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Model of a Communication System 

 

 Communication is defined as “exchange of information“. 

 Telecommunication refers to communication over a distance greater than would normally 

be possible without artificial aids. 

 Telephony is an example of point-to-point communication and normally involves a two –

way flow of information. 

 Broadcast radio and television : Information is transmitted from one location but is 

received at many locations using different receivers (point to multi-point communication) 

 Model of  a communication system : 

 

                                                                         Modulated signal y(t) 

 

 

                                                Message signal 𝑥(𝑡)                                                                       y'(t) + n(t) 

 

 

                                                                          Output signal  𝑥(𝑡)                                               Noise n(t) 

 The purpose of a communication system is to transmit information – bearing signals from 

a source located at one point to a user located at another end. 

 The input transducer is used to convert the physical message generated by the source into 

a time-varying electrical signal called the message signal. 

 The original message is recreated at the destination using an output transducer. 

 The transmitter modifies the message signal into a form suitable for transmission over 

the channel. Here modulation takes place. 

 The channel is the medium over which signal is transmitted, (like free space, an optical 

fiber, transmission lines, twisted pair of wires…). Here signal is distorted due to 

 

A. Nonlinearities and/or imperfections in the frequency response of the channel. 

B. Noise and interference are added to the signal during the course of transmission. 

 

 The purpose of the receiver is to recreate the original signal x(t) from the degraded 

version x(t) + n(t) of the transmitted signal after propagating through channel . 

Here, demodulation takes place. 

Information source 

and input transducer 

Transmitter Communication 

Channel 

Receiver Output transducer 

and destination 

∑ 



  2 
 

Classification of Signals 

Definition: A signal may be defined as a single valued function of time that conveys 

information. 

Depending on the feature of interest, we may distinguish four different classes of signals: 

1. Periodic Signals, Non-periodic Signals: 

A periodic signal g(t) is a function of time that satisfies the condition g(t) = g(t+T0), ∀t. 

The smallest value of T0 that satisfies this condition is called the period of g(t). 

Example: A Periodic Signal 

The saw-tooth function shown below is an example of a periodic signal. 

 

Example: A Non-periodic Signal 

The signal  

 𝑔(𝑡) = {
𝐴, 0 ≤ 𝑡 ≤ 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is non-periodic, since there does not exist a T0 for which the condition g(t) = g(t+T0) is satisfied. 

2. Deterministic Signals, Random Signals: 

A deterministic signal is one about which there is no uncertainty with respect to its value at any 

time. It is a completely specified function of time . 

Example: A Deterministic Signal 

 x(t) = 𝐴𝑒−𝑎𝑡u(t) ; 𝐴 and α are constants. 
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A random signal is one about which there is some degree of uncertainty before it actually occurs. 

(It is a function of a random variable ) 

Example : A Random Signal 

x(t) = A 𝑒−𝑎𝑡u(t) ; α is a constant and A is a random variable with the following probability density 

function (pdf). 

FA(a) = {
1         0 ≤ 𝑎 ≤ 1
 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3. Energy Signals, Power Signals: 

The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-Ω resistor, i.e., 

 p(t) = |g(t)|2  

The average power is defined as: 

Pav≜ lim
𝑇→∞

1

2𝑇 
∫ |𝑔(𝑡)|2
𝑇

−𝑇
𝑑𝑡 

The total energy of a signal g(t) is  

E≜ lim
𝑇→∞

∫ |𝑔(𝑡)|2
𝑇

−𝑇
𝑑𝑡 

A signal g(t) is classified as energy signal if it has a finite energy,i.e, 0 < E < ∞ 

A signal g(t) is classified as power signal if it has a finite power,i.e, 0 < Pav< ∞ 

The average power in a periodic signal is  

Pav=
1

𝑇0
∫ |𝑔(𝑡)|2
𝑇0

0
𝑑𝑡 ; T0 is the period; 

𝑓0 = 1/𝑇0 is referred to as the fundamental frequency 

Usually, periodic signals and random signals are power signals. Both deterministic and non 

periodic signals are energy signals (We will show a counterexample shortly). 

4. Analog Signals, Digital Signals : 

An analog signal is a continuous time - continuous amplitude function of time . 

Example: 

The sinusoidal signalx(t) = Acos 2𝜋𝑓𝑡 , −∞ < 𝑡 < ∞, is an example of an analog signal. 
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A discrete time- discrete amplitude(digital) signal is defined only at discrete times. Here, the 

independent variable takes on only discrete values. 

 

Example: 

The sequence x[n] shown below is an examples of a digital signal. The amplitudes are drawn from 

the finite set {1,0,2}.  

 

More Examples 

Example: The Exponential Pulse 

Find the energy in the signal  g(t) = A 𝑒−∝𝑡 u(t). 

E= ∫ 𝐴2
∞

0
𝑒−2∝𝑡𝑑𝑡 = 𝐴2

−𝑒−2∝𝑡

2∝
|0

∞  =
  𝐴2

  2∝
  . Since E is finite, then g(t) is an energy signal. 

 

Example: The Rectangular Pulse  

Find the energy in the signal: 

𝑔(𝑡) = {
𝐴, 0 < 𝑡 < 𝜏
0,                    𝑜. 𝑤

 

E= ∫ 𝐴2 𝑑𝑡
𝜏

0
 = 𝐴2𝜏. This signal is an energy since E is finite. 

Example: The Periodic Sinusoidal Signal 

Find the average power in the signal : 

g(t) = A cos𝜔𝑡  , −∞ < 𝑡 < ∞ 

Since g(t) is periodic, then : 
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Pav = 
1

𝑇0
∫ 𝐴2 cos2𝜔𝑡 𝑑𝑡 =
𝑇0

0

𝐴2

𝑇0
∫ (

1+cos2𝜔𝑡

2

𝑇0

0
) = 

𝐴2

𝑇0
 . 
𝑇0

2
 =
𝐴2

2
  . 

Here, Pav is finite and, therefore, g(t) is a power signal. 

Example: The Periodic Saw-tooth Signal 

Find the average power in the saw-tooth signal g(t) plotted in Fig.1. 

g(t) = 
𝐴

𝑇0
 t  , 0≤ 𝑡 ≤ 𝑇0 

Pav = 
1

𝑇0
∫

𝐴2

𝑇0
2

𝑇0

0
𝑡2𝑑𝑡 =  

1

𝑇0

𝐴2

𝑇0
2

𝑡3

3
|0
𝑇0  = 

𝐴2𝑇0
3

3 𝑇0
3  = 

𝐴2

3
  . 

 

Example: The Unit Step Function 

Consider the signal:  g(t) = A u(t). 

                                            g(t) 

                                            A 

 

 

     -T                      0                          T 

                            Fig. 1.2 

This is a non periodic signal. So let us first try to find its energy: 

E = ∫ 𝐴2 𝑑𝑡
∞

0
 = ∞ . 

Sine E is not finite, then g(t) is not an energy signal. 

To find the average power, we employ the definition : 

Pav ≜ lim
𝑇→∞

1

2𝑇 
∫ |𝑔(𝑡)|

2𝑇
−𝑇 𝑑𝑡, 

where  2T is chosen to be a symmetrical interval about the origin, as in Fig. 1.2 above. 

 Pav = lim
𝑇→∞

1

2𝑇 
∫ 𝐴2
𝑇

0
𝑑𝑡   = lim

𝑇→∞

𝐴2 𝑇

2𝑇 
  = 

𝐴2

2
 . 

So, even-though g(t) is non-periodic, it turns out that it is a power signal. 

Remark: This is an example where the general rule (periodic signals are power signals and energy 

signals are non periodic signals) fails to hold. 
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Fourier Series 

Let g(t) be a periodic signal with period T0 =
1

𝑓0
 such that it absolutely integrable over one period, 

i.e.,   ∫ |𝑔(𝑡)| 𝑑𝑡
𝑇0

0
< ∞. 

The signal g(t), satisfying the above integrability condition,  may be expanded in one of three 

possible Fourier series forms (We will not address the question of series convergence in this 

discussion): 

The complex form: 

  𝑔(𝑡) = ∑ Cne
jnω0t

∞

𝑛=−∞
 

where,   Cn =
1

𝑇0
∫ 𝑔(𝑡)
𝑇0

0
𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡   ;  

Cn : is a complex valued quantity that can be written as: 

Cn = | Cn | 𝑒𝑗𝜃𝑛 

Discrete Amplitude Spectrum:  A plot of |Cn| vs. frequency 

Discrete Phase Spectrum:   A plot of 𝜃𝑛 vs. frequency 

The term at 𝑓0 is referred to as the fundamental frequency. The term at 2𝑓0is referred to as the 

second order harmonic, and so on. 

The trigonometric form: 

𝑔(𝑡) = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡)

∞

𝑛=1

 

Where : 𝑎0= 
1

𝑇0
∫ 𝑔(𝑡) 𝑑𝑡
𝑇0

0
      (dc or average value) 

𝑎𝑛 =
2

𝑇0
∫ 𝑔(𝑡) cos 𝑛𝜔0𝑡 𝑑𝑡
𝑇0

0
 

𝑏𝑛 =
2

𝑇0
∫ 𝑔(𝑡) sin 𝑛𝜔0𝑡 𝑑𝑡

𝑇0

0

 

The polar form : 

𝑔(𝑡) = 𝑐0 +∑2|Cn| cos(𝑛𝜔0𝑡 +

∞

𝑛=1

𝜃𝑛) 
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where Cn  and 𝜃𝑛 are those terms defined in the complex form. 

Remark: The above three forms are equivalent and are representations of the same waveform. If 

you know one representation, you can easily deduce the other. 

Example: Find the trigonometric Fourier series of the periodic rectangular signal defined over 

one period 𝑇0 as: 

 𝑔(𝑡) = {
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Solution:  

 𝑎0= 
1

𝑇0
∫ 𝑔(𝑡) 𝑑𝑡
𝑇0/2

−𝑇0/2
 = 

1

𝑇0
∫ 𝐴 𝑑𝑡
𝑇0/4

−𝑇0/4
 = 𝐴/2 

 𝑏𝑛 =
2

𝑇0
∫ 𝑔(𝑡) sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/2

−𝑇0/2
 = 

2

𝑇0
∫ 𝐴 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/4

−𝑇0/4
 = 0 

 𝑎𝑛 =
2

𝑇0
∫ 𝑔(𝑡) cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/2

−𝑇0/2
 = 

2

𝑇0
∫ 𝐴 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/4

−𝑇0/4
 

 𝑎𝑛 =

{
 
 

 
 2𝐴

𝑛𝜋
,               𝑛 = 1, 5, 9, …

−2𝐴

𝑛𝜋
,             𝑛 = 3, 7, 11,… 

0,                𝑛 = 2, 4, 6…  

 

The first four terms in the expansion of 𝑔(𝑡) are:  

𝑔̃(𝑡) =
𝐴

2
+
2𝐴

𝜋
{cos(2𝜋𝑓0) 𝑡 −

1

3
cos(2𝜋3𝑓0) 𝑡 +

1

5
cos(2𝜋5𝑓0) 𝑡} 

The function 𝑔̃(𝑡) along with 𝑔(𝑡) are plotted in the figure for  −1 ≤ 𝑡 ≤ 1 assuming 𝐴 = 1 and 

𝑓0 = 1 
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Remark: As more terms are added to 𝑔̃(𝑡), 𝑔̃(𝑡) becomes closer to 𝑔(𝑡) and in the limit as 𝑛 →

 ∞, 𝑔̃(𝑡) becomes equal to 𝑔(𝑡) at all points except at the points of discontinuity. 

Parseval’s  Power Theorem  

The average power of a periodic signal g(t) is given by: 

Pav =
1

𝑇0
∫ |𝑔(𝑡)|2
𝑇0

0
𝑑𝑡 = ∑ |Cn|

2∞

𝑛=−∞
   = |Cn|

2 + 2∑ |Cn|
2∞

𝑛=1
 

    = |𝑎0|
2 + 

1

2
∑ (|𝑎𝑛 |

2∞

𝑛=1
+ |𝑏𝑛|

2) 

Power Spectral Density 

The plot of |Cn|
2 versus frequency is called the power spectral density (PSD). It displays the 

power content of each frequency (spectral) component of a signal. For a periodic signal, the PSD 

consists of discrete terms at multiples of the fundamental frequency. 

Exercise: Consider again the saw-tooth function defined over one period as 𝑔(𝑡) = 𝑡, 0 ≤ 𝑡 ≤ 1 

a. Use matlab to find the dc terms and the first three harmonics(i.e., let n = 3) in the Fourier 

series expansion 

𝑔̃(𝑡) = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡)

3

𝑛=1

 

b. Plot 𝑔̃(𝑡) and 𝑔(𝑡) versus time for −1 ≤ 𝑡 ≤ 1 on the same graph. 

c. Find the fraction of the power contained in 𝑔̃(𝑡) to that in 𝑔(𝑡). 

d. Sketch the power spectral density. 
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Example :Find the power spectral density of the periodic function g(t) shown in the figure : 

 

Solution: Here, we need to find the complex Fourier series expansion, where the period T0 =  2𝜏 

 𝑔(𝑡) = ∑ Cne
jnω0t

∞

𝑛=−∞
;   Cn =

1

𝑇0
∫ 𝑔(𝑡)
𝑇0

0
𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 

Cn =

{
 
 

 
 

𝐴

2
 ,                    𝑛 = 0                 

3𝐴

|𝑛|𝜋
,               𝑛 = ±1,±5,±9,…

−3𝐴

|𝑛|𝜋
,             𝑛 = ±3,±7, ±11,… 

0,                𝑛 = ±2,±4,…  

                 |Cn|
2 = {

(
𝐴

2
)2,         𝑛 = 0    

(
3𝐴

𝑛𝜋
)2,       𝑛: 𝑜𝑑𝑑  

0 ,            𝑛: 𝑒𝑣𝑒𝑛

 

𝑆𝑔(𝑓) = ∑ |Cn|
2 δ(f − nf0)

∞

𝑛=−∞

 

 

As can be seen, the power spectral density of this periodic signal is a discrete function in 

frequency. 

Exercise: Verify Parseval’s power theorem for this signal, i.e., show that 

𝑃𝑎𝑣 =
1

𝑇0
∫ |𝑔(𝑡)|2
𝑇0

0
𝑑𝑡 = ∑ |Cn|

2∞

𝑛=−∞
 = 2.5𝐴2 

  



  10 
 

Fourier Transform 

Let g(t) be a non periodic square integrable function of time. That is one for which  

 ∫ |𝑔(𝑡)|2
∞

−∞
𝑑𝑡<∞ 

The Fourier transform of g(t) exists and is defined as: 

𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

 𝑑𝑡 

The time function g(t) can be recovered from 𝐺(𝑓) using the inverse Fourier Transform: 

𝑔(𝑡) = ∫ 𝐺(𝑓)𝑒𝑗2𝜋𝑓𝑡
∞

−∞

 𝑑𝑓 

Remarks: 

 All energy signals for which𝐸 = ∫ |𝑔(𝑡)|2
∞

−∞
𝑑𝑡<∞  are Fourier transformable. 

 G(f) is a complex function of frequency f, which can be expressed as: 

 

G(f) = | G(f) | 𝑒𝑗𝜃(𝑓) 

where,  | G(f) | : is the continuous amplitude spectrum of g(t), (even function of f). 

𝜃(𝑓) : is the continuous phase spectrum of g(t), (odd function of f). 

 

Rayleigh Energy Theorem : 

The energy in a signal g(t) is given by : 

E = ∫ |𝑔(𝑡)|2 𝑑𝑡
∞

−∞
 = ∫ |𝐺(𝑓)|2𝑑𝑓

∞

−∞ 
 

The function |𝐺(𝑓)|2 is called the energy spectral density. It illustrates the range of frequencies 

over which the signal energy extends and the frequency bands which are significant in terms of 

their energy contents.  For a non-period signal energy signal, the energy spectral density is a 

continuous function of f. 

A General Form of the Rayleigh Energy Theorem 

For two energy functions g(t) and 𝑣(𝑡), the following result holds: 
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∫ 𝑔(𝑡)𝑣(𝑡)∗ 𝑑𝑡
∞

−∞
= ∫ 𝐺(𝑓)𝑉(𝑓)∗ 𝑑𝑓

∞

−∞
 

 

Example: Energy spectral density of the exponential signal 

𝑣(𝑡) =  {𝐴 𝑒
−𝑏𝑡    𝑡 > 0

0             𝑡 < 0
 

𝑉(𝑓) = ∫ 𝑣(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

0

 𝑑𝑡 = ∫ 𝐴𝑒−𝑏𝑡
∞

0

𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

𝑉(𝑓) = 𝐴∫ 𝑒−(𝑏+𝑗2𝜋𝑓)𝑡
∞

0
 𝑑𝑡 = A 

𝑒−(𝑏+𝑗2𝜋𝑓)𝑡

−(𝑏+𝑗2𝜋𝑓)
|0
∞ = 

𝐴

𝑏+𝑗2𝜋𝑓
 . 

𝑉(𝑓) =
𝐴

𝑏+𝑗2𝜋𝑓
|𝑉(𝑓)| =

𝐴

(𝑏2+(2𝜋𝑓)2)1/2
 

The energy spectral density is: 𝑆𝑣(𝑓) = |𝑉(𝑓)|2 =
𝐴2

𝑏2+𝜔2
 

Remark: The signal 𝑣(𝑡) is called a baseband signal since the signal occupies the low frequency 

part of the spectrum. That is, the energy in the signal is found around the zero frequency. When 

the signal is multiplied by a high frequency carrier, the spectrum becomes centered around the 

carrier and the modulated signal is called a bandpass signal. 

Exercise : For the exponential pulse, verify Rayleigh energy theorem, i.e., show that 

∫ |𝑣(𝑡)|2𝑑𝑡
∞

0
= 2∫ |𝑉(𝑓)|2𝑑𝑓

∞

0
 = 

𝐴2

2𝑏
. 

Example: The Rectangular Pulse 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
) 

𝐺(𝑓) = ∫ 𝐴𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 =  
𝐴

𝜋𝑓

𝑇/2

−𝑇/2
sin 𝜋𝑓𝑇                                                                     

         = A𝑇
sin𝜋𝑓𝑇

𝜋𝑓𝑇
≜ 𝐴𝑇 𝑠𝑖𝑛𝑐 𝑇𝑓                                                                              

|𝐺(𝑓)| = 𝐴𝑇 |𝑠𝑖𝑛𝑐 𝑇𝑓| 

lim
𝑥→0

sin𝑥

𝑥
= 1                          max. of function                                    

𝐺(𝑓) = 0 𝑤ℎ𝑒𝑛 𝑠𝑖𝑛 (𝜋𝑓𝑇) = 0  or 𝑤ℎ𝑒𝑛 𝜋𝑓𝑇 = 𝑛𝜋 , n=±1, ±2, ±3,… 



  12 
 

𝑓𝑇 = 𝑛, ∴ 𝑓 =
𝑛

𝑇
 

 

 

Remark: Time duration and bandwidth : 

Note that as the signal time duration 𝑇 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠, the first zero crossing at 𝑓 =
1

𝑇
  decreases, 

implying that the bandwidth of the signal decreases. More on this will be said later when we 

discuss the time bandwidth product.  

 

Exercise : For the rectangular pulse 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
), verify Rayleigh energy theorem, i.e., 

show that 

∫ |𝑔(𝑡)|2𝑑𝑡
∞

0
= 2∫ |𝐺(𝑓)|2𝑑𝑓

∞

0
  = 𝐴2𝑇. 
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Properties of the Fourier Transform: 

1. Linearity (superposition) 

Let 𝑔1(𝑡) ↔ 𝐺1(f) 

and 𝑔2(𝑡) ↔ 𝐺2(f) , then 

 

𝑐1𝑔1(𝑡)+𝑐2𝑔2(𝑡) ↔ 𝑐1𝐺1(𝑓)+𝑐2𝐺2(𝑓) ; 𝑐1, 𝑐2 are constants 

 

2.  Time scaling  

If  𝑔1(𝑡) ↔ 𝐺1(f), 

then 

𝑔(𝑎𝑡) ↔  
1

|𝑎|
 𝐺(𝑓 𝑎)⁄  

3. Duality  

If           𝑔(𝑡) ↔ 𝐺(𝑓) ,  

Then,    𝐺(𝑡) ↔ 𝑔(−𝑓) 

 

4. Time shifting  

If            𝑔(𝑡) ↔ 𝐺(𝑓) 

then     𝑔(𝑡 − 𝑡0) ↔ 𝐺(𝑓)𝑒−𝑗2𝜋𝑓𝑡0 

Delay in time domain            phase shift in frequency domain 

5. Frequency shifting 

If        𝑔(𝑡) ↔ 𝐺(𝑓) , 

then    𝑔(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 ↔ 𝐺(𝑓 − 𝑓𝑐) ; fc is a real constant 

 

 
6. Area under 𝐺(𝑓)  

If            𝑔(𝑡) ↔ 𝐺(𝑓) , 

then:       𝑔(𝑡 = 0) = ∫ 𝐺(𝑓)𝑑𝑓
∞

−∞
 

     The value 𝑔(𝑡 = 0) is equal to the area under its Fourier transform. 

7. Area under 𝑔(𝑡) 

If      𝑔(𝑡) ↔ 𝐺(𝑓) 



  14 
 

Then,     𝐺(0) = ∫ 𝑔(𝑡)𝑑𝑡
∞

−∞
 

The area under a function g(t) is equal to the value of its Fourier transform G(f)  at f = 0, 

where 𝐺(0) implies the presence of a dc component. 

8. Differentiation in the time domain  

If  𝑔(𝑡) and its derivative 𝑔′(𝑡) are Fourier transformable, then, 

𝑔′(𝑡) ↔ (𝑗2𝜋𝑓)𝐺(𝑓) 

i.e., differentiation in the time domain         multiplication by j2𝜋𝑓 in the frequency domain. 

(differentiation in the time domain enhances high frequency components of a signal) 

Also,          
𝑑𝑛 𝑔(𝑡)

𝑑𝑡𝑛
↔ (𝑗2𝜋𝑓)𝑛𝐺(𝑓) 

9. Integration in the time domain  

 ∫ 𝑔(𝜏)𝑑𝜏
𝑡

−∞
↔

1

𝑗2𝜋𝑓
𝐺(𝑓); assuming 𝐺(0) = 0 

i.e., integration in the time domain        division by (j2𝜋𝑓) in the frequency domain. This 

amounts to low pass filtering where high frequency components are attenuated. 

When 𝐺(0) ≠ 0, the above result becomes: 

  ∫ 𝑔(𝜏)𝑑𝜏
𝑡

−∞
↔

1

𝑗2𝜋𝑓
𝐺(𝑓) + 

1

2
 𝐺(0)𝛿(𝑓). 

10. Conjugate Functions 

For a complex – valued time signal 𝑔(𝑡), we have: 

                           𝑔∗(𝑡) ↔ 𝐺∗(−𝑓)    ; 

Also,                 𝑔∗(−𝑡) ↔ 𝐺∗(𝑓)    ; 

Therefore,  Re{g(t)}    ↔
1

2
 { 𝐺(𝑓) +𝐺∗(−𝑓)} 

                  Im{g(t)}  ↔
1

2𝑗
 { 𝐺(𝑓)-𝐺∗(−𝑓)} 

11. Multiplication in the time domain  

  𝑔1(𝑡) 𝑔2(𝑡) ↔ ∫ 𝐺1(𝜆)
∞

−∞
𝐺2(𝑓 − 𝜆)𝑑𝜆 = 𝐺1(𝑓) ∗ 𝐺2(𝑓) 
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Multiplication of two signals in the time domain is transformed into the convolution of their 

Fourier transforms in the frequency domain. 

12. Convolution in the time domain 

  𝑔1(𝑡) ∗  𝑔2(𝑡) ↔ 𝐺1(𝑓)𝐺2(𝑓) 

Convolution of two signals in the time domain is transformed into a multiplication of their 

Fourier transforms in the frequency domain. 

 

Fourier Transform of Power Signals 

For a non-periodic (energy) signal, the Fourier transform exists when 

E= ∫ |𝑔(𝑡)|2
∞

−∞
𝑑𝑡 < ∞ 

So that (𝑓) =  ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞ 
 . 

For power signals, the integral    ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞ 
    does not exist. 

However, one can still find the Fourier transform of power signals by employing the delta 

function. This function is defined next. 

 

Dirac – Delta Function (impulse function) 

This function is defined as 

 𝛿(𝑡) =     {
∞     𝑡 = 0
0      𝑡 ≠ 0

   

such that          ∫ 𝛿(𝑡)𝑑𝑡 = 1
∞

−∞
                                                               

and                 ∫ 𝑔(𝑡)𝛿(𝑡)𝑑𝑡 = 𝑔(0)
∞

−∞
 

(Here, g(t) is a continuous function of time). 
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Some properties of the delta function: 

1. 𝑔(𝑡)𝛿(𝑡 − 𝑡0) = 𝑔(𝑡0)𝛿(𝑡 − 𝑡0); (Multiplication) 

2. ∫ 𝑔(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑔(𝑡0)
∞

−∞
 ; (Sifting or sampling property) 

3. 𝛿(𝛼𝑡) =
1

|𝛼|
𝛿(𝑡) 

4. 𝛿(𝑡) ∗ 𝑔(𝑡) = 𝑔(𝑡) 

5. 𝛿(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
          u(t) = ∫ 𝛿(𝑡)𝑑𝑡

𝑡

−∞
 

6. 𝛿(𝑡) =  𝛿(−𝑡) 

7. Fourier transform: F{𝛿(𝑡)} = 1 

 
(Note how the time-bandwidth relationship holds for this pair. A narrow pulse in time 

extends over a large frequency spectrum) 

 

8. F{𝛿(𝑡 − 𝑡0)} = 𝑒
−𝑗2𝜋𝑓𝑡0  

Applications of delta functions  

1. Dc Signal 

 Since F{𝛿(𝑡)} = 1, then by the duality property  F{1} = 𝛿(𝑓)} 

 

 

(Again, note that the transform of a dc signal is an impulse at f =0) 

2.  Complex exponential function  

  F{A 𝑒𝑗2𝜋𝑓𝑐𝑡} = A 𝛿(𝑓 − 𝑓𝑐) 

3. Sinusoidal functions  
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 F{cos 2𝜋𝑓𝑐𝑡} =  
1

2
 {𝛿(𝑓 − 𝑓𝑐) + 𝛿(𝑓 + 𝑓𝑐)} 

 F{sin 2𝜋𝑓𝑐𝑡} =  
1

2𝑗
 {𝛿(𝑓 − 𝑓𝑐) − 𝛿(𝑓 + 𝑓𝑐)} 

4.  Signum function                                                                      g(t) 

                   sgn(t) =  {
1       𝑡 > 0
0       𝑡 = 0
−1    𝑡 < 0

                                                    1 

                                                                                                                            t 

  F{sgn(t)} = 
1

𝑗𝜋𝑓
                                                                               -1 

 

4. Unit Step function : 

    u(t) = {

1       𝑡 > 0
1

2
       𝑡 = 0

0    𝑡 < 0

                                                                   u(t)        1 

    sgn(t) = 2u(t) – 1                                                                 0                      t 

    u(t) =
1

2
{sgn(t) + 1} 

    F{u(t)} =   
1

𝑗2𝜋𝑓
+ 

1

2
 𝛿(𝑓) 

7. Periodic Signals 

A periodic signal g(t) is expanded in the complex form as : 

𝑔(𝑡) = ∑ Cne
jnω0t

∞

𝑛=−∞

 

𝐹{𝑔(𝑡)} = ∑ Cn δ(f − nf0) 

∞

𝑛=−∞

 

Example: Consider the following train of impulses 

  𝑔(𝑡) = ∑ δ(t − mT0) 
∞

𝑚=−∞
 

Cn =
1

𝑇0
∫ 𝑔(𝑡)
𝑇0/2

−𝑇0/2
𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡  = 

1

𝑇0
 = f0 
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       F{g(t)} = 
1

𝑇0
∑ δ(f − nf0) 

∞

𝑛=−∞
 

∑ δ(t − mT0) 

∞

𝑚=−∞

↔
1

𝑇0
∑ δ(f − nf0) 

∞

𝑛=−∞

 

 

                 g(t)                                             G(f) 

 

 

                -T00  T0 2T0   t                         -f0  0   f0  2f0   f 

 

Note that the signal is periodic in the time domain and its Fourier transform is periodic in the 

frequency domain. 

Remark: This sequence will be found useful when the sampling theorem is considered later in 

the course. 

 


