Birzeit University

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Communication Systems ENEE 339

Final Exam

Instructors: Dr. Wael Hashlamoun, Dr. Mohammad Jubran Date: June 12, 2017

Problem 1: 20 Points

Let m(t) be a baseband signal defined as

$$m(t) = \begin{cases} 0.5 & -1 \le t \le 1 \\ 0 & otherwise \end{cases},$$

- a. Find the energy in m(t).
- b. Find the Null-to-Null Bandwidth of m(t).
- c. If m(t) is applied to an FM modulator with a sensitivity constant $k_f = 10 \, Hz/V$ along with the carrier $4\cos(2\pi \times 20 \times t)$ to produce the modulated signal s(t). Find and sketch the instantaneous frequency of s(t) for $-3 \le t \le 3$.

Problem 2: 20 Points

The communication system shown in figure 1 below is designed such that the passband bandwidth of the Low Pass filter is 4KHz and the sampling frequency (fs) of 8KHz. The signal $m(t) = 2\cos(2\pi \times 3000 \times t) + 4\cos(2\pi \times 6000 \times t)$ is applied to the input of the system. Answer the following questions assuming ideal filters are used.

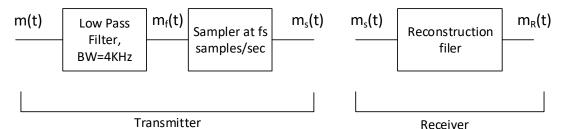


Figure 1: Block diagram of communication system for Problem 2

- a. Find the signal filtered signal $m_f(t)$.
- b. Plot the amplitude spectrum of the filtered signal $m_f(t)$.
- c. Plot the amplitude spectrum of the sampled signal $m_s(t)$.
- d. What is the type of the Reconstruction filter at the receiver?
- e. What is the passband bandwidth of the Reconstruction filter at the receiver?
- f. Write down the reconstructed signal $m_R(t)$ at the output of the receiver in the time domain.

Problem 3: 20 Points

The waveform m(t) shown in Figure 2.a is a segment of a voice speech signal that has a maximum frequency component at 4KHz. The dynamic range of the Uniform quantizer is from -2 to 2 volts. Assume the waveform is processed as described in the block diagram shown in figure 2.b, answer the following:

- a. Determine the sampled signal values; $m_s(nT)$ for $0 \le t \le 0.5$.
- b. Determine the quantized signal values; $m_q(nT)$ for $0 \le t \le 0.5$.
- c. Determine the binary signal values at the output of the 2 bit encoder for the quantized samples of part $b(m_b)$,
- d. Determine the output bit rate at the quatizer output in bits per second; (R_b),
- e. If the binary data of Part c are transmitted using binary phase shift keying, find the required transmission bandwidth.

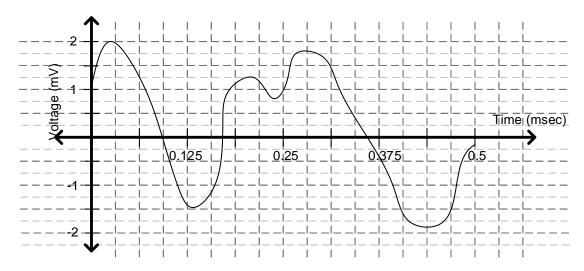


Figure 2.a: m(t) waveform

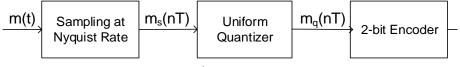


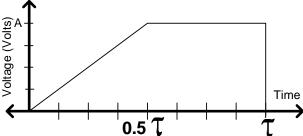
Figure 2.b: PCM system

Problem 4: 20 Points

The binary digital communication signaling scheme, discussed in class, employs the following two equally probable signals $s_1(t)$ and $s_2(t) = -s_1(t)$ to represent binary logic 1 and 0 respectively over a channel corrupted by AWGN with power spectral density $N_0/2$ W/Hz. Here,

$$s_1(t) = \begin{cases} A \frac{2t}{\tau}, & 0 \le t \le \tau/2 \\ A, & \tau/2 \le t \le \tau \end{cases}$$

Where τ is the binary symbol duration.



- a. Find and sketch the impulse response, h(t), of the matched filter, designed to minimize the system probability of error.
- b. Find the optimum threshold used at the receiver
- c. Sketch the optimum receiver highlighting its basic components

Problem 5: 20 Points

The binary orthogonal frequency shift keying (FSK) signaling scheme, discussed in class, employs the following two equally probable signals $s_1(t)$ and $s_2(t)$ to represent binary logic 1 and 0 respectively over a channel corrupted by AWGN with power spectral density $N_0/2$ W/Hz:

$$s_1(t) = 4\cos(2\pi f_1 t), \qquad 0 \le t \le \tau$$

 $s_2(t) = 4\cos(2\pi f_2 t), 0 \le t \le \tau$

where $f_1 = nR_b$, $f_2 = mR_b$, $R_b = 1/\tau$, and n and m are integers.

- a. Find the system average probability of error
- b. If the bit error probability is not to exceed 8.8417×10^{-5} , find the maximum allowable data rate $R_b = 1/\tau$ if $N_0 = 0.001$ (use the attached Q-function table)
- c. Find the 90% bandwidth when $f_1 = 8KHz$, $f_2 = 2KHz$, and $R_b = 1Kbps$

Good Luck

TABLE A6.4 Trigonometric Identities

$$\begin{split} \exp(\pm j\theta) &= \cos\theta \pm j \sin\theta \\ \cos\theta &= \frac{1}{2} [\exp(j\theta) + \exp(-j\theta)] \\ \sin\theta &= \frac{1}{2j} [\exp(j\theta) - \exp(-j\theta)] \\ \sin^2\theta + \cos^2\theta &= 1 \\ \cos^2\theta - \sin^2\theta = \cos(2\theta) \\ \cos^2\theta &= \frac{1}{2} [1 + \cos(2\theta)] \\ \sin^2\theta &= \frac{1}{2} [1 - \cos(2\theta)] \\ 2\sin\theta\cos\theta &= \sin(2\theta) \\ \sin(\alpha \pm \beta) &= \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \\ \cos(\alpha \pm \beta) &= \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \\ \tan(\alpha \pm \beta) &= \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta} \\ \sin\alpha\sin\beta &= \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \\ \sin\alpha\cos\beta &= \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)] \\ \sin\alpha\cos\beta &= \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)] \end{split}$$

TABLE A6.2 Fourier-Transform Pairs

Time Function	Fourier Transform
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T \operatorname{sinc} (fT)$
$\operatorname{sinc}(2Wt)$	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(-at)u(t), a>0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), a>0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$
$\begin{array}{ll} (0, & t \ge T \\ \delta(t) & \end{array}$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$
$\sin(2\pi f_c t)$	$\frac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$
sgn(t)	$\frac{1}{i\pi f}$
1	$-i \operatorname{sgn}(f)$
πt	, 5 0 ,
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\sum_{i=-\infty}^{\infty} \delta(t-iT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$