

ASP.NET 3.5 Application Architecture
and Design

Vivek Thakur

Chapter No. 5
"Model View Controller"

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.5 "Model View Controller"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Vivek Thakur is passionate about architecting and developing applications based on
the Microsoft .NET platform using ASP.NET, C#, VB.NET, and MS AJAX. He has
authored several technical articles on ASP.NET and has also been an All-Star-level
contributor on the ASP.NET forums. Vivek's passion for ASP.NET has been formally
recognized by way of the Most Valuable Professional (MVP) award given to him
by Microsoft in April 2007, and again in 2008. He is also a Subject Matter Expert
for Microsoft ASP.NET 3.5 Certification Exams. He is a leading contributor and
moderator in the CodeAsp.Net forums. Vivek is currently working as the Managing
Partner in Axero Solutions LLC, a US-based software product development and business
consulting firm.

Although his expertise lies in Microsoft's .NET platform, Vivek is also knowledgeable
on J2EE and C/C++. He has a deep interest in programming, chaos theory, and
artificial intelligence, and is a strong advocate of chaos theory in software systems
and management.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Besides his love for software architecture and design, Vivek also focuses on project
management skills and has substantial experience in managing small to medium sized
projects. He has also conducted numerous training sessions and provided concept-based
tutoring for different software firms across India.

Vivek received his Bachelors degree in engineering from the Indian Institute of
Technology (IIT), New Delhi, India.

Writing this book would not have been possible without the support of
my family and friends. My sincere gratitude to my mother Sharda
Thakur, father G.C Thakur, and my sisters Isha and Shikha Thakur for
their continued support and encouragement while I was writing this
book. Special thanks to my friend Kritika Srinivasan for her incessant
support throughout.

I would like to acknowledge Tim Eisenhauer for his extended support
while technically reviewing the book, and also for his extended efforts
in discussing and providing feedback on many topics.

I would like to thank Ian Robinson and Jerry Spohn for their relentless
efforts in technical reviews and making sure that I do not miss out on
core technical issues. Thanks to Ved for his detailed feedback and help
in solving basic queries.

Also, many thanks to our technical editors Rakesh and Shadab, and our
Production Coordinator Shantanu.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

ASP.NET 3.5 Application Architecture
and Design
The world of web development, as we see today, has undergone many dynamic changes
shaped by multiple new technologies and platforms. Over the last few years Microsoft
ASP.NET has quickly evolved to become one of the most famous platforms for
developing web-based solutions. Since early 2002, when the first version (1.0) of
ASP.NET was released, Microsoft has continuously added many out-of-the-box features
and components, making web development easier for the end developer. In a very short
time span, the ASP.NET platform has grown and matured into a stable object-oriented
framework, with a large set of useful tools and a huge class library, attracting widespread
interest in the developer communities around the world. With the introduction of LINQ,
MS AJAX, WCF, WPF, and a lot of exciting new tools, the .NET framework has not
only grown large but also flexible, in terms of the choices and options being offered to
the developers.

With all of these new technologies hogging the limelight, an ever-increasing gap was
created in the mindset of new developers, due to a shift in priorities. Developers,
especially beginners, were attracted by the buzz created by these new, cool tools, and
started interpreting them as a solution for better architecture and design, losing focus on
the core concepts in the process. A developer, who has just learnt the basics of ASP.NET,
was more eager to devote his or her time to technologies such as AJAX and LINQ instead
of learning and implementing design patterns.

One reason for this paradigm shift was the lack of books that could showcase a better
way to structure and develop ASP.NET-based web solutions, explaining with examples
how to use different architectural styles and design patterns in real-life ASP.NET code.
This book aims to bridge that gap.

I won't be focusing on deep and detailed theoretical concepts, as this book is not a "pure"
architecture and design guide. Rather, the goal is to show you how to design a web site in
ASP.NET the correct way, focus on different design options, analyze and study what
architectural options we have, and decide when to use which architectural solution. It is
very important to understand that there is no one perfect or best way in architecture and
design. We need to improvise, and adapt to each project's unique requirements.
Understanding core application architecture and design patterns can be tough for many
developers, and so this book aims to elucidate these through the use of real-life examples
and code in ASP.NET. This book will also shed some light on the basics of better
application structure, coding practices, and database design, and will demonstrate, with
suitable examples, how the correct architectural decisions can greatly impact overall
application stability and performance.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

What This Book Covers
Chapter 1 will introduce you to architecture and design in ASP.NET, including tiers,
layers, and logical structuring.

Chapter 2 discusses the advantages and disadvantages of using the simplest and easiest 1-
tier, 1-layer default architecture in ASP.NET. You will also understand when and why we
should use out-of-the-box data source controls, and how the 1-tier, 1-layer style is tightly-
coupled and is not flexible or scalable.

Chapter 3 discusses what an ER diagram is, the domain model, the basics of UML, and
what an n-layer design is, and how it increases the flexibility and maintainability of the
code when compared to a 1-layer architecture. A sample project is explained with code in
a 3-layer model. The drawbacks or limitations of this model are also discussed.

Chapter 4 talks about n-tier architecture in ASP.NET and how to implement it. It also
explains Data Transfer Objects and how to use them with 4-tier and 5-tier web solutions.

In Chapter 5, you will learn and understand what MVC design is, and how the ASP.NET
MVC framework helps us quickly implement MVC design in our web applications.

In Chapter 6, you will learn how and when to use the most common design patterns in
ASP.NET: Factory, Dependency Injection, Singleton, and others.

Chapter 7 explains why we need SOA, explaining the advantages of SOA for a beginner.
A sample project using SOA architecture is discussed. The chapter also explains how the
Windows Communication Framework (WCF) compliments SOA.

Chapter 8 deals with the importance of a well-designed database, balanced
normalization, logical and physical models, and tips and tricks for better
database models.

Chapter 9 covers localization for ASP.NET applications, the deployment of localized
applications, the localization framework, and best practices.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller
These days, Model View Controller (MVC) is a buzzword in the ASP.NET
community, thanks to the upcoming ASP.NET MVC framework that Microsoft
is expected to launch soon (at the time of writing of this book, only Preview 5
was available). This chapter is dedicated to MVC design and the ASP.NET
MVC framework.

In this chapter, we will learn about MVC design patterns, and how Microsoft
has made our lives easier by creating the ASP.NET MVC framework for easier
adoption of MVC patterns in our web applications. The following are some
highlights of this chapter:

Understanding the Page Controller pattern
Understanding the need for the MVC design pattern
Learning the basics of MVC design
Understanding the Front Controller design pattern
Understanding REST architecture
Understanding the ASP.NET MVC framework
Implementing the ASP.NET MVC framework in a sample application

Page Controller Pattern in ASP.NET
So far, all web pages we have created in our coding samples are based on the page
controller pattern, which is the default architecture in the ASP.NET web forms. Let
us understand page controller in detail.

In Chapter 2, we noticed that inline coding samples in ASP and ASP.NET had HTML
and code scripts mixed together, creating a hard-to-maintain code base. Then we
studied how code-behind classes "modularized" the architecture by separating
the logic from the HTML. This code-behind architecture is a page controller based
design, where by controller we mean the components that control the rendering of
the HTML, which in the case of ASP.NET web forms are the code-behind classes.

•
•
•
•
•
•
•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[110]

Each page has a code-behind class, and the URL requested by the client is directly
handled by individual pages. Any button or server control causing postbacks (such
as a DropDownList control) is handled directly by the page code-behind class.
So understanding the page life cycle is very important in a page controller based
architecture. Here is a diagram that shows how a page controller pattern works in
ASP.NET:

MyPage1 Code-Behind
Controller

MyPage1.aspx

Client Request

MyPage2.aspx

MyPage1 ASPX
HTML VIEW

MyPage2 Code-Behind
HTML View

MyPage2 ASPX
HTML View

So for every page, its code-behind will act as a controller and handle all requests, and
return processed HTML to the client browser.

Problems with Page Controller Design
In the page controller design we have a controller for each distinct page in our
application (a separate code-behind class having all of the logic that fi res sequentially
as each page loads according to the ASP.NET page life cycle). So for big projects,
there could potentially be a lot of code in the code-behind fi les, creating problems in
code maintenance and support.

GUI Unit Testing
Separating business logic and data access code from the GUI is one of the steps
leading towards a better design. In the previous chapters, we saw how to implement
a basic n-tier architecture using tiers and layers to achieve loose coupling. But testing
the application, especially the GUI and the code-behind classes in a page controller
based model, is very diffi cult because the only way to test something like a button
click's code-behind event handler is to click the button itself! This means that if we
put more and more code in code-behind classes (which inevitably becomes the case
in large web applications with lots of UI controls),

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[111]

we will not be able to run unit tests on the UI code. So the only way to test the
application would be to manually test the GUI. The page controller based design
does not support unit testing, and we would not be able to use automated unit
testing tools such as NUnit, MBUnit and so on (which we can easily use to test the
other layers such as BL and DAL).

There are ways to perform automated testing in GUI using testing tools
that use Javascript to actually perform the button click events through
the code, although they are clumsy and diffi cult to use. Even if we write
scripts today, they will need to change if the GUI changes in the future,
which is very much possible as the GUI can be changed many times
during a project's lifetime and also after it is fi nished. This makes unit
testing more diffi cult as one would need to rewrite the automated testing
scripts on every GUI change. So most people tend to use brute force
testing, which involves clicking all possible UI controls (such as buttons
and so on) and verifying whether the code works as expected. This is a
very time-consuming task, and if the GUI changes, the testing needs to be
carried out again.

We will now see how MVC design helps us implement a clean separation between
the UI and the controller, and also make our UI unit-testable.

MVC Design: A Front Controller based
Approach
MVC, which stands for Model View Controller, is a design pattern that helps us
achieve the decoupling of data access and business logic from the presentation code ,
and also gives us the opportunity to unit test the GUI effectively and neatly, without
worrying about GUI changes at all. In this section, we will fi rst study the basic MVC
pattern and then move on to understanding the ASP.NET MVC framework.

A framework is a set of tools that includes libraries or methods developed
according to a certain architecture, so that applications do not need to
re-invent the wheel. Instead of re-writing the basic implementation each
time, they can use the framework and abstract themselves from the
internal framework implementation details.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[112]

Front Controller Design
MVC is based on a front controller design, where we have a centralized controller
instead of multiple controllers, as was the case in the page controller based design
that we saw earlier. By default, ASP.NET is page controller based. So making a
front controller based project would require a lot of work (using HttpHandlers to
route the requests manually). Basically, in a front controller design, we trap all of the
client requests and direct them to a central controller, and the controller then decides
which view to render (or which ASPX page to process). Here is how a basic model of
a front controller design works:

Client Request

Central Controller

MyPage1 ASPX
HTML VIEW

MyPage2 ASPX
HTML VIEW

As you can see, the front controller sits at the "front" of all of the pages and renders a
view based on logic in the central controller fi le. In the next section we will study and
analyze exactly what goes on inside a controller, a view, and a model.

Basics of MVC
Let's fi rst get into the theoretical aspects of MVC. MVC design has three major parts:

Model: This refers to the data that is shown in the UI. This data can come
from different sources, for example, a database.
View: This refers to the user interface (UI) components that will show the
model data.
Controller: This controls when to change the view, based on user actions,
such as button clicks.

•

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[113]

In terms of ASP.NET web applications, the model, view, and controller participants
can be identifi ed as:

View: This refers to HTML markup in ASPX pages, minus the code-behind
logic. This view is rendered in the presentation tier (the browser).
Controller: This refers to the special controller classes that decide which
model needs to be shown to which particular view.
Model: This refers to the data coming from the data layer, which may be
processed by the business layer.

Before moving ahead, an important point to understand is that the MVC design is
not a replacement to the n-tier architecture. MVC is more focused on how to keep
the UI separate from the logic and the model; the model itself can be broken into
separate tiers.

In the MVC design, the model, the view, and the controller are not related directly to
the layers, or to the physical tiers; they are logical components that operate together
in a certain pattern. The controller is related directly to the model and the view.
Based on user actions (in the view), it fetches the data (the model) and populates
the view. The relationship between the controller, the model, and the view can be
depicted as:

Controller View

Model

The view is based on the model, which means that its job is to simply render the
model that the controller passes to it:

View Model

So the net relationship between the three components can be described as:

Controller View

Model

•

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[114]

A few important points to note from the above diagram:

We can see that the model depends neither on the view nor on the controller,
which is logical. Think of it like this: we have some data in the database
tables; we use DAL code to handle this data and BL code to operate on this
data as per certain business rules. Now, it is up to the UI to present and show
this data. But the data itself is not dependent on the graphical user interface
(GUI). So the model is independent of the view and the controller.
The view does not depend on the controller; rather, the controller is
associated with the view. That means we have a separation between
the view and the controller, allowing us to change views independent
of the controller.
The view depends on the model, and is updated when the model's state has
changed. As the view cannot contain any logic (which is stored inside the
model), the view depends on the model; that is, the model is in charge of
updating the contents or displaying the view.

Now we will look at the practical aspects of implementing this MVC design using
the ASP.NET MVC framework, which will help us implement our web applications.
MVC will be ready in no time. But before going ahead with the actual code, we need
to understand another important aspect of ASP.NET MVC framework, that is, REST!

REST: Representation State Transfer
REST means Representational State Transfer, an architectural pattern used to identify
and fetch resources from networked systems such as the World Wide Web (WWW).
The REST architecture was the foundation of World Wide Web. But the term itself
came into being around the year 2000, and is quite a buzzword these days. The core
principle of REST is to facilitate the sharing of resources via unique identifi ers, just
as we use Uniform Resource Identifi ers (URIs) while accessing resources on the Web.
In simple terms, REST specifi es how resources should be addressed, including URI
formats, and protocols such as HTTP. The term resources include fi les such as ASPX
pages, HTML fi les, images, videos, and so on.

In the default page controller based design in ASP.NET, we don't follow a strict
REST-based architecture. If we use a pure REST-based architecture, then all of the
information required to access a particular resource would be in the URI. This means
that we don't need to check if a postback happened or not, because each request is
unique in itself and will be treated differently (via unique URLs). Whereas in ASP.
NET, we can use the postback technique to make the same requests using the same
URLs and do different processing based on whether it is a postback or not. Many a
times, in numerous projects, we come across the following coding style in ASP.NET
code-behind fi les:

•

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[115]

btnSave_Cick()
{
 Response.Redirect("~/MyPage.aspx");
}

Here, on the postback (button click), we are redirecting the user to another resource
(mypage.aspx), and this approach goes against the REST principle as we are
delegating the responsibility to load a resource to another page based controller's
postback event. This is not REST-like behavior. Now, we will see how MVC
compliments the REST approach.

MVC and REST
MVC is radically different from the default page controller based design in the
ASP.NET framework as it implements a front controller based design. In our
normal applications, we use a lot of postbacks and make use of ViewState, and
the development is centered around web forms. For each functional aspect, we
may have a single webform; for example, for adding customers, we might create
something like AddCustomer.aspx, and for showing a list of customers, we might
use CustomerList.aspx.

But in an MVC architecture, webforms lose their importance. We don't create
webforms in the same way that we do in standard ASP.NET applications. In the
MVC framework, we use URL routing, which means that all URLs have some
specifi c format, and the URLs are used based on the settings in a config fi le. In a
standard ASP.NET application, the URL is linked to a specifi c ASPX fi le, say
http://localhost/CustomerList.aspx. In MVC, the URL routes are defi ned
in a REST-like fashion: http://localhost/customer/list/.

So in MVC, ASPX pages are reduced to simply showing the view; they will not have
any code in their code-behind classes. What needs to be shown on an ASPX page will
be handled by the Controller classes. ASPX will just be a kind of view engine and
nothing else. ASPX will not have control-level event handlers or any kind of logic in
the code-behind. In the next section, we will see how the ASP.NET MVC framework
makes our life easier in adopting an MVC based approach in our projects.

ASP.NET MVC Framework
The ASP.NET MVC framework was released by Microsoft as an alternative approach
to web forms when creating ASP.NET based web applications. The ASP.NET MVC
framework is not a replacement or upgrade of web forms, but merely another way
of programming your web applications so that we can get the benefi ts of an MVC
design with much less effort.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[116]

As of now, the ASP.NET MVC framework is still in CTP (Community Technology
Preview, which is similar to an advanced pre-stage), and there is no certain date
when it will be released. But even with the CTP 5, we can see how it will help MVC
applications follow a stricter architecture.

We will quickly see how to use the ASP.NET MVC framework through a
small example.

Sample Project
First, download the ASP.NET MVC framework from the Microsoft website and
install it. This installation will create an MVC project template in VS 2008.

Start VS 2008, select the File | New Project menu item and then choose the
ASP.NET MVC Web Application template to create a new web application using
this template.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[117]

By default, when you create a new application using this option, Visual Studio will
ask you if you want to create a Unit Test project for your solution, with a drop-down
list pre-populated with the different possible types of test frameworks (the default
would be VS test, but in case you installed MBUnit or NUnit, these would also be
populated here):

There are many free unit testing frameworks available for ASP.NET
projects, and NUnit and MBUnit are two of the most popular ones. Here
are the links:
MBUnit: http://www.mbunit.com/
NUnit: http://www.nunit.org/index.php

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[118]

Select the default option and click OK. You will notice that two projects have been
added to the solution that VS has created. The fi rst project is a web project where
you'll implement your application. The second is a testing project that you can use to
write unit tests against.

In our custom MVC code project, we had different projects (class libraries) for the
model, the view, and the controllers.

The default directory structure of an ASP.NET MVC Application has three
top-level directories:

/Controllers

/Models

/Views

When the project becomes large, it is recommended that the Model, Views and
Controllers are put in separate class library projects of their own so that it's easy to
maintain them. But for the purpose of illustrating the ASP.NET MVC framework,
this default structure is fi ne for us.

•

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[119]

We will create a simple customer management application. For this, we fi rst create
some ASPX pages in the Views folder. Note that VS has already created these
subfolders for us, under Views:

Home: Contains the and Index views
Shared: Contains shared views such as master pages

Before we go on to adding custom code in this project, let us understand what VS has
done for us while creating this MVC project.

URL Routing Engine
In the standard ASP.NET model (or Postback model), the URLs map directly to the
physical fi les:

Client browser requests
URL

http://myapp/MyPage.aspx
IIS

MyPage.aspx
processed by

ASP.NET runtime
and HTML returned

to IIS

So when we make a request to a page, say MyPage.aspx, the runtime compiles
that page and returns the generated HTML back to IIS to be displayed by the client
browser. So we have a one-to-one relationship between the application URLs and
the page.

But in the MVC framework, the URLs map to the controller classes.

Client browser requests
URL

http://myapp/Customer/List

ASP.NET runtime

Controller Class

IIS

Model Class

View (ASPX)

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[120]

Therefore, the URL is sent to IIS and then to ASP.NET runtime, where it initiates a
controller class based on the URL, using the URL routes, and the controller class then
loads the data from the model, with this data fi nally being rendered in the view.

The controller classes uses URL routing to map the URLs, which in simpler terms
means rewriting URL. We can set up the rules for which URL is to be routed to
which controller class. The routing will pick up the appropriate controller and pass
in the query string variables as necessary.

Open the global.asax.cs fi le and examine the following code:

public class GlobalApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute(
 "Default",
// Route name
 "{controller}/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index", id = ""
}// Parameter defaults
);
 }
 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }

The RegisterRoutes() method contains the URL mapping routes. Initially we have
only the default rule set:

 routes.MapRoute(
 "Default",
// Route name
 "{controller}/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index", id = "" }
// Parameter defaults
);

This URL mapping engine comes from System.Web.Routing.dll, which can be
used independently, without the ASP.NET MVC framework, to rewrite URLs in
your standard ASP.NET web applications.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[121]

The MapRoute() method, which handles URL routing and mapping, takes
three arguments:

Name of the route (string)
URL format (string)
Default settings (object type)

In our case, we named the fi rst route "Default" (which is the route name) and then set
the URL as:

Controller/action/id

The Controller here is the name of the controller class. action will be the method
that needs to be invoked inside that controller class. id would be the parameters that
need to be passed, if any.

In the default arguments, we create a new object and call it "Home", set the action to
Index, and do not pass parameters to it. Note the new anonymous type syntax used
to create parameter defaults:

new { controller = "Home", action = "Index", id = "" }

The var keyword and anonymous types: We normally use classes to
wrap behavior and properties, but in C# 3.0, we can create the types
anonymously without needing to create classes for them. This can be
useful when we need to create light weight classes that have only read-
only properties. We can use the anonymous syntax to create those types
without the need to create a class for them. We can use the new "var"
keyword to hold such anonymous types, for example:
var ch = new { readOnlyProperty1 = value1,
readOnlyProperty2 = value2 };

It is important that we name and assign a value to each of the properties that we are
creating. What will be the type of the properties? They will automatically be cast to
the data types of the values of the properties specifi ed. The anonymous types will
always be derived from the base object class directly. They can only be used within
class members and cannot be passed as method arguments (unless they are boxed),
return values, or be specifi ed as class-level variables. Once the type is created, it
cannot be changed into another type.

So we create a new anonymous type as the last argument of the MapRoute()
method, passing in variable defaults with three properties, namely controller,
action, and parameter.

•

•

•

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[122]

 Now have the Default.aspx page under the root directory, which acts as a redirecting
page to the main home page of the site (which is /View/Home/Index.aspx).

We cannot directly set that as the "default" page since we are using URL routes to
process pages instead of using physical fi les in the URLs.

So in the code-behind of our Default.aspx page, we have a simple redirect:

public void Page_Load(object sender, System.EventArgs e)
 {
 Response.Redirect("~/Home");
 }

So the runtime will fi rst set up routes in the global.asax page, then it will process
the Default.aspx page. Here it faces a redirect to this URL: /Home.

The Controller
 The MVC framework maps this URL to the route set in the global route table, which
currently has only the default one, in this format:

Controller/action/id

So /Home corresponds to a controller named Home, and because we have
not specifi ed any action or ID, it takes the default values we specifi ed in the
RegisterRoutes() method in the globals.asax.cs. So the default action was
Index and the default parameter was an empty string. The runtime initializes the
HomeController.cs class, and fi res the Index action there:

public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Title"] = "Home Page";
 ViewData["Message"] = "Welcome to ASP.NET MVC!";
 return View();
 }}

In this Index() method, we set the data to be displayed in the View (aspx/ascx
pages) by using a dictionary property of the base Controller class named ViewData.
ViewData, as the name suggests, is used to set view-specifi c data in a dictionary
object that can hold multiple name/value pairs. When we call the View() method,
the ViewData is passed by the Controller to the View and rendered there.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[123]

The View
 Let us now look at the View. How does the framework know which View or aspx
page to call? Remember that we passed the value "Index" in the action parameter
(in the default route in the global.asax.cs fi le), so the Index.aspx will get called.
Here is the code-behind of Index.apsx:

public partial class Index : ViewPage
 {
 }

There is absolutely no code here, which is a very important characteristic of the
MVC design. The GUI should have no logical or data fetching code. Note that the
Index class is derived from the ViewPage class. Using this ViewPage class, we can
access all of the items in the ViewData dictionary that were set in the controller's
Index() method and passed on to the View. Here is how we are accessing the
ViewData in HTML:

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
 runat="server">
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit <a href="http://asp.net/
mvc" title="ASP.NET MVC Website">http://asp.net/mvc.
 </p>
</asp:Content>

We can directly access the ViewData dictionary in HTML. Now that we have seen
how MVC works, we will create a new page to learn how to show data using a
custom DAL and strongly typed objects, instead of the ViewData dictionary. Our
example page will show a list of all the customers.

The Model
 We will use the 5-Tier solution we created in the previous chapter and change the
GUI layer to make it follow the MVC design using the ASP.NET MVC framework.
Open the solution we created in the previous chapter and delete the ASP.NET web
project from it. The solution will then only contain 5Tier.BL,
5Tier.DAL and 5Tier.Common projects.

Right click the solution in VS, and select Add New Project, and then select
ASP.NET MVC Web Application from the dialog box. Name this new web project
as Chapter05.MVC. This web project will be the new MVC based UI tier of our OMS
application in this chapter.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[124]

The Customer.cs and CustomerCollection.cs class fi les in the business tier (5Tier.
Business class library) will be the Model in our MVC application. To show a list of
customers, the CustomerCollection class simply calls the FindCustomer() method
in CustomerDAL.cs. We have already seen these classes in action in the previous
chapter. So we can use an n-tier architecture in an MVC application, hence this
shows that MVC and n-tier are not mutually exclusive options while considering
the application architecture of your web application. Both actually compliment
each other.

We can also create a utility class named CustomerViewData to transfer the Model
objects to the View. There are multiple ways to pass- in the Model to the View
through the Controller, and creating ViewData classes is one of them. Here is the
CustomerViewData class created in the CustomerComtroller.cs fi le in the
Chapter05.MVC web project:

#region ViewData
 /// <summary>
 /// Class used for transferring data to the View
 /// </summary>
 public class CustomerViewData
 {

 public CustomerViewData() { }

 public CustomerViewData(Collection<Customer> customers)
 {
 this.customers = customers;
 }

 public Collection<Customer> customers;

 public Customer customer;

 }
 #endregion

Notice that this ViewData class is simply wrapping the business object inside it so
that we can use this class in the UI layer instead of directly passing and manipulating
domain objects.

Wiring Controller, Model, and View
 We will now create routes in the global.asax fi le under the existing home page
route as follows:

routes.MapRoute(
"Customer", "Customer/{action}/{id}", new {
 controller = "Customer", action = "Show", id="" });

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[125]

This new route will simply fi re the Show action in the customer controller.

Now we create the controller class, CustomerController, as:

using NTier.BL;
using NTier.Common;

namespace Chapter05.MVC.Controllers
{
 public class CustomerController:Controller
 {
 #region ViewData
 /// <summary>
 /// Class used for transferring data to the View
 /// </summary>
 public class CustomerViewData
 {

 public CustomerViewData() { }

 public CustomerViewData(Collection<Customer> customers)
 {
 this.customers = customers;
 }

 public Collection<Customer> customers;

 public Customer customer;

 }
 #endregion

 public ActionResult Show()
 {
 CustomerViewData customerViewData = new CustomerViewData();
 CustomerCollection customers = new CustomerCollection();
 customerViewData.customers
 = customers.FindAll(LoadStatus.Loaded);

 return View("Show", customerViewData);
 }
 }//end class
}//end namespace

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[126]

In this class, we fi rst create a subclass called CustomerViewData, which is a wrapper
to hold the Customer and CustomerCollection business objects. We will transfer
this class object to the actual view through the controller as:

public ActionResult Show()
 {
 CustomerViewData customerViewData = new CustomerViewData();
 CustomerCollection customers = new CustomerCollection();
 customerViewData.customers
 = customers.FindAll(LoadStatus.Loaded);

 return View("Show", customerViewData);

 }

In this controller action, we simply get the list of customers from the database and
pass it to the Show.aspx page using the View() method.

To create the aspx pages, we will create a folder named Customers under the View,
and add an aspx fi le named Show.aspx that will display a list of all the customers.

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
runat="server">
 <asp:Repeater ID="rptCustomer" runat="server">
 <ItemTemplate>
 <%# Eval("Name")%>
 </ItemTemplate>
 </asp:Repeater>

</asp:Content>

In the code-behind, we simply bind the data as:

using System.Web.Mvc;
namespace Chapter05.MVC.Views.Customer
 {
 public partial class Show :
 ViewPage <Controllers.CustomerController.CustomerViewData>
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 rptCustomer.DataSource = ViewData.Model.customers;
 rptCustomer.DataBind();
 }
 }
 }

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[127]

So the code-behind is kept very light and has no extra code besides data binding to
the repeater. Note that usually in the standard postback model, we bind the data
under the if(!IsPostBack) condition so that data binding happens only once, on
the page load, and not on the postback.

Here we cannot follow the same pattern as there is no concept of a postback in MVC.
Each request will be as unique as the RESTful URL.

If we want, we can also bind the data in the ASPX using inline code without using
code-behind, as shown here:

<h2>Customer list</h2>
 <%foreach (var c in ViewData.Model.customers) { %>

 <div>
 <%=c.Name %>

 </div>
 <%} %>

Note the use of the "var" type to get the CustomerData object. This helps us in
avoiding explicit casting to get the Customer object.

In the same way, we can edit and add objects. An important point to note is that we
don't need to use the standard ASP.NET button controls any more, because we don't
want the page to postback to itself. Instead, when we add a customer, we can use
something like this:

 <form method="post" action="Customer/Add">
 <input type="text" name="customerName" value="" />
 <input type="submit" name="Add" value="Add" />
 </form>

Notice that there is no runat="server" tag here in these controls as they are not server
controls but simple HTML controls. On clicking the Add button, the page will post
with the action Customer/Add. This means that, in the CustomerController, it will
fi re the Add method as shown in the sample code (just for demonstration purposes):

public class CustomerController : Controller
 {
 public ActionResult Add(string customerName)
 {
 //create a business object and fire the add method
 Customer customer = new Customer();
 customer.Name = customerName;
 CustomerCollection customers = new CustomerCollection();
 customers.Add(customer);
 return View("Home");
 }
 }

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[128]

ASP.NET MVC will automatically set the parameter, customerName, with the value
of the textbox from the form's post data, and will pass this value in the Add method
of the controller. So we did not have to create the entire page object again, as the
page did not postback to the same form. Hence, we avoided recreating the page class
on every request or postback.

Because this chapter is more about understanding the MVC framework from the
architecture's perspective, we will not go into the details of the edit and add actions;
it is best to refer to the following post for these details:

http://weblogs.asp.net/scottgu/archive/2007/12/09/asp-net-mvc-
framework-part-4-handling-form-edit-and-post-scenarios.aspx

Unit Testing and ASP.NET MVC
Unit testing is the process where the developer himself tests the code that he has
written. The word "unit" here refers to modules of code that he writes, such as
methods, functions, and so on. The developer would test such "units" code to verify
whether everything is working as expected. This will make sure that at least the
individual methods of a class work without errors. Unit testing is different from the
function or integration testing that a QA (quality assurance) person performs on
a working model after the development phase is over. Unit testing is more closely
related to the actual code testing and ensures that most of the bugs are taken care
of before the project reaches the actual testing stage. Because unit testing checks the
actual methods in the code, it can easily be automated by creating mock test cases
in the code using one of the many available unit testing frameworks, such as NUnit
and MBUnit.

 Earlier in this chapter, we stressed the need for unit testing the GUI of our ASP.NET
projects, and how diffi cult it is to do so under the standard page controller model.
But now with ASP.NET MVC, we have "thin" code-behind classes, with almost little
or no code. There are almost no Session and ViewState related issues, as all URLs are
handled directly by the central controller. There are no button clicks, no code-behind
event handlers, and so on. So it is easy to set up unit test cases for the controller
classes because then it is the same as testing any normal C# class methods, such
as the DAL, the BL, and so on.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Chapter 5

[129]

Summary
ASP.NET MVC is a very good platform for creating unit-testable applications
that are maintainable in the long run, as well as for achieving a clearer separation
between the UI and the UI-handling logic. In the previous chapter, we learnt the
n-tier architecture, but the GUI in such an architecture was still not easily testable
as we had a lot of embedded UI code in code-behind classes that was dependent on
ViewState and postbacks. But in MVC, the concept of ViewState and postback does
not exist as each request is unique in and of itself. This also presents some technical
challenges if you have a complex UI, such as a GridView with inline edit or update
functionality with a lot of AJAX functionality, where MVC may not work as expected
(though the upcoming ASP.NET MVC framework releases will offer more fl exible
solutions to handle such cases).

Also, server controls such as DropDownList may not work as expected in the ASP.
NET MVC framework, since there would be no control-level events in the code-
behind and the control won’t be able to postback. The core principle of the ASP.NET
MVC framework is that the URL should talk directly to the requested resource in
the web application. This is also the core principle of REST. So if we are using
control-level events such as the selected_change() method of a DropDownlist
in code-behind to process some logic, we will be breaking this very REST/MVC
principle. The reason is that during such an event, the form will postback without
any change in the URL, hence the concept of REST will not hold true (remember that
a resource on the web can be accessed by a unique RESTful URL). ASP.NET MVC
also has an out-of-the-box powerful URL rewriting capability so that we can have
SEO friendly URLs in our application.

This implies that the entire page lifecycle will have no value in the MVC framework.
Using MVC means going back to using standard HTML controls instead of rich
server controls (even though Microsoft is coming up with a separate set of MVC
server controls which will help us in adopting MVC in our applications easily).

The ASP.NET MVC framework was still evolving during the time of writing of this
book. There can be a lot of upcoming improvements in the framework in terms of
added functionalities and utilities. These changes will cause the fi nal ASP.NET MVC
framework release to be somewhat different in terms of syntax shown in this chapter.
But the core principle of MVC will remain the same and it will be quite easy to use
the latest framework release once we understand the basic principles of the
MVC design.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Model View Controller

[130]

Using MVC in real world commercial applications needs more skill than using the
standard ASP.NET postback model. But it gives us the unique benefi t of unit testing
the GUI layer along with the BL and the DAL, which really helps in Test Driven
Development (TDD). So, the ASP.NET MVC framework is not a silver bullet, and
you should carefully consider when and in which projects to use it. There will also
be a learning curve associated with it for developers coming from a webforms
background. It is not a replacement for webforms, but now developers have a choice
of using either the MVC or the standard webforms page-centric postback model.
ASP.NET MVC can easily be used with an n-tier architecture, as we saw in our
code sample.

So ASP.NET MVC is a very good choice for creating a unit-testable and search
engine friendly web application which makes our web UI much cleaner by having a
clear separation between the UI and code logic.

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

For More Information:
www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book

Where to buy this book
You can buy ASP.NET 3.5 Application Architecture and Design from the Packt
Publishing website:
http://www.packtpub.com/application-architecture-and-design-
for-asp-.net-3.5/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/application-architecture-and-design-for-asp-.net-3.5/book
http://www.packtpub.com/Shippingpolicy

