Random Process



A random process X(t) is defined as an ensemble of time functions together with a

probability rule that assigns a probability to any meaningful event associated with an
observation of one of the sample functions of the random process.

Consider the following experiment: An oscillator produces a waveform of the form
A cos(wpt + 8); where 0 is a discrete R.V with a probability mass function

P(6 = 0) = 0.2 P(8= %) =02

3?”) ~ 0.3

PO =m) =03 P(S

Here the sample space of the experiment consists of four time functions:

x,(t) = A,,, cos( wy,t ) P(x,(t)) = 0.2
x,(t) = A,, cos (wm t + g) P(x,(t)) = 0.2
x3(t) = A, cos(w,,t + 1) P(x3(t)) = 0.3
x4(t) = A,, cos(w,,t+ S?H) P(x4(t)) =0.3
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x1(t) = A cos(2nf,,t) x3 (t) = —Asin(2wf,t)
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Each realization of the experiment is called a sample function x(t). The sample space
(ensemble) composed ot functions 1s called a random or stochastic process denoted
by X(t). The value assumed by a random process at a particular time is a random variable

with a certain probability density function.




Pmf of x

For the example above, X(0) assumes three values 0.5
P{X(0)=A4,}=0.2
P{X(0)=-4,}=0.3 0.3
P{X(0)=0}=024+03=0.5 0.2
(Corresponding to = g, 2—“)
-A, 0 +A,

Pmfof X att=0.

P(X =0)=0.2+0.3=05
P(X =+4,,) =02
P(x=-A,) =03

The mean value of the random variable X is

E(X) = —Apm X 0.3 +0 % 0.5+ 0.2 X Ay
E(X) = —0.34,, + 0.24,, = —0.14,,



Pmfof X at w..t,, = /4

Possible values:

X(Wmt=17)
A, cus(§+ u) = +A,/V2
Apcos(Z+2) = —A,/V2
Apcos(Z+m) = —Ay/V2

Amcns(g+1—ﬁ)=+flmfﬁ

Prob.

0.2

0.2

0.3

0.3



The Pmf ot X at w, t = E 1s sketched here.

Pmf of x
0.5 0.5
_ﬁmfi\E Amii'\E X g

E(X (Wt =2)=0

= Process 1s not stationary [mean at ¢ = 0 1s not the same as the mean at

T
Wml'=?]




In general, X(t) =A,,cos(w,,t+86)

E(X(D)} = ) X(t,6) P(6 = 6)
= A, cosw,, t X0.2+0.2 xAmcﬂs(wm t+§) + 0.3cos(w,, t +m) +

0.3 x Ajcos(wy, t+ E?H)
Mean 1s not a constant (function of time).

= Process is non stationary.




Stationarity of a random process:

The mean of a process X (t) 1s defined as the expectation of the r.v obtained by observing
the process at some time t as

1 () = EX (D)} = f x f.(x)dx

f,(x) is the first order pdf of the process X(t).




The autocorrelation function of the process X(t) is defined as the expectation of the
product of two r.v X(t,;) and X(t,) obtained by observing the process X(t) at times t,
and t,.

R, (tn,t2) = EQX(t)X(5)} = f f %1 % f (X1, x2)dx1 dx;

f(x1,x2 ) is the second order (joint pdf) of x; and x.

A random process 1s said to be wide sense stationary or (stationary) when the following
two conditions hold:

1) E{X(t)} = u, = constant for all ¢

2) Ry(ty,t) = E{X(t)X(t2)} = Ry(t, — 1)
1.e., R, is a function of the time difference and not on the absolute values of
t; and t,. 1.e.,
R,.(t) =E{X(t)X(t+1)}; wheret=1t, — t;
A \ N



Properties of the autocorrelation function of a stationary process:

1) Rx(0) = E{X?(t)}; the mean square value (second moment of x) {
total power in X(t) }

2) R, (1) =R,.(—71);R,(7) is an even function of T.

3) R,(t)attains its maximum value att = 0

IRx(0)| = Ry (0)




Decorrelation Time : The decorrelation time 1, of the a stationary process X(t) of zero
mean is taken as the time taken for the magnitude of the autocorrelation function R, (1) to
decrease say 1% of its maximum value R, (0).

A Result we Recall from ENEE 331: If 0 is a r.v with pdf f3(0) and Y = g(0) , then
E{Y} = [ g(6)f(6) do

E(g(0)} = f 2(6)f,(0) do




Example: A sinusoidal signal with random phase
Let X(t) = Acos(2uf.t + 6)

A, f, are constants, 8 is a continuous r.v uniformly distributed over (—m, )

1
f9(9)=[ﬂ —nm<f<m
0 0.wW

The mean value of X(t) is

T

1
E{X(t)}= f Acos(2nf. t + 91 - dd =0
o g(@)

[

f(8)

Which 1s a constant (independent of time). The autocorrelation function is:
Ry(7) = E{X(O)X(t + 1)}

g(8) f(6)
“ ~ N —te—
= ffHAmS(erfc t+0)-Acos[2nf.(t+1)+ 0] -1/2m db

2
_A %{cﬂszﬂ;ﬁ: T+ cos(2m(2)f.t + 2nf.t + 260)}d6

_211 -1



We can easily recognize that the second integral 1s zero, leaving only the first term.
Hence, R, () becomes

2

cos2nf.T A
. — 2w = ?EDSZT[fCT

2

1‘12
Ry(x) = =
Note that:

e The mean value is a constant and R, (7) is a function of 7. These are the two
conditions necessary for the process to be stationary. So X(t) is a stationary
process.

e The process X(t) is periodic with period T, = ~ The autocorrelation function

c

2
R, (1) = %cns 2nf.T is also periodic with period T, = fi

C

Exercise: show that the first order pdf of X 1s

fr(x) = {HW

0 0.W

—A<x<A



Exercise: Let X and Y be two independent Gaussian random variables each with mean
zero and variance 2. Define the random process

Z(t) = Xcos2nf.t + Ysin2muf.t

a. Find the mean and variance of Z(t).
b. Find the autocorrelation function R, (7).
c. Is this process stationary?

Example: Random digital signal

The figure shows a random sample x(t) of a process X(t) consisting of a random
sequence XX, ... of pulses each with m possible amplitudes (symbols) a4, a,, ..., a,,

within each signaling interval T. The possible symbols occur with probabilities
P,,P,, ..., P,.



A
X1 X2
T
P
t
P
Tq X2

The time delay T; is a continuous r.v uniformly distributed over 0 < Ty < T;

1
where T is the symbol duration f (tg) = { T 0<t; <T
0 0.w

The amplitudes in different intervals are independent.

The mean value of the process is
E(X(t)) = a;Py + aPy + -+ -+ a,, P,
Without loss of generality, let E(X(t)) = 0

The variance of the process is
Var(X(t)) = 6% = a?P, + aZP, + =+~ + a%,P,

The average power of the process is also R, (0) = o2.

The autocorrelation function of the process is



R.(x)= aztri(%).

This function is sketched below

Ry (7)

Example: Random Binary Signal (also known as polar non return to zero)
Here, the possible symbols of X(t) in each signaling time interval T are:
+A  with probability V2 for O0st<T

—A  with probability V2 for O0st<T
Find the mean, variance and autocorrelation function of X(t).




Solution
The mean value is E(X(t)) = +A K%—A x%= 0

The variance is g% = A% x % + (—A)? x % = A?

Therefore, R, (7) = Azf?’f(%)

T

) 7| < T
0 IT| > T

Exercise: Unipolar non return to zero signaling
Let the transmitted symbols of Z(t) in each signaling time interval T be:

+A  with probability 2 for 0<t<T
0 with probability V2 for 0<t<T
a. Show that Z(t) 1s related to the polar NZR 1in the previous example by
Z(t) = (X(t)+A)/2
b. Find the mean and variance of Z(t).



2 2
CEGoBl) mer
c. Show that R,(7) = 22
- It| >T

Exercise: Polar non return to zero signaling with non-equal symbol probabilities
Let the possible symbols of X(t) in each signaling time interval T be:

+A  with probability p for 0<t<sT
—A  with probability  (1-p) for 0<t<sT
a. Find the mean and variance of X(t).
b. Find the autocorrelation function of X(t).

Exercise: M-ary pulse amplitude signal
Let the possible symbols of X(t) in each signaling time interval T be (—3A4, —A,
+A, +3A ) with equal probabilities

a. Find the mean and variance of X(t).

b. Find the autocorrelation function of X(t).



Ergodic processes:
Given a sample function x(t) of a random process X(t), we define the following
two time averages:

(X(©) = limg,.. — [ x(6)dt

XOX(E+D) = limgo = [T x(0)x(t + )t

Here, 2T 1s an observation interval.

Def: A random process 1s said to be ergodic if statistical properties can be
determined from a sample function representing one realization of the process.

Statistical average = Time Average.

The two quantities of interest are the mean value and the autocorrelation function.
For an ergodic process, they can be computed using time average as:

E{X(t)} = (x(t)) = constant.
R. (1) = E{X(t)X(t + 1)} = (x(t) x(t + 7)) — function of 7.



Remark: An ergodic process in stationary, but a stationary process 1s not

necessarily ergodic.

Example: consider again the process X(t) = Acos(2nf, t + ), 0 is uniformly
distributed over (-t <0 < ).

The two time averages are calculated as follows:

(x(t)) = TifﬂTcAcus(Znﬁ: t+60)dt=0; T.=1/f.
T

1 c
(x(O)x(t+ 1)) = TTJ- Acos(2rf.t + 0) - Acos(2nf.t + 2nf. T + 0)dt
C
0
= gf;” cos(2nf. t + 2nf.t + 20) + cos2uf.T dt

AZ
= cos2mf.T

These are the same values found 1n the previous example.
=  process 1s ergodic.



Power spectral Density and Autocorrelation Function:

Consider a stationary random process X (t) that is ergodic. Consider a truncated

segment of x(t) defined over the observation interval -T < t < T. Let X, be
the truncated signal:

Xo7(t) = {x(i{']) —T< t;:

The Fourier transform of x5 1s:
T

Xar(f) = | x(@ye-s2redt
-T
The energy spectral density of X,7(t) is [X,7(f)|?. Since x(t), is only one
realization of a random process, then we need to find 1ts mean value
E{|X27(f)|?}. Dividing this by the observation interval 2T, and letting T becomes
very large, we get the power spectral density of the whole process, averaged over

all sample functions and over all time.

The power spectral density, of a stationary process, may then be defined as:



1
RRT 2
Sx(f) = lim = E{|[Xor (1)1}
The Wiener —Khintchine Thorem:

The power spectral density Sy (f) and the autocorrelation function Ry(7) of a
stationary random process X (t) form a Fourier transform pairs:

Sx(f) = [__Rx (D)e™/*"dr
Rx(’l') = fi Sx (f)ﬁ’jznﬁdf

Properties of the power spectral Density:
1. The zero frequency value of the power spectral density of a stationary

process equals the total area under the graph of the autocorrelation
function ;

Sy (0) = J‘ Ry (t)dt



. The mean squared value (the total signal power) of a stationary process
equals the area under the power spectral density curve.

20

E{(X(6)2) = Ry(0) = f Se(F)df

. The power spectral density of a stationary process 1s always nonnegative ;
i.e., Sy(f) =0 forall f.

. The power spectral density of a real-valued random process 1s an even
function of f.

A\ N

Sx(f) = Sx(=f)



Find the power spectral density of the random process X(t) = A cos(2nf.t + 0);

: : A* A°
0 is a uniform r.v over (—m, ). ) )
A A
2
For this process, we found earlier that Ry (1) = A? cos2nf.T
Since Sy (f) = F{ Ry(7) }, then —f. f-

Sx() = {8(F = £) + 6(F +£))

The total average power is obtained by integrating Sy (f) over all frequencies.

[ Sx (S = [2 Z[8(F — £) + 8(F + f)ldf



Example: Random Binary Signal (revisited)

The autocorrelation function of the random binary signal was found to be

Az(l—‘—) 7| < T
0 IT| > T

Ry (1) =

The power spectral density is the Fourier transform of Ry (t) which is
Sx(f) = F{Rx(1)} = A%T sinc%fT

Exercise: For the random binary signal X(t), find the total signal power.

Exercise: Unipolar non return to zero signaling (revisited)

Let the transmitted symbols of X(t) in each signaling time interval T be:

+A  with probability /2 for 0<t<T
0 with probability 2 for 0<t=<T

a. Find the power spectral density of X(t).
b. Find the null to null bandwidth of X(t).

Example: Random Binary Signal (Revisited)



Here, the possible symbols of X(t) in each signaling time interval T are represented by a
pulse + g(t) and — g(t):

+g(t) with probability /2 for 0<t<T
—g(t) with probability 2  for 0<t<T

The power spectral density for this signal 1s

1
Sx(f) = F{Ry(D} = ZIG(DI?

Where G(f) if the Fourier transform of g(t). As we will see later, the transmission of
digital data by means of signals with opposite polarity 1s called antipodal signaling.




Exercise: Manchester Coding

Let g(t) in the previous example be given by

o=( 4 T2st<T
Y _{—A, T/2 St<T

Find the power spectral density of the transmitted signal.

Example: Mixing of a random process with a sinusoidal signal.

A random process X (t) with an autocorrelation function Ry (7) and a power spectral
density Sy (f) is mixed with a sinusoidal function cos(2nf.t + 0) ; 6 is a r.v uniformly

distribution over (0, 2m) to form a new process
Y(t) = X(t)cos(2nf.t + 6)

Find Ry (7) and Sy(f)



Solution
We first find Ry (1)
Ry(t) = E{Y(®)Y (¢t + 1)}
= E{X(t)cos(2nf.t + 0) - X(t + 1) cos(2mf.t + 2nf.T + 8)}

When X (t) and 0 are independent, then

= E{X(t) X(t + T)}E{cos(2nf.t + 0) : cos(2nf.t + 2nf.T + 6)}

cos(4nf.t + 2af.t + 20) + cos anc*r}

= Rx(7)E{ 2

Rx (1)

Ry(t) = - COS2Tf, T

The power spectral density is

1
S}’(f) = E{SX(f _fc) + SX(f +fc)}

Which is quite similar to the modulation property of the Fourier transform.



Exercise: Binary Phase Shift Keying

Consider again the random binary signal m(t) which assumes the values +1 and —1 in
each signaling time interval T as:

+1  with probability V2 for 0<t<T
—1  with probability V2 for 0<t<T

A new modulated signal Y (t) is generated from X(t) as:

Y(t) = Am(t)cos(2mf.t + @)

where 6@ i1s a random variable uniformly distribution over (0,2m) and independent of
m(t),




a.
b.
C.
d.

Finc
Find
Find

Finc

the null to null bandwidth of m(t)
the autocorrelation of Y (t)

and sketched the power spectral density of Y (t)
the null to null bandwidth of Y (¢t).




Exercise: Binary Amplitude Shift Keying

Consider again the unipolar NRZ signal m(t) which assumes the values +1 and 0 in each
signaling time interval T as:

+1  with probability 2 for 0<t<T
0 with probability 2 for 0<t<T

A new modulated signal Y (t) is generated from X(t) as:
Y(t) = Am(t)cos(2nf.t + )
where 6 is a r.v uniformly distribution over (0, 2m) and independent of m(t)

Find the null to null bandwidth of m(t)
Find the autocorrelation function of Y (¢t).

Find and sketched the power spectral density of Y (t)
Find the null to null bandwidth of Y (¢).

a6 oo op



Exercise: Binary Frequency Shift Keying

Consider again the random binary signal m(t) which assumes the values +1 and 0 in
each signaling time interval T as:

+1  with probability V2 for 0<t<T
0 with probability /2 for 0<t<T

A new modulated signal Y (t) is generated from X(t) as:
Y(t) = Am(t) cos(2mfit + 0,) + Am(t) cos2nf,t + 6,)

where 6, and 6@, are independent random variables uniformly distribution over (0, 2m)
and m(t) = (1 — m(t))

a. Show that m(t) and m(t) have the same autocorrelation function.

b. Show that
A? A?
R, (1) = ?Rm(r)cﬂﬂnﬂr + ?Rm(T)CDSZT{fET

c. Find and sketched the power spectral density of Y (t)
d. Find the null to null bandwidth of Y (¢).



Transmission of a Random Process Through a LTI Filter

Suppose that a stationary process X(t) 1s applied to a LTI filter of impulse
response h(t) producing a new process Y(t) at the filter output.

The input Signal X (t) 1s a stationary process characterized by an auto-
correlation function R, (7) and a power spectral density S, (f).




Mean Value of Y(t)

Y (t) 1s related to X(t) through the convolution integral
Y () =/"_hQ)X(t —2)dA
The mean value of Y(t) is
E{Y (1)} = j'_i h (A)E{X(t —A)}dA
Since X (t) is a stationary process, then E{X (t-A)} = n,, a constant, so

E{Y 0} =0, h ) n dr=p )", h(2)dA

w=p [ h(A)dA = p,H(0)

where, H(0) is the value of the transfer function evaluated at f = 0.

Autocorrelation Function of Y(t)

The autocorrelation function of Y(t) can be evaluated as:
Ry (t,u) = E{Y(t). Y(u)} © u=t+T
=E{[" h(A)X(t=2A)d Ay - [ R(A)X (u — 25)dA,
=ff_z h(A))h(A))E{X(t — A1) X (u — A,)}dA,d A,

= 17 h(A)h(A2) Ry [(t = 1y) — (u — Ap] dAy2,



Rx [(t—2) —(u—2A] =Rx [(t—2; —u+ 4] =Rx [(T— 24 — ;]

Where, T = t — u. With this, Ryx(t,u) becomes

Ry (1) = j f B (ADh () Ry (x = hy + A)dhy dhy

Which can be expressed 1n a compact form as:

R, (1) =h (7)* h(-7)* R(7)




Mean Square Value of Y(t)

Setting T = 0 1n the expressions for Ry (1), we get
E{Y(1)’} =Ry (0)=f[__ h (A)h (k) Rs (Aa-A1) dA,; d,

Power Spectral density S, (f) of Y(t)

The power spectral density of Y(t) is related to the autocorrelation function
through the relations

Sy =F{ R (1)} =F { h ()* h(-1)* Ry(7) }
=H(f) . H'(f) . S«()
Sy(£) = [ [H()|*S,(H)df



Total Input and Output Power

The total input and output powers can be found as the total area
under the power spectral density curve.

E{X(1)°} = [~ Sy(Hdf =R, (0)

E{Y(t)’} = [ S,(Hdf =R, (0)




The Gaussian Random Process

A random variable X 1s said to be Gaussian if its probability density
function i1s :

£(x) = 1 e‘(X—HX)ZXZU,%

2 oZ

where,

i = E(x) is the mean value of X

0. = E{(X-p,)*} is the variance of X.



Defenition

A random process X(t) 1s said to Gaussian 1f the random variables X,
X5,., X, (obtained by observing the process at times t, t,,...., t, ) have a
jointly Gaussian probability density function for all possible values of n and

all times t, to....., t,.

fx(x)
Two Virtues of the Gaussian Process

First : The process has many properties

that make analytic results possible (easy
to handle mathematically).

Second: The random process produced

by physical phenomena is often such Hx

that a Gaussian model 1s appropriate . The use of a Gaussian model to
describe the physical phenomena 1s usually confirmed by experiments.



The Central Limit Theorem

Let X,,X,,.,X, be a set of independent and identically distributed (11d)
random variables such that E(X;) = p, and Var (X;) = ﬂ'xz . Define the

random variable




Y1 Xi
n

| =

The probability distribution of U approaches a Gaussian distribution with

. 2, . .
mean [, and variance 0, /n in the limit asn = oo .

The theorem provides a justification for using a Gaussian process as a model
for a large number of physical phenomena in which the observed random
variable at a particular instant of time, 1s a result of a large number of
individual events.




Properties of the Gaussian Process

1- If a Gaussian process X(t) 1s applied to a stable linear filter, then the
random process Y(t) at the output of the filter 1s also Gaussian .

To see that we consider the convolution integral relating Y(t) to X(t)
Y =] X(Dh (t — 1)dA
Which comes from the approximation

Y()= LX(4)h (t = 4;)

A\



Note that Y(t) 1s a linear combination of Gaussian random variables, and so
Y(t) 1s Gaussian for any value of t (any linear operation on X(t) produces
another Gaussian process).

2- Consider the set of random variables X(t;), X(t,) ,...., X(t,), obtained by
observing a random process X(t) at times t;, t,, ..., t,. If the process X(t) 1s
Gaussian , then this set of random variables 1s jointly Gaussian for any n.
The joint pdf 1s completely determined by specifying

the mean vector

p=[p, M, ta]

and the covariance matrix

W



Z: f-cl']ZE{(XI'“I)(XJ_MJ)}'-11.]:11&n

The joint pdf of the n random variables is

£( X X,) ! 0—05X— )Tt (X-p)

T 2m)? Jdet>

3- If a Gaussian process 1s stationary in the wide sense, then it is also
stationary in the strict sense (this follows from property 2 above ).

4- If the random variables X(t;), X(t,) ....., X(t,) obtained by sampling a
Gaussian process X(t) at times t;, t;, ... , t, are uncorrelated, that 1s

E{(Xi- mi)(Xj-uj)f =0; 1 7]
N N




then these random variables are statistically independent. Here the
covariance matrix 1s diagonal.

g
Il
Q
NN

The joint pdf becomes a product of the marginal pdf’s.

1

112 /9 2
fx(x)=l—[;1:1f(xi)= ?=1 e (Xi—Wj)“/20;]

ZHGf

A diagonal covariance matrix 1s a necessary and sufficient condition for
statistical independence .



Noise in Communication Systems

The term noise 1s used to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication system and over
which we have no control .

The noise may be external (man-made noise, galactic noise ) or internal
(arising from spontaneous fluctuation of current or voltage in electronic
devices ), example of which are shot noise and thermal noise .




Shot Noise

The noise arises 1n electronic devices such as diodes, transistors and photo-
detector circuits, due to the discrete nature of current flow 1n these devices.
Remember that current 1s a result of the flow of electrons, which have a
discrete nature. The Poisson distribution 1s often used to model this type of
noise. Using this model the number of electrons emitted in an interval of

length T 1s a random variable with the pdf

(AT)"

P(X=x)=e T x=0,1,2,...

A: average number of electrons emitted /unit time (rate of emission).

W




Thermal Noise :-

Voltages and currents that exist in a network due to the random motion of
electrons 1n conductors 1s referred to as thermal noise (Johnson’s noise).

Quantum mechanics shows that the power spectral density of the thermal
noise associated with a resistor with a resistance R 1s given by

__2RhIf]
SVU) - hlfl VEKHZ
e kT -1

K: Boltsman constant ( 1.38 *10™ J/degree )

h : Planck constant (6.62 *10™* Joules-sec)

T: degree in Kelvin



=> R :noiseless resistor
R

noisy resistor
Sv=2KTR

For frequencies up to 10'> =1000 GHz, this power spectral density is almost
constant having the value

S«(f)=2kTR V*/Hz.

The thermal noise voltage in a zero —mean Gaussian random process.



> (D)
v 2kTR

>
f
1 R(0)
>
0 T
E{V(t)}=0; Zero mean.
Si(f) = 2kTR; constant power spectral density.

The autocorrelation function corresponding to this constant power
spectral density 1s:

R.(7) = 2KTR o(7);

This result shows that two random variables V,; , Vi, taken at times t; and t,
are statistically independent for any value of 7=1t,-t, 7>0.



White Noise

White noise is one whose power spectral density is constant over all
frequencies. The power spectral density and autocorrelation function for this

type of noise are:
S (D)

L

No/2

Sw(ﬂ — N{.IZ

R.(T) = Ny/2 8(1)

<V Y

T R(D
0

This 1s the type of noise (model) that we will use in the analysis of
communication systems.

A\ N



The assumption made is that this noise i1s additive white Gaussian
(AWGN). If s(t) 1s the transmitted signal and r(t) is the received signal, then

r(t) = s(t) + w(t); additive channel noise .
Filtered White Noise

Assume that a white Gaussian noise w(t) of zero mean and psd = Ny/2 1s
applied to an 1deal LPF of B.W = B. Let n(t) denote the filtered noise, then

H(D Sall)

w(t) _|_I—I n(t)
; f

B f -B B

No/2




Sa(H) = [H(DI” Sw(D)

Sa(f)= [N“/z -B<j<B, Output psd

,0. W
R,(T) = J‘B No pU2nfv) gf

R.(7) = N¢B sinc 2Brt; Output autocorrelation function

E{n(t)} =0; Zero mean noise

E{n(t)’} = ffﬂ S,(fldf = (2]3) NoB; Total output noise power

T'he pdf of the filtered noise at any particular time t 1s

—

e ZNoB) | _op<p<oo

1

J27(N,B)

Remark: note that the pdf is not a function of time indicating that this
filtered Gaussian process 1n stationary in the strict sense.

fu(n) =




Correlation of White Noise with a Sinusoidal Signal

Let w(t) be a white Gaussian noise with zero mean. This noise 1s multiplied
by a sinusoidal basis function and integrated over an interval of duration T to
produce the scalar N. This scheme 1s repeatedly used in the coherent
demodulation of digital signals. The interval T corresponds to one symbol
interval and f,. 1s the frequency of the carrier. The carrier period and the
symbol period are related by T=nT_ where n 1s an integer. We wish to study
the properties of N.

(2/T)M0.5 cos 2mfct



Mathematically, the correlation process is represented as:

N=fDTw(t)\/%7c052nfct dt
The mean value of N is:
E{N} = E{w(t)}\/?cns 2nfit dt =0.
The variance of N 1s:
E{N°} = % ffﬂT E{w(t,)w(t,)}cos2nf.t, cos2nf.t, dt, dt,

E{W(tl)W(tz)} - Rw(tg — tl) - NQJQ 8(t2 — t])

2 N
> E{N’} == 7" [ (f, 8(ty - t,) cos2mf; t; dt,) cos 2mf.t,dt,
2 No T
== J, cos®2mft, dt,;  T=nT,

The last step comes by virtue of the sifting property of the delta function. By
performing the integration, we get



N
E{N'}=—=0"

=> N is a zero mean Gaussian r.v with variance ¢° = Z—D. Its pdf can be
written as
1 —n”
o 27 o
2
1 —n?
fn(n) = — e No




Narrow-band Noise

Now let the white Gaussian noise w(t) of psd S,,(f) = Ny/ 2 be applied to an
1deal band pass filter with center frequency f. and bandwidth 2B.

on
3 No/2

w(t) |

fc+w g fetw 0 fc-B ¢ fc+B

The noise 1s described as narrow band when 2B << f_. The analysis 1s similar
to that done for the LPF and the results are summarized as follows:



Su(f)=Ny/2 for f{-B<|fl<{.+B; Output psd

E{n(t)}=0; Zero mean noise
E{n(t)"}=2. ~o ZB =N,(2B) = o Total output power
1 -n"2
— 2(2BNg) << o :
fn(n) TZn BNy e o) | -0<n<o; output noise pdt.

R,(0) = E{n(t)’} = _]'i S, (f)df ; Mean square value.




Narrow-band Noise: In-phase and Quadrature Representation

Let w(t) be applied to a bandpass filter of B.w = 2B centered at f_ to
produce a narrow band noise n(t).

The narrow band noise n(t) can be represented in terms of an in-phase ny(t)
and a quadrature component np(t) as:

w(t)

n(t)

w fc-B fc fc+B

n(t) = ny(t) cos 2  f.t — ng(t) sin 2 .t



The in-phase and quadrature components ny(t) and ng(t) can be recovered
from n(t) as demonstrated 1n the block diagram.

2cos 2mrfct

-2sin 2mfct

ni(t) = Lp{2n(t)cos 2mf.t}; in-phase noise component
Sni(f) = Lp {S.(f-f)+S,(f+1,)}; in-phase noise psd.

no(t) = - Lp{2n(t)sin2mf.t}; quadrature noise component



Sni(f) = Sno(H); both components have the same psd

Finally, ni(t) and ng(t) can be retrieved from n(t) as:
n;(t) = n(t) cos 2mf .t + n(t)sin2nf.t
n;(t) = n(t) cos 2mf.t — n(t)sin2nf.t

Properties of the Noise Components

e The in-phase component ny(t) and the quadrature component np(t) of
narrow band noise n(t) have zero mean .

e [f the narrow band noise n(t) is Gaussian, then ni(t) and ng(t) are
jointly Gaussian .

e Ifn(t) 1s wide sense stationary, then n;(t) and ng(t) are jointly wide
sense stationary .

e Both ny(t) and ng(t) have the same power spectral density

i) = Sno() = f SNE= )+ Su(f + (), —B </ <

e ny(t), ng(t) and n(t) have the same variance

E{n(t)’} = E{n(t)’} = E{ng()’} = o



e The cross-spectral densities of ny(t) and ng(t) are imaginary

SNINQ(ﬂ - = SNQNI(f) ={ ][SN(f a- fo.) — Sy(f — £ )] ,—Jlrgﬂ..irf < B

e [fn(t)1s Gaussian with zero mean and a power spectral density S,(f)
that 1s symmetric about f., then n(t) and ng(t) are statistically
independent. The joint pdf of ny(t) and ng(t) 1s the product of the
marginal pdf’s

2 -
_n[ 1 l"lg

e 2 o?

flrune) = o™ - o

(1.e, when the cross spectral density = 0 V {, then n; and ng are independent)

A\



Polar Representation of Narrow-band Noise

Let n(t) be a narrow band zero-mean, white Gaussian noise with a symmetric
psd about some center frequency f. .

n(t) = ny(t) cos 2mf, t — np(t) sin 2xf.t.

Because S,(f) 1s symmetric, it follows that ni(t) and ng(t) , observed at a
fixed time t, are independent Gaussian r.v with zero mean and variance o

n(t) can also be represented as
n(t) = R(t) cos ( 2rrf .t + @(t) )

where the envelope R(t) and the phase @(t) are given as:
R(t) = [ ny(t)* + ng(t)*]"

@(t) =tan "' (ng(t) / ny(t))



It can be shown (Go back to your ENEE 331 lecture notes and go over the
proof) that R and @ are independent random variables with pdf ’s

1
fm(¢1)={ 2n 0SSO =27 Uniform pdf)
0 ,0. W
I (2 2 >
fr(r) = {r_rz exp[=(r®/2o7)], T 2 0; ( Rayleigh distribution)
0 ,0. W
No/2 (0 No/2
|
|
|
| L | >
P > 0 P > f
2B 2B

If S.(f) has the psd shown then , 6 =2 (N¢/2)(2B) = 2N, B and the pdf of R
1s as given above .



A Test Sine Signal Plus Narrow-band Noise

If a test sine signal Acos2 mf.t 1s added to the narrow band filtered noise,
then the signal plus noise can be expressed (using the in-phase and
quadrature representation of the noise) as:

X(t) = A. cos2 it + ny(t) cos 2mi. t — ng(t) sin 2mf t
X(t) = (A + ny(t)) cos 2mf. t — np(t) sin 2t t

The noise components Njand N, are independent zero mean Gaussian r.v
(psd of n(t) is symmetric ) each with variance o”. X(t) can also be
represented 1n polar form as:

X(t) =R(t) cos (2xf .t + @(t))

Where

R() = /(Ac +n;(£))* + ny(t)?



—1 ng(t)
t) = tan~ 1 —2
O(t) = tan = o= o)

It can be shown that the pdf of R 1s
fo(r) = {;—2 Exp -[ (" + A% /20" ]1, (Ar/ 6°); (Rician distribution)

I, (.) 1s the modifies Bessel function of the first kind of zero order, and

o’ =E{n(t)’} = E{n(t)’} = E{ny(t)’}.

The Rician distribution arises in the study of the performance of some digital

communication applications like the noncoherent demodulation of ASK and
FSK.




