreciably at higher
frequencies. On the other hand, the power spectral density of the output noise increases
rapidly with frequency. Thus around f = =W, the relative spectral density of the message
is quite low, whereas that of the output noise is quite high in comparison. Clearly, the
message is not using the frequency band allotted to it in an efficient manner. It may appear
that one way of improving the noise performance of the system is to slightly reduce the'
bandwidth of the postdetection low-pass filter so as to reject a large amount of noise power
while losing only a small amount of message power. Such an approach, however, is usually
not satisfactory because the distortion of the message caused by the reduced filter band-
width, even though slight, may not be tolerable. For example, in the case of music, we
find that although the high-frequency notes contribute only a very small fraction of the
total power, nonetheless, they contribute a great deal from an esthetic viewpoint. ‘

A more satisfactory approach to the efficient use of the allowed frequency band is
based on the use of pre-emphasis in the transmitter and de-emphasis in the receiver, 2

5y () Su(f)

N f

-W 0 w ~-W o] w

F1GURE 2.48 (a) Power spectral density of noise at FM receiver output. (b) Power spectral den
sity of a typical message signal.



2.13 Noise in FM Receivers 155

Pre-emphasis M + FM De-emphasis Message
filter, Hy () fransmitter receiver filter, Hy{f) plus noise
+

mt) ==

Noise
w(f)

FIGURE 2.49 Use of pre-emphasis and de-emphasis in an FM system.

illustrated in Figure 2.49. In this method, we artificially emphasize the high-frequency
components of the message signal prior to modulation in the transmitter, and therefore
before the noise is introduced in the receiver. In effect, the low-frequency and high-
frequency portions of the power spectral density of the message are equalized in such a
way that the message fully occupies the frequency band allotted to it. Then, at the discrim-
inator output in the receiver, we perform the inverse operation by de-emphasizing the
high-frequency components, so as to restore the original signal-power distribution of the
message. In such a process, the high-frequency components of the noise at the discriminator
output are also reduced, thereby effectively increasing the output signal-to-noise ratio of
the system. Such a pre-emphasis and de-emphasis process is widely used in commercial
FM radio transmission and reception.

In order to produce an undistorted version of the original message at the receiver
output, the pre-emphasis filter in the transmitter and the de-emphasis filter in the receiver
must ideally have frequency responses that are the inverse of each other, That is, if Hp.(f)
designates the frequency response of the pre-emphasis filter, then the frequency response
Hae(f) of the de-emphasis filter must ideally be (ignoring transmission delay)

1
Hyf)’

This choice of frequency responses makes the average message power at the receiver output
independent of the pre-emphasis and de-emphasis procedure.

From our previous noise analysis in FM systems, assuming a high carrier-to-noise
ratio, the power spectral density of the noise 7,(#) at the discriminator output is given by
Equation (2.146). The modified power spectral density of the noise at the de-emphasis
filter output is therefore

Hyl(f) = ~-W=f=<W (2.156)

Nof? , By
HolF) 2 f) = 1 az HalAI? 1F1=5F (2.157)
0, otherwise

Recognizing, as before, that the postdetection low-pass filter has a bandwidth W that is,

in general, less than B1/2, we find that the average power of the modified noise at the
receiver output is as follows:

Average output noise No f v,

= H.(f)*d 2.158

(power with de—emphasis) Al w F*1Hal £)I* af ( )

Because the average message power at the receiver output is ideally unaffected by the

combined pre-emphasis and de-emphasis procedure, it follows that the improvement in

output signal-to-noise ratio produced by the use of pre-emphasis in the transmitter and

de-empbhasis in the receiver is defined by
average output noise power without pre-emphasis and de-emphasis

I= - - 159
average output noise power with pre-emphasis and de-emphasis @ )
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Farlier we showed that the average output noise power without pre-emphasis and ¢,
emphasis is equal to (2NoW?/3A2); see Equation (2.148). Therefore, after cancellation of
common terms, we may express the improvement factor I as

2w?

I= w
3| PIHAPI éf

(2.160)

It must be emphasized that this improvement factor assumes the use of a high catrier-t,.
noise ratio at the discriminator input in the receiver.

¥ EXAMPLE 2.6
A simple pre-empbhasis filter that emphasizes high frequencies and is commonly used in practice
is defined by the frequency-response

H,

i =1+%
0

f:

which is closely realized by the RC-amplifier network shown in Figure 2.504, provided that
R << r and 27fCr << 1 inside the frequency band of interest. The amplifier in Figure 2.50,
is intended to make up for the attenuation introduced by the RC network at low frequencies,
The frequency parameter f, is 1/(27Cr).

The corresponding de-empbhasis filter in the receiver is defined by the frequency response

1
1+ jflfy
which can be realized using the simple RC network of Figure 2.505.

The improvement in output signal-to-noise ratio of the FM receiver, resulting from the
combined use of the pre-emphasis and de-emphasis filters of Figure 2.50, is therefore

. W
Yo
3 f—w 1+ (flfo) (2.161)
_ (Wifo)
3[(W/fo) — tan™ " (W/fo)]

In commercial FM broadcasting, we typically have f, = 2.1 kHz, and we may reason-
ably assume W = 15 kHz. This set of values yields I = 22, which corresponds to an improve-
ment of 13 dB in the ottput signal-to-noise ratio of the receiver. The output signal-to-noise

Half) =

r

Amplifier [ Y AV A ——]
input Qutput fnput c == Qutput
signal signal signal T signal

o o} o—%—90

(@) )
FIGURE 2.50 (a) Pre-emphasis filter, (b) De-emphasis filter.
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ratio of an FM receiver without pre-emphasis and de-emphasis is typically 40-50 dB. We see,
therefore, that by using the simple pre-emphasis and de-emphasis filters shown in Figure 2.50,
we can realize a significant improvement in the noise performance of the receiver. <

The use of the simple linear pre-emphasis and de-empbhasis filters just described is an
example of how the performance of an FM system may be improved by using the differ-
ences between characteristics of signals and noise in the system. These simple filters also
find application in audio tape-recording. Specifically, nonlinear pre-emphasis and de-
emphasis techniques have been applied successfully to tape recording. These techniques'*
{(known as Dolby-A, Dolby-B, and DBX systems) use a combination of filtering and dy-
namic range compression to reduce the effects of noise, particularly when the signal level
is low.

2.14 Computer Experiments:
Phase-Locked Loop

The experimental study presented in this section focuses on the use of a phase-locked loop
for the demodulation of a frequency modulated signal. Before proceeding with the exper-
iments, however, we first present a brief exposition of phase-locked loop theory.

Basically, the phase-locked loop consists of three major components: a multiplier, a
loop filter, and a voltage-controlled oscillator (VCO) connected together in the form of a
feedback system, as shown in Figure 2.51. The VCO is a sinusoidal generator whose
frequency is determined by a voltage applied to it from an external source. In effect, any
frequency modulator may serve as a VCO. We assume that initially we have adjusted the
VCO so that when the control voltage is zero, two conditions are satisfied:

1. The frequency of the VCO is precisely set at the unmodulated carrier frequency f..
2. The VCO output has a 90 degree phase-shift with respect to the unmodulated carrier
wave.

Suppose then that the input signal applied to the phase-locked loop is an FM signal defined
by

s(t) = A, sin[2af.t + &4(t)]
where A_ is the carrier amplitude. With a modulating signal (), the angle ¢ 4(2) is related

to m(z) by the integral

&4(t) = 2k, L m(7) dr

Error

FM wave e Loop Output
s{r) filter v{f)
Feedback
signal Voltage-
r{ controlied
oscillator

FIGURE 2.51 Phase-locked loop.
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where ky is the frequency sensitivity of the frequency modulator. Let the VCO output i
the phase-locked loop be defined by

7(t) = A, cos[2mf.t + ,(t)]

where A, is the amplitude. With a control voltage v(z) applied to the VCO input, the angle
& (t) is related to v(t) by the integral

b,(t) = 2wk, L v(7) dr (2.16)

where k&, is the frequency sensitivity of the VCO, measured in Hertz per volt. The object
of the phase-locked loop is to generate a VCO output (¢} that has the same phase angle
(except for the fixed difference of 90 degrees) as the input FM signal s(t). The time-varying
phase angle ¢,(z) characterizing s(t) may be due to modulation by a message signal m(z),
in which case we wish to recover ¢,(¢) and thereby produce an estimate of m(t). In other
applications of the phase-locked loop, the time-varying phase angle ¢ () of the incoming
signal s() may be an unwanted phase shift caused by fluctuations in the communication
channel; in this latter case, we wish to track ¢ ((#) so as to produce a signal with the same
phase angle for the purpose of coherent detection {(synchronous demodulation).

# MODEL OF THE PHASE-LOCKED Loop”

To develop an understanding of the phase-locked loop, it is desirable to have a #odel of
the loop. We start by developing a nonlinear model, which is subsequently linearized to
simplify the analysis. According to Figure 2.51, the incoming FM signal s(¢) and the VCO
output r{t) are applied to the multiplier, producing two components:

1. A high-frequency component, represented by the double-frequency term
kL AA, sin[4mft + ¢.(f) + daft)]
2. A low-frequency component represented by the difference-frequency term
kA A, siné(2) — da(t)]
where k., is the mitiplier gain, measured in volt™.

The loop filter in the phase-locked loop is a low-pass filter, and its response to the high-

_frequency component will be negligible. The VCO also contributes to the attenuation of

this component. Therefore, discarding the high-frequency component (i.e., the double-
frequency term), the input to the loop filter is reduced to

elt) = koA A, sin[g 0] (2.163)
where ¢,(£) is the phase error defined by
B.(2) = 1(2) — da() (2.164)

&

= ¢,(t) — 27k, . v(7) dr

The loop filter operates on the error e(t) to produce an output v(z) defined by the convor
lution integral:

U(t)‘= [; e(nh(t — 7) dr (2.165)
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where h(t) is the impulse response of the loop filter. Using Equations (2.164) and (2.165)
to relate ¢,(z) and ¢4(t), we obtain the following nonlinear integro-differential equation
as the descriptor of the dynamic behavior of the phase-locked loop:

dé.(s) dé, -
‘Z—t(’) = ‘Z—t(t) - 27K, f_m sin[ey(7]h(t — 7) d7 (2.166)

where Ky, is as loop-gain parameter defined by
Ko = kb AA, (2.167)

The amplitudes A, and A, are both measured in volts, the multiplier gain &, in volt " and
the frequency sensitivity k, in Hertz per volt. Hence, it follows from Equation (2.167) that
K, has the dimensions of frequency. Equation (2.166) suggests the model shown in Figure
2.52 for a phase-locked loop. In this model we have also included the relationship between
v(t) and e(t) as represented by Equations (2.163) and (2.163). We see that the model of
Figure 2.52 resembles the actual block diagram of Figure 2.51. The multiplier at the input
of the phase-locked loop is replaced by a subtracter and a sinusoidal nonlinearity, and the
VCO by an integrator.

The sinusoidal nonlinearity in the model of Figure 2.52 complicates the task of an-
alyzing the behavior of the phase-locked loop. It would be helpful to linearize this model
to simplify the analysis and yet give a good approximate description of the loop’s behavior
in certain modes of operation. When the phase error ¢,(t) is zero, the phase-locked loop
is said to be in phase-lock. When ¢,(t) is at all times small compared with one radian, we
may use the approximation

sin[e.(£)] = &.(2)

which is accurate to within 4 percent for ¢,(¢) less than 0.5 radians. In this case, the loop
is said to be near phase-lock, and the sinusoidal nonlinearity of Figure 2.52 may be dis-
regarded. Under this condition, v(2) is approximately equal to m(z), except for the scaling
factor k¢/k,.

The complexity of the phase-locked loop is determined by the frequency response
H(f) of the loop filter. The simplest form of a phase-locked loop is obtained when
H(f) = 1; that is, there is no loop filter, and the resulting phase-locked loop is referred to
as a first-order phase-locked loop. A major limitation of a first-order phase-locked loop is
that the loop gain parameter K, controls both the loop bandwidth as well as the hold-in
frequency range of the loop; the hold-in frequency range refers to the range of frequencies

1
27K, 2k,

FIGURE 2.52 Nonlinear model of the phase-locked loop.
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for which the loop remains phase-locked to the input signal. We may overcome this lim.
itation by using a loop filter with the frequency response
4
if
where 4 is a constant. Then with this loop filter in place and the phase-locked loop oper.

ating in its linear mode, we find from Equation (2.166) that the phase-locked loop behaveg
as a second-order feedback system, as shown by the standard frequency response

®.(f) _ S
(f) 1+ 2 LA + AR
where ®,(f) and ®,(f) are the Fourier transforms of ¢,(t) and ¢,(2), respectively. The

system is parameterized by the natural frequency, fo, and damping factor, {, which are
respectively defined by

Hif) =1+ (2.168)

(2.169)

f. = VaK, {2.170)
and
- %
(= u _ (2.171)

The second-order phase-locked loop so described is the subject of the computer experi-
ments presented next.

Experiment 1: Acquisition Mode

When a phase-locked loop is used for coherent detection (synchronous demodulation}, the
loop must first lock onto the input signal and then follow the variations of its phase angle
with time. The process of bringing a loop into phase-lock is called acquisition, and the
ensuing process of following angular variations in the input signal is called tracking. In
the acquisition mode and quite possibly the tracking mode, the phase error ¢,() between
the input signal s(#) and the VCO output r(#) will certainly be large, thereby mandating
the use of the nonlinear model of Figure 2.52. However, a nonlinear analysis of the ac-
quisition process based on this latter model is beyond the scope of this book. In this
experiment, we use computer simulations to study the acquisition process and thereby
develop insight into some of its features.

Consider a second-order phase-locked loop using the loop filter of Equation (2.168)
and having the following parameters:

1
Natural frequency f, = T Hz
Damping factor { = 0.3, 0.707, 1.0

To accommodate variation in ¢, the filter parameter a is varied in accordance with the
formula

f»
2

which follows from Equations (2.170) and (2.171). Figure 2.53 presents the variation it
the phase error ¢,(¢) with time for each of the three specified values of damping factor 8

a =
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FIGURE 2.53 Variation of the phase error for three different values of damping factor.

assuming a frequency step of 0,125 Hz. These results show that the damping factor
¢ = 0.707 gives the best compromise between a fast response time and an underdamped
oscillatory behavior.

Experiment 2: Phase-Plane Portrait

A phase-plane portrait is a family of trajectories, with each trajectory representing a single
solution of Equation (2.166). For the second experiment we plot the phase-plane portrait
of a second-order phase-locked loop for the case of sinusoidal modulation. The system
parameters of the loop are as follows:

Loop-gain parameter K, = j—% Hz

50
Loop-natural fr . =—=H
oop-natural frequency f, N z

50
Si idal modulation f; e = H
inusoidal modulation frequency f, YR = z

Figure 2.54 presents the phase-plane portrait of the phase-locked loop adjusted for
critical damping, where the trajectories (frequency error versus phase error) are plotted
for different starting points. From this portrait we make the following observations:

1. For a sinusoidal nonlinearity, the phase-plane portrait is itself periodic with period
27 in the phase error ¢,, but it is aperiodic in dé,/dt.
2. For an initial frequency error
144,
K dt
with an absolute value less than or equal to 1, the phase-locked loop is assured of
attaining a stable (equilibrium) point at (0, 0) or (0, 2-7); the multiplicity of equilib-
rium points is a manifestation of periodicity of the phase-plane portrait.
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FIGURE 2.54 Phase-plane portrait for critical demping and sinusoidal modulation.

3. For an initial frequency error

14dé.
K dt

with an absolute value equal to 2, we have a saddle point at {0, 7) where the slightest
perturbation applied to the phase-locked loop causes it to shift to the equilibrium
point (0, 0) or (0, 2m).

Summary and Discussion

In this chapter we studied the principles of continuous-wave (CW) modulation. This an-
alog form of modulation uses a sinusoidal carrier whose amplitude or angle is varied in
accordance with a message signal. We may thus distinguish two families of CW modula-
tion: amplitude modulation and angle modulation.

B AMPLITUDE MODULATION

Amplitude modulation may itself be classified into four types, depending on the spectral
content of the modulated signal. The four types of amplitude modulation and their prac-
tical merits are as follows:

1. Full amplitude modulation (AM), in which the upper and lower sidebands are trans-
mitted in full, accompanied by the carrier wave.

Accordingly, demodulation of an AM signal is accomplished rather simply in the receiver
by using an envelope detector, for example. It is for this reason we find that full AM is
commonly used in commercial AM radio broadcasting, which involves a single powerful
transmitter and numerous receivers that are relatively inexpensive to build.
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2. Double sideband-suppressed carrier (DSB-SC) modulation, in which only the upper
and lower sidebands are transmitted.

The suppression of the carrier wave means that DSB-SC modulation requires much less
power than full AM to transmit the same message signal; this advantage of DSB-SC mod-
ulation over full AM is, however, attained at the expense of increased receiver complexity.
DSB-SC modulation is therefore well suited for point-to-point communication involving
one transmitter and one receiver; in this form of communication, transmitted power is at
a premium and the use of a complex receiver is therefore justifiable,

3. Single sideband (SSB) modulation, in which only the upper sideband or lower sideband
is transmitted.

SSB modulation is the optimum form of CW modulation in the sense that it requires the
minimum transmitted power and the minimum channel bandwidth for conveying a mes-
sage signal from one point to another. However, its use is limited to message signals with
an energy gap centered on zero frequency.

4, Vestigial sideband modulation, in which almost all of one sideband and a vestige of
the other sideband are transmitted in a prescribed complementary fashion.

VSB modulation requires a channel bandwidth that is between that required for SSB and
DSB-SC systems, and the saving in bandwidth can be significant if modulating signals with
large bandwidths are being handled, as in the case of television signals and high-speed
data.

DSB-SC, SSB, and VSB are examples of linear modulation, whereas, strictly speaking, full
AM is nonlinear. However, the deviation of full AM from linearity is of a mild sort.
Accordingly, all four forms of amplitude modulation lend themselves readily to spectral
analysis using the Fourier transform.

ANGLE MODULATION

Angle modulation may be classified into frequency modulation (FM) and phase modula-
tion (PM). In FM, the instantaneous frequency of a sinusoidal carrier is varied in propor-
tion to the message signal. In PM, on the other hand, it is the phase of the carrier that is
varied in proportion to the message signal. The instantaneous frequency is defined as the
derivative of the phase with respect to time, except for the scaling factor 1/(24). Accord-
ingly, FM and PM are closely related to each other; if we know the properties of the one,
we can determine those of the other. For this reason, and because FM is commonly used
in broadcasting, much of the material on angle modulation in the chapter was devoted
to FM.

Unlike amplitude modulation, FM is a nonlinear modulation process. Accordingly,
spectral analysis of FM is more difficult than for AM. Nevertheless, by studying single-
tone FM, we were able to develop a great deal of insight into the spectral properties of
FM. In particular, we derived an empirical rule known as Carson’s rule for an approximate
evaluation of the transmission bandwidth B of FM. According to this rule, By is controlled
by a single parameter: the modulation index 8 for sinusoidal FM, or the deviation ratio
D for nonsinusoidal FM.

NOISE ANALYSIS

We conclude the chapter on CW modulation systems by presenting a comparison of their
noise performances. For this comparison, we assume that the modulation is produced by
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FiGunE 2.55 Comparison of the noise performance of various CW modulation systems. Curve [;
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I and IV include 13-dB pre-emphasis, de-emphasis improvement.)

a sinusoidal wave, For the comparison to be meaningful, we also assume that the modu-
lation systems operate with exactly the same channel signal-to-noise ratio. We may thus
plot the output signal-to-noise ratio versus the channel signal-to-noise ratio as in Figure
2.55 for the following modulation schemes:

» Full AM with 100 percent modulation
» Coherent DSB-SC, SSB
» FMwithf=2and 8= S
Figure 2.55 also includes the AM and FM threshold effects. In making the comparison, it

is informative to keep in mind the transmission bandwidth requirement of the modulation
system in question. In this regard, we use a normalized transmission bandwidth defined by

Br
B, =L
R 4

where By is the transmission bandwidth of the modulated signal, and W is the message

bandwidth, Table 2.4 presents the values of B,, for the different CW modulation schemes.
From Figure 2.55 and Table 2.4 we make the following observations:

» Among the family of AM systems, SSB modulation is optimum with regard to nois
performance as well as bandwidth conservation. ‘

# The use of FM improves noise performance but at the expense of an excessive trans
mission bandwidth. This assumes that the FM system operates above threshold fo
the noise improvement to be realized.
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¥ TABLE 2.4 Values of B, for
| various CW modulation schemes

FM
AM, DSB-SC  SSB B=2 PB=5

2 1 8 16

On an important point to conclude the discussion on CW modulation, only frequency

modulation offers the capability to trade off transmission bandwidth for improved noise
performance. The trade-off follows a square law, which is the best that we can do with
CW modulation (i.e., analog communications). In Chapter 3 we describe pulse-code mod-
ulation, which is basic to the transmission of analog information-bearing signals by a
digital communication system, and which can indeed do much better.

l NOTES AND REFERENCES
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E PROBLEMS

Amplitude Modulation
2.1 Suppose that nonlinear devices are available for which the outpur current 7, and inpiys
voltage v, are related by

i, = aw; + asv}

where @, and a; are constants, Explain how these devices may be used to provide: (a) a
product modulator and (b) an amplitude modulator.

2.2 Figure P2.2 shows the circuit diagram of a square-law modulator. The signal applied to
the nonlinear device is relatively weak, such that it can be represented by a square law:

vy(t) = a;u(t) + ai(t)

where 4, and 4, are constants, v(¢) is the input voltage, and w(t) is the output voltage.
The input voltage is defined by

v(t) = A, cos(2mf.t) + m(t)

where #n(t) is a message signal and A, cos(27f.t) is the carrier wave.

(a) Evaluate the output voltage v(z).

(b) Specify the frequency response that the tuned circuit in Figure P2.2 must satisfy in
order to generate an AM signal with £, as the carrier frequency.

(c) What is the amplitude sensitivity of this AM signal?

Nonlinear
device

v,() vy

m{t)

A cos (2mf 1)

Tuned to f,

Ficure P2.2

2.3 Figure P2.3a shows the circuit diagram of a switching modulator. Assume that the carrief
wave c(t) applied to the diode is large in amplitude, so that the diode acts like an jideal
switch: it presents zero impedance when forward biased (i.e., c(¢) > 0). We may thus
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approximate the transfer characteristic of the diode-load resistor combination by a piece-
wise-linear characteristic defined as (see Figure P2.35)

; _{vl(t), o) >0
vl =10, - qn<o

That is, the load voltage v,(t) varies periodically between the values v4(¢) and zero at a
rate equal to the carrier frequency f.. Hence, we may write

w(t) = [A, cos(2mf,t) + m(t)|gr,()
where g7, (¢) is a periodic pulse train defined by

b2 0 _
gr it = 7t R cos[2mf.t(2n — 1)]
(a) Find the AM wave component contained in the output voltage v,(t).
(b} Specify the unwanted components in v,(¢) that need to be removed by a band-pass
filter of suitable design.

Yz
cly=A, cos 2nf.)
: |

m(e) ‘ 0 R v Slope = 1

v
(@} (B}
FiGure P2.3

2.4 Consider the AM signal

2.5

s(t) = A1 + p cos(2nf,t)] cos(2mf.t)

produced by a sinusoidal modulating signal of frequency f,,. Assume that the modulation
factor is & = 2, and the carrier frequency f. is much greater than f,,. The AM signal s(¢)
is applied to an ideal envelope detector, producing the output v(t).
{a) Determine the Fourier series representation of u(t).
(b} What is the ratio of second-harmonic amplitude to fundamental amplitude in v(2)?
Figure P2.5 shows the circuit diagram of an envelope detector. It consists simply of a
diode and resistor-capacitor (RC) filter. On a positive half-cycle of the input signal, the
diode is forward-biased and the capacitor C charges up rapidly to the peak value of the
input signal. When the input signal falls below this value, the diode becomes reverse-
biased and the capacitor C discharges slowly through the load resistor R,. The discharging
process continues until the next positive half-cycle. Thereafter, the charging-discharging
routine is continued.

{a) Specify the condition that must be satisfied by the capacitor C for it to charge rapidly
and thereby follow the input voltage up to the positive peak when the diode is
conducting.

(b) Specify the condition which the load resistor R; must satisfy so that the capacitor C
discharges slowly between positive peaks of the carrier wave, but not so long that the
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capacitor voltage will not discharge at the maximum rate of change of the modlﬂating
wave,

c Ry Output

AM wave
O
FIGURE P2.5

2.6 Consider a square-law detector, using a nonlinear device whose transfer characteristic ig

defined by
vo(t) = aym(t) + a,vi(t)

where 4, and a; are constants, v,(t) is the input, and v(2) is the output. The input consists
of the AM wave

wi{t) = AJL + km(t)] cos(2mf.t)

(a) Evaluate the output v,(z).
(b} Find the conditions for which the message signal m({t) may be recovered from v,(t).

2.7 The AM signal
s{t) = AJ1 + km{t)] cos(27f.t)
is applied to the system shown in Figure P2.7. Assuming that | km(t)| < 1 for all £ and

the message signal m(z) is limited to the interval —W = f = W and that the carrier
frequency f. > 2W show that #n(t) can be obtained from the square-rooter output vt

] v ‘ v,
Low-pass Square
s(t)-——>J Squarer filter rooter vsldh

e o2
vy = 520 o) =
FIiGURE P2.7

2.8 Consider a message signal m(z) with the spectrum shown in Figure P2.8. The messag?
bandwidth W = 1 kHz. This signal is applied to a product modulator, together with a
carrier wave A, cos(277ft), producing the DSB-SC modulated signal s(¢). The modulated
signal is next applied to a coherent detector. Assuming perfect synchronism between the
carrier waves in the modulator and detector, determine the spectrum of the detectof
output when: (a) the catrier frequency f. = 1.25 kHz and (b} the carrier frequency
f. = 0.75 kHz. What is the lowest carrier frequency for which each component of the
modulated signal s(#) is uniquely determined by m(t)?
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M(f)
w o w 4
FIGURE P2.8

2.9 Figure P2.9 shows the circuit diagram of a balanced modulator. The input applied to the
top AM modulator is m(¢), whereas that applied to the lower AM modulator is —m(t);
these two modulators have the same amplitude sensitivity. Show that the output s(z) of
the balanced modulator consists of a DSB-SC modulated signal.

AM a0
modulator

m{t) =3

Ageos (2mf, 8

+
+—— Oscillator <E>—> s

Acos (2nf,1)

AM 550
modulator

- m{t) ==

FIGURE P2.9

2.10 A DSB-SC modulated signal is demodulated by applying it to a coherent detector.

{a) Evaluate the effect of a frequency error Af in the local carrier frequency of the de-
tector, measured with respect to the carrier frequency of the incoming DSB-SC signal.

(b} For the case of a sinusoidal modulating wave, show that because of this frequency
error, the demodulated signal exhibits beats at the error frequency. Illustrate your
answer with a sketch of this demodulated signal.

2.11 Consider the DSB-SC signal
s(t) = A_ cos(2mf.t)m(t)

where A, cos(27f.t) is the carrier wave and m(¢) is the message signal. This modulated
signal is applied to a square-law device characterized by

yit) = s%(t)

The output y(¢) is next applied to a narrowband filter with a passband magnitude response
of one, midband frequency 2f,, and bandwidth Af. Assume that Af is small enough to
treat the spectrum of y(¢) as essentially constant inside the passband of the filter.

(a) Determine the spectrum of the square-law device output ¥(z).
(b) Show that the filter output v(¢) is approximately sinusoidal, given by

A2
vit) = -i-c- E Af cos(4mf.t)

where E is the energy of the message signal m(z).
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2.12 Consider the quadrature-carrier multiplex system of Figure 2.10. The multiplexed signg|

213

2.14

2.15

2.16

s(t) produced at the transmitter output in Figure 2.102 is applied to a communicatioy
channel of frequency response H(f). The output of this channel is, in turn, applied to the
receiver input in Figure 2.10b. Prove that the condition

Hf+f=H{-f, 0=sf=W

is necessary for recovery of the message signals 71,(¢) and m,(t) at the receiver outputs
f. is the carrier frequency, and W is the message bandwidth. Hint: Evaluate the spectrs
of the two receiver outputs.

Suppose that in the receiver of the quadrature-carrier multiplex system of Figure 2.105
the local carrier available for demodulation has a phase error ¢ with respect to the carrier
source used in the transmitter. Assuming a distortionless communication channel between
transmitter and receiver, show that this phase error will cause cross-talk to arise between
the rwo demodulated signals at the receiver outputs. By cross-talk we mean that a portion
of one message signal appears at the receiver output belonging to the other message signal,
and vice versa.

A particular version of AM stereo uses quadrature multiplexing. Specifically, the catrier
A, cos(2mf.t) is used to modulate the sum signal

ma(t) = Vo + my(t) + m,t)

where V, is a DC offset included for the purpose of transmitting the carrier component,
m(t) is the left-hand audio signal, and #,(#) is the right-hand audio signal. The quadrature
carrier A, sin{2nrf.t) is used to modulate the difference signal

my(t) = my(t) — m,(t)

{a) Show that an envelope detector may he used to recover the sum #,{z) + me(t) from
the quadrature-multiplexed signal. How would you minimize the signal distortion
produced by the envelope detector?

(b) Show that a coherent detector can recover the difference m,(t) — #,(z).

{c) How are the desired #,(#) and »2,() finally obtained?

Using the message signal

1

e

determine and sketch the modulated waves for the following methods of modulation:
(a) Amplitude modulation with 50 percent modulation.

{b) Double sideband-suppressed carrier modulation.

{c) Single sideband modulation with only the upper sideband transmitted.

(d) Single sideband modulation with only the lower sideband transmitted.

The Hilbert transform of a Fourier transformable signal 7(z), denoted by 71(t), is defined
by (see Appendix 2)

In the frequency domain, we have

A

M(f) = —j sgn(f)M(f)
where m(t) = M(f), #i(t) = M(f), and sgn(f) is the signum function.
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Using the definition of the Hilbert transform, show that a single-sideband modu-
lated signal resulting from the message signal () and carrier cos{27f.£) of unit amplitude
is given by (see Table 2.1)

s(t) = %m(r) cos(2mf,t) * %ﬁl(t) sin{2wf.t)

where the minus sign corresponds to the transmission of the upper sideband and the plus
sign corresponds to the transmission of the lower sideband.

The local oscillator used for the demodulation of an SSB signal s(¢) has a frequency error
Af measured with respect to the carrier frequency f. used to generate s(z). Otherwise,
there is perfect synchronism between this oscillator in the receiver and the oscillator sup-
plying the carrier wave in the transmitter. Evaluate the demodulated signal for the fol-
lowing two situations:

(a) The SSB signal s(¢) consists of the upper sideband only.

(b) The SSB signal s(z) consists of the lower sideband only.

Figure P2.18 shows the block diagram of Weaver’s method for generating SSB modulated
waves. The message (modulating) signal 71(¢) is limited to the band f, = | f| =< f,. The
auxiliary carrier applied to the first pair of product modulators has a frequency f;, which
lies at the center of this band, as shown by

_Ltf

fo=t2

The low-pass filters in the in-phase and quadrature channels are identical, each with a

cutoff frequency equal to (f, — f,)/2. The carrier applied to the second pair of product

modulators has a frequency £, that is greater than (f, — f,)/2. Sketch the spectra at the

various points in the modulator of Figure P2.18, and hence show that:

(a) For the lower sideband, the contributions of the in-phase and quadrature channels
are of opposite polarity, and by adding them at the modulator output, the lower
sideband is suppressed.

(b} For the upper sideband, the contributions of the in-phase and quadrature channels
are of the same polarity, and by adding them, the upper sideband is transmitted.

{c) How would you modify the modulator of Figure P2.18 so that only the lower side-
band is transmitted?

In-phase channet

) osasr 1 ™ 1 g L) o
i i '
cos {(2mfye) cos (27f, 1)
Product Low-pass Product
madulator fiter  [">| moduiator
t P
sin (2afyr) sin (2mf, 2}

Quadrature channel

FiGgure P2.18
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2.19

2.20

2.21

2.22

The spectrum of a voice signal m(t) is zero outside the interval f, = | £1= fb. To ensur
communication privacy, this signal is applied to a scrambler that consists of the followip,
cascade of components: product modulator, high-pass filter, second product modulatoy, -
and low-pass filter. The carrier wave applied to the first product modulator has a fre.
quency equal to f., whereas that applied to the second product modulator has a frequengy
equal to f,, + f; both of them have unit amplitude. The high-pass and low-pass filteyg
have the same cutoff frequency at f.. Assume that f, > f,.

{a) Derive an expression for the scrambler output s(t), and sketch its spectrum.

(b) Show that the original voice signal m(z) may be recovered from s(t) by using ay
unscrambler that is identical to the unit just described.

In this problem we derive Equation (2.16) that defines the frequency response Ho(f} of
the filter that operates on the message signal m(t) to produce (¢} for VSB modulation,
The signal m'(¢), except for a scaling factor, constitutes the quadrature component of s(z),
To do the derivation, we apply s(z) to the coherent detector of Figure P2.20 so as to
recover a scaled version of the original message signal (z).

(a) Starting with the block diagram of Figure 2.12 for the generation of a VSB modulateq
wave, determine the Fourier transform V(f) of the product modulator output u(t) in
Figure P2.20 in terms of the Fourier transform of the message signal #:{¢) and the
frequency response H{f) of the band-pass filter in Figure 2.12.

{b) Hence, by evaluating the Fourier transform of the low-pass filter output in Figure
P2.20, determine the conditions that must be satisfied by Ho(f) in terms of H{f) 1o
assure perfect recovery of the original message signal m(z), except for a scaling factor.

o) Output signat
VSB modulated — Product Low-pass representing a scaled
signal () modulator filter version of the message
signal m(s)

A, cos (2af 1)
FiGure P2.20

The single-tone modulating signal m(z) = A,, cos(27f,,t) is used to generate the VSB signal
1) = 2 ah A, cosi2m(f, + £l + 5 AnAdL = @) cosi2f. — £,

where 4 is a constant, less than unity, representing the attenuation of the upper side

frequency.

(a) Find the quadrature component of the VSB signal s(z).

(b) The VSB signal, plus the carrier A, cos{2mft), is passed through an envelope detector.
Determine the distortion produced by the quadrature component.

(c) What is the value of constant 4 for which this distortion reaches its worst possible
condition? :

In this problem we study the idea of mixing in a superheterodyne receiver. To be specific,
consider the block diagram of the mixer shown in Figure P2.22 that consists of a product
modulator with a local oscillator of variable frequency f;, followed by a band-pass filte:
The input signal is an AM wave of bandwidth 10 kHz and carrier frequency that may ¢
anywhere in the range of 0.535 to 1.605 MHz; these parameters are typical of AM radio
broadcasting. It is required to translate this signal to a frequency band centered at a fixed
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intermediate frequency (IF) of 0.455 MHz. Find the range of tuning that must be provided
i the local oscillator to achieve this requirement.

210]
Band-pass
s fiter > V2

cos (2mfyt) -
FIGURE P2.22

2.23 Figure P2.23 shows the block diagram of a heterodyne spectrum analyzer. It consists of
a variable-frequency oscillator, multiplier, band-pass filter, and root mean square (RMS)
meter. The oscillator has an amplitude A and operates over the range f; to fo + W, where
fo is the midband frequency of the filter and W is the signal bandwidth. Assume that
fo = 2W, the filter bandwidth Af is small compared with f, and that the passband mag-
nitude response of the filter is one. Determine the value of the RMS meter output for a
low-pass input signal g(2).

Input % Band-pass RMS ». Qutput
signal g(s) filter meter signal
Variable
frequency
oscillator

FIGURE P2.23

Angle Meodulation
2.24 Sketch the PM and FM waves produced by the sawtooth wave shown in Figure P2.24.

m{t)

0 T, 2T, 37,

Figurr P2.24

2.25 In a frequency-modulated radar, the instantaneous frequency of the transmitted carrier
is varied as in Figure P2.25, which is obtained by using a triangular modulating signal.
The instantaneous frequency of the received echo signal is shown dashed in Figure P2.25,
where 7is the round-trip delay time. The transmitted and received echo signals are applied
to a mixer, and the difference frequency component is retained. Assuming that fyr << 1,
determine the number of beat cycles at the mixer output, averaged over one second, in
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2.26

2.27

2.28

2.29

2.30
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terms of the peak deviation Af of the carrier frequency, the delay 7, and the repetitiop
frequency f; of the transmitted signal.

£
Transmitted
signal Echo
fer&f \ /\/ A ’
AY \\ \\ 7
£ kY A A 4 '
VWV
/ / /
N/ \Y4 AY)
f-Af ¥ A) 1 A)
—{ T e g

FIGURE P2.25

The instantaneous frequency of a sine wave is equal to f, — Af for |£| = T/2, and f for

|£| > T/2. Determine the spectrum of this frequency-modulated wave. Hint: Divide up

the time interval of interest into three regions: — <t < —T/2, —T/2 < =< T/2, and

T2 <t<o,

Single-sideband modulation may be viewed as a hybrid form of amplitude modulation

and frequency modulation. Evaluate the envelope and instantaneous frequency of an SSB

wave for the following two cases:

(a) When only the upper sideband is transmitted.

(b) When only the lower sideband is transmitted.

Consider a narrowband FM signal approximately defined by

s(t) = A, cos(2af.t) — BA. sin(27ft) sin(27f,,.1)

{a) Determine the envelope of this modulated signal. What is the ratio of the maximum
to the minimum value of this envelope? Plot this ratio versus B, assuming that B is
restricted to the interval 0 = g = 0.3.

{(b) Determine the average power of the narrowband FM signal, expressed as a percentage-
of the average power of the unmodulated carrier wave. Plot this result versus §,
assuming that 8 is restricted to the interval 0 < g = 0.3.

(c) By expanding the angle () of the narrow-band FM signal §(z} in the form of a power
series, and restricting the modulation index B to a maximum value of 0.3 radians,
show that

8,(f) = 2mf.t + B sin(2uf,t) — %i sin(27f,.t)

What is the power ratio of third harmonic to fundamental component for 8 = 0.3
The sinusoidal modulating wave
m(t) = A,, cos(2mf,,t)
is applied to a phase modulator with phase sensitivity k,. The unmodulated carrier wave
has frequency £, and amplitude A,.
(a) Determine the spectrum of the resulting phase-modulated signal, assuming that the
maximum phase deviation 8, = k,A,, does not exceed 0.3 radians.
(b) Construct a phasor diagram for this modulated signal, and compare it with that of
the corresponding narrowband FM signal.

Suppose that the phase-modulated signal of Problem 2.29 has an arbitrary value for the
maximum phase deviation B,. This modulated signal is applied to an ideal band-pass filter
with midband frequency £, and a passband extending from f. — 1.5f, to f. + 1.5/
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2.32

2.33

234

2.35
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Determine the envelope, phase, and instantaneous frequency of the modulated signal at

the filter output as functions of time.

A carrier wave is frequency-modulated using a sinusoidal slgnal of frequency f,, and

amplitude A,,,.

(a) Determine the values of the modulation index § for which the carrier component of
the FM signal is reduced to zero. For this calculation you may use the values of J;(B)
given in Table A6.5.

(b) In a certain experiment conducted with f,, = 1 kHz and increasing A,, (starting from
0 volts), it is found that the carrier component of the FM signal is reduced to zero
for the first time when A,, = 2 volts. What is the frequency sensitivity of the modu-
lator? What is the value of A,, for which the carrier components is reduced to zero
for the second time?

An FM signal with modulation index B = 1 is transmitted through an ideal band-pass

filter with midband frequency f. and bandwidth 5f,,, where f, is the carrier frequency and

£ 1s the frequency of the sinusoidal modulating wave. Determine the magnitude spectrum
of the filter output.

A carrier wave of frequency 100 MHz is frequency-modulated by a sinusoidal wave of

amplitude 20 volts and frequency 100 kHz. The frequency sensitivity of the modulator

is 25 kHz per volt.

(a} Determine the approximate bandwidth of the FM signal, using Carson’s rule.

(b) Determine the bandwidth by transmitting only those side frequencies whose ampli-
tudes exceed 1 percent of the unmodulated carrier amplitude. Use the universal curve
of Figure 2.26 for this calculation.

(c) Repeat your calculations, assuming that the amplitude of the modulating signal is

. doubled.

(d) Repeat your calculations, assuming that the modulation frequency is doubled.

Consider a wideband PM signal produced by a sinusoidal modulating wave

A,, cos(2mf,,t), using a2 modulator with a phase sensitivity equal to k, radians per volt.

(a) Show that if the maximum phase deviation of the PM signal is large compared with
one radian, the bandwidth of the PM SJgnal varies linearly with the modulation fre-
quency f.

(b) Compare this characteristic of a wideband PM signal with that of a wideband FM
signal.

Figure P2.35 shows the block diagram of a real-time spectrum analyzer working on the

principle of frequency modulation. The given signal g(¢) and a frequency-modulated signal

s(t) are applied to a multiplier and the output g{#)s(#) is fed into a filter of impulse response

b(t). The s(t) and h(2) are linear FM signals whose instantaneous frequencies vary linearly

with time at opposite rates, as shown by

s(t) = cos(2mf,t — wkt?)

h(t) = cos(2mf.t + mki?)
where k is a constant. Show that the envelope of the filter output is proportional to the
magnitude spectrum of the input signal g(#) with k¢ playing the role of frequency f. Hint:

Use the complex notations described in Appendix 2 for the analysis of band-pass signals
and band-pass filters.

JA0] Filter f—> Output

540
FIGURE P2.35
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2.36 An FM signal with a frequency deviation of 10 kHz at a modulation frequency of § kH,
is applied to two frequency multipliers connected in cascade. The first multiplier doubleg
the frequency and the second multiplier triples the frequency. Determine the frequency
deviation and the modulation index of the FM signal obtained at the second multiplie,
output. What is the frequency separation of the adjacent side frequencies of this F\
signal?

2.37 Figure P2.37 shows the block diagram of a wideband frequency modulator using the
indirect method. This modulator is used to transmit audio signals containing frequencies
in the range of 100 Hz to 15 kHz. The narrowband phase modulator is supplied with 4
carrier of frequency f; = 0.1 MHz by a crystal-controlled oscillator. A second crystal-
controlled oscillator supplies a sinusoidal wave of frequency 9.5 MHz to the mixer. The
system specifications are as follows:

Carrier frequency at the transmitter output, f, = 100 MHz

Minimum frequency deviation, Af = 75 kHz

Maximum modulation index in the phase modulator = 0.3 radians

{a) Calculate the frequency multiplication ratios #, and #, (preceding and following the
mixer), which will satisfy these specifications.

{b) Specify the values of the carrier frequency and frequency deviation at the various
points in the modulator of Figure P2.37.

Narrowband Frequency Frequency '
Ba:feszrd Integrator phase- multiplier Mixer —= multiplier siF’:i i
8! modutator ny ny ena

f =01 MHz f,=9.5MHz
Crystal- Crystal-
contrelled controlled
oscillator oscillator
FiGURe P2.37

2.38 Figure P2.38 shows the frequency-determining network of a voltage-controlled oscillator.
Frequency modulation is produced by applying the modulating signal A,, sin(27f,.+) plus
a bias V, to a pair of varactor diodes connected across the parallel combination of a
200-uH inductor and 100-pF capacitor. The capacitor of each varactor diode is related
to the voltage V (in volts) applied across its electrodes by

C = 100V "2 pF

The unmodulated frequency of oscillation is 1 MHz. The VCO output is applied to a
frequency multiplier to produce an FM signal with a carrier frequency of 64 MHz anda
modulation index of 5. Determine (a) the magnitude of the bias voltage V,, and (b) the
amplitude A,, of the modulating wave, given that f,, = 10 kHz.

—MW—o

pF
* Vi + Ay, sin (2mf,1)
. Q

Ficure P2.38
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2.39 The FM signal

s(t) = A, cos|:27rfct + 2mks J: m(7) d7:|

is applied to the system shown in Figure P2.39 consisting of a high-pass RC filter and an
envelope detector. Assume that (a) the resistance R is small compared with the reactance
of the capacitor C for all significant frequency components of s(z), and (b) the envelope
detector does not load the filter. Determine the resulting signal at the envelope detector
output, assuming that k¢ |m(t)| < f, for all .

C
o— N
FM wave R Envelope Output
s(f) detector signal
—0
FIGuRE P2.39

2.40 Consider the frequency demodulation scheme shown in Figure P2.40 in which the incom-~

2.41

ing FM signal s(#) is passed through a delay line that produces a phase-shift of #/2 radians
at the carrier frequency f.. The delay-line output is subtracted from the incoming FM
signal, and the resulting composite signal is then envelope-detected. This demodulator
finds application in demodulating microwave FM signals. Assuming that

s(t) = A, cos[2nf.t + B sin{27f,,t)]

analyze the operation of this demodulator when the modulation index 8 is less than unity
and the delay T produced by the delay line is sufficiently small to justify making the
approximations

cos(27f,, T) = 1
and
sin27f,, T) = 2nf,, T

FM
wave

s

Envelope > Output
detector signat

FIGURE P2.40

Figure 2.41 shows the block diagram of a zero-crossing detector for demodulating an FM

signal. It consists of a limiter, a pulse generator for producing a short pulse at each zero-

crossing of the input, and a low-pass filter for extracting the modulating wave.

{a) Show that the instantaneous frequency of the input FM signal is proportional to the
number of zero crossings in the time interval ¢ — (Ty/2) to ¢t + (T4/2), divided by T;.
Assume that the modulating signal is essentially constant during this time interval.
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(b) Illustrate the operation of this demodulator, using the sawtooth wave of Figure P23y
as the modulating wave.

FM Limiter Pulse Low-pass Output
wave generator filter signat

FIGURE P2.41

2.42 Suppose that the received signal in an FM system contains some residual amplitude mod.
ulation of positive amplitude (), as shown by

s(t) = a(t) cos[2mf.t + ¢(t)]

where f, is the carrier frequency. The phase ¢ (1) is related to the modulating signal (g
by

&(t) = 2mky L mir) dr

where k; is a constant. Assume that the signal s(t) is restricted to a frequency band of
width B, centered at f., where By is the transmission bandwidth of the FM signal in the
absence of amplitude modulation, and that the amplitude modulation is slowly varying
compared with ¢(t). Show that the output of an ideal frequency discriminator produced
by s{z) is proportional to a(t)m(t). Hint: Use the complex notation described in Appendix
2 to represent the modulated wave s(t).

2.43 (a) Let the modulated wave s(z) in Problem 2.42 be applied to a hard limiter, whosé
output z(z) is defined by '
‘ z(t) = sgnls(z)]
+1, s(ty >0
-1, s <0
Show that the limiter output may be expressed in the form of a Fourier series as
follows:

_A s 1y

2lt) = — 20 1 cos[2mf.t(2n + 1) + (21 + Do(2)]

(b) Suppose that the limiter output is applied to a band-pass filter with a passband mag:-
nitude response of one and bandwidth By centered about the carrier frequency f,
where By is the transmission bandwidth of the FM signal in the absence of amplitude
modulation. Assuming that £, is much greater than By, show that the resulting filter
output equals

yt) = %cos[lﬂtrfct + ¢(t)]

By comparing this output with the original modulated signal s(z) defined in Problem
2.42, comment on the practical usefulness of the result.

2.44 (a) Consider an FM signal of carrier frequency f., which is produced by a modulating
signal m(t). Assume that f, is large enough to justify treating this FM signal as 2
narrowband signal. Find an approximate expression for its Hilbert transform.

{b) For the special case of a sinusoidal modulating wave m(t) = A,, cos(27f,.t), find the
exact expression for the Hilbert transform of the resulting FM signal. For this casé;
what is the error in the approximation used in part (a)?
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2.45 The single sideband version of angle modulation is defined by

s(t) = expl=(A)] cosl2mf.t + ()]
where &(t) is the Hilbert transform of the phase function (), and £, is the carrier
frequency.
(a) Show that the spectrum of the modulated signal s(¢) contains no frequency compo-
nents in the interval —f, < f < f,, and is of infinite extent. ’
{(b) Given that the phase function

¢(t) = B sin(2wf1)

where B is the modulation index and f;, is the modulation frequency, derive the
corresponding expression for the modulated wave s(#).

Note: For Problems 2.44 and 2.45, you need to refer to Appendix 2 for a treatment of
the Hilbert transform.

Neise in CW Modulation Systems

2.46 A DSB-5C modulated signal is transmitted over a noisy channel, with the power spectral
density of the noise being as shown in Figure P2.46. The message bandwidth is 4 kHz
and the carrier frequency is 200 kHz. Assuming that the average power of the modulated
wave is 10 watts, determine the output signal-to-noise ratio of the receiver.

Snif)
W/Hz

KH
7700 ) aop S

Ficure P2.46

2.47 Evaluate the autocorrelation functions and cross-correlation functions of the in-phase and
quadrature components of the narrowband noise at the coherent detector input for
(a) the DSB-SC system, (b) an SSB system using the lower sideband, and (c) an SSB system
using the upper sideband.

2.48 1In a recciver using coherent detection, the sinusoidal wave generated by the local oscillator
suffers from a phase error 6(t) with respect to the carrier wave cos{27f.t). Assuming that
6(z) is a sample function of a zero-mean Gaussian process of variance o5, and that most
of the time the maximum value of 8{¢) is small compared with unity, find the mean-square
error of the receiver output for DSB-SC modulation. The mean-square error is defined as
the expected value of the squared difference between the receiver output and the message
signal component of the receiver output.

2.49 Following a procedure similar to that described in Section 2.11 for the DSB-SC receiver,
extend this noise analysis to a SSB receiver. Specifically, evaluate the following:
(a) The output signal-to-noise ratio.
(b) The channel signal-to-noise ratio.
Hence, show that the figure of merit for the SSB receiver is exactly the same as that for
the DSB-SC receiver. Note that unlike the DSB-SC receiver, the midband frequency of the
spectral density function of the narrowband-filtered noise at the front end of the SSB
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receiver is offset from the carrier frequency f. by an amount equal to W/2, where W j,
the message bandwidth.
2.50 Let a message signal #2(t) be transmitted using single-sideband modulation. The powe,

spectral density of m(z) is

L ifl=w

Sulf) = W’

0, otherwise

where @ and W are constants. White Gaussian noise of zero mean and power spectra]

density Ng/2 is added to the SSB modulated wave at the receiver input. Find an expression
for the output signal-to-noise ratio of the receiver.

2.51 Consider the output of an envelope detector defined by Equation (2.92), which is repro.
duced here for convenience
y(t) = {[A, + Akan(t) + m(OF + mp ()"
(a) Assume that the probability of the event
|n(t)| > eA |1 + kmiz)
is equal to or less than 8, where & << 1. What is the probability that the effect of
the quadrature component (2} is negligible?

(b) Suppose that k, is adjusted relative to the message signal m(t) such that the probability
of the event

Al + km{t)] + ny(t) <O
is equal to 8. What is the probability that the approximation
y(t) = Al + kan(t)] + ni{t)

is valid?
(¢) Comment on the significance of the result in part (b) for the case when 8, and 8, are
both small compared with unity.

2.52 An unmodulated carrier of amplitude A, and frequency f. and band-limited white noise
are summed and then passed through an ideal envelope detector. Assume the noise spec-
tral density to be of height Ny/2 and bandwidth 2 W, centered about the carrier frequency
.. Determine the output signal-to-noise ratio for the case when the carrier-to-noise ratio
is high.

2.53 Let R denote the random variable obtained by observing the output of an envelope de-
tector at some fixed time. Intuitively, the envelope detector is expected to be operating
well into the threshold region if the probability that the random variable R exceeds the
carrier amplitude A, is 0.5. On the other hand, if this same probability is only 0.01, the
envelope detector is expected to be relatively free of loss of message and the threshold
effect.

{a) Assuming that the narrowband noise at the detector input is white, zero-mean, Gaus-
sian with spectral density Ny/2 and the message bandwidth is W, show that the prob-
ability of the event R = A_ is

PR = A,) = exp(— p)
where p is the carrier-to-noise ratio:
A?
T 4WN,

(b} Using the formula for this probability, calculate the carrier-to-noise ratio when (1} the
envelope detector is expected to be well into the threshold region, and (2) itis expected
to be operating satisfactorily.

p



2.54

2.55

2.56

2.57

2.58

Problems 181

Consider a phase modulation (PM) system, with the modulated wave defined by
s() = A, cos[2mft + kym(t)]

where k,, is a constant and m(¢) is the message signal. The additive noise n(t) at the phase
detector input is

n{t) = n(t) cos(2mf.t) — ng(t) sin(2wf.t)

Assuming that the carrier-to-noise ratio at the detector input is high compared with unity,
determine (a) the output signal-to-noise ratio and (b) the figure of merit of the system.
Compare your results with the FM system for the case of sinusoidal modulation.

An FDM system uses single-sideband modulation to combine 12 independent voice signals
and then uses frequency modulation to transmit the composite baseband signal. Each
voice signal has an average power P and occupies the frequency band 0.3 to 3.4 kHz; the
system allocates it a bandwidth of 4 kHz. For each voice signal, only the lower sideband
is transmitted. The subcarrier waves used for the first stage of modulation are defined by

cp(t) = A, cos{2akfot), 0=k=11

The received signal consists of the transmitted FM signal plus white Gaussian noise of

zero mean and power spectral density Np/2.

(a) Sketch the power spectral density of the signal produced at the frequency discrimi-
nator output, showing both the signal and noise components.

{b) Find the relationship between the subcarrier amplitudes A, so that the modulated
voice signals have equal signal-to-noise ratios.

In the discussion on FM threshold effect presented in Section 2.13, we described the
conditions for positive-going and negative-going clicks in terms of the envelope #{) and
phase ¢(#) of the narrowband noise #(t). Reformulate these conditions in terms of the in-
phase component #,(t) and quadrature component #5(¢) of n(¢).

By using the pre-emphasis filter shown in Figure 2.50a and with a voice signal as the
modulating wave, an FM transmitter produces a signal that is essentially frequency-
modulated by the lower audio frequencies and phase-modulated by the higher audio
frequencies. Explain the reasons for this phenomenon.

Suppose that the transfer functions of the pre-emphasis and de-emphasis filters of an FM
system are scaled as follows:

i)
Hee(f) (1 + f

and

1 1
Hylf) = 7 (1+—lflfu)

The scaling factor k is to be chosen so that the average power of the emphasized message

signal is the same as that of the original message signal m(t).

(a) Find the value of k that satisfies this requirement for the case when the power spectral
density of the message signal m(#) is

So
Sulf) =1+ (fife)”

0, elsewhere

~W=f=W

(b) What is the corresponding value of the improvement factor I produced by using this
pair of pre-emphasis and de-emphasis filters? Compare this ratio with that obtained
in Example 2.6. The improvement factor I is defined by Equation {2.160).
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2.59 A phase modulation (PM) system uses a pair of pre-emphasis and de-emphasis filery
defined by the transfer functions

Hu = 1+4
and
R
) = T3 Gfif

Show that the improvement in output signal-to-noise ratio produced by using this pair of
filters is

= Wifo
tan~ Y (W/f,)
where W is the message bandwidth. Evaluate this improvement for the case wheg

W = 15 kHz and f, = 2.1 kHz, and compare your result with the corresponding value
for an FM system.

Computer Experiments

2.60 In this experiment we study the behavior of the envelope detector shown in Figure P2,§
for the following specifications:
Source resistance, R, = 75 {}
Load resistance, R; = 10 kQ2
Capacitance, C = 0.01uF
The diode has a resistance of 25 © when it is forward-biased and infinite resistance when
reverse-biased.

Compute the waveform of the envelope detector output, assuming an input sinu:
soidal AM wave with 50 percent modulation. The modulation frequency is 1 kHz, and
the carrier frequency is 20 kHz.

2.61 In this experiment we continue the study of the phase-locked loop considered in Section
2.14:

{a) Compute variations in the instantaneous frequency of the voltage-controlled oscillator
i the loop for the following loop parameters:

50
Loop-gain parameter, K, = 27; Hz
Natural fr ncy, f, = L Hz
atural frequency, j, = 77

Damping factor, { = 0.707
Perform the computations for the following values of frequency step: Af = 0.125,

0.5 7 %Hz.

12’3

{b) For the parameters of the phase-locked loop as specified in Experiment 2 in Section
2.14, compute how variations in the relative frequency deviation Af - foulf? affect
the peak phase error of the phase-locked loop.



PULSE MODULATION

This chapter, representing the transition from analog to digital communications, covers
the following topics:

p Sampling, which is basic to all forms of pulse modulation.
» Pulse-amplitude modulation, which is the simplest form of pulse modulation.

» Quantization, which, when combined with sampling, permits the representation of an
analog signal in discrete form in both amplitude and time.

» Pulse-code modulation, which is the standard method for the transmission of an analog
message signal by digital means.

» Time-division multiplexing, which provides for the time sharing of a common channel by
4 plurality of users by means of pulse modulation. '

» Digital multiplexers, which combine many slow bit streams into a single faster stream.

» Other forms of digital pulse modulation, namely, delta modulation and differential pulse-
code modulation.

P Linear prediction, which is basic to the encoding of analog message signals at reduced bit
rates as in differential pulse-code modulation.

P Adaptive forms of differential pulse-code modulation and delta modulation.

P The MPEG-1/audio coding standard, which is a transparent, perceptually lossless
compression system.

l} 1 Introduction

In continuous-wave (CW) modulation, which we studied in Chapter 2, some parameter
of a sinusoidal carrier wave is varied continuously in accordance with the message signal.
This is in direct contrast to pulse modulation, which we study in the present chapter. In
pulse modulation, some parameter of a pulse train is varied in accordance with the message
signal. We may distinguish two families of pulse modulation: analog pulse modulation
and digital pulse modulation. In analog pulse modulation, a periodic pulse train is used
as the carrier wave, and some characteristic feature of each pulse (e.g., amplitude, duration,
or position) is varied in a continuous manner in accordance with the corresponding sample
value of the message signal. Thus in analog pulse modulation, information is transmitted
basically in analog form, but the transmission takes place at discrete times. In digital pulse
modulation, on the other hand, the message signal is represented in a form that is discrete
in both time and amplitude, thereby permitting its transmission in digital form as a se-
quence of coded pulses; this form of signal transmission has no CW counterpart.

183
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The use of coded pulses for the transmission of analog information-bearing 5ignals
represents a basic ingredient in the application of digital communications. This chapte,
may therefore be viewed as a transition from analog to digital communications in gy,
study of the principles of communication systems. We begin the discussion by describi;lg
the sampling process, which is basic to all pulse modulation systems, whether they gy,
analog or digital.

§ 3.2 Sampling Process

The sampling process is usually described in the time domain. As such, it is an operatioy
that is basic to digital signal processing and digital communications. Through use of the
sampling process, an analog signal is converted into a corresponding sequence of samples
that are usually spaced uniformly in time. Clearly, for such a procedure to have practica|
utility, it is necessary that we choose the sampling rate properly, so that the sequence of
samples uniquely defines the original analog signal, This is the essence of the sampling
theorem, which is derived in what follows.

Consider an arbitrary signal g(¢) of finite energy, which is specified for all time. A
segment of the signal g(¢) is shown in Figure 3.1a4. Suppose that we sample the signal g{¢)
instantaneously and at a uniform rate, once every T, seconds. Consequently, we obtain an
infinite sequence of samples spaced T, seconds apart and denoted by {g(#T,)}, where
takes onall possible integer values. We refer to T, as the sampling period, and to its
reciprocal f;, = 1/T, as the sampling rate. This ideal form of sampling is called instantaneous
sampling.

Let g5(t) denote the signal obtained by individually weighting the elements of a pe-
riodic sequence of delta functions spaced T, seconds apart by the sequence of numbers
{g(nT,)}, as shown by (see Figure 3.1b)

@

glt) = > gnT) 8t — nT.) (3.9)

=

We refer to g;(t) as the ideal sampled signal. The term 8(t — nT,) represents a delta function
positioned at time ¢ = #T.. From the definition of the delta function, we recall that such
an idealized function has unit area; see Appendix 2. We may therefore view the multiplying
factor g(nT,) in Equation (3.1) as a “mass™ assigned to the delta function §(t — #T,). A
delta function weighted in this manner is closely approximated by a rectangular pulse of

8@ g5

AR
T~ ST

(a) ®»

. b

FicuRE 3.1 The sampling process. (z) Analog signal. (b) Instantaneously sampled version of the
analog signal.



R 3.2 Sampling Process 185
duration At and amplitude g(nT)/At; the smaller we make At the better will be the
approximation.

Using the table of Fourier-transform pairs, we may write (see the last item of Table
A6.3)

gt =f X GIf —mf) (3:2)
where G(f) is the Fourier transform of the original signal g(¢), and f, is the sampling rate.
Equation (3.2) states that the process of uniformly sampling a continuous-time signal of
finite energy results in a periodic spectrum with a period equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled signal g5(t)
may be obtained by taking the Fourier transform of both sides of Equation (3.1) and noting
that the Fourier transform of the delta function 8(t — #T,) is equal to exp(—j27nfT,). Let
G4(f) denote the Fourier transform of g,(t). We may therefore write

Go(f) = 2 g(nT.) exp(~j2mnfT,) 3.3)
This relation is called the discrete-time Fourier transform. It may be viewed as a complex
Fourier series representation of the periodic frequency function G(f), with the sequence
of samples {g(#nT,)} defining the coefficients of the expansion.

The relations, as derived here, apply to any continuous-time signal g(¢) of finite
energy and infinite duration. Suppose, however, that the signal g(z} is strictly band-limited,
with no frequency components higher than W Hertz. That is, the Fourier transform G(f)
of the signal g(¢) has the property that G(f) is zero for | f| = W, as illustrated in Figure
3.2a; the shape of the spectrum shown in this figure is intended for the purpose of illus-
tration only. Suppose also that we choose the sampling period T, = 1/2W. Then the
corresponding spectrum G4(f) of the sampled signal gs(¢} is as shown in Figure 3.25.
Putting T, = 1/2W in Equation (3.3) yields

cif = 3 o) ew(-2) 6.4

From Equation (3.2), we readily see that the Fourier transform of g,(t) may also be
expressed as

Gif) = £GP + £, S GIf - mf) 6.5

7R o2

(a} (b

FIGURE 3.2 (a) Spectrum of a strictly band-limited signal g(t). (b) Spectrum of the sampled
version of g(t) for a sampling period T, = 1/2W.
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Hence, under the following two conditions:

1. Gif)y=0for|[fl=W
2. f.=2W
we find from Equation (3.5) that

1
Gf) = 35 Glf),  ~W<f<W (.4)
Substituting Equation (3.4) into (3.6), we may also write
L3 _jmnf -
G(f) = 35 2 g(zw) exp( W ) W<f<w (3.7)

Therefore, if the sample values g(n/2W) of a signal g() are specified for all #, then the
Fourier transform G{f) of the signal is uniquely determined by using the discrete-time
Fourier transform of Equation (3.7). Because g(r) is related to G(f) by the inverse Fourier
transform, it follows that the signal g(r) is itself uniquely determined by the sample values
g(n/2W) for —= < n< = In other words, the sequence {g{n/2W)} has all the information
contained in g(f).

Consider next the problem of reconstructing the signal g(t) from the sequence of
sample values {g(#/2W)}. Substituting Equation (3.7) in the formula for the inverse Fourier
transform defining g(¢) in terms of G(f), we get

gty = Lﬂ G(f) exp(j2mft) df

- jwﬁ 3 g(z%l) exp(-’lw’j—f) exp(j2mft) df

Interchanging the order of summation and integration:

e n 1 (¥ ) n -
glt) = n;;m 8l ow ﬁﬁw exp| i2mf|t — 55y af (3.8

The integral term in Equation (3.8) is readily evaluated, yielding the final result

oS 7 ) sin@rWE — nm)
g(t) = n=2—-oc g(ZW) (Zq'rWl‘ e 1177) (3 9)

= n:E_m g(ﬁ) SincQWr — n), —w<t<o
Equation (3.9) provides an interpolation formula for reconstructing the original signal g{f)
from the sequence of sample values {g(n/2W)}, with the sinc function sinc{2 W) playing
the role of an interpolation function. Bach sample is multiplied by a delayed version of
the interpolation function, and all the resulting waveforms are added to obtain g(z).

We may now state the sampling theorem for strictly band-limited signals of finite
energy in two equivalent parts, which apply to the transmitter and receiver of a pulse-
modulation system, respectively:

1. A band-limited signal of finite energy, which has no frequency components higher
than W Hertz, is completely described by specifying the values of the signal at instans
of time separated by 1/2W seconds.

2. A band-limited signal of finite energy, which bas no frequency components higher
than W Hertz, may be completely recovered from a knowledge of its samples taket.
at the rate of 2W samples per second.
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FIGURE 3.3  (a) Spectrum of a signal. (b) Spectrum of an undersampled version of the signal
exhibiting the aliasing phenomenon.

The sampling rate of 2W samples per second, for a signal bandwidth of W Hertz, is called
the Nyquist rate; its reciprocal 1/2W (measured in seconds) is called the Nyguist interval.

The derivation of the sampling theorem, as described herein, is based on the as-
sumption that the signal g(z) is strictly band limited. In practice, however, an information-
bearing signal is not strictly band limited, with the result that some degree of undersam-
pling is encountered. Consequently, some aliasing is produced by the sampling process.
Aliasing refers to the phenomenon of a high-frequency component in the spectrum of the
signal seemingly taking on the identity of a lower frequency in the spectrum of its sampled
version, as illustrated in Figure 3.3. The aliased spectrum, shown by the solid curve in
Figure 3.3, pertains to an “undersampled” version of the message signal represented by
the spectrum of Figure 3.34.

To combat the effects of aliasing in practice, we may use two corrective measures,
as described here:

1. Prior, to sampling, a low-pass anti-aliasing filter is used to attenuate those high-
frequency components of the signal that are not essential to the information being
conveyed by the signal.

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect of
easing the design of the reconstruction filter used to recover the original signal from its
sampled version. Consider the example of a message signal that has been anti-alias (low-
pass) filtered, resulting in the spectrum shown in Figure 3.44. The corresponding spectrum
of the instantaneously sampled version of the signal is shown in Figure 3.4, assuming a
sampling rate higher than the Nyquist rate. According to Figure 3.4b, we readily see that
the design of the reconstruction filter may be specified as follows (see Figure 3.4¢):

& The reconstruction filter is low-pass with a passband extending from —W to W,
which is itself determined by the anti-aliasing filter.

# The filter has a transition band extending (for positive frequencies) from Wto f, — W,
where f; is the sampling rate.
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FiGURE 3.4 () Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum of
instantaneously sampled version of the signal, assuming the use of a sampling rate greater than
the Nyquist rate. (¢) Magnitude response of reconstruction filter.

The fact that the reconstruction filter has a well-defined transition band means that it is
physically realizable.

1 3.3 Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define pulse-amplitude modulation, which is the simplest and most basic form of analog
pulse modulation. In pulse-amplitude. modulation (PAM), the amplitudes of regulorly
spaced pulses are varied in proportion to the corresponding sample values of a continuous
message signal; the pulses can be of a rectangular form or some other appropriate shape.
Pulse-amplitude modulation as defined here is somewhat similar to natural sampling
where the message signal is multiplied by a periodic train of rectangular pulses. Howevet,
in natural sampling the top of each modulated rectangular pulse varies with the message
signal, whereas in PAM it is maintained flat; natural sampling is explored further in Prob-
lem 3.2.

The waveform of a PAM signal is illustrated in Figure 3.5. The dashed curve in this
figure depicts the waveform of a message signal m(t), and the sequence of amplitude-
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2

FIGURE 3.5 Flat-top samples, representing an analog signal.

modulated rectangular pulses shown as solid lines represents the corresponding PAM sig-
nal s(t). There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal m(t) every T, seconds, where the sam-
pling rate f; = 1T, is chosen in accordance with the sampling theorem.

2. Lengthening the duration of each sample so obtained to some constant value T,

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is
to avoid the use of an excessive channel bandwidth, since bandwidth is inversely propor-
tional to pulse duration. However, care has to be exercised in how long we make the
sample duration T, as the following analysis reveals.

Let s(z) denote the sequence of flat-top pulses generated in the manner described in
Figure 3.5. We may express the PAM signal as

%0

s(t) = > mnT)hit — nT,) (3.10)

prE——

where T, is the sampling period and m(nT.) is the sample value of (t) obtained at tirme
¢ = nT,. The h(t) is a standard rectangular pulse of unit amplitude and duration T, defined
as follows (see Figure 3.64):
, 0<t<T
hit) =43 t=0,t=T (3.11)
0, otherwise

By definition, the instantaneously sampled version of (#) is given by

@

mat) = > minT,) 8(t— nT,) (3.12)
where 8(t — #T,) is a time-shifted delta function. Therefore, convolving m,(t) with the
pulse h(z), we get

mg(t) K h(t) = f_m ms{)h(t — 7) dr ;
= fm i m(nT,) 8(tr — nT)hit — 7) dr (3.13)

B p=—

If

> mnT) f 8(r — nT)h(t — 1) dr

n=—cc
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FIGURE 3.6 (2) Rectangular pulse h(z). (b) Spectrum H(f), made up of the magpitude [H,
and phase arg[H(f)].
Using the sifting property of the delta function {see Appendix 2), we thus obtain
malt) * b5y = 2, mnT)h(t — #T) (3.14)

From Equations {3.10) and (3.14) it follows that the PAM signal s(t) is mathematically
equivalent to the convolution of ms(t), the instantaneously sampled version of m(t), and
the pulse h{t), as shown by

s{t) = ms(t) % b(?) (3.15)
Taking the Fourier transform of both sides of Equation (3.15) and recognizing that

the convolution of two time functions is transformed into the multiplication of their re-
spective Fourier transforms, we get

5(f) = Ms{(f)H(S) (3.16)

where S{f) = Fls(t)], Ma(f) = Flmg(t)], and H(f) = F[b{t)]. Adapting Equation (3.2)w
the problem at hand, we note that the Fourier transform M,(f) is related to the Fourier
transform M(f) of the original message signal m(z) as follows:

Mdf) = £ S M - kf) (3.1)
k

=00

where f, is the sampling rate. Therefore, substitution of Equation (3.17) into (3.16) yields

S(f) = f. kE M(f — Rf)H(S) (3.18)

=——

Given a PAM signal s(¢) whose Fourier transform S(f) is as defined in Equatio
(3.18), how do we recover the original message signal m(t)? As a first step in this recor
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Message

PAM signal Reconstruction
> signal m(2)

50 filter Equalizer  —s-

Ficure 3.7 System for recovering message signal m(t) from PAM signal s(#),

struction, we may pass s(z) through a low-pass filter whose frequency response is defined
in Figure 3.4¢; here it is assumed that the message is limited to bandwidth W and the
sampling rate f; is larger than the Nyquist rate 2W. Then, from Equation (3.18) we find
that the spectrum of the resulting filter output is equal to M(f)H(f). This output is equiv-
alent to passing the original message signal m(z) through another low-pass filter of fre-
quency response H(f). .

From Equation (3.11) we note that the Fourier transform of the rectangular pulse
h(t) is given by

H(f) = T sinc(fT) exp(—jfT) (3.19)

which is plotted in Figure 3.65. We see therefore that by using flat-top samples to generate
a PAM signal, we have introduced amplitude distortion as well as a delay of T/2. This
effect is rather similar to the variation in transmission with frequency that is caused by the
finite size of the scanning aperture in television. Accordingly, the distortion caused by the
use of pulse-amplitude modulation to transmit an analog information-bearing signal is
referred to as the aperture effect.

This distortion may be corrected by connecting an egualizer in cascade with the low-
pass reconstruction filter, as shown in Figure 3.7. The equalizer has the effect of decreasing
the in-band loss of the reconstruction filter as the frequency increases in such a manner as
to compensate for the aperture effect. Ideally, the magnitude response of the equalizer is
given by

1 - 1 _ wf
|H(f)|  Tsinc(fT) sin(nfT)

The amount of equalization needed in practice is usually small. Indeed, for a duty cycle
T/T, = 0.1, the amplitude distortion is less than 0.5 percent, in which case the need for
equalization may be omitted altogether.

The transmission of a PAM signal imposes rather stringent requirements on the mag-
nitude and phase responses of the channel, because of the relatively short duration of the
transmitted pulses. Furthermore, the noise performance of a PAM system can never be
better than baseband-signal transmission. Accordingly, we find that for transmission over
long distances, PAM would be used only as a means of message processing for time-
division multiplexing, from which conversion to some other form of pulse modulation is
subsequently made; time-division multiplexing is discussed in Section 3.9. '

(3.20)

| 3.4 Other Forms of Pulse Modulation

In a pulse modulation system we may use the increased bandwidth consumed by the pulses
to improve the noise performance of the system. This can be achieved by representing the
sample values of the message signals by some property of the pulse other than amplitude:

» Pulse-duration modulation (PDM), also referred to as pulse-width modulation,
where samples of the message signal are used to vary the duration of the individual
pulses in the carrier.
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» Pulse-position modulation (PPM), where the position of a pulse relative to its vy
modulated time of occurrence is varied in accordance with the message signal.

These two other forms of pulse modulation are illustrated in Figure 3.8 for the case of
sinusoidal modulating wave. - }

Tn PDM, long pulses expend considerable power while bearing no additional infoy.
mation. If this unused power is subtracted from PDM so that only time transitions are
preserved, we obtain PPM. Accordingly, PPM is a more efficient form of pulse modulatigp
than PDM.

Since in a PPM system the transmitted information is contained in the relative po.
sitions of the modulated pulses, the presence of additive noise affects the performance of
such a system by falsifying the time at which the modulated pulses are judged to occur,
Immunity to noise can be established by making the pulse build up so rapidly that the
time interval during which noise can exert any perturbation is very short. Indeed, additive
noise would have no effect on the pulse positions if the received pulses were perfectly
rectangular, because the presence of noise introduces only vertical perturbations. However,
the reception of perfectly rectangular pulses would require an infinite channel bandwidth,
which is of course impractical. Thus with a finite channel bandwidth in practice, we find
that the received pulses have a finite rise time, so the performance of the PPM receiver i
affected by noise, which is to be expected.

m{e)

(@)

Time —

(d)

FiIGURE 3.8 [Tllustrating two different forms of pulse-time modulation for the case of a sinuso”
dal modulating wave. (2) Modulating wave. (b) Pulse carrier. (c) PDM wave. (d) PPM wave.
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As in a CW modulation system, the noise performance of a PPM system may be
described in terms of the output signal-to-noise ratio (SNR). Also, to find the noise im-
provement produced by PPM over baseband transmission of a message signal, we may use
the figure of merit defined as the output signal-to-noise ratio of the PPM system divided
by the channel signal-to-noise ratio; see Section 2.10. Assuming that the average power of
the channel noise is small compared to the peak pulse power, the figure of merit of the
PPM system is proportional to the square of the transmission bandwidth B, normalized
with respect to the message bandwidth W. When, however, the input signal-to-noise ratio
drops below a critical value, the system suffers a loss of the wanted message signal at the
receiver output. That is, a PPM system suffers from a threshold effect of its own.

I 3.5 Bandwidth—Noise Trade-Off

In the context of noise performance, a PPM system is the optimum form of analog pulse
modulation. The noise analysis of a PPM system reveals that pulse-position modulation
(PPM) and frequency modulation (FM) systems exhibit a similar noise performance, as
summarized here.!

1. Both systems have a figure of merit proportional to the square of the transmission
bandwidth normalized with respect to the message bandwidth.

2. Both systems exhibit a threshold effect as the signal-to-noise ratio is reduced.

The practical implication of point 1 is that, in terms of a trade-off of increased transmission
bandwidth for improved noise performance, the best that we can do with continuous-wave
(CW) modulation and analog pulse modulation systems is to follow a square law. A ques-
tion that arises at this point in the discussion is: Can we produce a trade-off better than a
square law? The answer is an emphatic yes, and digital pulse modulation is the way to do
it. The use of such a method is a radical departure from CW modulation.

Specifically, in a basic form of digital pulse modulation known as pulse-code mod-
ulation (PCM),” a message signal is represented in discrete form in both time and ampli-
tude. This form of signal representation permits the transmission of the message signal as
a sequence of coded binary pulses. Given such a sequence, the effect of channel noise at
the receiver output can be reduced to a negligible level simply by making the average power
of the transmitted binary PCM wave large enough compared to the average power of the
noise.

Two fundamental processes are involved in the generation of a binary PCM wave:
sampling and quantization. The sampling process takes care of the discrete-time represen-
tation of the message signal; for its proper application, we have to follow the sampling
theorem described in Section 3.2. The quantization process takes care of the discrete-
amplitude representation of the message signal; quantization is a new process, the details
of which are described in the next section. For now it suffices to say that the combined
use of sampling and quantization permits the transmission of a message signal in coded
form. This, in turn, makes it possible to realize an exponential laww for the bandwidth-
noise trade-off, which is also demonstrated in the next section.

I& Quantization Process’

A continuous signal, such as voice, has a continuous range of amplitudes and therefore its
samples have a continuous amplitude range. In other words, within the finite amplitude
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FIGURE 3.9 Description of a memoryless quantizer.

range of the signal, we find an infinite number of amplitude levels. It is not necessary ip
fact to transmit the exact amplitudes of the samples. Any human sense (the ear or the ey},
as ultimate receiver, can detect only finite intensity differences. This means that the original
continuous signal may be approximated by a signal constructed of discrete amplitudes
selected on a minimum error basis from an available set. The existence of a finite number
of discrete amplitude levels is a basic condition of pulse-code modulation. Clearly, if we
assign the discrete amplitude levels with sufficiently close spacing, we may make the ap.
proximated signal practically indistinguishable from the original continuous signal.

Amplitude quantization is defined as the process of transforming the sample ampli.
tude m(nT,) of a message signal m(t) at time t = 1, into a discrete amplitude v (nT,) taken
from a finite set of possible amplitudes. We assume that the quantization process is
memoryless and instantaneous, which means that the transformation at time ¢ = nT, i
not affected by earlier or later samples of the message signal. This simple form of scalar
quantization, though not optimum, is commonly used in practice.

When dealing with a memoryless quantizer, we may simplify the notation by drop-
ping the time index. We may thus use the symbol # in place of m(nT), as indicated in the
block diagram of a quantizer shown in Figure 3.94. Then, as shown in Figure. 3.9b, the
signal amplitude # is specified by the index k if it lies inside the partition cell

St I < m < 1y, k=1,2,...,L (3.21)

where L is the total number of amplitude levels used in the quantizer. The discrete ampli-
tudes m, k = 1, 2, ..., L, at the quantizer input are called decision levels or decision
thresholds. At the quantizer output, the index k is transformed into an amplitude v, that
represents all amplitudes of the cell §,; the discrete amplitudes v, k =1, 2,..., L, are
called representation levels or reconstruction levels, and the spacing between two adjacent
representation levels is called a quantum or step-size. Thus, the quantizer output v equals
v, if the input signal sample m belongs to the interval $,. The mapping (see Figure 3.94)

v = g(m) (3.22)

is the quantizer characteristic, which is a staircase function by definition.

Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the
representation levels are uniformly spaced; otherwise, the quantizer is nonuniform. In this
section, we consider only uniform quantizers; nonuniform quantizers are considered in
Section 3.7. The quantizer characteristic can also be of midtread or midrise type. Figure
3.104 shows the input—output characteristic of a uniform quantizer of the midtread type;
which is so called because the origin lics in the middle of a tread of the staircaselike graph.
Figure 3.10b shows the corresponding input—output characteristic of a uniform quantizef
of the midrise type, in which the origin lies in the middle of a rising part of the staircaselike
graph. Note that hoth the midtread and midrise types of uniform quantizers illustrared it
Figure 3.10 are symmetric about the origin.
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FIGURE 3.10 Two types of quantization: (a) midtread and (b) midrise.

2 QUANTIZATION NOISE

The use of quantization introduces an error defined as the difference between the input
signal s and the output signal v. The error is called quantization noise. Figure 3.11 illus-
trates a typical variation of the quantization noise as a function of time, assuming the use
of a uniform quantizer of the midtread type.

Let the quantizer input » be the sample value of a zero-mean random variable M.
(If the input has a nonzerc mean, we can always remove it by subtracting the mean from
the input and then adding it back after quantization.) A quantizer g{*) maps the input

1 Input wave

2 Quantized output
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curves 1 & 2
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FIGURE 3.11 [llustration of the quantization process. (Adapted from Bennett, 1948, with
permission of AT&T.)
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random variable M of continuous amplitude into a discrete random variable V; thejr
respective sample values and v are related by Equation (3.22). Let the quantization errg,
be denoted by the random variable Q of sample value g. We may thus write

g=m=-v (3.23
or, correspondingly,
Q=M-V (3.24)

With the input M having zero mean, and the quantizer assumed to be symmetric as iy
Figure 3.10, it follows that the quantizer output V and therefore the quantization error
Q, will also have zero mean. Thaus for a partial statistical characterization of the quantizer
in terms of output signal-to-(quantization) noise ratio, we need only find the mean-square
value of the quantization error Q.

Consider then an input m of continuous amplitude in the range (~#man Moy,
Assuming a uniform quantizer of the midrise type illustrated in Figure 3.10b, we find that
the step-size of the quantizer is given by

2Max
A= (3.25)
where L is the total number of representation levels. For a uniform quantizer, the quan-
tization error O will have its sample values bounded by —A/2 = g =< A/2.1f the step-size
A is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable, and the interfering effect of the quantization noise on the quantizer input is similar
to that of thermal noise. We may thus express the probability density function of the
quantization error Q) as follows:
1 A = A
foley =13 279172 (3.26)
g, otherwise

For this to be true, however, we must ensure that the incoming signal does not overload
the quantizer. Then, with the mean of the quantization error being zero, its variance o}
is the same as the mean-square value:

0% = E[Q7] (3.2

-A/2
= J_M 7*folq) dq
Substituting Equation (3.26) into (3.27), we get
o = 1 JNZ > dg
° iz o ? (3.29)
12

Typically, the L-ary number &, denoting the kth representation level of the quantizef,
is transmitted to the receiver in binary form. Let R denote the number of bits per samp
used in the construction of the binary code. We may then write

L =2F (3.29)
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or, equivalently,
R =log, L (3.30)

Hence, substituting Equation (3.29) into {3.25), we get the step size

2
A= % (3.31)

Thus the use of Equation (3.31) in (3.28) yields
0% = a2 " (3.32)

Let P denote the average power of the message signal #(t). We may then express the output
signal-to-noise ratio of a uniform quantizer as

P
(SNR)o = =)

3P
= 22R
(%)

Equation (3.33) shows that the output signal-to-noise ratio of the quantizer increases ex-
ponentially with increasing number of bits per sample, R. Recognizing that an increase in
R requires a proportionate increase in the channel (transmission) bandwidth B, we thus
see that the use of a binary code for the representation of a message signal (as in pulse-
code modulation) provides a more efficient method than either frequency modulation (FM)
or pulse-position modulation (PPM) for the trade-off of increased channel bandwidth for
improved noise performance. In making this statement, we presume that the FM and PPM
systems are limited by receiver noise, whereas the binary-coded modulation system is lim-
ited by quantization noise. We have more to say on the latter issue in Section 3.8.

(3.33)

b ExavpiE 3.1 Sinusoidal Modulating Signal

Consider the special case of a full-load sinusoidal modulating signal of amplitude A,,, which
utilizes all the representation levels provided. The average signal power is (assuming a load
of 1 ohm)

The total range of the quantizer input is 2A,,, because the modulating signal swings between
—A,, and A,,. We may therefore set #7y,, = A,,, in which case the use of Equation (3.32)
yields the average power (variance) of the quantization noise as

= 1A29—2K
DJQ = 3A52
Thus the output signal-to-noise ratio of a uniform quantizer, for a full-load test tone, is

A2 3
(SNRo = a2 =2 021 (334

Expressing the signal-to-noise ratio in decibels, we get

10 log:o(SNR), = 1.8 + 6R (3.35)
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TABLE 3.1 Signal-to-(quantization) noise ratio
for varying number of representation levels
for sinusoidal modulation

Number of
Number of Representation Bits per Signal-to-Noise
Levels, L Sample, R Ratio (dB)
32 5 31.8
64 6 37.8
128 7 43.8
256 8 49.8

For various values of L and R, the corresponding values of signal-to-noise ratio are as given
in Table 3.1. From Table 3.1 we can make a quick estimate of the number of bits per sample
required for a desired output signal-to-noise ratio, assuming sinusoidal modulation. <

Thus far in this section we have focused on how to characterize memoryless scalar
quantizers and assess their performance. In so doing, however, we avoided the optimum
design of quantizers, that is, the issue of sclecting the representation levels and partition
cells so as to minimize the average quantization power for a prescribed number of repre- ’
sentation levels. Unfortunately, this optimization problem does not lend itself to a closed-
form solution because of the highly nonlinear nature of the quantization process. Rather,
we have effective algorithms for finding the optimum design in an iterative manner. A well-
known algorithm that deserves to be mentioned in this context is the Lloyd-Max quantizer,

which is discussed next.

& CONDITIONS FOR OPTIMALITY OF SCALAR QUANTIZERS

In designing a scalar quantizer the challenge is how to select the representation levels and
surrounding partition cells so as to minimize the average quantization power for a fixed
number of representation levels.

To state the problem in mathematical terms, consider a message signal m(t) drawn
from a stationary process M(t). Let —A =m = A denote the dynamic range of m{t), which
is partitioned into a set of L cells, as depicted in Figure 3.12. The boundaries of the
partition cells are defined by a set of real numbers #14, #1, . . . 5 M43 that ' satisfy the
following three conditions:

my = —A
A
my, = mg fork=1,2,...,L
The kth partition cell is defined by
Syt my < m =<y fork=12,...,L (3.36)

I

My 1

A

my==A4  my m3 my, 1 mp, Mg =tA
| 24 >
FIGURE 3.12 Tllustrating the partitioning of the dynamic range —A = m < A of a message
signal (1) into a set of L cells.
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Let the representation levels (i.e., quantization values) be denoted by v, k = 1,2,...,L
Then, assuming that d(r, v,) denotes a distortion measure for using v, to represent all
those values of the input # that lie inside the partition cell $;, the goal is to find the two
sets, {}i-1 and {$,}f,, that minimize the average distortion

L
D=3 f dim, v)fuslm) dm (3.37)
k=1 JmESy,
where fis(m) is the probability density function of the random variable M with sample
value .
A commonly used distortion measure is

d(m, vg) = (m — v (3.38)

in which case we speak of the mean-square distortion. In any event, the optimization
problem stated herein is nonlinear, defying an explicit, closed-form solution. To get around
this difficulty, we resort to an algorithmic approach for solving the problem in an iterative
manner.

Structurally speaking, the quantizer consists of two components with interrelated
design parameters:

» An encoder characterized by the set of partition cells {$,}f_; it is located in the
transmitter.

» A decoder characterized by the set of representation levels {v,}f_; it is located in the
receiver.

Accordingly, we may identify two critically important conditions that provide the math-
ematical basis for all algorithmic solutions to the optimum quantization problem. One
condition assumes that we are given a decoder and the problem is to find the optimum
encoder in the transmitter. The other condition assumes that we are given an encoder and
the problem is to find the optimum decoder in the receiver. Henceforth, these two condi-
tions are referred to as condition I and condition II, respectively.

Condition 1. Optimality of the Encoder for a Given Decoder

The availability of a decoder means that we have a certain codebook in mind. Let the
codebook be defined by

G {vadk (3.39)

Given the codebook 6, the problem is to find the set of partition cells {$,)f-; that mini-
mizes the average distortion D. That is, we wish to find the encoder defined by the non-
linear mapping

gm)=v,, k=1,2,...,L (3.40)
such that we have
D= f d{m, glm))fulm) dM = 2 f [min dim, v)|fulm) dm  (3.41)
medy, vLEE

For the lower bound specified in Equation (3.41) to be attained, we require that the non-
linear mapping of Equation (3.40) be satisfied only if the condition

d(m, v) < d(m, v)) holds for allj # % (3.42)
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The necessary condition described in Equation (3.42) for optimality of the encoder for 5
specified codebook € is recognized as the nearest neighbor condition. In words, the neares;
neighbor condition requires that the partition cell $; should embody all those values of
the input 2 that are closer to v, than any other element of the codebook C. This optimality
condition is indeed intuitively satisfying.

Condition 11. Optimality of the Decoder for a Given Encoder

Consider next the reverse situation to that described under condition I, which may be
stated as follows: Optimize the codebook € = {v4}k=, for the decoder, given that the set
of partition cells {$ uJk, characterizing the encoder is fixed. The criterion for optimizarion
is the average (mean-square) distortion:

L

D=2 fm (m = vi)*fualrm) dm (3.43)

k=1

The probability density function fu(re) is clearly independent of the codebook €. Hence,
differentiating D with respect to the representation level v, we readily obtain

D _

L
™ ~2 kzl J’mejk (m — vg)fulm) dm (3.44)

Setting D/6vy, equal to zero and then solving for v, we obtain the optimum value

[, et don

J‘meyk fulm) dm

The denominator in Equation (3.45) is just the probability, p, that the random variable
M with sample value 7z lies in the partition cell $,, as shown by

(3.45)

Uk, opt =

pk=P(mk<M_<_mk+1)

) (3.46)
= J‘ Sulm) dm

meESy B
Accordingly, we may interpret the optimality condition of Equation {3.45) as choosing
the representation level v to equal the conditional mean of the random variable M, given
that M lies in the partition cell $,. We can thus formally stare the condition for optimality
of the decoder for a given encoder as follows:

Vi, opr = E[M|my, < M = my.] (347}

where E is the expectation operator. Equation (3.47) is also intuitively satisfying.

Note that the nearest neighbor condition {condition I) for optimality of the encoder
for a given decoder was proved for a generic average distortion. However, the conditional
mean requirement {condition II) for optimality of the decoder for a given encoder was
proved for the special case of a mean-square distortion. In any event, these two conditions
are necessary for optimality of a scalar quantizer. Basically, the algorithm for designing
the quantizer consists of alternately optimizing the encoder in accordance with condition
I, then optimizing the decoder in accordance with condition II, and continuing in this
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manner until the average distortion D reaches a minimum. An optimum quantizer designed
in this manner is called a Lloyd-Max quantizer.*

LL Pulse-Code Modulation

With the sampling and quantization processes at our disposal, we are now ready to de-
scribe pulse-code modulation, which, as mentioned previously, is the most basic form of
digital pulse modulation. In pulse-code modulation (PCM), a message signal is represented
by a sequence of coded pulses, which is accomplished by representing the signal in discrete
form in both time and amplitude. The basic operations performed in the transmitter of a
.PCM system are sampling, quantizing, and encoding, as shown in Figure 3.134; the low-
pass filter prior to sampling is included to prevent aliasing of the message signal. The
quantizing and encoding operations are usually performed in the same circuit, which is
called an analog-to-digital converter. The basic operations in the receiver are regeneration
of impaired signals, decoding, and reconstruction of the train of quantized samples, as
shown in Figure 3.13¢. Regeneration also occurs at intermediate points along the trans-
mission path as necessary, as indicated in Figure 3,135, When time-division multiplexing
is used, it becomes necessary to synchronize the receiver to the transmitter for the overall
system to operate satisfactorily, as discussed in Section 3.9. In what follows, we describe
the various operations that constitute a basic PCM system.

# SAMPLING

The incoming message signal is sampled with a train of narrow rectangular pulses so as
to closely approximate the instantaneous sampling process. To ensure perfect reconstruc-
tion of the message signal at the receiver, the sampling rate must be greater than twice the
highest frequency component W of the message signal in accordance with the sampling
theorem. In practice, a low-pass anti-aliasing filter is used at the front end of the sampler
to exclude frequencies greater than W before sampling. Thus the application of sampling

Source of .
I 3 PCM signal
ticrﬁ"t'"'-'ws' Lop/“tpe?ss — Sampler —>- Quantizer —>{ Encoder |— applied to
Zir;:aslsage channel input
{a) Transmitter
. Regenerated
Distorted PCM Regenerative Regenerative PCM signal

signal produced ==

. .
at channel output repeater

repeater applied to the

receiver

{b) Transmission path

Final . .
channel —>| Regeneration L | pooge, [ 5| Reconstruction Lol pegtination
output circuit filter

{c) Receiver

FIGURE 3.13 The basic elements of a PCM system.
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permits the reduction of the continuously varying message signal (of some finite duration)
to a limited number of discrete values per second.

QUANTIZATION

The sampled version of the message signal is then quantized, thereby providing a new
representation of the signal that is discrete in both time and amplitude. The quantization
process may follow a uniform law as described in Section 3.6. In telephonic communica.
tion, however, it is preferable to use a variable separation between the representation levels,
For example, the range of voltages covered by voice signals, from the peaks of loud talk
to the weak passages of weak talk, is on the order of 1000 to 1. By using a nonuniform
quantizer with the feature that the step-size increases as the separation from the origin of
the input—output amplitude characteristic is increased, the large end steps of the quantizer
can take care of possible excursions of the voice signal into the large amplitude ranges
that occur relatively infrequently. In other words, the weak passages, which need more
protection, are favored at the expense of the loud passages. In this way, a nearly uniform
percentage precision is achieved throughout the greater part of the amplitude range of the
inpus signal, with the result that fewer steps are needed than would be the case if a uniform
quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the baseband signal
through a compressor and then applying the compressed signal to a uniform quantizer. A
particular form of compression law that is used in practice is the so-called p-law,’ which

is defined by
o] = 0Bl * plm|)
v| =
log(1 + u)
where # and v are the normalized input and output voltages, and w is a positive constant.

In Figure 3,144, we have plotted the u-law for three different values of u. The case of
uniform quantization corresponds to & = 0. For a given value of u, the reciprocal slope

(3.48)
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FiGure 3.14 Compression laws. (2) p-law. (b) A-law.
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of the compression curve, which defines the quantum steps, is given by the derivative of
|| with respect to |¢|; that is,

dlm| _ log(1 +u)
dlv|

We see therefore that the p-law is neither strictly linear not strictly logarithmic, but it is
approximately linear at low input levels corresponding to u || << 1, and approximately
logarithmic at high input levels corresponding to || >> 1.

Another compression law that is used in practice is the so-called A-law defined by

Alm]| 1

— 0= =—
1+logd’ Iml =
1 + log(A 1

oglm) 1

1+logA A

which is plotted in Figure 3.14b for varying A. The case of uniform quantization corre-
sponds to A = 1. The reciprocal slope of this second compression curve is given by
the derivative of || with respect to |¢|, as shown by (depending on the value assigned
to the normalized input |#2|)

1+ ulml|) (3.49)

lv| = (3.50)

1+ logA 1
—e 0=|m|=-—
dm| i =3
= (3.51)
d|v| 1
1+ Alml, L= iml=1

To restore the signal samples to their correct relative level, we must, of course, use
a device in the receiver with a characteristic complementary to the compressor. Such a
device is called an expander. Ideally, the compression and expansion laws are exactly
inverse so that, except for the effect of quantization, the expander output is equal to the
compressor input. The combination of a compressor and an expander is called a
compander.

For both the p-law and A-law, the dynamic range capability of the compander im-
proves with increasing u and A, respectively. The SNR for low-level signals increases at
the expense of the SNR for high-level signals. To accommodate these two conflicting
requirements (i.e., a reasonable SNR for both low- and high-level signals), a compromise
is usually made in choosing the value of paramenter u for the y-law and parameter A for
the A-law. The typical values used in practice are: i = 255 and A = 87.6.

It is also of interest to note that in actual PCM systems, the companding circuitry
does not produce an exact replica of the nonlinear compression curves shown in Figure
3.14. Rather, it provides a piecewise linear approximation to the desired curve. By using
a large enough number of linear segments, the approximation can approach the true com-
pression curve very closely. This form of approximation is illustrated in Example 3.2.

s ENCODING

In combining the processes of sampling and quantization, the specification of a continuous
message (baseband) signal becomes limited to a discrete set of values, but not in the form
best suited to transmission over a telephone line or radio path. To exploit the advantages
of sampling and quantizing for the purpose of making the transmitted signal more robust
to noise, interference and other channel impairments, we require the use of an encoding
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TABLE 3.2 Binary number system
for R = 4 bits/sample

Ordinal Number of Level Number Expressed as Binary

Representation Level Sum of Powers of 2 Number
0 0000
1 20 0001
2 2t 0010
3 2t 4+ 20 0011
4 22 0100
5 22 +2° 0101
6 22 + 2! 0110
7 22421420 0111
8 23 1000
9 23 +2° 1001

10 23 + 27 1010
11 23 + 24+ 2° 1011
12 2% 422 1100
13 23+ 22 +2° 1101
14 23+ 22421 1110
15 2+224+4204+20 1111

process to translate the discrete set of sample values to a more appropriate form of signal,
Any plan for representing each of this discrete set of values as a particular arrangement of
discrete events is called a code. One of the discrete events in a code is called a code element
or symbol. For example, the presence or absence of a pulse is a symbol. A particular
arrangement of symbols used in a code to represent a single value of the discrete set is
called a code word or character.

Tn a binary code, each symbol may be either of two distinct values or kinds, such as
the presence or absence of a pulse. The two symbols of a binary code are customarily
denoted as 0 and 1. In a-ternary code, each symbol may be one of three distinct values ot
kinds, and so on for other codes. However, the maximum advantage over the effects of
noise in a transmission medium is obtained by using a binary code, because a binary
symbol withstands a relatively high level of noise and is easy to regenerate. Suppose that,
in a binary code, each code word consists of R bits: bit is an acronym for binary digit,
thus R denotes the number of bits per sample. Then, using such a code, we may represent
a total of 28 distinct numbers. For example, a sample quantized into one of 256 levels
may be represented by an 8-bit code word.

There are several ways of establishing a one-to-one correspondence between repre-
sentation levels and code words. A convenient method is to express the ordinal number
of the representation level as a binary number. In the binary number system, each digit
has a place-value that is a power of 2, as illustrated in Table 3.2 for the case of four bits
per sample (i.e., R = 4).

Line Codes

Any of several line codes can be used for the electrical representation of a binary
data stream. Figure 3.15 displays the waveforms of five important line codes for the ex-
ample data stieam 01101001. Figure 3.16 displays their individual power spectra (for
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FIGURE 3.15 Line codes for the electrical representations of binary data. () Unipolar NRZ
signaling. (b) Polar NRZ signaling. (c) Unipolar RZ signaling. (4) Bipolar RZ signaling.
(e) Split-phase or Manchester code.

positive frequencies) for randomly generated binary data, assuming that (1) symbols 0 and
1 are equiprobable, (2) the average power is normalized to unity, and (3) the frequency f
is normalized with respect to the bit rate 1/T},. (For the formulas used to plot the power
spectra of Figure 3.16, the reader is referred to Problem 3.11.) The five line codes illustrated
in Figure 3.15 are described here:

1. Unipolar nonreturn-to-zero (NRZ) signaling

In this line code, symbol 1 is represented by transmitting a pulse of amplitude A for the
duration of the symbol, and symbol 0 is represented by switching off the pulse, as in Figure
3.15a. This line code is also referred to as on-off signaling. Disadvantages of on-off sig-
naling are the waste of power due to the transmitted DC level and the fact that the power
spectrum of the transmitted signal does not approach zero at zero frequency.

2. Polar nonreturn-to-zero (NRZ) signaling

In this second line code, symbols 1 and 0 ate represented by transmitting pulses of ampli-
tudes +A and —A, respectively, as illustrated in Figure 3.155. This line code is relatively
easy to generate but its disadvantage is that the power spectrum of the signal is large near
zero frequency.
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FiGURE 3.16 Power spectra of line codes: () Unipolar NRZ signal. (b) Polar NRZ signal.
(c) Unipolar RZ signal. (d) Bipolar RZ signal. (e) Manchester-encoded signal. The frequency is
normalized with respect ta the bit rate 1/T;, and the average power is normalized to unity.
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3. Unipolar return-to-zero (RZ) signaling

In'this other line code, symbol 1 is represented by a rectangular pulse of amplitude A and
half-symbol width, and symbol 0 is represented by transmitting #o pulse, as illustrated in
Figure 3.15¢. An attractive feature of this line code is the presence of delta functions at
f =0, £1/T, in the power spectrum of the transmitted signal, which can be used for bit-
timing recovery at the receiver. However, its disadvantage is that it requires 3 dB more
power than polar return-to-zero signaling for the same probability of symbol error; this
issue is addressed in Chapter 4 under Problem 4.10.

4. Bipolar return-to-zero (BRZ) signaling

This line code uses three amplitude levels as indicated in Figure 3.15d. Specifically, positive
and negative pulses of equal amplitude (i.e., +A and —A) are used alternately for symbol
1, with each pulse having a half-symbol width; no pulse is always used for symbol 0. A
useful property of the BRZ signaling is that the power spectrum of the transmitted signal
has no DC component and relatively insignificant low-frequency components for the case
when symbols 1 and 0 occur with equal probability. This line code is also called alternate
mark inversion (AMI) signaling.

5. Split-phase (Manchester code)

In this method of signaling, illustrated in Figure 3.15e, symbol 1 is represented by a positive
pulse of amplitude A followed by a negative pulse of amplitude —A, with both pulses being
half-symbol wide. For symbol 0, the polarities of these two pulses are reversed. The Man-
chester code suppresses the DC component and has relatively insignificant low-frequency
components, regardless of the signal statistics. This property is essential in some
applications.

Differential Encoding

This method is used to encode information in terms of signal transitions. In partic-
ular, a transition is used to designate symbol 0 in the incoming binary data stream, while
no transition is used to designate symbol 1, as illustrated in Figure 3.17. In Figure 3.176
we show the differentially encoded data stream for the example data specified in Figure
3.17a. The original binary data stream used here is the same as that used in Figure 3.15.
The waveform of the differentially encoded data is shown in Figure 3.17c, assuming the
use of unipolar nonreturn-to-zero signaling. From Figure 3.17 it is apparent that a differ-
entially encoded signal may be inverted without affecting its interpretation. The original
binary information is recovered simply by comparing the polarity of adjacent binary sym-
bols to establish whether or not a transition has occurred. Note that differential encoding
requires the use of a reference bit before initiating the encoding process. In Figure 3.17,
symbol 1 is used as the reference bit.

{a) Original binary data 0 1 1 o 1 0 0 1

{b) Differentially encoded data 1 0 0 0 1 1 0 1 1

(c) Waveform /—‘ | —| |
Reference bit o }

FIGURE 3.17 (a) Original binary data. (b) Differentially encoded data, assuming reference bit 1.
(¢) Waveform of differentially encoded data using unipolar NRZ signaling.

Time —=
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FiGURE 3.18 Block diagram of regenerative repeater.

REGENERATION

The most important feature of PCM systems lies in the ability to control the effects of
distortion and noise produced by transmitting a PCM signal through a channel. This
capability is accomplished by reconstructing the PCM signal by means of a chain of re-
generative repeaters located at sufficiently close spacing along the transmission route. As
illustrated in Figure 3.18, three basic functions are performed by a regenerative repeater:
equalization, timing, and decision making. The equalizer shapes the received pulses so as
to compensate for the effects of amplitude and phase distortions produced by the nonideal
¢ransmission characteristics of the channel. The timing circuitry provides a periodic pulse
train, derived from the received pulses, for sampling the equalized pulses at the instants of
time where the signal-to-noise ratio is a maximurm. Each sample so extracted is compared
to a predetermined zhreshold in the decision-making device. In each bit interval, a decision
is then made whether the received symbol is a 1 or a 0 on the basis of whether the threshold
is exceeded or not. If the threshold is exceeded, a clean new pulse representing symbol
1 is transmitted to the next repeater. Otherwise, another clean new pulse representing
symbol 0 is transmitted. In this way, the accumulation of distortion and noise in a repeater
span is completely removed, provided that the disturbance is not too large to cause an
error in the decision-making process. Ideally, except for delay, the regenerated signal is
exactly the same as the signal originally transmitted. In practice, however, the regenerated
signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the regener-
ated signal.

2. Tf the spacing between received pulses deviates from its assigned value, a jitter is
introduced into the regenerated pulse position, thereby causing distortion.

s IDDECODING

The first operation in the receiver is to regenerate (i.e., reshape and clean up) the received
pulses one last time. These clean pulses are then regrouped into code words and decoded
(i.e., mapped back) into a quantized PAM signal. The decoding process involves generating
a pulse the amplitude of which is the lineas sum of all the pulses in the code word, with
each pulse being weighted by its place value (2021, 22, . .., 2%"") in the code, where Ris
the number of bits per sample.

= FILTERING

The final operation in the receiver is to recover the message signal by passing the decoder
output through a low-pass reconstruction filter whose cutoff frequency is equal to the
message bandwidth W. Assuming that the transmission path is error free, the recovere
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signal includes no noise with the exception of the initial distortion introduced by the
quantization process.

L§L§ Noise Considerations in PCM Systems

The performance of a PCM system is influenced by two major sources of noise:

1. Channel noise, which is introduced anywhere between the transmitter output and
the receiver input. Channel noise is always present, once the equipment is switched
on. '

2. Quantization noise, which is introduced in the transmitter and is carried all the way
along to the receiver output. Unlike channel noise, quantization noise is signal-
dependent in the sense that it disappears when the message signal is switched off.

Naturally, these two sources of noise appear simultaneously once the PCM system is in
operation. However, the traditional practice is to consider them separately, so that we may
develop insight into their individual effects on the system performance.

The main effect of channel noise is to introduce bit errors into the received signal.
In the case of a binary PCM system, the presence of a bit error causes symbol 1 to be
mistaken for symbol 0, or vice versa. Clearly, the more frequently bit errors occur, the
more dissimilar the receiver output becomes compared to the original message signal. The
fidelity of information transmission by PCM in the presence of channel noise may be
measured in terms of the average probability of symbol error, which is defined as the
probability that the reconstructed symbol at the receiver output differs from the transmit-
ted binary symbol, on the average. The average probability of symbol error, also referred
to as the bit error rate (BER), assumes that all the bits in the original binary wave are of
equal importance. When, however, there is more interest in reconstructuring the analog
waveform of the original message signal, different symbol errors may need to be weighted
differently; for example, an error in the most significant bit in a code word (representing
a quantized sample of the message signal) is more harmful than an error in the least
significant bit.

To optimize system performance in the presence of channel noise, we need to mini-
mize the average probability of symbol error. For this evaluation, it is customary to model
the channel noise as additive, white, and Gaussian. The effect of channel noise can be
made practically negligible by ensuring the use of an adequate signal energy-to-noise den-
sity ratio through the provision of short-enough spacing between the regenerative repeaters
in the PCM system. In such a situation, the performance of the PCM system is essentially
limited by quantization noise acting alone.

From the discussion of quantization noise presented in Section 3.6, we recognize that
quantization noise is essentially under the designer’s control. It can be made negligibly
small through the use of an adequate number of representation levels in the quantizer and
the selection of a companding strategy matched to the characteristics of the type of message
signal being transmitted. We thus find that the use of PCM offers the possibility of building
a communication system that is r«gged with respect to channel noise on a scale that is
beyond the capability of any CW modulation or analog pulse modulation system.

& ERROR THRESHOLD

The underlying theory of bit error rate calculation in a PCM system is deferred until
Chapter 4. For the present, it suffices to say that the average probability of symbol error
in a binary encoded PCM receiver due to additive white Gaussian noise depends solely on
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E,/Np, which is defined as the ratio of the transmitted signal energy per bit, Eq, to the
noise spectral density, No. Note that the ratio E,/Nj is dimensionless even though the
quantities E, and No have different physical meaning. In Table 3.3 we present a summary
of this dependence for the case of a binary PCM system using polar nonreturn-to-zero
signaling. The results presented in the last column of the table assume a bit rate of 10° bjs,

From Table 3.3 it is clear that there is an error threshold (at about 11 dB). For
E. /N, below the error threshold the receiver performance involves significant numbers of
errors, and above it the effect of channel noise is practically negligible. In other words,
provided that the ratio E,/N, exceeds the error threshold, channel noise has virtually ng
effect on the receiver performance, which is precisely the goal of PCM. When, however,
E,/N, drops below the error threshold, there is a sharp increase in the rate at which errors
occur in the receiver. Because decision errors result in the construction of incorrect code
words, we find that when the errors are frequent, the reconstructed message at the receiver
output bears little resemblance to the original message.

Comparing the figure of 11 dB for the error threshold in a PCM system using polar
NRZ signaling with the 60-70 dB required for high-quality transmission of speech using
amplitude modulation, we see that PCM requires much less power, even though the av-
erage noise power in the PCM system is increased by the R-fold increase in bandwidth,
where R is the number of bits in a code word (i.e., bits per sample).

In most transmission systems, the effects of noise and distortion from the individual
links accumulate. For a given quality of overall transmission, the longer the physical sep-
aration between the transmitter and the receiver, the more severe are the requirements on
each link in the system. In a PCM system, however, because the signal can be regenerated
as often as necessary, the effects of amplitude, phase, and nonlinear distortions in one link
(if not too severe) have practically no effect on the regenerated input signal to the nex
link. We have also seen that the effect of channel noise can be made practically negligible
by using a ratio Ez/Np above threshold. For all practical purposes, then, the transmission
requirements for a PCM link are almost independent of the physical length of the conr
munication channel.

Another important characteristic of a PCM system is its ruggedness to interference,
caused by stray impulses or cross-talk. The combined presence of channel noise and in-
terference causes the error threshold necessary for satisfactory operation of the PCM sys
temn to increase. If an adequate margin over the etror threshold is provided in the furst
place, however, the system can withstand the presence of relatively large amounts of ir-
terference. In other words, a PCM system is robust to channel noise and interference.

! TABLE 3.3 Influence of Er/No on the

probability of error
For a Bit Rate of 10° b/s,
Probability of This Is About One

E./Ny Error P, Error Every
43dB 1072 1073 second

8.4 1074 107" second
10.6 107 10 seconds
12.0 107® 20 minutes
13.0 10~ 1 day

14.0 107 3  months
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L—s/'?—- Time-Division Multiplexing

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal #(¢) as a sequence of samples of m(t) taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the
sampling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent samples is cleared
for use by other independent message sources on a time-shared basis. We thereby obtain
a time-division multiplex (TDM) system, which enables the joint utilization of a common
commuumnication channel by a plurality of independent message sources without mutual
interference among them.

The concept of TDM is illustrated by the block diagram shown in Figure 3.19. Each
input message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to
remove the frequencies that are nonessential to an adequate signal representation. The
low-pass filter outputs are then applied to a commutator, which is usnally implemented
using electronic switching circuitry. The function of the commutator is twofold: (1) to take
a narrow sample of each of the N input messages at a rate f; that is slightly higher than
2W, where W is the cutoff frequency of the anti-aliasing filter, and (2) to sequentially
interleave these N samples inside the sampling interval T,. Indeed, this latter function is
the essence of the time-division multiplexing operation. Following the commutation pro-
cess, the multiplexed signal is applied to a pulse modulator, the purpose of which is to
transform the multiplexed signal into a form suitable for transmission over the common
channel. It is clear that the use of time-division multiplexing introduces a bandwidth ex-
pansion factor N, because the scheme must squeeze N samples derived from N independent
message sources into a time slot equal to one sampling interval. At the receiving end of
the system, the received signal is applied to a pulse demodulator, which performs the
reverse operation of the pulse modulator. The narrow samples produced at the pulse de-
modulator output are distributed to the appropriate low-pass reconstruction filters by
means of a decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for a satisfactory operation of the system.
The way this synchronization is implemented depends naturally on the method of pulse
modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel, that is, to
variations of amplitude with frequency or lack of proportionality of phase with frequency.
Accordingly, accurate equalization of both magnitude and phase responses of the channel
is necessary to ensure a satisfactory operation of the system; this issue is discussed in

Low-pass Low-pass
" {anti-aliasing) (reconsruction)
eSsage  filters filters Message
'npUiS outputs

Synchronized -
! Pulse Communication Pulse |
* > demodulator 1 > - >

modulator channel
WCommutator T T Dec \ N
Clack pulses Clock pulses

FIGURE 3.19 Block diagram of TDM system.
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Chapter 4. However, unlike FDM, to a first-order approximation TDM is immune tq
nonlinearities in the channel as a source of cross-talk. The reason for this behavior is that
different message signals are not simultaneously applied to the channel.

B SYNCHRONIZATION

In applications using PCM, it is natural to multiplex different messages sources by time
division, whereby each source keeps its individuality throughout the journey from the
transmitter to the receiver. This individuality accounts for the comparative ease with which
message sources may be dropped or reinserted in a time-division multiplex system. As the
number of independent message sources is increased, the time interval that may be allotted
to each source has to be reduced, since all of them must be accommodated into a time
interval equal to the reciprocal of the sampling rate. This, in turn, means that the allowable
duration of a code word representing a single sample is reduced. However, pulses tend to
become more difficult to generate and to transmit as their duration is reduced. Further-
more, if the pulses become too short, impairments in the transmission medium begin to
interfere with the proper operation of the system. Accordingly, in practice, it is necessary
to restrict the number of independent message sources that can be included within a time-
division group.

In any event, for a PCM system with time-division multiplexing to operate satisfac-
torily, it is necessary that the timing operations at the receiver, except for the time lost in
transmission and regenerative repeating, follow closely the corresponding operations at
the transmitter. In a general way, this amounts to requiring a local clock at the receiver
to keep the same time as a distant standard clock at the transmitter, except that the local
clock is somewhat slower by an amount corresponding to the time required to transport
the message signals from the transmitter-to the receiver. One possible procedure to syn-
chronize the transmitter and receiver clocks is to set aside a code element or pulse at the
end of a frame (consisting of a code word derived from each of the independent message
sources in succession) and to transmit this pulse every other frame only. In such a case,
the receiver includes a circuit that would search for the pattern of 1s and 0s alternatingat
half the frame rate, and thereby establish synchronization between the transmitter and
receiver.

When the transmission path is interrupted, it is highly unlikely that transmitter and
receiver clocks will continue to indicate the same time for long. Accordingly, in carrying
out a synchronization process, we must set up an orderly procedure for detecting the
synchronizing pulse. The procedure consists of observing the code elements one by one
until the synchronizing pulse is detected. That is, after observing a particular code element
long enough to establish the absence of the synchronizing pulse, the receiver clock is set
back by one code element and the next code element is observed. This searching process
is repeated until the synchronizing pulse is detected. Clearly, the time required for syn-
chronization depends on the epoch at which proper transmission is re-established.

% ExampLE 3.2 The T1 System

In this example, we describe the important characteristics of a PCM system known as the T!
system,® which carries 24 voice channels over separate pairs of wires with regenerative &
peaters spaced at approximately 2-km intervals. The T1 carrier system is basic to the North
American Digital Switching Hierarchy described in Section 3.10. )
A voice signal (male or female) is essentially limited to a band from 300 to 3100 Hz®
that frequencies outside this band do not contribute much to articulation efficiency. Indetd;
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telephone circuits that respond to this range of frequencies give quite satisfactory service.
Accordingly, it is customary to pass the voice signal through a low-pass filter with a cutoff
frequency of about 3.1 kHz prior to sampling. Hence, with W = 3.1 kHz, the nominal valye
of the Nyquist rate is 6.2 kHz. The fltered voice signal is usually sampled at a slightly higher
rate, namely, 8 kHz, which is the stzndard sampling rate in telephone systems,

For companding, the T1 system uses a piecewise-linear characteristic (consisting of
15 linear segments) to approximate the logarithmic p-law of Equation (3.48) with the constant
# =255, This approximation is constructed in such a way that the segment end points lie on
the compression curve computed from Equation (3.48), and their projections onto the vertical
axis are spaced uniformly. Table 3.4 gives the projections of the segment end points onto the
horizontal axis and the step-sizes of the individual segments. The table is normalized to 8159,
so that all values are represented as integer numbers. Segment 0 of the approximation is a
colinear segment, passing through the origin; it contains a total of 30 uniform decision levels,
Linear segments 1a, 24, . .., 74 lie above the horizontal axis, whereas linear segments 15,
2b,..., 7b lie below the horizontal axis; each of these 14 segments contains 16 uniform
decision levels. For colinear segment 0. the decision levels at the quantizer input are +1,
*3,..., %31, and the corresponding representation levels at the quantizer output are 0,
*1,..., %15, For linear segments 1g and 1b, the decision levels at the quantizer input are
*+31, +35,..., +95, and the corresponding representation levels at the quantizer output are
%16, *17,. .., +31, and so on for the other linear segments.

There are a total of 31 + (14 X 16) = 255 representation levels associated with the
15-segment companding characteristic described above. To accommodate this number of rep-
Iesentation levels, each of the 24 voice channels uses a binary code with an 8-bit word, The
first bit indicates whether the input voice sample is positive or negative; this bit is a 1 if positive
and a 0 if negative. The next three bits of the code word identify the particular segment inside
which the amplitude of the input voice sample lies, and the last four bits identify the actual
representation level inside that segment.

With a sampling rate of 8 kHz, each frame of the multiplexed signal occupies a period
of 125 ps. In particular, it consists of twenty-four 8-bit words, plus a single bit that is added
at the end of the frame for the purpose of synchronization. Hence, each frame consists of a
total of (24 X 8) + 1 = 193 bits, Correspondingly, the duration of each bit equals 0.647 ps,
and the resulting transmission rate is 1.544 megabits per second (Mb/s).

In addition to the voice signal, a telephone system must also pass special supervisory
signals to the far end. This signaling information is needed to transmit dia] pulses, as well as

f TABLE 3.4 The ] 5-segment companding characteristic (b =255)

Projections of Segment End Points

Linear Segment Number ) Step-Size ’ onto the Horizontal Axis

0 2 31
1a, 1b 4 ' +95
24, 2b 8 +223
3a, 3b 16 479
4a, 4b 32 +99]
Sa, 5b 64 +2015
6a, 6b 128 *+4063

7a,7b 256 +8159
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telephone off-hook/on-hook signals. In the T1 system, this requirement is accomplished ag
follows. Every sixth frame, the least significant (that is, the eighth) bit of each voice channe]
is deleted and a signaling bit is inserted in its place, thereby yielding an average 73-bit operatiog
for each voice input. The sequence of signaling bits is thus transmicted at a rate equal to
sampling rate of 8 kHz divided by six, that is, 1.333 kb/s. This signaling rate applies to each
of the 24 input channels. <4

i 3.10 Digital Multiplexers

In Section 3.9 we introduced the idea of time-division multiplexing whereby a group of
analog signals (e.g., voice signals) are sampled sequentially in time at a common sampling
rate and then multiplexed for transmission over a common line. In this section we consider
the multiplexing of digital signals at different bit rates. This enables us to combine severa]
digital signals, such as computer outputs, digitized voice signals, digitized facsimile,
and television signals, into a single data siream {at a considerably higher bit rate than
any of the inputs). Figure 3.20 shows a conceptual diagram of the digital multiplexing.
demultiplexing operation.

The multiplexing of digital signals is accomplished by using a bit-by-bit interleaving
procedure with a selector switch that sequentially takes a bit from each incoming line and
then applies it to the high-speed common line. At the receiving end of the system the output
of this common line is separated out into its low-speed individual components and then
delivered to their respective destinations.

Digital multiplexers are categorized into two major groups. One group of multiplex-
ers is used to take relatively low bit-rate data streams originating from digital computers
and multiplex them for TDM transmission over the public switched telephone net-
work. The implementation of this first group of multiplexers requires the use of modems
(rnodulators—dernodulators), which are discussed in Chapter 6.

The second group of digital multiplexers forms part of the data transmission service
provided by telecommunication carriers such as AT&T. In particular, these multiplexers
constitute a digital bierarchy that time-division multiplexes low-rate bit streams into much
higher-rate bit streams. The details of the bit rates that are accommodated in the hierarchy
vary from one country to another. However, a worldwide feature of the hierarchy is that
it starts at 64 kbfs, which corresponds to the standard PCM representation of a voice
signal. An incoming bit stream at this rate, irrespective of its origin, is called a digital signal
zero (DSO). In the United States, Canada, and Japan’ the hierarchy follows the North
American digital TDM hierarchy as described here:

% The first-level hierarchy combines twenty-four DSO bit streams to obtain a digitdl
signal one (DS1) at 1.544 Mbfs, which is carried on the T1 system described in

High-speed

Multiplexer transmission Demultiplexer
line

Data sources Destinations

FiGURE 3.20 Conceptual diagram of multiplexing-demultiplexing.
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Example 3.2. These bit streams are called the primary rate in the digital hierarchy,
because it is the lowest bit rate that exists outside a digital switch. The digital switch
is a device consisting of memory and logic, the function of which is merely the switch-
ing of digital signals, hence the name.

& The second-level multiplexer combines four DS1 bit streams to obtain a digital signal
two (DS2) at 6.312 Mb/s.

» The third-level multiplexer combines seven DS2 bit streams to obtain a digital signal
three (DS3) at 44.736 Mb/s. :

v The fourth-level multiplexer combines six DS3 bit streams to obtain a digital signal
four (DS4) at 274.176 Mbs.

» The fifth-level multiplexer, the final one in the hierarchy, combines two DS4 bit
streams to obtain a digital signal five (DSS) at 560.160 Mb/s.

Note that the bit rate of a digital signal produced by any one of these multiplexers is
slightly higher than the prescribed multiple of the incoming bit rate because of bit stuffing
built into the design of each multiplexer; bit stuffing is discussed in the sequel.

Moreover, it is important to recognize that the functions of a digital transmission
facility is merely to carry a bit stream without interpreting what the bits themselves mean.
However, the digital switches at the two ends of the facility do have a common under-
standing of how to interpret the bits within the stream, such as whether the bits represent
voice or data, framing format, signaling format, and so on.

There are some basic problems involved in the design of a digital multiplexer, irre-
spective of its grouping:

1. Digital signals cannot be directly interleaved into a format that allows for their even-
tual separation unless their bit rates are locked to a common clock. Rather, provision
has to be made for synchronization of the incoming digital signals, so that they can
be properly interleaved.

2. The multiplexed signal must include some form of framing so that its individual
comporents can be identified at the receiver.

3. The multiplexer has to handle small variations in the bit rates of the incoming digital
signals. For example, a 1000-km coaxial cable carrying 3 X 10® pulses per second
will have about one million pulses in transit, with each pulse occupying about one
meter of the cable. A 0.01 percent variation in the propagation delay, produced by
a 1°F decrease in temperature, will result in 100 fewer pulses in the cable. Clearly,
these pulses must be absorbed by the multiplexer.

To tailor the requirements of synchronization and rate adjustment to accommodate small
variations in the input data rates, we may use a technique known as bit stuffing. The idea
here is to have the outgoing bit rate of the multiplexer slightly higher than the sum of the
maximum expected bit rates of the input channels by stuffing in additional non-informa-
tion carrying pulses. All incoming digital signals are stuffed with a number of bits sufficient
to raise each of their bit rates to equal that of a locally generated clock. To accomplish bit
stuffing, each incoming digital signal or bit stream is fed into an elastic store at the mul-
tiplexer. The elastic store .is a device that stores a bit stream in such a manner that the
stream may be read out at a rate different from the rate at which it is read in. At the
demultiplexer, the stuffed bits must obviously be removed from the multiplexed signal.
This requires a method that can be used to identify the stuffed bits. To illustrate one such
method, and also show one method of providing frame synchronization, we describe the
signal format of the AT&T M12 multiplexer, which is designed to combine four DS1 bit
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streams into one DS2 bit stream. This is the second level of the digital hierarchy discusseq
earliet.

& ExampLE 3.3 Signal Format of the AT&T M12 Multiplexer

Figure 3.21 illustrates the signal format of the M12 multiplexer. Each frame is subdivideq
into four subframes. The first subframe (first line in Figure 3.21) is transmitted, then the
second, the third, and the fourth, in that order.

Bit-by-bit interleaving of the incoming four DS1 bit streams is used to accumulate 5
total of 48 bits, 12 from each input. A control bit is then inserted by the multiplexer. Each
frame contains 2 total of 24 control bits, separated by sequences of 48 data bits. Three types
of control bits are used in the M12 multiplexer to provide synchronization and frame indj.
cation, and to identify which of the four input signals has been stuffed. These control bits are
labeled F, M, and C in Figure 3.21. Their functions are as follows:

1. The F-control bits, two per subframe, constitute the #ain framing pulses. The subscripts
on the F-control bits denote the actual bit (0 or 1) transmitted. Thus the main framing
sequence is FoF,FoF FoF 1 FoF, or 01010101.

2. The M-control bits, one per subframe, form secondary framing pulses to identify the
four subframes. Here again the subscripts on the M-control bits denote the actual bit
{0 or 1) transmitted. Thus the secondary framing sequence is MoM;M;M; or 0111.

3. The C-control bits, three per subframe, are stuffing indicators. In particular, C; refers
to input channel I, Cy refers to input channel 11, and so forth. For example, the three
C-control bits in the first subframe following M, in the first subframe are stuffing in-
dicators for the first DS1 bit stream. The insertion of a stuffed bit in this DS1 bit stream
is indicated by setting all three C-control bits to 1. To indicate no stuffing, all three are
set to 0. If the three C-control bits indicate stuffing, the stuffed bit is located in the
position of the first information bit associated with the first DS1 bit stream that follows
the F;-control bit in the same subframe. In a similar way, the second, third, and fourth
DS1 bit streams may be stuffed, as required. By using majority logic decoding in the
receiver, a single error in any of the three C~control bits can be detected. This form of
decoding means simply that the majority of the C-control bits determine whether an
all-one or all-zero sequence was cransmitted. Thus three 1s or combinations of two 1s
and a 0 indicate that a stuffed bit is present in the information sequence, following the
control bit F; in the pertinent subframe. On the other hand, three Os or combinations
of two 0s and a 1 indicate that no stuffing is used.

The demultiplexer at the receiving M12 unit first searches for the main framing sequence

B F,FoF, FoF: FoFy. This establishes identity for the four input DS1 bit streams and also for the

M- and C-control bits. From the MoM;M;M; sequence, the correct framing of the C-control

bits is verified. Finally, the four DS1 bit streams are properly demultiplexed and destuffed. .
The signal format described above has two safeguards:

1. Tt is possible, although unlikely, that with just the FoF, FoF FoF, FoF; sequence, one of
the incoming DS1 bit streams may contain a similar sequence. This could then cause

Mg 48] € W8] Fg (48l < U8l G (48] F; 48]
M, 18] C;; 148 Fg 148 cn M8 (n 48y Fp [48]
W W8l cyy W8l Fy M8 o M8 G (481 F, 48]
M Wl Cy M8l Fy 18 oy WB Cy (48 F, 148

4 t 4 t

Subframe First Frame Second Third Frame Stuffed
markers stuffing markers stuffing stuffing markers  bits
indicators indicators indicators

FIGURE 3.21 Signal format of AT&T M12 multiplexer.
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the receiver to lock onto the wrong sequence. The presence of the MoM,;M; M, sequence
provides verification of the genuine F,F;F,F,F,F;F,F; sequence, thereby ensuring that
the four DS1 bit streams are properly demultiplexed.

2. The single-error correction capability built into the C-control bits ensures that the four
DS1 bit streams are properly destuffed.

The capacity of the M12 multiplexer to accommodate small variations in the input data
rates can be calculated from the format of Figure 3.21. In each M frame, defined as the interval
containing one cycle of MoM;M;M; bits, one bit can be stuffed into each of four inputr DS1
bit streams. Each such signal has 12 X 6 X 4 = 288 positions in each M frame. Also, the T1
bit stream has a bit rate equal to 1.544 Mb/s. Hence, each input can be incremented by

1
544 X 10° X — = §.
1.544 X 10 >~<288 5.4 kb/s

This result is much larger than the expected change in the bit rate of the incoming DS1 bit
stream, It follows therefore that the use of only one stuffed bit per input channel in each frame
is sufficient to accommodate expected variations in the input signal rate.

Thelocal clock that determines the outgoing bit rate also determines the nominal stuffing
rate S, defined as the average number of bits stuffed per channel in any frame. The
M12 multiplexer is designed for S = 1/3. Accordingly, the nominal bit rate of the DS2 bit
stream is

49 288
1.544 X 4 X 3 X 2385 6.312 Mb/s
This also ensures that the nominal DS2 clock frequency is a multiple of 8 kHz (the nominal
sampling rate of a voice signal), which is a desirable feature. <

3.11 Virtues, Limitations,
and Modifications of PCM

In a generic sense, pulse-code modulation (PCM) has emerged as the most favored mod-
ulation scheme for the transmission of analog information-bearing signals such as voice
and video signals. The advantages of PCM may all be traced to the use of coded pulses
for the digital representation of analog signals, a feature that distinguishes it from all other
analog methods of modulation. We may summarize the important advantages of PCM as
follows:

1. Robustness to channel noise and interference.

2. Efficient regeneration of the coded signal along the transmission path.

3. Efficient exchange of increased channel bandwidth for improved signal-to-noise ra-
tio, obeying an exponential law.

4. A uniform format for the transmission of different kinds of baseband signals, hence
their integration with other forms of digital data in a common network.

5. Comparative ease with which message sources may be dropped or reinserted in a
time-division multiplex system.

6. Secure communication through the use of special modulation schemes or encryption;
the encryption and decryption of data are discussed in Appendix 5.

These advantages, however, are attained at the cost of increased system complexity and
increased channel bandwidth. These two issues are considered in the sequel in turn.
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§3.12

Although the use of PCM involves many complex operations, today they can al} b,
implemented in a cost-effective fashion using commercially available and/or custom-made
very-large-scale integrated (VLSI) chips. In other words, the requisite device technology
for the implementation of a PCM system is already in place. Moreover, with continuip,
improvements in VLSI technology, we are likely to see an ever-expanding use of PCM fo;
the digital transmission of analog signals.

If, however, the simplicity of implementation is a necessary requirement, then we
may use delta modulation as an alternative to pulse-code modulation. In delta modulatioy,
the baseband signal is intentionally “oversampled” to permit the use of a simple quantizing
strategy for constructing the encoded signal; delta modulation is discussed in Section 3,12,

Turning next to the issue of bandwidth, we do recognize that the increased bang.
width requirement of PCM may have been a reason for justifiable concern in the past,
Today, however, it is of no real concern for two different reasons. First, the increasing
availability of wideband communication chanmels means that bandwidth is no longer 5
system constraint in the traditional way it used to be. Liberation from the bandwidtd
constraint has been made possible by the deployment of communication satellites for
broadcasting and the ever-increasing use of fiber optics for networking; a discussion of
these communication channel concepts was presented in the Background and Preview
chapter.

“The second reason is that through the use of sophisticated data compression tech-
niques, it is indeed possible to remove the redundancy inherently present in a PCM signal
and thereby reduce the bit rate of the transmitted data without serious degradation in
system performance. In effect, increased processing complexity (and therefore increased
cost of implementation) is traded off for a reduced bit rate and therefore reduced band-
width requirement. A major motivation for bit-rate reduction is for secure communication
over radio channels that are inherently of low capacity.

Delta Modulation

Tn delta modulation® (DM), an incoming message signal is oversampled (i, at a rawe
much higher than the Nyquist rate) to purposely increase the correlation between adjacent
samples of the signal. This is done to permit the use of a simple quantizing strategy for
constructing the encoded signal.

In its basic form, DM provides a staircase approximation to the oversampled version
of the message signal, as illustrated in Figure 3.22a. The difference between the input and
the approximation is quantized into only two levels, namely, A, corresponding to positive
and negative differences. Thus if the approximation falls below the signal at any sampling
epoch, it is increased by A. If on the other hand, the approximation lies above the signal,
it is diminished by A. Provided that the signal does not change too rapidly from sample
to sample, we find that the staircase approximation remains within =A of the input signal

Let m(t) denote the input (message) signal, and 71,(¢) denote its staircase approxi-
mation. For convenience of presentation, we adopt the following notation that is con’
monly used in the digital signal processing literature:

m[n] = m(nT,), n=0,=*x1,%2,...

where T, is the sampling period and m(nT.) is a sample of the signal (t) taken at tife
t = nT., and likewise for the samples of other continuous-time signals. We may then
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FiGURE 3.22 [lustration of delta modulation.

formalize the basic principles of delta modulation in the following set of discrete-time
relations:

eln] = m[n] — my[n — 1] (3.52)
e, = A sgn(e[n]) (3.53)
myln] = my[n — 1] + e [n] (3.54)

where e[n] is an error signal representing the difference between the present sample [#]
of the input signal and the latest approximation m,[n — 1] to it, e [#] is the quantized
version of ¢[r], and sgn(-) is the signum function. Finally, the quantizer output #,[n] is
coded to produce the DM signal.

Figure 3.224 illustrates the way in which the staircase approximation #,4(z) follows
variations in the input signal m(#) in accordance with Equations (3.52)—(3.54), and Figure
3.22b displays the corresponding binary sequence at the delta modulator output. It is
apparent that in a delta modulation system the rate of information transmission is simply
equal to the sampling rate f, = 1/T..

The principal virtue of delta modulation is its simplicity. It may be generated by
applying the sampled version of the incoming message signal to a modulator that involves
a comparator, quantizer, and accumulator interconnected as shown in Figure 3.234. The
block labeled z~* inside the accumulator represents a unit delay, that is, a delay equal to
one sampling period. (The variable z is commonly used in the z-transform, which is basic
to the analysis of discrete-time signals and systems.} Details of the modulator follow di-
rectly from Equations (3.52)~(3.54). The comparator computes the difference between its
two inputs. The quantizer consists of a hard limiter with an input-output relation that is
a scaled version of the signum function. The quantizer output is then applied to an accu-
mulator, producing the result

mgln] = A Z sgn(eli])

n (3.55)
= ; e li]
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FIGURE 3.23 DM system. (@) Transmitter. (b) Receiver.

which is obtained by solving Equations (3.53) and (3.54) for m,[n). Thus, at the sampling
instant #T., the accumulator increments the approximation by a step A in a positive or
negative direction, depending on the algebraic sign of the error sample e[#]. If the input
sample m[n] is greater than the most recent approximation mg[n], a positive increment
+A is applied to the approximation. If, on the other hand, the input sample is smaller,
negative increment —A is applied to the approximation. In this way, the accumulator does
the best it can to track the input samples by one step (of amplitude +A or —A) ata time.
In the receiver shown in Figure 3.23b, the staircase approximation m,(t) is reconstructed
by passing the sequence of positive and negative pulses, produced at the decoder output,
through an accumulator in a manner similar to that used in the transmitter. The out-of-
band quantization noise in the high-frequency staircase waveform m,(t) is rejected by
passing it through a low-pass filter, as in Figure 3.23b, with a bandwidth equal to the
original message bandwidth,

Delta modulation is subject to two types of quantization error: slope overload dis:
tortion and granular noise. We will discuss the case of slope overload distortion first.

We observe that Equation {3.54) is the digital equivalent of integration in the sense
that it represents the accumulation of positive and negative increments of magnitude A
Also, denoting the quantization error by g[n], as shown by

myln) = ml] + gln] (3.56)
we observe from Equation (3.52) that the input to the quantizer is

eln] = mn] — mln — 1] = qln — 1] (357
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FI1GURE 3.24 Illustration of the two different forms of quantization error in delta modulation.

Thus except for the quantization error g[# — 1], the quantizer input is a frst backiward
difference of the input signal, which may be viewed as a digital approximation to the
derivative of the input signal or, equivalently, as the inverse of the digital integration
process. If we consider the maximum slope of the original input waveform m(t), it is
clear that in order for the sequence of samples {m,[#]} to increase as fast as the input
sequence of samples {m[n]} in a region of maximum slope of m(t), we require that the
condition

A
Ts

dm(t)

= (3.58)

= max

be satisfied. Otherwise, we find that the step-size A is too small for the staircase approxi-
mation #1,(t) to follow a steep segment of the input waveform (), with the result that
m,(t) falls behind m(t), as illustrated in Figure 3.24. This condition is called slope overload,
and the resulting quantization error is called slope-overload distortion (noise). Note that
since the maximum slope of the staircase approximation m1,(2) is fixed by the step size A,
increases and decreases in #1,(2) tend to occur along straight lines. For this reason, a delta
modulator using a fixed step size is often referred to as a linear delta modulator.

In contrast to slope-overload distortion, granular noise occurs when the step size A
is too large relative to the local slope characteristics of the input waveform (), thereby
causing the staircase approximation #1,(f) to hunt around a relatively flat segment of the
input waveform; this phenomenon is also illustrated in Figure 3.24. Granular noise is
analogous to quantization noise in a PCM system.

We thus see that there is a need to have a large step-size to accommodate a wide
dynamic range, whereas a small step size is required for the accurate representation of
relatively low-level signals. It is therefore clear that the choice of the optimum step size
that minimizes the mean-square value of the quantization error in a linear delta modulator
will be the result of a compromise between slope-overload distortion and granular noise.
To satisfy such a requirement, we need to make the delta modulator “adaptive,” in the
sense that the step size is made to vary in accordance with the input signal; this issue is
discussed further in a computer experiment presented in Section 3.16.

8 DELTA-SIGMA MODULATION

As mentioned earlier, the quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the incoming message signal. This
behavior leads to a drawback of delta modulation in that transmission disturbances such
as noise result in an accumulative error in the demodulated signal. This drawback can be
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overcome by integrating the message signal priort to delta modulation. The use of integr,.
tion in the manner described here has also the following beneficial effects:

> The low-frequency content of the input signal is pre-emphasized.

» Correlation between adjacent samples of the delta modulator input is increased
which tends to improve overall system performance by reducing the variance of th;
error signal at the quantizer input.

> Design of the receiver is simplified.

A delta modulation scheme that incorporates integration at its input is called delta-sigmy
modulation (D-SM).° To be more precise, however, it should be called sigma-delta mod.
wlation, because the integration is in fact performed before the delta modulation. Never.
theless, the former terminology is the one commonly used in the literature.

Figure 3.25a shows the block diagram of a delta-sigma modulation system. In this
diagram, the message signal m(¢) is defined in its continuous-time form, which means that
the pulse modulator now consists of a hard-limiter followed by a multiplier; the latter
component s also fed from an external pulse generator (clock) to produce a 1-bit encoded
signal. The use of integration at the transmitter input clearly requires an inverse signal
emphasis, namely, differentiation, at the receiver. The need for this differentiation is, how-
ever, eliminated because of its cancellation by integration in the conventional DM receiver,

Pulse
generator

Pulse modulator

Integrator 1 Comparator

[
i
: Estimate of

Message Low-pass
signal == fiter message
m() 1 signal
Integrator 2
j f dt
Transmitter Receiver
(@)
Pulse
generator
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- |
b e e e i
Transmitter Receiver

2}

FiGURE 3.25 Two equivalent versions of delta-sigma modulation system.
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Thus the receiver of a delta-sigma modulation system consists simply of a low-pass filter,
as indicated in Figure 3.254.

Moreover, we note that integration is basically a linear operation. Accordingly, we
may simplify the design of the transmitter by combining the two integrators 1 and 2 of
Figure 3.25a into a single integrator placed after the comparator, as shown in Figure 3.25b.
This latter form of the delta-sigma modulation system is not only simpler than that of
Figure 3.254, but it also provides an interesting interpretation of delta-sigma modulation
as a “smoothed” version of 1-bit pulse-code modulation: The term smoothness refers to
the fact that the comparator output is integrated prior to quantization, and the term 1-biz
merely restates that the quantizer consists of a hard-limiter with only two representation
levels.

In delta modulation, simplicity of implementations of both the transmitter and re-
ceiver is attained by using a sampling rate far in excess of that needed for pulse-code
modulation. The price paid for this benefit is a corresponding increase in the transmission
and therefore channel bandwidth. There are, however, applications where channel band-
width is at a premium, in which case we have the opposite requirement to that in delta
modulation. Specifically, we may wish to trade increased system complexity for a reduced
channel bandwidth. A signal-processing operation basic to the attainment of this latter
design objective is prediction, the linear form of which is discussed next.

I 3.13 Linear Prediction

Consider a finite-duration impulse response (FIR) discrete-time filter configured as in Fig-
ure 3.26, which involves the use of three functional blocks:

1. Set of p unit-delay elements, each of which is represented by z7*.

2. Set of multipliers involving the filter coefficients wy, w;, . . ., w,.

3. Set of “adders” used to sum the scaled versions of the delayed inputs x[» — 1],
x[n = 2],..., x[#n — p] to produce the output £[#]. The filter output £[#] or more
precisely, the linear prediction of the input, is thus defined by the convolution sum

£[n] = i wpx[n — k| (3.59)
i=1

where p, the number of unit-delay elements, is called the prediction order.

The actual sample at time #T, is x[#]. The prediction error, denoted by e[n], is defined
as the difference between x[7] and the prediction £[z], as shown by

elr] = x[n] — Zln] (3.60)
Input - xla-11 ’T‘ xn-2] o xln-p+1]
x[n} z z

FIGURE 3.26 Block diagram of 2 linear prediction filter of order p.

Prediction
> %In
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The design objective is to choose the Blter coefficients w1, W, - - . » Wy 5O 2§ 10 Minimize
an index of performance, ], defined as the mean-square error:

J = El&] (3.61)

Substituting Equations (3.59) and (3.60) into (3.61) and then expanding terms, We may
reformulate the index of performance as

P r r
J=E@’]] -2 Zﬁ wy Elx[n)x[n — k]| + ; le wwElx[n — jlx[r — k]l (3.62)

We assume that the input signal x(t) is the sample function of a stationary process
X(t) of zero mean; that is, E[x[#]] is zero for all #. Define
% = variance of a samp_le of the process X(t) at time #T,

= E[*[n]] — (Elx[»]]}*
= E[x*[x]]

Rx(kT.) = autocorrelation of the process X(t) for a lag of kT,
= Rylk]
= Elx[n]x[n — ]

Accordingly, we may rewrite Equation (3.62) in the simplified form

14 y P
J=ck—-2 ;1 weRx[E] + 2, ;1 ww Rxlk~ 7] (3.63)
- -

Hence differentiating the index of performance J with respect to the filter coefficient wy,
setting the result equal to zero, and then rearranging terms, we obtain

o
Y wRxlk = jl = Rxlk] = Re[=Kl, R =1,2,....P (3.64)

The optimality equations (3.64) are called the Wiener-Hopf equations for linear prediction.
We find it convenient to reformulate the Wiener-Hopf equations (3.64) in matrix
form. Let

w, = p-by-1 optimum coefficient vector
= [y, Wy« e - s WolT
£x = p-by-1 autocorrelation vector
= [Rxl1], Rx[2), . . ., RxIP]I"
~Ry = p-by-p autocorrelation matrix

Rx[0] Rx[1] -+ Ryfp — 1]
| oRa R Rdp -2
Ryp — 1] Rlp—21 -+ Ryl0]

We may thus simplify the set of equations (3.64) as
(3.65)

Ryw, = Ix
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We assume that the autocorrelation matrix Ry is nonsingular, so that its inverse exists.
We may then solve Equation (3.65) for the coefficient vector w, by multiplying both sides
of this equation by the inverse matrix R5', obtaining the optimum solution

" w, = Ry'ry (3.66)

Note that all the elements on the main diagonal of the autocorrelation matrix Rx
are equal to Rx[0] = 0%, and the elements on any other diagonal parallel to the main
diagonal are also equal. A square matrix having this property is said to be Toeplitz, which
is a direct consequence of the assumption that the input signal x(t) is drawn from a sta-
tionary process. The practical significance of the Toeplitz property is that the correlation
matrix Ry is uniquely defined by the set of autocorrelation values Rx[0], Rx[1],...,
Rx[p = 1]. The autocorrelation vector 1y is defined by the set of autocorrelation values
Rx1], R42), ..., Rx[p]. It follows therefore that the p filter coefficients of the linear
optimum predictor are uniquely defined by the variance o2 = Rx[0] and p values of the
autocorrelation function of the process X(z) for lags of T,, 2T, . .. ,pT..

The minimum mean-square value of the prediction error is obtained by substituting
Equation (3.64) into {3.63), which yields (after simplification)

Jmia = 0% — IxRx'ry (3.67)

The quadratic term rZR3ry is always positive. Accordingly, the mean-square error Jonin Of
the optimum linear predictor defined by Equation (3.67) is always less than the variance
0% of the input sample that is being predicted.

2 LINEAR ADAPTIVE PREDICTION

The use of Equation (3.66) for calculating the weight vector of a linear predictor requires
knowledge of the autocorrelation function Ry[£] of the input sequence {x[n]} for lags
k=0,1,...,p, where p is the prediction order. What if knowledge of Rx[£] for varying
k is not available? In these situations, which occur frequently in practice, we may resort
to the use of an adaptive predictor.

The predictor is adaptive in the following sense:

# Computation of the tap weights w,, £ = 1, 2,..., P> proceeds in a “recursive”
manner, starting from some arbitrary initial values of the tap weights.

& The algorithm used to adjust the tap weights (from one iteration to the next) is “self-
designed,” operating solely on the basis of available data.

The aim of the algorithm is to find the minimum point of the bowl-shaped error surface
that describes the dependence of the cost function J on the tap weights. It is therefore
intuitively reasonable that successive adjustments to the tap-weights of the predictor be
made in the direction of the steepest descent of the error surface, that is, in a direction
opposite to the gradient vector whose elements are defined by

o

o k= LZp (3.68)

& =
This is indeed the idea behind the method of steepest descent. Let w[n] denote the value
of the kth tap-weight at iteration 7. Then the updated value of this weight at iteration
n + 1 is defined by

1
wiln 11 = wilnl =S pge,  k=1,2,...,p (3.69)
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where u is a step-size parameter that controls the speed of adaptation, and the factor 1/
is included for convenience of presentation. Differentiating the cost function of Equatigy
(3.63) with respect to wy, we readily find that

Il

2
g = —2Rx[R] + 2 21 wRxlk — j]
=

3.79)

P
—2E|x[nlx[n — k]] + 2 > w;E[x[n — flx[n — &I, k=1,2,...,p
i=1

This formula for g could do with further simplification, which is achieved by using iy
stantaneous values as estimates of the autocorrelation functions Rx[k] and Rx[k — 7. That
is, we ignore the expectation operators in Equation (3.70) to facilitate the adaptive procesg
on a step-by-step basis. We may thus express the corresponding estimate of g at iteration
n as

b4
alnl = —2xlnlxln — k] + 2 X winlx[n — jlxln — kl,  k=1,2,...,p (37
=1

Note that for an input x[#] drawn from a stationary process the gradient g, is a determin.
istic quantity, whereas the estimate £,[#] is the sample value of a random variable.

In any event, substituting Equation (3.71) into (3.69) and factoring the common
term x[# — k], we may write

v
il + 1] = dln] + pxln — k](x[n] = 3, il ~ i.l) .
~ .72
=[] + px[n — kleln], k=1,2,...,p )
where e[r] is the prediction error defined as
»
eln] = x[n] = 2 djlnlxln = jl (3.73)

j=1

In Equations (3.72) and (3.73), we have used i, as an estimate of the kth tap-weightto
distinguish it from the actual value w;. Note also that x[n] plays the role of a “desired
response” for computing the recursive adjustments applied to the tap-weights of the
predictor.

Equations (3.72) and (3.73) constitute the popular least-mean-square (LMS) algo-
yithm for linear adaptive prediction, the operation of which is depicted in Figure 3.27. The
reason for popularity of this adaptive filtering algorithm is the simplicity of its implemen-
tation. In particular, the computational complexity of the algorithm, measured in terms
of the number of additions and multiplications, is finear in the prediction order p.

Linear predictor:

{elnl}

Prediction

input
2n

x[n

FIGURE 3.27 Block diagram illustrating the linear adaptive prediction process.
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The LMS algorithm is a stochastic adaptive filtering algorithm, stochastic in the sense
that, starting from the s#itial condition defined by {w[01%1, it seeks to find the minimum
point of the error surface by following a zig-zag path. Moreover, it never finds this mini-
mum point exactly. Rather, it executes a random motion around the minimum point of
the error surface, once steady-state conditions are established.

With this material on linear prediction at hand, we are ready to discuss practical
improvements on the performance of pulse-code modulation.

Differential Pulse-Code Modulation

| 3.14

When a voice of video signal is sampled at a rate slightly higher than the Nyquist rate as
usually done in pulse-code modulation, the resulting sampled signal is found to exhibir a
high degree of correlation between adjacent samples. The meaning of this high correlation
is that, in an average sense, the signal does not change rapidly from one sample to the
next, and as a result, the difference between adjacent samples has a variance that is smaller
than the variance of the signal itself. When these highly correlated samples are encoded,
as in the standard PCM system, the resulting encoded signal contains redundant infor-
mation. This means that symbols that are not absolutely essential to the transmission of
information are generated as a result of the encoding process. By removing this redundancy
before encoding, we obtain a more efficient coded signal, which is the basic idea behind
differential pulse-code modulation.

Now if we know the past behavior of a signal up to a certain point in time, we may
use prediction to make an estimate of a future value of the signal as described in Section
3.13. Suppose then a baseband signal m(t) is sampled at the rate fs = VT, to produce the
sequence {#[n]} whose samples are T, seconds apart. The fact that it is possible to predict
future values of the signal #(t) provides motivation for the differential quantization scheme
shown in Figure 3.28a. In this scheme, the input signal to the quantizer is defined by

e[n] = mn] — rn) (3.74)

which is the difference between the unquantized input sample 7#[n] and a prediction of it,
denoted by #i[#]. This predicted value is produced by using a linear prediction filter whose
input, as we will see, consists of a quantized version of the input sample m[#]. The differ-
ence signal e[#] is the prediction error, since it is the amount by which the prediction filter
fails to predict the input exactly. By encoding the quantizer output, as in Figure 3.284, we
obtain a variant of PCM known as differential pulse-code modulation!® (DPCM).

The quantizer output may be expressed as

e,ln] = e[n] + g[n] (3.75)

where g[#] is the quantization error: According to Figure 3.284, the quantizer output e, [#]
is added to the preédicted value ##[#] to produce the prediction-filter input

myln] = mn] + e [n) (3.76)
Substituting Equation (3.75) into (3.76), we get
my[n] = wi[n] + e[n] + qln] - (3.77)

However, from Equation (3.74) we observe that the sum term m[n] + e[n] is equal to the
input sample m[n]. Therefore, we may simplify Equation (3.77) as

my[n] = mn] + q[n] (3.78)
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FIGURE 3.28 DPCM system. (a) Transmitter. (b) Receiver.

which represents a quantized version of the input sample min]. Thatis, irrespective of the
properties of the prediction filter, the quantized sample m,[#] at the prediction filter input
differs from the original input sample m[n] by the quantization error gl#]. Accordingly, if
the prediction is good, the variance of the prediction error e[n] will be smaller than the
variance of m[n], so that a quantizer with a given number of levels can be adjusted to
produce a quantization error with a smaller variance than would be possible if the input
sample m[n] were quantized directly as in a standard PCM system.

The receiver for reconstructing the quantized version of the input is shown in Figure
3.28b. It consists of a decoder to reconstruct the quantized error signal. The quantized
version of the original input is reconstructed from the decoder output using the same
prediction filter used in the transmitter of Figure 3.28a. In the absence of channel noise,
we find that the encoded signal at the receiver input is identical to the encoded signal at
the transmitter output. Accordingly, the corresponding receiver output is equal to m[7,
which differs from the original input m{n] only by the quantization error qi#] incurred as
a result of quantizing the prediction error e[n].

From the foregoing analysis we observe that, in a noise-free environment, the pre-
diction filters in the transmitter and receiver operate on the same sequence of samples,
#m[n]. It is with this purpose in mind that a feedback path is added to the quantizer in the
transmitter, as shown in Figure 3.284.

Differential pulse-code modulation includes delta modulation as a special case. lo
particular, comparing the DPCM system of Figure 3.28 with the DM system of Figust
3.23, we sec that they are basically similar, except for two important differences: the ust
of a one-bit {two-level) quantizer in the delta modulator and the replacement of the pre
diction filter by a single delay element {i.e., zero prediction order). Simply put, DM is the
1-bit version of DPCM. Note that unlike a standard PCM system, the transmitters of both
the DPCM and DM involve the use of feedback.

DPCM, like DM, is subject to slope-overload distortion whenever the input signa!
changes too rapidly for the prediction filter to erack it. Also, like PCM, DPCM suffers
from quantization noise.
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# PROCESSING GAIN

The output signal-to-noise ratio of the DPCM system shown in Figure 3.28 is, by
definition, .

oM

(SNR)o = Py

(3.79)
where o7 is the variance of the original input sample (7], assumed to be of zero mean,
and o}, is the variance of the quantization error g[#]. We may rewrite Equation (3.79) as
the product of two factors as follows:

2y 0%
SNR),, = ”A‘) (J)
(SRRJo ("i L (3.80)
= G,{SNR)q

where oF is the variance of the prediction error. The factor (SNR)g is the signal-fo-
quantization noise ratio, which is defined by
oE
(SNR)g = — (3.81)
70
The other factor G, is the processing gain produced by the differential quantization
scheme; it is defined by

a?
G, = F‘: (3.82)

The quantity G,, when greater than unity, represents a gain in signal-to-noise ratio that
is due to the differential quantization scheme of Figure 3.28. Now, for a given baseband
(message) signal, the variance o’y is fixed, so that G, is maximized by minimizing the
variance 0% of the prediction error e[#]. Accordingly, our objective should be to design
the prediction filter so as to minimize o2.

In the case of voice signals, it is found that the optimum signal-to-quantization noise
advantage of DPCM over standard PCM is in the neighborhood of 4 to 11 dB. The greatest
improvement occurs in going from no prediction to first-order prediction, with some ad-
ditional gain resulting from increasing the order of the prediction filter up to 4 or §, after
which little additional gain is obtained. Since 6 dB of quantization noise is equivalent to
1 bit per sample by virtue of Equation (3.35), the advantage of DPCM may also be ex-
pressed in terms of bit rate. For a constant signal-to-quantization noise ratio, and assuming
a sampling rate of 8 kHz, the use of DPCM may provide a saving of about 8 to 16 kb/s
(ie., 1 to 2 bits per sample) compared to the standard PCM.

3.15 Adaptive Differential
Pulse-Code Modulation

The use of PCM for speech coding at the standard rate of 64 kb/s demands a high channel
bandwidth for its transmission. In certain applications, however, such as secure transmis-
sion over radio channels that are inherently of low capacity, channel bandwidth is at a
premium. In applications of this kind, there is a definite need for speech coding at low bit
rates, while maintaining acceptable fidelity or quality of reproduction.
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For coding speech at low bit rates, a waveform coder of prescribed configurarion
optimized by exploiting both statistical characterization of speech waveforms and prop.
erties of bearing. In particular, the design philosophy has two aims in mind:

1. To remove redundancies from the speech signal as far as possible.

2. To assign the available bits to code the nonredundant parts of the speech signal i ,
perceptually efficient manner.

As we strive to reduce the bit rate from 64 kb/s (used in standard PCM) to 32, 16, 8, ang
4 kb/s, the schemes nsed for redundancy removal and bit assignment become increasingly
more sophisticated. As a rule of thumb, in the 64 to 8 kb/s range, the computationg]
complexity (measured in terms of multiply-add operations) required to code speech ip.
creases by an order of magnitude when the bit rate is halved, for approximately equg
speech quality.

In this section, we describe adaptive differential pulse-code modulation (ADPCM),1
which permits the coding of speech at 32 kb/s through the combined use of adapive
quantization and adaptive prediction; the number of eight bits per sample required in the
standard PCM is thereby reduced to four. The term adaptive used herein means being
responsive to changing level and spectrum of the input speech signal. The variation of
performance with speakers and speech material, together with variations in signal level
inherent in the speech communication process, make the combined use of adaptive quan-
tization and adaptive prediction necessary to achieve best performance over a wide range
of speakers and speaking situations.

Adaptive quantization refers to a quantizer that operates with a time-varying step-
size A[n]. At any given sampling instant identified by the index #, the adaptive quantizer
is assumed to have a uniform transfer characteristic. The step-size A[#] is varied so as to
match the variance 0% of the input sample #2[n]. In particular, we write

Aln] = déyln] (3.83)

where ¢ is a constant, and &[#] is an estimate of the standard deviation oa{#] (i.e., square
root of the variance o). For a nonstationary input, oy[#] is time varying. The problem
of adaptive quantization according to Equation (3.83) is, therefore, one of computing the
estimate dy[n] continuously.

The implementation of Equation (3.83) may proceed in one of two ways:

1. Adaptive quantization with forward estimation (AQF), in which unquantized sam-
ples of the input signal are used to derive forward estimates of ow[r].

2. Adaptive quantization with backward estimation (AQB), in which samples of the
quantizer outpur are used to derive backward estimates of ou(n].

The AQF scheme requires the use of a buffer to store unquantized samples of the input
speech signal needed for the learning period. It alse requires the explicit transmission of
level information (typically, about 5 to 6 bits per step-size sample) to a remote decoder,
thereby burdening the system with additional side information that has to be transmitted
to the receiver. Moreover, a processing delay {on the order of 16 ms for speech) in the
encoding operation results from the use of AQF, which is unacceptable in some applic
tions. The problems of level transmission, buffering, and delay intrinsic to AQF are all
avoided in AQB. In the latter scheme, the recent history of the quantizer output is used t0
extract information for the computation of the step size A[#]. In practice, AQB is therefore
usually preferred over AQF. )

Figure 3.29 shows the block diagram of an adaptive quantizer with backward estr
mation. It represents a nonlinear feedback system; hence, it is not obvious that the systed!
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FiGURE 3.29 Adaptive quantization with backward estimation (AQB).

will be stable. However, if the quantizer input m[n] is bounded, then the backward estimate
Guln] and the corresponding step size A[#] are as well; under such a condition, the system
is indeed stable.

The use of adaptive prediction in ADPCM is justified because speech signals are
inherently nonstationary, a phenomenon that manifests itself in the fact that the autocor-
relation function and power spectral density of speech signals are time-varying functions
of their respective arguments. This implies that the design of predictors for such inpurs
should likewise be time varying, that is, adaptive, As with adaptive quantization, there are
two schemes for performing adaptive prediction:

1. Adaptive prediction with forward estimation (APF), in which unquantized samples
of the input signal are used to derive estimates of the predictor coefficients.

2. Adaptive prediction with backward estimation (APB), in which samples of the quan-
tizer output and the prediction error are used to derive estimates of the predictor
coefficients.

However, APF suffers from the same intrinsic disadvantages (side information, buffering,
and delay) as AQF. These disadvantages are eliminated by using the APB scheme shown
in Figure 3.30, where the box labeled “logic for adaptive prediction” represents the al-
gorithm for updating the predictor coefficients. In the latter scheme, the optimum predictor
coefficients are estimated on the basis of quantized and transmitted data; they can therefore
be updated as frequently as desired, say, from sample to sample. Accordingly, APB is the
preferred method of prediction for ADPCM.

The LMS algorithm for the predictor, described in Section 3.13, and an adaptive
scheme for the quantizer, based on Equation (3.83), have been combined in a synchronous
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mln}

Prediction
lnl

Quantizer

Prediction
filter

Logic for
adaptive
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FIGURE 3.30 Adaptive prediction with backward estimation (APB).



232 CHAPTER 3 ® PULSE MODULATION

fashion for the design of both the encoder and decoder. The performance of this comb;.
nation is so impressive at 32 kb/s that ADPCM is now accepted internationally as a stay.
dard coding technique for voice signals, along with 64 kb/s using standard PCM.

3.16 Computer Experiment:
| Adaptive Delta Modulation

A simple form of AQB is to be found in the modification of linear delta modulation (LD
to form adaptive delta modulation (ADM). The principle underlying all ADM algorithms
is two-fold:

1. If successive errors are of opposite polarity, then the delta modulator is operating iy
its granular mode; in this case, it may be advantageous to reduce the step size.

2. If, however, successive errors are of the same polarity, then the delta modulator i
operating in its slope-overload mode; in this second case, the step size should be
increased.

Thus by varying the step-size in accordance with this principle, the delta modulator i
enabled to cope with changes in the input signal.

Figure 3.31 shows the block diagram of an ADM based on increasing or decreasing
the step size by a factor of 50 percent at each iteration of the adaptive process. The al-
gorithm for adaptation of the step size is defined by*?

|A[z— 1] if =
A = (myln] + 0.5mgln — 1) iA1= A (38

Ao if Afn — 1] < Agin
where A[n] is the step size at iteration {time step)  of the algorithm, and m,[n] is the 1-bit
quantizer output that equals =1.

In this experiment we use a sinusoidal input signal to demonstrate the reconstruction
performance of the ADM algorithm based on Equation (3.84), and compare it to the
performance of a corresponding linear delta modulator (LDM). Details of the experiment
are as follows:

Input signal:
mit) = A sin(27f,,t)

where amplitude A = 10, frequency f = £./100, and f, = sampling frequency.

Linear delta modulation (LDM):
Step size A[n] = 1 for alln

Adaptive delta modulation (ADM}:
1
A = ¢
in 8
The results of the experiment are plotted in Figure 3.32. Part a of Figure 3.321i8 for

LDM, and part b of the figure is for ADM. From the waveforms presented here, we may
make the following observations:

» ADM fracks changes in the sinusoidal input signal much better than LDM- m‘
improvement in the performance of ADM is due to adaptation of the step size 18
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FIGURE 3.31 Adaptive delta modulation system: (z) Transmitter. (b) Receiver.
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successive iterations of the algorithm. In particular, the reduced step size of the ADM
results in smaller quantization errors near the extremities of the input signal than the
LDM. However, both modulation schemes produce comparable quantization errors

in regions of the input signal where the slope is moderately high.

& The improved tracking performance of the ADM results in an output signal with a

much lower bit rate, on the average, than the LDM.
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FIGURE 3.32 Waveforms resulting from the computer experiment on delta modulation:
(a) Linear delta modulation. (k) Adaptive delta modulation.
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f 3.17 MPEG Audio Coding Standard

Speech {voice) and audio signals are similar in that, in both cases, the quality of a coding
scheme is based on the properties of human auditory perception. In the case of Speech‘
signals, we have efficient coding schemes (e.g., ADPCM) because a speech productiog
model is available. Unfortunately, nothing similar exists for audio signals.

In this section, we revisit the MPEG-1/audio coding standard briefly described in the
Background and Preview chapter; MPEG stands for Motion Picture Experts Group, ang
the suffix 1 is intended to mean it is the first in a series of several standards.' Like ADPCM
the MPEG-1/audio coding standard is a lossy compression system, but it differs fmn;
ADPCM in an important practical respect: The MPEG-1 standard is capable of achieving
transparent, perceptually lossless compression of stereophonic audio signals ar high
sampling rates. In particular, subjective listening tests performed by the MPEG/audio
committee, under very difficult listening conditions, have shown that even with a 6-to-|
compression ratio, the coded and original audio signals are perceptually indistinguishable,

The MPEG-1/audio coding standard achieves this remarkable performance by ex-
ploiting two psychoacoustic characteristics of the human auditory system:

1. Critical bands.

The inner ear'* of the auditory system represents the power spectra of incoming signals
on a nonlinear scale in the form of limited frequency bands called the eritical bands. The
audible frequency band, extending up to 20 KkEz, is covered by 25 critical bands, whose
individual bandwidths increase with frequency. Loosely speaking, the auditory system may
be modeled as a band-pass filter bank, consisting of 25 overlapping band-pass filters with
bandwidths less than 100 Hz for the lowest audible frequencies and up to 5 kHz for the
highest audible frequencies.

2. Auditory masking.

Auditory masking or noise masking is a frequency-domain phenomenon that arises when
a low-level signal {the maskee) and a high-level signal (the masker) occur simultaneously
and are close enough to each other in frequency. If the low-level signal lies below a masking
threshold, it is made inaudible (i.e., masked) by the stronger signal. The auditory-masking
phenomenon is most pronounced when both signals lie in the same critical band, and less
effective when they lie in neighboring bands.

Figure 3.33 illustrates the definition of masking threshold and related parameters for
a pair of adjacent frequency bands; it is assumed that the masker (i.e., the high-level signal)
lies inside. the dark-shaded critical band. The low-level signals lying inside this dark area
and below the masking threshold are masked by the stronger signal. From Figure 3.33 we
see that the masking threshold varies with frequency across the critical band. Accordinglfs
we may define a minimum masking threshold for a critical band, below which all low-
level signals that lie inside that band are made inaudible by the stronger signal. The power
difference, expressed in decibels, between the masker and the minimum masking threshold,
is termed the signal-to-mask ratio (SMR). Figure 3.33 also includes the signal-to-noist
ratio (SNR) for an R-bit quantizer. The difference between SMR and SNR is the noise-0
mask ratio (NMR) for an R-bit quantizer as shown by

NMR = SMR — SNR (3.85)

where all three terms are expressed in dBs. Within a critical band, the quantization noi¥
is inaudible as long as the NMR for the pertinent quantizer is negative.
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FIGURE 3.33 Illustrating the definitions of masking threshold and related parameters. The high-
level signal (masker) lies inside the darker-shaded critical band, hence the masking is more
effective in this band than in the neighboring band shown in lighter shading. (Adapted from Noll
(1998) with permission of the CRC Press.)

With this background on the psychoacoustics of the auditory system, we are now
ready to describe the operation of the MPEG-1/audio coding standard. Figure 3.34 shows
the basic block diagrams of the encoder and decoder. The encoder consists of four func-
tional units: time-to-frequency mapping network, psychoacoustic model, quantizer and
coder, and frame-packing unit. The decoder consists of three functional units: frame-
unpacking unit, frequency-sample reconstruction network, and frequency-to-time map-
ping network. The psychoacoustic model is thus only necessary in the encoder.

Starting with a description of the encoder first, the function of the time-to-frequency
mapping network is to decompose the input audio signal into multiple subbands for cod-
ing. The mapping is performed in three layers, labeled I, II, and III, which are of increasing
complexity, delay, and subjective perceptual performance. The algorithin in layer Iisés a

Time-to- i
Digital (PCM) frequency Quantizer Frame- Encoded
T f and —>- packing > .
audio signal mapping coder unit bit stream
network
Psychoacoustic
madel
(a)
Frame- Frequency- Frequency- Digital (PCM)
Encaoded + sample fo-time igita
- —3- unpacking F—s= P i e
bit stream puanit € reconstruction mapping audio signal
netwark network

(b)
FiGURE 3.34 MPEG/Audio coding system. (z) Transmitter. (b) Receiver.
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band-pass filter bank that divides the audio signal into 32 constant-width subbands; thy
flter bank is also found in layers IT and T In light of our previous remarks on the nop.
uniformly spaced critical bands, the design of this filter bank is a compromise betweg,
computational efficiency and perceptual performance. The algorithm in layer ILis a simp},
enhancement of layer I it improves the compression performance by coding the data i,
larger groups. Finally, the layer III algotithm is much more refined in that it is designeq
to achieve frequency resolutions closer to the partitions between the critical bands.

The psychoacoustic model is the key component in the encoder. Its function s ¢,
analyze the spectral content of thé input audio signal and thereby compute the signal-t,.
mask ratio for each subband in each of the three layers. This information is, in turn, useq
by the quantizer-coder to decide how to apportion the available number of bits for the
quantization of the subband signals. This dynamic allocation of bits is performed so ast,
minimize the audibility of the quantization noise. Finally, the frame-packing unit assembleg
the quantized audio samples into a decodable bit stream.

The decoder simply reverses the signal-processing operations performed in the ep-
coder, converting the received stream of encoded bits into a time-domain audio signal,

To sum up, the MPEG-1/audio coding standard represents the state of the art in the
coding of audio signals. Layer I achieves a compression ratio of 4 at an approximate sterep
bit rate of 384 kbJs for transparent quality of performance. The corresponding compres.
sion ratios for layers II and IIT are 8 and 12 at approximate stereo bit rates of 192 kbjs
and 128 kbrs, respectively. The subjective quality of the MPEG-1/audio coding standard
is equivalent to compact disc quality (16-bit PCM) for many types of music; the compact
disc (CD} is today’s de facto standard of digital audio representation. :

Summary and Discussion

In this chapter we introduced two fundamental and complementary processes:

b Sampling, which operates in the time domain; the sampling process is the link be-
tween an analog waveform and its discrete-time representation.

b Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-
limited signal with no frequency components higher than W Hz is represented uniquely
by a sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate
of 2W samples per second. The quantization process exploits the fact that any human
sense, as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pualse modulation. The distir
guishing feature between them is that analog pulse modulation systems maintain a contitr
uwous amplitude representation of the message signal, whereas digital pulse modulation
systems also employ quantization to provide a representation of the message signal thatis
discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted.
pulses, such as amplitude, duration, or position, in which case we speak of pulse-ampl'l'mde
modulation (PAM), pulse-duration modulation (PDM), or pulse-position modulation
(PPM), respectively. In time-division multiplexing (TDM) of several channels, signal pro
cessing usually begins with PAM. To use PDM or PPM in such an application, we have
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to ensure that full-scale modulation will not cause a pulse from one message signal to enter
a time slot belonging to another message signal. This restriction results in a wasteful use
of time space in telephone systems that are characterized by high peak factors, which is
one reason for not using PDM or PPM in telephony. Also, despite the fact that PPM is
more efficient than PDM, they both fall short of the ideal system for exchanging trans-
mission bandwidth for improved noise performance,

Digital pulse modulation systems transmit analog message signals as a sequence of
coded pulses, which is made possible through the comibined use of sampling and quanti-
zation. Pulse-code modulation is an important form of digital pulse modulation that is
endowed with some unique system advantages, which, in turn, have made it the standard
method of modulation for the transmission of such analog signals as voice and video
signals. The advantages of pulse-code modulation include robustness to noise and inter-
ference, efficient regeneration of the coded pulses along the transmission path, and a uni-
form format for different kinds of baseband signals.

Indeed, it is because of this list of advantages unique to pulse-code modulation that
it has become the method of choice for the construction of public switched telephone
networks (PSTNs). In this context, the reader should carefully note that the telephone
channel viewed from the PSTN to an Internet service provider, for example, is nonlinear
due to the use of companding and, most importantly, it is entirely digital. This observation
has a significant impact on the design of high-speed modems for communication between
a computer user and server, as discussed in Chapter 6.

Delta modulation and differential pulse-code modulation are two other useful forms
of digital pulse modulation. The principal advantage of delta modulation is the simplicity
of its circuitry. In contrast, differential pulse-code modulation employs increased circuit
complexity to reduce channel bandwidth. The improvement is achieved by using the idea
of prediction to remove redundant symbols from an incoming data stream. A further
improvement in the operation of differential pulse-code modulation can be made through
the use of adaptivity to account for statistical variations in the input data. By so doing,
bandwidth requirement is reduced significantly without serious degradation in system
performance.

Unlike adaptive differential pulse-code modulation, the MPEG audio coding stan-
dard achieves the compression of stereophonic audio signals in a transparent, perceptually
lossless manner. This impressive performance is realized by exploiting certain psycho-
acoustic properties of the auditory system.

At this point in the discussion, it is informative to take a critical look at the different
forms of pulse modulation that we have described in this chapter. In a strict sense, the
term pulse modulation is a misnomer in that all of its different forms, be they analog or
digital, are in fact source coding techniques. We say this for the simple reason that a
message signal remains a baseband signal after undergoing all the changes involved in a
pulse modulation process. The baseband nature of a pulse-modulated signal is exemplified
by the fact that, irrespective of its exact description, it can be transmitted over a baseband
channel of adequate bandwidth. Indeed, the material presented in the next chapter is
devoted to the baseband transmission of data represented by a sequence of pulses.

It is also important to recognize that pulse modulation techniques are Jossy in the
sense that some information is lost as a result of the signal representation that they perform.
For example, in pulse-amplitude modulation, the customary practice is to use low-pass
anti-alias filtering prior to sampling; in so doing, information is lost by virtue of the fact
that high-frequency components considered to be unessential are removed by the filter.
The lossy nature of pulse modulation is most vividly seen in pulse-code modulation that
is characterized by the generation of guantization noise (i.c., distortion); the transmitted
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sequence of encoded pulses does not have the infinite precision needed to represent cop.
tinuous samples exactly. Nevertheless, the loss of information incurred by the use of
pulse-modulation process is usnder the designer’s control in that it can be made smy)
enough for it to be nondiscernible by the end user.

The material presented in this chapter on pulse modulation has been from a signy|

processing perspective. We will revisit pulse-code modulation in Chapter 9, which is de.
voted to information-theoretic considerations of communication systems. In so doing we
will develop deeper insight into its operation as a source coding technique.
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The adaptive delta modulation algorithm (ADM) of Equation (3.84) is the corrected ver-
sion of an algorithm presented in Sklar {1988, p. 641). Sklar’s algorithm was adapted from
an earlier paper by Song et al. {1971), where an optimum ADM system is derived; the
highly nonlinear equations characterizing the optimum system arc approximated in the
latter paper by piecewise-linear equations for the purpose of implementation.

The MPEG-1/audio coding standard is described in the papers by Brandenburg and Stoll
(1994), Pan (1993), and the article by Peter Noll in the handbook on Digital Signal Pro-
cessing edited by Madisetti and Williams (1998); the latter article also discusses the follow-
up standards to MPEG-1. In particular, the MPEG-2 offers stereophonic audio coding at
sampling rates lower than MPEG-1.

The ear, the organ of hearing, responds to incoming acoustical waves. It has three main
] rE . 8. por g
parts, with their functions as summarized here:

& The outer ear aids in the collection of sounds.

# The middle ear provides an acoustic impedance match between the air and the cochlea fluids,
thereby conveying the vibrations of the tympanic membrane (eardrum) due to the incoming
sounds to the inner ear in an efficient manner.

# The inner ear converts the mechanical vibrations from the middle ear to an electrochemical
or neural signal for transmission to the brain for processing.

Sampling Process

3.1

3.2

33

3.4

A narrowband signal has a bandwidth of 10 kHz centered on a carrier frequency of
100 kHz. It is proposed to represent this signal in discrete-time form by sampling its in-
phase and quadrature components individually. What is the minimum sampling rate that
can be used for this representation? Justify your answet. How would you reconstruct the
original narrowband signal from the sampled versions of its in-phase and quadrature
components?

In natural sampling, an analog signal g(¢) is multiplied by a periodic train of rectangular

pulses ¢(t). Given that the pulse repetition frequency of this periodic train is f; and the

duration of each rectangular pulse is T (with £.T' << 1), do the following;:

(a) Find the spectrum of the signal s(¢) that results from the use of natural sampling; you
may assume that time ¢ = 0 corresponds to the midpoint of a rectangular pulse in
c(t).

(b) Show that the original signal 71(¢) may be recovered exactly from its naturally sampled
version, provided that the conditions embodied in the sampling theorem are satisfied.

Specify the Nyquist rate and the Nyquist interval for each of the following signals:
(a) g(#) = sinc(200¢)
(b) g(t) = sinc*(200¢)
{c) g(t) = sinc(200¢) + sinc?(200t)
(a) Plot the spectrum of a PAM wave produced by the modulating signal
m(t) = A,, cos(27f,,t)

assuming a modulation frequency f,, = 0.25 Hz, sampling period T, = 1 s, and pulse
duration T' = 0.45 s.

(b) Using an ideal reconstruction filter, plot the spectrum of the filter output. Compare
this result with the output that would be obtained if there were no aperture effect.
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Pulse-Amplitude Modulation

3.5 Figure P3.5 shows the idealized spectrum of a message signal #72(t). The signal is sampleq
at a rate equal to 1 kHz using flat-top pulses, with each pulse being of unit amplityd,
and duration 0.1 ms. Determine and sketch the spectrum of the resulting PAM signa],

1M(F)]

FH)
-400 o] 400

FIGURE P3.5

3.6 In this problem, we evaluate the equalization needed for the aperture effect in a PAM
system. The operating frequency f = f/2, which corresponds to the highest frequency
component of the message signal for a sampling rate equal to the Nyquist rate. Plot
1/sinc (0.5T/T,) versus T/T., and hence find the equalization needed when T/T, = 0.1.

3.7 Consider a PAM wave transmitted through a channel with white Gaussian noise and
minimum bandwidth Br = 1/2T., where T, is the sampling period. The noise is of zero
mean and power spectral density No/2. The PAM signal uses a standard pulse g(#) with
its Fourier transform defined by

1
G(f) = 128, [ F| < Br
09 [f|>BT

By considering a full-load sinusoidal modulating wave, show that PAM and baseband-
signal transmission have equal signal-to-noise ratios for the same average transmitred
power.

3.8 Twenty-four voice signals are sampled uniformly and then time-division multiplexed. The
sampling operation uses flat-top samples with 1 us duration. The multiplexing operation
includes provision for synchronization by adding an extra pulse of sufficient amplitude
and also 1 us duration. The highest frequency component of each voice signal is 3.4 kHz
(a) Assuming a sampling rate of § kHz, calculate the spacing between successive pulses

of the multiplexed signal.
(b) Repeat your calculation assuming the use of Nyquist rate sampling.

3.9 Twelve different message signals, each with a bandwidth of 10 kHz, are to be multiplexed
and transmitted. Determine the minimum bandwidth required for each method if the
multiplexing/modulation method used is
(a) FDM, SSB.

(b) TDM, PAM.

3.10 A PAM telemetry system involves the multiplexing of four input signals: s;(¢),i = 1,2, 3
4, Two of the signals s;(£) and s,(#) have bandwidths of 80 Hz each, whereas the remaining
two signals s;(2) and s,(z) have bandwidths of 1 kHz each, The signals s5(z) and s.{z) ar¢
each sampled at the rate of 2400 samples per second. This sampling rate is divided by 2°
(i.e., an integer power of 2) to derive the sampling rate for s,{2) and ().

(a) Find the maximum value of R.

{b)- Using the value of R found in part (a), design a multiplexing system that first mult-
plexes s(f) and s,(¢) into a new sequence, ss(¢), and then multiplexes s5(2), s4(£), an
ss(£).
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Line Codes

3.11

3.12

3.13

In this problem we derive the formulas used to compute the power spectra of Figure 3.16
for the five line codes described in Section 3.7. In the case of each line code, the bit
duration is T, and the pulse amplitude A4 is conditioned to normalize the average power
of the line code to unity as indicated in Figure 3.16. Assume that the data stream is
randomly generated, and symbols 0 and 1 are equally likely.

Derive the power spectral densities of these line codes as summarized here:

(a) Unipolar nonreturn-to-zero signals:

2
sy = 21 sinczlfTb)(l + a(f))

(b) Polar nonreturn-to-zero signals:
S(f) = AT, sinc®(fTy)

(c) Unipolar return-to-zero signals:

S = A Tb sinc? (fzb>|:1 + Fb n_va 5( Tb)]

(d) Bipolar return-to-zero signals:

S(f) = —= smcz(f—;ﬁ> sin?(mf T)

(e) Manchester-encoded signals:
S(f) = AT, sinc? (%) sinl(—”fZT”)

Hence, confirm the spectral plots displayed in Figure 3.16.

Suppose a random binary data stream (with equiprobable symbols) is differentially en-
coded and then transmitted using one of the five line codes described in Problem 3.11.
How is the power spectral density of the transmitted data affected by the use of differential
encoding? Justify your answer.

A randomly generated data stream consists of equiprobable binary symbols 0 and 1. It is
encoded into a polar nonreturn-to-zero waveform with each binary symbol being defined
as follows:

cosf ¢ Lo, T
sit) = 1N\T, )’ 2772
0, otherwise

{a) Sketch the waveform so generated, assuming that the data stream is 00101110.

(b) Derive an expression for the power spectral density of this signal, and sketch it. Hint:
use Equation (1.52).

{c) Compare the power spectral density of this random waveform with that defined in
part (b} of Problem 3.11.

Given the data stream 1110010100, sketch the transmitted sequence of pulses for each
of the following line codes:

{a) Unipolar nonreturn-to-zero
(b) Polar nonreturn-to-zero

{c) Unipolar return-to-zero

(d) Bipolar return-to-zero

{e) Manchester code
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3.15

Suppose the binary data stream considered in Problem 3.14 is differentially encoded agg
then transmitted using one of the five line codes considered therein. Sketch each of g
transmitted data streams, assuming the use of symbol 1 for the reference bit. How is ¢,
result affected if symbol 0 is used for the reference bit?

Pulse-Code Medulation

3.16

3.17

3.18

3.19

3.20

3.21

3.22

A speech signal has a total duration of 10 s. It is sampled at the rate of 8 kHz and they

encoded. The signal-to-(quantization) noise ratio is required to be 40 dB. Calculate the

minimum storage capacity needed to accommodate this digitized speech signal.

Consider a uniform quantizer characterized by the input—output relation illustrated iy

Figure 3.104. Assume that a Gaussian-distributed random variable with zero mean agg

unit variance is applied to this quantizer input.

{a) What is the probability that the amplitude of the input lies outside the range ~4 ¢,
+4?

(b) Using the result of part (a), show that the output signal-to-noise ratio of the quantizey
is given by

(SNR)o = 6R — 7.2 dB

where R is the number of bits per sample. Specifically, you may assume that the
quantizer input extends from —4 to +4. Compare the result of part (b) with thar
obtained in Example 3.1.
A PCM system uses a uniform quantizer followed by a 7-bit binary encoder. The bit rate
of the system is equal to 50 X 10° b/s.
(a) What is the maximum message bandwidth for which the system operates
satisfactorily?
(b) Determine the output signal-to-(quantization) noise ratio when a full-load sinusoidal
modulating wave of frequency 1 MHz is applied to the input.
Show that, with a nonuniform quantizer, the mean-square value of the quantization error
is approximately equal to (1/12); A?p;, where A; is the ith step size and p; is the proba-
bility that the input signal amplitude lies within the th interval. Assume that the step size
A, is small compared with the excursion of the input signal.

(a) A sinusoidal signal, with an amplitude of 3.25 volts, is applied to a uniform quantize
of the midtread type whose output takes on the values 0, *1, *2, £3 volts. Sketch
the waveform of the resulting quantizer output for one complete cycle of the input.

{b) Repeat this evaluation for the case when the quantizer is of the midrise type whose
output takes on the values =0.5, *1.5, £2.5, 3.5 volts.

The signal
m(t) = 6 sin{2¢) volts

is transmitted using a 4-bit binary PCM system. The quantizer is of the midrise type, with
a step size of 1 volt. Sketch the resulting PCM wave for one complete cycle of the input.
Assume a sampling rate of four samples per second, with samples taken at ¢ = =118,
+3/8, £5/8, ..., seconds.

Figure P3.22 shows a PCM signal in which the amplitude levels of +1 volt and -1 V}’lt
are used to represent binary symbols 1 and 0, respectively. The code word used consists
of three bits. Find the sampled version of an analog signal from which this PCM signdl
is derived.
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Ty~
FIGURE P3.22

3.23 Consider a chain of (% — 1) regenerative repeaters, with a total of # sequential decisions
made on a binary PCM wave, including the final decision made at the receiver. Assume
that any binary symbol transmitted through the system has an independent probability
p1 of being inverted by any repeater. Let p, represent the probability that a binary symbol
is in error after transmission through the complete system.

(a) Show that
Pa= 31— (1 = 2p1)1
(b) If p; is very small and # is not too large, what is the corresponding value of p,?

3.24 Discuss the basic issues involved in the design of a regenerative repeater for pulse-code
modulation.

Delta Modulation
3.25 Consider a test signal m(z) defined by a hyperbolic tangent function:
m(t) = A tanh(Bt)
where A and B are constants. Determine the minimum step size A for delta modulation
of this signal, which is required to avoid slope overload.
3.26 Consider a sine wave of frequency £, and amplitude A,,, which is applied to a delta
modulator of step size A. Show that slope-overload distortion will occur if
A
2wf,.T,

A, >

where T; is the sampling period. What is the maximum power that may be transmitted
without slope-overload distortion?

3.27 A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz. The
specifications of the modulator are as follows:
B Sampling rate = 10fxyquisc, Where fieyquis is the Nyquist rate of the speech signal.
¥ Step size A = 100 mV.

The modulator is tested with a 1-kHz sinusoidal signal. Determine the maximum ampli-
tude of this test signal required to avoid slope overload.

3.28 In this problem, we derive an empirical formula for the average signal-to-(quantization)
noise ratio of a DM system with a sinusoidal signal of amplitude A and frequency f,, as
the test signal. Assume that the power spectral density of the granular noise generated by
the system is governed by the formula

A2

s ==

W) = g7
where £, is the sampling rate and A is the step size. (Note that this formula is basically
the same as that for the power spectral density of quantization noise in a PCM system
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with A/2 for PCM being replaced by A for DM.) The DM system is designed to hangj,
analog message signals limited to bandwidth W.
{a) Show that the average quantization noise power produced by the system is
_4mAYRW
I
where it is assumed that the step size A has been chosen in accordance with the
formula used in Problem 3.27 so as to avoid slope overload.
{b) Hence determine the signal-to-{quantization) noise ratio of the DM system for 5
sinusoidal input.

3.29 Consider a DM system designed to accommodate analog message signals limited to bang.
width W = § kHz. A sinusoidal test signal of amplitude A = 1 volt and frequency
f.. = 1 kHz is applied to the system. The sampling rate of the system is 50 kHz.

(a) Calculate the step size A required to minimize slope overload.

(b) Calculate the signal-to-(quantization) noise ratio of the system for the specified
sinusoidal test signal.

For these calculations, use the formulas derived in Problems 3.27 and 3.28.

3.30 Consider a low-pass signal with a bandwidth of 3 kHz. A linear delta modulation system,
with step size A = 0.1V, is used to process this signal at a sampling rate ten times the
Nyquist rate.

(a) Evaluate the maximum amplitude of a test sinusoidal signal of frequency 1 kHz,
which can be processed by the system without slope-overload distortion.

{b) For the specifications given in part (a), evaluate the output signal-to-noise ratio under
(i) prefiltered, and (ii) postfiltered conditions.

Linear Prediction

3.31 A one-step linear predictor operates on the sampled version of a sinusoidal signal. The
sampling rate is equal to 10f, where f; is the frequency of the sinusoid. The predictor
has a single coefficient denoted by ;.

(a) Determine the optimum value of s, required to minimize the prediction error
variance.
(b) Determine the minimum value of the prediction error variance.
3.32 A stationary process X(t) has the following values for its autocorrelation function:

Rx(0) =1

Rx(1) = 0.8
Rx(2) = 0.6
Rx(3) = 0.4

{a) Calculate the coefficients of an optimum linear predictor involving the use of three
unit-delays.
(b) Calculate the variance of the resulting prediction error.
3.33 Repeat the calculations of Problem 3.32, but this time use a linear predictor with two
unit-delays. Compare the performance of this second optimum linear predictor with that
considered in Problem 3.32.

Differential Pulse-Code Modulation

3.34 A DPCM system uses a linear predictor with a single tap. The normalized autocorrelation
function of the input signal for a lag of one sampling interval is 0.75. The predictor i
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designed to minimize the prediction error variance. Determine the processing gain attained
by the use of this predictor. ‘

3.35 Calculate the improvement in processing gain of a DPCM system using the optimized
three-tap linear predictor of Problem 3.32 over that of the optimized two-tap linear pre-
dictor of Problem 3.33. For this calculation, use the autocorrelation function values of
the input signal specified in Problem 3.32.

3.36 In this problem, we compare the performance of a DPCM system with that of an ordinary
PCM system using companding.

For a sufficiently large number of representation levels, the signal-to-(quantization)
noise ratio of PCM systems, in general, is defined by

10 log16(SNR) = a + 61 dB

where 2" is the number of representation levels. For a companded PCM system using the
p-law, the constant a is itself defined by

a = 4.77 — 20 logsoflog(1 + ) dB

For a DPCM system, on the other hand, the constant « lies in the range —3 < a < 15
dBs. The formulas quoted herein apply to telephone-quality speech signals.
Compare the performance of the DPCM system against that of the u-companded
PCM system with u = 2535 for each of the following scenarios:
(a) The improvement in (SNR), realized by DPCM over companded PCM for the same
number of bits per sample.
(b) The reduction in the number of bits per sample required by DPCM, compared to the
companded PCM for the same (SNR)e.
3.37 In the DPCM system depicted in Figure P3.37, show that in the absence of channel noise,
the transmitting and receiving prediction filters operate on slightly different input signals.

Imput

Quantizer || thannel Decoder
mlnl

and coder Output

Prediction
filter

Prediction
fitter

Transmitter Receiver

FIGURE P3.37

Computer Experiments

3.38 A sinusoidal signal of frequency f, = 10%2m Hz is sampled at the rate of 8 kHz and then
applied to a sample-and-hold circuit to produce a flat-topped PAM signal s(¢) with pulse
duration T = 500 us.
(a) Compute the waveform of the PAM signal s(¢).
(b) Compute |S(f)|, denoting the magnitude spectrum of the PAM signal s(¢).

(c) Compute the envelope of |S(f)|. Hence confirm that the frequency at which this
envelope goes through zero for the first time is equal to (1/T) = 20 kHa.

3.39 In this problem, we use computer simulation to compare the performance of a companded
PCM system using the u-law against that of the corresponding system using a uniform
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3.40

quantizer. The simulation is to be performed for a sinusoidal input signal of varying

“amplitude.

(2) Using the p-law described in Table 3.4, plot the output signal-to-noise ratio a5,
function of the input signal-to-noise ratio, both ratios being expressed in decibels,

(b) Compare the results of your computation in part {a) with a uniform quantizer haVing
256 representation levels.

In this experiment we study the linear adaptive prediction of a signal x[#] governed by

the following recursion: .

x[n] = 0.8x[n — 1] — 0.1x[n — 2] + 0.1v[n]

where v[#] is drawn from a discrete~time white noise process of zero mean and upj
variance. (A process generated in this manner is referred to as an antoregressive proces;
of order two.) Specifically, the adaptive prediction is performed using the normalized LMg
algorithm defined by

b4
£[n] = ;_:1 wy[nlxln — k]
e[n] = x[n] — £[n]
wiln + 1] = wyln] + {—L—\xln — klelnl, k=1,2,...,p
>, x%n — k]

k=1

where p is the prediction order and p is the normalized step-size parameter. The important
point to note here is that p is dimensionless and stability of the algorithm is assured by
choosing it in accordance with the formula

O< <2
The algorithm is initiated by setting
w,[0] = 0 for all &

The learning curve of the algorithm is defined as a plot of the mean-square error
versus the number of iterations # for specified parameter values, which is obtained by
averaging the plot of &[] versus # over a large number of different realizations of the
algorithm.

{a) Plot the learning curves for the adaptive prediction of x[#] for a fixed prediction order
p = 5 and three different values of step-size parameter: g = 0.0075, 0.05, and 0.5.
{b) What obscrvations can you make from the learning curves of part (a)?



BASEBAND PULSE

TRANSMISSION

This chapter discusses the transmission of digital data over a baseband channel, with
emphasis on the following topics:

» The matched filter, which is the optimum system for detecting a known signal in additive
white Gaussian noise.

» Calculation of the bit error rate due to the presence of channel noise.

W [ntersymbol interference, which arises when the channel is dispersive as is commonly the
case in practice.

P Nyquist’s criterion for distortionless baseband data transmission.

» Correlative-level coding or partial-response signaling for combatting the effects of
intersymbol interference.

» Digital subscriber lines.

P Equalization of a dispersive baseband channel.

» The eye pattern for displaying the combined effects of intersymbol interference and
channel noise in data transmission.

[ 4.1 Introduction

In Chapter 3 we described techniques for converting an analog information-bearing signal
into digital form. There is another way in which digital data can arise in practice: The
data may represent the output of a source of information that is inherently discrete in
nature (e.g., a digital computer). In this chapter we study the transmission of digital data
{of whatever origin) over a baseband channel.! Data transmission over a band-pass channel
using modulation is covered in Chapter 6.

Digital data have a broad spectrum with a significant low-frequency content. Base-
band transmission of digital data therefore requires the use of a low-pass channel with a
bandwidth large enough to accommodate the essential frequency content of the data
stream. Typically, however, the channel is dispersive in that its frequency response deviates
from that of an ideal low-pass filter. The result of data transmission over such a channel
is that each received pulse is affected somewhat by adjacent pulses, thereby giving rise to
a common form of interference called intersymbol interference (ISI). Intersymbol interfer-
ence is a major source of bit errors in the reconstructed data stream at the receiver output,
To correct for it, control has to be exercised over the pulse shape in the overall system.
Thus much of the material covered in this chapter is devoted to pulse shaping in one form
or another.

247
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Another source of bit errors in a baseband data transmission system is the ubiquitoy
channel noise. Naturally, noise and ISI arise in the system simultaneously. However, ¢,
understand how they affect the performance of the system, we first consider them sep,.
rately; later on in the chapter, we study their combined effects.

We thus begin the chapter by describing a fundamental result in communicatigy,
theory, which deals with the detection of a pulse signal of known waveform that is i,
mersed in additive white noise. The device for the optimum detection of such a py]s,
involves the use of a linear-time-invariant filter known as a matched filter,* which is g,
called because its impulse response is matched to the pulse signal.

E 4.2 Matched Filter

A basic problem that often arises in the study of communication systems is that of detecting
a pulse transmitted over a channel that is corrupted by channel noise (i.e., additive nojse
at the front end of the receiver). For the purpose of the discussion presented in this section,
we assume that the major source of system limitation is the channel noise.

Consider then the receiver model shown in Figure 4.1, involving a linear time-invar-
iant filter of impulse response k(t). The filter input x(z) consists of a pulse signal g{z)
corrupted by additive channel noise 1w/(¢), as shown by

x(t) = g(t) + w(t), 0=t=T 4.1

where T is an arbitrary observation interval. The pulse signal g(#) may represent a binary
symbol 1 or 0 in a digital communication system. The w(t) is the sample function of a
white noise process of zero mean and power spectral density No/2. It is assumed that the
receiver has knowledge of the waveform of the pulse signal g(z). The source of uncertainty
lies in the noise w/{t). The function of the receiver is to detect the pulse signal g(z) in an
optimum manner, given the received signal x(z). To satisfy this requirement, we have to
optimize the design of the filter so as to minimize the effects of noise at the filter output
in some statistical sense, and thereby enhance the detection of the pulse signal g(z).
Since the filter is linear, the resulting output y(z) may be expressed as

() = golt) + n(2) 42)

where g.(t) and #n(t) are produced by the signal and noise components of the input x(t),
respectively. A simple way of describing the requirement that the output signal component
g,(t) be considerably greater than the output noise component #(t) is to have the filter
make the instantaneous power in the output signal g,(t), measured at time ¢ = T, as large
as possible compared with the average power of the ontput noise #(¢). This is equivalent
to maximizing the peak pulse signal-to-noise ratio, defined as

n= lgo(T)[? (4.3)
E[n*(2)]
Linear time-
Signal 0| invariant fitter of | Y% S\ YT
& impulse response sample at
a timet=T

White noise
wi{t}

FIGURE 4.1 Linear receiver.
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where | g,(T) | is the instantaneous power in the output signal, E is the statistical expec-
tation operator, and E[r’(£)] is a measure of the average output noise power. The require-
ment is to specify the impulse response k() of the filter such that the output signal-to-
noise ratio in Equation (4.3) is maximized.

Let G(f) denote the Fourier transform of the known signal g(z), and H(f) denote
the frequency response of the filter. Then the Fourier transform of the output signal g, ()
is equal to H(f)G(f), and g,(¢) is itself given by the inverse Fourier transform

8t} = Lm H(f)G(f) exp{j2mft) df (4.4)

Hence, when the filter output is sampled at time # = T, we have {in the absence of channel
noise)
2

lgo(T)]* = f_m H(f)G(f) exp(;2nfT) df (4.5)

Consider next the effect on the filter output due to the noise u/(t) acting alone. The
power spectral density Sx(f) of the output noise #(2) is equal to the power spectral density
of the input noise w(t) times the squared magnitude response |H(f)* (see Section 1.7).
Since w/(t) is white with constant power spectral density Ny/2, it follows that

Sn(f) = =~ [H(H? (4.6)

The average power of the output noise 7(¢) is therefore

Ep) = | Suif) df
(4.7)

N. (=

=5 f \H(f)| df
Thus substituting Equations (4.5) and (4.7) into (4.3), we may rewrite the expression

for the peak pulse signal-to-noise ratio as

2

[ sp6() exptizarm) af

n = (4.8)

% [ (mipi2 af
Our problem is to find, for a given G(f), the particular form of the frequency response
H(f) of the filter that makes  a maximum. To find the solution to this optimization
problem, we apply a mathematical result known as Schwarz’s inequality to the numerator
of Equation (4.8).

A derivation of Schwarz’s inequality is given in Chapter 5. For now it suffices to say
that if we have two complex functions ¢,(x) and ¢ ,(x) in the real variable x, satisfying
the conditions

f_w [$1(x)[? dx < o

and

[ 1ostm2dx <
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then we may write
2

<[ [ lemira oy
The equality in (4.9) holds if, and only if, we have
$1(x) = ko () (419

where & is an arbitrary constant, and the asterisk denotes complex conjugation,

Returning to the problem at hand, we readily see that by invoking Schwarz’s
equality (4.9), and setting ¢ (x) = H(f) and ¢,(x) = G(f) exp(j=fT), the numerator i
Equation (4.8) may be rewritten as °

[ oimoate) dx

2

= [l [ lenrdr

[ HpG) expliznsT) df

Using this relation in Equation (4.8), we may redefine the peak pulse signal-to-noise ratjy
as

5 [
1= L,, |G(f)|* df (4.12)

The right-hand side of this relation does not depend on the frequency response H(f) of
the filter but only on the signal energy and the noise power spectral density. Consequently,
the peak pulse signal-to-noise ratio 1 will be 2 maximum when H(f) is chosen so that the
equality holds; that is,

o = o | |GUOI df T

Correspondingly, H{f) assumes its optimum value denoted by Hop{f). To find this opti-
mum value we use Equation (4.10), which, for the situation at hand, yields
Hoplf) = RG*(f) exp(~j2mfT) (4.14)

where G*(f) is the complex conjugate of the Fourier transform of the input signal g{t),
and £ is a scaling factor of appropriate dimensions. This relation states that, except for
the factor & exp(—j2mfT), the frequency response of the optimum filter is the same as the
complex conjugate of the Fourier transform of the input signal.

Equation (4.14) specifies the optimum filter in the frequency domain. To characterize
it in the time domain, we take the inverse Fourier transform of Hop(f) in Equation (4.14)
to obtain the impulse response of the optimum filter as

honlt) = k | G*f) expl—j2mf(T = 1) df (@19

Since for a real signal g(t) we have G*(f) = G(—f), we may rewrite Equation (4.15)

hope(t) = k le G(~f) expl—j2nf(T — #)] df

=k j_m G(f) exp [i2mf(T — 1)} df (4.16]

= kg{T - 1)

Equation (4.16) shows that the impulse response of the optimum filter, except for thf
scaling factor k, is a time-reversed and delayed version of the input signal g(¢); that 1% t
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is “matched” to the input signal. A linear time-invariant filter defined in this way is called
a matched filter, Note that in deriving the matched filter the only assumption we have
made about the input noise w(t) is that it is stationary and white with zero mean and
power spectral density No/2. In other words, no assumption was made on the statistics of
the channel noise w(t).

PROPERTIES OF MATCHED FILTERS

We note that a filter, which is matched to a pulse signal g(t) of duration T, is characterized
by an impulse response that is a time-reversed and delayed version of the input g(z), as
shown by
bopdt) = kg(T — 1)

In other words, the impulse response b,(z) is uniquely defined, except for the delay T and
-the scaling factor k, by the waveform of the pulse signal g(z) to which the filter is matched.
In the frequency domain, the matched filter is characterized by a frequency response that
is, except for a delay factor, the complex conjugate of the Fourier transform of the input
g(t), as shown by

Howlf) = kG*(f) exp(—j27fT)
The most important result in the calculation of the performance of signal processing sys-
tems using matched filters is perhaps the following:

The peak pulse signal-to-noise ratio of a matched filter depends only on the ratio of the
signal energy to the power spectral density of the white noise at the filter input.

To demonstrate this property, consider a filter matched to a known signal g{¢). The Fourier
transform of the resulting matched filter output g, () is

Golf) = Hopd £)G(f)
= kG*(f)G(f) exp(~j27fT) (4.17)
= k|G(f)|* exp(=j2mfT)

Using Equation (4.17) in the formula for the inverse Fourier transform, we find that the
matched filter output at time £ = T is

£(T) = | Gulf) expli2nfT) df
=k laipiar

According to Rayleigh’s energy theorem, the integral of the squared magnitude spectrum
of a pulse signal with respect to frequency is equal to the signal energy E:

E=] gwa=] |69 ar
Hence
&(T) = kE (4.18)
Substituting Equation (4.14) into (4.7), we find that the average output noise power is

Epee) =22 [ jayp))2 af

= k’N,E/2

(4.19)
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where again we have made use of Rayleigh’s energy theorem. Therefore, the peak pulse
signal-to-noise ratio has the maximum value

_ _kEf _2E
Mmax (kzNoE/Z) NO (420)

From Equation (4.20) we see that dependence on the waveform of the input g(t) has beeg
completely removed by the matched filter. Accordingly, in evaluating the ability of ,
matched-filter receiver to combat additive white noise, we find that all signals that hy,
the same energy are equally effective. Note that the signal energy E is in joules and th,
noise spectral density No/2 is in watts per Hertz, so that the ratio 2E/N, is dimensionlegs,
however, the two quantities have different physical meaning. We refer to E/N as the Signai
energy-to-noise spectral density ratio.

3 ExavpLE 4.1 Matched Filter for Rectangular Pulse

Consider a signal g(¢) in the form of a rectangular pulse of amplitude A and duration T, 4
shown in Figure 4.24. In this example, the impulse response b(t) of the matched filter has
exactly the same waveform as the signal itself. The output signal g,(#) of the matched filter
produced in response to the input signal g(t) has a triangular waveform, as shown in Figure
4.2b.

The maximum value of the output signal g(t) is equal to kA>T, which is the energy of
the input signal g(?) scaled by the factor k; this maximum value occurs at ¢ = T, as indicated
in Figure 4.2b.

2l
A
Energy = A°T
1
0 T
(a)
Matched filter
output g,{f}
KAZT b — — e — —— |
|
|
L :
o} T
{b)
Output of
integrate-and-dump
cirewit |
t
0 T

©)
FicURE 4.2 (a) Rectangular pulse. (b) Matched filter output. (c) Intcgrator output.
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RecptzTiular ——3>' [ntegrator éo\Oﬁ-
Sample at
timer=T

FIGURE 4.3 Integrate-and-dump circuit.

For the special case of a rectangular pulse, the matched filter may be implemented using
a circuit known as the integrate-and-dump circuit, a block diagram of which is shown in
Figure 4.3. The integrator computes the area under the rectangular pulse, and the resulting
output is then sampled at time t = T, where T is the duration of the pulse. Immediately after
t = T, the integrator is restored to its initial condition; hence the name of the circuit. Figure
4.2¢ shows the output waveform of the integrate-and-dump circuit for the rectangular pulse
of Figure 4.2a. We see that for 0 < t < T, the output of this circuit has the same waveform
as that appearing at the output of the matched filter; the difference in the notations used to
describe their peak values is of no practical significance. 4

| 4.3 Error Rate Due to Noise

In Section 3.8 we presented a qualitative discussion of the effect of channel noise on the
performance of a binary PCM system. Now that we are equipped with the matched filter
as the optimum detector of a known pulse in additive white noise, we are ready to derive
a formula for the error rate in such a system due to noise.

To proceed with the analysis, consider a binary PCM system based on polar non-
return-to-zero (NRZ) signaling. In this form of signaling, symbols 1 and 0 are represented
by positive and negative rectangular pulses of equal amplitude and equal duration. The
channel noise is modeled as additive white Gaussian noise w{t) of zero mean and power
spectral density Ny/2; the Gaussian assumption is needed for later calculations. In the
signaling interval 0 =< ¢ = Ty, the received signal is thus written as follows:

(4.21)

+A + wl(z), symbol 1 was sent
x(t) =

—A + wlt), symbol 0 was sent

where T), is the bit duration, and A is the transmitted pulse amplitude. It is assumed that
the receiver has acquired knowledge of the starting and ending times of each transmitted
pulse; in other words, the receiver has prior knowledge of the pulse shape, but not its
polarity. Given the noisy signal x(z), the receiver is required to make a decision in each
signaling interval as to whether the transmitted symbolisa 1 or a 0.

The structure of the receiver used to perform this decision-making process is shown
in Figure 4.4. It consists of a matched filter followed by a sampler, and then finally a

+ L = Say 1 ify >4
PCM wave Matched Y Decision
s{r) filter device Say 0 ify <i
+ Sample at
times =T, T
White Gaussian Threshold
noise w(z} i

FIGURE 4.4 Receiver for baseband transmission of binary-encoded PCM wave using polar NRZ
signaling.
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decision device. The filter is matched to a rectangular pulse of amplitude A and duratj0n
Ty, exploiting the bit-timing information available to the receiver. The resulting march, d
filter output is sampled at the end of each signaling interval. The presence of channe] Tojge
w(t) adds randomness to the matched filter output.

Let y denote the sample value obtained at the end of a signaling interval. The sample
value y is compared to a preset threshold A in the decision device. If the threshold
exceeded, the receiver makes a decision in favor of symbol 1; if not, a decision is made j,
favor of symbol 0. We adopt the convention that when the sample value y is exactly equy
to the threshold A, the receiver just makes a guess as to which symbol was transmiteg,
such a decision is the same as that obtained by flipping a fair coin, the outcome of whig,
will not alter the average probability of error.

There are two possible kinds of error to be considered:

1. Symbol 1 is chosen when a 0 was actually transmitted; we refer to this error a5 4y
error of the first kind.

2. Symbol 0 is chosen when a 1 was actually transmitted; we refer to this error as ay
error of the second kind. ‘

To determine the average probability of error, we consider these two situations separately,
Suppose that symbol 0 was sent. Then, according to Equation (4.21), the received
signal is

#)=~A+wlt), 0=i=T, (42

Correspondingly, the matched filter output, sampled at time z = Tj, is given by (in light
of Example 4.1 with kAT, set equal to unity for convenience of presentation)

Ty
y = L x(t) dt
T, (4.23)

1
-A+ T, Jo w(t) dt

which represents the sample value of a random variable Y. By virtue of the fact that the
noise w(t) is white and Gaussian, we may characterize the random variable Y as follows:
& The random variable Y is Gaussian distributed with a mean of —A.
& The variance of the random variable Y is

o% = E[(Y + AP

]
= Tii E|:J‘U J; w(thw(u) dt du]
1 Te 1 (424)

E[w(t)w(u)] dt du

“T12do Mo
1 (T (T

=77l Rylt, u) dt du
b

where Ryt #) is the autocorrelation function of the white noise w/(t). Since w(t) is white
with a power spectral density Ny/2, we have

Ryl(t,u) = % 8t — u) (4.25)
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where 8(t — u) is a time-shifted delta function. Hence, substituting Equation (4.25) into

(4.24) yields
T, [Ty
ot == ! J’ J’ &b‘t—u dt du
(4.26)

2T,,

where we have used the sifting property of the delta function and the fact that its area is
unity. The conditional probability density function of the random variable Y, given that
symbol 0 was sent, is therefore
+ A
by + 4) ) (4.27)

1
0) = -
Frly|0) Vot eXP( NoTT,

_This function is plotted in Figure 4.5(4). Let p,o denote the conditional probability of error,
given that symbol 0.was sent. This probability is defined by the shaded area under the
curve of fy(y|0) from the threshold A to infinity, which corresponds to the range of values
assumed by y for a decision in favor of symbol 1. In the absence of noise, the matched
filter output y sampled at time ¢ = T}, is equal to —A. When noise is present, y occasionally
assumes a value greater than A, in which case an error is made. The probability of this
error, conditional on sending symbol 0, is defined by

p1o = P(y > A|symbol O was sent)

=f fy (y]0) dy (4.28)

(y + A)
\/77N0/T -( ( No/T, )dy

At this point in the discussion we digress briefly and introduce the definition of the
so-called complementary error function:®

erfc(u) = \/_J’ exp(—2%) dz (4.29)

which is closely related to the Gaussian distribution. For large positive values of #, we
have the following upper bound on the complementary error function:

erfc(n) < %;’:2) (4.30)

@ ®

FIGURE 4.5 Noise analysis of PCM system. (a) Probability density function of random variable Y
at matched filter output when 0 is transmitted. (b) Probability density function of ¥ when 1 is
transmitted.
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To reformulate the conditional probability of error p4, in terms of the complemey,
tary error function, we first define a new variable

2= y+ A
V N /T,

Accordingly, we may rewrite Equation (4.28) in the compact form

1 e .
P = e f(AH)/\m exp({—2*) dz
1 ( A+ ) (439

V' No/T,

Assume next that symbol 1 was transmitted. This time the Gaussian random variap},
Y represented by the sample value y of the matched filter output has a mean +4 apq
variance No/2T,,. Note that, compared to the situation when symbol 0 was sent, the meay
of the random variable Y has changed, but its variance is exactly the same as before, Th,
conditional probability density function of Y, given that symbol 1 was sent, is therefore

.1 - Ay
frlyl1) = VN, CXP( NoT, ) (4.32)

which is plotted in Figure 4.5b. Let po, denote the conditional probability of error, given
that symbol 1 was sent. This probability is defined by the shaded area under the curve of
f¥(v|1) extending from — to the threshold A, which corresponds to the range of values
assumed by y for a decision in favor of symbol 0. In the absence of noise, the matched
filter output y sampled at time ¢ = T}, is equal to +A. When noise is present, y occasionally
assumes a value less than A, and an error is then made. The probability of this error,
conditional on sending symbol 1, is defined by

=3 erfc

Po1 = P(y < A|symbol 1 was sent)

= [ atvivay (439

= ;Jﬂ exp(_u) 4
AN/ T, - No/T, ) ¥

To express po, in terms of the complementary error function, this time we define a new
variable

g=A=Y
V Nu/T,
Accordingly, we may reformulate Equation (4.33) in the compact form
1
Pou xp(—27) dz

== e
Vo Ja-nn R (434

Lo (u)
2 V' No/T,
Having determined the conditional probabilities of error, p1o and poy, our next task
is to derive the formula for the average probability of symbol error, denoted by P,. Here

we note that these two possible kinds of error are mutually exclusive events in that if the
receiver, at a particular sampling instant, chooses symbol 1, then symbol 0 is excluded
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from appearing, and vice versa. Let p, and p, denote the a priori probabilities of trans-
mitting symbols 0 and 1, respectively. Hence, the average probability of symbol error P,
in the receiver is given by

P, = popio * Pipos

o (A+/\> P1 (A—A) (4.35)
="“erfc| —=| + & erfc
2 VN,/T, 2 VN,/T,

From Equation (4.35) we see that P, is in fact a function of the threshold A, which
immediately suggests the need for formulating an optimum threshold that minimizes P,.
For this optimization we use Leibniz’s rule.

Consider the integral

(o)

» flz, u) dz

Leibniz’s rule states that the derivative of this integral with respect to u is

d (o B db(u) dla(w) | ("™ 5f(z, u)
i 00 s = 10600, 1) ) — oty B8 [P M1

For the problem at hand, we note from the definition of the complementary error function
in Equation (4.29) that

flz, u) = % exp(—~z3)

alu) = u
b(u) =
The application of Leibniz’s rule to the complementary error function thus yields
d _ 1 N
7 erfc(u) = Vo exp(—u?) (4.36)

Hence, differentiating Equation (4.35) with respect to A by making use of the formula in
Equation (4.36), then setting the result equal to zero and simplifying terms, we obtain the

optimum threshold as

Ny Po
A = L4 .

o = 2aT, log(m) (4.37)

For the special case when symbols 1 and 0 are equiprobable, we have

in which case Equation (4.37) reduces to

A'Upt = O
This result is intuitively satisfying as it states that, for the transmission of equiprobable
binary symbols, we should choose the threshold at the midpoint between the pulse heights

~A and +A4 representing the two symbols 0 and 1. Note that for this special case we also
have

Po1 = P1o
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A channel for which the conditional probabilities of error po: and pyq are equal is saig to
be binary symmetric. Correspondingly, the average probability of symbol error in Equati,
(4.35) reduces to

P, = 1 erfc(L> 7
) \/m (4.38)
Now the transmitted signal energy per bit is defined by
E;, = Asz (439)

Accordingly, we may finally formulate the average probability of symbol error for the

receiver in Figure 4.4 as
1 {E,
P, = '2"‘ erfc( E) (440)

which shows that the average probability of symbol error in a binary symmetric channy]
depends solely on E,JNq, the ratio of the transmitted signal energy per bit to the nois
spectral density.

Using the upper bound of Equation (4.30) on the complementary error function, we
may correspondingly bound the average probability of symbol error for the PCM receiver
as

exp(—E,/Ng)
2V'wE, /Ny

The PCM receiver of Figure 4.4 therefore exhibits an exponential improvement in the
average probability of symbol error with increase in E/No.

This important result is further illustrated in Figure 4.6 where the average probability
of symbol error P, is plotted versus the dimensionless ratio E,/Np. In particular, we see
that P, decreases very rapidly as the ratio E,/N; is increased, so that eventually a very
“small increase” in transmitted signal energy will make the reception of binary pulses
almost error free, as discussed previously in Section 3.8. Note, however, that in practical
terms the increase in signal energy has to be viewed in the context of the bias; for example,

P, < (4.4])

1072 =~ T T

1074 =

1076 -

1078 -

Probability of error, P,

10710 |- .|

-2 I WIS B S T
10 5 10 15

EyiNo, 4B

FIGURE 4.6 Probability of error in 2 PCM receiver.
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a 3-dB increase in E,/ N, is much easier to implement when E,, has a small value than when
its value is orders of magnitude larger.

Ii,ﬂ-‘ﬁlntersymbol Interference

Input

binary
data
{hy}

The next source of bit errors in a baseband-pulse transmission system that we wish to
study is intersymbol interference (ISI), which arises when the communication channel is
dispersive. First of all, however, we need to address a key question: Given a pulse shape
of interest, how do we use it to transmit data in M-ary form? The answer lies in the use
of discrete pulse modulation, in which the amplitude, duration, or position of the trans-
mitted pulses is varied in a discrete manner in accordance with the given data stream.
However, for the baseband transmission of digital data, the use of discrete pulse-amplitude
modulation (PAM) is one of the most efficient schemes in terms of power and bandwidth
utilization. Accordingly, we confine our attention to discrete PAM systems. We begin the
study by first considering the case of binary data; later in the chapter, we consider the
more general case of M-ary data.

Consider then a baseband binary PAM system, a generic form of which is shown in
Figure 4.7. The incoming binary sequence {b,} consists of symbols 1 and 0, each of du-
ration T,. The pulse-amplitude modulator modifies this binary sequence into a new se-
quence of short pulses (approximating a unit impulse), whose amplitude 4, is represented
in the polar form

n . .
= { 1 if symbol b, is 1 (4.42)

-1 if symbol b is 0

The sequence of short pulses so produced is applied to a transmit filter of impulse response
£(2), producing the transmitted signal
s(t) = ; ag(t — RT,) (4.43)
The signal s(¢) is modified as a result of transmission through the channel of impulse
response b(t). In addition, the channel adds random noise to the signal at the receiver
input. The noisy signal x(¢) is then passed through a receive filter of impulse response c(z).
The resulting filter output y(¢) is sampled synchronously with the transmitter, with the
sampling instants being determined by a clock or timing signal that is usually extracted
from the receive filter output. Finally, the sequence of samples thus obtained is used to
reconstruct the original data sequence by means of a decision device. Specifically, the
amplitude of each sample is compared to a threshold A. If the threshold A is exceeded, a
decision is made in favor of symbol 1. If the threshold A is not exceeded, a decision is made
in favor of symbol 0. If the sample amplitude equals the threshold exactly, the flip of a

Pulse- {ag} | Transmit | s(3 xofe) (0 Receive | () i) . Say 1ify() >
amplitude [—sm|  fitter C“:?';e" o (s) fiiter AN Becision !
madutator &) ¢ olty Sample at Say O if y5;) <A

T time ¢; = i1,
White
Clack Gaussian Thrashold A
Pulses noise w{f)
ke Transmitter fe Channel + Receiver

FIGURE 4.7 Baseband binary data transmission system.
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fair coin will determine which symbol was transmitted (i.., the receiver simply make, X
random guess).
The receive filter output is written as

¥t) = p X aplt = KT,) + alt) (4.44)

where u is a scaling factor, and the pulse p(#) is to be defined. To be precise, an arbitrary
time delay 7o should be included in the argument of the pulse p(t — £T,) in Equation (4.44)
to represent the effect of transmission delay through the system. To simplify the eXpositiop,
we have put this delay equal to zero in Equation (4.44) without loss of generality.

The scaled pulse up(t) is obtained by a double convolution involving the impuls,
response g(z) of the transmit filter, the impulse response b(t) of the channel, and the impy|g,
response ¢(f) of the receive filter, as shown by

pp(t) = g(t) % h(t) % cft) (4.45)
where the star denotes convolution. We assume that the pulse p(¢) is #ormalized by setting
) =1 (4.46)

which justifies the use of  as a scaling factor to account for amplitude changes incurred
in the course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the fre.
quency domain, we may use the Fourier transform to change Equation (4.45) into the
equivalent form ' .

wP(f) = GHH(ICS) (4.47)

where P(f), G{f), H(f), and C(f) are the Fourier transforms of p(t), g(t), h(t), and (t),
respectively.

Finally, the term n(¢) in Equation (4.44) is the noise produced at the output of the
receive filter due to the channel noise /(z). It is customary to model w/(t) as a white Gaus-
sian noise of zero mean.

The receive filter output y(t) is sampled at time #; = iT, (with / taking on integer
values), yielding [in light of Equation (4.46)]

¥(t) ukz aplli — BTy} + nlt)

e 448)
= pa; g kZ agpli— k)T] + nit)

kst
In Equation (4.48), the first term pa; represents the contribution of the ith transmitted bit
The sccond term represents the residual effect of all other transmitted bits on the decoding
of the ith bit; this residual effect due to the occurrence of pulses before and after the
sampling instant #, is called intersymbol interference (ISI). The last term n(t;) represents the
noise sample at time ¢,.
In the absence of both ISI and noise, we observe from Equation (4.48) that

() = e
which shows that, under these ideal conditions, the ith transmitted bit is decoded correctlys
The unavoidable presence of ISI and noise in the system, however, introduces errors inthe
decision device at the receiver output. Therefore, in the design of the transmit and recei¥®

filters, the objective is to minimize the effects of noise and ISI and thereby deliver the digi
data to their destination with the smallest error rate possible.
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When the signal-to-noise ratio is high, as is the case in a telephone system, for ex-
ample, the operation of the system is largely limited by ISI rather than noise; in other
words, we may ignore #(t;). In the next couple of sections, we assume that this condition
holds so that we may focus our attention on ISI and the techniques for its control. In
particular, the issue we wish to consider is to determine the pulse waveform p(¢) for which
the ISI is completely eliminated.

4.5 Nyquist’s Criterion for Distortionless
Baseband Binary Transmission

Typically, the frequency response of the channel and the transmitted pulse shape are spec-
ified, and the problem is to determine the frequency responses of the transmit and receive
filters so as to reconstruct the original binary data sequence {b;}. The receiver does this by
extracting and then decoding the corresponding sequence of coefficients, {4}, from the
output y(t). The extraction involves sampling the output y(¢) at time ¢ = iT,. The decoding
requires that the weighted pulse contribution 4,p(iT, — kT,} for & = i be free from ISI
due to the overlapping tails of all other weighted pulse contributions represented by k # .
This, in turn, requires that we conirol the overall pulse p(t), as shown by

1, i=k

0, ik (4.49)

piT, — kT,) = {
where p(0) = 1, by normalization. If p(¢} satisfies the conditions of Equation (4.49), the
receiver output y(#;) given in Equation (4.48) simplifies to (ignoring the noise term)

y(t) = pa; for all ¢

which implies zero intersymbol interference. Hence, the two conditions of Equation (4.49)
ensure perfect reception in the absence of noise.

From a design point of view, it is informative to transform the conditions of Equation
(4.49) into the frequency domain. Consider then the sequence of samples {p(»T,)}, where
n=0,*1 *2 -.-, From the discussion presented in Chapter 3 on the sampling process,
we recall that sampling in the time domain produces periodicity in the frequency domain.
In particular, we may write

=R, E Pif — nR,) (4.50)
where R, = 1T, is the bit rate in bits per second (b/s); Ps(f) is the Fourier transform of
an infinite periodic sequence of delta functions of period T, whose individual areas are
weighted by the respective sample values of p(#). That is, Ps(f) is given by

f E [p(mT,) 8(t — mTy)] exp(—j2wft) di (4.51)
Let the integer 72 = i — k. Then, i = k corresponds to 7 = 0, and likewise i # k corresponds
to m # 0. Accordingly, imposing the conditions of Equation (4.49) on the sample values
of p(2) in the integral of Equation (4.51), we get

f p(0) 8(¢) exp(—j2mft) dt
(4.52)



262

CHAPTER 4 BASEBAND PULSE TRANSMISSION

where we have made use of the sifting property of the delta function. Since from Equatig,
{4.46) we have p(0) = 1, it follows from Equations (4.50) and (4.52) that the conditigy
for zero intersymbol interference is satisfied if

2 P(f-nR) =T, (453

We may now state the Nyguist criterion® for distortionless baseband transmission iy
the absence of noise: The frequency function P(f) eliminates intersymbol interference fy,
samples taken at intervals Ty, provided that it satisfies Equation (4.53). Note that p(f)
refers to the overall system, incorporating the transmit filter, the channel, and the recejy,
filter in accordance with Equation (4.47).

IDEAL NYQUIST CHMANNEL

The simplest way of satisfying Equation (4.53) is to specify the frequency function P(f) to
be in the form of a rectangular function, as shown by

1

Py =awe TSIV
Lol
el

where rect(f) stands for a rectangular function of unit amplitude and unit support centered
on f = 0, and the overall system bandwidth W is defined by
_R_ 1

W= 2 a1, (4.55)
According to the solution described by Equations (4.54) and (4.55), no frequencies of
absolute value exceeding half the bit rate are needed. Hence, from Fourier-transform pair
2 of Table A6.3 we find that a signal waveform that produces zero intersymbol interference
is defined by the sinc function:

sin{27Wt)
27Wi (4.56)
sinc(2 Wt)

1

The special value of the bit rate R, = 2W is called the Nyquist rate, and W is juself
called the Nyguist bandwidth. Correspondingly, the ideal baseband pulse transmission,
system described by Equation (4.54) in the frequency domain or, equivalently, Equation
(4.56) in the time domain, is called the ideal Nyquist channel.

Figures 4.8a and 4.8b show plots of P(f) and p(t}, respectively. In Figure 4,84, the
normalized form of the frequency function P(f) is plotted for positive and negative fre-
quencies. In Figure 4.8b, we have also included the signaling intervals and the correspond-
ing centered sampling instants. The function p(t) can be regarded as the impulse responsé
of an ideal low-pass filter with passband magnitude response 1/2W and bandwidth V.
The function p(#) has its peak value at the origin and goes through zero at integer multiples
of the bit duration T}. It is apparent that if the received waveform y(f) is sampled at the
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FIGURE 4.8 (a) Ideal magnitude response. (b) Ideal basic pulse shape.

instants of time ¢ = 0, =Ty, *2T,,---, then the pulses defined by up(z — iT}) with
arbitrary amplitude p and index i = 0, =1, +2, -+, will not interfere with each other.
This condition is illustrated in Figure 4.9 for the binary sequence 1011010.

Although the use of the ideal Nyquist channel does indeed achieve economy in band-
width in that it solves the problem of zero intersymbol interference with the minimum

Binarysequence 1 0 1 1 0 1 0

Amplitude

-4 ~2 0 2 4 6 8 10 12
Time

FIGURE 4.9 A series of sinc pulses corresponding to the sequence 1011010.
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bandwidth possible, there are two practical difficulties that make it an undesirable objec
tive for system design: 3

1. It requires that the magnitude characteristic of P(f) be flat from — W to W, and 2tr
elsewhere. This is physically unrealizable because of the abrupt transitions ar g,
band edges =+ W.

2. The function p(t) decreases as 1/| ¢ for large |#], resulting in a slow rate of decay
This is also caused by the discontinuity of P(f) at +W. Accordingly, there is Prac:
tically no margin of error in sampling times in the receiver.

To evaluate the effect of this timing error, consider the sample of y(#) at t =
where At is the timing error. To simplify the exposition, we may put the correct sampﬁné
time #; equal to zero. In the absence of noise, we thus have (from Equation (4.48))

y(Af) = p Ek) agp(At — kTy)

LS g, SH2TWAL ET,)] (4.57)
B 20 % nW(AL — kT,)
Since 2WT;, = 1, by definition, we may rewrite Equation (4.57) as
_ . o sin(27W Atz) (—1)ka,
y(At) = paq sinc(2W A?) + - Ek) D (4.58)

k0

The first term on the right-hand side of Equation (4.58) defines the desired symbol, whereas
the remaining series represents the intersymbol interference caused by the timing error At
in sampling the output y(¢). Unfortunately, it is possible for this series to diverge, thereby
causing erroneous decisions in the receiver.

& RAISED COSINE SPECTRUM

We may overcome the practical difficulties encountered with the ideal Nyquist channel by
extending the bandwidth from the minimum value W = R;/2 to an adjustable value be-
tween W and 2W. We now specify the overall frequency response P(f) to satisfy a con-
dition more elaborate than that for the ideal Nyquist channel; specifically, we retain threz
terms of Equation (4.53) and restrict the frequency band of interest to [— W, W], as shown
by

1
P(f) + P(f — 2W) + P(f + 2W) = W’ —-W=f=W (4.59)
We may devise several band-limited functions that satisfy Equation (4.59). A particulat
form of P(f) that embodies many desirable features is provided by a raised cosine spectri.
This frequency response consists of a fla portion and a rolloff portion that has a sinusoida]
form, as follows:

1

2w’ 0= |fl<f
ppy =41 [, _ . [aUfl=W) - _ 4.60)
(f) W{l Sm[ZW-—Zfl s fis|fl<2W-fi

o -

|flz2W~fi
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The frequency parameter f, and bandwidth W are related by

a=1—% (4.61)

The parameter « is called the rolloff factor; it indicates the excess bandwidth over the
ideal solution, W. Specifically, the transmission bandwidth B is defined by

Br=2W - f;
=W1l+ a)

The frequency response P(f), normalized by multiplying it by 2W, is plotted in Figure
4.10a for three values of a, namely, 0, 0.5, and 1. We see that for @ = 0.5 or 1, the

2WP(f)
1.0

08~ o=l
0.6 —
0.4

02—
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Nl |

-2

)

FIGURE 4.10 Responses for different rolloff factors. (a) Frequency response. (b) Time response.
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function P(f) cuts off gradually as compared with the ideal Nyquist channel (i.e., & =
and is therefore easier to implement in practice. Also the function P(f) exhibits odd Sym.
metry with respect to the Nyquist bandwidth W, making it possible to satisfy the conditio,
of Equation (4.59).

The time response p(#) is the inverse Fourier transform of the frequency respopg,
P(f). Hence, using the P(f) defined in Equation (4.60), we obtain the result {see Probley,
4.13)

cos(2maWt) ) s
X 2)

plt) (smc(?_Wt))(l T 1edWiR
which is plotted in Figure 4.10b for & = 0, 0.5, and 1.

The time response p(t) consists of the product of two factors: the factor sinc(2 Wy
characterizing the ideal Nyquist channel and a second factor that decreases as 1/]¢|? fo;
large ||, The first factor ensures zero crossings of p{#) at the desired sampling instants of
time # = #T with 7 an integer (positive and negative). The second factor reduces the tails
of the pulse considerably below that obtained from the ideal Nyquist channel, so that the
transmission of binary waves using such pulses is relatively insensitive to sampling time
errors. In fact, for & = 1 we have the most gradual rolloff in that the amplitudes of the
oscillatory tails of p(t) are smallest. Thus the amount of intersymbol interference resulting
from timing error decreases as the rolloff factor a is increased from zero to unity.

The special case with a = 1 (i.e., f; = 0) is known as the full-cosine rolloff charac.
teristic, for which the frequency response of Equation (4.60) simplifies to

1 [1 + cos(Lf):I, 0<|fl<2W

P(f) = {4W 2W (4.63)
0, |fl=2w
Correspondingly, the time response p(¢) simplifies to
_ sinc(4Wt)
Pl = T ewrip (464

This time response exhibits two interesting properties:

1. Att = =TJ2 = +1/4W, we have p(t) = 0.5; that is, the pulse width measured at
half amplitude is exactly equal to the bit duration T}.

2. There are zero crossings at ¢ = +3T,/2, £5T,/2, -+ in addition to the usual zero
crossings at the sampling times z = =T, +2T,,*-*.

These two properties are extremely useful in extracting a timing signal from the received
signal for the purpose of synchronization. However, the price paid for this desirable prop-
erty is the use of a channel bandwidth double that required for the ideal Nyquist channel
corresponding to o = 0.

# ExampLE 4.2 Bandwidth Requirement of the T1 System

In Example 3.2 of Chapter 3, we described the signal format for the T1 carrier system that ¥
used to multiplex 24 independent voice inputs, based on an 8-bit PCM word. It was show?t
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that the bit duration of the resulting time-division multiplexed signal (including a framing bit)
is -

T, = 0.647 us

Assuming the use of an ideal Nyquist channel, it follows that the minimum transmission
bandwidth By of the T1 system is {for a = 0)

1
B=W=_—" =
T T, 772 kHz

However, a more realistic value for the necessary transmission bandwidth is obtained by using
a full-cosine rolloff characteristic with & = 1. In this case, we find that

1
.= + ) = = =1,
Br=W1+a)=2W T, 1.544 MHz <

i 4.6 Correlative-Level Coding

Thus far we have treated intersymbol interference as an undesirable phenomenon that
produces a degradation in system performance. Indeed, its very name connotes a nuisance
effect. Nevertheless, by adding intersymbol interference to the transmitted signal in a con-
trolled manner, it is possible to achieve a signaling rate equal to the Nyquist rate of 2W
symbols per second in a channel of bandwidth W Hertz, Such schemes are called correl-
ative-level coding or partial-response signaling schemes.” The design of these schemes is
based on the following premise: Since intersymbol interference introduced into the trans-
mitted signal is known, its effect can be interpreted at the receiver in a deterministic way.
Thus correlative-level coding may be regarded as a practical method of achieving the
theoretical maximum signaling rate of 2W symbols per second in a bandwidth of W Hertz,
as postulated by Nyquist, using realizable and perturbation-tolerant filters.

5 DUORINARY SIGNALING

The basic idea of correlative-level coding will now be illustrated by considering the specific
example of duobinary signaling, where “duo” implies doubling of the transmission ca-
pacity of a straight binary system. This particular form of correlative-level coding is also
called class I partial response.

Consider a binary input sequence {b,] consisting of uncorrelated binary symbols 1
and 0, each having duration T,. As before, this sequence is applied to a pulse-amplitude
modulator producing a two-level sequence of short pulses (approximating a unit impulse),
whose amplitude a, is defined by

+1 i 1 b, is 1
4 = { if symbol b, is (4.65)

-1 if symbol b, is 0

When this sequence is applied to a duobinary encoder, it is converted into a three-
level output, namely, -2, 0, and +2. To produce this transformation, we may use the
scheme shown in Figure 4.11. The two-level sequence {a,} is first passed through a simple
filter involving a single delay element and summer. For every unit impulse applied to the
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Input
| + ideal Output
stwc'f:sl ! @ l channe! S o—s- sequence
eq{; 3 | 1 Hyyquist(f) sample at fed
v il + ! time 1 = KTy,
|
!
| Delay ll
i T, ,
! [
. I
Filter Hy(f)

FIGURE 4.11 Ducbinary signaling scheme.

input of this filter, we get two unit impulses spaced T}, seconds apart at the filter outpus,
We may therefore express the duobinary coder output ¢, as the sum of the present inpyt
pulse a; and its previous value 2;_y, as shown by

Cp = dp T Ay (4.66)

One of the effects of the transformation described by Equation (4.66) is to change the
input sequence {a;} of uncorrelated two-level pulses into a sequence {c} of correlated three-
level pulses. This correlation between the adjacent pulses may be viewed as introducing
intersymbol interference into the transmitted signal in an artificial manner. However, the
intersymbol interference so introduced is under the designer’s control, which is the basis
of correlative coding.

An idea! delay element, producing a delay of Ty, seconds, has the frequency response
exp(—j27f Ts), so that the frequency response of the simple delay-line filter in Figure 4.11
is 1 + exp(—72mfT;). Hence, the overall frequency response of this filter connected in
cascade with an ideal Nyquist channel is

Hi{f) = Hiyquinl )1 + exp(=j27fTe)]
= Hiyyuae f)exp(jmf Ts) + exp(—jmfTy)] exp(—jmfT,) {4.67)
= 2Hygyquisel f) cos(mf To) exp(~jmfTp)

where the subscript 1in Hy{f) indicates the pertinent class of partial response. For an ideal
Nyquist channel of bandwidth W = 1/27T,,, we have (ignoring the scaling factor Tj)

1,  |f|=112T,

. (4.68)
0, otherwise

HNyquisc(f) = {

Thus the overall frequency response of the duobinary signaling scheme has the form ofa
half-cycle cosine function, as shown by

Hp) = {2 cos(mfTy) expl—jmfTe), | f1 = 12T, "
0, otherwise
for which the magnitude response and phase response are as shown in Figures 4.124 and
4.12b, respectively. An advantage of this frequency response is that it can be easily 3
proximated, in practice, by virtue of the fact that there is continuity at the band edges:
From the first line in Equation (4.67) and the definition of Hyyquiself) in Equatio?
(4.68), we find that the impulse response corresponding to the frequency response Hif!
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FiGURE 4.12  Frequency response of the duobinary conversion filter. (4) Magnitude response.
(b) Phase response.

consists of two sinc (Nyquist) pulses that are time-displaced by T, seconds with respect to
each other, as shown by (except for a scaling Factor)
- sin(mt/T,) . sin[w(t — T,)T,]

Wt/Tb 7T(t - Tb)/Tb

sin(mt/T,) sin({mt/T,)

= -~ 4,

wt/T, w(t — T )T, (4.70)
_ T sin(mt/T,)

Wt(Tb - t)

bylz)

The impulse response 4,(z) is plotted in Figure 4.13, where we see that it has only two
distinguishable values at the sampling instants. The form of b(t) shown here explains why
we also refer to this type of correlative coding as partial-response signaling. The response
to an input pulse is spread over more than one signaling interval; stated in another way,
the response in any signaling interval is “partial.” Note also that the tails of by(¢) decay as
1/]¢|?, which is a faster rate of decay than the 1/ |t| encountered in the ideal Nyquist
channel.

The original two-level sequence {4,} may be detected from the duobinary-coded
sequence {c;} by invoking the use of Equation (4.66). Specifically, let 4, represent the
estimate of the original pulse 4, as conceived by the receiver at time = kt,. Then, sub-
tracting the previous estimate 4,_; from ¢y, we get

ﬁk =Cp — dk_1 (4.71)

It is apparent that if ¢, is received without error and if also the previous estimate d,_; at
time ¢ = (k — 1)T,, corresponds to a correct decision, then the current estimate 4, will be

Y
t
-21,, T, 0 T, 2Ty ~—-"31, 4T,

FIGURE 4.13  Impulse response of the duobinary conversion filter.



270 CHAPTER 4 BASEBAND PULSE TRANSMISSION

correct too. The technique of using a stored estimate of the previous symbol is calleq
decision feedback.

We observe that the detection procedure just described is essentially an inverse of the
operation of the simple delay-line filter at the transmitter. However, a major drawback of
this detection procedure is that once errors are made, they tend to propagate through the
output because a decision on the current input 4, depends on the correctness of the decisiop
made on the previous input 2;_;.

A practical means of avoiding the error-propagation phenomenon is to use precoding
before the duobinary coding, as shown in Figure 4.14. The precoding operation performed
on the binary data sequence {b,} converts it into another binary sequence {d,} defined by

dk = b{z @ dk,1 (4.72)
where the symbol @ denotes modulo-two addition of the binary digits by and dy_4. This
addition is equivalent to a two-input EXCLUSIVE OR operation, which is performed a4
follows:

4 = {symbol 1 if either symbol b, or symbol d;_; (but not both) is 1
=

symbol 0 otherwise (4.73)

The precoded binary sequence {d,) is applied to a pulse-amplitude modulator, producing
a corresponding two-level sequence of short pulses {#,}, where @, = *1 as before. This
sequence of short pulses is next applied to the duobinary coder, thereby producing the
sequence {c,} that is related to {a,} as follows:

cp = ap t ap_1 (4.74)
Note that unlike the linear operation of duobinary coding, the precoding described by

Equation (4.72) is a nonlinear operation.

The combined use of Equations (4.72) and (4.74) yields
0 if data symbol by is 1
= 4.
Ck {12 if data symbol &, is 0 *.73)

which is illustrated in Example 4.3. From Equation (4.75) we deduce the following decision
rule for detecting the original binary sequence {5} from {c,}:

If |c,| <1, say symbol by is 1

) (4.76)
If |c,| > 1,  say symbol b, is 0
Input
L
sequence | Modulo-2 adder 1 Output
Pulse- {ay} . o
b} 1 | ldyd : &' | Duobinary three-level
; TR ; arggll}:tde —>  coder —>o\\o—>- eauercs
: : modufator Sample at fe)
| | t =kTy
1 1
: {dy 1} t
|
| Delay |
1 T |
| b {
b e A
Precoder

FIGURE 4.14 A precoded duobinary scheme; details of the duobinary coder are given in Figwe
4.11.
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Sayb=1if [cp] <1

Decision
device

Say by =0if o [ > 1

»

FIGURE 4.15  Detector for recovering original binary sequefice from the precoded duobinary
coder output.

Threshold =1

When |c,| = 1, the receiver simply makes a random guess in favor of symbol 1 or 0.
According to this decision rule, the detector consists of a rectifier, the output of which is
compared in a decision device to a threshold of 1. A block diagram of the detector is
shown in Figure 4.15. A useful feature of this detector is that no knowledge of any input
sample other than the present one is required. Hence, error propagation cannot occur in
the detector of Figure 4.15.

B ExampLE 4.3 Duobinary Coding with Precoding

Consider the binary data sequence 0010110. To proceed with the precoding of this sequence,
which involves feeding the precoder output back to the input, we add an extra bit to the
precoder output. This extra bit is chosen arbitrarily to be 1. Hence, using Equation (4.73), we
find that the sequence [4,} at the precoder output is as shown in row 2 of Table 4.1. The polar
representation of the precoded sequence {d,} is shown in row 3 of Table 4.1, Finally, using
Equation (4.74), we find that the duobinary coder output has the amplitude levels given in
row 4 of Table 4.1.

To detect the original binary sequence, we apply the decision rule of Equation {4.76),
and so obtain the binary sequence given in row § of Table 4.1. This latrer result shows that,
in the absence of noise, the original binary sequence is detected correctly. 4§

2 MODIFIED INUOBINARY SIGNALING

In the duobinary signaling rechnique the frequency response H(f), and consequently the
power spectral density of the transmitted pulse, is nonzero at the origin. This is considered
to be an undesirable feature in some applications, since many communications channels
cannot transmit 2 DC component. We may correct for this deficiency by using the class
IV partial response or modified duobinary technique, which involves a correlation span
of two binary digits. This special form of correlation is achieved by subtracting amplitude-
modulated pulses spaced 27T, seconds apart, as indicated in the block diagram of Figure

[ TaBLE 4.1 [llustrating Example 4.3 on duobinary coding

Binary sequence {5} 0 0 1 0 1 1 0
Precoded sequence {d,} 1 1 1 0 0 1 0

Two-level sequence {a;} +1 +1 +1 -1 -1 +1 -1 -1
Duobinary coder output {c,) +2 42 0 -2 0 0 -2
Binary sequence obtained by 0 0 1 0 1 1 0

applying decision rule of Eq. (4.76)
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Precoder Modified duobinary conversion fitter H{f)

FIGURE 4.16 Modified duobinary signaling scheme.

4.16. The precoder involves a delay of 2T, seconds. The output of the modified duobinary
conversion filter is related to the input two-level sequence {a,} at the pulse-amplitude mod-
ulator output as follows:

Cp = dp — Ap-2 (477)

Here, again, we find that a three-level signal is gencrated. With a, = 1, we find that ¢,
takes on one of three values: +2, 0, and —2.
The overall frequency response of the delay-line filter connected in cascade with an

ideal Niyquist channel, as in Figure 4.16, is given by
Hiolf) = Hyyquisd FY1 — exp(—i4mfTy)]

= 2jHnyquisi f)sin(27f T,) exp(—j27fT)
where the subscript IV in Hyy(f) indicates the pertinent class of partial response and
Hpyyquislf) is as defined in Equation (4.68). We therefore have an overall frequency re-
sponse in the form of a half-cycle sine function, as shown by
2j sin(2nf Ty) exp(—2wfTp), | fl = 12T,
0, elsewhere

(4.78)

Hw(f) = { (479)

The corresponding magnitude response and phase response of the modified duobinary
coder are shown in Figures 4.174 and 4.17b, respectively. A useful feature of the modified
duobinary coder is the fact that its output has no DC component. Note also that this

arg [Hpy ()]

o
i 2
I L
I‘ 2T, ;

\
B 1
2T, a7, aT,

1 ks
21, 2

(@) b)

FIGURE 4,17 Frequency response of the modified duobinary conversion filter. (a) Magnitude
response. (b) Phase response.
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second form of correlative-level coding exhibits the same continuity at the band edges as
in duobinary signaling. .

From the first line of Equation (4.78) and the definition of Hyqus(f) in Equation
{4.68), we find that the impulse response of the modified duobinary coder consists of two
sinc (Nyquist) pulses that are time-displaced by 2T, seconds with respect to each other, as
shown by (except for a scaling factor)
sin{a¢/Ty)  sin[m(t = 2T, )/T,)]

T"t/Tb 7T(t - 2Tb)/Tb
_ sin(mt/T,))  sin({mt/T),)
_ 2T% sin(mt/T,)
12T, —1)

by(z) =

This impulse response is plotted in Figure 4.18, which shows that it has three distinguish-
able levels at the sampling instants. Note also that, as with duobinary signaling, the tails
of bry(z) for the modified duobinary signaling decay as 1/]¢|2.

To eliminate the possibility of error propagation in the modified duobinary system,
we use a precoding procedure similar to that used for the duobinary case. Specifically,
prior to the generation of the modified duobinary signal, 2 modulo-two logical addition
is used on signals 2T, seconds apart, as shown by (see the front end of Figure 4.16)

dp=b, ®di
_ {symbol 1 if either symbol b, or symbol d;_, (but not both) is 1(4.81)
symbol 0 otherwise

where {h,} is the incoming binary data sequence and {d,} is the sequence at the precoder
output. The precoded sequence {d,} thus produced is then applied to a pulse-amplitude
modulator and then to the modified duobinary conversion filter.

In Figure 4.16, the output digit ¢, equals —2, 0, or +2, assuming that the pulse-
amplitude modulator uses a polar representation for the precoded sequence {d,}. Also we
find that the detected digit b, at the receiver output may be extracted from ¢; by disre-
garding the polarity of c,. Specifically, we may formulate the following decision rule:

If |ci| > 1,  say symbol by is 1

4.82
If|cy| <1,  say symbol by is 0 (4.82)

At

1.0

~ | N ;
AT, o T, o1, 3T, AT,

A0 ———————

FIGURE 4.18 Impulse response of the modified duobinary conversion filter.
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When | ;| = 1, the receiver makes a random guess in favor of symbol 1 or 0. As with gh,
duobinary signaling, we may note the following:

> n the absence of channel noise, the detected binary sequence {6} is exactly the same
as the original binary sequence {&,} at the transmitter input.

& The use of Equation (4.81) requires the addition of two extra bits to the precodeg
sequence {a;}. The composition of the decoded sequence {6} using Equation (4.82)
is invariant to the selection made for these two bits.

GENERALIZED FORM OF CORRELATIVE-LEVEL CODING
(PARTIAL-RESPONSE SIGNALING)

The duobinary and modified duobinary techniques have correlation spans of 1 binary digj;
and 2 binary digits, respectively. It is a straightforward matter to generalize these twg
techniques to other schemes, which are known collectively as correlative-level coding or
partial-response signaling schemes. This gencralization is shown in Figure 4.19, wher
Hygyquieel f) is defined in Equation (4.68). It involves the use of a tapped-delay-line filter
with tap-weights wg, wy, - - 5 Wn-1. Specifically, different classes of partial-response sig-

Input [ 1deal Output
iwo-level f;\ channel, \é multilevel
seqlience Hyqusl$ | Sample at sequencs

[ﬂk} i t=kT), {fk)

Delay o
Ty

(x)

2

WN-1

FIGURE 4.19 Generalized correlative coding scheme.
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z TABLE 4.2 Different classes of partial-response signaling schemes

referring to Figure 4.19
Type of Class N wy w; w, w3 Wy Comments
1 2 1 1 Duobinary coding
I 3 1 2
i 3 1 -1
v 3 0 -1 i Modified duobinary coding
v 5 - 0 0 -1

naling schemes may be achieved by using a weighted linear combination of N ideal Nyquist
(sinc) pulses, as shown by

N-—1
bty =S w, sinc(Ti - n) (4.83)
#=0 13

An appropriate choice of the tap-weights in Equation (4.83) results in a variety of spectral
shapes designed to suit individual applications. Table 4.2 presents the specific details of
five different classes of partial-response signaling schemes. For example, in the duobinary
case (class I partial response), we have

o = +1

wy = +1

and w,, = 0 for n = 2. In the modified duobinary case (class IV partial response), we have

wy = +1
W1=O
w; = —1

and w, = 0 for n = 3.
The useful characteristics of partial-response signaling schemes may now be sum-
marized as follows:

¥ Binary data transmission over a physical baseband channel can be accomplished at
a rate close to the Nyquist rate, using realizable filters with gradual cutoff
characteristics.

® Different spectral shapes can be produced, appropriate for the application at hand.

However, these desirable characteristics are achieved at a price: A larger signal-to-noise
ratio is required to yield the same average probability of symbol etror in the presence of
noise as in the corresponding binary PAM systems because of an increase in the number
of signal levels used.

liz Baseband M-ary PAM Transmission

In the baseband binary PAM system of Figure 4.7, the pulse-amplitude modulator pro-
duces binary pulses, that is, pulses with one of two possible amplitude levels. On the other
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hand, in a baseband M-ary PAM system, the pulse-amplitude modulator produces one o
M possible amplitude levels with M > 2. This form of pulse modulation is illustrated j,
Figure 4.20a for the case of a quaternary (M = 4) system and the binary data sequeng,
0010110111, The waveform shown in Figure 4.20a is based on the electrical represent,.
tion for each of the four possible dibits (pairs of bits) given in Figure 4.20b. Note that thy
representation is Gray encoded, which means that any dibit in the quaternary alphabe
differs from an adjacent dibit in a single bit position.

In an M-ary system, the information source emits a sequence of symbols from 4y
alphabet that consists of M symbols. Each amplitude level at the pulse-amplitude mody.
lator output corresponds to a distinct symbol, so that there are M distinct amplitude leyel
t0 be transmitted. Consider then an M-ary PAM system with a signal alphabet that cop.
tains M equally likely and statistically independent symbols, with the symbol duratioy
denoted by Tseconds. We refer to 1/T as the signaling rate of the system, which is expressed
in symbols per second, or bauds. It is informative to relate the signaling rate of this systen
to that of an equivalent binary PAM system for which the value of M is 2 and the successive
binary symbols 1 and 0 are equally likely and statistically independent, with the duration
of either symbol denoted by T}, seconds. Under the conditions described here, the binary
PAM system produces information at the rate of 1/T,, bits per seconds. We also observe
that in the case of a quaternary PAM system, for example, the four possible symbols may
be identified with the dibits 00, 01, 10, and 11. We thus see that each symbol represents
2 bits of information, and 1 baud is equal to 2 bits per second. We may generalize this
result by stating that in an M-ary PAM system, 1 baud is equal to log, M bits per second,
and the symbol duration T of the M-ary PAM system is related to the bit duration T}, of
the equivalent binary PAM system as

T="T,log, M (4.84)

Therefore, in a given channel bandwidth, we find that by using an M-ary PAM system,
we are able to transmit information at a rate that is log, M faster than the corresponding
binary PAM system. However, to realize the same average probability of symbol error, an
M-ary PAM system requires more transmitted power. Specifically, we find that for M much
larger than 2 and an average probability of symbol error small compared to 1, the trans-

Bnay 5 g 1 0 1 1 0 1 1 1
data

+3

Amplitude

Amplitude

ke

(a) ]

FIGURE 4.20 Output of a quaternary system. (a) Waveform. (b) Representation of the 4 possible
dibits, based on Gray encoding.
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mitted power must be increased by the factor M*log, M, compared to a binary PAM
system.

In a baseband M-ary system, first of all, the sequence of symbols emitted by the
information source is converted into an M-level PAM pulse train by a pulse-amplitude
modulator at the transmitter input. Next, as with the binary PAM system, this pulse train
is shaped by a transmit filter and then transmitted over the communication channel, which
corrupts the signal waveform with both noise and distortion. The received signal is passed
through a receive filter and then sampled at an appropriate rate in synchronism with the
transmitter. Each sample is compared with preset threshold values (also called slicing lev-
els), and a decision is made as to which symbol was transmitted. We therefore find that
the designs of the pulse-amplitude modulator and the decision-making device in an M-ary
PAM are more complex than those in a binary PAM system. Intersymbol interference,
noise, and imperfect synchronization cause errors to appear at the receiver output. The
transmit and receive filters are designed to minimize these errors. Procedures used for the
design of these filters are similar to those discussed in Sections 4.5 and 4.6 for baseband
binary PAM systems.

| 4.8 Digital Subscriber Lines

At this point in our study of baseband data transmission it is rather appropriate that we
digress from theoretical aspects of the study and consider a fast-growing application: dig-
ital subscriber lines.® A digital subscriber line (DSL) operates over a local loop {less than
1.5 km) that provides a direct connection between a user terminal {e.g., computer) and a
telephone company’s central office (CO), as illustrated in Figure 4.21. Through the CO, a
DSL user is connected to a broadband backbone data network, which is based on tech-
nologies such as the asynchronous transfer mode (ATM) and Internet protocol {IP); these
technologies and related network resources (i.e., optical fibers, SONET) are discussed in
the Background and Preview chapter. Accordingly, the information-bearing signal is kept
in the digital domain all the way from the user terminal to an Internet service provider,
with the signal being switched or routed at regular intervals in the course of its transmission
through the data network.

In the interest of an inexpensive implementation, digital subscriber lines use twisted
pairs configured to provide a high data-rate, full duplex, digital transmission capability.
(Twisted pairs are also used for ordinary telephonic communication, as discussed in the
Background and Preview chapter.) To achieve full-duplex, two-wire transmission, we may
use one of two possible modes of operation:

1. Time compression (TC) multiplexing, where data transmission in the two opposite
directions on the common line are separated in time. Specifically, blocks of bits
of data are sent in bursts in each direction on an alternate basis, as illustrated in

User Central
r____-_______—__—i office

Digital \Broadband | SONET | Internet
subscriber | backbone service
line network provider

|
——————————————— 4 Upstream Downstream

|

| Digital

|| Computer subscriber
! line
|

[}

FiGURE 4.21 Block diagram depicting the operational environment of digital subscriber lines.
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FIGURE 4.22 Full-duplex operation using (4) time compression multiplexing, and

(b) echo-cancellation.

Receiver

Figure 4.224. To account for propagation time across the line, a guard time s inserted
between individual bursts of data. Accordingly, the line rate is slightly greater than

twice the data rate.

L

Echo-cancellation mode, which supports the simultaneous flow of data along the

common line in both directions. For this form of transmission to be feasible, each
transceiver {transmitter/receiver) includes a hybrid for two purposes: the separation
of the transmitted signal from the received signal and the two-to-four-wire conver-
sion, as shown in Figure 4.22b. The hybrid, or more precisely, the hybrid trans
former, is basically a bridge circuit with three ports (terminal pairs), as depicted in
Figure 4.23. If the bridge is not perfectly balanced, the transmitter port of the hybrid
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FIGURE 4.23 Simplified circuit of hybrid transformer. For the bridge to be balanced, the

reference impedance Z..¢ should equal the line impedance z;.
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becomes coupled to the receiver port, thereby giving rise to an echo due to leakage
of the near-end (local) transmitted signal to the near-end (local) receiver. To cancel
the unwanted echo, each transceiver includes an echo canceller, as shown in Figure
4.22b. Since data can flow through the line simultaneously in both directions, the
line rate is the same as the data rate.

From this discussion, it is apparent that the echo-cancellation scheme offers a much
better data-transmission performance than the time compression multiplexing scheme, but
at the expense of increased complexity. However, by implementing the entire transceiver
in a single very large-scale integrated (VLSI) chip, the cost is made affordable despite the
increased complexity. In North America, the echo-cancellation scheme has been adopted
as the basis for designing the transceivers. An adaptive implementation of the echo can-
celler is discussed in Problem 4.31.

In addition to echo, there are other impairments of the transmission medium that
need to be considered. The two dominant impairments are intersymbol interference and
crosstalk, which are discussed in what follows in that order.

To a first-order approximation, the squared magnitude response of a twisted pair is
given by

[H(f}|* = exp(—aVF) (4.85)
where
o=Fk Il {4.86)

In Equation (4.85), the frequency f is measured in kHz, k is a physical constant of the
twisted pair, I, is a reference length (e.g., kilometers), and / is the actual length of the
twisted pair. Equation (4.85) points to a major impairment in the use of a twisted pair for
baseband data transmission: the gradual falloff in the frequency response, which, in turn,
gives rise to intersymbol interference.

Turning next to crosstalk, the primary cause for its occurrence is the capacitive cou-
pling that exists between adjacent twisted pairs in a cable. Typically, the nearest five to
seven twisted pairs in the cable cause most of the crosstalk. In any event, two kinds of
crosstalk can be observed in a receiver of interest:

1. Near-end crosstalk (NEXT), which is generated by transmitters located at the same
end of the cable as the receiver, as illustrated in Figure 4.244.

Receiver

Disturbing Cable containing a Disturbing Cable containing a
end bundie of twisted pairs end bundle of twisted pairs
Transmitter /\ One twisted pair \ Transmitter /\ One twisted pair
NEXT FEXT
Receiver
\ / Another twisted pair / \/ Another twisted pair /
Disturbed Disturbed
end end
(a) (5

FIGURE 4.24 (a) Near-end crosstalk (NEXT). (b) Far-end crosstalk (FEXT).
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FIGURE 4.25 Model of twisted-pair channel.

2. Far-end crosstalk (FEXT), which is generated by transmitters located further away
from the receiver, as illustrated in Figure 4.24b.

FEXT naturally suffers the same line loss as the signal, whereas NEXT does not, Accord.
ingly, in the echo-cancellation scheme of Figure 4.22b where signals travel in both direc.
tions in the cable, NEXT will be much stronger than FEXT. Henceforth, we ignore the
effect of FEXT.

Indeed, near-end crosstalk and intersymbol interference are the two most important
factors in determining the performance of a digital subscriber loop. Figure 4.25 shows the
model of a twisted-pair channel dominated by these two impairments. Since all twisted
pairs are usually transmitting similar signals, we may model the NEXT as a signal with
the same power spectral density as the transmitted signal passing through a crosstalk
frequency response Hyexr(f), which is approximated by

Hyexrlf) = Bf 32 (4.87)

where B is a constant of the cable. The interesting point to note from Figure 4.25 is that
both the transmitted signal and the interfering signal have the same power spectral density;
they differ from each other merely in their associated frequency responses, as shown in
Equations (4.85) and (4.87), respectively. When the model described herein is used for
simulation study, the transmitted signal is represented by a random data sequence, while
the interference is represented by a Gaussian noise sequence.

= LINE CODES FOR DIGITAL SUBSCRIBER LINES

Now that we have identified the major transmission impairments, we may describe the
desirable features the spectrum of a transmitted signal should exhibit:

1. The power spectral density of the transmitted signal should be zero at zero frequency,
since no DC transmission through a hybrid transformer is possible.

2. The power spectral density of the transmitted signal should be low at high frequencies
for the following reasons:

& Transmission attenuation in a twisted pair is most severe at high frequencies.

b Crosstalk between adjacent twisted pairs increases dramatically at high frequencies
because of increased capacitive coupling. In this regard, recall that the impedance
of a capacitor is inversely proportional to frequency.

To satisfy these desirable properties, we have to be careful in choosing the line code

that maps the incoming stream of data bits into electrical pulses for transmission 0%

the line. Various possibilities, each with its own advantages and disadvantages, exist



4.8 Digital Subscriber Lines 281

for such a choice. The list of potential candidates for line codes includes the

following;:

> Manchester code, which is simple and has zero DC component. Its disadvantage is
the occupation of a large spectrum, which makes it vulnerable to near-end crosstalk
and intersymbo] interference. (The Manchester code was discussed in Section 3.7,

> Modified duobinary code, which has zero DC, is moderately spectrally efficient,
and causes minimal intersymbol interference. However, simulation studies of the
crosstalk performance of the modified duobinary code have shown that its im-
munity to near-end crosstalk and intersymbol interference is about 2 to 3 dB
poorer than that of block codes on worst-case subscriber lines. (The modified
duobinary code was discussed in Section 4.6.)

® Bipolar code, in which successive 1s are represented alternately by positive and
negative but equal levels, and symbol 0 is represented by a zero level. Bipolar
signaling has zero DC. Computer simulations have shown that its near-end cross-
talk and intersymbol interference performance is slightly inferior to the modified
duobinary code on all digital subscriber loops. (The bipolar code, also known as
the alternate mark inversion (AMI) codes, was discussed in Section 3.7)

+ 2B1Q code, which stands for two binary digits encoded into one quaternary sym-
bol. This code is a block code representing a four-level PAM signal, as illustrated
in Figure 4.20. Assuming that symbols 1 and 0 are equiprobable, the 2B1Q code
has zero DC on the average, Moreover, among all the line codes considered herein,
it offers the greatest baud reduction, and the best performance with respect to
near-end crosstalk and intersymbol interference.

Itis because of the desirable properties of the 2BIQ code compared to the Manchester
code, modified duobinary code, the bipolar code, and other line codes not mentioned here,”
that the 2B1Q code has been adopted as the North American standard for digital sub-
scriber loops.

Using the 2B1Q as the line code and VLSI implementation of a transceiver that
incorporates adaptive equalizers and echo cancellers, it is possible to achieve a bit error
rate of 10”7 operating full duplex at 160 kb/s on the vast majority of twisted-pair sub-
scriber lines. A bit error rate of 1077 with 12 dB noise margin, when 1 percent worst-case
NEXT is present, is an accepted performance criterion for digital subscriber lines. Noise
margin is the amount of receiver noise (including uncancelled echo) that can be tolerated
without exceeding the 1077 error rate.

2 ASYMMETRIC DIGITAL SUBSCRIBER LINES

Another important type of DSL is the asymmetric digital subscriber line (ADSL), which is
a local transmission system designed to simultaneously support three services on a single
twisted-wire pair:

1. Data transmission downstream (toward the subscriber) at bit rates of up to 9 Mb/s.

2. Data transmission upstrearm (away from the subscriber) at bit rates of up to 1 Mb/s.
3. Plain old telephone service (POTS).

The downstream and upstream bit rates depend on the length of the twisted pair used to
do the transmission. The DSL is said to be “asymmetric” because the downstream bit rate
is much higher than the upstream bit rate. Analog voice is transmitred at baseband fre-
quencies and combined with the passband transmissions of downstream and upstream
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FIGURE 4.26 () Illustrating the different band allocations for an FDM-based ADSL system.
(b) Block diagram of splitter performing the function of a multiplexer or demultiplexer. Note: both
filters in the splitter are bidirectional filters.

data using frequency-division multiplexing (FDM). As illustrated in Figure 4.26a, the up.
stream data transmission is placed in a frequency band different from the downstream
data transmission to avoid crosstalk. Moreover, a guard band is inserted between the POTS
band and the upstream transmission band. The coexistence of ADSL and POTS signals on
the local loop is made possible through the use of a pair of splitters; one splitter is placed
at the CO end of the local loop and the other one is placed at the user end. In functional
terms, a splitter is divided into two bidirectional filters, as shown in Figure 4.26b:

» A low-pass filter for the baseband transmission or extraction of voice signals.
% A high-pass filter for the passband transmission or extraction of ADSL data.

Tn effect, the splitter performs the role of a frequency-division multiplexer or demultiplexer,
depending on the direction of signal transmission.

The motivation for making DSL asymmetric is to accommodate “video-on-demand.”
In such applications, a subscriber needs a high-throughput channel to download high-
bandwidth video data from a central office on demand. In the reverse direction, a much
lower throughput channel is adequate to send order information as well as real-time con-
trol commands. For example, an ADSL for Internet providing downstream transmission
at the DS1 rate of 1.544 Mb/s and upstream transmission of about 160 kb/s would meet
the requirements of this application. The approximate 10:1 asymmetry ratio realized by
such a system prevents the flow of acknowledgment packets in the IP from becoming 2
bottleneck to the faster direction of data transmission.

Tt is very difficult to transmit data over a twisted pair at the DS1 rate and higher,
and doing so requires the use of sophisticated modulation techniques. The treatment of
this subject is deferred to Chapter 6.

i 4.9 Optimum Linear Receiver

Resuming our study of the baseband data transmission system depicted in Figure 4.7,we
have thus far treated the following two channel conditions separately:
> Channel noise acting alone, which led to formulation of the matched filter receiver.

& Intersymbol interference acting alone, which led to formulation of the pulse-shaping
transmit filter so as to realize the Nyquist channel.
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In a real-life situation, however, channel noise and intersymbol interference act together,
affecting the behavior of a data transmission system in a combined manner. In this section,
we formulate the basis for designing a linear receiver optimized for the general case of a
linear channel that is both dispersive and noisy.

In one approach to the design of a linear receiver, the receiver is viewed as a zero-
forcing equalizer followed by a decision-making device. The objective of this form of
equalization is to have the “intersymbol interference forced to zero™ at all the instants
t = kT at which the channel output is sampled, except for k£ = 0 where the symbol of
interest is assumed to occur. Under this condition, symbol-to-symbol detection is assured
to be optimal in accordance with the Nyquist criterion, provided that the channel noise
w(t) is zero.

The zero-forcing equalizer is relatively easy to design because it ignores the effect of
the channel noise w(t). A serious consequence of this oversight, however, is that it leads
to overall performance degradation due to noise enbancement, a phenomenon that is an
inherent feature of zero-forcing equalization; see Problem 4.32. A more refined approach
for the receiver design is to use the mean-square error criterion, which provides a balanced
solution to the problem of reducing the effects of both channel noise and intersymbol
interference. Indeed, for a prescribed computational complexity, an equalizer designed on
this latter basis always performs as well as, and often better than, its zero-forcing coun-
terpart. Henceforth, we concentrate on the mean-square error criterion for receiver design.

Referring back to the baseband binary data transmission system of Figure 4.7, the
receive filter characterized by the impulse response ¢(t) produces the following response
due to the channel output x(¢):

y(t) = J’_: c(Pxit — 1) dr (4.88)

The channel output x() is itself defined by
x(t) = D, aglt — kT,) + wi) (4.89)
%

where a, is the symbol transmitted at time ¢ = £7T, and w(#) is the channel noise. The time
function ¢(¢) is the convolution of two impulse responses: g(t) pertaining to the pulse-
shaping transmit filter, and h(#) pertaining to the channel. Substituting Equation (4.89)
into (4.88) and sampling the resulting output y(¢) at time # = /T, we may write

iTy) = &+ m; {4.90)
where & is the signal component defined by

&= a f_: c()qliT, — kT, — 7) dr (4.91)

k

and #; is the noise component defined by
n; = J’ dnwliT, — 7) dr (4.92)
The condition for perfect operation of the receiver is to have y(iT,) = a;, where 4; is the

transmitted symbol. Deviation from this condition results in the error signal

e; = y(iTy) — a

et —u (4.93)
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Accordingly, we may formally define the mean-square error as

] =5 Ele?] (454

where E is the statistical expectation operator, and the factor 1/2 is introduced for oy,
venience of presentation, Substituting Equation {4.93) into (4.94) and then expanding
terms, we get

] = LI + 5 Kb + 3 Bla?] + Elén] - Flwa) = Bléal (459

We now evaluate the six expectation terms in this equation in the order they appear here,

1. In a stationary environment the mean-square term E[£7] is independent of the instap;
of time ¢ = iT,, at which the receive filter output is sampled. Hence, we may simplify
the expression of this term by writing

Elgl] = 3 2 Elaa] L L c(m)elm)qUTy — )q(kTy = 7) dry dr,

Assuming that, first, the binary symbols 4, = =1 as in Equation (4.42} and, second,
the transmitted symbols are statistically independent, that is,

1 for [ =k
Elaad = {0 otherwise “.56)
we may further reduce the expression for the mean-square term E[£]] to
E[¢g] = J’_a; J_m R, (71, n)e(m)e(n) dry dny (4.97)
where
Ry(mi, ) = 2 qkT, — m)q(kTy — ) (4.98)

The factor R,{m, 7)) is the temporal autocorrelation function of the sequence
{q(kT})]. Stationarity of this sequence means that (see Section 1.5)

Rq(Tla T) = Rq(’Tz -7 = Rq(Tl - T)
2. The mean-square term E[#?] due to channel noise is given by (using Equation (4.92))
E[m] = J_ J_ c{m)e(n)EwliT, — mw(iT, — )] dry dr,
- (4.99)
= J;,, Jlm Ar)elm)Ruy(r, — 71) dry d7,
where Ryl{72 — 71) is the ensemble-averaged autocorrelation function of the channel
noise w(t). With w(t) assumed to be white with power spectral density N,/2, we have

N,
Ry{r, = m) = 5 8(r, = m) (4.100

Hence, the expression for E[#?] simplifies to

Bl =22 [ [T drcm) ol — w) drdr (4100
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3. The mean-square term E[47] due to the transmitted symbol 4; is unity by virtue of
Equation (4.96); that is,

El@] =1 foralli (4.102)

4, The expectation of the cross-product term &, is zero for two reasons: first & and #,
are independent and, second, the channel noise #/(z), and therefore #;, has zero mean;
that s,

E[gn] =0 foralli (4.103)

5. For similar reasons, the expectation of the cross-product term #,4; is also zero; that
is,

Efma] =0 foralli (4.104)

6. Finally, the expectation of the cross-product term £4; is given by (using Equation
(4.91))

&a) = 3 Flaa] j G, — KT, — ) dr (4.105)
7 -

By virtue of the statistical independence of the transmitted symbols described in
Equation (4.96), this expectation reduces to

E[&a)] = fw e(ng(—7) dr (4.106)

Thus substituting Equations (4.97), (4.101) to (4.104) and (4.106) into (4.95), we
may express the mean-square error J for the binary data transmission system of
Figure 4.7 as

_% 1 J_ J ( (=1 + % 5(t — 7))6(15)6(7) dt dr — f c(t)g(—1) dr
(4.107)

For convenience of presentation, we have made the following changes in variables:
7y and 7 in the first integral are replaced by ¢ and 7, respectively, and  is replaced
with ¢ in the second integral. Note also that this expression for the mean-square error
Jis in actual fact normalized with respect to the variance of the transmitted symbols
a;, by virtue of the assumption made in Equation (4.96).

With the formula of Equation (4.107) for the mean-square error J at hand, we
are now ready to specify the design of the receive filter in Figure 4.7. Differentiating
Equation (4.107) with respect to the impulse response ¢(z) of the receive filter, and
then setting the result equal to zero, we get

f’ (Rq(t -7+ % 8t — T))C(T) dr = g(—t) (4.108)

Equation (4.108) is the formula for finding the impulse response c(¢) of the equalizer
optimized in the mean-square error sense. An equalizer so designed is referred to as
the minimum-mean square error (mmse) equalizer.

Taking the Fourier transform of both sides of Equation (4.108), we obtain

No

(S () + T)C(f) = Q%) (4.109)
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where ¢(t) = C(f), g(t) == Q(f),and R, = 8,(f). Solving Equation (4.109) for Cify
we get . ’

{4.110)

In Problem 4.33 it is shown that the power spectral density of the sequence [g(kT,)

can be expressed as
k
ofr+17)

which means that the frequency response C(f) of the optimum linear receiver i

periodic with period 1/T%. Equation {4.110) suggests the interpretation of the opti.

mum linear receiver as the cascade connection of two basic components:*®

b A matched filter whose impulse response is (1), where g(z) = g(¢) % hb(1).

b A transversal (tapped-delay-line) equalizer whose frequency response is the inverse
of the periodic function 8,{f) + (No/2).

2

1
Sq(f)=T§

b

(411

To implement Equation {4.110) exactly we need an equalizer of infinite length. In practice,
we may approximate the optimum solution by using an equalizer with a finite set of
coefficients {c,}i-_n, provided N is large enough. Thus the receiver takes the form shown
in Figure 4.27. Note that the block labeled 2~V in Figure 4.27 introduces a delay equalto
T, which means that the tap spacing of the equalizer is exactly the same as the bit duration
T,. An equalizer so configured is said to be synchronous with the transmitter.

# PRACTICAL CONSIDERATIONS

The mmse receiver of Figure 4.27 works well in the laboratory, where we have access to
the system to be equalized, in which case we may determine a transversal equalizer char-
acterized by the set of coefficients {ce}2L _n» which provides an adequate approximation
to the frequency response C(f) of Equation (4.110). In a real-life telecommunications
environment, however, the channel is usually time varying. For example, in a public

Matched
filter

\—y(nTb)

Ho

FIGURE 4.27 Optimum linear receiver consisting of the cascade connection of matched filter
and transversal equalizer.
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switched telephone network, we find that two factors contribute to the distribution of
pulse distortion on different link connections:

» Differences in the transmission characteristics of the individual links that may be
switched together.
# Differences in the number of links in a connection.

The result is that the telephone channel is random in the sense of being one of an ensemble
of possible physical realizations. Consequently, the use of a fixed pair of matched filter
and equalizer designed on the basis of average channel characteristics may not adequately
reduce the effects of intersymbol interference and channel noise. To realize the full trans-
mission capability of the telephone channel, we need an adaptive receiver® that provides
for the adaptive implementation of both the matched filter and the equalizer in a combined
manner. The receiver is adaptive in the sense that the equalizer coefficients are adjusted
automatically in accordance with a built-in algorithm.

Another point of interest is that it may be desirable to have the taps of the equalizer
spaced by an amount closer than the symbol period; typically, the spacing between adjacent
taps is set equal to T72. The resulting structure is known as a fractionally spaced equalizer
(ESE). An FSE has the capability of compensating for delay distortion much more effec-
tively than a conventional synchronous equalizer. Another advantage of the FSE is the fact
that data transmission may begin with an arbitrary sampling phase. However, mathemat-
ical analysis of the FSE is more complicated than for a synchronous equalizer and will
therefore not be pursued here.'®

| 4.10 Adaptive Equalization

In this section we develop a simple and yet effective algorithm for the adaptive equalization
of a linear channel of unknown characteristics. Figure 4.28 shows the structure of an
adaptive synchronous equalizer, which incorporates the matched filtering action. The al-
gorithm used to adjust the equalizer coefficients assumes the availability of a desired re-
sponse. One’s first reaction to the availability of a replica of the transmitted signal is: If
such a signal is available at the receiver, why do we need adaptive equalization? To answer
this question, we first note that a typical telephone channel changes little during an average
data call. Accordingly, prior to data transmission, the equalizer is adjusted under the guid-

Input xln-N+11 o z[n~N]
+tnl ’ L]
Variable
weights
Wa-1 wy
Output
&) z & il

Error signal
elnl

Desired
response
4ln]

FIGURE 4.28 Block diagram of adaptive equalizer.
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ance of a training sequence transmitted through the channel. A synchronized versiop
this training sequence is generated at the receiver, where (after a time shift equal to ¢,
transmission delay through the channel) it is applied to the equalizer as the desired 1.
sponse. A training sequence commonly used in practice is the psexdonoise (PN) sequenc,
which consists of a deterministic periodic sequence with noise-like characteristics, Tw(;
identical PN sequence generators are used, one at the transmitter and the other at th,
receiver. When the training process is completed, the PN sequence generator is switched
off, and the adaptive equalizer is ready for normal data transmission. Detailed descriptio,
of PN sequence generators is presented in Chapter 7.

LEAST-MEAN-SQUARE ALGORITHM (REVISITED)
To simplify notational matters, we let

x[n] = x{nT)

yln] = y(#T)

Then, the output y[#] of the tapped-delay-line equalizer in response to the input sequence
{x[#]} is defined by the discrete convolution sum (see Figure 4.28)

N
ylnl = Z’o wyxln — k] (4113

where w;, is the weight at the kth tap, and N + 1 is the total number of taps. The tap-
weights constitute the adaptive filter coefficients. We assume that the input sequence {x[x]}
has finite energy. We have used a notation for the equalizer weights in Figure 4.28 thats
different from the corresponding notation in Figure 4.27 to emphasize the fact that the
equalizer in Figure 4.28 also incorporates matched filtering.

The adaptation may be achieved by observing the error between the desired pulse
shape and the actual pulse shape at the filter output, measured at the sampling instants,
and then using this error to estimate the direction in which the tap-weights of the filter
should be changed so as to approach an optimum set of values. For the adaptation, we
may use a criterion based on minimizing the peak distortion, defined as the worst-cast
intersymbol interference at the output of the equalizer. The development of an adaptive
equalizer using such a criterion builds on the zero-forcing concept described briefly in
Section 4.9. However, the equalizer is optimum only when the peak distortion at its input
is less than 100 percent {i.e., the intersymbol interference is not too severe). A better
approach is to use a mean-square error criterion, which is more general in application;
also an adaptive equalizer based on the mean-square error criterion appears to be less
sensitive to timing perturbations than one based on the peak distortion criterion. Accord-
ingly, in what follows we use the mean-square error criterion to derive the adaptive equat
ization algorithm,

Let al#] denote the desired response defined as the polar representation of the nth
transmitted binary symbol. Let ¢[#] denote the error signal defined as the difference be:
tween the desired response 4[] and the actual response y[#] of the equalizer, as shown b}

e[n] = aln] — y[n] 4.113)

In the least-mean-square (LMS) algorithm'" for adaptive equalization, the error signal el
actuates the adjustments applied to the individual tap weights of the equalizer as ¢
algorithm proceeds from one iteration to the next. A derivation of the LMS algorithm for
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adaptive prediction was presented in Section 3.13. Recasting Equation (3.72) into its most
general form, we may state the formula for the LMS algorithm in words as follows:

Updated value Old value . Inp ut.51gna1
of kth tap- | = | of kth tap- | + (Step's‘ze) .| applied to (Ermr) (4.114)
weight weight parameter kth'tap- signal

weight
Let u denote the step-size parameter. From Figure 4.28 we see that the input signal applied
to the kth tap-weight at time step # is x[# — k]. Hence, using 17, (n) as the old value of
the kth tap-weight at time step #, the updated value of this tap-weight at time step 7 + 1
is, in light of Equation (4.114), defined by

dgln + 1] = digln] + pxfn — kle[n], k=0,1,...,N (4.115)

where
N

e[n] = a[n] — >, nlxin — k] (4.116)

These two equations constitute the LMS algorithm for adaptive equalization. Note that
the length of the adaptive equalizer in Figure 4.28 is not to be confused with the length of
the equalizer in Figure 4.27.

We may simplify the formulation of the LMS algorithm using matrix notation. Let
the (N + 1)-by-1 vector x[#] denote the tap-inputs of the equalizer:

x[n] = [x[#],...,x[n — N + 1], [z — N]|” (4.117)

where the superscript T denotes matrix transposition. Correspondingly, let the
{N + 1)-by-1 vector W[#] denote the tap-weights of the equalizer:

W] = [olnl, dnlnl, . . ., dnln]]” (4.118)

We may then use matrix notation to recast the convolution sum of Equation (4.112) in
the compact form

ylr] = x"[n]Wl[n] (4.119)

where x”[n]W[n] is referred to as the inner product of the vectors x{n] and W[#]. We may
now summarize the LMS algorithm for adaptive equalization as follows:

1. Initialize the algorithm by setting W[1] = O (i.e., set all the tap-weights of the equalizer
to zero at # = 1, which corresponds to time ¢ = T).
2. Forn=1,2,...,compute

y[n] = xT[n]W[n]
eln] = a[n] — y[n]
win + 1] = W[n] + pelrlx[n]

where u is the step-size parameter.

3. Continue the iterative computation until the equalizer reaches a “steady state,” by
which we mean that the actual mean-square error of the equalizer essentially reaches
a constant value.

The LMS algorithm is an example of a feedback system, as illustrated in the block
diagram of Figure 4.29, which pertains to the kth filter coefficient. It is therefore possible
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FIGURE 4.29 Signal-flow graph representation of the LMS algorithm involving the kth tap
weight.

for the algorithm to diverge (i.e., for the adaptive equalizer to become unstable). Unfor-
tunately, the convergence behavior of the LMS algorithm is difficult to analyze. Neverthe-
less, provided that the step-size parameter  is assigned a small value, we find that after 5
large number of iterations the behavior of the LMS algorithm is roughly similar to that of
the steepest-descent algorithm, which uses the actual gradient rather than a noisy estimate
for the computation of the tap-weights. (The steepest-descent algorithm was discussed in
Section 3.13.)

OPERATION OF THE EQUALIZER

There are two modes of operation for an adaptive equalizer, namely, the training mode
and decision-directed mode, as shown in Figure 4.30. During the training mode, as ex-
plained previously, a known PN sequence is transmitted and a synchronized version of it
is generated in the receiver, where (after a time shift equal to the transmission delay) it is
applied to the adaptive equalizer as the desired response; the tap-weights of the equalizer
are thereby adjusted in accordance with the LMS algorithm.

When the training process is completed, the adaptive equalizer is switched to its
second mode of operation: the decision-directed mode. In this mode of operation, the errot

signal is defined by
eln] = dln] — yln] (4.120)

Adaptive Decision
equalizer/ device

xln] yln a5 g aldd Training
— fwyi} ’ o sequence
generator

23
FIGURE 4.30 Tlustrating the two operating modes of an adaptive equalizer: For the training
mode, the switch is in position 1; and for the tracking mode, it is moved to position 2.

eln]
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1

where y[n] is the equalizer output at time ¢ = #T, and 4[#] is the final (not necessarily)
correct estimate of the transmitted symbol a[#]. Now, in normal operation the decisions
made by the receiver are correct with high probability. This means that the error estimates
are correct most of the time, thereby permitting the adaptive equalizer to operate satisfac-
torily. Furthermore, an adaptive equalizer operating in a decision-directed mode is able to
track relatively slow variations in channel characteristics.

It turns out that the larger the step-size parameter p, the faster the tracking capability
of the adaptive equalizer. However, a large step-size parameter . may result in an unac-
ceptably high excess mean-square error, defined as that part of the mean-square value of
the error signal in excess of the minimum attainable value J;, (which results when the
tap-weights are at their optimum settings). We therefore find that in practice the choice of
a suitable value for the step-size parameter w involves making a compromise between fast
tracking and reducing the excess mean-square error.

2 DECISION-FEEDBACK EQUALIZATION

To develop further insight into adaptive equalization, consider a baseband channel with
impulse response denoted in its sampled form by the sequence {/[#]} where b[n] = b(nT).
The response of this channel to an input sequence {x[#]}, in the absence of noise, is given
by the discrete convolution sum

yln] = X hlklxin — k]
* (4.121)

= b[Olx[r] + 2, hiklx(n — k) + . hik]x[n — k]
k<Q k>0

The first term of Equation (4.121) represents the desired data symbol. The second term is
due to the precarsors of the channel impulse response that occur before the main sample
h10] associated with the desired data symbol. The third term is due to the postcursors of
the channel impulse response that occur after the main sample 4[0]. The precursors and
postcursors of a channel impluse response are illustrated in Figure 4.31. The idea of de-
cision-feedback equalization' is to use data decisions made on the basis of precursors of
the channel impulse response to take care of the postcursors; for the idea to work, however,
the decisions would obviously have to be correct. Provided that this condition is satisfied,

RI01
|”I| |
'Il o | ‘

e
Precursors Postcursors

FIGURE 4.31 Impulse response of a discrete-time channel, depicting the precursors and
postcursors,



292

CHAPTER 4 = BASERAND PULSE TRANSMISSION

Estimate of transmitted

: /E\ Decision symbol, 2,

device

Feedforward
section

Feedback
section

FIiGURE 4.32 Block diagram of decision-feedback equalizer.

a decision-feedback equalizer is able to provide an improvement over the performance of
the tapped-delay-line equalizer.

A decision-feedback equalizer (DFE) consists of a feedforward section, a feedback
section, and a decision device connected together as shown in Figure 4.32. The feedforward
section consists of a tapped-delay-line filter whose taps are spaced at the reciprocal of the
signaling rate. The data sequence to be equalized is applied to this section. The feedback
section consists of another tapped-delay-line filter whose taps are also spaced at the recp-
rocal of the signaling rate. The input applied to the feedback section consists of the deci-
sions made on previously detected symbols of the input sequence. The function of the
feedback section is to subtract out that portion of the intersymbol interference produced
by previously detected symbols from the estimates of future samples.

Note that the inclusion of the decision device in the feedback loop makes the equal-
izer intrinsically #onlinear and therefore more difficult to analyze than an ordinary tapped-
delay-line equalizer. Nevertheless, the mean-square error criterion can be used to obtaina
mathematically tractable optimization of a decision-feedback equalizer. Indeed, the LMS
algorithm can be used to jointly adapt both the feedforward tap-weights and the feedback
tap-weights based on a common error signal; see Problem 4.37.

On the basis of extensive comparative evaluations of a linear equalizer and decision-
feedback equalizer reported in the literature,’® we may report that when the frequency
response of a linear channel is characterized by severe amplitude distortion or relatively
sharp amplitude cutoff, the decision-feedback equalizer offers a significant improvement
in performance over a linear equalizer for an equal number of taps. Itis presupposed hete
that the feedback decisions in the DFE are all correct. For an example of sharp amplitude
cutoff, see the frequency response of a telephone channel depicted in Figure 8 in the Back-
ground and Preview chapter.

Unlike a linear equalizer, a decision-feedback equalizer suffers from error propags
tion. However, despite the fact that the DFE is a feedback system, error propagation will
not persist indefinitely. Rather, decision errors tend to occur in bursts. To justify this kind
of behavior, we offer the following intuitive reasoning:*

» Let L denote the number of taps in the feedback section of a DFE. After a sequence
of L consecutive correct decisions, all decision errors in the feedback section will be
flushed out. This points to an error propagation of finite duration.

b When a decision error is made, the probability of the next decision being erroneous
too is clearly no worse than 1/2.

b Let K denote the duration of error propagation, that is, the number of symbo!s
needed to make L consecutive correct decisions. Then the average error rate 1§
(K/2)P,, where K/2 is the average number of errors produced by a single decisio?
error, and P, is the probability of error given that the past L decisions are all correct:
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> In a fair-coin tossing experiment, the average number of coin tosses, K, needed to
get L successive heads (representing no errors) turns out to be 2(2% — 1).

It follows therefore that the effect of error propagation in a decision-feedback equalizer is
to increase the average error rate by a factor approximately equal to 2, compared to the
probability of making the first error. For example, for L =3 the average error rate is
increased by less than an order of magnitude due to error propagation.

Computer Experiments: Eye Patterns

In previous sections of this chapter we have discussed various techniques for dealing with
the effects of channel noise and intersymbol interference on the performance of a baseband
pulse-transmission system. In the final analysis, what really matters is how to evaluate the
combined effect of these impairments on overall system performance in an operational
environment. An experimental tool for such an evaluation in an insightful manner is the
so-called eye pattern, which is defined as the synchronized superposition of all possible
realizations of the signal of interest (e.g., received signal, receiver output) viewed within a
particular signaling interval. The eye pattern derives its name from the fact that it resembles
the human eye for binary waves. The interior region of the eye pattern is called the eye
opening.

An eye pattern provides a great deal of useful information about the performance of
a data transmission system, as described in Figure 4.33. Specifically, we make the following
statements:

# The width of the eye opening defines the time interval over which the received signal
can be sampled without error from intersymbol interference; it is apparent that the
preferred time for sampling is the instant of time at which the eye is open the widest.

» The sensitivity of the system to timing errors is determined by the rate of closure of
the eye as the sampling time is varied.

& The height of the eye opening, at a specified sampling time, defines the noise margin
of the system.

Best
sampling
time
! Distortion at
! sampling time

Margin

B
Slope = sensitivity
over noise

to timing error

Distortion of
zero-crossin ngs

Time interval over which
the received signal can
be sampled

FIGURE 4.33 Interpretation of the eye pattern.
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When the effect of intersymbol interference is severe, traces from the upper portion of the
eye pattern Cross traces from the lower portion, with the result that the eye is COmpletely
closed. In such a situation, it is impossible to avoid errors due to the combined presence
of intersymbol interference and noise in the system.

In the case of an M-ary system, the eye pattern contains (M ~ 1) eye openings stacked
up vertically one on the other, where M is the number of discrete amplitude levels used ¢,
construct the transmitted signal. Ina strictly linear system with truly random data, all these
eye openings would be identical.

In the next two experiments, we use computer simulations to study the eye patterng
for a quaternary (M = 4) baseband PAM transmission system under noiseless, noisy, and
band-limited conditions. The effect of channel nonlinearity on eye patterns is discussed in
Problem 4.38.

Experiment 1: Effect of Channel Noise

Figure 4.34a shows the eye diagram of the system under idealized conditions: no channel
noise and no bandwidth limitation. The source symbols used are randomly generated on
a computer, with raised cosine pulse-shaping. The system parameters used for the gener-
ation of the eye diagram are as follows: Nyquist bandwidth W = 0.5 Hz, rolloff factor
« = 0.5, and symbol duration T = T, log, M = 2T,. The openings in Figure 4.34 are
perfect, indicating reliable operation of the system. Note that this figure has M — 1 =3
openings.

Figures 4.34b and 4.34c show the eye diagrams for the system, but this time with
channel noise cotrupting the received signal. These two figures were simulated for signal-
to-noise ratio SNR = 20 dB and 10 dB, respectively, with the SNR being measured at the
channel output. When SNR = 20 dB the effect of channel noise is hardly discernible in
Figure 4.34b, but when SNR = 10 dB the openings of the eye diagram in Figure 4.34care
barely visible.

Experiment 2: Effect of Bandwidth Limitation

Figures 4.35a and 4.35 b show the eye diagrams for the quaternary system using the same
parametets as before, but this time under a bandwidth-limited condition and a noiseless
channel. Specifically, the channel is now modeled by a low-pass Butterworth filter, whose
squared magnitude response is defined by

1
HOW = T 5™
where N is the order of the filter, and f, is its 3-dB cutoff frequency. For the computet
experiment described in Figure 4,354, the following values are used:
N = 25 and fo, = 0.975 Hz
The bandwidth required by the PAM trasmission system is computed to be
By = W(l + a) = 0.75 Hz

Although the channel bandwidth (i.e., cutoff frequency) is greater than absolutely nece®
sary, its effect on the passband is observed as a decrease in the size of the eye opening
compared to those in Figure 4.344. Instead of the distinct values at time £ = 1 s (as show?!
in Figure 4.344), now there is a blurred region.
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FIGURE 4.34 (a) Eye diagram for noiseless quaternary system. (b) Eye diagram for quaternary

system with SNR = 20 dB. (¢) Eye diagram for quaternary system with SNR = 10 dB.
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FiGURE 4.35 {a) Eye diagram for noiseless band-limited quaternary system: cutoff frequency
fo = 0.975 Hz. (b) Eye diagram for noiseless band-limited quaternary system: cutoff frequency
fo=0.5Hz.

In Figure 4.35b the channel bandwidth is reduced further by modeling the channel
as a low-pass Butterworth filter with N = 25 and f, = 0.5 Hz. The effect of reduced
channel bandwidth is to further reduce the extent to which the eyes are open.

i 4.12 Summary and Discussion

In this chapter, we studied the effects of channel noise and intersymbol interference on the
performance of baseband-pulse transmission systems. Intersymbol interference (ISI) is dif-
ferent from noise in that it is a sigral-dependent form of intetference that arises because
of deviations in the frequency response of a channel from the ideal low-pass filter (Nyquist
channel); it disappears when the transmitted signal is switched off. The result of these
deviations is that the received pulse corresponding to a particular data symbol is affected
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by the tail ends of the pulses representing the previous symbols and the front ends of the
pulses representing the subsequent symbols.

Depending on the received signal-to-noise ratio, we may distinguish three different
situations that can arise in baseband-pulse transmission systems for channels with fixed
characteristics:

1. The effect of ISI is negligible in comparison to that of channel noise.
The proper procedure in this case is to use a matched filter, which is the optimum linear
time-invariant filter for maximizing the peak pulse signal-to-noise ratio.

2. The received signal-to-noise ratio is high enough to ignore the effect of channel noise.
In this case, we need to guard against the effects of ISI on the reconstruction of the trans-
mitted data at the receiver. In particular, control must be exercised over the shape of the
received pulse. This design objective can be achieved in one of two different ways:

# Using a raised cosine spectrum for the overall frequency response of the baseband-
pulse transmission system.

» Using correlative-level coding or partial-response signaling that adds ISI to the trans-
mitted signal in a controlled manner.

3. The ISI and noise are both significant.

For a mathematically tractable solution to this more difficult situation, we may use the
mean-square error criterion. The resulting optimum linear receiver is called the minimum
mean-square error (mmse) receiver. It consists of the cascade connection of a matched filter
and linear transversal (tapped-delay-line) equalizer.

When, however, the channel is random in the sense of being one of an ensemble of
possible physical realizations, which is frequently the case in a telecommunications envi-
ronment, the use of fixed filter designs based on average channel characteristics may not
be adequate. In situations of this kind, the preferred approach is to use an adaptive equal-
izer, the purpose of which is to compensate for variations in the frequency response of the
channel automatically during the course of data transmission. The combined use of a
tapped-delay-line filter and the least-mean-square (LMS) algorithm for adjusting the tap-
weights provides the basis of a simple and yet highly effective method for implementing
the adaptive equalizer. Such a device is capable of dealing with the combined effects of ISI
and receiver noise in a nonstationary environment. Its practical value lies in the fact that
almost every modem (modulator-demodulator) in commercial use today for the transmis-
sion of digital data over a voice-grade telephone channel uses an adaptive equalizer as an
integral part.

Another important application of adaptive filtering is in the design of echo cancellers
that constitute a critical component of transceivers for digital subscriber lines. Typically,
a digital subscriber line uses a twisted pair as the transmission medium, the very same one
used in ordinary telephone channels. However, unlike telephone channels, digital sub-
scriber lines are designed to provide a high data-rate digital transmission capability be-
tween a digital network and subscriber plants, with a data rate of 64 kb/s and up.

l NorEs AND REFERENCES

1. The classic books on baseband-pulse transmission are Lucky, Salz, and Weldon (1968) and
Sunde (1969). For detailed treatment of different aspects of the subject, see Gitlin, Hayes,
and Weinstein (1992). Proakis (1995), and Benedetto, Biglieri, and Castellani (1987).
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. The criterion described in Equation (4.49) or Equation {4.53) was first formulated by
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2. The characterization of a matched filter was first derived by North in a classified r ot

(RCA Laboratories Report PTR-6C, June 1943), which was published 20 years later, g,
the paper by North (1963). A similar resuit was obtained independently by Van Vleck ang
Middleton, who coined the term mazched filter: see the paper by Van Vleck and Middleg,
(1946). For review material on the matched filter and its properties, see the papers by Tury
(1960, 1976).

. The error function denoted by erf(x), is defined in a number of different ways in the lite;.

ature. We shall use the following definition:
erf(u) = \i; L exp(—z?) dz

The error function has two useful properties:

(i) erf(—u) = —erf(x)
This is known as the symmetry relation.
(i) As u approaches infinity, erf(s) approaches unity; that is,

72—_ L exp(—z%) dz =1
T

The complementary error function is defined by
erfc(u) = % L exp(—2z%) dz

which is related to the error function as follows:
erfc(u) = 1 — erf(n)

Table A6.6 gives values of the error function erf{x) for # in the range 0 to 3.3.
For large positive values of #, we have two simple bounds on etfc(u), one lower and
the other upper, as shown by

exp(—1) 1 exp(—u?)
V- (1 2u2) < erfe(u) < N

The complémentary error function provides the basis for a compact formulation of
the probability of symbol error, as explained in Section 4.3. Another function that is also
commonly used in the literature for this purpose is the O-function. Consider a standardized
Gaussian random variable X of zero-mean and unit variance. The probability that an
observed value of the random variable X will be greater than vis given by the Q-function:

w 2
’ Q) = 71_2_77-[: exp(—%) dx

The QO-function defines the area under the standardized Gaussian tail. The Q-functions
related to the complementary error function as

1 v
QO = 3 erfc(v—i)

Conversely, putting # = v/V2, we have
erfc(u) = 20(V2u)

Nyquist in the study of telegraph transmission theory; the 1928 paper by Nyqu_ist isa
classic. In the literature, this criterion is referred to as Nyquist’s first criterion. In his 1928
paper, Nyquist described another method, referred to in the literature as Nyquist’s seco™
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criterion. The second method makes use of the instants of transition between unlike sym-
bols in the received signal rather than centered samples. A discussion of the first and second
criteria is presented in Bennett (1970, pp. 78-92) and in the paper by Gibby and Smith
(1965). A third criterion attributed to Nyquist is discussed in Sunde (1963); see also the
papers by Pasupathy (1974) and Sayar and Pasupathy (1987).

. Correlative-level coding and partial-response signaling are synonymous; both terms are

used in the literature. The idea of correlative coding was originated by Lender (1963).
Lender’s work was generalized for binary data transmission by Kretzmer (1966). For fur-
ther details on correlative coding techniques, see the book by Gitlin, Hayes, and Weinstein
(1992); see also the papers by Pasupathy (1977}, Kabal and Pasupathy (1975), and Sousa
and Pasupathy (1983).

. The material on digital subscriber lines presented in Section 4.8 is based on the two papers

by Lin and Tzeng (1988), and Lechleider (1989), and the books by Starr, Cioffi, and
Silverman (1999) and Chen {1998).

. For a discussion of line codes for digital subscriber loops, see Gitlin et al. (1992).

. In Ericson (1971) it is shown that for every “reasonable” performance criterion, the opti-

mum receiver can be realized as a matched filter followed by a tapped-delay-line equalizer,
as shown in Figure 4.27. In addition to the mean-square error criterion considered in
Section 4.9, reasonable performance criteria of interest include the following:

(i) Minimization of the probability of symbol error.
(ii) Zero-forcing equalization (to reduce the intersymbol interference to zero), followed
by minimization of the probability of symbol error subject to this constraint.
(ili) Minimization of signal-to-noise ratio at the sampling instants.

Criterion (i) is the most natural approach to the optimization of a linear receiver; this
approach, pursued in Aaron and Tufts (1966), is, unfortunately, complicated. Criterion
(ii), due to Lucky et al. {1968), is a much simpler approach. Criterion (iii) is due to George
(19635).

. Adaptive equalization of telephone channels was pioneered by Lucky (1965, 1966). Since

that time, numerous adaptive equalization schemes have been published in the literature,
which provide equalization for specific synchronous data-transmission systems. For review
papers on adaptive equalization, see Proakis (1975) and Qureshi (1982, 1985). Adaptive
equalization is also discussed in detail in the books by Gitlin, Hayes, and Weinstein (1992,
Chapter 8) and Proakis (1995, Chapter 6).

It appears that early work on fractionally spaced equalizers was initiated by Brady (1970).
Other contributions to the subject include subsequent work by Ungerboeck (1976) and
Gitlin and Weinstein (1981). A detailed discussion of fractionally spaced equalizers is also
presented in Gitlin et al. (1992).

The LMS algorithm was originated by Widrow and Hoff, Jr. (1960). For a detailed con-
vergence analysis of the LMS algorithm, see Haykin (1996, Chapter 9), and Widrow and
Stearns (1985, Chapter 6).

Decision-feedback equalization was first described in a report by Austin (1967). The op-
timization of the decision-feedback equalizer for minimum mean-square error was first
accomplished by Monsen (1971). A readable account of decision-feedback equalization is
presented in the book by Gitlin, Hayes, and Weinstein (1992, pp. 500-510).

Tomlinson {1971) and Harashima and Miyakawa (1972) describe a device for elim-
inating error propagation in a decision-feedback equalizer. The device, known as the Tom:-
linson-Harashima precoder, appears in the transmitter as a preprocessor to the modulator.
The basic idea of this precoder is to move the feedback section in the decision feedback
equalizer to the transmitter where it is impossible to make decision errors. However, this
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g PROBLEMS

modification may result in a significant increase in transmit power; modulo arithmetic s
used to overcome most of this power increase.

For performance comparison between linear equalizers and decision-feedback equalizey,
see Gitlin et al. (1992) and Proakis (1995). ’

The intuitive discussion on error propagation in decision-feedback equalizers Presented j
Section 4.10 follows Gitlin et al. (1992).

For a rigorous evaluation of the probability of symbol error P, in a decision-feedbacy
equalizer with error propagation, see Dutrweiler et al. (1974). In this paper it is showy
that in the worst-case intersymbol interference, P, is multiplied by a factor of 2" relajy,
to the probability of error that results in the absence of decision errors at high signal-t,.
noise ratios, where L is the number of taps in the feedback section. The result derived by
Duttweiler et al. provides theoretical justification for the intuitive arguments presented i
Section 4.10.

Matched Filters
4.1 Consider the signal s(t) shown in Figure P4.1.

(a) Determine the impulse response of a filter matched to this signal and sketch it as 4
function of time.

(b) Plot the matched filter output as a function of time.
(c) What is the peak value of the output?

s(8
A
2
r t
0 T
2
Al
2
FiGurE P4.1

4.2 TFigure P4.2a shows a pair of pulses that are orthogonal to each other over the interval

[0, T]. In this problem we investigate the use of this pulse-pair to study a two-dimensiondl
matched filter.

(a) Determine the matched filters for the pulses s1(t) and s,(#) considered individually;
for s,(#) the flter is the same as that considered in Problem 4.1.
(b) Form a two-dimensional matched filter by connecting the two matched filters of Part
(a) in parallel, as shown in Figure P4.2b. Hence, demonstrate the following:
(i) When the pulse s,(#) is applied to this two-dimensional filter, the response of the
lower matched filter is zero.
(ii) When the pulse s,(¢) is applied to the two-dimensional filter, the response of the
upper matched filter is zero.
Generalize the results of your investigation.
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Consider a rectangular pulse defined by

) = A, 0=t=sT
& 0, otherwise

It is proposed to approximate the matched filter for g(¢) by an ideal low-pass filter of

bandwidth B; maximization of the peak pulse signal-to-noise ratio is the primary

objective.

(a) Determine the optimnm value of B for which the ideal low-pass filter provides the
best approximation to the matched filter.

(b) By how many decibels is the ideal low-pass filter worse off than the matched filter?

In this problem we explore another method for the approximate realization of a matched

filter, this time using the simple resistance-capacitance (RC) low-pass filter shown in Fig-

ure P4.4. The frequency resonse of this filter is

1
T 1+ jfifo

where f, = 1/27RC. The input signal g(t) is a rectangular pulse of amplitude A and
duration T. The requirement is to optimize the selection of the 3-dB cutoff frequency f,
of the filter so that the peak pulse signal-to-noise ratio at the filter output is maximized.
With this objective in mind, show that the optimum value of f, is 0.2/T, for which the
loss in signal-to-noise ratio compared to the matched filter is about 1 dB.

H{(f)

R

fnput Qutput

signal ¢ T signal
O ® O

FIGURE P4.4

Probability of Error Calculation

The formula for the optimum threshold in the receiver of Figure 4.4 is, in general, given
by Equation (4.37). Discuss, in graphical terms, how this optimum choice affects the
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contributions of the two terms in Equation (4.35) for the average probability of Symbgf
error P, by considering the following two cases:

(a) po> P
(b) p1 <po

where p, and p, are the a priori probabilities of symbols 0 and 1, respectively.

4.6 Tn a binary PCM system, symbols 0 and 1 have a priori probabilities p, and p,, respec.
tively. The conditional probability density function of the random variable Y (with sample
value y) obtained by sampling the matched filter output in the receiver of Figure 4.4 a; the
end of a signaling interval, given that symbol 0 was transmitted, is denoted by Fely|o)
Similarly, fy(y|1) denotes the conditional probability density function of Y, given thy,
symbol 1 was transmitted. Let A denote the threshold used in the receiver, so that if ¢h,
sample value y exceeds A, the receiver decides in favor of symbol 1; otherwise, it decides
in favor of symbol 0. Show that the optimum threshold A, for which the average pro},.
ability of error is a minimum, is given by the solution of

fY(Aopt| 1) _ Po
fY(Aopt| O) pl

4.7 A binary PCM system using polar NRZ signaling operates just above the error threshold
with an average probability of error equal to 107° Suppose that the signaling rate s
doubled. Find the new value of the average probability of error. You may use Table A6.¢
to evaluate the complementary error function.

4.8 A continuous-time sigrial is sampled and then transmitted as a PCM signal. The random
variable at the input of the decision device in the receiver has a variance of 0.01 volts?,
{a) Assuming the use of polar NRZ signaling, determine the pulse amplitude that must

be transmitted for the average error rate not to exceed 1 bit in 10° bits.
(b) Tf the added presence of interference causes the eror rate to increase to 1 bit in 1°
bits, what is the variance of the interference?

4.9 A binary PCM wave uses unipolar NRZ signaling to transmit symbols 1 and 0; symbol
1is represented by a rectangular pulse of amplitude A and duration T;. The channel noise
is modeled as additive, white and Gaussian, with zero mean and power spectral density
No/2. Assuming that symbols 1 and 0 occur with equal probability, find an expression
for the average probability of error at the receiver output, using a matched filter as de
scribed in Section 4.3.

4,10 Repeat Problem 4.9 for the case of unipolar return-to-zero signaling, in which case symbol
1 is represented by a pulse of amplitude A and duration T;/2 and symbol 0 is represented
by transmitting no pulse.

Hence show that this unipolar type of signaling requires twice the average powet
of unipolar nonreturn-to-zero (i.e., on-off) signaling for the same average probability of
symbol error.

4.11 In this problem, we revisit the PCM receiver of Figure 4.4, but this time we consider thﬁ
use of bipolar nonreturn-to-zero signaling, in which case the transmitted signal s{t) is
defined by

Binary symbol 1: s(¢) = *tAfor0 <t=T

Binary symbol 0: s(¢) = 0,0 <t=T
Determine the average probability of symbol error P, for this receiver assuming that the
binary symbols 0 and 1 are equiprobable.

Raised Cosine Spectrum

4,12 The nonreturn-to-zero pulse of Figure P4.12 may be viewed as a very crude form ofa
Nyquist pulse. Compare the spectral characteristics of these two pulses.



Problems 303

plo

1.0

T 0 T

2 2
FIGURE P4.12

4.13 Determine the inverse Fourier transform of the frequency function P{ f) defined in Equa-
tion (4.60).

4.14 An analog signal is sampled, quantized, and encoded into a binary PCM wave. The spec-
ifications of the PCM system include the following:

Sampling rate = 8§ kHz
Number of representation levels = 64
The PCM wave is transmitted over a baseband channel using discrete pulse-amplitude
+ modulation. Determine the minimum bandwidth required for transmitting the PCM wave
if each pulse is allowed to take on the following number of amplitude levels: 2, 4, or 8.

4.15 Consider a baseband binary PAM system that is designed to have a raised-cosine spectrum
P(f). The resulting pulse p(#) is defined in Equation (4.62). How would this pulse be
modified if the system was designed to have a linear phase response?

4.16 A computer puts out binary data at the rate of 56 kb/s. The computer output is transmitted
using a baseband binary PAM system that is designed to have a raised-cosine spectrum.
Determine the transmission bandwidth required for each of the following rolloff factors:
a = 0.25,0.5,0.75, 1.0.

4.17 Repeat Problem 4.16, given that each set of three successive binary digits in the computer
output are coded into one of eight possible amplitude levels, and the resulting signal is
transmitted using an eight-level PAM system designed to have a raised-cosine spectrum.

4.18 An analog signal is sampled, quantized, and encoded into a binary PCM wave. The num-
ber of representation levels used is 128. A synchronizing pulse is added at the end of each
code word representing a sample of the analog signal. The resulting PCM wave is trans-
mitted over a channel of bandwidth 12 kHz using a quaternary PAM system with raised-
cosine spectrum. The rolloff factor is unity.

(a) Find the rate (b/s) at which information is transmitted through the channel.
{b) Find the rate at which the analog signal is sampled. What is the maximum possible
value for the highest frequency component of the analog signal?

4.19 A binary PAM wave is to be transmitted over a baseband channel with an absolute max-
imum bandwidth of 75 kHz. The bit duration is 10 us. Find a raised-cosine spectrum
that satisfies these requirements.

Correlative-Level Coding

4.20 The ducbinary, ternary, and bipolar signaling techniques have one common feature: They
all employ three amplitude levels. In what way does the duobinary technique differ from
the other two?

4.21 The binary data stream 001101001 is applied to the input of a duobinary system.

(a} Construct the duobinary coder output and corresponding receiver output, without a
precoder.
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4.22
4.23

424

4.25

4.26

(b) Suppose that owing to error during transmission, the level at the receiver inpyt p,
duced by the second digit is reduced to zero. Construct the new receiver output, s

Repeat Problem 4.21, assuming the use of a precoder in the transmitter.

The scheme shown in Figure P4.23 may be viewed as a differential encoder {consjstjy,

of the modulo-2 adder and the 1-unit delay element) connected in cascade with a s ecia]

form of correlative coder {consisting of the 1-unit delay element and summer), A single.
delay element is shown in Figure P4.23 since it is common to both the differential encoge;
and the correlative coder. In this differential encoder, a transition is represented by symbg

0 and no transition by symbol 1.

(a) Find the frequency response and impulse response of the correlative coder part of th,
scheme shown in Figure P4.23.

{b) Show that this scheme may be used to convert the on-off representation of a bj
sequence {applied to the input) into the bipolar representation of the sequence at the
output. You may illustrate this conversion by considering the sequence 010001101,

For descriptions of on—off, bipolar, and differential encoding of binary sequences, see

Section 3.7.

Modulo-2
adder
Binary sequence 4R 5 Bipolar representation
of 15 and Os 1/ of binary sequence

Delay

FIGURE P4.23

Consider a random binary wave x(t) in which the 1s and 0s occur with equal probability,

the symbols in adjacent time slots are statistically independent, and symbol 1 is repre-

sented by A volts and symbol 0 by zero volts. This on—off binary wave is applied to the

circuit of Figure P4.23.

(a) Using the result of Problem 4.23, show thatthe power spectral density of the bipolar
wave y{t) appearing at the output of the circuit equals

Sx(f) = ToA? sin*(mfT,) sinc*(fTe)
{b) Plot the power spectral densities of the on~off and bipolar binary waves, and compare
them.
The binary data stream 011100101 is applied to the input of a modified duobinary systefm-

{a) Construct the modified duobinary coder output and corresponding receiver outpth
without a precoder.

{b) Suppose that due to error during transmission, the level produced by the third digit
is reduced to zero. Construct the new receiver output.

Repeat Problem 4.25 assuming the use of a precoder in the transmitter.

M-ary PAM Systems

4.27

Consider a baseband M-ary system using M discrete amplitude levels. The receiver mofiel
is as shown in Figure P4.27, the operation of which is governed by the followi
assumptions:
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(a) The signal component in the received wave is
t
m(t) = ; a, sinc(T - n)

where 1/T is the signaling rate in bauds.

(b) The amplitude levels are a, = *A/2, +3A/2, ..., (M — 1)A/2 if M is even, and
4,=0, %A, ..., +(M — )A/Zif Mis odd. -

(c) The M levels are equiprobable, and the symbols transmitted in adjacent time slots are
statistically independent.

(d) The channel noise w(t) is white and Gaussian with zero mean and power spectral
density Np/2.

(e) The low-pass filter is ideal with bandwidth B = 1/2T.

(f) The threshold levels used in the decision device are 0, £A,..., £(M — 2)A2 if M
is even, and *A/2, £3A/2, ..., (M — 2)A/2 if M is odd.

The average probability of symbol error in this system is defined by

1 A
PE = (1 - M) erfc(m)

where o is the standard deviation of the noise at the input of the decision device. Dem-
onstrate the validity of this general formula by determining P, for the following three
cases: M = 2, 3, 4.

N Low-pass Decisian-
ml) fitter device Output
+ !

wir)
Threshold
FIGURE P4.27

Suppose that in a baseband M-ary PAM system with M equally likely amplitude levels,
as described in Problem 4.27, the average probability of symbol error P, is less than 10~¢
50 as to make the occurrence of decoding errors negligible. Show that the minimum value
of received signal-to-noise ratio in such a system is approximarely given by

(SNR) in = 7.8(M2 — 1)

Digital Subscriber Lines

4.29

4.30

The amplitude distribution of cross-talk in a digital subscriber line may be modeled as
Gaussian. Justify the validity of such a model. Hint: Typically, a cable contains many
twisted pairs.
(a) Derive the formula for the power spectral density of a transmitted signal using the
2B1Q line code.
(b) Plot the power spectrum of the following line codes:
¥ Manchester code
¥ Modified duobinary code
& Bipolar return-to-zero code
5 2B1Q code
Hence compare the relative merits of these line codes for their suitability in a digital
subscriber loop.
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4.31 In this problem we use the LMS aigorithm to formulate an adaptive echo cancelle; f
use in a digital subscriber line. The basic principle of adaptive echo cancellation is?r
synthesize a replica of the echo and subtract it from the returned signal in an ad aptivo
manner, as illustrated in Figure P4.31. The synthesized echo, denoted by #[n], is generate;
by passing the transmitted signal through an adaptive filter that ideally matches the trap,,
fer function of the echo path, The returned signal, consisting of the sum of actual e,
#[n] and the received signal x|7], may be viewed as the desired response for the adapﬁv:
filtering process.

Using the LMS algorithm, formulate the equations that define the operation of g,
adaptive echo canceller in Figure P4.31.

Received
signal, x[n]

Adapive .
filter Hybrid 3

R Racs

Z +

Celn] N2/ xlnl+rlal
FiGURE P4.31

Equalization

4.32 Figure P4.32 shows the cascade connection of a linear channel and a synchronous tapped-
delay-line equalizer. The impulse response of the channel is denoted by ¢(£), and that of
the equalizer is denoted by h(z). The h(z) is defined by

N
Ble) = O w5t — kT)
s VA
where T is the spacing between adjacent taps of the equalizer, and the wy are its tap-
weights (coefficients). The impulse response of the cascaded system of Figure P4.32is
denoted by p(#). The p(#) is sampled uniformly at the rate 1/T. To eliminate intersymbol
interference, we require that the Nyquist criterion for distortionless transmission be sat-
isfied, as shown by

1, n=10
p(T) = {0, n#0

{a) By imposing this condition, show that the (2N + 1) tap-weights of the resulting zero:
forcing equalizer satisfy the following set of (2N + 1) simultaneous equations:

i w 1, n=0
o, =
E T o, m# £l 22,000, %N

where ¢, = c(nT). Hence, show that the zero-forcing equalizer is an inverse fileerin
that its transfer function is equal to the reciprocal of the transfer function of the
channel.

(b) A shortcoming of the zero-forcing equalizer is noise enhancement that can result it
poor performance in the presence of channel noise. To explore this phenomeno®
consider a low-pass channel with a notch at the Nyquist frequency, that is, H(f}
zero at f = 1/2T. Assuming that the channel noise is additive and white, show at
the power spectral density of the noise at the equalizer output approaches infimitf a
f=1/2T.
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Even if the channel has no notch in its frequency response, the power spectral
density of the noise at the equalizer output can assume high values. Justify the validity
of this general statement.

Received
Transmitted Linear signa Tapped-delay-line
signal > channel equalizer Output

Ficure P4.32 N

Consider Equation (4.108), which defines the impulse response of a minimum mean-

square error receiver.

(a) Justify the validity of Equation (4.109) that is the Fourier-transformed version of
Equation (4.108).

(b) The power spectral density S,{f) in Equation (4.109) is the Fourier transform of the
autocorrelation R (71, 7,) of the time function g(#). The R,(ry, ) is defined by Equa-
tion (4.98). Starting with Equation (4.98), derive the formula of Equation (4.111).

Some radio systems suffer from multipath distortion, which is caused by the existence of

more than one propagation path between the transmitter and the receiver. Consider a

channel the output of which, in response to a signal s(t), is defined by (in the absence of

noise)

x(t) = ass(t —to1) + axs(t — t53)
where 4, and 4, are constant, and #y; and t;, represent transmission delays. It is proposed
to use the three-tap delay-line-filter of Figure P4.34 to equalize the multipath distortion
produced by this channel.
(a) Evaluate the transfer function of the channel.

(b) Evaluate the parameters of the tapped-delay-line filter in terms of a,, @, #o1, and z,,,
assuming that 4, << g, and £y, > #5;.

Input __
signal

FIGURE P4.34

Let the sequence {x(nT)) denote the input applied to a tapped-delay-line equalizer. Show
that intersymbol interference is eliminated completely by the equalizer provided that its
frequency response satisfies the condition

T
Hf) = ———
(f) ; X(f — &T)
where T is the symbol duration.
As the number of taps in the equalizer approaches infinity, the frequency response
of the equalizer becomes a Fourier series with real coefficients and can therefore approx-
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4.36

4.37

imate any function in the interval (=1/2T, 1/2T). Demonstrate this property of the

equalizer.

The step-size parameter 4 plays a critical role in the operation of the LMS algorithm, I,

this context, discuss the following two issues:

(a) Stability. If 1 exceeds a certain critical value, the algorithm diverges (i.e., the syster,
becomes unstable).

(b) Memory. The reciprocal of p may be viewed as a measure of the algorithm’s memory,
As we make u smaller, more of the past samples of the input signal influence opemﬁm;
of the algorithm.

Let the vectors w[#] and w®[r] denote the tap-weights of the feed-forward and feed.

back sections of the decision-feedback equalizer in Figure 4.32. Formulate the LMS 4]

gorithm for adjusting the tap-weights of this equalizer.

Computer Experiments

4.38

4.39

In Section 4.11 we studied the eye diagram of a quaternary (M = 4) PAM baseband
transmission system under both noisy and band-limited conditions. In that experiment,
the channel was assumed linear. In a strictly linear system with truly random data, all the
eye openings would be identical. In practice, however, it is often possible to discern asym-
metries in the eye pattern, which are caused by nonlinearities in the communication
channel.

In this experiment, we study the effect of a nonlinear channel on the openings of
an eye pattern. Specifically, we repeat the computer experiment pertaining to the noiseless
eye pattern of Figure 4.34a for M = 4, but this time assume that the channel is nonlinear
with the following input-output relation:

x(t) = s(t) + as*(t)
where s(t) is the channel input and x(¢) is the channel output, and ¢ is a constant.
(a) Da the experiment for 2 = 0, 0.05, 0.1, 0.2.
(b) Hence, discuss how varying a affects the shape of the eye pattern.
In this experiment we study the root raised-cosine pulse due to Chennakeshu and Saulnier
{1993). This pulse, denoted by p(z), has the following properties:
> The pulse p{t) is symmetric in time, that is, p(=t) = plt).
# The squared Fourier transform of p(?), namely, PX(f), satisfies the raised cosine spectrum
of Equation (4.60), but the Fourier transform P(f) itself does not.
» The pulse p(?) satisfies the orthogonality constraint:

o

J-_ pltyp(t — »T) dt = 0, n==1,=*2,...

where T is the symbol period.

{a} Compute the baseband waveform of the binary data stream 101100 for rolloff factor
a=0.3.

(b) Compare the waveform computed in part (a) with that obtained using the ordinarf
raised-cosine spectrum.
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This chapter discusses some basic issues that pertain to the transmission of signals over an
additive white Gaussian noise (AWGN) channel. Specifically, it addresses the following

topics:

» Geometric representation of signals with finite energy, which provides a mathematically
elegant and highly insightful tool for the study of data transmission.

» Maximum likelihood procedure for the detection of a signal in AWGN channel,

P Derivation of the correlation receiver that is equivalent to the matched filter receiver
discussed in the previous chapter.

P Probability of symbol error and the union bound for its approximate calculation.

The material presented herein naturally leads to the study of passband data transmission
covered in Chapter 6.

| 5.1 Introduction

Consider the most basic form of a digital communication system depicted in Figure 5.1.
A message source emits one symbol every T seconds, with the symbols belonging to an
alphabet of M symbols denoted by 2, m,, . . . » my. Consider, for example, the remote
connection of two digital computers, with one computer acting as an information source
that calculates digital outputs based on observations and inputs fed into it. The resulting
computer output is expressed as a sequence of 0s and 1s, which are transmitted to a second
computer over a communication channel. In this case, the alphabet consists simply of two
binary symbols: 0 and 1. A second example is that of a quaternary PCM encoder with an
alphabet consisting of four possible symbols: 00, 01, 10, and 11. In any event, the a priori
probabilities pi, p,, . .., pays specify the message source output. In the absence of prior
information, it is customary to assume that the M symbols of the alphabet are equally
likely. Then we may express the probability that symbol m; is emitted by the source as

p; = Pim)
1f ) (5.1)
=M ori=12,...,. M

The transmitter takes the message source output 7, and codes it into a distinct signal s,(2)
suitable for transmission over the channel. The signal s;(¢) occupies the full duration T
allotted to symbol ;. Most important, s,(2) is a real-valued energy signal (i.e., a signal
with finite energy), as shown by

T
E = fo sH3) dt, i=1,2,...,M (5.2)

309
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m; 50 F10] = estimate of m;
hizisr?:ie —l){ Transmitter — Channel Receiver

Ficure 5.1 Block diagram of a generic digital communication system.

The channel is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of signal s, () with negligible or no distortion.

2. The channel noise, w(2), is the sample function of a zero-mean white Gaussian nojs,
process. The reasons for this second assumption are that it makes receiver calcul,.
tions tractable, and it is a reasonable description of the type of noise present in many
practical communication systems.

We tefer to such a channel as an additive white Gaussian noise (AWGN) channel, Ac-
cordingly, we may express the received signal x(t) as g

0=t=T

i=1,2,....M (5.3

x(t) = s;{t) + wit), {

and thus model the channel as in Figure 5.2.

The receiver has the task of observing the received signal x(z) for a duration of T
seconds and making a best estimate of the transmitted signal s,(t) or, equivalently, the
symbol ;. However, owing to the presence of channel noise, this decision-making process
is statistical in nature, with the result that the receiver will make occasional errors. The
requirement is therefore to design the receiver so as to minimize the average probability
of symbol error, defined as

M
P, = >, p: Plir # m; |m) (54)
=1

where m; is the transmitted symbol, # is the estimate produced by the receiver, and
P(s# # m; |m;) is the conditional error probability given that the ith symbol was sent. The
resulting receiver is said to be optimum in the minimum probability of error sense.

This model provides a basis for the design of the optimum receiver, for which we
will use geometric representation of the known set of transmitted signals, {s;(#)}. This
method, discussed in Section 5.2, provides a great deal of insight, with considerable sim-
plification of detail.

Transmitted Received
signal signal
50 + Xe)

White Gaussian noise
win

FIGURE 5.2 Additive white Gaussian noise (AWGN) model of a channel.
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|/5:_2—_-Geometric Representation of Signals

The essence of geometric representation of signals® is to represent any set of M energy
signals {s;(¢)} as linear combinations of N orthonormal basis functions, where N < M.
That is to say, given a set of real-valued energy signals s,(z), $3(t), . . ., spmlt), each of
duration T seconds, we write '

l 0=st=T
s;(t) = I; sy (2), {i =1,2,....M (5.5)
where the coefficients of the expansion are defined by
T i=1,2,...,M
s = fo si()g;(t) dt, {j —1,2.....N (5.6)
The real-valued basis functions ¢(t), $,(t), ..., Pult) are orthonormal, by which we
mean
T 1ifi=j
L dilt)d;(t) dt = 8; = {0 ifi4] (5.7)

where 8 is the Kronecker delta. The first condition of Equation (5.7) states that each basis
function is #ormalized to have unit energy. The second condition states that the basis
functions ¢4(z), (), ..., dnlt) are orthogonal with respect to each other over the in-
terval 0 s ¢t = T.

The set of coefficients {s;}X; may naturally be viewed as an N-dimensional vector,
denoted by s;. The important point to note here is that the vector s; bears a one-to-one
relationship with the transmitted signal s;(z):

& Given the N elements of the vectors s; (i.e., s;1, Siz, » - » Sin) Operating as input, we
may use the scheme shown in Figure 5.34 to generate the signal s;(z), which follows

T
f dt e Sy
0

NG
T
() 9 dt Siz
o t_.‘{?— [«
[ R0}
T
f dt Sin
0
dnl oy
(a) (b}

FIGURE 5.3 (a) Synthesizer for generating the signal s,(t). (b) Analyzer for generating the set of
signal vectors {s;}.
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directly from Equation (3.5). It consists of a bank of N multipliers, with each my;.
tiplier having its own basis function, followed by a summer. This scheme may p,
viewed as a synthesizer.

& Conversely, given the signals 5;(¢), i = 1, 2, . . ., M, operating as input, we may ygse
the scheme shown in Figure 5.35 to calculate the coefficients sy, sp, .« « - §in which
follows directly from Equation (5.6). This second scheme consists of a bank of )
product-integrators or correlators with a common input, and with each one of thep,
supplied with its own basis function. The scheme of Figure 5.35 may be viewed 5
an gnalyzer.

Accordingly, we may state that each signal in the set {s;(z)} is completely determineq
by the vector of its coefficients

s=| |, i=1,2,...,M (5.8)

The vector s; is called a signal vector. Furthermore, if we conceptually extend our conven-
tional notion of two- and three-dimensional Euclidean spaces to an N-dimensional Fu-
clidean space, we may visualize the set of signal vectors {s;|i = 1, 2, ..., M} as defining
a corresponding set of M points in an N-dimensional Euclidean space, with N mutually
perpendicular axes labeled ¢4, ¢, . . . , én. This N-dimensional Euclidean space is called
the signal space.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound importance. It provides the mathematical basis for the geometric representation
of energy signals, thereby paving the way for the noise analysis of digital communication
systems in a conceptually satisfying manner. This form of representation is illustrated in
Figure 5.4 for the case of a two-dimensional signal space with three signals, that is, N =2
and M = 3.

In an N-dimensional Euclidean space, we may define lengths of vectors and angles
between vectors. It is customary to denote the length (also called the absolute value or
norm) of a signal vector s; by the symbol | s, ||. The squared-length of any signal vectors,
is defined to be the inner product or dot product of s; with itself, as shown by

I's:l|? = sTs;
N (5.9)
=i=215§,, i=1,2,...,M

where s is the jth element of s;, and the superscript T denotes matrix transposition.

There is an interesting relationship between the enefgy content of a signal and its
representation as a vector. By definition, the energy of a signal s;(¢) of duration T seconds
is

E,-=J'0 s2(t) dt (5.10)

Therefore, substituting Equation (5.5) into {5.10), we get

T N mx
E; = fo [; 5:’1¢;‘(¢)J[E sik¢k(t)]dt

k=1
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FIGURE 5.4 Illustrating the geometric representation of ngnals for the case when
N=2andM = 3,

Interchanging the order of summation and integration, and then rearranging terms, we get

N T ) B
Z Sk fo &;(t) e ()t (5.11)

||Mz

But since the ¢;(¢) form an orthonormal set, in accordance with the two conditions of
Equation (5.7), we find that Equation (5.11} reduces simply to

N
— 2
E =2 s}
i=1

I

(5.12)

I

“ S;

Thus Equations (5.9) and (5.12) show that the energy of a signal s;(t) is equal to the
squared length of the signal vector s;(t) representing it.

In the case of a pair of signals s;(f) and s,(¢), represented by the signal vectors s; and
s, respectively, we may also show that

fo si(t)se(t) dt = sTs, (5.13)

Equation (5.13) states that the inner product of the signals s,{¢) and s, (¢) over the interval
[0, T, using their time-domain representations, is equal to the inner product of their
respective vector representations s; and s,. Note that the inner product of s;(¢) and s, (2) is
invariant to the choice of basis functions {¢;(£)}X; in that it only depends on the compo-
nents of the signals 5;(t) and s, (¢} projected onto each of the basis functions.
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Yet another useful relation involving the vector representations of the signals st
. . 3
and s, () is described by

fs:—sel*= ; (i — sef*
"y (5~14)
= L (s:(2) — se(t))?dt

where ||'s; — s || is the Euclidean distance, d,., between the points represented by the
signal vectors s; and s;.

To complete the geometric representation of energy signals, we need to have a rep.
resentation for the angle 6, subtended between two signal vectors s; and s;. By definition,
the cosine of the angle 0, is equal to the inner product of these two vectors divided by rhe
product of their individual norms, as shown by

STSk
cos O = ————" 5.
=TT sl (519

The two vectors s; and s, are thus orthogonal or per, endicular to each other if their i
. . - g . .. - . .. mer
product sTs, is zero, in which case g = 90 degrees; this condition is intuitively satisfying,

& ExampLE 5.1 Schwarz Inequality

Consider any pair of enérgy signals s, (£) and s,(2). The Schwarz inequality states that

w0 2 o 3
( L sl(t>sz(t>dz) = ( L s%(t)dt) ( J'_m s%(t)dt) (5.16)

The equality holds if and only if s5(t) = ¢s1(2), where ¢ is any constant.
To prove this important inequality, let 5(t) and s,(t) be expressed in terms of the pair
of orthonormal basis functions ¢,(z) and $,() as follows:
51{t) = s12¢1(8) + spaeha(t)
52{8) = suPa(t) + s2262(2)
where ¢,(t) and ,(t) satisfy the orthonormality conditions over the entire time interval
(=0, )
- 1 forj=1i
J:m H{t);(nde = 8; = {

On this basis, we may represent the signals s,(¢) and s,(2) by the following respective pair of
vectors, as illustrated in Figure 5.5:

0 otherwise

$21
§; =
S22

From Figure 5.5 we readily see that angle 8 subtended between the vectors s, and s, is
T,
8183

cos 0=——F—"—
BTNEA
w

f . s1(t)s,(2)dt

» 1/2 o 172
( J’_,, s’l'(t)dt) ( J’_w s%(t)dtj

(517
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FIGURE 5.5 Vector representations of signals s,(t) and s,(t), providing the background picture
for proving the Schwarz inequality.

where we have made use of Equations (5.15), (5.13) and (5.9). Recognizing that |cos 8| < 1,
the Schwarz inequality of Equation (5.16) immediately follows from Equation (5.17), More-
over, from the first line of Equation (5.17) we note that |cos 8| = 1 if and only if s, = ¢s,
that is, s,(¢) = cs4(2), where ¢ is an arbitrary constant.

The proof of the Schwarz inequality, as presented here, applies to real-valued signals.
It may be readily extended to complex-valued signals, in which case Equation (5.16) is refor-

mulated as
= (f Isl(t);zdt)O_m ]s;_(t)!zdt) (5.18)

where the equality holds if and only if 5,() = ¢s,(2), where ¢ is a constant; see Problem 5.9.
It is the complex form of the Schwarz inequality that was used in Chapter 4 to derive the

2

f_: si(t)s3(t)dt

matched filter.

# GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE

4

Having demonstrated the elegance of the geometric representation of energy signals, how
do we justify it in mathematical terms? The answer lies in the Gram-Schmidt orthogon-
alization procedure, for which we need a complete orthonormal set of basis functions. To
proceed with the formulation of this procedure, suppose we have a set of M energy signals
denoted by s;(t), s2(t), . . . , su(t). Starting with s,(¢) chosen from this set arbitrarily, the

first basis function is defined by

where E; is the energy of the signal s;(¢). Then, clearly, we have

51#) = VE1(t)
s1101(2)

it

where the coefficient s;; = VE; and ¢,(t) has unit energy, as required.

Next, using the signal s.(¢), we define the coefficient s, as

T
S21 = J‘o S:(t)(t)dt

We may thus introduce a new intermediate function

g:(t) = s3(t) — s21h4(t)

(5.19)

(5.20)

(5.21)

(5.22)
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which is orthogonal to ¢+(2) over the interval 0 = ¢ = T by virtue of Equation (5.21) anq
the fact that the basis function ¢,(¢) has unit energy. Now, we are ready to define ¢
second basis function as

&(t)

$alt) = (5.23)
/L ge)dt

Substituting Equation {5.22) into (5.23) and simplifying, we get the desired result

$:(t) = 5—2&;\/—2?—% (5:24)

where E; is the energy of the signal s,(t). It is clear from Equation (5.23) that

T
J $itydt = 1
o

and from Equation (5.24) that

T
[ uwatnar =0

That is to say, ¢1(2) and ¢,(¢) form an orthonormal pair, as required.
Continuing in this fashion, we may in general define

i—1

g(t) = s,(t) — 2 5;5(2) (5.25)

j=1

where the coefficients s; are themselves defined by
T
s = L sOdd,  j=12...0— 1 (5.26)

Bquation (5.22} is a special case of Equation (5.25) with i = 2. Note also that for i =1,
the function g;{#) reduces to s;(z).
Given the g;(t), we may now define the set of basis functions

¢i(t)=—gi('l—, i=1,2,...,N (5.27)

J’T
2
, &ilndt
which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

» The signals s,(2), s2(t)s - - - 5 Sml?) form a linearly independent set, in which case
N=M.

» The signals s1{t), 52(t)y . . . 5§ (E) are not linearly independent, in which case N<M
and the intermediate function g, (#) is zero for i > N.
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5 TARLE 5.1 Amplitude

Levels of the 2B1Q Code
Signal

Gray

Symbol Amplitude code
54(2) -3 00
s2(8) -1 01
s3(t) +1 11
s4(t) +3 10

Note that the conventional Fourier series expansion of a periodic signal is an example

of a particular expansion of the type described herein. Also, the representation of a band-
limited signal in terms of its samples taken at the Nyquist rate may be viewed as another
sample of a particular expansion of this type. However, two important distinctions should
be made:

1.

2.

The form of the basis functions ¢(¢), $4(2), . . ., dx(2) has not been specified. That
is to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram-Schmidt
orthogonalization procedure to be in terms of sinusoidal functions or sinc functions
of time.

The expansion of the signal s;(¢) in terms of a finite number of terms is not’an
approximation wherein only the first N terms are significant but rather an exact
expression where N and only N terms are significant.

B ExampLE 5.2 2B1Q Code

The 2B1Q code was described in Chapter 4 as the North American line code for digital
subscriber lines. It represents a quaternary PAM signal as shown in the Gray-encoded alphabet
of Table 5.1. The four possible signals, s;(t), s,(2), s3(¢), and s4{2), are amplitude-scaled versions
of a Nyquist pulse. Fach signal represents a dibit. We wish to find the vector representation
of the 2B1Q code.

This example is simple enough for us to solve it by inspection. Let ¢,(¢) denote the
Nyquist pulse, normalized to have unit energy. The ¢4(¢) so defined is the only basis function
for the vector representation of the 2B1Q code. Accordingly, the signal-space representation
of this code is as shown in Figure 5.6. It consists of four signal vectors sy, s,, 83, and s, which
are located on the ¢;-axis in a symmetric manner about the origin. In this example, we thus
have M =4and N = 1.

We may generalize the result depicted in Figure 5.6 for the 2B1(} code as follows. The
signal-space diagram of an M-ary pulse-amplitude modulated signal, in general, is one-
dimensional with M signal points uniformly positioned on the only axis of the diagram. <4

S Sz $3 Sq
. 5 ¢,
I 21 1— 22—

FIGURE 5.6 Signal-space representation of the 2B1Q code.
-
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5.3 Conversion of the Continuous
AWGN Channel into a Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure §,3;
is not the transmitted signal s,(t) but rather the received signal x(¢) defined in accordangg
with the idealized AWGN channel of Figure 5.2. That is to say,

0=t=T

i=1,2,..., M (5.28)

x(t) = s;(t) + wit), {

where w(z) is a sample function of a white Gaussian noise process W(t) of zero mean ang
power spectral density No/2. Correspondingly, we find that the output of correlator j, say
is the sample value of a random variable X}, as shown by ’
T
x; = L x(t)p{t)dt
{5.29)
=s;+w; j=1,2,...,N
The first component, s;;, is a deterministic quantity contributed by the transmitted signa|
5;(2); it is defined by
T

sy = [ st od (5.30

The second component, w;, is the sample value of a random variable W; that arises because
of the presence of the channel noise w(t); it is defined by

T
wi = L wi(t)é,(t)ds (5.31)

Consider next a new random process X'(¢) whose sample function x'(t) is related to
the received signal x(t) as follows:
N

x'(t) = x(t) — 2, x(t) (5.32)

j=1
Substituting Equations (5.28) and {5.29) into (5.32), and then using the expansion of
Equation (5.5), we get

N
x'() = s;(0) + wit) — 2 (sy + w))e;(2)

= wl(t) — 2, wieyt) (5.33)
= ' (t) =
The sample function x'(¢) therefore depends solely on the channel noise w(t). On the basis
of Equations (5.32) and (5.33), we may thus express the received signal as
N

x(t) = 2, xa(0) + x(2)
= (5.34)

N
= zl x,d),»(t) + w'(t)

Accordingly, we may view w/'(t) as a sort of remainder term that must be included on .the
right to preserve the equality in Equation (5.34). Itis informative to contrast the expansio®
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of the received signal x(t) given in Equation (5.34) with the corresponding expansion of
the transmitted signal s;(¢) given in Equation (5.5). The latter expansion is entirely deter-
ministic, whereas that of Equation (5.34).is random (stochastic), which is to be expected.

STATISTICAL CHARACTERIZATION OF THE CORRELATOR QUTPUTS

We now wish to develop a statistical characterization of the set of N correlator outputs.
Let X(t) denote the random process, a sample function of which is represented by the
received signal x(t). Correspondingly, let X; denote the random variable whose sample
value is represented by the correlator output x;, 7 = 1,2, .. ., N. According to the AWGN
model of Figure 5.2, the random process X(t} is a Gaussian process. It follows therefore
that X; is a Gaussian random variable for all j (see Property 1 of a Gaussian process,
Section 1.8). Hence, X; is characterized completely by its mean and variance, which are
determined next.

Let W; denote the random variable represented by the sample value w; produced by
the jth correlator in response to the white Gaussian noise component /(). The random
variable W; has zero mean, because the noise process W(t) represented by w(#) in the
AWGN model of Figure 5.2 has zero mean by definition. Consequently, the mean of X;
depends only on s, as shown by

Hx, = E[Xi]

= Efs.. + W,
ls + W (5.35)
= s, + E[W]
=s;
To find the variance of X, we note that

0'%{’_ = var|X}]

= E[(X; — s3)°] (5.36)

= E[W?]

where the last line follows from Equation (5.29) with x; and w; replaced by X; and W,
respectively. According to Equation (5.31), the random variable W; is defined by

T
W, =f W(t)d;(2)dt
0

We may therefore expand Equation (5.36) as follows:

T T
o'§(,. = E|:J:) W(f)if’;(f)dtfo W(u)d),(u)du]

T T (5.37)
= E[ fo fo ¢,~(t)¢,~(u)W(t)W(u)dtdu]
Interchanging the order of integration and expectation:
T T
o= | [ o aErwe wisdedu
(5.38)

T T
=J; fo &{t); ()R w (t, u)dtdu



320

CHAPTER 5 = SIGNAL-SPACE ANALYSIS

where Ryl(t, #) is the autocorrelation function of the noise process W(z). Since this Tojge
is stationary, Ru(t, #) depends only on the time difference ¢t — u. Furthermore, since the
noise W(#) is white with a constant power spectral density No/2, we may express Rw(t,u)
as follows [see Equation {1.95)]:

Ruolt, ) = 52 8(¢ = ) (539

Therefore, substituting Equation (5.39) into (5.38), and then using the sifting property of
the delta function 8(t), we get

T T
o-%(i = % J-o L &i(t)b;(u) 8(t — w)dtdu

5.40
N (7 (40
=, o
Since the ¢;(t) have unit energy, by definition, we finally get the simple result
N, .
ok = 70 for all {5.41)

This important result shows that all the correlator outputs denoted by X; with j = 1,
2, ..., N, have a variance equal to the power spectral density No/2 of the noise process
Wiz). /
Moreover, since the ¢;(t) form an orthogonal set, we find that the X; are mutually
uncotrelated, as shown by
cov[X;Xel = E[(X; — px)(Xe — mix,)]
= E[(X;‘ - 5ii>(Xk -~ 5]
= E[W;W,]

T T
= E[ L Wiz)by(r)dt L W(u)(bk(u)du:l
T T
=I f (1) be ()R (£, w)dtdu (5.42)
0 J0
T T
- % fo fo G (1) e (1) 8(t — w)dtdu

N, [T
=fmema
=0, j+k
Since the X, are Gaussian random variables, Equation (5.42) implies that they are also
statistically independent (see Property 4 of a Gaussian Process, Section 1.8).
Define the vector of N random variables
Xi
X
X=|"7 (5.43)
XN
whose elements are independent Gaussian random variables with mean values equal 10 %
and variances equal to Ny/2. Since the elements of the vector X are statistically indepen”



5.3 Cownversion of AWGN Channel into Vector Channel 321

dent, we may express the conditional probability density function of the vector X, given
that the signal s;(t) or correspondingly the symbol m; was transmitted, as the product of
the conditional probability density functions of its individual elements as shown by

N
Fx(x|m) = 11 Fxlxlm),  i=1,2,...,M (5.44)

where the vector x and scalar x; are sample values of the random vector X and random
variable X;, respectively. The vector x is called the observation vector; correspondingly,
x; is called an observable element. Any channel that satisfies Equation (5.44) is called a
memoryless channel. )

Since each X; is a Gaussian random variable with mean s;; and variance No/2, we
have

1 1 i=1,2,...,N
Fxlx|m) = VN, exp[—ﬁo (2 — Si;‘)l:la i=1,2,....M {5.45)
Therefore, substituting Equation (5.45) into (5.44) yields
N
Flxm) = (mNo)™N exp[—Ni > - s,-,~>2} = L2 M (546)
b =1

It is now clear that the elements of the random vector X completely characterize the
summation term =;X,¢;(t), whose sample value is represented by the first term in Equation
(3.34). However, there remains the noise term ' () in this equation, which depends only
on the channel noise w/(t). Since the noise process W(¢) represented by w/(t) is Gaussian
with zero mean, it follows that the noise process W’ () represented by the sample function
w'(t) is also a zero-mean Gaussian process. Finally, we note that any random variable
W'(t,), say, derived from the noise process W'(¢) by sampling it at time ¢, is in fact
statistically independent of the set of random variables {X}; that is to say (see Problem
5.10),

i=1,2,...,N

5.47
0=<t=<T (5:47)

E[X;W' ()] = 0, {
Since any random variable based on the remainder noise process W'(t) is independent of
the set of random variables {X;} as well as the set of transmitted signals {s;(t)}, Equation
(5.47) states that the random variable W'(z,} is irrelevant to the decision as to which
particular signal was actually transmitted. In other words, the correlator outputs deter-
mined by the received signal x() are the only data that are useful for the decision-making
process and, hence, represent sufficient statistics for the problem at hand. By definition,
sufficient statistics summarize the whole of the relevant information supplied by an ob-
servation vector.
We may now summarize the results presented in this section by formulating the
theorem of irrelevance:

Insofar as signal detection in additive white Gaussian noise is concerned, only the
projections of the noise onto the basis functions of the signal set {s;(£)}2; affects
the sufficient statistics of the detection problem; the remainder of the noise is
irrelevant. i

As a corollary to this theorem, we may state that the AWGN channel of Figure 5.2 is
equivalent to an N-dimensional vector channel described by the observation vector

x=s;+w, i=12...,M (5.48)
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where the dimension N is the number of basis functions involved in formulating the signy|
vector s;. The individual components of the signal vector s; and noise vector w are defineg
by Equations (5.6) and (5.31), respectively. The theorem of irrelevance and its corollary
are indeed basic to the understanding of the signal detection problem as described next,

g 5.4 Likelihood Functions

The conditional probability density functions fx(x|m),i=1,2,..., M, are the very
characterization of an AWGN channel. Their derivation leads to a functional dependence
on the observation vector x, given the transmitted message symbol #;. However, at the
receiver we have the exact opposite situation: We are given the observation vector x and
the requirement is to estimate the message symbol #s; that is responsible for generating x,
To emphasize this latter viewpoint, we introduce the idea of a likelibood function, denoted

by L(m,) and defined by
L(mx) = fx(ximi): i= 1) 23 LR ] M (5-49)

Tt is important however to recognize that although the L(m,) and fx(x|m,) have exactly
the same mathematical form, their individual meanings are different.

In practice, we find it more convenient to work with the log-likelihood function,
denoted by /{m;} and defined by

Im) =log Limy), i=1,2...,M (5.50)

The log-likelihood function bears a one-to-one relationship to the likelihood function for
two reasons:

1. By definition, a probability density function is always nonnegative. it follows there-
fore that the likelihood function is likewise a nonnegative quantity.
2. The logarithmic function is a monotonically increasing function of its argument.

The use of Equation (5.46) in (5.50) yields the log-likelihood functions for an AWGN
channel as
1 X
"No j=1
where we have ignored the constant term —(N/2) log(mNo) as it bears no relation what-
soever to the message symbol m,. Note that the 55,/ = 1,2, ..., N, are the elements of

the signal vector s; representing the message symbol ;. With Equation (5.51) at our
disposal, we are now ready to address the basic receiver design problem.

lim,) = (% — s i=12...,M (5.51)

5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding

Suppose that in each time slot of duration T seconds, one of the M possible signals s1(#)
$3{2), - . . , Sn(2) is transmitted with equal probability, 1/M. For geometric signal represen”
tation, the signal s;(), i = 1,2, . . . , M, is applied to a bank of correlators, with a common
input and supplied with an appropriate set of N orthonormal basis functions. The resulting
correlator outputs define the signal vector s;. Since knowledge of the signal vector s; is 8
good as knowing the transmitted signal 5,{2) itself, and vice versa, we may represent s.lt)
by a point in a Euclidean space of dimension N = M. We refer to this point as the frans
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mitted signal point or message point. The set of message points corresponding to the set
of transmitted signals {s;(z)}; is called a signal constellation.

However, the representation of the received signal x(¢) is complicated by the presence
of additive noise w(z). We note that when the received signal x(t) is applied to the bank
of N correlators, the correlator outputs define the observation vector x; From Equation
(5.48), the vector x differs from the signal vector s; by the noise vector w whose orientation
is completely random. The noise vector w is completely characterized by the noise w/z);
the converse of this statement, however, is not true. The noise vector w represents that
portion of the noise w(t) that will interfere with the detection process; the remaining
portion of this noise, denoted by w’(#), is tuned out by the bank of correlators.

Now, based on the observation vector x, we may represent the received signal x(t)
by a point in the same Fuclidean space used to represent the transmitted signal. We refer
to this second point as the received signal point. The received signal point wanders about
the message point in a completely random fashion, in the sense that it may lie anywhere
inside a Gaussian-distributed “cloud” centered on the message point. This is illustrated in
Figure 5.74 for the case of a three-dimensional signal space. For a patticular realization
of the noise vector w (i.e., a particular point inside the random cloud of Figure 5.7a), the
relationship between the observation vector x and the signal vector s, is as illustrated in
Figure 5.7b. ,

We are now ready to state the signal detection problem:

Given the observation vector x, perform a mapping from x to an estimate # of the
transmitted symbol, 72, in a way that would minimize the probability of error in
the decision-making process.

Suppose that, given the observation vector x, we make the decision # = m1,. The
probability of error in this decision, which we denote by P,{m,| x), is simply
P.(m; = P(m; not sent

(m,| x) (m; not sent | x) (5.52)

= 1 — P(m;, sent|x)

The decision-making criterion is to minimize the probability of error in mapping each

given observation vector x into a decision. On the basis of Equation (5.52), we may there-
fore state the optimum decision rule:

Set #1 = my; if (5.53)

P(m; sent|x) = P(my, sent|x)  forallk #i )

¢z Noise

Received vector
signal poinf w

Noise cloud

Qbservation
vector Message
X point
. Signal vector
. Si
[
0 1 1
b3 b3

(@) (2]

FiGuRe 5.7 [llustrating the effect of noise perturbation, depicted in (a), on the location of the
received signal point, depicted in (b).
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where k = 1, 2, ..., M. This decision rule is referred to as the maximum a Dosterigy;
probability (MAP) rule.

The condition of Equation (5.53) may be expressed more explicitly in terms of g,
a priori probabilities of the transmitted signals and in terms of the likelihood functigp,
Using Bayes® rule in Equation (5.53), and for the moment ignoring possible ties in ¢,
decision-making process, we may restate the MAP rule as follows:

Set 1 = m; if
prfx(x| )
Fx(x)

where p, is the 2 priori probability of transmitting symbol 1, fx(x |} is the conditiony]
probability density function of the random observation vector X given the transmission
of symbol 11, and fx{x) is the unconditional probability density function of X. In Equation
(5.54) we may note the following:

. . . (5.54)
is maximum for & = i

# The denominator term fx(x) is independent of the transmitted symbol.

& The a priori probability p, = p; when all the source symbols are transmitted with
equal probability.

» The conditional probability density function fx(x|m;) bears a one-to-one relation-
ship to the log-likelihood function {(s,).

Accordingly, we may restate the decision rule of Equation (5.54) in terms of /(»2,) simply
as follows: :
Set 71 = m; if (5.5
l{zm) is maximum for k = i 53)
This decision rule is referred to as the maximum likelibood rule, and the device for its
implementation is correspondingly referred to as the maxismum likelibood decoder. Ac-
cording to Equation (5.55), 2 maximum likelihood decoder computes the log-likelihood
functions as metrics for all the M possible message symbols, compares them, and then
decides in favor of the maximum. Thus the maximum likelihood decoder differs from the
maximum a posteriori decoder in that it assumes equally likely message symbols.

It is useful to have a graphical interpretation of the maximum likelihood decision
rule. Let Z denote the N-dimensional space of all possible observation vectors x. We refer
to this space as the observation space. Because we have assumed that the decision rule
must say # = m,, wherei = 1,2, ..., M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z;, Zs, . .. , Zu. Accordingly, we may
restate the decision rule of Equation (5.55) as follows:

Observation vector x lies in region Z; if (5.56)

l(mm,) is maximum for & =

Aside from the boundaries between the decision regions Zi, Za, . - . , Zay, it is clear that
this set of regions covers the entire space of possible observation vectors x. We adopt the
convention that all ties are resolved at random; that is, the receiver simply makes a guess:
Specifically, if the observation vector x falls on the boundary between any two deciston
regions, Z; and Z,, say, the choice between the two possible decisions #2 = m; and 71 = M
is resolved a priori by the flip of a fair coin. Clearly, the outcome of such an event dots
not affect the ultimate value of the probability of error since, on this boundary, the cot-
dition of Equation (5.53) is satisfied with the equality sign.
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The maximum likelihood decision rule of Equation (5.55) or its geometric counter-
part described in Equation (5.56) is of a generic kind, with the channel noise w{t) being
additive as the only restriction imposed on it. We next specialize this rule for the case when
w(t) is both white and Gaussian.

From the log-likelihood function defined in Equation (5.51) for an AWGN channel
we note that [(m,) attains its maximum value when the summation term

N
E (o = sg)?
=1
is minimized by the choice k = i. Accordingly, we may formulate the maximum likelihood
decision rule for an AWGN channel as -

Observation vector x lies in region Z; if
N (5.57)
(x; — sg;)? is minimum for k = i

1

i

Next, we note from our earlier discussion that (see Equation (5.14) for comparison)

N
21 (= si)? =" | x — s || 2 (5.58)
=

where || x — s, || is the Euclidean distance between the received signal point and message
point, represented by the vectors x and s,, respectively. Accordingly, we may restate the
decision rule of Equation (5.57) as follows: .
Observation vector x lies in region Z; if (5.59)
the Euclidean distance | x — s, || is minimum for k& = i ’
Equation (5.59) states that the maximum likelibood decision rule is simply to choose the
message point closest to the received signal point, which is intuitively satisfying.
In practice, the need for squarers in the decision rule of Equation {5.59) is avoided
by recognizing that

N N N N
Dl —syP =2 w22 xsy + > sk (5.60)
=1 =1 7=1 =1

The first summation term of this expansion is independent of the index & and may therefore
be ignored. The second summation term is the inner product of the observation vector x
and signal vector s;. The third summation term is the energy of the transmitted signal
s (t). Accordingly, we may formulate a decision rule equivalent to that of Equation (5.59)
as follows:

Observation vector x lies in region Z; if

N 1 (5.61)
> XSk < 5 E, is maximum for k = {
=1
where E, is the energy of the transmitted signal s, (¢):
N
E =3 sk ' (5.62)
=1

From Equation (5.61) we deduce that, for an AWGN channel, the decision regions
are regions of the N-dimensional observation space Z, bounded by linear [(N — 1)-
dimensional hyperplane] boundaries. Figure 5.8 shows the example of decision regions for
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FIGURE 5.8 [llustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely.

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy, E, and equal probability.

i 5.6 Correlation Receiver

From the material presented in the previous sections, we find that for an AWGN channel
and for the case when the transmitted signals s;(), 52, . . . , su(t) are equally likely, the
optimum receiver consists of two subsystems, which are detailed in Figure 5.9 and de-
scribed here:

1.

The detector part of the receiver is shown in Figure 5.92. It consists of a bank of M
product-integrators or correlators, supplied with a corresponding set of coherent
reference signals or orthonormal basis functions ¢ (2}, $2(2), ..., @n(¢) thar are
generated locally. This bank of correlators operates on the received signal x{t),
0 =< t = T, to produce the observation vector x.

The second part of the receiver, namely, the signal transmission decoder is shownin
Figure 5.9b. It is implemented in the form of 2 maximum-likelihood decoder that
operates on the observation vector x to produce an estimate, 7, of the transmitted
symbol #2;, i = 1,2, ..., M, in a way that would minimize the average probability
of symbol error. In accordance with Equation (5.61), the N elements of the obser
vation vector x are first multiplied by the corresponding N elements of each of the
M signal vectors sy, 52, . . . , Sa, and the resulting products are successively summed
in accumulators to form the corresponding set of inner products {x"sg |k = 1,2, .-
M). Next, the inner products are corrected for the fact that the transmitted sig
energies may be unequal. Finally, the largest in the resulting set of numbers is selected;
and an appropriate decision on the transmitted message is made.

The optimum receiver of Figure 5.9 is commonly referred to as a correlation receiver.
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FIGURE 5.9 (a) Detector or demodulator. (b) Signal transmission decoder.

2 EQUIVALENCE OF CORRELATION AND MATCHED FILTER RECEIVERS

The detector shown in Figure 5.9 involves a set of correlators. Alternatively, we may use
a corresponding set of matched filters to build the detector; the matched filter and its
properties were considered in Section 4.2. To demonstrate the equivalence of a correlator
and a matched filter, consider a linear time-invariant filter with impulse response b;().
With the received signal x(¢) used as the filter input, the resulting filter output, y,(¢), is
defined by the convolution integral: '

yi(t) = f ) x(7)k;(t — T)dT (5.63)

-~
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FIGURE 5.10 Detector part of matched filter receiver; the signal transmission decoder is as
shown in Fig. 5.9b.

From the definition of a matched filter presented in Section 4.2, we recall that the impulse
response &,(t) of a linear time-invariant filier matched to an input signal ¢;(?) is a time-
reversed and delayed version of the input ¢;(t). Suppose that we set

bi(t) = ¢{T — t) (5.64)
Then the resulting filter output is

yi(t) = J‘ _x(n(T—t+ mjdr (5.65)

Sampling this output at time ¢ = T, we get

w1 = | xtridyindr
Since, by definition, ¢;(t) is zero outside the interval 0 = ¢ < T, we find that y;(T) isin
actual fact the jth correlator output x; produced by the received signal x(¢) in Figure 5.9,
as shown by

T

yi(T) = fo x{n)¢y(ndr (5.66)

Accordingly, the detector part of the optimum receiver may also be implemented using 2
bank of matched filters, as shown in Figure 5.10. It is important to note, however, that
the output of each correlator in Figure 5.9 is equivalent to the output of a corresponding
matched filter in Figure 5.10 only when that output is sampled at time ¢ = T.

? 5.7 Probability of Error

To complete the statistical characterization of the correlation receiver depicted in Figit®
5.9, we need to evaluate its noise performance. To do so, suppose that the observatio
space Z is partitioned, in accordance with the maximum likelihood decision rule, into?
set if M regions {Z},. Suppose also that symbol #; (or, equivalently, signal vector 5) 8
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transmitted, and an observation vector x is received. Then an error occurs whenever the
received signal point represented by x does not fall inside region Z; associated with the
message point represented by s;. Averaging over all possible transmitted symbols, we
readily see that the average probability of symbol error, P, is

E p: P(x does not lie in Z;|m; sent)

1 M -
ﬁ E (x does not lie in Z;|m; sent) (5.67)
=1 ———E P(x lies in Z;|m; sent)

z-'l
where we have used standard notation to denote the probability of an event and the
conditional probability of an event. Since x is the sample value of random vector X, we
may rewrite Equation (5.67) in terms-of the likelihood function (when m; is sent) as
follows:

1 «M
Po=1-4 ; . Fx(x|m;) dx (5.68)

For an N-dimensional observation vector, the integral in Equation (5.68) is likewise
N-dimensional.

# INVARIANCE OF THE PROBABILITY OF ERROR TO
ROTATION AND TRANSLATION

The way in which the observation space Z is partitioned into the set of regions Z1, Z,, . . . ,
Z s, in the maximum likelihood detection of a signal in additive white Gaussian noise, is
uniquely defined by the signal constellation under study. Accordingly, changes in the ori-
entation of the signal constellation with respect to both the coordinate axes and origin of
the signal space do #not affect the probability of symbol error P, defined in Equation (5.68).
This result is a consequence of two facts:
1. In maximum likelihood detection, the probability of symbol error P, depends solely
on the relative Euclidean distances between the message points in the constellation.
2. The additive white Gaussian noise is spherically symmetric in all directions in the
signal space.

Consider first the invariance of P, with respect to rotation. The effect of a rotation
applied to all the message points in a constellation is equivalent to multiplying the
N-dimensional signal vector s; by an N-by-N orthonormal matrix denoted by Q for all 4.
The matrix Q satisfies the condition

QQ" =1 (5.69)

where I is the identity matrix whose diagonal elements are all unity and its off-diagonal
elements are all zero. Note that according to Equation (5.69), the inverse of a real-valued
orthonormal matrix is equal to its transposed form. Thus the signal vector s; is replaced
by its rotated version

Sirotate = qu i= 1: 23 LR } M (5‘70)
Correspondingly, the N-by-1 noise vector w is replaced by its rotated version
Weomee = QW (5.71)
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However, the statistical characteristics of the noise vector are unaffected by this rotay,
for the following reasons: n

» From Chapter 1 we recall that a linear combination of Gaussian random Variableg
is also Gaussian. Since the noise vector w is Gaussian, by assumption, it follows they
the rotated noise VeCtor Wy is also Gaussian.

& Since the noise vector w has zero mean, the rotated-noise VeCtor Wiowae also has Zerg
mean, as shown by

E[Wiomee] = E[Qw]
= QE[w] 5.7
=0

& The covariance matrix of the noise vector w is equal to (No/2)I, where Ny/2 is the
power spectral density of the AWGN w/(t); that is,

. N
E[ww!] = 7"1 (5.73

Hence, the covariance matrix of the rotated noise vector Weocars is
E[WopaceWioeare) = E[QW(Qw)T]
= E[Qww' Q"]
= QE[ww’lQ" (574

Ny
=3 QQ”

where in the last two lines we have made use of Equations (5.73) and (5.69).

In light of these observations, we may express the observation vector for the rotated
signal constellation as

Ko = Qs +w,  i=1,2,...,M 15.75)
From Equation (5.59) we know that the decision rule for maximum likelihood detection

is based on the Euclidean distance from the observation vector X,o. to the rotated signal
VECtor §; rorae = Q8. Comparing Equation (5.75) to Equation (5.48), we readily see that

” Xrotate — Sijrotate ” = ” X 8 “ for all ; {576)

We may therefore formally state the principle of rotational invariance as follows:

If a signal constellation is rotated by an orthonormal transformation, that is,
si,rotane = Qsi: i= 13 29 s M

where Q is an orthonormal matrix, then the probability of symbol error P, incurred
in maximum likelihood signal detection over an AWGN channel is completely
unchanged.

We illustrate this principle with an example. The signal constellation shown in Figur
5.11b is the same as that of Figure 5.11a, except that it has been rotated through 49
degrees. Although these two constellations do indeed look different, the principle of ro-
tational invariance tells us immediately that the P, is the same for both of them.
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FIGURE 5.11 A pair of signal constcllations for illustrating the principle of rotational invariance.

Consider next the issue of invariance to translation. Suppose all the message points
in a signal constellation are translated by a constant vector amount a, as shown by

Siteanslage — i — @, = 15 2: sans M (5‘77)
The observation vector is correspondingly translated by the same vector amount, as shown
by

Xeanstaee = X — @ (5.78)

From Equations (5.77) and (5.78) we see that the translate a is common to both the

translated signal vector s; and translated observation vector x. We therefore immediately
deduce that

| Keeanstare = Sigeansiare | = | X = 8;|  foralli (5.79)

and thus formulate the principle of translational invariance as follows:

If a signal constellation is translated b);'ja constant vector amount, then the prob-
ability of symbol error P, incurred in maximum likelihood signal detection over an
AWGN channel is completely unchanged.

As an example, consider the two signal constellations shown in Figure 5.12, which
pertain to a pair of different 4-level PAM signals. The constellation of Figure 5.125 is the
same as that of Figure 5.12a, except for a translation of 3a/2 to the right along the
¢,-axis. The principle of translational invariance says that the P, is the same for both of
these constellations.

# MINIMUM ENERGY SIGNALS

A useful application of the principle of translational invariance is in the translation of a
given signal constellation in such a way that the average energy is minimized. To explore

~—— . o ‘ - ‘ ¢1
~3al2 —af2 0 al2 3a/2 0

(a) ]

FIGURE 5.12 A pair of signal constellations for illustrating the principle of translational
invariance.
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this issue, consider a set of symbols 72y, 75, . . . , 72 represented by the signal vector s
S35 - - - » Su, respectively. The average energy of this signal constellation translated by;
vector amount a is

M

%tragslace = 2 || §;— a ” zpi (580)

f=1

where p; is the probability that symbol 7, is emitted by the source of information, T,
squared Euclidean distance between s; and a is expanded as

I's; —all>= lsll* = 2a"; + |a]*

We may therefore rewrite Equation (5.80) in the expanded form

M M M
Brcanstare = E I's:ll*p: —2 2 a%sipi + | af? 2 p:
i=1 =1 i=1 (58])
=% —2a"E[s] + |a|?
where € is the average energy of the original signal constellation, and
M
E[s] = X, sip (5.82)

=1

Differentiating Equation (5.81) with respect to the vector a and then setting the result
equal to zero, we readily find that the minimizing translate is

i = E[s] (5.83)
The minimum average energy of the signal constellation translated in this way is
%translare,min =€ - ” Amin || 2 (584)

We may now state the procedure for finding the minimum energy translate:

Given a signal constellation {s,}**,, the corresponding signal constellation with min-
imum average energy is obtained by subtracting from each signal vector s; in the
given constellation an amount equal to the constant vector E[s], where E[s] is de-
fined by Equation (5.82).

Recalling that the energy (or power) needed for signal transmission is a primary resource,
the minimum energy translate provides a principled method for translating a signal con-
stellation of interest so as to minimize the energy requirement. For example, the constel-
lation of Figure §.12a has minimum average energy, whereas that of Figure 5.125 does
not.

UNION BOUND ON THE PROBABILITY OF ERROR?

For AWGN channels, the formulation of the average probability of symbol error, Pe, is
conceptually straightforward. We simply write P, in integral form by substituting Equation
(5.46) into Equation (5.68). Unfortunately, however, numerical computation of the fnte-
gral is impractical, except in a few simple (but important) cases. To overcome this com-
putational difficulty, we may resort to the use of bounds, which are usually adequate ©
predict the signal-to-noise ratio (within a decibel or so) requited to maintain a prescribe

error rate. The approximation to the integral defining P, is made by simplifying the integral
or simplifying the region of integration. In the sequel, we use the latter procedure to de-
velop a simple yet useful upper bound called the umion bound as an approximation to the
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average probability of symbol error for a set of M equally likely signals (symbols) in an
AWGN channel.

Let A, with (i, k) = 1, 2, ..., M, denote the event that the observation vector x is
closer to the signal vector s, than to s;, when the symbol #; (vector s;) is sent. The con-
ditional probability of symbol.error when symbol #; is sent, P,(mm,), is equal to the prob-
ability of the union of events, Ay, Agn, ..., Aji—1, Aijers + -+ » Ajar. From probability
theory we know that the probability of a finite union of events is overbounded by the sum
of the probabilities of the constituent events. We may therefore write

M

Pim) =, PlAa), i=12...,M (5.85)
k=1
ki

This relationship is illustrated in Figure 5.13 for the case of M = 4. In Figure 5.134, we
show the four message points and associated decision regions, with the point s; assumed
to represent the transmitted symbol. In Figure 5.13b, we show the three constituent signal-
space descriptions where, in each case, the transmitted message point s; and one other
message point are retained. According to Figure 5.13a the conditional probability of sym-
bol error, P.{m;}, is equal to the probability that the observation vector x lies in the shaded
region of the two-dimensional signal-space diagram. Clearly, this probability is less than
the sum of the probabilities of the three individual events that x lies in the shaded regions
of the three constituent signal spaces depicted in Figure 5.13b.

It is important to note that, in general, the probability P(A;) is different from the
probability P(#: = my|m;,). The latter is the probability that the observation vector x is

FIGURE 5,13 Illustrating the union bound. (a) Constellation of four message points. (b) Three
constellations with a common message point and one other message point retained from the origi-
nal constellation.
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closer to the signal vector s than every other, when s; (or #;) is sent. On the other hang
the probability P(A,;) depends on only two signal vectors, s; and s;. To emphasize thi;
difference, we rewrite Equation (5.85) by adopting Pa(s;, ) in place of P(A,). We thy
write

M
P(m)= 2 Pofsisidy  i=1,2,...,M (5.86)

£
B

~

%

The probability P,(s;, s) is called the pairwise error probability in that if a data transm,.
sion system uses only a pair of signals, s; and sy, then P,(s;, s¢) is the probability of the
receiver mistaking s; for s;.

Consider then a simplified digital communication system that involves the use of tyy
equally likely messages represented by the vectors s; and s;. Since white Gaussian noise j;
identically distributed along any set of orthogonal axes, we may temporarily choose the
first axis in such a set as one that passes through the points s; and s;; for three examples,
see Figure 5.13b. The corresponding decision boundary is represented by the bisector thy
is perpendicular to the line joining the points s; and s,. Accordingly, when the symbo] 7
(vector s;) is sent, and if the observation vector x lies on the side of the bisector where s,:
lies, an error is made. The probability of this event is given by

P,(s;, s,) = P(x is closer to s, than s;, when s; is sent)

- 2 (5.87)
= iz \/TNO exp(——N—O) dv
where d;, is the Euclidean distance between s; and s; that is,
= |si— sl (5.88)

From the definition of the complementary error function, we have
erfc(u) = —\5—; J; exp(—2%) dz

Thus, in terms of this function, with z set equal to ¥/V/ N, we find that Equation (5.87)
takes on the compact form

Py(s;, 5p) = % erfc(zjkﬁ) (5.89)
Substituting Equation (5.89) into Equation {5.86), we get
P m,) < 1 g: erfc(L>, i=1,2,...,. M (5.90)
2e VR

The probability of symbol error, averaged over all the M symbols, is therefore overbounded
as follows:

= ‘ (5.91)

where p; is the probability of transmitting symbol #1;.
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There are two special forms of Equation (5.91) that we will find useful in Chapter 6
on passband data transmission:

1. Suppose that the signal constellation is circularly sysmetric about the origin. Then
the conditional probability of error P,(m2,) is the same for all i, in which case Equation
{5.91) reduces to

M
P = % ’gl erf(:(zj;To) “for all ¢ (5.92)
1224

2. Define the minimum distance of a signal constellation, d.,;,, as the smallest Euclidean
distance between any two transmitted signal points in the constellation, as shown by

doin = min dy, for all i and & (5.93)
ki

Then, recognizing that the complementary error function erfc(x) is a monotonically de-
creasing function of its argument u, we may write

erfc(z\/_) = erfc( (i'/“;'TO) for all i and & (5.94)

We may therefore, in general, simplify the bound on the average probability of symbol
error in Equation (5.91) as

M-1) A min
P, = 3 erfc N (5.95)
The complementary error function is itself bounded as?
dmm 1 dl?nin
erfc (2\/_) = Vo exp( 4N0) (5.96)
Accordingly, we may further simplify the union bound on P, given in Equation (5.95) as
M-1) diin
P =—F- - .
=0 exp( - (5.97)

Equation (5.97) shows that for a prescribed AWGN channel, the average probability of
symbol error P, decreases exponentially as the squared minimum distance, dZ,.

BIT VERSUS SYMBOL ERROR PROBABILITIES

Thus far, the only figure of merit we have used to assess the noise performance of a digital
passband transmission system has been the average probability of symbol error. This figure
of merit is the natural choice when messages of length m = log,M are transmitted, such
as alphanumeric symbols. However, when the requirement is to transmit binary data such
as digital computer data, it is often more meaningful to use another figure of merit called
the bit error rate (BER). Although, in general, there are no unique relationships between
these two figures of merit, it is fortunate that such relationships can be derived for two
cases of practical interest, as discussed next.
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Case 1

In the first case, we assume that it is possible to perform the mapping from bip,
to M-ary symbols in such a way that the two binary M-tuples corresponding to any Dair
of adjacent symbols in the M-ary modulation scheme differ in only one bit position, This
mapping constraint is satisfied by using a Gray code. When the probability of symbo]
error P, is acceptably small, we find that the probability of mistaking one symbo] £,
either one of the two “nearest” symbols is much greater than any other kind of sympy
error. Moreover, given a symbol error, the most probable number of bit errors is oy
subject to the aforementioned mapping constraint. Since there are log, M bits per symhol,
it follows that the average probability of symbol error is related to the bit error rate 5
follows:

logaM
P, = P( J (ith bit is in error})
=1
fog,M
= P(ith bit is in error) (5.97)
i=1
= log, M - (BER)
We also note that
P, = P(ith bit is in error) = BER (5.98)

It follows therefore that the bit error rate is bounded as follows:

P
‘£ =< BER =
TogM BE P, (5.99)

Case 2

Let M = 2K, where K is an integer. We assume that all symbol errors are equally
likely and occur with probability

Pe — Pe
M-1 2K-1
where P, is the average probability of symbol error. What is the probability that the ith
bit in a symbol is in error? Well, there are 2X~1 cases of symbol error in which this
particular bit is changed, and there are 2X~ cases in which it is not changed. Hence, the
bit error rate is

- ! 100
R 5.
or, equiv alently s

BER (M )Pe (

Note that for large M, the bit error rate approaches the limiting value of P,/2. The same
idea described here also shows that bit errors are not independent, since we have
K2

X1 P, # (BER)*

P(ith and jth bits are in error) =
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LEiSummary and Discussion

The primary goal of the material presented in this chapter is the formulation of a systematic
procedure for the analysis and design of a digital communication receiver in the presence
of additive white Gaussian noise (AWGN). The procedure, known as maximum likelihood
detection, decides which particular transmitted symbol is the most likely cause of the noisy
signal observed at the channel output. The approach that led to the formulation of the
maximum likelihood detector (receiver) is called signal-space analysis. The basic idea of the
approach is to represent each member of a set of transmitted signals by an N-dimensional
vector, where N is the number of orthonormal basis functions needed for a unique geo-
metric representation of the transmitted signals. The set of signal vectors so formed defines
a signal constellation in an N-dimensional signal space.

For a given signal constellation, the (average) probability of symbol error P, incurred
in maximum likelihood signal detection over an AWGN channel is invariant to rotation
of the signal constellation as well as its translation. However, except for a few simple (but
important) cases, the numerical calculation of P, is an impractical proposition. To over-
come this difficulty, the customary practice is to resort to the use of bounds that lend
themselves to computation in a straightforward manner, In this context, we described the
union bound that follows directly from the signal-space diagram. The union bound is based
on an intuitively satisfying idea: The probability of symbol error P, is dominated by the
nearest neighbors to the transmitted signal. The results obtained using the union bound
are usually fairly accurate when the signal-to-noise ratio is high.

With the material on signal-space analysis and related issues on hand, we are well-
equipped to study passband data transmission systems, which we do in Chapter 6.

l NOTES AND REFERENCES

1. The geometric representation of signals was first developed by Kotel’nikov in 1947: V. A.
Kotel'nikov, The Theory of Optimum Noise Immunity (Dover Publications, 1960), which
is a translation of the original doctoral dissertation presented in January 1947 before the
Academic Council of the Molotov Energy Institute in Moscow. In particular, see Part I of
the book. This method was subsequently brought to fuller fruition in the classic book by
Wozencraft and Jacobs (1965). Signal-space analysis is also discussed in Cioffi (1998),
Anderson (1999), and Proakis {1995).

2. In Section 5.7, we derived the union bound on the average probability of symbol error; the
classic reference for this bound is Wozencraft and Jacobs (1965). For the derivation of tighter
bounds, see Viterbi and Omura (1979, pp. 58-59).

3. In Chapter 4, we used the following upper bound on the complementary error function
exp{—u?)
Vru

For large positive #, a second bound on the complementary error function is obtained by
omitting the multiplying factor 1/« in the above upper bound, as shown by

erfc(u) <

exp(—#%)

erfc(u) < Vo

It is this second upper bound that is used in Equation (5.97).
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g PROBLEMS

Representation of Signals

5.1 In Section 3.7 we described line codes for pulse-code modulation. Referring to the materjy
presented therein, formulate the signal constellations for the following line codes;
(a) Unipolar nonreturn-to-zero code
(b) Polar nonreturn-to-zero code
{¢) Unipolar return-to-zero code
(d) Manchester code

5.2 An 8-level PAM signal is defined by

1
s;(t) = A; rect(? - E)
where A; = *1, £3, +5, +7. Formulate the signal constellation of (st
5.3 Figure P5.3 displays the waveforms of four signals s(¢), s2(2), s3(), and sa(¥).
{a) Using the Gram-Schmidt orthogonalization procedure, find an orthonormal basis for
this set of signals.
(b) Construct the corresponding signal-space diagram.

e 50 sl sal)

1 1 1 1

t t t t
0 2r 0
3

wl~
W~
-
o
~

FiGuRre P5.3

5.4 (a) Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis
functions to represent the three signals s(£), s,(t), and s3(t) shown in Figure P5.4.
(b) Express each of these signals in terms of the set of basis functions found in part {a).

5,08 sple} s53()

4 a4 4
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o} t 0 3 0 :
G 1 oz 3 Gk ! 3 oz
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-3 -3 -3

4 -4 -4

5

FiGURE P5.4

5.5 Aun orthogonal set of signals is characterized by the property that the inner product of
any pair of signals in the set is zero. Figure P5.5 shows a pair of signals s,(#) and slt)
that satisfy this condition. Construct the signal constellation for s;(z) and s,{¢).
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5.6

5.7

5.8
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Ficure P5.5

A source of information emits a set of symbols denoted by {m.},. Two candidate mod-

ulation schemes, namely, pulse-duration modulation (PDM) and pulse-position modula-

tion (PPM), are considered for the electrical representation of this set of symbols. In PDM,

the ith symbol is represented by a pulse of unit amplitude and duration (i/M)T. On the

other hand, in PPM, the ith symbol is represented by a short pulse of unit amplitude and

fixed duration, which is transmitted at time ¢ = (#/M)T. Show that PPM is the only one

of the two that can produce an orthogonal set of signals over the interval 0 =t = T.

A set of 2M biorthogonal signals is obtained from a set of M orthogonal signals by

augmenting it with the negative of each signal in the set.

(a) The extension of orthogonal to biorthogonal signals leaves the dimensionality of the
signal space unchanged. Why?

(b) Construct the signal constellation for the biorthogonal signals corresponding to the
pair of orthogonal signals shown in Figure P5.5.

(a) A pair of signals s,() and s,(t) have a common duration T. Show that the inner
product of this pair of signals is given by

T
L sit)se(t)dt = ss,
where s; and s, are the vector representations of s,(¢) and s,(t), respectively.
(b} As a followup to part (a), show that
T
f (sdt) — splt)Pdt = [|s; — s ||

0

Consider a pair of complex-valued signals s,(f) and s,(#) that are respectively represented
by

s1{t) = a1 s(t) + arzdalt), —m << e

$2{t) = axda(t) + andalt), —®m<t< e
where the basis functions ¢(t) and ¢,(#) are both real valued, but the coefficients @y,

@42, 421, and az; are complex valued. Prove the complex form of the Schwarz inequality:
2

sfw |s1(t)\2dtjm |s2(8) | 2de

fl si(t)s2(e)dt

where the asterisk denotes complex conjugation. When is this relation satisfied with the
equality sign?

Random Processes

5.10

Consider a random process X(#) expanded in the form

N
X() =2 Xib(t) + W'(r), 0=¢=T
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where W'(#) is a remainder noise term. The {1, form an orthonormal set over thy
interval 0 = ¢ = T, and the X; are defined by ¢

T
X; = j X(t);(t)dt
0

Let W'(#,) denote a random variable obtained by observing W'(t) at time ¢ = #;, Shq,,
that

E[X W(zd] = 0 {j=1,2,,..,N
A ’ 0=t,=T

5.11 Consider the optimum detection of the sinusoidal signal

sty = sin(g—;t), 0=t=T

in additive white Gaussian noise.
(a) Determine the correlator output assuming a noiseless input.

{b) Determine the corresponding matched filter output, assuming that the filter includes
a delay T to make it causal.

(c) Hence show that these two outputs are the same only at time instant ¢ = T.

Probability of Error

5.12 Figure P5.12 shows a pair of signals s;(t) and s,(#) that are orthogonal to each other over
the observation interval 0 = ¢ = 3T. The received signal is defined by
0=1t=3T

*) = ) ¥ wlth

where w(t) is white Gaussian noise of zero mean and power spectral density No/2.
(a) Design a receiver that decides in favor of signals s4(2) or sy(t), assuming that these
two signals are equiprobable.

(b) Calculate the average probability of symbol error incurred by this receiver for
E/N, = 4, where E is the signal energy.

5,09 30
1 1 __‘
c t '
T 2T 3T 0 T 3r sr| 3r
2 2 2

1 r -
Ficure P5.12

5.13 In the Manchester code, binary symbol 1 is represented by the doublet pulse s(?) show®
in Figure P5.13, and binary symbol 0 is represented by the negative of this pulse. Derve
the formula for the probability of error incurred by the maximum likelihood detecno?
procedure applied to this form of signaling over an AWGN channel.
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5.14 In the Bayes test, applied to a binary hypothesis testing problem where we have to choose
one of two possible hypotheses H, and H;, we minimize the #isk R defined by

R = CyopoP(say Ho|H is true)
+ CyopoP(say Hy|H, is true)
+ Cyyp,P(say Hy|Hy is true)
+ Coyp1P(say Hy|H, is true)

The terms Cgg, Cyo, Ci1, and Cy,; denote the costs assigned to the four possible outcomes
of the experiment: The first subscript indicates the hypothesis chosen, and the second the
hypothesis that is true. Assume that Cy > Cyo and Cp; > C;. The pg and p; denote the
a priori probabilities of hypotheses H, and H;, respectively.

(a) Given the observation vector x, show that the partitioning of the observation space
so as to minimize the risk R leads to the likelibood ratio test:

say Hp if A(x) < A
say Hy if A{x) > A

where A(x) is the likelibood ratio

Alx) = x(X|H1)

Fx(x|Hy)
and A is the threshald of the test defined by

20{C10 — Coo)
p1{Cor — C11)

(b) What are the cost values for which the Bayes’ criterion reduces to the minimum
probability of error criterion?

A=

Principles of Rotational and Translational Invariance

5.15 Continuing with the four line codes considered in Problem 5.1, identify the line codes
that have minimum average energy and those that do not. Compare your answers with
the observations made on these line codes in Section 3.7.

5.16 Consider the two constellations shown in Figure 5.11. Determine the orthonormal matrix

Q that transforms the constellation shown in Figure 5.11a into the one shown in Figure
5.11b.
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5.17 (a) The two signal constellations shown in Figure P5.17 exhibit the same average Prob.
ability of symbol error. Justify the validity of this statement.

(b) Which of these rwo constellations has minimum average energy? Justify your angye,

You may assume that the symbols pertaining to the message points displayed in Figure
P5.17 are equally likely.

b, [
[:3 \/_Z-a_ //.\
= RN
| ! i AN
| | ’ N
‘ ! ¢ 4 b $
1 1
,a: 0 :a o~ //2\[5“
| ! \\ //
6———L 4 N
—
—\/ZT A

(@ [}
FiGure P5.17

5.18 Simplex (transorthogonal) signals are equally likely highly-correlated signals with the
most negative correlation that can be achieved with a set of M orthogonal signals. That
is, the correlation coefficient between any pair of signals in the set is defined by

1 fori=j

;i = -1 . .
Py 'm fori # 1
One method of constructing simplex signals is to start with a set of M orthogonal signals,
each with energy E, and then apply the minimum energy translate.
Consider a set of three equally likely symbols whose signal constellation consists of
the vertices of an equilateral triangle. Show that these three symbols constitute a simplex
code.

Bounds on Probability of Error

5.19 In this problem we explore the approximations to the probability of an error, P, for the
pair of antipodal signals shown in Figure P5.19 in the presence of additive white Gaussian
noise of power spectral density No/2. The exact formula for P, is

Lo [
P, = 5 erfc( N0>

(This formula is derived in Section 6.3)

{a) Using the two upper bounds for the complementary error function given in Note 3,
derive the corresponding approximations to P..

(b) Compare the approximations derived in part (a) for P, to the exact formula for
E,/N, = 9. For the exact calculation of P,, you may use Table A6.6 on the erfof
function. .

Vi,

|
~VEy |
t 1
I
i

o

FIGURE P5.19
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5.20 Consider the special case of a signal constellation that has a symmetric geometry with
respect to the origin. Assume that the M message points of the constellation, pertaining
to symbols 721, 11, = - -, iy, are equally likely. Using the upper bound on the comple-
mentary error function given in Equation (5.94), show that the average probability of
symbol error for the constellation is bounded as

P, = Moo exp [ —min 3
IVt o Bl TN

ixk

where d; is the Euclidean distance between message points 7 and £, and M, is the number
of transmitted signals that attain the minimum Euclidean distance for each ™,



PASSBAND DATA
TRANSMISSION

This chapter builds on the material developed in Chapter 5 on signal-space analysis. Tt
discusses the subject of digital data transmission over a band-pass channel that can be
linear or nonlinear. As with analog communications, this mode of data transmission relieg
on the use of a sinusoidal carrier wave modulated by the data stream.

Specifically, the following topics are covered:

» Different methods of digital modulation, namely, phase-shift keying, quadrature-
amplitude modulation, and frequency-shift keying, and their individual variants.

B Coberent detection of modulated signals in additive white Gaussian noise, which requires
the receiver to be synchronized to the transmitter with respect to both carrier phase and
bit timing.

B Noncoberent detection of modulated signals in additive white Gaussian noise,
disregarding phase information in the received signal.

B Modems for the transmission and reception of digital data over the public switched
telephone network.

B Sophisticated modulation techniques, namely, carrierless amplitude/phase modulation and
discrete multitone, for data transmission over a wideband channel with medium to severe
intersymbol interference.

B Techniques for synchronizing the receiver to the transmitter.

| 6.1 Introduction

In baseband pulse transmission, which we studied in Chapter 4, a data stream represented
in the form of a discrete pulse-amplitude modulated (PAM) signal is transmitted directly
over a low-pass channel. In digital passband transmission, on the other hand, the incoritg
data stream is modulated onto a carrier (usnally sinusoidal) with fixed frequency fimits
imposed by a band-pass charinel of interest; passband data transmission is studied in this
chapter.

The communication channel used for passband data transmission may be a micto*
wave radio link, a satellite channel, or the like. Yet other applications of passband dat?
transmission are in the design of passband line codes for use on digital subscriber loops
and orthogonal frequency-division multiplexing techniques for broadcasting. Inany evetlh
the modulation process making the transmission possible involves switching (keying) t*
amplitude, frequency, or phase of a sinusoidal carrier in some fashion in accordance W
the incoming data. Thus there are three basic signaling schemes, and they are known #

344
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FIGURE 6.1 lustrative waveforms for the three basic forms of signaling binary information. (a)
Amplitude-shift keying. (b) Phase-shift keying. (c) Frequency-shift keying with continuous phase.

0

amplitude-shift keying (ASK), frequency-shifs keying (FSK), and phase-shift keying (PSK).
They may be viewed as special cases of amplitude modulation, frequency modulation, and
phase modulation, respectively.

Figure 6.1 illustrates these three methods of modulation for the case of a source
supplying binary data. The following points are noteworthy from Figure 6.1:

& Although in continuous-wave modulation it is usually difficult to distinguish between
phase-modulated and frequency-modulated signals by merely looking at their wave-
forms, this is not true for PSK and FSK signals.

* Unlike ASK signals, both PSK and FSK signals have a constant envelope.

This latter property makes PSK and FSK signals impervious to amplitude nonlinearities,
commonly encountered in microwave radio and satellite channels. It is for this reason, in
practice, we find that PSK and FSK signals are preferred to ASK signals for passband data
transmission over nonlinear channels.

HIERARCHY OF DIGITAL MODULATION TECHNIQUES!

Digital modulation techniques may be classified into coberent and noncoberent techniques,
depending on whether the receiver is equipped with a phase-recovery circuit or not. The
phase-recovery circuit ensures that the oscillator supplying the locally generated carrier
wave in the receiver is synchronized (in both frequency and phase) to the oscillator sup-
plying the carrier wave used to originally modulate the incoming data stream in the
transmitter.

As discussed in Chapter 4, in an M-ary signaling scheme, we may send any one of
M possible signals s(2), s,(2), . . ., sm(t), during each signaling interval of duration T. For



346

CHAPTER 6 PASSBAND DATA TRANSMISSION

almost all applications, the number of possible signals M = 2", where 7 is an integer, T},
symbol duration T = #T, where Ty, is the bit duration. In passband data transmissioy
these signals are generated by changing the amplitude, phase, or frequency of a Sin“SOidai
carrier in M discrete steps. Thus we have M-ary ASK, M-ary PSK, and M-ary FSK digityy
modulation schemes. Another way of generating M-ary signals is to combine differe,
methods of modulation into a hybrid form. For example, we may combine discrete change,
in both the amplitude and phase of a carrier to produce M-ary amplitude-phase keyiy,
(APK). A special form of this hybrid modulation is M-ary quadrature-amplitude mq.
ulation (QAM), which has some attractive properties. M-ary ASK is a special case of
M-ary QAM.

M-ary signaling schemes are preferred over binary signaling schemes for transmitting
digital information over band-pass channels when the requirement is to conserve band.
width at the expense of increased power. In practice, we rarely find a communicatigy
channel that has the exact bandwidth required for transmitting the output of an info;.
mation source by means of binary signaling schemes. Thus when the bandwidth of the
channel is less than the required value, we may use M-ary signaling schemes for maximup
efficiency. To illustrate the bandwidth-conservation capability of M-ary signaling schemes
consider the transmission of information consisting of a binary sequence with bit duratim;
T,. If we were to transmit this information by means of binary PSK, for example, we
would require a bandwidth that is inversely proportional to Ty However, if we take blocks
of 7 bits and use an M-ary PSK scheme with M = 27 and symbol duration T = aT,, the
bandwidth required is proportional to 1/#Tj. This shows that the use of M-ary PSK enables
a reduction in transmission bandwidth by the factor # = log, M over binary PSK.

M-ary PSK and M-ary QAM are examples of linear modulation. However, they differ
from each other in one important respect: An M-ary PSK signal has a constant envelope,
whereas an M-ary QAM signal involves changes in the carrier amplitude. Accordingly,
M-ary PSK can be used to transmit digital data over a nonlinear band-pass channe,
whereas M-ary QAM requires the usc of a linear channel.

M-ary PSK, M-ary QAM, and M-ary FSK are commonly used in coherent systems.
Amplitude-shift keying and frequency-shift keying lend themselves naturally to use in non-
coherent systems whenever it is impractical to maintain carrier phase synchronization. But
in the case of phase-shift keying, we cannot have “noncoherent PSK** because the term
noncoherent means doing without carrier phase information. Instead, we employ a
“pseudo PSK” technique known as differential phase-shift keying (DPSK), which {in2
loose sense) may be viewed as the noncoherent form of PSK. In practice, M-ary F§K and
M-ary DPSK are the commonly used forms of digital modulation in noncoherent systems.

& PROBABILITY OF ERROR

A major goal of passband data transmission systems is the optimum design of the receives
<o as to minimize the average probability of symbol error in the presence of additive whilf
Gaussian noise (AWGN). With this goal in mind, much of the material presented in fh}S
chapter builds on the signal-space analysis tools presented in Chapter 5. Specifically, 1B
the study of each system we begin with the formulation of a signal constellation and Fhe
construction of decision regions in accordance with maximum likelihood signal detectio?
over an AWGN channel. These formulations set the stage for evaluating the probabihq
of symbol error P.. Depending on the method of digital modulation under study, 1
evaluation of P, proceeds in one of two ways:

& In the case of certain simple methods such as coherent binary PSK and coherett
binary FSK, exact formulas are derived for P..
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= In the case of more elaborate methods such as coherent M-ary PSK and coherent
M-ary FSK, we resort to the use of the union bound for deriving an approximate
formula for P..

POWER SPECTRA

To fully appreciate the practical virtues of different methods of digital modulation, we
also need to study the power spectra of the resulting modulated signals. This latter issue
is particularly important in two contexts: occupancy of the channel bandwidth and co-
channel interference in multiplexed systems. i

Given a modulated signal s(2), we may describe it in terms of its in-phase and quad-
rature components as

5(2) = s;(t) cos(2mET) — splt) sin(2af 1)
= Re[${t) exp(j27f.1)]
where Re["] is the real part of the expression contained inside the square brackets. We also
have

(6.1)

§(2) = s;(2) + fsglr) (6.2)
and
exp(j2wf.T) = cos(2mft) + | sin(27f2) (6.3)

The signal §(2) is the complex envelope (i.e., baseband version) of the modulated (band-
pass) signal s(z). The components s,(z) and so(2) and therefore §(z) are all low-pass signals.
They are uniquely defined in terms of the band-pass signal s(z} and the carrier frequency
f.» provided that the half-bandwidth of s(2) is less than the carrier frequency f.

Let Su(f) denote the power spectral density of the complex envelope 5(z). We refer
to Sp(f) as the baseband power spectral density. The power spectral density, Ss(f), of the
original band-pass signal s(¢) is a frequency-shifted version of Sy(f), except for a scaling
factor, as shown by

Sit) = 3 IS5(F = ) + Sl + ] (6.4)

It is therefore sufficient to evaluate the baseband power spectral density Sg(f). Since §(z)
is a low-pass signal, the calculation of S,(f) should be simpler than the calculation of S4(f).
(See Example 1.7.)

g BANDWIDTH EFFICIENCY

Throughout this book we have emphasized that chansnel bandwidth and transmitted power
constitute two primary “communication resources,” the efficient utilization of which pro-
vides the motivation for the search for spectrally efficient schemes. The primary objective
of spectrally efficient modulation is to maximize the bandwidth efficiency defined as the
ratio of the data rate in bits per second to the effectively utilized channel bandwidth. A
secondary objective is to achieve this bandwidth efficiency at a minimum practical expen-
diture of average signal power or, equivalently, in a channel perturbed by additive white
Gaussian noise, 2 minimum practical expenditure of average signal-to-noise ratio,

With the data rate denoted by R, and the effectively used channel bandwidth by B,
we may express the bandwidth efficiency, p, as

p = % bits/s/Hz (6.5)
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Recall from Chapter 4 that bandwidth efficiency is the product of two independent factop,
one due to the possible use of multilevel encoding and the other due to spectral shap,',,g'
In multilevel encoding, information transmission through the channel is carried out on thc;
basis of blocks of bits rather than single bits. With efficient spectral shaping, bandWidth
requirement on the channel is reduced by the use of pulse-shaping filters that smooth gy,
the sharp transitions in the transmitted waveform. These two factors are therefore impqy.
tant in their own individual ways in determining the bandwidth efficiency of a passbanq
data transmission system of interest.

| 6.2 Passhand Transmission Model

In a functional sense, we may model a passband data transmission system as shown iy
Figure 6.2. First, there is assumed to exist a message source that emits one symbol every
T seconds, with the symbols belonging to an alphabet of M symbols, which we denote by
4y My - - . , iy The a priori probabilities P(my), Plma), . . . , Plmyy) specify the message
source output. When the M symbols of the alphabet are equally likely, we write

p: = P(m))
(6:5)

= % for all i

The M-ary output of the message source is presented to a signal transmission encoder,
producing a corresponding vector s; made up of N real elements, one such set for each of
the M symbols of the source alphabet; the dimension N is less than or equal to M. With
the vector s; as input, the modulator then constructs a distinct signal s;(t) of duration T
seconds as the representation of the symbol ; generated by the message source. The signal
s;(t) is necessarily an energy signal, as shown by

T
E,~=J’ sqeydt, i=1,2,...,M {6.7)

Note that s;(t) is real valued. One such signal is transmitted every T seconds. The particular
signal chosen for transmission depends in some fashion on the incoming message and
possibly on the signals transmitted in preceding time slots. With a sinusoidal carrier, the
feature that is used by the modulator to distinguish one signal from another is a step change
in the amplitude, frequency, or phase of the carrier. (Sometimes, a hybrid form of mod-
ulation that combines changes in both amplitude and phase or amplitude and frequency
is used.)

Carrier wave

| | Estimat?
. m; | Signal s: S Signal'
source - transmission —> Modulator Comcmh:::]cealtlon Detector |—s» transmission

| encoder : : decoder :

1

| 1 | I

b e e e e e e e i | e e |

Transmitter Receiver

FICURE 6.2 Functional model of passband data transmission system.
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Returning to the functional model of Figure 6.2, the bandpass communication chan-
nel, coupling the transmitter to the receiver, is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of the modulated signal s;(2) with negligible or no distortion.

2. The channel noise w(z) is the sample function of a white Gaussian noise process of
zero mean and power spectral density No/2.

The assumptions made herein are basically the same as those iivoked in Chapter § dealing
with signal-space analysis.

The receiver, which consists of a detector followed by a signal transmission decoder,
petforms two functions:

1, It reverses the operations performed in the transmitter.
2. It minimizes the effect of channel noise on the estimate #: computed for the trans-
mitted symbol ;.

| 6.3 Coherent Phase-Shift Keying

With the background material on the coherent detection of signals in additive white Gaus-
sian noise that was presented in Chapter § at our disposal, we are now ready to study
specific passband data transmission systems. In this section we focus on coherent phase-
shift keying (PSK) by considering binary PSK, QPSK and its variants, and finish up with
M-ary PSK.

# BINARY PHASE-SHIFT KEYING

In a coherent binary PSK system, the pair of signals s;{#) and s,(¢) used to represent binary
symbols 1 and 0, respectively, is defined by

s1(t) = /% cos(27f.t) (6.8)
b

$2(t) = 2E, cos(2afit + 7)) = — 2E, cos(2nf.t) (6.9)
T, T,
where 0 < t < T, and E, is the transmitted signal energy per bit. To ensure that each
transmitted bit contains an integral number of cycles of the carrier wave, the carrier fre-
quency f; is chosen equal to #,./T,, for some fixed integer #,. A pair of sinusoidal waves
that differ only in a relative phase-shift of 180 degrees, as defined in Eqautions (6.8) and
(6.9), are referred to as antipodal signals.
From this pair of equations it is clear that, in the case of binary PSK, there is only
one basis function of unit energy, namely,

balt) = \/Tzcos(an'ﬁt), 0=:<T, (6.10)
b

Then we may express the transmitted signals s,(¢) and s,(¢) in terms of ¢,(2) as follows:
sift) = VE,b4t), 0=:<T, (6.11)
and

st) = ~VE¢t), 0=t<T, (6.12)
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FiGURE 6.3 Signal-space diagram for coherent binary PSK system. The waveforms depicting the
transmitted signals s,(t) and s3(t), displayed in the inserts, assume n. = 2.

A coherent binary PSK system is therefore characterized by having a signal space
that is one-dimensional {i.e., N = 1), witha signal constellation consisting of two message
points (i.e., M = 2). The coordinates of the message points are

Ty
= | st de (€13

"= +VE,

I

and

Ty
52 = f salt)palt) dt (6.14

Il

|
5
ol

The message point corresponding to s1(2) is located at s;; = +V/E,, and the message poitt
cotresponding to $o(£) is located at s;; = ~\/E,. Figure 6.3 displays the signal-space di-
agram for binary PSK. This figure also includes two inserts, showing example waveforms
of antipodal signals representing s1(2) and s,(t). Note that the constellation of Figuse 63
has minimum average energy.

Error Probability of Binary PSK

To realize a rule for making a decision in favor of symbol 1 or symbol 0, we 81?P1Y
Equation {5.59) of Chapter 5. Specifically, we partition the signal space of Figure 6.3 into
two regions:

& The set of points closest to message point 1 at +VE,.
s The set of points closest to message point 2 at =V Ey.
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This is accomplished by constructing the midpoint of the line joining these two message
points, and then marking off the appropriate decision regions. In Figure 6.3 these decision
regions are marked Z; and Z;, according to the message point around which they are
constructed.

The decision rule is now simply to decide that signal s, () (i.e., binary symbol 1) was
transmitted if the received signal point falls in region Z,, and decide that signal s,(t) (i.e.,
binary symbol 0) was transmitted if the received signal point falls in region Z,. Two kinds
of erroneous decisions may, however, be‘made. Signal s,(¥) is transmitted, but the noise is
such that the received signal point falls inside region Z; and so the receiver decides in favor
of signal s,(z). Alternatively, signal s;(¢) is transmitted, but the noise is such that the re-
ceived signal point falls inside region Z; and so the receiver decides in favor of signal s,(z).

To calculate the probability of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(¢} is described by

230 <x; <o

where the observable element x; is related to the received signal x(t) by

Ty
X =J‘ x(t)(t) dt (6.15)
0

The conditional probability density function of random variable X, given that symbol 0
[i.e., signal s,(2)] was transmitted, is defined by

1
fxl(x1|‘?) = m CXP[—I\iIO {1 — 521)2}

1 1
\/77_1\10 expli"ﬁ (%1 + \/E_b)z:l

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol
0 was transmitted, is therefore

(6.16)

Pio =J:) fxl(xxlo) dxy

s . (6.17)
= mL eXP[‘ﬁO(M + \/E_b)zjl dx,
Putting
1
by (1 + VEy) (6.18)

and changing the variable of integration from x, to z, we may rewrite Equation (6.1 7)in
the compact form

=Lfm (_Z)d
bro = 7 I P 2

= Lergef [Be
ZCIC NO

where erfc(+) is the complementary error function.

(6.19)
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Consider next an etror of the second kind. We note that the signal space of Fj -
6.3 is symmetric with respect to the origin. It follows therefore that poi, the conditionaj
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was trang.
mitted, also has the same value as in Equation (6.19).

Thus, averaging the conditional error probabilities p19 and po;, we find that the
average probability of symbol error or, equivalently, the bit error rate for coherent bingry
PSK is (assuming equiprobable symbols) ’

-1 Ey
P, = 5 erfc(\/;)) (6.20)

As we increase the transmitted signal energy per bit, E;, for a specified noise spectryf
density Ny, the message points corresponding to symbols 1 and 0 move further apart, apq
the average probability of error P, is correspondingly reduced in accordance with Equatjon
(6.20), which is intuitively satisfying.

Generation and Detection of Coherent Binary PSK Signals

To generate a binary PSK signal, we see from Equations (6.8)—(6.10) that we have
to represent the input binary sequence in polar form with symbols 1 and 0 represented by
constant amplitude levels of +VE, and —VE,, respectively. This signal transmission en-
coding is performed by a polar nonreturn-to-zero (NRZ) level encoder. The resulting bi-
nary wave and a sinusoidal carrier ¢,(z), whose frequency f. = (n/T,) for some fixed
integer n,, are applied to a product modulator, as in Figure 6.4a. The carrier and the
timing pulses used to generate the binary wave are usually extracted from a common
master clock. The desired PSK wave is obtained at the modulator output.

To detect the original binary sequence of 1s and Os, we apply the noisy PSK signal
x(t) (at the channel output) to a correlator, which is.also supplied with a locally generated
coherent reference signal ¢ 4(t), as in Figure 6.4b. The correlator output, x4, is compared
with a threshold of zero volts. If x; > 0, the receiver decides in favor of symbol 1. On the

Binary Polar nonreturn- Binary
data > to-zero mP;gSIUai:;r PSK
sequence level enceder signal
1\ s()
910 =\/-Izh cos (2nf.2)
@)
Correlator

|
! Ty X1 Decision [ Choose 1 ifx, >0
x(1) X dt devi
0 evice Choose 0 ifx; <0

Threshold = 0

F———
[E—

(B)

FiGURE 6.4 Block diagrams for (a) binary PSK transmitter and (b) coherent binary PSK
receiver.
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other hand, if x; < 0, it decides in favor of symbol 0. If x, is exactly zero, the receiver
makes a random guess in favor of 0 or 1.

Power Specira of Binary PSK Signals

From the modulator of Figure 6.44, we see that the complex envelope of a binary
PSK wave consists of an in-phase component only. Furthermore, depending on whether
we have symbol 1 or symbol 0 at the modulator input during the signaling interval
0 =t < T, we find that this in-phase component equals +g(z) or —g(#), respectively,
where g(#) is the symbol shaping function defined by

2E,
8B =9y T,
0, otherwise

0=t=T, (6.21)

We assume that the input binary wave is random, with symbols 1 and 0 equally likely and
the symbols transmitted during the different time slots being statistically independent. In
Example 1.6 of Chapter 1 it is shown that the power spectral density of a random binary
wave so described is equal to the energy spectral density of the symbol shaping function
divided by the symbol duration. The energy spectral density of a Fourier transformable
signal g(z) is defined as the squared magnitude of the signal’s Fourier transform. Hence,
the baseband power spectral density of a binary PSK signal equals

_ 2E, sin*(nT,f)
(nTof (6.22)
= 2E, sinc*(T,f)
This power spectrum falls off as the inverse square of frequency, as shown in Figure 6.5.
Figure 6.5 also includes a plot of the baseband power spectral density of a binary

FSK signal, details of which are presented in Section 6.5. Comparison of these two spectra
is deferred to that section.

8s(f)

Binary PSK

Delta function
(part of FSK spectrum)

| Binary
FSK

Normalized power spectral density, Sglfi2E,
o
[&4]
I

|
0 0.5 1.0 1.5 2.0
Normalized frequency, £T;

FIGURE 6.5 Power spectra of binary PSK and FSK signals.
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# QUADRIPHASE-SHIFT KEYING

The provision of reliable performance, exemplified by a very low probability of erro, s
one important goal in the design of a digital communication system. Another imPDI't;nt
goal is the efficient utilization of channel bandwidth. In this subsection, we study a bay.
width-conserving modulation scheme known as coherent quadriphase-shift keying, Which
is an example of quadrature-carrier multiplexing.

In quadriphase-shift keying (QPSK), as with binary PSK, information carried by t,
transmitted signal is contained in the phase. In particular, the phase of the carrier take
on one of four equally spaced values, such as /4, 3m/4, Sm/4, and 77/4. For this set of
values we may define the transmitted signal as

2E . T — <
st = \/; cos[waCt + (2i — 1) Z]’ 0==T (623)

0, elsewhere

where i = 1, 2, 3, 4; Eis the transmitted signal energy per symbol, and T is rhe symbq|
duration. The carrier frequency f, equals »/T for some fixed integer #.. Each possible
value of the phase corresponds to a unique dibit. Thus, for example, we may choose the
foregoing set of phase values to represent the Gray-encoded set of dibits: 10, 00, 01, and
11, where only a single bit is changed from one dibit to the next.

Signal-Space Diagram of QPSK

Using a well-known trigonometric identity, we may use Equation (6.23) to redefine
the transmitted signal s;(¢) for the interval 0 < ¢ =< T in the equivalent form:

() = Ecos[(zi—n 1—’] cos(2mfit) — \/Z—f—sin[(Zi—l)—g] sin27fs)  (6.24)

where i = 1,2, 3, 4. Based on this representation, we can make the following observations:

& There are two orthonormal basis functions, ¢ () and ¢,(2), contained in the expan-
sion of ,(2). Specifically, ¢ (£} and ¢ ,(2) are defined by a pair of quadrature carriers:

¢4(t) = \/—E,I:cos(Zﬂf;t), 0=¢r=T (6.25)
é,() = \/% sin@mfs), O0=t=T (6.26)

TABLE 6.1 Signal-space
characterization of QPSK

Coordinates of

Phase _Of Message Points
Gray-encoded ~ QPSK Signal =~ —— —— ———
Input Dibit (radians) Si1 Si2
10 4 +VE/2 -VER2
00 3m/4 ~VE/2 ~VE/
01 Sml4 —-VE/2 +VE/2

11 77l4 +VE/2 +VE/2
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Decision
boundary

FIGURE 6.6 Signal-space diegram of coherent QPSK system.

» There are four message points, and the associated signal vectors are defined by

VE cos((Zi -1 E)

s = i=1,234 (6.27)

-VE sin((Zi - 1) g)
The elements of the signal vectors, namely, s;; and s, have their values summarized
in Table 6.1. The first two columns of this table give the associated dibit and phase
of the QPSK signal.

Accordingly, a QPSK signal has a two-dimensional signal constellation (i.e., N = 2) and
four message points (i.e., M = 4) whose phase angles increase in a counterclockwise di-
rection, as illustrated in Figure 6.6. As with binary PSK, the QPSK signal has minimum
average energy.

¥ EXAMPLE 6.1

Figure 6.7 illustrates the sequences and waveforms involved in the generation of a QPSK
signal. The input binary sequence 01101000 is shown in Figure 6.74. This sequence is divided
into two other sequences, consisting of odd- and even-numbered bits of the input sequence.
These two sequences are shown in the top lines of Figures 6.7b and 6.7¢c. The waveforms
representing the two components of the QPSK signal, namely, s;,¢,(t) and s;,¢,(2), are also
shown in Figures 6.7b and 6.7c, respectively. These two waveforms may individually be
viewed as examples of a binary PSK signal. Adding them, we get the QPSK waveform shown
in Figure 6.7d.

To define the decision rule for the detection of the transmitted data sequence, we par-
tition the signal space into four regions, in accordance with Equation (5.59) of Chapter 5.
The individual regions are defined by the set of points closest to the message point represented
by signal vectors s, s, 53, and sq. This is readily accomplished by constructing the perpen-
dicular bisectors of the square formed by joining the four message points and then marking
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Input
binary o] 1 1 0 1 0 0 o]
sequence TV e ovel
Dibit 01 Dibit 10 Dibit 10 Dibit 00
(@
Odd-numbered sequence 0 1 1 0
Polarity of coefficient s; - + + -

.v~¢(:)/\ JANANVAN ANV ANYAYA NN A
Eey AUV AV VAV

]

Even-numbered sequence 1 o} o} o}
Polarity of coefficient s;; + - - -

NV A AN JANVANYANNANVAWYA\
eV AV, VA VA VAV VA VA

(e}

AN AN WAWAWAWANANAY
AAVAN\VAVAVIVAVAVAY

FIGURE 6.7 (a) Input binary sequence. (b) Odd-numbered bits of input-sequence and associated
binary PSK wave. (¢) Even-numbered bits of input sequence and associated binary PSK wave.
(d) QPSK waveform defined as s() = s;1,(f) + si2¢b2(t).

off the appropriate regions. We thus find that the decision regions are quadrants whose vertices
coincide with the origin. These regions are marked Zs, Z,, Z3, and Z,, in Figure 6.6, according
to the message point around which they are constructed.

Error Probability of QPSK
In a coherent QPSK system, the received signal x(t) is defined by

0=t=T

_ (6.28)
i=1,2,3,4

x(t) = s,{t) + wlz), {
where w(2) is the sample function of a white Gaussian noise process of zero mean and

power spectral density No/2. Correspondingly, the observation vector x has two elements,
%, and x,, defined by

.
51 = [ %000 do
VE cos| (2i — 1) g] + wy (6.29)

-
3 4

il
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and

T
x; = L x(t)epo(t) dt

= -VE sin[(Zi - 1)’;’] +w, (6.30)

~ [E
+\/;+w2

Thus the observable elements x, and x; are sample values of independent Gaussian random
variables with mean values equal to *V E/2 and ¥V E/2, respectively, and with a common
variance equal to Ny/2.

The decision rule is now simply to decide that s;(t) was transmitted if the received
signal point associated with the observation vector x falls inside region Z,, decide that
s,(t) was transmitted if the received signal point-falls inside region Z,, and so on. An
erroneous decision will be made if, for example, signal s,(¢) is transmitted but the noise
w/(t) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol errot, we note from Equation (6.24)
that a coherent QPSK system is in fact equivalent to two coherent binary PSK systems
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output x; and the quadrature channel output x, (i.e., the two elements of the
observation vector x) may be viewed as the individual outputs of the two coherent binary
PSK systems. Thus, according to Equations (6.29) and (6.30), these two binary PSK sys-
tems may be characterized as follows:

il

¥ The signal energy per bit is E/2.
# The noise spectral density is Ny/2.

Hence, using Equation (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in each channel of

the coherent QPSK system is
1 [
P = 2 erfc( No)

1 ([E
2erc: NG

Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the two bits constituting a symbol (dibit) of the QPSK signal,
and the quadrature channel takes care of the other bit. Accordingly, the average probability
of a correct decision resulting from the combined action of the two channels working
together is

(6.31)

P.=(1-P)

1 [ENT
= [1 -3 erfc( 2_No>] (6.32)
E 1 E
=1 - erfc( ’2N0> + 7 erfcz( IZ—ND)
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The average probability of symbol error for coherent QPSK is therefore
P,=1-P

- [EN_1 gof [E (6.33)
—erfc( ZNO) 4erfc( ZNO)

In the region where (E/2N,) >> 1, we may ignore the quadratic term on the right-hapg
side of Equation (6.33), so we approximate the formula for the average probability of
symbol error for coherent QPSK as

| E
P, = erfc( Z_ND) (6.34)

The formula of Equation (6.34) may also be derived in another insightful way, usin,
the signal-space diagram of Figure 6.6. Since the four message points of this diagram gy,
circularly symmetric with respect to the origin, we may apply Equation (5.92), reproduced
here in the form

1 dy )
P = 3 21 erfc(zvl\_&)) for all i (6.35)
ke#i

Consider, for example, message point 772, (corresponding to dibit 10) chosen as the trans.
mitted message point. The message points 2, and 724 (cotresponding to dibits 00 and 11}
are the closest to m,. From Figure 6.6 we readily find that m, is equidistant from 1, and
m, in a Euclidean sense, as shown by

dp =du = \/ﬁ

Assuming that E/N, is large enough to ignore the contribution of the most distant message
point #1; {corresponding to dibit 01) relative to m,, we find that the use of Equation (6.35)
yields an approximate expression for P, that is the same as Equation (6.34). Note that in
mistaking either #1, or m1, for my, a single bit error is made; on the other hand, in mistaking
ms for my, two bit errors are made. For a high enough E/No, the likelihood of both bits
of a symbol being in error is much less than a single bit, which is a further justification
for ignoring ;5 in calculating P, when s, is sent.

In a QPSK system, we note that since there are two bits per symbol, the transmitted
signal energy per symbol is twice the signal energy per bit, as shown by

E =2E, (6.36)

Thus expressing the average probability of symbol error in terms of the ratio E,/No, we

may write
P, = erfc( i—i)) (6.37)

With Gray encoding used for the incoming symbols, we find from Equations (6.31)
and (6.36) that the bit error rate of QPSK is exactly

BER = % erfc( IE\r—k;) (6.38)
We may therefore state that a coherent QPSK system achieves the same average probability
of bit error as a coherent binary PSK system for the same bit rate and the same Ey/Nes
but uses only half the channel bandwidth. Stated in a different way, for the same EfNo
and therefore the same average probability of bit error, a coherent QPSK system transmits
information at twice the bit rate of a coherent hinary PSK system for the same channel
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bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

Generation and Detection of Coherent QPSK Signals

Consider next the generation and detection of QPSK signals. Figure 6.8 shows a
block diagram of a typical QPSK transmitter. The incoming binary data sequence is first
transformed into polar form by a nonreturn-to-zero level encoder. Thus, symbols 1 and 0
are represented by +VE, and ~VE,, respectively. This binary wave is next divided by
means of a demultiplexer into two separate binary waves consisting of the odd- and even-
numbered input bits. These two binary waves are denoted by a,() and a,(¢). We note that
in any signaling interval, the amplitudes of a,(¢) and a,(¢) equal s;; and s, respectively,
depending on the particular dibit that is being transmitted. The two binary waves 4,(t)
and 4,(¢) are used to modulate a pair of quadrature carriers or orthonormal basis functions:
¢1(t) equal to V2T cos(27f.2) and ¢,(t) equal to V2/T sin(27f£). The result is a pair of

a,(n)
1 /x\%
&,(0 = \J2IT cos2mf,) o
Binary Polar nonreturn- QPsK
data to-zero level > Demultiplexer b3 signal
sequence encoder + e
ay(?)
2 70

i

d(0) = 2T sin(2mf.)
(@)

Threshold = 0

T x s
f @t o Decision
o device

-NO]

In-phase channel

Received Estimate of
signal Multiplexer =3 transmitted binary
(1) saquence

T x. .
f @ 2 Decision
0 device

3,() T

Threshold =0

Quadrature channel
»

FIGURE 6.8 Block diagrams of (a) QPSK transmitter and (b} coherent QPSK receiver.
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binary PSK signals, which may be detected independently due to the orthogonality of .0y
and ¢,(t). Finally, the two binary PSK signals are added to produce the desired QPlSK
signal.

The QPSK receiver consists of a pair of correlators with a common input and supplieg
with a locally generated pair of coherent reference signals ¢ (¢} and ¢,(¢), as in Figure
6.8b. The correlator outputs x; and x,, produced in response to the received signa] x(t)
are each compared with a threshold of zero. If x; > 0, a decision is made in favoy 0;
symbol 1 for the in-phase channel output, but if x; < 0, a decision is made in favoy of
symbol 0. Similarly, if x, > 0, a decision is made in favor of symbol 1 for the quadratyre
channel output, but if x, < 0, a decision is made in favor of symbol 0. Finally, these ty
binary sequences at the in-phase and quadrature channel outputs are combined in a s,
tiplexer to reproduce the original binary sequence at the transmitter input with the mig;.
mum probability of symbol error in an AWGN channel.

Power Spectra of QPSK Signals

Assume that the binary wave at the modulator input is random, with symbols 1 anq
0 being equally likely, and with the symbols transmitted during adjacent time slots being
statistically independent. We make the following observations pertaining to the in-phase
and quadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval — T}, < ¢ =< T}, the in-phase
component equals +g(¢) or —g(t), and similarly for the quadrature component. The
£(t) denotes the symbol shaping function, defined by

E
glt) = \/; 0=t=T (6.39)

0, otherwise

Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc?(Tf).

1.0

b
o

Normalized power spectral density, Sy(f)V4E,

<
=

| : )
0 0.25 0.5 0.75 1.0
Normalized frequency, /T,

FIGURE 6.9 Power spectra of QPSK and MSK signals.
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2. The in-phase and quadrature components are statistically independent. Accordingly,
the baseband power speciral density of the QPSK signal equals the sum of the indi-
vidual power spectral densities of the in-phase and quadrature components, so we
may write

Sa(f) = 2E sincX(Tf)
= 4E, sinc?(2T,f)
Figure 6.9 plots Si(f), normalized with respect to 4E,, versus the normalized fre-
quency fTp. This figure also includes a plot of the baseband power spectral density of a

certain form of binary FSK called minimum shift keying, the evaluation of which is pre-
sented in Section 6.5. Comparison of these two spectra is deferred to that section.

(6.40)

& OFFSET QPSK

The signal space diagram of Figure 6.10a embodies all the possible phase transitions that
can arise in the generation of a QPSK signal. More specifically, examining the QPSK
waveform illustrated in Figure 6.7 for Example 6.1, we may make the following
observations:

1. The carrier phase changes by =180 degrees whenever both the in-phase and quad-
rature components of the QPSK signal changes sign. An example of this situation is
illustrated in Figure 6.7 when the input binary sequence switches from dibit 01 to
dibit 10.

2. The carrier phase changes by =90 degrees whenever the in-phase or quadrature
component changes sign. An example of this second situation is illustrated in Figure
6.7 when the input binary sequence switches from dibit 10 to dibit 00, during which
the in-phase component changes sign, whereas the quadrature component is
unchanged.

3. The carrier phase is unchanged when neither the in-phase component nor the quad-
rature component changes sign. This last situation is illustrated in Figure 6.7 when
dibit 10 is transmitted in two successive symbol intervals.

Situation 1 and, to a much lesser extent, situation 2 can be of a particular concern when
the QPSK signal is filtered during the course of transmission, prior to detection. Specifi-
cally, the 180- and 90-degree shifts in carrier phase can result in changes in the carrier
amplitude (i.e., envelope of the QPSK signal), thereby causing additional symbol errors on
detection.

- bz
wo oo
[N Y | |
AN 4 ‘ f ¢
i AN ] ! i 0 | !
e S | i
|/ \ !(————'«——J
(a) &)

FIGURE 6.10 Possible paths for switching between the message points in (z) QPSK énd
(b) offset QPSK.
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The extent of amplitude fluctuations exhibited by QPSK signals may be reducedb
using offset QPSK.2 In this variant of QPSK, the bit stream responsible for generating thz
quadrature component is delayed (i.e., offset) by half a symbol interval with respect ¢, the
bit stream responsible for generating the in-phase component. Specifically, the twq basis
functions of offset QPSK are defined by

2

¢i2) = \/; cos(2mft), O0=¢=T (6.41)
2 T 3T

do(t) = ﬁ sin(27f 1), FEt== (6.42)

Accordingly, unlike QPSK, the phase transitions likely to occur in offset QPSK are confingg
to 90 degrees, as indicated in the signal space diagram of Figure 6.10b. However, +9)
degree phase transitions in offset QPSK occur twice as frequently but with half the intensiy
encountered in QPSK. Since, in addition to %90-degree phase transitions, +180-degre,
phase transitions also occur in QPSK, we find that amplitude fluctuations in offset QPsg
due to filtering have a smaller amplitude than in the case of QPSK.

Despite the delay T/2 applied to the basis function ¢ ;(¢) in Equation {6.42) compared
to that in Equation (6.26), the offset QPSK has exactly the same probability of symbo|
error in an AWGN channel as QPSK. The equivalence in noise performance between theg
phase-shift keying schemes assumes the use of coherent detection. The reason for the equiv-
alence is that the statistical independence of the in-phase and quadrature components
applies to both QPSK and offset QPSK. We may therefore say that the error probability
in the in-phase or quadrature channel of a coherent offset QPSK receiver is still equal to
(1/2) erfc(\/E/2N,). Hence the formula of Equation (6.34) applies equally well to the offset
QPSK.

8 7/4-SHIFTED QPSK

An ordinary QPSK signal may reside in either one of the two commonly used constellations
shown in Figures 6.11a and 6.11b, which are shifted by /4 radians with respect to each
other. In another variant of QPSK known as /4-shifted QPSK,? the carrier phase used
for the transmission of successive symbols (i.e., dibits) is alternately picked from one of
the two QPSK constellations in Figure 6.11 and then the other. It follows therefore thata
m/4-shifted QPSK signal may reside in any one of eight possible phase states, as indicated

é2 [
//’\\
// \\ F\ /_?x
S AN | | L7 :
& N é; : < | &
X0 s I RN
AN // ! // \\ !
N7 k1A
T/

(a) )]

FIGURE 6,11 Two commonly used signal constellations for QPSK; the arrows indicate the paths
along which the QPSK modulator can change its state.
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FiGume 6.12  FEight possible phase states for the 7/4-shifted QPSK modulator.

in Figure 6.12. The four dashed lines emanating from each possible message point in
Figure 6.12 define the phase transitions that are feasible in #/4-shifted QPSK.

Table 6.2 summarizes a possible set of relationships between the phase transitions
in this new digital modulation scheme and the incoming Gray-encoded dibits, For example,
if the modulator is in one of the phase states portrayed in Figure 6.11b, then on receiving
the dibit 00 it shifts into a phase state portrayed in Figure 6.11a by rotating through n/4
radians in a counterclockwise direction.

Attractive features of the 7/4-shifted QPSK scheme include the following:

& The phase transitions from one symbol to the next are restricted to + /4 and =+ 37/4
radians, which is to be contrasted with the = /2 and * 7 phase transitions in QPSK.
Consequently, envelope variations of m/4-shifted QPSK signals due to filtering are
significantly reduced, compared to those in QPSK.

# Unlike offset QPSK signals, mr/4-shifted QPSK signals can be noncoherently detected,
thereby considerably simplifying the receiver design. Moreover, like QPSK signals,
m/4-shifted QPSK can be differently encoded, in which case we should really speak
of m/4-shifted DQPSK. :

The generation of #/4-shifted DQPSK symbols, represented by the symbol pair (I, Q),
is described by the following pair of relationships (see Problem 6.13):

Ih = COS(Bk“1 + Aak)

6.43

= cos 8, ( )

Q= S%n(glz—l + Afy) (6.44)
= sin

TARLE 6.2 Correspondence between inpui
| dibit and phase change for n/4-shifted
. DQPSK

Gray-Encoded Input Dibit ~ Phase Change, A9 (radians)

00 /4
01 37/4
11 —3m/4

10 /4
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§ TABLE 6.3 m/4-shifted DQPSK results for Example 6.2

Phase 8,4 Phase Change A8, Transmitted Phase 8,
Step k (radians) Input Dibit (radians) (radians)
1 /4 00 /4 /2
2 /2 10 ~mf4 /4
3 /4 10 —r/4 0
4 0 01 3n/4 34

where 6,_; is the absolute phase angle of symbol & ~ 1, and A#f; is the differemjajly
encoded phase change defined in accordance with Table 6.2.

B EXAMPLE 6.2

Continuing with the input binary sequence of Example 6.1, namely, 01101000, suppose tht
the phase angle 6, = /4 in the constellation of Figure 6.11b is assigned as the in#tial phag
state of the m/4-shifted DQPSK modulator. Then, arranging the input binary sequence as
sequence of dibits and following the convention of Table 6.2, we get the results presented iy
Table 6.3 for the example at hand. «

Detection of nw/4-Shifted DQPSK Signals

Having familiarized ourselves with the generation of 7/4-shifted DQPSK signals, we
go on to consider their differential detection. Given the noisy channel output x(z), the
receiver first computes the projections of x(¢) onto the basis functions ¢ (?) and ¢ (). The
resulting outputs, denoted by I and Q, respectively, are applied to a differential detector
that consists of the following components, as indicated in Figure 6.13:

» Arctangent computer for extracting the phase angle 6 of the channel output (received
signal).

» Phase-difference computer for determining the change in the phase § occurring over
one symbol interval.

¥ Modulo-21r correction logic for correcting errors due to the possibility of phase angles
wrapping around the real axis.

Elaborating further on the latter point, let Ag, denote the computed phase difference be-
tween 8, and 6,_, representing the phase angles of the channel output for symbols & and
k — 1, respectively. Then the modulo-2 correction logic operates as follows:

IF A8, < —180 degrees THEN Af, = A, + 360 degrees (6.45)
IF A8, > 180 degrees THEN A, = Af, — 360 degrees )

Phase-difference

computer
In-phase [
component, 7 : + : Mod o
—_— odulo-2m Estimate
Az%tan (th/rI) ! Delay T ¥ l carrection transmitted data
_ mpu | - i logic sequence
Quadrature { |
component, 0 e m -

FIGURE 6.13 Block diagram of the 7/4-shifted DQPSK detector.
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Imaginary
Symbol &
/ 0= 60°
Real
Y
B, = 350°
Symbol k-~ 1

FIGURE 6.14 [llustrating the possibility of phase angles wrapping around the positive real axis.

To illustrate the need for this phase correction, consider the situation depicted in Figure
6.14, where 6,., = 350 degrees and 8, = 60 degrees, both phase angles being measured
in a counterclockwise direction. From this figure we readily see that the phase change A#6,,
measured in a counterclockwise direction, is 70 degrees. However, without correction the
phase change Ag, is computed as 60 degrees — 350 degrees = —290 degrees. Applying
the first line of Equation (6.45), the modulo-2ar correction logic compensates for the wrap-
around the positive real axis, yielding the corrected result

A8, = —290 degrees + 360 degrees = 70 degrees

The tangent type differential detector of Figure 6.13 for the demodulation of w/4-
shifted DQPSK signals is relatively simple to implement. It offers a satisfactory perfor-
mance in a Rayleigh fading channel as in a static multipath environment. However, when
the multipath environment is time varying as experienced in a commercial digital wireless
communication system, computer simulation results appear to show that the receiver per-
formance degrades very rapidly.*

M-Ary PSK

QPSK is a special case of M-ary PSK, where the phase of the carrier takes on one of M
possible values, namely, 6; = 2(i — 1)a/M, where i = 1, 2, ..., M. Accordingly, during
each signaling interval of duration T, one of the M possible signals

2E 27 . .
5;(t) = T cos(lﬂﬁt + o {7 1)), i=1,2,...,.M (6.46)

is sent, where E is the signal energy per symbol. The carrier frequency f. = #,/T for some
fixed integer #..

Each s;(t) may be expanded in terms of the same two basis functions ¢ ,(£) and ¢,(z)
defined in Equations (6.25) and (6.26), respectively. The signal constellation of M-ary PSK
is therefore two-dimensional. The M message points are equally spaced on a circle of radius
VE and center at the origin, as illustrated in Figure 6.154, for the case of octaphase-
shift-keying (i.e., M = 8).

From Figure 6.154 we note that the signal-space diagram is circularly symmetric. We
may therefore apply Equation (5.92), based on the union bound, to develop an approxi-
mate formula for the average probability of symbol error for M-ary PSK. Suppose that the
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FIGURE 6.15 (a) Signal-space diagram for octaphase-shift keying (i.e., M = 8). The decision
boundaries are shown as dashed lines. (b) Signal-space diagram illustrating the application of the

union bound for octaphase-shift keying.
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transmitted signal corresponds to the message point #2,, whose coordinates along the
¢4-and ¢ r-axes are +V'E and 0, respectively. Suppose that the ratio E/N, is large enough
to consider the nearest two message points, one on cither side of 1, as potential candidates
for being mistaken for 7, due to channel noise. This is illustrated in Figure 6.15b for the
case of M = 8. The Euclidean distance of each of these two points from my is (for M = 8)

diz = dyg = 2VE sin(—%)

Hence, the use of Equation (5.92) of Chapter 5 yields the average probability of symbol
error for coherent M-ary PSK as

P, = erfc(\% sin(}%{)) (6.47)

where it is assumed that M = 4. The approximation becomes extremely tight, for fixed
M, as E/N, is increased. For M = 4, Equation (6.47) reduces to the same form given in
Equation (6.34) for QPSK.

Power Specira of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

T=T,log, M (6.48)

where T, is the bit duration. Proceeding in a manner similar to that described for a QPSK
signal, we may show that the baseband power spectral density of an M-ary PSK signal is
given by

Ss(f) = 2E sinc*(Tf)

49
= 2E, log, M sinc*(T,f log, M) (6:49)

In Figure 6.16, we show the normalized power spectral density S5(f)/2E, plotted versus
the normalized frequency fT), for three different values of M, namely, M = 2, 4, 8,

w
o

I
©

-
o

Normalized power spectral density, Sp(f)/2E,

o

0.5 1.0
Normalized frequency

FIGURE 6.16 Power spectra of M-ary PSK signals for M = 2, 4, 8.
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TABLE 6.4 Bandwidih efficiency of
M-ary PSK signals

M 2 4 8 16 32 64

p (bits/s/Hz) 0.5 1 1.5 2 2.5 3

BANDWIDTH EFFICIENCY OF M-ARY PSK SIGNALS

The power spectra of M-ary PSK signals possess a main lobe bounded by well-defing
spectral nulls (i.e., frequencies at which the power spectral density is zero). Accordjngl),
the spectral width of the main lobe provides a simple and popular measure for the bag,
width of M-ary PSK signals. This definition is referred to as the null-to-null bandwidy,
With the null-to-null bandwidth encompassing the main lobe of the power spectrum of an
M-ary signal, we find that it contains most of the signal power. This is readily seen by
looking at the power spectral plots of Figure 6.16.

For the passband basis functions defined in Equations (6.25) and (6.26), the channe]
bandwidth required to pass M-ary PSK signals (more precisely, the main spectral lobe of
Me-ary signals) is given by

B= (6.50)

2
T
where T is the symbol duration. But the symbol duration T is related to the bit duration
T, by Equation (6.48). Moreover, the bit rate R, = 1/T,. Hence, we may redefine the
channel bandwidth of Equation (6.50) in terms of the bit rate Ry, as
_ 2R,
log, M

(6.51)

Based on this formula, the bandwidth efficiency of M-ary PSK signals is given by
R
P78
_log, M
2

6.52)

Table 6.4 gives the values of p calculated from Equation (6.52) for varying M.

In light of Equation (6.47) and Table 6.4, we make the following observation inthe
context of M-ary PSK: As the number of states, M, is increased, the bandwidth efficiency
is improved at the expense of error performance. To ensure that there is no degradation
in error performance, we have to increase E;/Nj to compensate for the increase in M-

Modulation Schemes

E 6.4 Hybrid Amplitude/Phase

In an M-ary PSK system, the in-phase and quadrature components of the modulated signf'll
are interrelated in such a way that the envelope is constrained to remain constant. This
constraint manifests itself in a circular constellation for the message points. Howeveh
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this constraint is removed, and the in-phase and quadrature components are thereby per-
mitted to be independent, we get a new modulation scheme called M-ary quadrature am-
plitude modulation (QAM). This latter modulation scheme is bybrid in nature in that the
carrier experiences amplitude as well as phase modulation.

The passband basis functions in M-ary QAM may not be periodic for an arbitrary
choice of the carrier frequency f. with respect to the symbol rate 1/T. Ordinarily, this
aperiodicity is of no real concern. By reformulating the expression for the transmitted
signal in a certain way, it is possible to eliminate the time variation of the basis functions
on successive symbol transmissions, and thereby simplify implementation of the transmit-
ter. In particular, the transmitter is made to appear “carrierless,” while fully retaining the
essence of the hybridized amplitude and phase modulation process. This is indeed the idea
behind the carrierless amplitude/phase modulation (CAP).

Despite the differences between QAM and CAP in their implementation details, they
have exactly the same signal constellations. Accordingly, they are fundamentally equivalent
in performance for a prescribed receiver complexity. In what follows we first discuss QAM
and then CAP. i

@ M-ARY QUADRATURE AMPLITUDE MODULATION

In Chapters 4 and 5, we studied M-ary pulse amplitude modulation (PAM), which is one-
dimensional. M-ary QAM is a two-dimensional generalization of M-ary PAM in that its
formulation involves two orthogonal passband basis functions, as shown by

é4(t) = \/% cos(2arf.t), 0=¢t=T (6.53)
bo(t) = \/%, sin(27f.t), 0=¢t=T (6.54)

Let the ith message point s, in the (¢4, ¢,) plane be denoted by (2;duin/2, b;dpmin/2), where
@pin 15 the minimum distance between any two message points in the constellation, 4, and
b, are integers, and i = 1, 2, ..., M. Let (di/2) = VE;, where Eq is the energy of the
signal with the lowest amplitude. The transmitted M-ary QAM signal for symbol %, say,
is then defined by

2E 2E . 0=¢t=T
%m=/7%“mﬁﬁﬂ—/?%”MMﬁL koo, 41,42, ... (6.55)

The signal s, (#) consists of two phase-quadrature carriers with each one being modulated
by a set of discrete amplitudes, hence the name guadrature amplitude modulation.

Depending on the number of possible symbols M, we may distinguish two distinct
QAM constellations: square constellations for which the number of bits per symbol is
even, and cross constellations for which the number of bits per symbol is odd. These two
cases are considered in the sequel in that order.

QAM Square Constellations
With an even number of bits per symbol, we may write
L=vVM (6.56)

where L is a positive integer. Under this condition, an M-ary QAM square constellation
can always be viewed as the Cartesian product of a one-dimensional L-ary PAM constel-
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lation with itself. By definition, the Cartesian product of two sets of coordinates (repre.
senting a pair of one-dimensional constellations) is made up of the set of all possible
ordered pairs of coordinates with the first coordinate in each such pair taken from the firg
set involved in the product and the second coordinate taken from the second set i the
product.

In the case of a QAM square constellation, the ordered pairs of coordinates Tatuta]ly
form a square matrix, as shown by

(-L+1,L—-1) (-L+3,L 1) (L-—1,L-1)
(-L+1,L - 3) (-L+3,L—3) (L—=1,L~3)
la:, b} = . : ;
(~L+1,-L+1) (-L+3,-L+1) .. (L-1,-L+1
(6.57)

» EXAMPLE 6.3

Consider a 16-QAM whose signal constellation is depicted in Figure 6.174. The encoding of
the message points shown in this figure is as follows:

& Two of the four bits, namely, the left-most two bits, specify the quadrant in the (¢4, ¢,)-
plane in which a message point lies. Thus, starting from the first quadrant and pro-
ceeding counterclockwise, the four quadrants are represented by the dibits 11, 10, 00,
and 01.

® The remaining two hits are used to represent one of the four possihle symbols lying
within each quadrant of the (¢4, ¢,)-plane.

Note that the encoding of the four quadrants and also the encoding of the symbols in each
quadrant follow the Gray coding rule.

[

° e 3di2- o .
1011 1001 1110 1111

* o d2| o . |
1010 1000 1100 1101 :

| | [ | &, ] #
~3d/2 42 df2 3d/2 —3d/2 -z 0l a2 3d/2

[ ® 42— e [ i
0001 0000 0100 0110 t

(b}

° 32, °

0011 ao1o0 0101 0111

(2}

FIGURE 6.17 (a) Signal-space diagram of M-ary QAM for M = 16; the message points in each
quadrant are identified with Gray-encoded quadbits. (b) Signal-space diagram of the correspond-
ing 4-PAM signal.
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For the example at hand, we have L = 4. Thus the square constellation of Figure 6.174
is the Cartesian product of the 4-PAM constellation shown in Figure 6.17b with itself. More-
over, the matrix of Equation (6.57) has the value

(-3,3)  (-L3) (L3 3,3
a1y @y Gl
L e i O I (ST e
(-3.-3) (-L-3) (@L-3) (-3

4

To calculate the probability of symbol error for M-ary QAM, we exploit the property
that a QAM square constellation can be factored into the product of the corresponding
PAM constellation with itself. We may thus proceed as follows:

1. The probability of correct detection for M-ary QAM may be written as
P =(1- Py (6.58)

where P, is the probability of symbol error for the corresponding L-ary PAM with
L =VM.
2. The probability of symbol error P} is defined by

P, = (1 - ﬁ) erfc(\/f[:(;) (6.59)

{Note that L = /M in the M-ary QAM corresponds to M in the M-ary PAM con-
sidered in Problem 4.27.)
3. The probability of symbol error for M-ary QAM is given by

P,=1-P,
=1-(1-P)? (6.60}
= 2P!

where it is assumed that P} is small enough compared to unity to justify ignoring the
quadratic term.

Hence, using Equations (6.58) and (6.59) in Equation (6.60), we find that the probability
of symbol error for M-ary QAM is approximately given by

eofq - L Eo
P, = 2(1 \/M) erfc(\/;o) (6.61)

The transmitted energy in M-ary QAM is variable in that its instantaneous value
depends on the particular symbol transmitted. It is therefore more logical to express P, in
terms of the average value of the transmitted energy rather than E,. Assuming that the L
amplitude levels of the in-phase or quadrature component are equally likely, we have

- L2
E. = 2[35925(2i—-1ﬁ] (6.62)
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where the multiplying factor of 2 outside the square brackets accounts for the equg] con.
tributions made by the in-phase and quadrature components. The limits of the summatio,
and the multiplying factor of 2 inside the square brackets take account of the SYMmety,
nature of the pertinent amplitude levels around zero. Summing the series in Equatjon
(6.62), we get

2L — 1)E,
3
_2(M - 1)E, (6.63)
3

E, =

Accordingly, we may rewrite Equation (6.61) in terms of E,, as

1 3E,,
P, = 2(1 - W) erfc( m) (6.64)

which is the desired result.

The case of M = 4 is of special interest. The signal constellation for this value of yf
is the same as that for QPSK. Indeed, putting M = 4 in Equation (6.64) and noting thy
for this special case E,, equals E, where E is the energy per symbol, we find that the
resulting formula for the probability of symbol error becomes identical to that in Equation
(6.34), and so it should.

QAM Cross Constellation

To generate an M-ary QAM signal with an odd number of bits per symbol, we require
the use of a cross constellation. As illustrated in Figure 6.18, we may construct such a
signal constellation with # bits per symbol by proceeding as follows:

= Start with a QAM square constellation with #-1 bits per symbol.
» Extend each side of the QAM square constellation by adding 27~* symbols.
» Ignore the corners in the extension.

The inner square represents 2”7 * symbols. The four side extensions add 4 x 27 3 = 2!
symbols. The total number of symbols in the cross constellation is therefore 2%+ + 277,
which equals 2” and therefore represents » bits per symbol as desired.

Unlike QAM square constellation, it is 7ot possible to express a QAM cross con-
stellation as the product of a PAM constellation with itself. The absence of such a factor-

message points

®
F4
£
I
o &
©
= 8o
NS
P
@
@
£

FIGURE 6.18 [Illustrating how 2 square QAM constellation can be expanded to form a QAM
cross-constellation.
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ization complicates the determination of the probability of symbol error P, incurred in the
use of M-ary QAM characterized by a cross constellation. We therefore simply state the
formula for P, without proof, as shown here

1 (E .
P, = 2(1 - \/ﬁ) erfc( ﬁ‘;) for high E¢/N, (6.65)

which agrees with the formula of Equation (6.61) for-a square constellation, except for
the inclusion of an extra 0.5 bit per dimension in the constellation.” Note also that it is
not possible to perfectly Gray code a QAM cross constellation,

8 CARRIERLESS AMPLITUDE/PHASE MODULATION

The passband basis functions of Equations (6.53) and (6.54) assume the use of a rectan-
gular pulse for the pulse-shaping function. For reasons that will become apparent, we
redefine the transmitted M-ary QAM signal of Equation (6.55) in terms of a general pulse-
shaping function g(z) as

0=t=T

k=0,=%1,%2,...
(6.66)

splt) = apg(t — kT) cos(2mf.t) — byg(t — kT) sin2wf.t),

It is assumed that carrier frequency f. has an arbitrary value with respect to the symbol
rate 1/T. On the basis of Equation (6.66), we may express the transmitted M-ary QAM
signal s(¢) for an infinite succession of symbols as

e (6.67)
= 3 lawglt — KT) cos2mfit) — bug(t — kT) sin(2mf.t)]

=it
This equation shows that for an arbitrary f,, the passband functions g(t — kT) cos(27f.t)
and g(¢ — kT) sin(27f.¢) are aperiodic in that they vary from one symbol to another.

How can we eliminate the time variations of these passband basis functions from

symbol to symbol? To answer this question, we find it convenient to change our formalism
from real to complex notation. Specifically, we rewrite Equation (6.67) in the equivalent
form

) = Re{ S (a + jbulglt — KT) eXP(/'ZWﬁt)}

k=—o

- (6.68)
= Re{ > Auglt — £T) exp(jZﬂ'fCt)}
e
where A, is a complex number defined by
Ay = ay, + jb, ' (6.69)

and Ref-} denotes the real part of the complex quantity enclosed inside the braces. Clearly,
Equation (6.68) is unchanged by multiplying the summand in this equation by unity ex-
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pressed as the product of the complex exponential exp(—j27f.kT) and its comp

lex
jugate exp(/2mf,kT). We may thus rewrite Equation (6.68) in the new form con.

s(t) = Re{ki Apg(t — kT) exp(j2nf.t) exp(—f2af.kT) exp(/ZwﬁkT)}

® (6.70
= Re{ > Ay exp(2afkT)g(t — kT) exp(j2mfi{t — kT))} )
i
Define
A, = A, exp(2mf.kT) (6.71)
g+(1) = g(t) exp(j27f.1) (6.72)

The scalar A, is simply a rotated version of the complex representation of the coordinateg
of the kth transmitted symbol in the (¢, ¢,)-plane. Before presenting an interpretatioy
of the complex-valued signal g, (t), we assume that the pulse-shaping function g(t)isa
low-pass signal whose highest frequency component is smaller than the carrier ffequency
.- Then following the material presented in Appendix 2, we recognize g..(t) as the analyt,
signal, or pre-envelope, representation of the band-pass signal g(t) cos(27f.2). To be more
specific, we expand g.(#) as

g+(t) = g(t) cos(2mf.t) + jg(t) sin(2mft)

= ple) + it €73
where p(2) and p(t) are defined by
p(t) = g(t) cos(2mf.t) (6.74)
and
Pl = g(r) sin27f.2) (6.75)

We may then say that the quadrature (imaginary) component $(¢) of the analytic signal
g.(t) is the Hilbert transform of the in-phase (real) component p(z). Note that whereas the
pulse-shaping function g(t) is a baseband function, the in-phase and quadrature compo-
nents of the corresponding analytic signal g (#) are both passband functions. Henceforth,
g(t) is referred to as the baseband pulse, and p(t) and p(t) are referred to as passhand m-
phase and passband quadrature pulses, respectively.

With the definitions of A, and g.(¢) at hand, we are ready to finally redefine the
transmitted signal of Equation (6.70) simply as

s(f) = Re{ i Aot — kT)} (6.76)
k=—c0

Three important observations are noteworthy from this new formulation of the ransmit-
ted signal:

# The transmitted signal s(¢) appears to be carrierless.

» Since the formulation of s(¢) in Equation {6.76) is indeed equivalent to that of the
M-ary QAM signal presented in Equation (6.67), the new formulation of s(z) fully
retains the hybridized amplitude and phase modulation characterizing the original
M-ary QAM signal.

® The transmitted signal s(f) represents a symbol-time-invariant realization of this by*
brid modulation process.
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For a prescribed carrier frequency f., the sequence of rotations described in Equation
(6.71) is known. Hence, the receiver need only detect Ay, in which case we may compute
the corresponding value of A, by applying the reverse rotations as described here:

= Ay exp(—2mfkT), k=0, %1, *2,...
In practice, however, the rotations are ignored because they do not have any bearing on
operation or performance of the hybrid modulation system; application of the rotations
is in fact necessary only when its equivalence to QAM is an issue of interest. Accordingly,
we may ignore Equation (6.71) and redefine the transmitted signal of Equation (6.76)
simply as

k=—w

s(t) = Re{ i Ag.(t — kT)}

{ i (ax + ib)(p(t — ET) + jp(t — kT))} (6.77)

3

= 3 [awplt — kT) — bp(t — kT)]

Pt
where, as mentioned previously, f(t) is the Hilbert transform of p(z). For obvious reasons,
the transmitted signal of Equation (6.77) is referred to as carrierless amplitudefphase mod-
ulation (CAP).®

Properties of the Passband In-phase and Quadrature Pulses

From the definitions of the passband in-phase and quadrature pulses given in Equa-
tions (6.74) and (6.75), we deduce the following properties;
Property 1
The passband in-phase pulse p(t) and quadrature pulse p(t) are even and odd functions of
time t, respectively, given that the baseband pulse g(t) is an even function of time t.

This property follows directly from Equations (6.74) and (6.75).

Property 2

The passband pulses p(t) and p(t) form an orthogonal set over the entire interval (—o, ®)
as shown by

fm p()p(t) dt = 0 (6.78)

The reason for not restricting the integration interval in Equation (6.78) to a symbol period
T is that the pulses p(t) and p(t) are bandwidth-efficient for high-performing CAP systems.
To prove Property 2, we transform Equation (6.78) into the frequency domain by using
the Fourier transform to write

| ey de= [ " pippen ar (6.79)

where p(t) = P(f) and p(t) = P(f). The asterisk in P*(f) denotes complex conjugation.
(The frequency function P(f) should not be viewed as the Hilbert transform of P(f);
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rather, following the usual terminology in Fourier analysis, P(f) is simply the Foug;

transform of f(t).) The Fourier transform P(f) is related to the Fourier transform P(f)},

(see Appendix 2) Y
B(f) = — sgn(f)P(f) (6.80

where sgn(f) is the signum function. The Fourier transforms P(f) and B(f) have the same
magnitude spectrum, but their phase spectra differ by +90 degrees for negative frequencieS

and -390 degrees for positive frequencies. We may therefore rewrite Equation (6.79) a5

fﬂpwﬂﬂw=ifwPUWﬂﬁsyvhﬁ
- {6.81)
=i[@|HfHZ%MfM#

Recognizing that the magnitude response | P(f)| is an even function of frequency f apg
the signum function sgn(f} is an odd function of frequency f, the integral of Equatig,
(6.81) is zero, proving Property 2.

Next, let the passband pulses p(t) and p{t) be passed through a linear time-invarigy
channel of impulse response h{t), yielding the following passband outputs:

u(t) = p(t) % h{t) (6.82)
and
a(t) = plt) % h(t) (6.83)

where the symbol % denotes convolution. We may then formulate the third property.

Property 3

The passband pulses u(t) and G(t), defined in Equations (6.82) and (6.83), form a Hilbers
transform pair and are therefore orthogonal over the entire interval (— o, ®) for any hit),

It is this important property that makes it possible for the CAP receiver to separate the
transmitted real and imaginary symbols, 4, and b, given the channel output. To prove
Property 3, we again use the Fourier transform (in a manner similar to Equations {6.79)
and (6.81)) to write

|t de = [ vipoe o
= [ @prn- seppi ) df

= [ itp1 1) senis) df
=0

® ExamrPLE 6.4 Bandwidch-Efficient Spectral Shaping

The CAP signal of Equation (6.77) uses multilevel encoding via the complex scalar A for
spectral efficiency. We may further improve the bandwidth efficiency of CAP by using 2 Spec”
trally efficient formulation of the baseband pulse g(t). For the selection of g(t), we may draw
upon the raised-cosine family of pulse-shaping functions discussed in Chapter 4.
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FIGURE 6,19 The baseband pulse g(2) for rolloff factor & = 0.2.

Consider, for example, a baseband raised-cosine shaping filter with a rolloff factor
@ = 0.2 (i.e., excess bandwidth of 20 percent). The formula for the baseband pulse g{t} is*

(0 = (sinefe) 2=, (6.34)

where time # is normalized with respect to the symbol duration T. Hence putting & = 0.2 in
Equation (6.84), we get the plot of Figure 6.19. Using Equations (6.74) and (6.75), we may
compute the passhand in-phase pulse p(2) and quadrature pulse $(z) plotted in Figures 6.20a
and 6.20b for a normalized carrier frequency £T = 0.5(1 + a) = 0.6. The waveforms of
Figure 6.20 show that p(¢) and f(t) are even and odd function of time ¢, respectively, in
accordance with Property 1 and they are orthogonal over the interval (~, %) in accordance
with Property 2.

Amplitude

Amplitude

1 i ; ; i i
-3 -2 -1 o] 1 2 3
Normalized time, ¢/T

(b

FIGURE 6.20 («) In-phase pulse p(t}, and (b) quadrature pulse p(t) for rolloff factor & = 0.2.

*Equation (6.84) is obtained by using the normalized time £ in place of 2W? in Eq. (4.62) of Chapter 4, Recall
that the Nyquist bandwidth W is equal to 0.5 times the symbol (bit) rate. Note also that the p(z) in Chapter 4 is
not to be confused with the p(z) in this chapter.
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d In-phase
filter: p(z}
input * Transmitted
bit —>~| Encoder signal
stream - (e
Bk | Quadrature
filter: $(5

FIGURE 6.21 Block diagram of CAP transmitter.

Basic Structure of the CAP System

Figure 6.21 shows a functional block diagram of the CAP transmitter, which builds
on the material embodied in Equations (6.74), (6.75), and {6.77). The transmitter consistg
of a multilevel encoder and a pair of passband filters. The multilevel encoder partition
the incoming serial data stream into successive blocks of # bits each; these blocks are, i,
turn, mapped into multilevel symbols a, and b, where & refers to the kth symbol periog.
The passband in-phase and quadrature filters process the symbol streams {4} and {b,} iy
parallel, respectively. The impulse responses of these two filters, namely, p(#) and Hiz), are
designed in accordance with Equations (6.74) and (6.75), for a chosen baseband pulse
g(t). The resulting outputs of these two filters are subtracted to produce the transmited
CAP signal s(¢) in accordance with Equation (6.77).

The transmitted signal s(¢) propagates through a channel characterized by impulse
response k() and additive noise z/(t). The resulting channel output is defined by

x(t) = s(t) % h(t) + w(t)

f} [agp(t — kT) % h{t) — bp(t — KT) % b(#)] + w(t)  (6.85)

E
[awu(t — kT) — bpa(t — kT)] + wiz)

I
! Ml

k

where #(z) and #(#) are defined by Equations {6.82) and (6.83), respectively. Given x{t} as
the input signal, the function of the receiver is to recover the transmitted symbols 4, and
by in an optimum fashion and on a symbol-by-symbol basis.

The receiver consists of a two-dimensional optimum receiver, the details of which:
depend on the channel impairments. Specifically, we may mention two different sitvations:

@

» Additive white Gaussian noise is the only impairment. In this idealized situation, the
optimum CAP receiver consists of a two-dimensional matched filter, as indicated in

Filter matched

top(s) t=nT
Tos! i
Received - Estimate
signal D::Iisg;n 3 Decoder —= of the original
o) ]Q > v n ] bit stream

Filter matched

to p(f)

FIGURE 6.22 Block diagram of CAP receiver using a two-dimensional matched Hiter for the
case of an ideal white Gaussian noise channel.
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Figure 6.22. The optimum in-phase filter consists of a filter matched to the passband
in-phase pulse p(#). The optimum quadrature filter consists of a filter matched to the
passband quadrature pulse §(z).
¥ Intersymbol interference and additive white Gaussian noise are the channel impair-
ments. In this more realistic situation in practical terms, the structure of the optimum
CAP receiver follows from the optimum linear receiver theory presented in Section
4.9. In particular, the CAP receiver consists of a two-dimensional matched filter,
followed by a pair of identical equalizers and a pair of synchronous samplers, as
shown in Figure 6.23. The equalizers (implemented in tapped-delay-line form) com-
pensate for dispersion in the channel.

From Property 3, we deduce that the output of the in-phase matched filter due to the
passband quadrature pulse is zero, and vice versa. Accordingly, in both of these situations,
the transmitted symbols 4, and b, can be detected separately by the two-dimensional

optimum CAP receiver.

Digital Implementation of the CAP Receiver

The receiver structure of Figure 6.23 can be further simplified by first reformulating
it in the form shown in Figure 6.244, where we have introduced an analog-to-digital
{A/D} converter at the receiver input to facilitate the use of digital signal processing. Next,
we recognize that the matched filters and equalizers in Figure 6.244 are all linear systems.
Accordingly, the samples at points A and B in Figure 6.244 are linear combinations of the
input samples x(n] = x(nT,), where T, is the sampling period. It follows therefore that we
may replace the combination of matched filter and equalizer in each receiver path in Figure
6.24a by a single finite-duration impulse response (FIR) filter operating at the sampling
rate 1/T;, as shown in Figure 6.24b. With a common input, it is natural for the two FIR
filters in Figure 6.24b to share a common set of unit-delay elements but different sets of
coefficients of their own. Note also that the receiver structure of Figure 6.24b is the mirror
image of the transmitter structure in Figure 6.21.

One last comment is in order. In practice, the two FIR filters in the receiver of Figure
6.24b are made adaptive so as to accommodate operation of the CAP receiver in an un-
known environment. With adaptive equalization (filtering) as the method of choice, we
have two options in light of the material presented in Chapter 4: linear equalization and
decision feedback equalization (DFE). When the frequency response of the channel is ap-
proximately flat, the use of linear equalization is adequate for the task at hand. However,
when the frequency response of the channel and/or the noise power spectrum are not
approximately flat, performance of the CAP receiver can be improved significantly by the

use of DFE.

Filter matched
to p(r) * h(r)

Tapped-deiay-line
equalizer

Received

signai
x(n

Decision
device

Decoder

Filter matched
to plr) * h(r)

Tapped-delay-line
equalizer

I

Estimate
of the original
bit stream

FIGURE 6.23 Block diagram of CAP receiver using a pair of optimum linear receivers for the
case of a noisy, dispersive channel.
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FIGURE 6.24 Digital implementation of the CAP receiver. (z) Reformulation of the receiver in

Figurc 6.23 using an A/D converter and associated circuitry. (b) Replacement of the matched fil-
ter/equalizer pairs with equivalent (digitally implemented) FIR filters.

An Application of CAP

An important application of CAP (using 32 or 64 constellation points) is in the
passband transmission of digital data over twisted-pair wiring of lengths less than 100 m,
as in local area networks (LANS) suitable for premises’ distribution systems. (All modern
LAN standards limit the length of the wiring to a maximum of 100 m; the CAP systems
can actually operate over longer loops, if so required.) The data rates may range from 51
up to 155 Mb/s, with the usable channel bandwidth being strictly limited to 30 MHz.

The two major impairments for transceivers providing duplex operation over
twisted-pairs cables are propagation loss and near-end crosstalk (NEXT); these impair-
ments were discussed in Section 4.8, which dealt with digital subscriber lines.

In the environment described herein, a practical issue is how to adapt the receiver to
wide variations in twisted-pair cables. To cater to this requirement, adaptive filters ar¢
used to implement the optimum in-phase and quadrature filters in the receiver, as remarked
earlier. The wider the range of twisted-pair cables that have to be accommodated, the more
complex these adaptive filters must be.

i 6.5 Coherent Frequency-Shift Keying

M-ary PSK and M-ary QAM share a common property: Both are examples of linear ll‘{Od'
ulation. In this section we study a nonlinear method of passband data transmission
namely, coberent frequency-shift keying (FSK). We begin the study by considering the
simple case of binary FSK.
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g BINarY FSK

In a binary FSK system, symbols 1 and 0 are distinguished from each other by transmitting
one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

|2E,
s(t) = Tb cos(2mfit), 0=st=T, (6.86)

0, elsewhere

where i = 1, 2, and E, is the transmitted signal energy per bit; the transmitted frequency
is
n, +i

fi= T ~ for some fixed integer nz, and i = 1, 2 (6.87)
b

Thus symbol 1 is represented by s4(t), and symbol 0 by s,(¢). The FSK signal described
here is known as Sunde’s FSK. It is a continuous-phase signal in the sense that phase
continuity is always maintained, including the inter-bit switching times. This form of dig-
ital modulation is an example of continuous-phase frequency-shift keying (CPFSK), on
which we have more to say later on in the section.

From Equations (6.86) and (6.87), we observe directly that the signals s;(¢) and s,(2)
are orthogonal, but not normalized to have unit energy. We therefore deduce that the most
useful form for the set of orthonormal basis functions is

bilt) = \/sz cos(2mfit), 0=st=T, (6.88)

0, elsewhere

where i = 1, 2. Correspondingly, the coefficient s;; for i = 1, 2, and j = 1, 2 is defined by

T,
s,-i“J’O s; (2 t

= {t)d;(t) d
Ty
= J:) /ZTE: cos(2mft) \/sz cos(2mfit) dt (6.89)

_ | VEs, i=j
0, i
Thus, unlike coherent binary PSK, a coherent binary FSK system is characterized by having

a signal space that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2},
as shown in Figure 6.25. The two message points are defined by the

5y = [ ’ Eb] (6.90)
0
and
0
s, = [ \/E_b] (6.91)

with the Euclidean distance between them equal to V2E,. Figure 6.25 also includes a
couple of inserts, which show waveforms representative of signals s,(¢) and s,(t).
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FIGURE 6.25 Signal-space diagram for binary FSK system. The diagram also includes two
inserts showing example waveforms of the two modulated signals 5,(t) and s,(z).

Error Probability of Binary FSK

The observation vector x has two elements x; and x, that are defined by, respectively,

X = f bx(t)qbl(t) dt (6.92)

0

and
Ty
xy = L x(t)p(t) dt {6.93)

where x(z) is the reccived signal, the form of which depends on which symbol was trans:
mitted, Given that symbol 1 was transmitted, x(t) equals s,(z) + w/(¢), where w/(t) is the
sample function of a white Gaussian noise process of zero mean and power spectral density
No/2. If, on the other hand, symbol 0 was transmitted, x(£) equals s,(¢) + w(t). )
Now, applying the decision rule of Equation (5.59), we find that the observation
space is partitioned into two decision regions, labeled Z;, and Z, in Figure 6.25. The
decision boundary, separating region Z, from region Z, is the perpendicular bisectot ©
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the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z;. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x,, in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable Y whose sample value y is equal to the
difference between x; and x,; that is,

Y= —x; (6.94)

The mean value of the random variable ¥ depends on which binary symbol was trans-
mitted. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,,
whose sample values are denoted by x, and x,, have mean values equal to VE,, and zero,
respectively. Correspondmgly, the conditional mean of the random variable Y, given that
symbol 1 was transmitted, is

E[Y|1] = E[X,|1] - E[X,|1]

On the other hand, given that symbol 0 was transmitted, the random variables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable ¥, given that symbol 0 was transmitted, is
E[Y]0] E[X1 \ 0] — E[X,0]
= —\/E
The variance of the random variable Y is 1ndependent of which binary symbol was trans-
mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that
var[Y] = var[X;] + var[X5]
=N,
Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

(6.95)

(6.96)

(6.97)

(y + VE, ] (6.98)

1
fY(ylo) = \/ZW—I\IOeXPI:_ 2N,

Since the condition x; > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

P10 = P(y > 0|symbol 0 was sent)
=f0 Fely[0) dy (6.99)
-1 f B _ly + VE)? J
V2aNg o P N, Y

Put

=z (6.100)
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Then, changing the variable of integration from y to z, we may rewrite Equation (6 g
as follows: )

_ 1 J' - 2
P10 = 7= | s exp(—z?) dz

1 . E, (6.109)
2 erfc 2N,

Similarly, we may show the poy, the conditional probability of error given that symbq| ¢
was transmitted, has the same value as in Equation (6.101). Accordingly, averaging b
and po;, we find that the average probability of bit error or, equivalently, the biz error m;:
for coberent binary FSK is (assuming equiprobable symbols)

1 [ Eo
P, = 3 erfc< 2Ng) (6.102)

Comparing Equations (6.20) and (6.102), we sec that, in a coherent binary Fsg
system, we have to double the bit energy-to-noise density ratio, E,/No, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6.25, where we see that in a binary PSg
system the Euclidean distance between the two message points is equal to 2VE,, whereas
in a binary FSK system the corresponding distance is V/2E,. For a prescribed E,, the
minimum distance doi, in binary PSK is therefore /2 times that in binary FSK. Recal
from Chapter 5 that the probability of error decreases exponentially as d2,,, hence the
difference between the formulas of Equations (6.20) and (6.102).

Generation and Detection of Coherent Binary FSK Signals

To generate a binary FSK signal, we may use the scheme shown in Figure 6.264. The
incoming binary data sequence is first applied to an on—off level encoder, at the output of
which symbol 1 is represented by a constant amplitude of V/E, volts and symbol 0s
represented by zero volts. By using an inverter in the lower channel in Figure 6.264, wein
effect make sure that when we have symbol 1 at the input, the oscillator with frequency
£, in the upper channel is switched on while the oscillator with frequency f; in the lower
channel is switched off, with the result that frequency f; is transmitted. Conversely, when
we have symbol 0 at the input, the oscillator in the upper channel is switched off and the
oscillator in the lower channel is switched on, with the result that frequency f; is trans-
mitted. The two frequencies f; and f, are chosen to equal different integer multiples of the
bit rate 1/T,, as in Equation (6.87).

In the transmitter of Figure 6.26a, we assume that the two oscillators are synchro-
nized, so that their outputs satisfy the requirements of the two orthonormal basis functions
¢4(t) and (2}, as in Equation (6.8 8). Alternatively, we may use a single keyed (voltage'
controlled) oscillator. In either case, the frequency of the modulated wave is shifted W
a continuous phase, in accordance with the input binary wave. )

To detect the original binary sequence given the noisy received signal x(¢), we maf
use the receiver shown in Figure 6.26b. It consists of two correlators with a common inptt
which are supplied with locally generated coherent reference signals ¢,(t) and ¢ H(e). The
correlator outputs are then subtracted, one from the other, and the resulting difference:$
is compared with a threshold of zero volts. 1f y > 0, the receiver decides in favor of 1. V%
the other hand, if y < 0, it decides in favor of 0. K y is exactly zero, the receiver makes?
random guess in favor of 1 or 0.
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FIGURE 6.26 Block diagrams for (z) binary FSK transmitter and (b) coherent binary FSK
receiver.

Power Spectra of Binary FSK Signals

Consider the case of Sunde’s FSK, for which the two transmitted frequencies f; and
f; differ by an amount equal to the bit rate 1/T}, and their arithmetic mean equals the
nominal carrier frequency f; phase continuity is always maintained, including inter-bit
switching times. We may express this special binary FSK signal as follows:

)= 2B cos[ampr = T, o0=i=T, (6.103)
T, T,

and using a well-known trigonometric identity, we get

= B [T B .

s(t) = T, cos<_ Tb) cos{2mf,t) T, sm<_Tb) sin(27rf.¢)
- [B [t S Nl
= T, COS(T;,) cos(2mf.t) ¥ T, sm(Tb) sin(27f.t)

In the last line of Equation (6.104), the plus sign corresponds to transmitting symbol 0,
and the minus sign corresponds to transmitting symbol 1. As before, we assume that the
symbols 1 and 0 in the random binary wave at the modulator input are equally likely, and
that the symbols transmitted in adjacent time slots are statistically independent. Then,

(6.104)
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based on the representation of Equation (6.104), we may make the following observag,
pertaining to the in-phase and quadrature components of a binary FSK signal with ¢,
tinuous phase: -

1. The in-phase component is completely independent of the input binary wave, |;
equals V2E,/T, cos(wt/T,) for all values of time #. The power spectral densit}: of
this component therefore consists of two delta functions, weighted by the factor
E4/2T,, and occurring at f = +1/2T,.

2. The quadrature component is directly related to the input binary wave. During ¢,
signaling interval 0 = ¢ =< T, it equals —g(z) when we have symbol 1, and +g(t)
when we have symbol 0. The symbol shaping function g(z) is defined by

2Eb . Tt
=2 — =t=T,
glt) = T, sm(Tb), 0=t=T, (6.105)

0, elsewhere
The energy spectral density of this symbol shaping function equals

8E,T, cos*(7wT,f)
Y (f) = _ﬂf(TbTF-—lb)l (6.106)

The power spectral density of the quadrature component equals W, (fV/T,. It is also
apparent that the in-phase and quadrature components of the binary FSK signal are in-
dependent of each other. Accordingly, the baseband power spectral density of Sunde’s FSK
signal equals the sum of the power spectral densities of these two components, as shown

by
E, 1 1 8E,, cos™(wTf)
Sslf) = 72 [:S( m) + 5<f + znﬂ YA gy (6107

Substituting Equation (6.107) in Equation {6.4), we find that the power spectrum of
the binary FSK signal contains two discrete frequency components located at (£, + 1/2T))
= f; and (f, = 1/2T,) = f,, with their average powers adding up to one-half the total
power of the binary FSK signal. The presence of these two discrete frequency components
provides a means of synchronizing the receiver with the transmitter.

Note also that the baseband power spectral density of a binary FSK signal with
continuous phase ultimately falls off as the inverse fourth power of frequency, This is
readily established by taking the limit in Equation (6.107) as f approaches infinity. I,
however, the FSK signal exhibits phase discontinuity at the inter-bit switching instants
(this arises when the two oscillators applying frequencies f1 and f; operate independently
of each other), the power spectral density ultimately falls off as the inverse square
frequency; see Problem 6.23. Accordingly, an FSK signal with continuous phase does no*
produce as much interference outside the signal band of interest as an FSK signal with
discontinuous phase.

In Figure 6.5, we have plotted the baseband power spectra of Equations (6.22) and
(6.107). (To simplify matters, we have only plotted the results for positive frequenCYi)
both cases, S(f) is shown normalized with respect to 2E,, and the frequency is normalize
with respect to the bit rate R, = 1/T,. The difference in the falloff rates of these spect?
can be explained on the basis of the pulse shape g(z). The smoother the pulse, the faster
the drop of spectral tails to zero. Thus, since binary FSK {with continuous phase) has?
smoother pulse shape, it has lower sidelobes than binary PSK.
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MiINIMUM SHIFT KEYING

In the coherent detection of binary FSK signal, the phase information contained in the
received signal is not fully exploited, other than to provide for synchronization of the
receiver to the transmitter. We now show that by proper use of the phase when performing
detection, it is possible to improve the noise performance of the receiver significantly. This
improvement is, however, achieved at the expense of increased receiver complexity.

Consider a continuous-phase frequency-shift keying (CPFSK) signal, which is defined
for the interval 0 < t = T, as follows:

t% cos[2amfit-+ 6 (0)] for symbol 1
s(t) = i (6.108)

% cos[2mfar + 6(0)] for symbol 0
VT

where E, is the transmitted signal energy per bit, and T, is the bit duration. The phase
0(0), denoting the value of the phase at time ¢ = 0, sums up the past history of the
modulation process up to time ¢ = 0. The frequenc1es fi and f; are sent in response to
binary symbols 1 and 0 appearing at the modulator input, respectively.
Another useful way of representing the CPFSK signal s(¢) is to express it in the
conventional form of an angle-modulated signal as follows:

s(t) = /% cosl2mfit + 6(2)] (6.109)
b

where 8(z) is the phase of s(t). When the phase #(#) is a continuous function of time, we
find that the modulated signal s(z) itself is also continuous at all times, including the inter-
bit switching times. The phase 6(¢) of a CPFSK signal increases or decreases linearly with
time during each bit duration of T, seconds, as shown by

8(t) = 6(0) = %h t, 0=t=T, (6.110)

)

where the plus sign corresponds to sending symbol 1, and the minus sign corresponds to
sending symbol 0; the parameter b is to be defined. Substituting Equation (6.110) into
(6.109), and then comparing the angle of the cosine function with that of Equation (6.108),
we deduce the following pair of relations:

b .

i+ Z—Tb = fi (6.111)

fi— A f: (6.112)

© 2T, 2 ‘
Solving Equations (6.111) and (6.112) for f. and 4, we thus get
1

f=5ht A (6.113)
and

b =Tyf - £) (6.114)

The nominal carrier frequency £, is therefore the arithmetic mean of the frequencies f; and
fo- The difference between the frequencies f; and f,, normalized with respect to the bit
rate 1/T},, defines the dimensionless parameter b, which is referred to as the deviation ratio.
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Phase Trellis
From Equation (6.110} we find that at time ¢ = T},

wh for symbol 1
6(Ty) — 6(0) = {—wh for symbol 0 (6.115)

That is to say, the sending of symbol 1 increases the phase of a CPFSK signal s(t) by o,
radians, whereas the sending of symbol 0 reduces it by an equal amount.

The variation of phase 8(¢) with time ¢ follows a path consisting of a sequence of
straight lines, the slopes of which represent frequency changes. Figure 6.27 depicts possible
paths starting from time £ = 0. A plot like that shown in Figure 6.27 is called a phase tre,
The tree makes clear the transitions of phase across interval boundaries of the inco[nin.
sequence of data bits. Moreover, it is evident from Figure 6.27 that the phase of a CPFsg
signal is an odd or even multiple of 7h radians at odd or even multiples of the bit duratigy
T, respectively.

The phase tree described in Figure 6.27 is 2 manifestation of phase continuity, which
is an inherent characteristic of a CPFSK signal. To appreciate the notion of phase contj-
nuity, let us go back for a moment to Sunde’s FSK, which is a CPFSK scheme as previously
described. In this case, the deviation ratio 4 is exactly unity. Hence, according to Figure
6.27 the phase change over one bit interval is = radians. But, a change of +r radians is
exactly the same as a change of —7 radians, modulo 277. It follows therefore that in the
case of Sunde’s FSK there is #0 memory; that s, knowing which particular change occurred
in the previous bit interval provides no help in the current bit interval. ’

In contrast, we have a completely different situation when the deviation ratio b iy
assigned the special value of 1/2. We now find that the phase can take on only the two
values /2 at odd multiples of Ty, and only the two values 0 and r at even multiples of
T, as in Figure 6.28. This second graph is called a phase trellis, since “trellis” is a treelike
structure with remerging branches. Each path from left to right through the trellis of Figure
6.28 corresponds to a specific binary sequence input. For example, the path shown in
boldface in Figure 6.28 corresponds to the binary sequence 1101000 with 6{0) = 0. Hence-
forth, we assume that b = 1/2.

3mh

27h

E}
=

o(1) — 6(0), radians

-27h

~3mh

—4mh

FIGURE 6.27 Phase tree.
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g

FIGURE 6.28 Phase trellis; boldfaced path répresents the sequence 1101000.

With b = 1/2, we find from Equation (6.114) that the frequency deviation (i.e., the
difference between the two signaling frequencies f; and £,) equals half the bit rate. This is
the minimum frequency spacing that allows the two FSK signals representing symbols 1
and 0, as in Equation (6.108), to be coherently orthogonal in the sense that they do not
interfere with one another in the process of detection. It is for this reason that a CPFSK
signal with a deviation ratio of one half is commonly referred to as minimum shift keying
(MSK).”

Signal-Space Diagram of MSK

Using a well-known trigonometric identity in Equation (6.109), we may express the
CPFSK signal s(¢) in terms of its in-phase and quadrature components as follows:

st) = l% cos[0(t)] cos(2mf.t) ~ l% sin[@(¢)] sin{2wf.t) (6.116)
b b ;

Consider first the in-phase component V2E,/T,, cos[6(t)]. With the deviation ratio
b = 1/2, we have from Equation (6.110) that

= + — <t <

o0 = 60 3o 0=r=T, (6.117)
where the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol
0. A similar result holds for 8(¢) in the interval —T), = ¢ =< 0, except that the algebraic
sign is not necessarily the same in both intervals. Since the phase 8(0) is 0 or , depending
on the past history of the modulation process, we find that, in the interval =T, < t = T},
the polarity of cos[8(t)] depends only on #(0), regardless of the sequence of 1s and Os
transmitted before or after ¢ = 0. Thus, for this time interval, the in-phase component s,{z)
consists of a balf-cycle cosine pulse defined as follows:

RE
s(t) = \/; cos[8(2]]
b
2E, T
= |2 — A1
\/?bcos[B(O)] COS(ZT,, t) (6.118)
DE ‘
* T: cos(i% t), ~T,<t=T,

where the plus sign corresponds to #(0) = 0 and the minus sign corresponds to 6{0) = .
In a similar way, we may show that, in the interval 0 =< t = 2T, the quadrature component
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solt) consists of a balf-cycle sine pulse, whose polarity depends only on 6(T}), as showy

by
2E, .
splt) = /—be sin[8(2)]
_ 2Eb . . . m
= /——Tb sin[0({T ] sm(TTb t) (6.119)
2E, . T
+ | T, Sm(ZTb t), 0=t=2T,

where the plus sign corresponds to 6(T,) = /2 and the minussign corresponds 1
o(T,) = — /2.

From the foregoing discussion we see that since the phase states 6(0) and 6{T,) cay
each assume one of two possible values, any one of four possibilities can arise, as described
here:

1

» The phase 8{0) = 0 and 6(T,) = @/2, corresponding to the transmission of symbol 1,

» The phase 8(0) = 7 and 6(T,) = 7/2, corresponding to the transmission of symbol g,

# The phase 8(0) = mand 6(T,) = —u/2 (or, equivalently, 3772 modulo 27), corre.
sponding to the transmission of symbol 1.

» The phase 8(0) = 0 and 8(T,) = —7/2, corresponding to the transmission of
symbol 0.

’ This, in turn, means that the MSK signal itself may assume any one of four possible forms,

depending on the values of 6{0) and 8(T}).

From the expansion of Equation (6.116), we deduce that the orthonormal basis
functions ¢+(t) and ¢ ,(t) for MSK are defined by a pair of sinusoidally modulated quad-
rature carriers:

b.(t) = \/% cos(z—% t) cos2mft), 0=t=<T, (6.120)
2 (7 .
d,(t) = \/T:b sm(z—Tb t) sin(27f¥), 0=t=T, (6.121)
Correspondingly, we may express the MSK signal in the expanded form
s(t) = 514 1(8) + s202(8), 0=st=T, (6.122)

where the coefficients s, and s, are related to the phase states 0(0) and 6(T}), respectively.
To evaluate s,, we integrate the product s(t)¢ ,{t) between the limits ~T,, and T, as shows
by
Ty
$1 f_n s(t)a(r) dt 613
= VE, cos[68(0}], —T.=t=T,

Similarly, to evaluate s, we integrate the product s(£)¢.(#) between the limits 0 and 2T
as shown by

2T},
2= L s(t)da(r) dt (120
= —VE, sin[{T}], 0=t=2T,
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FIGURE 6.29 Signal-space diagram for MSK system.

s

Note that in Equations (6.123) and (6.124):

= Both integrals are evaluated for a time interval equal to twice the bit duration.

> Both the lower and upper limits of the product integration used to evaluate the
coefficient s, are shifted by the bit duration T, with respect to those used to evaluate
the coefficient s,.

» The time interval 0 < ¢ < T}, for which the phase states #(0) and 6(T,) are defined,
is common to both integrals.

Accordingly, the signal constellation for an MSK signal is two-dimensional (i.e.,
N = 2}, with four possible message points (i.e., M = 4), 4s illustrated in Figure 6.29.
The coordinates of the message points are as follows in a counterclockwise direction:
(+\/E_ba +\/ETZ;)7 (——\/E_b: +\/E_b); ("\/E_bs _\/ETb)s and (+\/E_bs _\/E_b)' The POSSible
values of 6(0) and 68(T,), corresponding to these four message points, are also included in
Figure 6.29. The signal-space diagram of MSK is thus similar to that of QPSK in that both
of them have four message points. However, they differ in a subtle way that should be
carefully noted: In QPSK the transmitted symbol is represented by any one of the four
message points, whereas in MSK one of two message points is used to represent the trans-
mitted symbol at any one time, depending on the value of 8(0).

Table 6.5 presents a summary of the values of 8(0) and 6(T,), as well as the corre-
sponding values of s; and s, that are calculated for the time intervals —~T, < ¢ = T, and
0 =<t = 2Ty, respectively. The first column of this table indicates whether symbol 1 or
symbol 0 was sent in the interval 0 =< ¢ = T,. Note that the coordinates of the message
points, s; and s,, have opposite signs when symbol 1 is sent in this interval, but the same
sign when symbol 0 is sent. Accordingly, for a given input data sequence, we may use the
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B TABLE 6.5 Signal-space

o characterization of MSK
Coordinates
Phase States of Message
Transmitted (radians) Points
Binary Symbol,
0=t=T, 8(0) 8(Ty) 1 Sz
0 0 —af2 +VE, +VE,
1 r -a2 -VE +VE
0 T +ar/2 —VE, —VE,
1 0 +af2 +VE, ~VE,

entries of Table 6.5 to derive, on a bit-by-bit basis, the two sequences of coefficients re.
quired to scale ¢4(t) and ¢,(t), and thereby determine the MSK signal st).

B EXAMPLE 6.5

Figure 6.30 shows the sequences and waveforms involved in the generation of an MSK signal
for the binary sequence 1101000. The input binary sequence is shown in Figure 6.30a. The
two modulation frequences are: f; = 5/4T, and f, = 3/4T,. Assuming that, at time ¢ = ( the
phase 8(0) is zero, the sequence of phase states is as shown in Figure 6.30, modulo 2. The
polarities of the two sequences of factors used to scale the time functions ¢4(t) and ¢ft) are
shown 'in the top lines of Figures 6,305 and 6.30c. Note that these two sequences are offset
relative to each other by an interval equal to the bit duration T,. The waveforms of the
resulting two components of s(t}, namely, s1¢1(#) and s,¢(t), are also shown in Figures 6.30b
and 6.30c. Adding these two modulated waveforms, we get the desired MSK signal s(z) shown
in Figure 6.304.

Error Probability of MSK
In the case of an AWGN channel, the received signal is given by
x{t) = s(t) + w(t)

where s(t) is the transmitted MSK signal, and s/(t) is the sample function of a white Gaus-
sian noise process of zero mean and power spectral density No/2. To decide whether
symbol 1 or symbol 0 was transmitted in the interval 0 =< z = T, say, we have to establish
a procedure for the use of x(2) to detect the phase states 8(0) and 6(T). For the optimum
detection of 8(0), we first determine the projection of the received signal x(t) onto the
reference signal ¢ ,(t) over the interval —T, < ¢ < T, obtaining

Ty
X = J. T, x(5)g4() dt (615

=51+w1, —TbstSTb

where s, is as defined by Equation (6.123) and w, is the sample value of a Gaussian random
variable of zero mean and variance Ny/2. From the signal-space diagram of Figure 6.2%
we observe that if x; > 0, the receiver chooses the estimate #{0) = 0. On the other hand,
if x, < 0, it chooses the estimate 8(0) = .
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FIGURE 6.30 (a) Input binary sequence. (b) Waveform of scaled time function 514 (2).
(c) Waveform of scaled time function s,é,(t). (d) Waveform of the MSK signal s(t) obtained by
adding 5, ¢, (t) and s,,(t) on a bit-by-bit basis.

Similarly, for the optimum detection of §(T}), we determine the projection of the
received signal x(t) onto the second reference signal ¢.(¢) over the interval 0 < ¢ < 2Ty,
obtaining

2T,
sa= [ xle)dole) di
0 (6.126)
=3, + w,, 0=¢t=2T,

where s, is as defined by Equation (6.124) and w, is the sample value of another indepen-
dent Gaussian random variable of zero mean and variance No/2. Referring again to the
signal space diagram of Figure 6.29, we observe that if x, > 0, the receiver chooses the
estimate §(T}) = —/2. If, on the other hand, x, <0, it chooses the estimate §(T,) = /2.

To reconstruct the original binary sequence, we interleave the above two sets of phase
decisions, as described next (sée Table 6.5):

> If we haveAthe estimates (0} = 0 and §(T,) = —m/2, or alternatively if we have the
estimates 6#(0) = 7 and 8(T,) = #/2, the receiver makes a decision in favor of sym-
bol 0.
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¥ If we have the estimates A@(O) = arand 8(T,) = —m/2, or alternatively if we have th
estimates H(0) = 0 and 8(T,) = /2, the receiver makes a decision in favor of syme
bol 1. i

Thus referring to the signal-space diagram of Figure 6.29, we see that the decisigy
made by the receiver is between the message points 2, and 25 for symbol 1, or betweeq
the message points 72, and 71, for symbol 0. The corresponding decisions whether g(0)
0 or 7 and whether 8(T,) is — /2 or +m/2 {ie., the bit decisions) are made alternately iy
the I- and Q-channels of the receiver, with each channel looking at the input signal f,,
2T, seconds. The signal from other bits does not interfere with the receiver’s decision fo;
a given bit in either channel. The receiver makes an error when the I-channel assigns the
wrong value to 8(0) or the Q-channel assigns the wrong value to 8{T}). Accordingly, using
the statistical characterizations of the product-integrator outputs x; and x, of these two
channels, defined by Equations (6.125) and (6.126), respectively, we readily find that the
bit error rate for coherent MSK is given by

1 |En
P, = 3 erfc< No) (6.127)

which is exactly the same as that for binary PSK and QPSK. It is important to note,
however, that this good performance is the result of the detection of the MSK signal being
performed in the receiver on the basis of observations over 2T, seconds.

Generation and Detection of MSK Signals

Consider next the generation and demodulation of MSK. Figure 6.31a shows the
block diagram of a typical MSK transmitter. The advantage of this method of generating
MSK signals is that the signal coherence and deviation ratio are largely unaffected by
variations in the input data rate. Two input sinusoidal waves, one of frequency f, = n./4T,
for some fixed integer ., and the other of frequency 1/4T,, are first applied to a product
modulator. This produces two phase-coherent sinusoidal waves at frequencies f; and f;,
which are related to the carrier frequency f; and the bit rate 1/T, by Equations (6.111)
and (6.112) for b = 1/2. These two sinusoidal waves are separated from each other by
rwo narrowband filters, one centered at f; and the other at f,. The resulting filter outputs
are next linearly combined to produce the pair of quadrature carriers or orthonormal basis
functions ¢ ,(¢) and ¢,(t). Finally, é.(¢) and ¢,(z) are multiplied with two binary waves
ay(t) and a,(t), both of which have a bit rate equal to 1/2T},. These two binary waves are
extracted from the incoming binary sequenice in the manner described in Example 6.5,

Figure 6.31b shows the block diagram of a typical MSK receiver. The received signal
x{t) is correlated with locally generated replicas of the coherent reference signals & (t) and
¢5{t). Note that in both cases the integration interval is 2T, seconds, and that the inte-
gration in the quadrature channel is delayed by T, seconds with respect to that in the in-
phase channel. The resulting in-phase and quadrature channel correlator outputs, x4 al
x,, are each compared with a threshold of zero, and estimates of the phase 6(0) and 8(T}
are derived in the manner described previously. Finally, these phase decisions are infe"
leaved so as to reconstruct the original input binary sequence with the minimum averagt
probability of symbol error in an AWGN channel.

Power Spectra of MSK Signals

As with the binary FSK signal, we assume that the input binary wave is randomt:
with symbols 1 and 0 equally likely, and the symbols transmitted during different tim?
slots being statistically independent. In this case, we make the following observations:
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FiGURE 6.31 Block diagrams for (2) MSK transmitter and (b) coherent MSK receiver.

1. Depending on the value of phase state 8(0), the in-phase component equals +g() or

—g(t), where
ZEb Tt
g0 =1yT, m(zn)’ Te=t=T, (6.128)

N otherwise

The energy spectral density of this symbol-shaping function is

2
wtf) = 22T [f;’;‘;;fif )J (6129)

m

Hence, the power spectral density of the in-phase component equals y,(f)/2T,.
2. Depending on the value of the phase state §(T}), the quadrature component equals
+g(t) or —g(t), where we now have

2E, . i
gt =y T, S“‘(n,,)’ 0=r=2T, (6.130)

otherwise
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The energy spectral density of this second symbol-shaping function is also giyey, by
Equation (6.129). Hence, the in-phase and quadrature components have the sam
power spectral density. ¢
3. The in-phase and quadrature component of the MSK signal are also statisticy)
independent. Hence, the baseband power spectral density of the MSK signal is giVez

by
Ss(f) = z[‘%f:]
_ 32E, [ cos2aTf) | (6.131)
T op? | 16T -1

The baseband power spectrum of Equation (6.131) is plotted in Figure 6.9, where
the power spectrum is normalized with respect to 4E, and the frequency f is normalizeq
with respect to the bit rate 1/T,,. This figure also includes the corresponding plot of Equa.
tion (6.40) for the QPSK signal, which was considered earlier. For f 53> 1/T}, the basebang
power spectral density of the MSK signal falls off as the inverse fourth power of frequency,
whereas in the case of the QPSK signal it falls off as the inverse square of frequency,
Accordingly, MSK does not produce as much interference outside the signal band of ip-
terest as QPSK. This is a desirable characteristic of MSK, especially when the digital com-
munication system operates with a bandwidth limitation.

GAUSSIAN-FILTERED MSK

From the detailed study of minimum shift keying (MSK) just presented, we may summarize
the desirable properties of the MSK signal as follows:

» Constant envelope
# Relatively narrow bandwidth
» Coherent detection performance equivalent to that of QPSK

However, the out-of-band spectral characteristics of MSK signals, as good as they are, still
do not satisfy the stringent requirements of certain applications such as wireless commu-
nications. To illustrate this limitation, we find from Equation (6.131) that at fT,, = 0.5,
the baseband power spectral density of the MSK signal drops by only 10 logs, 9 = 9-54
dB below its midband value. Hence, when the MSK signal is assigned a transmission
bandwidth of 1/T}, the adjacent channel interference of a wireless cominunication system
using MSK is not low enough to satisfy the practical requirements of such a multiuset
communications environment.

Recognizing that the MSK signal can be generated by direct frequency modulation
of a voltage-controlled oscillator, we may overcome this serious limitation of MSK by
modifying its power spectrum into a compact form, while maintaining the constant
envelope property of the MSK signal. This modification can be achieved through the ust
of a premodulation low-pass filter, hereafter referred to as a baseband pulse-shaping filser.
Desirably, the pulse-shaping filter should satisfy the following properties:

1. Frequency response with narrow bandwidth and sharp cutoff characteristics.
2. Impulse response with relatively low overshoot.
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3. Evolution of a phase trellis where the'carrier phase of the modulated signal assumes
the two values £7/2 at odd multiples of T, and the two values 0 and  at even
multiples of T}, as in MSK.

Condition 1 is needed to suppress the high-frequency components of the transmitted signal.
Condition 2 avoids excessive deviations in the instantaneous frequency of the FM signal.
Finally, condition 3 ensures that the modified FM signal can be coherently detected in the
same way as the MSK signal, or it can be noncoherently detected as a simple binary FSK
signal.

These desirable properties can be achieved by passing a nonreturn-to-zero {(NRZ)
binary data stream through a baseband pulse-shaping filter whose impulse response {(and
likewise its frequency response) is defined by a Gasissian function. The resulting method
of binary frequency modulation is naturally referred to as Gaussian-filtered MSK or just
GMSK.®

Let W denote the 3 dB baseband bandwidth of the pulse-shaplng filter. We may then
define the transfer function H{f) and impulse response h(t) of the pulse-shaping filter as

follows, respectively:
2
H{f} = eXP(—l-gng (%) ) (6.132)

b(t) = /% w exp<—l—§ Wztz) (6.133)

The response of this Gaussian filter to a rectangular pulse of unit amplitude and
duration T, (centered on the origin) is given by (see Problem 6.28)

Ty/2
J‘ h(t — ) dr

Ty/2

1,2 ' (6.134)
=27 w2 —
\/ log2 J‘ T,i2 P l 2 W = ) dr

which may be expressed as the difference between two complementary error functions, as
shown by

g(t) = %[erfc(w \/% vm(—T‘: - %)) - erfc( \/;2 WT,,( ;))] (6.135)

The pulse response g(z) constitutes the frequency shaping pulse of the GMSK modulator,
with the dimensionless time-bandwidth product WT, playing the role of a design
parameter,

The frequency-shaping pulse g(¢), as defined in Equation (6.135), is noncausal in that
it is nonzero for t < —T,/2, where t = ~T,/2 is the time at which the input rectangular
pulse (symmetrically positioned around the origin) is applied to the Gaussian filter. For a
causal response, g(¢) must be truncated and shifted in time. Figure 6.32 presents plots of
g{t), which has been truncated at t = £2.5T, and then shifted in time by 2.5T,. The plots
shown here are for WT,, = 0.2, 0.25, and 0.3. Note that as WT,, is reduced, the time spread
of the frequency-shaping pulse is correspondingly increased.

and
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FIGURE 6.32 Frequency-shaping pulse g(t) of Equation {6.135) shifted in time by 2.5T; and
truncated at +2.5T, for varying time-bandwidth product WT;,.

Figure 6.33 shows the machine-computed power spectra of MSK signals (expressed
in decibels) versus the normalized frequency difference (f - £)T,, where f, is the mid-
band frequency and T, is the bit duration.’ The results plotted in Figure 6.33 are for
varying values of the time-bandwidth product WT;. From this figure we may make the
following observations:

+ The curve for the limiting condition WT, = = corresponds to the case of ordinary
MSK.

& When WT), is less than unity, increasingly more of the transmit power is concentrated
inside the passband of the GMSK signal.

An undesirable feature of GMSK is that the processing of NRZ binary data bya
Gaussian filter generates a modulating signal that is no longer confined to a single bit
interval as in ordinary MSK, which is readily apparent from Figure 6.32. Stated in another
way, the tails of the Gaussian impulse response of the pulse-shaping filter cause the mod-
ulating signal to spread out to adjacent symbol intervals. The net result is the generation
of intersymbol interference, the extent of which increases with decreasing WT,. In light
of this observation and the observation we made on the basis of Figure 6.33 on the power
spectra of GMSK signals, we may say that the choice of the time-bandwidth product WT,
offers a trade-off between spectral compactness and performance loss.

To explore the issue of performance degradation, consider the probability of error
P, of GMSK using coherent detection in the presence of additive white Gaussian noise.
Recognizing that GMSK is a special kind of binary frequency modulation, we may express
P, by the empirical formula

1 aEb

P.== 6.136)
e=3 erfc( 2 No) (
where, as before, E, is the signal energy per bit and No/2 is the noise spectral density. The

factor a is a constant whose value depends on the time-bandwidth product WT,. Comr
paring the formula of Equation (6.136) for GMSK with that of Equation (6.127) for
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FIGURE 6.33 Power spectra of MSK and GMSK signals for varyving time-bandwidth product.
(Reproduced with permission from Dr. Gordon Stiiber, Georgia Tech.)

ordinary MSK, we may view 10log;,(a/2), expressed in decibels, as a measure of perfor-
mance degradation of GMSK (with prescribed WT,) compated to ordinary MSK. Figure
6.34 shows the machine-computed value of 10log,,(a/2) versus WT,. For ordinary MSK
we have WT, = =, in which case Equation (6.136) with @ = 2 assumes exactly the same
form as Equation (6.127) and there is no degradation in performance, which is confirmed
by Figure 6.34. For GMSK with WT, = 0.3 we find from Figure 6.34 that there is a

Degradation (dB)

a | | +
[0} 0.2 04 0.6 0.8
Time-bandwidth product, WT,,

FIGURE 6.34 Theoretical E;,/N,, degradation of GMSK for varying time-bandwidth product.
(Taken from Murata and Hirade, 1981, with permission of the IEEE.)
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degradation in performance of about 0.46 dB, which corresponds to (a/2) = (.9, "This
degradation in performance is a small price to pay for the highly desirable spectral cop,
pactness of the GMSK signal.

B ExaMPLE 6.6 GMSK for GSM Wireless Commuunications

An important application of GMSK is in a standardized wireless communication system wid

known as GSM, which is a time-division multiple-access system that is discussed in Chapte{
8. For this application, the time-bandwidth product WT, of GMSK is standardized at 3

which provides the best compromise between increased bandwidth occupancy and resistanc,
to co-channel interference. Ninety-nine percent of the radio frequency (RF) power of GMsg
signals so specified is confined to a bandwidth of 250 kHz, which means that, for all practicy|
purposes, the sidelobes are virtually zero outside this frequency band.

The available spectrum is divided into 200 kHz-wide subchannels. Each subchanne| j5
assigned to a GSM system transmitting data at 271 kb/s. Figure 6.35 depicts the power Spec-
trum of a subchannel in relation to its two adjacent subchannels; this plot is the passbang
version of the baseband power spectrum of Figure 6.33 corresponding to WT;, = 0.3. From
Figure 6.35 we may make the following important observation: The RF power spectrum of
the subchannel shown shaded is down by an amount larger than 40 dB at the carrier fre.
quencies of both adjacent subchannels, which means that the effect of co-channel interference
is practically negligible. <

M-ARY FSK

Consider next the M-ary version of FSK, for which the transmitted signals.are defined by

slt) = \/% cos[% (. + i)t], 0=t=T (6.137)

Power
spectrum, dB

0

i | ! |

Carrier
frequency

Carrier
frequency

'4— 200 *>|<— 200 *>|<— 200 ——4 —> Frequency, kHz

FIGURE 6.35 Power spectrum of GMSK signal for GSM wireless communications.
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where i = 1, 2, ..., M, and the carrier frequency f, = #./2T for some fixed integer #..
The transmitted symbols are of equal duration T and have equal energy E. Since the
individual signal frequencies are separated by 1/2T Hz, the signals in Equation (6.137) are
orthogonal; that is

T
L s;{t)s;(t) dt = 0, i#j (6.138)

This property of M-ary FSK suggests that we me;y use the transmitted signals s,(z)
themselves, except for energy normalization, as a complete orthonormal set of basis func-
tions, as shown by

éilt) = %sim,' 0= (6.139)

Accordingly, the M-ary FSK is described by an M-dimensional signal-space diagram.

For coherent M-ary FSK, the optimum receiver consists of a bank of M correlators
or matched filters, with the ¢;(z) of Equation (6.139) providing the pertinent reference
signals. At the sampling times ¢ = T, the receiver makes decisions based on the largest
matched filter output in accordance with the maximum likelihood decoding rule. An exact
formula for the probability of symbol error is howeyer difficult to derive for a coherent
M-ary FSK system. Nevertheless, we may use the union bound of Equation (5.96) of
Chapter 3 to place an upper bound on the average probability of symbol error for M-ary
FSK. Specifically, noting that the minimum distance d,,;, in M-ary FSK is V2E, the use of
Equation (5.96) yields (assuming equiprobable symbols)-

1 fE\
P, = 5 (M~ 1) erfc( 2_No> (6.140)

For fixed M, this bound becomes increasingly tight as E/N, is increased. Indeed, it becomes
a good approximation to P, for values of P, = 10~*. Moreover, for M = 2 (i.e., binary
FSK), the bound of Equation (6.140) becomes an equality.

Power Spectra of M-ary FSK Signals

The spectral analysis of M-ary FSK signals'® is much more complicated than that of
M-ary PSK signals. A case of particular interest occurs when the frequencies assigned to
the multilevels make the frequency spacing uniform and the frequency deviation k£ = 0.5.
That is, the M signal frequencies are separated by 1/2T, where T is the symbol duration.
For k& = 0.5, the baseband power spectral density of M-ary FSK signals is plotted in Figure
6.36 for M = 2,4, 8.

Bandwidth Efficiency of M-ary FSK Signals

When the orthogonal signals of an M-ary FSK signal are detected coherently, the
adjacent signals need only be separated from each other by a frequency difference 1/2T so
as to maintain orthogonality. Hence, we may define the channel bandwidth required to
transmit M-ary FSK signals as

B=— (6.141)
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FIGURE 6.36 Power spectra of M-ary PSK signals for M = 2, 4, 8.

For multilevels with frequency assignments that make the frequency spacing uniform and
equal to 1/2T, the bandwidth B of Equation (6.141) contains a large fraction of the signal
power. This is readily confirmed by looking at the baseband power spectral plots shown
in Figure 6.36. From Equation (6.48) we recall that the symbol period T is equal to
T, logs M. Hence, using R, = 1/T, we may redefine the channel bandwidth B for M-ary
FSK signals as

R:M

- 2

Tiog, M (6.142)

The bandwidth efficiency of M-ary signals is therefore
, R

B (6.143)

_2log, M
M

Table 6.6 gives the values of p calculated from Equation (6.143) for varying M.

Comparing Tables 6.4 and 6.6, we see that increasing the number of levels M tends
to increase the bandwidth efficiency of M-ary PSK signals, but it also tends to decrease the
bandwidth efficiency of M-ary FSK signals. In other words, M-ary PSK signals are spec-
trally efficient, whereas M-ary FSK signals are spectrally inefficient.

TABLE 6.6 Bandwidih efficiency of M-ary
FSK signals

M 2 4 8 16 32 64

p (bits/s/Hz) 1 1 0.75 0.5 0.3125 0.1875
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6.6 Detection of Signals with
Unknown Phase

Up to this point in our discussion, we have assumed that the receiver is perfectly synchro-
nized to the transmitter, and the only channel impairment is noise. In practice, however,
it is often found that in addition to the uncertainty due to channel noise, there is also
uncertainty due to the randomness of certain signal parameters. The usual cause of this
uncertainty is distortion in the transmission medium. Perhaps the most common random
signal parameter is the carrier phase, which is especially true for narrowband signals. For
example, transmission over a multiplicity of paths of different and variable lengths, or
rapidly varying delays in the propagating medium from transmitter to receiver, may cause
the phase of the received signal to change in a way that the receiver cannot follow. Syn-
chronization with the phase of the transmitted carrier may then be too costly, and the
designer may simply choose to disregard the phase information in the received signal at
the expense of some degradation in noise performance, A digital communication receiver
with no provision made for carrier phase recovery is said to be noncoherent,

& OPTIMUM QUADRATIC RECEIVER

Consider a binary digital communication system in which the transmitted signal is

2E 0=t=sT
(t) = |[— X 6.144
si(t) = | T COS(ZWﬁt\), =12 ( )

where E is the signal energy, T is the duration of the signaling interval, and the carrier
frequency f for symbol 7 is an integral multiple of 1/2T. The system is assumed to be
noncoherent, in which case the received signal for an AWGN channel may be written in
the form ’
= =
x(t) = \/E cos(2mfit+ 6) + w(z), 0 =t=T (6.145)
T i=1,2,
where 8 is the unknown carrier phase, and w(¢) is the sample function of a white Gaussian
noise process of zero mean and power spectral density Ny/2. In a real-life situation it is
realistic to assume complete lack of prior information about 8 and to treat it as a random
variable with uniform distribution:

1
folt) = {207 T TSE=T (6.146)
0, otherwise

The binary detection problem to be solved may now be stated as follows:

Given the received signal x(t) and confronted with the unknown carrier phase 6,
design an optimum receiver for detecting symbol s; represented by the signal com-
ponent VVE/2T cos(2mft + 6) that is contained in x(¢).

Proceeding in a manner similar to that described in Sections 5.3~5.6, we may formulate
the conditional likelibood function of symbol s;, given the carrier phase 6, as

T
L{s;(8) = exp( ’NLOTJ;J x(t) cos(2mfit + 6) dt) (6.147)
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To proceed further, we have to remove dependence of L(s;(6)) on phase 8, which is achieyeq
by integrating it over all possible values of . We may thus write

f Lis
- (6.143)
l f ) cos(2mfit + 6) dt) de

Note that the dependence on 6 was removed by integrating the likelihood function apq
not the log-likelihood function.
Using a well-known trigonometric formula, we may expand cos(27fit + 6) as

cos(2mft + ) = cos(2mfit) cos & — sin{2afit) sin 6

Correspondingly, we may rewrite the integral in the exponent of Equation (6.148) as
T T T
J’o x(t) cos(2fit + 6) dt = cos @ J’o x(t) cos(2mfit) dt — sin F)L x(t) sin(2wf¥) dt (6‘149)

Define

2 12

T T 2
I = [(J; x(t) gos(Zﬁﬁt) dt) + (J; x(t) sin(2wft) dt) :| (6.150)

f x(t) sin(2wft) dt
1| Jo

B, = tan—! | 22 (6.151)
J;) x(t) cos(2mft) dt
Hence, we may go one step further and simplify Equation {(6.149) to
T
f x{t) cos{2mfit + 6) dt = l,{cos 0 cos B; — sin 8 sin §;)
0 (6.152)

= [, cos(f + B;)

~ Accordingly, using Equation (6.152) in Equation (6.148), we obtain

1 ("
Ay +
Lis) = 5~ eXP(\/; L; cos(® ﬁ{))

1 T+ B; E

T2 ‘ 6.153)
27 )+ CXP<\/I;" lx cos 9) de (
1 [7 E

=5 eXp(\/N:OT:l‘ cos 6) do

From Appendix 3 on Bessel functions, we immediately recognize the integral of Equa-
tion (6.153) as the modified Bessel function of zero order:

['E 1 (" [E
=] == SN 6.154
I"( NoT l’) 27 ) e"P( NoT h cos 6) do (
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Hence, we may express the likelihood function for the signal detection problem described

herein in the compact form
E
Lis) = Io( /N—OT l,-) (6.155)

The binary hypothesis test (i.e., the hypothesis that signal s,(¢) or signal s,(¢) was
transmitted) can now be written as

E \H E
10( Zmll) = 10( /N—OT 12) (6.156)

where hypothesis H, and H, correspond to signals s,(¢) and s,(¢), respectively. From Ap-
pendix 3 we note that the modified Bessel function I(-) is a monotonically increasing func-
tion of its argument. Hence the hypothesis test can be carried out in terms of either
Io(VEIN,TI) or simply I;. For convenience of implementation, however, the hypothesis
test is carried out in terms of Z instead of /;, as shown by
Hy N
r=p (6.157)
H,
A receiver based on Equation (6.157) is known as the quadratic receiver. In light of the
definition of /; given in Equation (6.150), the receiver structure for computing /; is as shown
in Figure 6.374. Note that the test described in Equation (6.157) is independent of the
symbol energy E. It is for this reason that this hypothesis test is said to be uniformly most
powerful with respect to the symbol energy E.

2 Two EQUIVALENT FORMS OF THE QUADRATIC RECEIVER

We next derive two equivalent forms of the quadrature receiver shown in Figure 6.37a.
The first form is obtained easily by replacing each correlator in Figure 6.374 with a cor-
responding equivalent matched filter. We thus obtain the alternative form of quadrature
receiver shown in Figure 6.375. In one branch of this receiver, we have a filter matched
to the signal cos(27£¢), and in the other branch we have a filter matched to sin(27fz),
both of which are defined for the time interval 0 = ¢ = T, The filter outputs are sampled
at time ¢ = T, squared, and then added together.

To obtain the second equivalent form of the quadrature receiver, suppose we have
a filter that is matched to s(2) = cos(2mf;t + 6) for 0 = ¢ = T. The envelope of the matched
filter output is obviously unaffected by the value of phase #. Therefore, for convenience, we
may simply choose a matched filter with impulse response cos[27f(T — )], corresponding
to 6 = 0. The output of such a filter in response to the received signal x() is given by

T
yt) = f x(7) cos[2mfi(T — ¢t + 7)) dr
0 , . (6.158)
= cos[27f(T — t)] fo x(1) cos(2mfir) dr — sm[2wf(T — t)] fo x(7) sin2mfir) dr

The envelope of the matched filter output is proportional to the square root of the sum of
the squares of the integrals in Equation (6.158). The envelope, evaluated at time ¢ = T, is

therefore
T F T 2412
I, = {[L x(7) cos(2mfir) dr:l + [J; x(7) sin(2wfir) d*r:l } (6.159)
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FIGURE 6.37 Noncoherent receivers. (a) Quadrature receiver using correlators. (b) Quadrature
receiver using matched filters. (c) Noncoherent matched filter.

But this is just the output of the quadrature receiver. Therefore, the output (at time T) of
a filter matched to the signal cos(2mfi + 6), of arbitrary phase 8, followed by an envelope
detector is the same as the corresponding output of the quadrature receiver of Figure 6.374.
This form of receiver is shown in Figure 6.37¢. The combination of matched filter and
envelope detector shown in Figure 6.37¢ is called a noncoberent matched filter.

The need for an envelope detector following the matched filter in Figure 6.37¢ may
also be justified intuitively as follows. The output of a filter matched to a rectangular RF
wave reaches a positive peak at the sampling instant ¢ = T. If, however, the phase of the
filter is not matched to that of the signal, the peak may occur at a time different from the
sampling instant. In actual fact, if the phases differ by 180 degrees, we get a negative p‘{ﬂk
at the sampling instant. Figure 6.38 illustrates the matched filter output for the two limiting
conditions: 8 = 0 and 8 = 180 degrees. To avoid poor sampling that arises in the absencé
of prior information about the phase 6, it is reasonable to retain only the envelope of the
matched filter output, since it is completely independent of the phase mismatch 6.
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FIGURE 6.38 Output of matched filter for a rectangular RF wave: (a) 6 = 0, and (b) 6 = 180
degrees.

| 6.7 Noncoherent Orthogonal Modulation

With the noncoherent receiver structures of Figure 6.37 at our disposal, we may now
proceed to study the noise performance of noncoherent orthogonal modulation that in-
cludes two noncoherent receivers as special cases: noncoherent binary frequency-shift key-
ing and differential phase-shift keying.

Consider a binary signaling scheme that involves the use of two orthogonal signals
$1(¢) and s,(2), which have equal energy. During the interval 0 = 7 < T, one of these two
signals is sent over an imperfect channel that shifts the carrier phase by an unknown
amount. Let g(f) and g,(¢) denote the phase-shifted versions of s,(¢) and 55(2), respectively.
It is assumed that the signals g,(¢) and g,(#) remain orthogonal and have the same energy
E, regardless of the unknown carrier phase. We refer to such a signaling scheme as #o#n-
coherent orthogonal modulation. Depending on how we define the orthogonal pair of
signals s,(¢) and s,(¢), noncoherent binary FSK and DPSK may be treated as special cases
of this modulation scheme.

The channel also introduces an additive white Gaussian noise w(t) of zero mean and

power spectral density No/2. We may thus express the received signal x(z) as
(t) = &i(t) + wlt), s(tysent, 0 =¢t=<T (6.160)
&(8) + wit), 52ty sent, 0=t =<T

The requirement is to use x(¢) to discriminate between s51(t) and s,(t), regardless of the
carrier phase.
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For this purpose, we employ the receiver shown in Figure 6.39a. The receiver congjg,
of a pair of filters matched to the transmitted signals s,(¢) and s;(). Because the cmi:
phase is unknown, the receiver relies on amplitude as the only possible discriminant, Acf
cordingly, the matched filter outputs are envelope detected, sampled, and then compareq
with each other. If the upper path in Figure 6.394 has an output amplitude [; greater thy,
the output amplitude I, of the lower path, the receiver makes a decision in favor of s1(8)
If the converse is true, it decides in favor of s,(¢). When they are equal, the decision ma):
be made by flipping a fair coin. In any event, a decision error occurs when the matcheg
filter that rejects the signal component of the received signal x(£) has a larger output ayy,.
plitude (due to noise alone) than the matched filter that passes it.

From the discussion presented in Section 6.6, we note that a noncoherent marcheq
filter (constituting the upper or lower path in the receiver of Figure 6.39a) may be viewed
as being equivalent to a quadrature receiver. The quadrature receiver itself has two chap.
nels. One version of the quadrature receiver is shown in Figure 6.39b. In the upper channel,
called the in-phase channel, the received signal x(t) is correlated with the function y(s)
which represents a scaled version of the transmitted signal s,(£) or s(¢) with zero carrie;
phase. In the lower channel, called the guadrature channel, on the other hand, x{) i

Sample at
t=T
Filter matched 5. Envelope
to ;) detector [0 7
I
11, > 1,
0] Comparison choose (1),
* device
i <l
choose 5,(f).

[
Filter matched Envelope N
to 55} detector

Sample at
t=T
(a)
S oxg
fT & T | square-law
0 device
In-phase channel
[20)
Square
He) —> rooter i
fT &t *0i | square-law
0 device
n Quadrature channel
(7o)

]

FIGURE 6.39 (a) Generalized binary receiver for noncoherent orthogonal modulation. b Quad-
rature receiver equivalent to either one of the two matched filters in part (2); the indexi = L2
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correlated with another function ¢;(¢), which represents the version of y;(t) that results
from shifting the carrier phase by —90 degrees. Naturally, ;(z) and (¢} are orthogonal
to each other.

The signal ¢;(z) is in fact the Hilbert transform of {t); the Hilbert transform is
discussed in Appendix 2. To illustrate the nature of this relationship, let

Ui(t) = m(t) cos(2mfit) (6.161)

where m(t) is a band-limited message signal. Typically, the carrier frequency f; is greater
than the highest frequency component of #(¢). Then (in a manner similar to the discussion
on CAP presented in Section 6.4) the Hilbest transform of y;(¢) is defined by

~

Bilt) = m(2) sin2mf) (6.162)

Since .
s .
cos(lﬂ’f,-t - E) = sin(2wft)

we see that ¢;(z) is indeed obtained from w;(¢) by shifting the carrier cos(2mfi) by —90
degrees. An important property of Hilbert transformation is that a signal and its Hilbert
transform are orthogonal to each other. Thus, ;(2) and i;(¢) are orthogonal to each other,
as already stated.

The average probability of error for the noncoherent receiver of Figure 6.394 is given
by the simple formula

P, == exp(—i) (6.163)

where E is the signal energy per symbol, and Ny/2 is the noise spectral density.

2 DERIVATION OF EQUATION (6.163)*

To derive the formula of Equation (6.163), we make use of the equivalence depicted in
Figure 6.39. In particular, we observe that since the carrier phase is unknown, noise at the
output of each matched filter in Figure 6.394 has two degrees of freedom, namely, in-phase
and quadrature. Accordingly, the noncoherent receiver of Figure 6.394 has a total of four
noisy parameters that are conditionally independent given the phase 6, and also identically
distributed. These four noisy parameters have sample values denoted by x4, xg1, %12, and
% gg; the first two account for degrees of freedom associated with the upper path of Figure
6.39a, and the latter two account for degrees of freedom associated with the lower path.

The receiver of Figure 6.39a has a symmetric structure. Hence, the probability of
choosing s,(t), given that s;(¢) was transmitted, is the same as the probability of choosing
s,(t), given that s,(t) was transmitted. This means that the average probability of error
may be obtained by transmitting s,(¢) and calculating the probability of choosing s,(t), or
vice versa, assuming that s;() and s,(¢) are equiprobable.

Suppose that signal s,(¢) is transmitted for the interval 0 = ¢ = T. An error occurs if
the channel noise w(t) is such that the output /, of the lower path in Figure 6.394 is greater
than the output /; of the upper path. Then the receiver makes a decision in favor of s,(t)

*Readers who are not interested in the formal derivation of Eq. (6.163) may at this point wish to move on to
the treatment of noncoherent binary frequency-shift keying (in Section 6.7} and differential phase-shift keying
{in Section 6.8) as special cases of noncoherent orthogonal modulation, without loss of continuity.
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FIGURE 6.40 Geometric interpretations of the two path outputs I, and I, in the generalized nop.
coherent receiver.

rather than s,(¢). To calculate the probability of error so made, we must have the proha-
bility density function of the random variable L, (represented by sample value L,). Since
the flter in the lower path is matched to s,(2), and s,(2) is orthogonal to the transmitted
signal s,(z), it follows that the output of this matched filter is due to noise alone. Let x,,
and x;, denote the in-phase and quadrature components of the matched filter output in
the lower path of Figure 6.39a. Then, from the equivalent structure depicted in Figure
6.39b, we see that (for i = 2)

L=Vt + x (6.164)

Figure 6.404 shows a geometric interpretation of this relation. The channel noise w/(1) is
both white (with power spectral density No/2) and Gaussian (with zero mean). Corre-
spondingly, we find that the random variables X1, and X,; {represented by sample values
xp, and xg;) are both Gaussian-distributed with zero mean and variance No/2, given the
phase #. Hence, we may write

1 2
Fxalen) = == exr’(-%i) (6.165)
0

and

1 x%
Froalxga) = v —a exp(—Ni;) (6.166)
Next, we use a well-known result in probability theory, namely, the fact that the envelope
of a Gaussian process is Rayleigh-distributed and independent of the phase 8 (see Section
1.12). Specifically, for the situation at hand, we may state that the random variable L;
[whose sample value /; is related to x;; and xg. by Equation (6.164)] has the following
probability density function:

2 e B L=0
Frll) = 1N "N, 2T (6.167)
0, elsewhere

Figure 6.41 shows a plot of this probability density function. The conditional probability
that I, > I,, given the sample value /,, is defined by the shaded area in Figure 6.41. Hence,
we have

P> b1 = || Fuh) dh (6168
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FIGURE 6,41 Calculation of the conditional probability that I, > 1,, given I,.

Substituting Equation (6.167) into Equation (6.168) and integrating, we get

2
P, > L|L) = exp(—liz—lo) (6.169)

Consider next the output amplitude /;, pertaining to the upper path in Figure 6.394. Since
the filter in this path is matched to s,(¢), and it is assumed that s,(¢) is transmitted, it
follows that ; is due to signal plus noise. Let xy and xg, denote the components at the
output of the matched filter (in the upper path of Figure 6.39a) that are in phase and in
quadrature with respect to the received signal, respectively. Then from the equivalent struc-
ture depicted in Figure 6.39b, we see that (fori = 1)

L=Vaj + x, (6.170)

Figure 6.40b presents a geometric interpretation of this relation. Since a Fourier-
transformable signal and its Hilbert transform form an orthogonal pair, it follows that x;
is due to signal plus noise, whereas x¢; is due to noise alone. This means that (1) the
random variable X, represented by the sample value x;; is Gaussian distributed with mean
VE and variance Ny/2, where E is the signal energy per symbol, and (2) the random
variable X, represented by the sample value x; is Gaussian distributed with zero mean
and variance Ny/2. Hence, we may express the probability density functions of these two
independent random variables as follows:

- 1 (xnn — \/E)Z
fX“(xll) - \/W—I\IC. exp(i No ) (6.171)
and
1 2,
Fxp(®on) = v eXP(AxFQO) (6.172)

Since the two random variables Xj; and Xy, are independent, their joint probability den-
sity function is simply the product of the probability density functions given in Equations
(6.171) and (6.172).

To find the average probability of error, we have to average the conditional proba-
bility of error given in Equation (6.169) over all possible values of I;. Naturally, this
calculation requires knowledge of the probability density function of random variables L,
represented by sample value /;. The standard method is now to combine Equations (6.171)
and (6.172) to find the probability density function of L, due to signal plus noise. However,
this leads to rather complicated calculations involving the use of Bessel functions. This
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analytic difficulty may be circumvented by the following approach. Given x;; and x o1
error occurs when, in Figure 6.39a, the lower path’s output amplitude [, due to noise al,
exceeds /; due to signal plus noise; from Equation (6.170) we have

an
Ong

l% = x%l + xZQj (6173)

The probability of such an occurrence is obtained by substituting Equation (6.173) inty
Equation (6.169), as shown by

x4 + xi
N Ql) (6.174)

Pletror|xyy, xgq) = exp(f N
o

This is now a conditional probability of error, conditional on the output of the matcheq
filter in the upper path taking on values X;; and X;. This conditional probability my].
tiplied by the joint probability density function of X;; and Xg, is then the error-dengy,
given xp, and xg,. Since Xp; and X are statistically independent, their joint probabilir;
density function equals the product of their individual probability density functions. The
resulting error-density is a complicated expression in xy; and xo,. However, the average
probability of error, which is the issue of interest, may be obtained in a relatively simple
manner. We first use Equations (6.171), (6.172), and (6.174) to evaluate the desired erro-
density as

Plerror | x11, %o1)fxy, (1) xg, (X 01)

1 1
- TNO exp{—ﬁo [x% + ngj + (xp — VEY? + xél]}

(6.175)

Completing the square in the exponent of Equation (6.175), we may rewrite the exponent
except for ~1/Nj as
2 2 2 2 E : 2 E
2o+ xby + (oo = VEP + 2y =2 xn — | +2xb +5 (6176)

Next, we substitute Equation (6.176) into Equation {6.175) and integrate the error-density
over all x;; and xg;. We thus evaluate the average probability of error as

P, = j_m j_w P(error|xn, le)fxn(xn)fol(le) dxpy dxg1

1 E j“‘ 2 VE\?
= _ — - 6.177
N, exp( ZNO) . eXP|: N, (xn ) dxy ( )
- 252
. j_m exp(— ;[?) dxcn

We now use the following two identities:

Ji e}n{p|:—Ni0 (xn - ?) ] dxp = /NZLW (6.178)

= 2x7 No7
Lm exp(— ;[fl) dxg: = —;1-_ (6.179)

The identity of Equation (6.178) is obtained by considering a Gaussian-distributed variable
with mean VE/2 and variance Ny/4, and recognizing that the total area under the curv
of a random variable’s probability density function equals unity; the identity of Equatiot

and
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(6.179) follows as a special case of Equation (6.178). Thus, in light of these two identities,
Equation (6.177) simplifies as follows:

1 E
PE - 2 eXp(_Z_NO)
which is the desired result presented previously as Equation (6.163).

With this formula at our disposal, we are ready to consider noncoherent binary FSK
and DPSK as special cases, which we do in the next two sections, respectively.!

6.8 Noncoherent Binary

Frequency-Shift Keying
In the binary FSK case, the transmitted signial is defined by
o .
—— ¢co it 0=t=T,
st = |y T, o@Th: PES (6.180)
0, elsewhere

where the carrier frequency f; equals one of two possible values, £, and f; to ensure that
the signals representing these two frequencies are orthogonal, we choose f; = ,/T),, where
n; is an integer. The transmission of frequency f; represents symbol 1, and the transmission
of frequency f, represents symbol 0. For the noncoherent detection of this frequency-
modulated wave, the receiver consists of a pair of matched filters followed by envelope
detectors, as in Figure 6.42. The filter in the upper path of the receiver is matched to
cos(27fit), and the filter in the lower path is matched to cos(2mft), and in both cases
0 =t = T,. The resulting envelope detector outputs are sampled at ¢ = T, and their
values are compared. The envelope samples of the upper and lower paths in Figure 6.42
are shown as I; and L, respectively. Then, if /; > I, the receiver decides in favor of symbol
1, and if [; < L, it decides in favor of symbols 0. If /; = b, the recciver simply makes a
guess in favor of symbol 1 or 0.

The noncoherent binary FSK described herein is a special case of noncoherent or-
thogonal modulation with T = T, and E = E,, where Ty, is the bit duration and E; is the

- Sample at
Filter times=T,
matched to Envelope
ﬁ cos (2mf,8) detector °
0<r<T,
i
11, > 1,
Comparison choose 1.
x(t) =g depvice
Il <,
choose 0.
Filter Iy
matched to
Envelope
> cos (2afyt
2afy1) detector Sample at
0<¢<T timer=T,

FIGURE 6.42 Noncoherent receiver for the detection of hinary FSK signals.
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signal energy per bit. Hence, using (Equation (6.163), we find that the bit error raze for
noncoherent binary FSK is

p Lo f B
. = 5 €Xp 2N, {6.181)

The formula of Equation (6.181) is derived as a special case of noncoherent orthogon|
modulation. In Problem 6.31 we address the same issue using a direct approach thy;
invokes the application of Rayleigh and Rician distributions; these distributions pertaj
respectively to the random variables I, and L, whose sample values are defined by Bqua.
tions (6.164) and (6.170), respectively.

I 6.9 Differential Phase-Shift Keying

As remarked earlier in Section 6.1, we may view differential phase-shift keying (DPSK) a5
the noncoherent version of PSK. It eliminates the need for a coherent reference signal at
the receiver by combining two basic operations at the transmitter: (1) differential encoding
of the input binary wave and (2) phase-shift keying—hence, the name, differential phase-
shift keying (DPSK). In effect, to send symbol 0, we phase advance the current signal
waveform by 180 degrees, and to send symbol 1 we leave the phase of the current signal
waveform unchanged. The receiver is equipped with a storage capability, so that it can
measure the relative phase difference between the waveforms received during two succes-
sive bit intervals. Provided that the unknown phase § contained in the received wave varies
slowly (that is, slow enough for it to be considered essentially constant over two bit inter-
vals), the phase difference between waveforms received in two successive bit intervals will
be independent of 6.

DPSK is another example of noncoherent orthogonal modulation, when it i
considered over two bit intervals. Suppose the transmitted DPSK signal equals
VE 2T, cos2mft) for 0 =t < T, where T} is the bit duration and E, is the signal
energy per bit. Let s;(t) denote the transmitted DPSK signal for 0 = z < 2T, for thecase
when we have binary symbol 1 at the transmitter input for the second part of this interval,
namely, T, =< ¢ = 2T5. The transmission of symbol 1 leaves the carrier phase unchanged
over the interval 0 = t = 2T, and so we define s,(z) as

% cos(27f.t), 0=t=T,
sty = i (6.182)

E
2—Tbb cos@mft), Tp=t=2T,

Let s,(#) denote the transmitted DPSK signal for 0 = £ = 2T, for the case when we have
binary symbol O at the transmitter input for T, = ¢ = 27T,. The transmission of 0 advances
the carrier phase by 180 degrees, and so we define s,{¢) as

ZETb cos{2mf.t), O0=t=T,
i) = i (6.183)

E b

2T,

cos(2mf.t + ), T, <t=2T,
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We readily see from Equations (6.182) and (6.183) that s4(¢) and s,(¢) are indeed orthog-
onal over the two-bit interval 0 = ¢ =< 2T,. In other words, DPSK is a special case of
noncoherent orthogonal medulation with T = 2T, and E = 2E,. Hence, using Equation
(6.163), we find that the bit error rate for DPSK is given by

P, =5 exp(——) (6.184)

which provides a gain of 3 dB over noncoherent FSK for the same E,/No.

Generation and Detection of DPSK

The next issue to be considered is'the generation of DPSK signals. The differential
encoding process at the transmitter input starts with an arbitrary first bit, serving as ref-
erence. Let {d,} denote the differentially encoded sequence with this added reference bit.
We now introduce the following definitions in the generation of this sequence:

» If the incoming binary symbol b, is 1, leave the symbol d, unchanged with respect
to the previous bit.

& If the incoming binary symbol b, is 0, change the symbol d, with respect to the
previous bit.

The differentially encoded sequence {d,} thus generated is used to phase-shift a carrier
with phase angles 0 and 7 radians representing symbols 1 and 0, respectively. The
differential-phase encoding process is illustrated in Table 6.7. Note that d; is the comple-
ment of the modulo-2 sum of b, and d,_;. -

The block diagram of a DPSK transmitter is shown in Figure 6.43a. It consists, in
part, of a logic network and a one-bit delay element interconnected so as to convert the
raw binary sequence {b,} into a differentially encoded sequence [d,}. This sequence is
amplitude-level encoded and then used to modulate a carrier wave of frequency f,, thereby
producing the desired DPSK signal.

Suppose next, in differentially coherent detection of binary DPSK, the carrier phase
is unknown. Then, in light of the receiver being equipped with an in-phase and a quad-
rature channel, we have a signal space diagram where the received signal points are
(A cos 8, A sin ) and (—A cos A, —A sin 8), with 6 denoting the unknown phase and A
denoting the amplitude. This geometry of possible signals is illustrated in Figure 6.44. The
receiver measures the coordinates (x;,, xo,) at time ¢ = T, and (x,, xg,) at time £ = 2T}.
The issue to be resolved is whether these two points map to the same signal point or
different ones. Recognizing that the two vectors x, and x,, with end points (x;, xg,) and
{x1,, xg,) are pointed roughly in the same direction if their inner product is positive, we
may formulate the hypothesis test as follows:

Is the inner product x}x; positive or negative?

§ TaBLE 6.7 Illustrating the generation of DPSK signal

{be} 1 0 0 1 0 0 1 1

{de_1} 1 1 0 1 1 0 1 1

Differentially encoded 1 1 0 1 1 0 1 1 1
sequence {d,}

Transmitted phase 0 0 T 0 0 T 0 0 0
(radians)
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FIGURE 6.43 Block diagrams of (a) DPSK transmitter and (b) DPSK receiver.

Accordingly, we may write

say 1
XX, T X0X0, 20 0 (6.185)
say

We now note the following identity:

1
% Wy ) = (g, = !+ (g, + 00)" = (o = %ol

Hence substituting this identity into Equation (6.185 ) and multiplying both sides of the
test by 4, we get the equivalent test:

X151y + XoXg,

say 1

(xlo + x11>2 + (xQn + xQ1)2 - (on - x11)2 - (xQU - x“)z =
say 0

(6.186)

The decision-making process may therefore be thought of as testing whether the point
(%1, %) 18 closer to (x,, xg,) or its image (—x1,, —Xg,}
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FIGURE 6.44 Signal-space diagram of received DPSK signal.

Thus, the optimum receiver'® for differentially coherent detection of binary DPSK is
as shown in Figure 6.43b, which follows directly from Equation (6.185). This implemen-
tation merely requires that sample values be stored, thereby avoiding the need for fancy
delay lines that may be needed otherwise. The equivalent receiver implementation that
tests squared elements as in Equation (6.186) is more complicated, but its use makes the
analysis easier to handle in that the two signals to be considered are orthogonal over the
interval (0, 2T); hence, the noncoherent orthogonal demodulation analysis applies.

6.10 Comparison of Digital Modulation
Schemes Using a Single Carrier

@ PROBABILITY OF ERROR

In Table 6.8 we have summarized the expressions for the bit error rate (BER) for coherent
binary PSK, conventional coherent binary FSK with one-bit decoding, DPSK, noncoherent
binary FSK, coherent QPSK, and coherent MSK, when operating over an AWGN channel.
In Figure 6.45 we have used the expressions summarized in Table 6.8 to plot the BER as
a function of the signal energy per bit-to-noise spectral density ratio, E,/Nj.

¢ TABLE 6.8 Summary of formulas
for the bit error rate of different
¢ digital modulation schemes

Signaling Scheme Bit Error Rate
(a) Coherent binary PSK
Coherent QPSK 2 erfc{VE,/Ny)
Coherent MSK
(b) Coherent binary FSK L eric{VE,/2N,)
(c) DPSK 2 exp(—E,/Ny)

(d) Noncoherent binary FSK 2 exp(— E4/2Np)
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FIGURE 6.45 Comparison of the noise performance of different PSK and FSK schemes.

Based on the performance curves shown in Figure 6.45, the summary of formulas
given in Table 6.8, and the defining equations for the pertinent modulation formats, we
can make the following statements:

1. The bit error rates for all the systems decrease monotonically with increasing values

of E,/Ny; the defining curves have a similar shape in the form of a waterfall.

For any value of E,/Ny, coherent binary PSK, QPSK, and MSK produce a smaller

bit error rate than any of the other modulation schemes.

3. Coherent binary PSK and DPSK require an E,/N, that is 3 dB less than the cotre-
sponding values for conventional coherent binary FSK and noncoherent binary FSK,
respectively, to realize the same bit error rate.

4. At high values of E, /Ny, DPSK and noncoherent binary FSK perform almost as well
(to within about 1 dB) as coherent binary PSK and conventional coherent binary
FSK, respectively, for the same bit rate and signal energy per bit.

5. In coherent QPSK, two orthogonal carriers V2/T cos(27f.t) and V2/T sin(27ft)
are used, where the carrier frequency f. is an integer multiple of the symbol rate

2



6.10 Comparison of Digital Modulatien Schemes 419

1/T, with the result that two independent bit streams can be transmitted simulta-
neously and subsequently detected in the receiver.

6. In the case of coherent MSK, there are two orthogonal carriers, namely,
V2T, cos(2mf.t) and V2/T, sin{27f.t), which are modulated by the two antipodal
symbol shaping pulses cos(7#/2T,} and sin(wt/2T,), respectively, over 2T}, intervals,
where T, is the bit duration. Correspondingly, the receiver uses a coherent phase
decoding process over two successive bit intervals to recover the original bit stream.

7. The MSK scheme differs from its counterpart, the QPSK, in that its receiver has
memory. In particular, the MSK receiver makes decisions based on observations over
two successive bit intervals. Thus, although the transmitted signal has a binary for-
mat represented by the transmission of two distinct frequencies, the presence of mem-
ory in the receiver makes it assume a two-dimensional signal space diagram. There
are four message points, depending on which binary symbol (0 or 1) was sent and
the past phase history of the FSK signal.

8 BANDWIDTH EFFICIENCY OF M-ARY DicITAL MODULATION TECHNIQUES

In Table 6.9, we have summarized typical values of power-bandwidth requirements for
coherent binary and M-ary PSK schemes, assuming an average probability of symbol error
equal to 107* and the systems operating in identical noise environments. This table shows
that, among the family of M-ary PSK signals, QPSK (corresponding to M = 4} offers the
best trade-off between power and bandwidth requirements. For this reason, we find that
QPSK is widely used in practice. For M > 8, power requirements become excessive; ac-
cordingly, M-ary PSK schemes with M > 8 are not as widely used in practice. Also, co-
herent M-ary PSK schemes require considerably more complex equipment than coherent
binary PSK schemes for signal generation or detection, especially when M > 8. (Coherent
8-PSK is used in digital satellite communications.)

Basically, M-ary PSK and M-ary QAM have similar spectral and bandwidth char-
acteristics. For M > 4, however, the two schemes have different signal constellations. For
M-ary PSK the signal constellation is circular, whereas for M-ary QAM it is rectangular.
Moreover, a comparison of these two constellations reveals that the distance between the
message points of M-ary PSK is smaller than the distance between the message points of
M-ary QAM, for a fixed peak transmitted power. This basic difference between the two
schemes is illustrated in Figure 6.46 for M = 16. Accordingly, in an AWGN channel,
M-ary QAM outperforms the corresponding M-ary PSK in error performance for M > 4.

TABLE 6.9 Comparison of power-bandwidih
requirements for M-ary PSK with binary
PSK. Probability of symbol error = 10~*

(Bandwidth) .oy (Average power)yary
Value of M (Bandwidth)pin.r, (Average power)yiar,

4 0.5 0.34 dB
8 0.333 3.91dB
16 0.25 8.52 dB
32 0.2 13.52 dB

From Shanmugan (1979, p. 424).
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FIGURE 6.46 Signal constellations for () M-ary PSK and (b) corresponding M-ary QAM, for
M = 16.

However, the superior performance of M-ary QAM can be realized only if the channe]
free of nonlinearities. ‘

As for M-ary FSK, we find that for a fixed probability of error, increasing M results
in a reduced power requirement. However, this reduction in transmitted power is achieved
at the cost of increased channel bandwidth. In other words, M-ary FSK behaves in an
opposite manner to that of M-ary PSK. We will revisit this issue in an information-
theoretical context in Chapter 9, and thereby develop further insight into the contrasting
behaviors of M-ary PSK and M-ary FSK.

Voiceband Modems

The “modem,” a contraction of the term modulator-demodulator, is a conversion device
that facilitates the transmission and reception of data over the public switched telephone
network (PSTN).*® The data of interest may be digital signals generated by computers or
service providers. In such an application, the modulator portion of the modem converts
the incoming digital signal into a standard form suitable for transmission over a telephone
channel in the PSTN. The demodulator portion of the modem receives the channel output
and reconverts it into the original digital signal format. In yet another application, namely,
fax modems, or more precisely modems with facsimile capability, the data may represent
text, graphics, pictures, or combinations thereof. In this latter application, the document
of interest is coded into a series of compressed picture elements (pixels), which are then
transmitted over the telephone channel by modulating their values according to a prede-
fined modulation standard. When the fax modem is in a receiving mode of operation, the
demodulator portion of the modem operates on the received analog signal and decom-
presses the corresponding binary data representation of the demodulated signal into a near
or actual duplicate of the original transmitted image. In what follows, we focus our atten-
tion on modems that provide communication between a user and an Internet Service Pro-
vider (ISP) over the PSTN.

Traditionally, the PSTN has been viewed as an analog network. In reality, howevets
the PSTN as we presently know it has become an almost entirely digital network. In most
cases, the only part of the PSTN that has remained analog (and will likely remain s0 f"‘
many years to come) is the local loop, which represents the relatively short connectiol
from a home to the central office. Thus, depending on how the PSTN is used, we 02y
identify two distinct classes of modem configurations, symmetric and asymumetric, 25 &
scribed next.
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SYMMETRIC MODEM CONFIGURATIONS

The simplest approach to the design of modems is to treat the entire PSTN as a linear
analog network, as indicated in Figure 6.47a4. {(Recall from Chapter 3 that the PSTN is
almost entirely digital due to the use of pulse-code modulation (PCM) for the transmission
of voice signals.) In such a setting, analog-to-digital and digital-to-analog conversions are
needed whenever the modems send signals to and receive signals from the PSTN. The
modem configuration depicted in Figure 6.47a exhibits “symmetry” in that both modems
are identical and the data rate downstream (from the ISP to the user) is exactly the same
as the data rate upstream (from the user to the ISP).

The symmetric modem configuration of Figure 6.47a embodies a large number of
modem types, ranging in data rate from 300 b/s to 36,600 b/s, as summarized in Table
A6.7 on a selection of standard modems. The design of modems began with frequency-
shift keying, which catered to relatively low data rates. As the demand for data transmis-
sion over telephone channels increased, increasingly more sophisticated modulation tech-
niques were employed to better use the information capacity of the telephone channel.

Consider, for example, the popular V.32 modem standard that has the following
characteristics:

Carrier frequency = 1,800 Hz
Modulation rate = 2,400 bauds
Data rate = 9,600 b/s

The signaling data rate of 9,600 b/s assumes a high signal-to-noise ratio. The V.32 standard
specifies two alternative modulation schemes:

Nonredundant coding. Under this scheme, the incoming data stream is divided into
quadbits {i.e., groups of four successive bits} and then transmitted over the telephone
channel as 16-QAM. In each quadbit, the most significant input dibit undergoes
phase modulation, whereas the least significant input dibit undergoes amplitude
modulation. Discussing the phase modulation first, practical considerations favor
the use of differential phase modulation for the receiver need only be concerned with
the detection of phase charges. This matter is taken care of by using a differential
encoder, which consists of a read-only memory and a couple of delay units, as
shown in Figure 6.48a. Let Q; ,Q; ,, denote the current value of the most significant

Upstream Publi Pownstream
User's —> ublic -~ Server's
analog ey tz\?g:zchh;\de oo analog
nalo nalo;
modem 4 network g modem
(a)
Upstream ) Pownstream
User's —> Public -~ Server's
analog — tsevlvt-;t)cnh;de Py digital
nalo; igita
modem g network g modem

(b}

FIGURE 6.47 (a) Environmental overview of symmetric modem configuration: the upstream and
downstream data rates are equal. (b) Environmental overview of “asymmetric” modem configura-
tion: data rate downstream is higher than upstream.
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FIGURE 6.48 Block diagrams of V.32 modem. (s) Nonredundant coding. (b) Trellis coding.

input dibit, and let Iy 1]z =1 denote the previous value of the corresponding dibit
output by the encoder. Then, in response to the dibits Q1 Q5 and I i1l -1, the
differential encoder produces the dibit I, ,I 4, which, in turn, induces a phase change
in the modulated signal. This phase change, measured in the counterclockwise di-
rection, is governed by the Gray coding scheme of Table 6.10. Note that the phase
change is determined entirely by the input dibit Q1,,Qs .- Insofar as the differential
phase modulation is concerned, there is one other matter that needs to be addressed:
a code for identifying the four quadrants of the two-dimensional signal space. This
second matter is resolved by adopting the Gray coding scheme included in Figure
6.49.

Turning next to the amplitude modulation; a code has to. be specified for the
four possible values which the least significant input dibit, denoted by O3, Q4,5 a0
assume in, say, the first quadrant. This matter is taken care of by adopting the Gray
code for the four signal points in the first quadrant shown lightly shaded in Figurt
6.49.

The final issue that needs to be resolved is the 90° rotational invariance, which
is mandated by the use of differential encoding. This form of invariance means thf
the overall M-ary QAM constellation looks exactly the same when it is rotated
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TARLE 6.10 Phase changes
induced by differential encoding
in the V.32 modem due to varying

input dibits

Current input dibit
_— Phase change
Qin Qe (degrees)

0 0 90

0 1 0

1 0 180

1 1 270

through an integer multiple of 90 degrees, regardless of whether it is coded or un-
coded; then the receiver can correctly decode the transmitted message sequence when
the local oscillator phase differs from the carrier phase by an integer multiple of 90
degrees. This final requirement is satisfied by filling in the Gray codes for the signal
points in the remaining three quadrants in the manner shown in Figure 6.49. Dashed
arrows are included in Figure 6.49 to illustrate the 90° rotational invariance.

Putting all of these matters together for the combined amplitude and phase
modulation, we get the 16-QAM constellation shown previously in Figure 6.17a,
which is reproduced here as Figure 6.50a. Correspondingly, the encoding system
consists of a differential encoder followed by a 16-point signal-space mapper, as
shown in Figure 6.484. The V.32 modem so configured is said to be nonredundant
because, with 16 constellation points, the transmitted 4-bit code word has 7o redun-
dant bits.

121

FIGURE 6.49 Illustrating the Gray encoding of the four quadrants and dibits in cach quadrant
for the V.32 modem. The dashed arrows illustrate the 90° rotational invariance.
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FIGURE 6.50 (a) Signal constellation of V.32 modem using nonredundant coding. (b) Signal
constellation of V.32 modem using trellis coding. .

As an illustrative example of how this particular V.32 modem operates, let the cur-
rent group of four input bits be 1001 and the dibit previously output by the modem be
11. For this example, we thus have

Q1,nQ2,n =10
Q3,er4,n =01
Il,n—lIZ,n—l =11

Then in light of the coding scheme for the four quadrants specified in Figure 6.49, the
previous output dibit 11 means that the modulator was previously residing in the first
quadrant. Because the corresponding input dibit is 10, it follows from Table 6.10 tharthe
modulator experiences a phase change of 180° in the counterclockwise direction, thereby
switching its operation into the third quadrant identified by the dibit 00. Finally, with the
current value of the least significant dibit Qs ,Q. ., being 01, the modulator outputs 2
QAM signal whose coordinates are 2, = —3 (along the ¢,-axis) and b, = —1 (along the
$,-axis). This output corresponds to the code word 0001.

When the signal-to-noise ratio is not high enough, the V.32 modem switches to ifs
QPSK mode, operating at the reduced rate of 4,800 b/s. In this latter mode of operatiof,
the four states of the modem are signified by the points labeled A, B, C, and D in Figure
6.50a.

Trellis Coding

Trellis coding is a forward-error correction scheme where coding and modulation

are treated as a combined entity rather than as two separate operations. Figure 6480
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shows the encoding system of the V.32 modem with trellis coding. The incoming data
stream is divided into quadbits, but unlike the case of nonredundant coding, they are
transmitted over the channel as a 32-QAM signal.

As indicated in Figure 6.48b, the trellis encoder involves the use of a convolu-
tional encoder, which operates on the output of the differential encoder. (Convolutional
encoders are discussed in Chapter 10.) However, the choice of convolutional encoding is
restricted in the V.32 modem to accommodate the use of differential encoding (i.e., 90
degrees rotational invariance). Indeed, this requirement cannot be satisfied by a linear
convolutional encoder. Rather, the convolutional encoder must be #onlinear;™* see Prob-
lem 10.30.

The data-encoding process in the V.32 modem with trellis coding proceeds in three
stages:

1. The differential encoder in Figure 6.48b, in response to the current input dibit
Q1,nQ3, and the previous differentially encoded dibit I ,,- 112,11, produces the dibit
I .0, .

2. The differentially encoded current dibit I, I, ,, is input to the convolutional encoder
in Figure 6.48b, which produces a three-bit output. One of these bits is a parity-
check bit, denoted by Y, ,,. The value of Y, , depends on the other two bits, Y, .and
Y,..., produced by the convolutional encoder.

3. The bits Yy, Yi . and Y, produced by the convolutional encoder, together with
the least significant input dibit Q3 ,Q, ,, are applied to the signal-space mapper in
Figure 6.48b, which selects one of the states in the 32-point constellation shown in
Figure 6.50b as the modem output.

The parity-check bit Yy, provides a modem with trellis coding better immunity to
channel impairments than a V.32 modem with nonredundant coding, an advantage that
is gained without an increase in bandwidth requirements. In quantitative terms, trellis
coding provides an effective coding gain of 4 dB compared to 16-QAM. Coding gain
expresses how much more signal energy per data bit is needed by the uncoded modem for
the same level of noise performance.

However, for this advantage of trellis coding to be realized in practice, the signal-
to-noise ratio must be high enough. Otherwise, the V.32 modem is switched to its
QPSK mode of operation, which is signified by the four states labeled A, B, C, and D
in Figure 6.50b. In this latter mode of operation, the data rate of the modem is reduced
to 4,800 bis.

% ASYMMETRIC MODEM CONFIGURATIONS

For a more efficient use of the PSTN, we should treat it as what it really is: an almost
entirely digital network that is nonlinear. In particular, since the ISP is digitally imple-
mented, the need for analog-to-digital conversion at the ISP modem is eliminated. This
means that the communication between the ISP and the PSTN can be entirely digital, as
portrayed in Figure 6.47b. However, the user’s modem has to remain analog because the
local loop is analog. This, in turn, requires the use of analog-to-digital and digital-to-analog
conversions each time the user’s modem sends signals to and receives signals from the
PSTN. The modem configuration depicted in Figure 6.47b is “asymmetric” in that it is
possible for the downstream signaling data rate to be much higher than the upstream
signaling data rate, as explained next.
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As mentioned earlier, a digital PSTN is based on the use of PCM for the transmissig,
of voice signals. Features of the system relevant to the present discussion are as follows
(see Chapter 3):

» Data signaling rate of 64 kb/s, which is made up of a sampling rate of 8 kHz 559
the representation of each voice sample by an 8-bit code word.

» Fifteen-segment companding law (e.g., a logarithmic u-law with u = 255) for cop,.
pressing the voice signal at the transmitter and expanding it at the receiver.

From the discussion on PCM presented in Chapter 3 we also recall that quantization only
affects analog-to-digital conversion but ot digital-to-analog conversion. These obsery,.
tions have a profound impact on the optimum strategy for the design of asymmetr
modems.

k Suppose there is no analog-to-digital conversion between a digital modem at the Isp
and the digital portion of the PSTN, and the digitally connected transmitter of the moden
is designed to properly use the nonuniformly spaced 256 (discrete) threshold levels of the
digital PSTN. Then, since digital-to-analog conversion is completely unaffected by quan.
tization noise, it follows that the information transmitted by the ISP’s digital modem
reaches the user’s analog modem with no loss whatsoever. On the basis of these arguments,
in theory, it should be possible to transmit data from the ISP to the user at a rate equalto
the 64 kb/s data rate of the digital PSTN. But system limitations inherent to the PSTN
reduce the attainable data.rate down to 56 kb/s, as explained in the sequel.

Digital Modem

From the description of a PCM voiceband channel presented in Chapter 3, we find
that the design of the digital modem is constrained by three factors not under our control,
The design constraints are:

1. A sampling rate f, = 8 kHz.

2. A set of M = 256 allowable threshold levels built into the construction of the com-
pressor {i.e., transmitter portion of the compander).

3. A baseband (antialiasing) filter of about 3.5 kHz bandwidth, built into the front end
of the PCM transmitter.

In light of these constraints, we may now state the fundamental philosophy underlying the
design of the digital modem as follows:

Design a signal s{z) at the digital modem’s input such that each of its samples taken
at the rate f, = 8 kHz matches one of the M = 256 threshold levels of the com-
pressor, and the transmitted signal satisfies Nyquist’s criterion for zero intersymbol
interference.

(Nyquist’s criterion for zero intersymbol interference was discussed in Chapter 4.}

One Realization of the Digital Modem

A solution to this signal design problem is made particularly difficult by the fact that
the PCM transmit filter has a bandwidth of about 3.5 kHz and not 4 kHz (half the sampling
rate ). The immediate implication of this constraint is that instead of the desired set ©
8,000 samples, we can only generate 2 X 3,500 = 7,000 independent samples every secO
in accordance with Nyquist’s criterion for zero intersymbol interference. How then do We
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FIGURE 6.51 Group of N uniformly spaced samples, repeating every (N + 1)T, seconds.

fit 7,000 independent samples per second within the prescribed framework of 8,000 sam-
ples per second?

To answer this fundamental question, we make use of the recurrent nonuniform
equivalent form of the sampling theorem. To be more specific, consider the situation de-
picted in Figure 6.51, where the samples are divided into groups, with each group con-
taining N uniformly spaced samples, and the groups having a recurrent period of (N + 1)T,
seconds, where T, = 1/f.. The illustration presented in Figure 6.51 is for the problem at
hand: T, = 125 ps and N = 7. The sampling instants in the nonuniform distribution of
Figure 6.51 are written as

ti =1t + (N + DT, (6.187)
k=1,2,...,N

=k~ DT+ (N+ 1L, I=0,=x1,%2,...

The stage is now set for us to define the band-limited signal s(z) as follows:*’

s(e) = I;_: 121 s(te M (2 — (N + 1)IT)) (6.188)

where the interpolation function iy () is itself defined by

B . sm(ﬁ (t—tq)>
il ) : (6.189)

" si il (te — )
- —

q 1n (N T 1),1,; '3 g
Computing Equation (6.189) for N = 7, we obtain the seven standard pulses plotted in

Figure 6.52, where time is normalized with respect to the sampling period T,. These pulses
exhibit the following properties: ' '

# Each standard pulse is normalized so that we have
Lp,z(%) =gk -1)=1 fork=12...,7

Note, however, that the peak of the kth pulse does not occur at time t, = (k — 1)T.
> Fork=1,2,...,7the pulse 4, (+/T.) goes through zero at times ¢ # (k ~ 1)T, modulo
(N + 1), except at those times that are congruent to ¢ = (—~1) modulo (N + 1).

Accordingly, the signaling scheme for the digital modem consists of a recurrent non-
uniform pulse amplitude modulation scheme. The amplitudes of seven uniformly spaced
samples in each group of eight samples are determined by the incoming data stream and
in conformity to the threshold levels of the compressor in the PCM transmitter. In effect,
these seven samples are the independent samples that are responsible for carrying the
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FIGURE 6.52 A digital modem's waveforms of the standard pulses ¢ (t), k=1,2,..., 7

incoming data stream actoss the PSTN every 1,000 us. Morcover, they deliver the datato
the receiver with zero intersymbol interference. The remaining “eighth” samples are com-
pletely determined by the independent samples and known beforehand to the system; they
do not carry information and are therefore discarded at the receiver. Thus the digital
modem is capable of transmitting digital data across the PSTN almost errorless at a rate
equal to 56 kbfs, which is calculated as follows:

7 X 1,000 X log, 256 = 56,000 bfs

One last comment is in order, The standard pulses 1 (£) can be constructed so asto
decay at a rate faster than 1/£. To do so, we simply replace the sinc function in Equation
(6.189) by a Nyquist pulse with a rolloff in a manner similar to that described in Chap-
ter 4.

Amnother Realization of the Digital Modem

The kind of digital modem just described is bidirectional, assuming that both E‘}ds
of the data link are analog. However, a simpler solution to the digital modem demgll;
problem ensues when one end of the link is digital and asymmetric data rates are possible:

Consider what happens when a data sequence consisting of octets (i.e., 8-bit codé
words) arrives at the PSTN. There they will be treated as octets representing speech en
coded in accordance with the u-law or A-law, depending on the part of the world whefé
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the PSTN is located. Consequently, the D/A converter, which drives the analog modem,
produces a continuous-time signal defined by

s(t) = ; alc)g(t — kT,) (6.190)

where ¢, is the kth octet in the data sequence, a(c,) is the representation level specified by
the pertinent companding law, T; is the sampling interval (equal to 125 us), and g(¢) is an
interpolation function bandlimited to a frequency below 1/2T;, or about 4 kHz, to satisfy
the reconstruction part of the sampling theorem; see Section 3.2.

In the normal operation of the PSTN, the signal s(¢) represents a reconstructed specch
signal. However, in the case of input data, s(¢) appears like noise. In any event, from a
communication theoretical perspective, the signal s(¢) in Equation (6.190) may be viewed
as a pulse-amplitude modulated signal. Herein lies the theoretical basis for the design of
the digital modem. Specifically, the design is based on a signal constellation as in an analog
modem, except that the constellation is constructed from one-dimensional PCM symbols
rather than two-dimensional QAM symbols.

Ordinarily, the data rate achievable by a digital modem is limited to about 56 kb/s
because of the following factors:

1. The innerlevels of the compander in the PSTN are very closely spaced, as shown in
Table 3.4; hence they are susceptible to residual intersymbol interference and noise
following the modem’s equalizer.

2. Least significant bits (LSBs) are robbed from the data stream for various purposes
internal to the PSTN; this “bit-robbing” can be as much as (but usually less than)
8 kb/s and always in a periodic pattern.

Analeg Modem

Unlike the digital modem, the noise performance of the analog modem is limited
essentially by quantization noise in the py-law or A-law governing the operation of the
PCM compander. Typically, the signal-to-noise ratio on a good PCM voiceband channel
is on the order of 34 to 38 dB. The other channel impairment that limits the operation of
the analog modem is the effect of bandlimiting imposed by the antialiasing and interpo-
lation filters, which, as already mentioned, is typically about 3.5 kHz.

A sophisticated choice for the analog modem is the standard V.34 modem, which
operates at rates extending up to 33.6 kb/s. The fundamental design philosophy of this
modem embodies five distinctive features.!”

1. 960-QAM super-constellation.

The signal constellation is said to be a super- or nested-constellation in that it consists of
four constellations: the QAM constellation shown in Figure 6.53 with 240 message points,
and its rotated versions through 90, 180, and 270 degrees.

2. Adaptive bandwidth.

The transmitter probes the channel by sending a set of tones, which permits measurement
of the signal-to-noise ratio at the channel output as a function of frequency. The modem
is thereby enabled to select the appropriate carrier frequency and bandwidth according to
the probing results and available symbol rates.

3. Adaptive bit rates.

During the training of the receiver, the bit rate is selected according to the receiver’s esti-
mate of the maximum bit rate, which the modem can support at bit error rates as low as
1074 to 10™%.
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FIGURE 6,53 Quarter-superconstellation of V.34 modem with 240 signal points. The full super-
constellation is obtained by combining the rotated versions of these points by 0, 90, 180, and 270
degrees. (Taken from Forney et al., 1996, with permission of the IEEE.)

4. Trellis coding.

This etror-control coding technique is used to provide an effective coding gain of about
3.6 dB; there is an optional more powerful trellis code with an effective coding gain of
about 4.7 dB.

5. Decision feedback equalization.

To make full use of the available telephone channel bandwidth, including frequencies neat
the band edges where there can be attenuation as much as 10 to 20 dB, a decision feedback
equalizer (DFE) is used. (The DFE is discussed in Chapter 4.) However, it isnota straié'lf'
forward matter to combine coding with DFE because decision feedback requires immediate
decisions, whereas coding inherently involves decoding delay. The overcome this problfm:
the feedback section of the DFE is moved to the transmitter, which is made posslb.l‘
through the use of the Tomlinson-Harashima precoding. (This form of equalization V14
precoding is discussed briefly in Note 12 of Chapter 4.)
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V.90 Modem

The V.90 modem standard embodies digital and analog modems. The digital modem
at the ISP end is based on the second realization described carlier; it sends data downstream
at the rate of 56 kb/s. The analog modem at the user’s end is a V.34 modem standard,
transmitting data upstream at the rate of 33.6 kb/s. These two highly different rates confirm
the asymmetric nature of the V.90 modem. 7

The outstanding feature of the V.90 modem, namely, the downstream data rate of
56 kb/s, makes it suitable for use on the Internet for downloading graphics in intensive
Web pages, audio, and video at near-ISDN speeds.

I 6.12 Multichannel Modslation

The asymmetric digital subscriber line (ADSL), described in Section 4.8, is a data trans-
mission system capable of realizing megabit rates over existing twisted-pair telephone lines.
Specifically, ADSL runs at a downstream data rate up to 9 Mb/s and an upstream data
rate up to 1 Mb/s. These data signaling rates fit the access requirements of the Internet
perfectly. (As mentioned in Section 4.8, the upstream bit rate should be about 10 percent
of the downstream bit rate for efficient operation of the Internet protocol.) The challenge
in designing ADSL is to develop a line code that exploits the information capacity of the
channel as fully as possible. The carrierless amplitude phase modulation (CAP), discussed
in Section 6.4, provides one approach for solving this difficult passband data transmission
problem, Another approach is to use an equally elegant modulation technique called dis-
crete multitone. This latter approach is a form of multichannel modulation® that allows
the modulator characteristics to be a function of measured channel characteristics. It is
fitting that we begin the discussion by describing multichannel modulation, which we do
in this section, followed by discrete multitone in the next section,

The basic idea of multichannel modulation is rooted in a commonly used engineering
principle: divide and conquer. According to this principle, 2 difficult problem is solved by
dividing it into a number of simpler problems, and then combining the solutions to those
simple problems. In the context of our present discussion, the difficult problem is that of
data transmission over a wideband channel with severe intersymbol interference, and the
simpler problems are exemplified by data transmission over AWGN channels. We may
thus summarize the essence of multichannel modulation as follows:

Data transmission over a difficult channel is transformed through the use of ad-
vanced signal processing techniques into the parallel transmission of the given data
stream over a large number of subchannels, such that each subchannel may be
viewed effectively as an AWGN channel.

Naturally, the overall data rate is the sum of the individual data rates over the subchannels
operating in parallel.

B CAPACITY OF AWGN CHANNEL

From the Background and Preview matetial presented in the opening chapter, we recall
that, according to Shannon’s information capacity theorem, the capacity of an AWGN
channel (that is free from intersymbol interference) is defined by

C = B log,(1 + SNR) bs (6.191)
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where B is the channel bandwidth, and SNR denotes the signal-to-noise ratio measyze, ¥
the channel output. A proof of this important theorem is formally presented in Chaptat
9. For now it suffices to say that for a given SNR, we can transmit data over an AWG;;
channel of bandwidth B at the maximum rate of C bits per second with arbitrarily smal|
probability of error, provided that we employ an encoding system of sufficiently high
complexity. Equivalently, we may express the capacity C in bits per transmission or chag.
nel use as

1 . ..
C= 2 log,(1 + SNR) bits/transmission (6.192)

In practice, we usually find that a physically realizable encoding system must trangm;;
data at a rate R less than the maximum possible rate C for it to be reliable. For an impl,.
mentable system operating at low enough probability of symbol error, we thus need ¢,
introduce a signal-to-noise ratio gap or just gap, denoted by T'. The gap is a function of
the permissible probability of symbol error P, and the encoding system of interest. It pro.
vides a measure of the “efficiency” of an encoding system with respect to the ideal traps.
mission system of Equation (6.192). With C denoting the capacity of the ideal encodmg
system and R denoting the capacity of the corresponding implementable encoding system,
the gap is defined by

22¢ -1
T=y
SNR (6.193)
TR o1
Equivalently, we may write
1 N
R=3 logz(l + S—FIS) bits/transmission (6,194

For encoded PAM or QAM operating at P, = 107¢, for example, the gap I is constant at
8.8 dB. Through the use of codes (e.g., trellis codes discussed in Chapter 10), the gapT
may be reduced to as low as 1 dB.

Let P denote the transmitted signal power, and o denote the channel noise variance
measured over the bandwidth B. The signal-to-noise ratio is therefore

P
NR = —
S e
where
o? = NoB

We may thus finally define the attainable data rate as
1 P . -
R = 5 10g2(1 + ﬁ) bits/transmission (6.195)

With this formula at hand, we are ready to describe multichannel modulation in quant-
tative terms.

8 CONTINUOUS-TIME CHANNEL PARTITIONING

Consider a linear wideband channel (e.g., twisted pair) with an arbitrary frequency e
sponse H(f). Let the squared magnitude response | H(f)| be approximated by a staircast
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FIGURE 6.54 Staircase approximation of an arbitrary magnitude response | H(f)|; only positive-
frequency portion of the response is shown.

function as illustrated in Figure 6.54, with Af denoting the width of each step. In the limit,
as the frequency increment Af approaches zero, the staircase approximation of the channel
approaches the actual H(f). Along each step of the approximation, the channel may be
assumed to operate as an AWGN channel free from intersymbol interference. The problem
of transmitting a single wideband signal is thereby transformed into the transmission of a
set of narrowband orthogonal signals. Each narrowband orthogonal signal, with its own
carrier, is generated using a spectrally efficient modulation technique such as M-ary QAM,
with additive white Gaussian noise being essentially the only primary source of transmis-
sion impairment. This, in turn, means that data transmission over each subchannel of
bandwidth Af can be optimized by invoking Shannon’s information capacity theorem,
with the optimization of each subchannel being performed independently of all the others.
Thus, in practical signal-processing terms, the need for complicated equalization of a wide-
band channel is replaced by the need for multiplexing and demultiplexing the transmission
of the incoming data stream over a large number of narrowband subchannels that are
contiguous and disjoint. Although the resulting complexity of a multicarrier system is
indeed high for a large number of subchannels, implementation of the entire system can
be accomplished in a cost-effective manner through the use of VLSI technology.

Figure 6.55 shows a block diagram of the multichannel data transmission system in
its most basic form. The system is configured here using quadrature-amplitude modulation
whose choice is justified by virtue of its spectral efficiency. The incoming binary data stream
is first applied to a demultiplexer (not shown in the figure), thereby producing a set of N
substreams. Each substream represents a sequence of two-element subsymbols, which, for
the symbol interval 0 =< ¢ = T, is denoted by

(anabn); n=1,2,...,N

where a,, and b, are element values along the two coordinates of subchannel #.
Correspondingly, the passband basis functions of the quadrature-amplitude modu-
lators are defined by the function pairs

(¢(t) cos2nfnt), d(t) sin2af,t)), mn=1,2,...,N (6.196)

where the carrier frequency f, of the nth modulator is an integer multiple of the symbol
rate 1/T, as shown by
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FIGURE 6,55 Block diagram of multichannel data transmission system.

and the low-pass function ¢ (z) is the sinc function:

o) = \/%mc(qi") , —w <t < ® (6.197)

The passband basis functions defined here have the following desirable properties (see
Problem 6.41 for their proofs):

Property 1

For each n, the two quadrature-modulated sinc functions form an orthogonal pair
shown by

fw (b (t) cos(2af )} (t) sin2mf,t)) dt = 0 for all » (6.198)

-0

This orthogonal relationship provides the basis for formulating the signal constellation fof
each of the N modulators in the form of a squared lattice.
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Property 2
Recognizing that
exp(j2mf,t) = cos(2mf,t) + j sin(2wf,t)

we may completely redefine the passband basis functions in the complex form
{-\1—/2 & (t) exp(iZan,,t)}, n=1,2,...,N (6.199)

where the factor 1/\'2 has been introduced to ensure that the scaled function & (t)/V2
has unit energy. Hence, these passband basis functions form an orthonormal set, as shown

by

= (1 1 . 1, k=
f_m (ﬁ é(t) eXp(iZﬂfnt)) (% & (1) CXp(/'ZTrﬂt)) dt = {0’ P : (6.200)

where the asterisk denotes complex conjugation.

Equation (6.200) provides the mathematical basis for ensuring that the N modulator-
demodulator pairs operate independently of each other.

Property 3

The set of channel-output functions {ht) % & (t)] remains orthogonal for a linear channel
with arbitrary impulse response hit), where % denotes convolution.

The channel is thus partitioned into a set of independent subchannels operating in contin-
uous time.

Figure 6.55 also includes the structure of the receiver. It consists of a bank of N
coherent detectors, with the channel output being simultaneously applied to the detector
inputs. Each detector is supplied with a locally generated pair of quadrature modulated
sinc functions operating in synchrony with the pair of passband basis function applied to
the corresponding modulator in the transmitter.

Each subchannel may have some residual intersymbol interference (ISI). However,
as the number of subchannels N approaches infinity, the IS disappears. Thus, for a
sufficiently large N, the bank of coherent detectors in Figure 6.55 operates as maximum
likelibood detectors, independently of each other and on a subsymbol-by-subsymbol basis.

To define the detector outputs in response to the input subsymbols, we find it con-
venient to use complex notation. Let A, denote the subsymbol applied to the #th modulator
during the symbol interval 0 <t < T:

Av=a,+jb, n=1,2,...,N (6.201)
The corresponding detector output is
Y,=H,A,+W, n=12...,N (6.202)
where H, is the complex-valued frequency response of the channel evaluated at the sub-
channel carrier frequency f = f,:
H,=H{f), n=1,2,...,N (6.203)

The W, is a complex-valued random variable due to the channel noise w(t); the real and
imaginary parts of W, have zero mean and variance N,/2. With knowledge of the mea-
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sured frequency response H(f) available, we may therefore use Equation (6.202) to com.
pute a mag(imum likelihood estimate of the transmitted subsymbol A,,. The estimates A
A,, ..., Ay so obtained are finally multiplexed to produce the corresponding estimate ;;
the original binary data transmitted during the interval 0 < ¢ = T.

To summarize, for a sufficiently large N, we may implement the receiver as an op-
rimum maximum likelihood detector, operating as N subsymbol-by-subsymbol detectog
The reason why it is possible to build a2 maximum likelihood receiver in such a simple Way.
is the fact that the passband basis functions constitute an orthonormal set, and their qp.
thogonality is maintained for any channel impulse response A(t).

& GEOMETRIC SIGNAL-TO-NOISE RATIO

In the multichannel transmission system of Figure 6.55, each subchannel is characterized
by a SNR of its own. It would be highly desirable to derive a single measure for the
performance of the entire system of Figure 6.55.

To simplify the derivation of such a measure, we assume that all of the subchannels
in Figure 6.55 are represented by one-dimensional constellations. Then the channel ca-
pacity of the entire system in bits per transmission is given by

N p (6.204)
log, H (l + "2)

n=1 FU',,

1 N P, 1N
=5 Ing[,El (1 + Faﬁ)]

Let (SNR)overe denote the overall signal-to-noise ratio of the entire system. We may then
express R in bits per transmission as

R = %logz (1 + LSM) (6.205)

r
Comparing Equations (6.205) with (6.204), we may thus write

N 1N
{SNR)overan = F(H (1 + P"z) - 1) (6.206)

n=1 Coy,

Assuming that P,/T'o? is high enough to ignore the two unity terms in Equation (6.206)
we may approximate the overall SNR as

N /p 1N
(SNR) = I] (——’;) (6.207)

n=1 \On

We may thus characterize the overall system by a SNR that is the geometric mear of the
SNRs of the individual subchannels. .

The geometric SNR of Equation (6.207) can be improved considerably by distrll?‘
uting the available transmit power among the N subchannels on a nonuniform basis. This
objective is attained through the use of loading as discussed next.
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LOADING OF THE MULTICHANNEL TRANSMISSION SYSTEM

Equation (6.204) for the bit rate of the entire multichannel system ignores the effect of the
channel on system performance. To account for this effect, define

g = |H{f)|, »n=1,2,...,N (6.208)

Then assuming that the number of subchannels N is large enough, we may assume that
& is constant over the entire bandwidth Af assigned to subchannel # for all 7. In such a
case, we may modify the second line of Equation (6.204) for the overall SNR of the system
as ‘

- 2_n=1 Fa'rzz

The g2 and T are usually fixed. The noise variance o2 is AfN, for all », where Af is the
bandwidth of each subchannel and Ny/2 is the noise power spectral density. We may
therefore optimize the overall bit rate R through a proper allocation of the total transmit
power among the various channels. However, for this optimization to be of practical value,
we must maintain the total transmit power at some constant value P, say, as shown by

R=-0 > 10g2(1 + if—") (6.209)

N
P, = P = constant (6.210)

n=1

The optimization we therefore have to deal with is a constrained optimization problem,

which may be stated as follows:

Maximize the bit rate R for the entire multichannel transmission system through
an optimal sharing of the total transmit power P between the N subchannels, subject
to the constraint that P is maintained constant.

To solve this optimization problem, we first use the method of Lagrange multipliers'® to
set up an objective function that incorporates the constraint of Equation (6.210), as shown
by

1S g2P, 3
J = N > logz(l + rag) + ).(P ,;1 P,

n=1

\ N o . (6.211)
=N logye ?;:1 loge(l + I‘a'2> + /\(P -> P,,)

# =1

where A is the Lagrange multiplier. Hence, differentiating J with respect to P,,, then setting
the result equal to zero and finally rearranging terms, we get

L loge
Sy 1082
N > = A (6.212)

Tol
P, +—
14

”

This result indicates that the solution to our constrained optimization problem is to have

2
P,,+Fg""=K forn=1,2,...,N (6.213)

2
n
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where K is a prescribed constant under the designer’s control. That is, the sum of y,
transmit power and the noise variance {(power) scaled by the ratio T'/gZ must be maintaineg
constant for each subchannel. The process of allocating the transmit power P to the jy,
dividual subchannels so as to maximize the bit rate of the entire multichannel transmissjy,
system is called Joading.

WATER-FILLING INTERPRETATION OF THE OPTIMIZATION PROBLEM

In solving the constrained optimization problem just described, two conditions must e
satisfied, namely, Equations (6.210) and (6.213). The optimum solution so defined has ap
interesting interpretation as illustrated in Figure 6.56 for N = 6, assuming that the gap T
is constant over all the subchannels. To simplify the illustration in Figure 6.56 we have et
o2 = Ny Af = 1, that is, the average noise power is unity for all N subchannels. Referring

to this fignre, we may now make the following observations:

# The sum of power P, allocated to channel 7 and the scaled noise power ['/g2 satisfies
the constraint of Equation (6.213) for four of the subchannels for a prescribed valye
of the constant K.

» The sum of power allocations to these four subchannels consumes all the available
transmit power, maintained at the constant value P.

» The remaining two subchannels have been eliminated from consideration because
they would each require negative power to satisfy Equation (6.213) for the prescribed
value of the constant K; this condition is clearly unacceptable. :

The interpretation illustrated in Figure 6.5 6 prompts us to refer to the optimum solution
of Equation (6.213), subject to the constraint of Equation (6.210), as the water-filling
solution. This terminology follows from analogy of our optimization problem with a fixed
amount of water (standing for transmit power) being poured into a container with a
number of connected regions, each having a different depth (standing for noise power).
The water distributes itself in such a way that a constant water level is attained across the
whole container. We have more to say on the water-filling interpretation of information
capacity in Chapter 9.

Returning to the task of how to allocate the fixed transmit power P among the
various subchannels of a multichannel transmission system so as to optimize the bit rate

Energy

[ Bl
o | &l
SN

2 3 4
index of subchannel, n

FIGURE 6,56 Water-filling interpretation of the loading problem.



6.12 Multichannel Modulation 439

of the entire system, we may proceed as follows. Let the total transmit power be fixed at
the constant value P as in Equation (6.210). Let K denote the constant value prescribed
for the sum P, + T'a2/g2 for all # as in Equation (6.213). We may then use this pair of
equations to set up the following system of simultaneous equations:

P1+PZ+...PN=P

P -K = —Ta?g?
P,-K = —To%g} (6.214)
Pv—-K = -To*ghk

where we have a total of (N + 1) unknowns and (N + 1) equations to solve for them. We
may rewrite this set of simultaneous equations in matrix form as

11 « 1 0 P, P

10 -~ 0 -1]|[P: ~To*/g}

01 « 0 =1|]| ¢ |=]|-To%g} (6.215)
P I Py :

00« 1 -1||K| |-To¥ek

Premultiplying both sides of Equation (6.215) by the inverse of the (N + 1)-by-(N + 1)
matrix on the left-hand side of the equation, we obtain solutions for the unknowns P,
P,, ..., Py, and K. We should always find that K is positive, but it is possible for some
of the Ps to be negative. The negative Ps are discarded as power cannot be negative.

¥ EXAMPLE 6.7

Consider a linear channel whose squared magnitude response | H(f) | has the piecewise-lincar
form shown in Figure 6.57. To simplify the example, we set the gap I' = 1 and the noise
variance o = 1. In the situation so described, the application of Equation {6.214) yields

P,+P,=P
P,-K=-1
P, ~K=~1/1
|1

1.0

| |
f
2 i 0 h fa

FIGURE 6.57 Squared magnitude response for Example 6.7.
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FIGURE 6.58 Water-filling profile for Example 6.7.

where the total transmit power P is normalized with respect to the noise variance. Solving
_ these three simultaneous equations for P;, P>, and K, we get

1 1
P1~E(P—1+7>
1 1
PZ_E(P+1 7)
1 1
K—E(P+1+7)

Since 0 < I < 1, it follows that P; > 0, but it is possible for P, to be negative. This latter
condition can arise if

1

l<P+1

But then P; exceeds the prescribed value of transmit power P. It follows therefore that in this
example the only acceptable solution is to have 1/(P + 1) </ < 1. Suppose then we have
P =10 and ! = 0.1, for which the solution is

K =105
P; =95
P, = 0.5
The corresponding water-filling picture is portrayed in Figure 6.58. 4

6.13 Discrete Multitone

The material presented in Section 6.12 provides an insightful introduction to the {10”‘?“
of multichannel modulation, In particular, the continuous-time channel partitioning ™
duced by the passband basis functions of Equation (6.196) or equivalently (6.199) exhibits
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a highly desirable property: Orthogonality of the basis functions (and therefore the channel
partitioning) is preserved despite their convolution with the impulse response of the chan-
nel. However, the system has two shortcomings:

1. The passband basis functions use a sinc function that is nonzero for an infinite time
interval, whereas practical considerations favor a finite observation interval.

2. For a finite number of subchannels, N, the system is suboptimal; optimality of the
system is assured only when N approaches infinity.

We may ovetcome these shortcomings by using discrete multitone (DMT), the basic
idea of which is to transform a wideband channel into a set of N subchannels operating
in parallel. What makes DMT distinctive is the fact that the transformation is performed
in discrete tim