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Modulation



Frequency and Phase Modulation

To generate an angle modulated signal, the amplitude of the modulated carrier 1s held
constant and either the phase or the time derivative of the phase 1s varied linearly with the
message signal m(t).

The expression for an angle modulated signal 1s:

s(t) = A, cns(mct + h‘_?(t)) , w,. is the modulated carrier
frequency.




The instantaneous frequency of s(t) 1s :

_1 .4 _ 1.4
fi(®)= o @t (mct+9(t)) =fe t o at

For phase modulation, the phase 1s directly proportional to the modulating signal :

o(t) = k,m(t), k, 1s the phase sensitivity measured in rad/volt.

The peak phase deviation 1s

A8 =k, X max (m(t)).




For frequency modulation, the frequency deviation ot the carrier 1s proportional to the
modulating signal:

1 dé
o X d(tt) =ksm(t) = f; = f. + kem(t).

The frequency deviation from the un-modulated carrier 1s

1 df

i) = fo=57
The peak trequency deviation i1s

Af = max {ixd—i}.
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The time domain representation of a phase modulated signal 1s :

s(t) = A, cos (mct + kpm(t)).
The time domain representation of a frequency modulated signal 1s :

s(t) = A, cos (mct + 2mks fmm(::r)d::r).

where 6(t) = 2mk; E_Im(a)d::r

The average power in s(t), for frequency modulation (FM) or phase modulation (PM) is:

(A.)?
Pava = > = constant.




Example: Frequency Shift Keying.

The periodic square signal m(t), shown below, frequency modulates the carrier
c(t) = A, cos(2m100t) to produce the signal s(t) = A.cos ( (2r100t) +
Zkafm(cr)d:I) where k=10 HZ/V.

a. Find and plot the instantaneous frequency f;(t).
b. Find and sketch s(t).




Solution:
a) The instantaneous frequency 1s

fi = {100+10=110 Hz when m(t) =+1.

fi= {100-10=90Hz when m(t)=-1.

For 0<t<T,,f; =110Hz

ForT, <t < 2T, f; =90 Hz




In digital transmission, we will see that a binary (1) may be represent by a signal of
frequency f; for 0 <t < T, and a binary (0) by a signal of frequency f; for 0 <t <
Ty .

b) The two signal possible to transmitted signal are :
s(t) = 4cos(2m(110)t ), when m(t) = +1
s(t) = Acos(2m(90)t ), when m(t) = —1




Single Tone Frequency Modulation:

Assume that the message m(t) = A,,, cos w,,t.

The nstantaneous frequency is:

fi = fc + kgm(t) = f. + Ap kg cos 2mf t.

This frequency 1s plotted in the figure.

The peak frequency deviation (from the un-modulated

carrier) 1s :

Feo+Amks

Fo-AmKf

Fi(t)




The FM signal 1s:

s(t) = A, cos (w.t + B sin2nf,,t).

Where £ is the FM modulation index:

g - keAm  peak frequency deviation  Af

f.  message bandwidth  f,
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Spectrum of a Single-Tone FM Signal

The objective 1s to find a meaningtful definition of the bandwidth of an FM signal:

Let m(t) = A,, cos 2nf,,,t be the message signal, then the FM signal is:

s(t) = A, cos( 2nf.t + B sin2nf,,t)

Af peak frequency deviation . . .
Where f =—= : 1s the modulation index.
fm message bandwidth




— Recall that:

s(t) = A, cos( 2nf.t + fsin2nf,,t)
which can be rewritten as:

s(t) = Re{e/@nfct+sin Enfmt}

Remember that: e/ = cos@ + jsin @ and that cos@ = RE{E*‘FH}

The function [ £ sin 2mf,,,t | is “sinusoidal” and periodic with T},, = fi . Therefore,

eJ(Bsin2mfmt) i5 also periodic with T,,, = fi .

m



As we know, a periodic function g(t) can be expanded into a complex Fourier series as:

g(t) = :f'm Cn Ejnmmt where C’.'i: — Tifﬂrm g(t) E_jmmnt dt .

= If we let g(t) — eJ(Bsin2mfimt)

It out that = C,=],(B).

Where /., (f) is the Bessel function of the first kind of order n.

Hence, g(t) =X J.(B) g/n@mt
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Substituting into s(t), we get:
= s(t) = A, Re{e/@™) x 3= J,(B) e/"omt }
= Ac Re{ ZZ.,Jn(B) x e/2Uectnim)t

= Ac X220 n(B) X cos(2n(fe + nfm)t)

Finally, the FM signal can be represented as

s(t) = Ac L2 Jn(B) X cos(r(f. + nfn)t)



Bessel Functions:

The Bessel equation of order n 1s:

IEEE +xd—y+ (x2—n?)y =0
dx, dx Y=

This 1s a second order differential equation with variable coefficient. We can solve it by
the power series method, for example:

dy . _ dy? : -
— Vo n — n-—1 — Vo n-—2
Let Yy = En:ﬂ Cn X ’ E - ’.’1=1n Cﬂ X ' Ez — Lin=2 TI(TI - 1)Cn X .

o d dy? . : . : .
Substituting vy, é and é into the differential equation and equating terms of equal
2

power results in:

0 1
(_1)m % (_I)n+2m
y=y

m!(n+m)!
m=0

[
The solution for each value of n (see the D.E where n appears) is J,,(x), the Bessel

function of the first kind of order n.

A\ N



Some Properties of J,,(x):
- ]n(x) = (—D"J-n(x).
2- ]n(x) = (_1)n]n(_x)

3- Recurrence formula = Jn-1(0) + Jpy1(x) = z?n]n (x).

xﬂ

21N n!

4- For small values of x: = J,(x) =

Therefore, Jo(x) = 1
Ji(x) = %
J,(x) =0 forn>1.

5- For large value of x:

Ja(x) = J% cos(x — E - %) , J.(x) behaves like a sine function with progressively

decreasing amplitude.

6- For real x and fixed, J,(x) — 0asn — .

7- Y2.(Jn(xN? =1, forallx.



The Bessel Functions Table for various values of £ and n.
%+ Table 1, notice that x = 3.

Ju(x)
n\x 0.5 i 2 3 4 6 8 10 12
0 0.9385 0.7652 0.223% 02601 —0.3971 0.1506 0.1717  —0.2459 0.0477
1 0.2423 04401 05767 0.3391  —0.0660 —0.2767 0.2346 0.0435  —0.2234
2 0.0306  {.1149  0.3528 0.4861 0.3641 —=0.2429 —0.1130 0.2546  —0.0849
3 0.0026 0.0196 0.1289 0.3091 0.4302 0.1148  —0.2911 0.0584 0.1951
4 0.0002  0.0025 0.0340 0.1320 0.2811 0.357¢ —0.1054 —0.21%¢ 0.1825
5 — 0.0002  0.0070 0.0430 0.1321 .3621 0.1858 —0.2341 —0.0735
& — 0.0012 0.0114 0.0451 0.2458 0.3376 ~0.0145 —0.2437
7 0,0002 0.0025 0.0152 0.1296 0.3206 0.2167 —0.1703
8 — 0.0005 0.0040 0.0565 0.2235 0.317% 0.0451
9 0.0001 0.0002 0.0212 0.1263 0.2919 0.2304
10 - 0.0002 0.0070 0.0608 0.2075 0.3005
11 — 0.0020 0.0256 0.1231 0.2704
12 0.0005 0.0096 0.0634 0.15953
13 0.0001 0.0033 0.0220 0.1201
14 e 0.0010 0.0120 0.0650




n  B=01 B=02 A=05
0 0.997 0.990 0.938
1 0.050 0.100 0.242
2 0.001 0.005 0.031
3

4

5

5

7

8

9

10

11

12

13

14

15

16

- B = g = B=3 £ =25 g =10
0.765 0.224 —0.178 0.172 —0.246
0.440 0.577 -0.328 0.235 0.043
0.115 0.353 0.047  —0.113 0.253
0.020 0.129 0.365  —0.291 0.058
0.002 0.034 0.391 —0.105  —=0.220

0.007 0.261 0.186 —-0.234
0.001 0.131 0.338 —0.014
0.0532 0.321 0.217

0.018 0.223 0.318

0.006 0.126 0.292

0.001  0.081 0207

0.026 0.123

0.010 0.063

0.003 0.025

0.001 0.012

0.004

0.001




The FM Signal Series Representation
We saw earlier that a single tone FM signal can be represented 1n a Fourier series as :

s(t) =A; X2 Jn(B) X cos2nr(f: + nfi)t)

The first few terms in this expansion are:

s(t) = A; {Jo(B) cos(2rf.t) + J1(B) cos 2m(f. + fr)t + J_1(B) cos 2n(f. — f)t +
jﬂ(ﬁ) COS ZH(ﬁ: + me)t +j_2(_ﬁ) COS 2?1'(}(;: — me)t s




The FM signal consists of infinite number of spectral components concentrated around
f-. Therefore, the theoretical bandwidth of the signal is infinity. That is to say, if we need
to recover the FM signal without any distortion, all spectral components must be
accommodated. This means that a channel with infinite bandwidth 1s needed. This 1s of
course not practical since the frequency spectrum is shared by many users.

In the following discussion we need to truncate the series so that say 99% of the total
average power 1s contained within a certain bandwidth. But first let us find the total
average power using the series approach.




The total average power in s(t)

Note that s(t) consists of an infinite number of Fourier terms, and the power 1n s(t) will be
equal the power 1n the respective Fourier components .

Any term in s (t) takes the form: A_J,,(B) cos2n(f. + nf,,,)t)

(A0)*Un(B))*
2

The average power 1n this term 1s:

Hence the total power 1n s(t) 1s:

Ac’ Jo*(B) + Ac’J2(B) n Ac)+*(B) + A" B) + 4]+ 6) L

2 —
<S$H) > = 2 2 2 2 2

= 22 (J62(B) + J 2B H -1 B)H B+ -2 (B) + ..

= ‘qziz (3% Jn2(B) Y, where Y2-_. J.2(B) = 1, ( A property of Bessel

Functions)



The average power becomes

ACZ

S =

Spectrum of an Fm Signal

S(f)

(Ac*J1)/2 (Ac*J1)/2

(Ac*Jo)/2

(Ac”J2)/ (AC*J2)2 (ac=3)2

(Ac*J3)/2

fc-3fm  fc-2fm fc-fm fc  fc+fm fc+2fm fc+3fm




Fourier transform of s(t) = A_ cos (w.t + B sin 2nf,,t). (only + ve frequencies
shown)

Note that in the figure above as f,,, decreases, the spectral lines become closely
concentrated about f .

The power spectral density, which is a plot of |Cy,|? versus f, is shown below:

S(f)
2 >
(Ac*l1)2  (Ac™J1)2

2 2
» (Ac*J2)i (Ac™Jo)2

(Ac*J3)/2

. 2

fc-3fm

fc-2fm fc-fm fc  fc+fm fc+2fm fc+3fm



Example:

Plot the FM spectrum and find the 99% power bandwidth when £ =1 and f = 0.2

Solution:

s(t) = Ac X2 n(B) cos(2n(f. + nfin)t)
Casea: =1

For ff = 1, there are five significant Bessel terms (but we may not need all of them to
achieve the 99% power bandwidth)

Jo(1) =0.7652, J,(1) = 0.4401, J,(1) =0.1149, J,(1) =0.01956, J,(1)=
0.002477
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1=(F)

(Ac*J1)/2 (Ac™J1)/2

(Ac*J2) (ACIOYZ Qncx 122 (px sy

(Ac*J3)/2

fc-3fm

fc-2fm fcfm fc  fe+fm fc+2fm fo+3fm

2

The power ins(t)is < §%(t) > = %

Let us try to find the average power in the terms at f. , f. + fin, fo — fins fo + 2fms
ﬁ:’ - zfm



The average power in these five components can be calculated as:

A2 ]2
1. f.: c ;(ﬁ’)
A-27.2
2. fc +fm: C J"El (ﬁ}
A2]_,2
3. fc _fm: C 21 (B)
2, 2
4. fo+ 2fm: e
Ac’)-5*
5. ff:_zfm: - - &)

The average power in the five spectral components is the sum:

A%,
2

o> + 2/,2 (D) + 2/,%(1)]
=22 [(0.7652)2 + 2 * (0.4401)2 + (0.1149)2] = 0.9993 <

So, these terms have 99.9 % of the total power.

Therefore, the 99.9 % power bandwidth 1s

B.W= (fc + zfm) — (f;:’ - zfm) = 4fm



Caseb: £=0.2

For B = 0.2, J,(0.2) = 0.99, J,(0.2) = 0.0995, J,(0.2) = 0.00498335

The power in the carrier and the two sidebands (at f. , f. + [, fo — fim) 18
A%cr, 2 2
P==]],"(0.2) +2/,°(0.2)]

AE
P =<[0.9999]




Therefore,
99.99% of the total power is found in the carrier and two side bands

Jo/2
J1/2 J1/2

fcfm fc foc+fm fe+2fm fc+3fm  f

—
B W=2Fm

The 99% bandwidth 1s

B.W= (ﬁ: + fm) - (ﬁ: _fm) — me



Remark:

We observe that the spectrum of an FM signal when f <« 1 ( called narrow band
FM) 1s “similar” to the spectrum of a normal AM signal, in the sense that 1t
consists of a carrier and two sidebands. The bandwidth of both signals is 2f,,,.

Carson’s Rule

A 98% power B.W of an FM signal 1s estimated using Carson’s rule:

Br = 2(f + 1)fm




Generation of FM Signal

® Generation of narrow Band FM Signal



Consider an angel modulated signal:

s(t) = A.cos(2mf.t + 6(t))
When s(t) is an FM signal,  6(t) = 2mk, [m(t)dt
s(t) can be expanded as:

s(t) = A cos(2nf.t) EDS(9 (t)) — A, sin(2mft) sin(S(t))

When |6(t)] < 1, cos 8 = 1, sin(0) = 6 and s(t) , termed narrowband, can be
approximated as:

s(t) = A, cos(2rf.t) — A, 8 sin(2mf.t)



This expression can serve as the basis for the generation of a narrowband FM or PM
signals.

To Generate a narrowband FM, consider the block diagram below:

Integrator
21tks [m(t)dt

A_.sin(2nf.t) A, cos(2rf.t)




When m(t) = A,,, cos(2nf,,t)

0(t) = PBsin(2mf,,t)
And the modulated signal takes the form

s(t) = A, cos(2nf.t) — A B sin(2nf,,,t) sin(2mf.t)

To generate a narrow band PM signal, we can use the scheme:

8(t) = kpym(t)
scaling - S(t)
; € ©

A, sin(2nf.t) A, cos(2mf.t)




Spectrum of a single- tone NBFM:

For an FM signal, 6(t) = Bsin(2nf,,t)
s(t) = A, cos(2nf.t) — A.B sin(2nf,,t) sin(2mf.t)

s(t) = A, cos(2mf.t) — ’q;ﬁ [cos(2m(f, — fin)t) — cos(2m(f. + f)t)]

The spectrum of s(t) is shown below:

S(f)

Acl2
BAc/4

fc-fm

fc fc+fm f

(BAcy/4



1ne specirum consists oI a component at tne carricr iréequency f. , and at tnc two
sidebands f. + f,,, and f. — f,,,). Note the negative sign at the lower sideband. The
bandwidth of this signal is 2f,,,.

Now consider the normal AM signal with sinusoidal modulation.
s(t)ay = A, cos(2nf.t) + A.A,, cos (2nf,,t) cos(2nf.t)

It can be represented as

AcAm
2

s(t) = A, cos(2mf.t) — [cos(2r(f. — f)t) + cos2nr(f, + f,,)t)]

As we recall this signal consists of a term at the carrier and two terms at f. + f,,, and

f;:_fm-
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Frequency multiplier

It 1s a device for which the frequency of the output signal 1s an integer multiple of the frequency
of the input signal. It 1s primarily a nonlinear characteristic followed by a band pass filter. Now
we 1llustrate the operation of this device.

X (1) y(¢)

The Square law device: y = 2
—>
Let the input be an FM signal of the form:
x(t) = Ac cos(2nf .+ B'sin 2mfpt)
f
V(1) BPF
y(t) = A cos(¢) e




The output of the square law characteristic 1s:
2 a2 2 Al AC A
y(t) = x(t)" = Afcos®(¢) = > [1+ cos(2¢)] = - t5¢ cos(2¢)
AZ AZ , .
= + 5 COS [21‘[(2]’ .:) + Zﬁ’sm(ZHfmt)]




The bandpass filter

If y(t) is passed through a BPF of center frequency 2f. , then the DC term will be suppressed
and the filter output 1s:

y'(t) = %cus[Zn(Zf’c) + 2pB'sin(21f;,t) |

y(t) = 2—’?.1:05[21'[(}‘;) + Bsin(21f,,t)]

As can be seen from this result, the output 1s a signal with twice the frequency of the input signal
and a modulation index twice that of the input. To get frequency multiplication higher than two,
a cascade of units, similar to what was described above, can be formed with the number of stages
that achieve the desired frequency.




Indirect Method for Generating a Wideband FM:

A wideband FM can be generated indirectly using the block diagram below (Armstrong
Method). First a narrowband FM 1s generated, and then the wideband FM 1s obtained by using
frequency multiplication. Next, we analyze the operation of this modulator.




NBFM s1(1) Frequency
mt) multiplier by n » SO

If m(t) = A,,,cos 2nf,,t is the baseband signal, then

- :  kpAn
s.(t) = A, cos(2nf.t + Bsin2nf,t) ; B = —z;_—

is a narrowband FM with B <« 1. The frequency of s,(t) is fl.= f + keApcos2Tif,t .




Multiplying f; by n , we get the frequency of s(t) as f; = nf. + nkeAy cos2nfyt . This
result in

s(t) = A, cos[2n(nf.)t + nf sin 2nf,,t]

= A, cos[2nf.t + B sin 27 f,, t]
Where f = nf’ is the desired modulation index of WBFM

f. = nf. is the desired carrier frequency of WBFM




Direct method for generating FM signal:

In a direct FM system, the instantaneous frequency of the carrier 1s varied in accordance with a
message signal by means of a voltage controlled oscillator (VCO). The voltage — frequency
characteristic of a VCO 1s given by

fi= fe— km(t)

and 1s plotted in the figure below.

Voltage controlled s(t)

m(t) > oscillator >

fi ()




A realization of the CVO may be obtained by considering an oscillator (like the Hartley
oscillator) shown below in which a varactor ((voltage variable capacitor) is used. The
capacitance of the varactor varies in response to variations in the message signal. The variation 1s
linear when the variation 1in the message 1s too small.

fi

fc SssssssssaRRBRERRE RS .

LR RN N R R RN




The frequency of the oscillator 1s

1
21,/ (Ly + Ly)C(t)

Let C(t)=Cy— km(t)

fi(t) =

k: 1s a constant,
When m(t) =0, C(t) = C,, and the
unmodulated frequency of oscillation 1s

f;:_

1
J(L1+L3)Co

When m(t) has a finite value, the frequency of oscillation 1s

VP

L1 L2
.__-'ﬁ'.,. # -‘HII'I_.-HH\.’.AH\I N\ f"h"-._.-'r-\"-...-'a a_ll_‘
C(t)
| |
| |
Hartley Oscillator



1

ZH'J(L:[ + Lz}(:‘i‘ﬂ —k m(t})

fi(t) =

1 1 1
2m \/(Ll + LE)CG J(l _ k ?El(t))
0

k ¢ ~2
=fc(1— m()) , [(1+x)"=1+ nx]
Co
km(t
When T:( ) < 1, we can make the approximation
0
k m(t)
i = f(1+ 5= = fe + G m(®
0

Here it 1s clear that the instantaneous frequency varies linearly with the message signal.



Demodulation FM Signal




An FM signal may be demodulated by means of what 1s called a discriminator.

Let s(t) = A, cns(mct + S(t)) be an angle

Discriminator

5 y()

s(t) —
modulated signal. The output of an 1deal
discriminator 1s defined as:
(t) = 1 " do
y(©) = 2 P dt

df

When 6 = 2mks f;m(aﬂr)da , then — = 21k m(t) and y(t) becomes

y(t) = kpks m(t)




One practical realization of a discriminator 1s a differentiator followed by an envelope detector.

The operation of this discriminator can s(t) _’| Differentiator

be explained as follows:

Let s(t) =A, CDS(MEE + S(t))

ds(t) do

T —A, (mc + E) sin(wt + 6(t))

The output of the envelope detectoris A_| (mc + %) |

The capacitor blocks the DC term and so output 1s:

ds
dt

Envelope
detector

— >




Vo = Ac > = 2mhy Acm(2)

We know what an envelope detector 1s when we considered amplitude demodulation. Now we
explain how differentiation 1s accomplished.

From the properties of Fourier transform we know that if F{g(t)} = G(f) , then

F {%} = j2nf G(f)




This means that multiplication by j2mf in the frequency domain
amounts to differentiating the signal in the time-domain. Hence, we
need a circuit whose frequency response is linear in f to perform
time differentiation. A circuit that performs this task 1s a tuned
circuit, provided that the signal frequency falls within the linear part

of the characteristic, i.e., between either (fy, f2) or (f3, f1).

A balanced FM detector called balanced discriminator 1s such a
circuit.

fof

f3



Tuned circuit demodulator

£ J -* —
D C envelope
s(t) ) ( detector
—— = -~ —
— p. . —
‘\..I 'l..“'
J -
- - I
Primary circuit tuned to carrier freq. f, Secondary circuit tuned to f, > f.

To extend the dynamic range of the differentiating circuit, two tuned circuits with center
frequencies f,; and f,, are used as will illustrated next.




Balanced slope detector:

Two tuned circuits are tuned to two different frequencies J * =
fo, > fo, - The primary circuit is tuned to f .

® This circuit has wider width of linear frequency
| + * * ¢  Qutput
response. o
¢ No DC blocking is necessary. v > |




Tuned circuit 2 Tuned circuit 1
characteristic / : : characteristic ] Tuned Envelope
5 : cireuit f,q detector
: : i
_ .
—3'_3_
“ f fa Tuned Envelope -
| circuit foz detector
Overall freq. to
voltage characteristic

for

for
fe




Phase shift discriminator:

The quadrature detector: This demodulator converts frequency variations into phase variation
and detecting the phase changes. The block diagram of the demodulator 1s shown below

V(t
s(t) X © LPF y(©)

Delay
At




Let s(t) = A, cns(Zz-'rf,:t + (p(t)) ; o(t) = 2nKy fﬂtm(ﬁr) da
s(t — At) = A cos[2nf.(t — At) + @(t — At)]
= A_cos[2nf.t — 2nf.At + @(t — At)]
The delay At is chosen such that 2nf.At = H/z

Hence,
s(t — At) = A, cos [2:-'rfct —% + @(t — ﬂ.t)]

= A, sin[2nf.t + @(t — At)]
V(t) = s(t)s(t — At)

= A?sin[2nf .t + @(t — At)] cos[2nf.t + @(t)]

= Lsin[2n(2f)t + 9(8) + p(t — AD)] + ZEsinfp(t) — (¢ — AD)]



The high frequency component 1s suppressed by the LPF. What remains 1s the second term

A2 -
?Csin[fp(t) —o(t — At)] = 7"" [p(t) — @(t — At)]

Where At 1s small to justify the approximation sin(x) = x

Hence,

y() = Z[p(6) - o(t — A1)

AZ Ap LO-e(-At)

y(t)=? ' At

do(t)

The second term 1s the derivative . The output then becomes




_ de
y(t) =— .At. —

t d _
But @(t) = 2nK; [ m(a) da and E(P(t) = 2nKym(t)
AE
y(t) = ?‘: At .2mK; m(t)

y(t) = K m(t)

y(t) is proportional to m(t). It performs demodulation.




Transfer function of the delav:

From Fourier transform properties
g(t) = G(f)
g(t — At) - G(fle 2mh

The transfer function of the time delay 1s
H(f) = e~Jj2nfit

Therefore, a circuit whose phase characteristic is linear in f can provide time delay of the type

that we need.




A circuit with linear phase characteristic 1s the network shown
AAN Y YTV * O
R L

Vi(t) 1c Vo(t)

If.fﬂ Eﬂ-'m fb—_

then it can be shown that arg (H (f)) for this circuit is

arg(H(f)) = —-——(f f),Q==

Remark: To perform time differentiation, we searched for a circuit whose amplitude spectrum
varies linearly with frequency, while to perform time delay, we searched for a circuit with a
linear phase spectrum.

A N\ N



The Super heterodyne Receiver:

Practically, all radio and TV receivers are made of the super heterodyne type. The receiver
performs the following functions :

o Carrier frequency tuning: The purpose of which 1s to select the desired signal.

o Filtering: the desired signal 1s to be separated from other modulated signals.

o Amplification: to compensate for the loss of signal power incurred in the course

of transmission.




The description of the receiver 1s summarized as follows:

R [Load oscillator

R Loudspeaker

RF Mixer IF Envelope Audio w
section section detector amplifier

First detector Second detector




The incoming signal 1s picked up by the antenna and amplified in the RF section
that 1s tuned to the carrier frequency of the incoming signal.

The incoming RF section 1s down converted to a fixed intermediate frequency
(IF). fir = fio — frF

The IF section provides most of the amplification and selectivity in the receiver.
The IF bandwidth corresponds to that required for the particular type of
modulation.

The IF output 1s applied to a demodulator, the purpose of which 1s to recover the
baseband signal.

The final operation in the receiver 1s the power amplification of the recovered
signal.

The basic difference between AM and FM super heterodyne lies in the use of an
FM demodulator such as a discriminator (differentiator followed envelope
detector)
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