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Transmission of Signals Through Linear Systems 

Definition  : A system refers to any physical device that produces an output signal in 

response to an input signal. 

 

Definition  : A system is linear if the principle of superposition applies. 

If   x1(t)    produces output   y1(t) 

 x2(t)    produces output   y2(t) 

then    a1x1(t)+ a2x2(t)   produces an output   a1y1(t)+ a2y2(t)  

Also,  a zero input   should produce   a zero output. 

Example of linear systems include filters and communication channels. 

Definition: A filter refers to a frequency selective device that is used to limit the 

spectrum of a signal to some band of frequencies. 

Definition: A channel refers to a transmission medium that connects the transmitter 

and receivers of a communication system .  

Time domain and frequency domain may be used to evaluate system performance.  

Time response :    

 Definition: The impulse response h(t) is defined as the 

response of a system to an impulse 𝛿(𝑡) applied to the 

input at t=0 . 

Definition: A system is time-invariant when the shape of 

the impulse response is the same no matter when the 

impulse is applied to the system. 

𝛿(𝑡)  h(t),     then    𝛿(t − td)               h(t - td) 

When the input to a linear time-invariant system in a signal 

x(t) , then the output is given by 

y(t) = ∫ x(λ)h(t −  λ)  dλ   
∞

−∞
   

       = ∫ h(λ)x(t −  λ)  dλ
∞

−∞
  ;    convolution integral  
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Definition: A system is said to be causal if it does not respond before the excitation is 

applied, i.e., 

 h(t) = 0                  t < 0  

The causal system is physically realizable. 

Definition: A system is said to be stable if the output signal is bounded for all 

bounded input signals.                                                                                                                                                                                                                                                                              

If  | x(t) | ≤  M ;    M is the maximum value of the input 

then  | y(t) |  ≤  ∫  | h(τ) ||x(t − τ ) | dτ 
∞

−∞
  

= M  ∫ | h(τ) | dτ   
∞

−∞
 

A necessary and sufficient condition for stability (a bounded output) is 

∫ |h(t)| dt  <   ∞    
∞

−∞
  ; h(t) is absolutely integrable. 

                                     ∴  zero initial conditions assumed . 

Frequency Response: 

Definition: The transfer function of a linear time invariant system is defined as the 

Fourier transform of the impulse response h(t) 

H(f) = F{h(t)} 

 

Since    y(t) = x(t)*h(t) ,  then 

 

Y(f) = H(f) X(f) 

 

or        𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
 

 

The transfer function H(f) is a complex function of frequency, which can be obtained 

as the ratio of the Fourier transform of the output to that of the input. 

 

 𝐻(𝑓) = |𝐻(𝑓)|𝑒𝑗 𝜃(𝑓) 

where,  

H(f)  :   amplitude spectrum  

  𝜃(f)  :   phase spectrum.  

 

System Input–Output Energy Spectral Density 

Let x(t) be applied to a LTI system , then the Fourier transform of the output is related 

to the Fourier transform of the input through the relation 
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Y(f) = H(f) X(f) 

 

Taking the absolute value and squaring both sides, we get 

 

|Y(f)|2 = |H(f)|2  | X(f)|2 

 

SY(f) = |H(f)|2 SX(f) 

 

SY(f):   Output Energy Spectral Density 

SX(f):  Input Energy Spectral Density. 

 

Output energy spectral density  = |H(f)|2   x   Input energy spectral density 

 

The total output energy 

 

 𝐸𝑦 = ∫ 𝑆𝑌(𝑓)𝑑𝑓
+∞

−∞
  

     = ∫ |H(f)|2 𝑆𝑋(𝑓)𝑑𝑓
+∞

−∞
. 

 

The total input energy is 

 

 𝐸𝑥 = ∫ 𝑆𝑥(𝑓)𝑑𝑓
+∞

−∞
 .  

Example: Response of a Filter to a Sinusoidal Input 

The signal 𝑥(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡  is applied to a filter described by the transfer function 

𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
. Find the filter output 𝑦(𝑡). 

Solution: 

We will find the output using the frequency domain approach. 

 𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

 𝐻(𝑓) =
1

√1+(
𝑓

𝐵
)2
𝑒−𝑗𝜃;  𝜃 = tan−1

𝑓

𝐵
 ;   𝜃0 = tan

−1 𝑓0

𝐵
 

 𝑌(𝑓) = 𝐻(𝑓)[
1

2
𝛿(𝑓 − 𝑓0) +

1

2
𝛿(𝑓 + 𝑓0)] 

 𝑌(𝑓) =
1

2
𝐻(𝑓0)𝛿(𝑓 − 𝑓0) +

1

2
𝐻(−𝑓0)𝛿(𝑓 + 𝑓0) 

 𝑌(𝑓) =
1

2

1

√1+(
𝑓0
𝐵
)2
𝑒−𝑗𝜃0𝛿(𝑓 − 𝑓0) +

1

2

1

√1+(
𝑓0
𝐵
)2
𝑒𝑗𝜃0𝛿(𝑓 + 𝑓0) 
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Taking the inverse Fourier transform, we get 

 𝑦(𝑡) =
1

√1+(
𝑓0
𝐵
)2

1

2
[𝑒𝑗(2𝜋𝑓0𝑡−𝜃0) + 𝑒−𝑗(2𝜋𝑓0𝑡−𝜃0)] 

 𝑦(𝑡) =
1

√1+(
𝑓0
𝐵
)2
cos(2𝜋𝑓0𝑡 − 𝜃0)  

Note that in the last step we have made use of the Fourier transform pair 

 𝑒𝑗2𝜋𝑓𝑐𝑡 ↔ 𝛿(𝑓 − 𝑓𝑐) 

Remark: Note that the amplitude of the output as well as its phase depend on the 

frequency of the input and the bandwidth of the filter. 

Assume, for instance, that 𝑓0 = 𝐵. Then 𝜃0 = tan
−1 𝑓0

𝐵
= tan−1 1 = 45° and the 

output can be written as: 

  𝑦(𝑡) =
1

√1+1
cos(2𝜋𝑓0𝑡 − 45°)  

  𝑦(𝑡) =
1

√2
cos(2𝜋𝑓0𝑡 − 45°)  

Exercise: The signal 𝑥(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡  is applied to a filter described by 

the transfer function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
.   

a. Use the result of the previous example to find the filter output 𝑦(𝑡). 

b. Is the transmission through this filter distortion-less ? 

Exercise: Consider the periodic rectangular signal 𝑔(𝑡) defined over one period 𝑇0 as: 

 𝑔(𝑡) = {
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If 𝑔(𝑡)  is applied to a filter described by the transfer function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
.  Use 

the result of the previous example to find the filter output 𝑦(𝑡). 

Example: 

The signal 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
) is applied to the filter (𝑓) =

1

1+𝑗𝑓/𝐵
 . Find the output 

energy spectral density. 

Solution: 

   𝑆𝑌(𝑓) = |𝐻(𝑓)|
2𝑆𝑋(𝑓) 

  𝑆𝑌(𝑓) =
1

1+(
𝑓

𝐵
)2
(𝐴𝑇 |𝑠𝑖𝑛𝑐 𝑇𝑓|)2 
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Example: 

The signal 𝑔(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 − 1) is applied to a channel described by the transfer 

function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
 . Find the channel output. 

Solution: 

The impulse response of the channel is obtained by taking the inverse Fourier 

transform of 𝐻(𝑓), which is 

 ℎ(𝑡) = 2𝜋𝐵𝑒−2𝜋𝐵𝑡𝑢(𝑡) 

Using the linearity and time invariance property, the output can be obtained as: 

 𝑦(𝑡) = ℎ(𝑡)𝑢(𝑡) − ℎ(𝑡 − 1)𝑢(𝑡 − 1) 

 𝑦(𝑡) = 2𝜋𝐵[𝑒−2𝜋𝐵𝑡𝑢(𝑡) − 𝑒−2𝜋𝐵(𝑡−1)𝑢(𝑡 − 1)]   

Exercise: The signal 𝑔(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) is applied to a channel described by the 

transfer function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
 . Find the channel output 𝑦(𝑡). 

Signal Distortion in Transmission 

As we have said before, the objective of a communication system is to deliver to the 

receiver almost an exact copy of what the source generates. However, communication 

channels are not perfect in the sense that impairments on the channel will cause the 

received signal to differ from the transmitted one. During the course of transmission, 

the signal undergoes attenuation, phase delay, interference from other transmissions, 

Doppler shift in the carrier frequency, and many other effects. In this introductory 

discussion we will explain some of the reasons that cause the received signal to be 

distorted. 

Linear Distortion  

A signal transmission is said to be distortion-less if the output signal y(t) is an exact 

replica of the input signal x(t) , i.e.,  y(t) has the same shape as the input, except for a 

constant amplification (or attenuation) and a constant time delay. 

Condition for a distortion-less transmission in the time domain is: 

 

 𝒚(𝒕) = 𝒌𝒙(𝒕 − 𝒕𝒅); Condition for a distortion-less transmission 

  

where     k: is a constant amplitude scaling  

              td: is  a constant time delay 
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In the frequency domain, the condition for a distortion-less transmission becomes  

 

Y(f) = k X(f) 𝑒−𝑗2𝜋𝑓𝑡𝑑   

 

or      H(f) = 
Y(f)

𝑋(𝑓)
 = k 𝑒−𝑗2𝜋𝑓𝑡𝑑 = 𝑘𝑒−𝑗𝜃(𝑓) 

 

That is, for a distortion-less transmission, the transfer function should satisfy two 

conditions: 

 

1. |H(f)| = k  ; The amplitude of the transfer function is constant (gain or attenuation) 

over the frequency range of interest. 

2. 𝜽(𝒇) = −𝟐𝝅𝒇𝒕𝒅 = −(𝟐𝝅𝒕𝒅)𝒇 ; The phase function is linear in frequency with a 

negative slope that passes through the origin (or multiples of π). 

 

When |H(f)| is not constant for all frequencies of interest, amplitude  distortion results. 

 

When  𝜃(𝑓) ≠  −2𝜋𝑓𝑡𝑑  ± 180
0, then we have phase distortion  (or delay distortion).   

 

The following examples demonstrate the two types of distortion mentioned above. 

 

Example : Amplitude Distortion 

Consider the signal 𝑥(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

3
 𝑐𝑜𝑠 3𝑤0𝑡. If this signal passes through a 

channel with zero time delay (i.e., td = 0) and amplitude spectrum as shown in the 

figure  

a. Find y(t) 

b. Is this a distortion-less transmission?   
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Solution: 

x(t) consists of two frequency components, f0 and 3f0 . Upon passing through the 

channel, each one of them will be scaled by a different factor. 

a. 𝑦(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

2
 .  
1

3
 𝑐𝑜𝑠 3𝑤0𝑡 

b. Since y(t) ≠ k x(t), this is not a distortion-less transmission . 

Example: Phase Distortion 

If x(t) in the previous example is passed through a channel whose amplitude spectrum 

is a constant k. Each component in x(t) suffers a 
𝜋

2
 phase shift  

a. Find y(t). 

b. Is this a distortion-less transmission ?  

Solution: 

𝑥(𝑡) = cos𝑤𝑜𝑡 −
1

3
cos 3𝑤𝑜𝑡 

𝑦(𝑡) = k cos(𝑤𝑜𝑡 −
𝜋

2
)  −  

1

3
 𝑘 cos (3𝑤𝑜𝑡 −

𝜋

2
) 

𝑦(𝑡) = k cos𝑤𝑜(𝑡 −
𝜋

2𝑤𝑜
)  −   

1

3
 𝑘 cos (3𝑤𝑜(𝑡 −

𝜋

2𝑥3𝑤𝑜
)) 

𝑦(𝑡) = k cos𝑤𝑜(𝑡 − 𝑡𝑑1)  −   
1

3
 𝑘 cos(3𝑤𝑜(𝑡 − 𝑡𝑑2)) 

Note that td1 ≠ td2       , i.e.,    each component in 𝑥(𝑡) suffers from a different 

time delay. Hence this transmission introduces phase (delay) distortion. 

 

Nonlinear Distortion  

   When a system contains nonlinear elements, it is not described by a transfer function 

H(f), but rather by a transfer characteristic of the form  

 

y(t) = a1 x(t) +a2 x
2(t) +a3 x

3(t) + … (time domain) 

 

In the frequency domain , 

 

Y(f)= a1 X(f) +a2 X(f)*X(f)  +a3 X(f)*X(f)*X(f) + … 

 

Here, the output contains new frequencies not originally present in the original signal. 

The nonlinearity produces undesirable frequency component for |f|≤ W, in which W is 

the signal bandwidth. 
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Harmonic Distortion in Nonlinear Systems 

Let the input to a nonlinear system be the single tone signal 

 

  x(t) = cos2πfot 

 

This signal is applied to a channel with characteristic  

 

y(t) = a1x(t) + a2x(t)2 + a3x(t)3 

 

upon substituting x(t) and arranging terms, we get 

 

  𝑦(𝑡) =
1

2
𝑎2  + (𝑎1 +

3

4
𝑎3) cos2πf0t +

1

2
 𝑎2 cos 4𝜋𝑓0𝑡 +

1

4
𝑎3𝑐𝑜𝑠6𝜋 𝑓0𝑡 

 

Note that the output contains a component proportional to x(t) which is (𝑎1 +

3

4
𝑎3) cos2πf0t, in addition to a second and a third harmonic terms (terms at twice and 

three times the frequency of the input). These new terms are the result of the nonlinear 

characteristic and are, therefore, considered as harmonic distortion. The DC term does 

not constitute a distortion, for it can be removed using a blocking capacitor. 

 

Define second harmonic distortion 

 

𝐷2 =
|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 |

|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚|
 

 

 𝐷2  =
|
1
2 𝑎2 |

| (𝑎1 +
3
4𝑎3) |

 𝑥 100% 

 

In a similar way we can define the third harmonic distortion as: 

 

𝐷2 =
|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑖𝑟𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 |

|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚|
 

 

Therefore,     

𝐷3  =
|
1
4 𝑎3 |

| (𝑎1 +
3
4𝑎3) |

 𝑥 100% 

Remark: In the solution above we have made use of the following two identities: 

Cos2x = 
1

2
{1 + 𝑐𝑜𝑠2𝑥} 

Cos3x=
1

4
{3𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠3𝑥}. 
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Filters and Filtering  

A filter is a frequency selective device. It allows certain frequencies to pass almost 

without attenuation wile it suppresses other frequencies 

 

 

A. Ideal Filter: 

Ideal low pass filter 

 

𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  |𝑓| < 𝐵

0                                     𝑜. 𝑤
 

 

ℎ(𝑡) = 2𝐵𝑘 𝑠𝑖𝑛𝑐 2𝐵(𝑡 − 𝑡𝑑) 

 

 
 

 

since h(t) is the response to an impulse applied at  t=0, and because h(t) has nonzero 

values for t<0 , the filter is non-causal  (physically non realizable). 

 

 

Band Pass Filter 

 

 𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  𝑓𝑙 < |𝑓| < 𝑓𝑢
0                                     𝑜. 𝑤

 

 

Filer bandwidth  B = fu ─ fl; difference between upper and lower positive frequencies 

 𝑓𝑐 = 
𝑓𝑢+𝑓𝑙

2
; center frequency of the filter 

 ℎ(𝑡) = 2𝐵𝑘 𝑠𝑖𝑛𝑐 𝐵(𝑡 − 𝑡𝑑)   𝑐𝑜𝑠 𝑤𝑐(𝑡 − 𝑡𝑑); impulse response 
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High-pass filter  

 

 𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  |𝑓| > 𝐵

0                                     𝑜. 𝑤
 

 

 
 

Band Rejection or Notch Filter 

 

 𝐻(𝑓) = {
𝑘 𝑒−𝑗2𝜋𝑓𝑡𝑑                        𝑜. 𝑤 

0                                      𝑓1 < |𝑓| < 𝑓2
 

 

 
 

Real Filter 

Here, we only consider a Butterworth low pass filter. The transfer function of a low 

pass Butterworth filter is of the form    

𝐻(𝑓) =
1

𝑃𝑛 (
𝑗𝑓
𝐵)

 

B is the 3-dB bandwidth of the filter and Pn(jf/B) is a complex polynomial of order n . 

The family of Butterworth polynomials is defined by the property 

|𝑃𝑛 (
𝑗𝑓

𝐵
) |2 = 1 + (

𝑓

𝐵
)
2𝑛

 

So that 

 |𝐻(𝑓)| =
1

√1+(
𝑓

𝐵
)
2𝑛
 

  

 

The first few polynomials are: 

𝑃1(𝑥) = 1 + 𝑥     

𝑃2(𝑥) = 1 + √2𝑥 + 𝑥
2 
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𝑃3(𝑥) = (1 + 𝑥)(1 + 𝑥 + 𝑥
2)     

 

A first order LPF 

𝐻(𝑓) =

1

𝑗2𝜋𝑓𝑐

𝑅+
1

𝑗2𝜋𝑓𝑐

=
1

1+𝑗2𝜋𝑓𝑅𝐶
 

Let 𝐵 =
1

2𝜋𝑅𝐶
 

𝐻(𝑓) =
1

1 + 𝑗𝑓/𝐵
=

1

𝑃1(𝑗𝑓/𝐵)
=

1

𝑃1(𝑥)
 

 

 

A  Second order LPF 

𝐻(𝑓) =
1

1+
𝑗𝑤𝐿

𝑅
−(2𝜋√𝐿𝐶𝑓)

2 

𝐻(𝑓) =
1

1 + 𝑗√2𝑓/𝐵 − (𝑓/𝐵)2
 

𝑤ℎ𝑒𝑟𝑒  𝑅 = √
𝐿

2𝐶
, 𝐵 =

1

2𝜋√𝐿𝐶
 

 

𝐻(𝑓) =
1

1 + 𝑗√2𝑓/𝐵 − (𝑓/𝐵)2
 

 

𝐻(𝑓) =
1

𝑃2(𝑗𝑓/𝐵)
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Hilbert Transform (Details are not required for ENEE 339) 

The quadrature filter: is an all pass filter that shifts the phase of positive frequency 

by (-90° ) and negative frequency by (+90°). The transfer function of such a filter is 

 

H(f) ={
−𝑗              𝑓 > 0
 𝑗               𝑓 < 0

  

 

Using the duality property of Fourier transform, the impulse response of the filter is  

 

                     h(t)= 
1

𝜋𝑡
    

 

The Hilbert transform is the output of the quadrature filter to the signal g(t) 

 

 𝑔̂(𝑡)= 
1

𝜋𝑡
 * g(t)   =  ∫

𝑔( λ)

𝜋(𝑡− λ)

∞

−∞
 𝑑 λ 

 

Note that the Hilbert transform of a signal is a function of time. The Fourier transform 

of 𝑔̂(𝑡) is 

 

 𝐺̂(𝑓) = -j sgn(f) G(f) 

    

Hilbert transform can be found using either the time domain approach or the 

frequency domain approach depending on the given problem, that is 

 

 Direct convolution in the time domain of g(t) and 
1

𝜋𝑡
 . 

 Find the Fourier transform  𝐺̂(𝑓), then find the inverse Fourier transform 

𝑔̂(𝑡)   =  ∫ 𝐺̂(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
∞

−∞
 

 

Some properties of the Hilbert transform 

1. A signal g(t) and its Hilbert transform 𝑔̂(𝑡) have the same energy spectral 

density  

 

|𝐺̂(𝑓)|
2
= |−𝑗 𝑠𝑔𝑛(𝑓)|𝐺(𝑓)||2 = |−𝑗 𝑠𝑔𝑛(𝑓)|2|𝐺(𝑓)|2 

        = |𝐺(𝑓)|2 

 

  The consequences of this property are: 

 If a signal g(t) is bandlimited, then  𝑔̂(𝑡) is bandlimited  to the same 

bandwidth (note that  |𝐺̂(𝑓)| = |𝐺(𝑓)| ) 

 𝑔̂(𝑡)   and g(t) have the same total energy (or power). 

 𝑔̂(𝑡)   and g(t) have the same autocorrelation function. 

 

2. A signal g(t) and 𝑔̂(𝑡) are orthogonal, i.e.,  
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  ∫ g(t) 𝑔̂(𝑡)𝑑𝑡 = 0
∞

−∞
 

  

This property can be verified using the general formula of Rayleigh energy 

theorem 

    

        ∫ g(t) 𝑔̂(𝑡)𝑑𝑡
∞

−∞
    = ∫ G(f) 𝐺̂∗(𝑓)𝑑𝑓 =

∞

−∞
∫ G(f) {−𝑗𝑠𝑔𝑛(𝑓) 𝐺(𝑓)}∗𝑑𝑓

∞

−∞
 

                                              =  ∫ 𝑗𝑠𝑔𝑛(𝑓) |𝐺(𝑓)|2𝑑𝑓
∞

−∞
 = 0 

 

The result above follows from the fact that |𝐺(𝑓)|2 is an even function of 𝑓 while 

𝑠𝑔𝑛(𝑓) is an odd function of 𝑓. Their product is odd. The integration of an odd 

function over a symmetrical interval is zero. 

 

3. If 𝑔̂(𝑡) is a Hilbert transform of g(t) , then the Hilbert transform of 𝑔̂(𝑡) is 

−𝑔(𝑡).  

 
 

Example on Hilbert Transform 

Find the Hilbert transform of the impulse function 𝑔(𝑡) = 𝛿(𝑡) 

 

Solution: 

Here, we use the convolution in the time domain 

 

 𝑔̂(𝑡)= 
1

𝜋𝑡
∗ 𝛿(𝑡)  

 

As we know, the convolution of the delta function with a continuous function is the 

function itself. Therefore, 

 

 𝑔̂(𝑡)= 
1

𝜋𝑡
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Example on Hilbert Transform 

Find the Hilbert transform of  𝑔(𝑡) =
sin 𝑡

𝑡
 

Solution 

Here, we will first find the Fourier transform of 𝑔(𝑡), find 𝐺̂(𝑓), and then find 𝑔̂(𝑡) 

 

𝐴 𝑟𝑒𝑐𝑡 (
𝑡

𝜏
 )                          

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                     𝐴𝜏 𝑠𝑖𝑛𝑐 𝑓𝜏    ;    𝑤ℎ𝑒𝑛 𝜏 =

1

𝜋
 

𝐴 rect (
𝑡

1/𝜋
 )                     

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                     𝐴 

1

𝜋
 
sin 𝜋𝑓𝜏

𝜋𝑓𝜏
=  
1

𝜋

sin 𝑓

𝑓
 

𝜋 𝑟𝑒𝑐𝑡 (
𝑡

1/𝜋
 )                     

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                       

sin 𝑓

𝑓
 

So by the duality property, we get the pair 

𝜋 𝑟𝑒𝑐𝑡 (
𝑓

1/𝜋
 )                 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                       

sin 𝑡

𝑡
 

i.e. ,           𝐺(𝑓) = 𝜋 𝑟𝑒𝑐𝑡(
𝑓

1/𝜋
) ,  (See the figure below) 

𝐺̂(𝑓) = −𝑗𝑠𝑔𝑛(𝑓)𝐺(𝑓) = {
−𝑗𝜋                                              0 < 𝑓 < 1/2𝜋
 𝑗𝜋                                             − 1/2𝜋 < 𝑓 < 0

 

𝑔̂(𝑡)   =  ∫ 𝐺̂(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
∞

−∞
 

                         =  ∫ 𝑗𝜋   𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
0

−1/2𝜋
 −  ∫ 𝑗𝜋   𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

1/2𝜋

0
 

                         =  
1

2𝑡
(1 − 𝑒−𝑗𝑡) −

1

2𝑡
(𝑒𝑗𝑡 − 1) 

                         =  
1

𝑡
−
1

𝑡 
 
(𝑒𝑗𝑡+𝑒−𝑗𝑡)

2
 

 

                         =  
1−cos𝑡

𝑡
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Correlation and Spectral Density (Details are not required for ENEE 339) 

Here, we consider the relationship between the autocorrelation function and the power 

spectral density. In this discussion we restrict our attention to real signals. First, we 

consider power signals and then energy signals. 

Definition: The autocorrelation function of a signal g(t) is a measure of similarity 

between g(t) and a delayed version of g(t). 

a. Autocorrelation function of a power signal 

The autocorrelation function  of a power signal  g(t) is defined as: 

𝑅𝑔(𝜏) = 〈𝑔(𝑡)𝑔(𝑡 − 𝜏)〉;   〈(. )〉:  represents time average. 

𝑅𝑔(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇

−𝑇
  

Exercise: Show that for a periodic signal with period T0, the above definition 

becomes 

        𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇0

0
 

Remark: We can take this as a definition for the autocorrelation function of a 

periodic signal. 

Exercise: Show that if 𝑔(𝑡) is periodic with period 𝑇0, then 𝑅𝑔(𝜏) is also periodic 

with the same period 𝑇0. 

Hint: Expand 𝑔(𝑡) in a complex Fourier series 𝑔(𝑡) = ∑ 𝐶𝑛𝑒
𝑗𝑛𝜔0𝜏∞

𝑛=−∞ .  Form the 

delayed signal 𝑔(𝑡 − 𝜏), and then perform the integration over a complete period 𝑇0. 

You should get the following result: 

    𝑅𝑔(𝜏) = ∑ 𝐷𝑛𝑒
𝑗𝑛𝜔0𝜏∞

𝑛=−∞ ;   𝐷𝑛 = |𝐶𝑛|
2 

This formula bears two results 

a. 𝑅𝑔(𝜏) is periodic with period 𝑇0. 

b. The Complex Fourier coefficients 𝐷𝑛 of 𝑅𝑔(𝜏) are related to the complex 

Fourier coefficients 𝐶𝑛 of 𝑔(𝑡)  by the relation 𝐷𝑛 = |𝐶𝑛|
2. 

Properties of R(τ) 

 𝑅𝑔(0) =
1

𝑇0
∫ 𝑔(𝑡)2𝑑𝑡
𝑇0

0
;   is the total average signal power. 

 𝑅𝑔(𝜏) is an even function of 𝜏, i.e., 𝑅𝑔(𝜏) = 𝑅𝑔(−𝜏). 

 𝑅𝑔(𝜏) has a maximum (positive) magnitude at τ = 0 , i.e. |𝑅𝑔(𝜏)| ≤ 𝑅𝑔(0). 

 If g(t) is periodic with period T0, then 𝑅𝑔(𝜏) is also periodic with the same 

period T0. 
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 The autocorrelation function of a periodic signal and its power spectral density 

(represented by a discrete set of impulse functions) are Fourier transform pairs 

 

 𝑆𝑔(𝑓) =  F{𝑅𝑔(𝜏)} 

 

 𝑆𝑔(𝑓) = ∑ |𝐶𝑛|
2𝛿(𝑓 − 𝑛𝑓0)

∞
𝑛=−∞  

 

Cross Correlation Function 

The cross correlation function of two periodic signals 𝑔1(𝑡) and 𝑔2(𝑡) with the same 

period 𝑇0 is defined as: 

 

 𝑅1,2(𝜏) =
1

𝑇0
∫ 𝑔1(𝑡)𝑔2(𝑡 − 𝜏)𝑑𝑡
𝑇0

0
 

 

b-  Autocorrelation function of an energy signal 

When  g(t) is an energy signal, 𝑅𝑔(𝜏)  is defined as: 

 𝑅𝑔(𝜏) = ∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
∞

−∞
 

Properties of R(τ) 

 𝑅𝑔(0) = ∫ 𝑔(𝑡)2𝑑𝑡
∞

−∞
;   is the total signal energy. 

 𝑅𝑔(𝜏) is an even function of 𝜏, i.e., 𝑅𝑔(𝜏) = 𝑅𝑔(−𝜏). 

 𝑅𝑔(𝜏) has a maximum ( positive ) magnitude at τ = 0 , i.e. |𝑅𝑔(𝜏)| ≤ 𝑅𝑔(0). 

 The autocorrelation function of an energy signal and its energy spectral 

density (a continuous function of frequency) are Fourier transform pairs, i.e.,  

 

 𝑆𝑔(𝑓) =  F{𝑅𝑔(𝜏)}  

 

 𝑆𝑔(𝑓) = ∫ 𝑅𝑔(𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏

∞

−∞
 

 

 𝑅𝑔(𝜏) = ∫ 𝑆𝑔(𝑓)𝑒
𝑗2𝜋𝑓𝜏𝑑𝑓

∞

−∞
. 

 

Proof:  
The autocorrelation function is defined as: 

  

 𝑅𝑔(𝜏) = ∫ 𝑔(𝜆)𝑔(𝜆 − 𝜏)𝑑
∞

−∞
𝜆 

In this integral we have replaced t by 𝜆 (both are dummy variables of integration). 

With this substitution, we can rewrite the integral as 

 

 𝑅𝑔(𝜏) = ∫ 𝑔(𝜆)𝑔(−(𝜏 − 𝜆))𝑑
∞

−∞
𝜆 

One can realize that 𝑅𝑔(𝜏) is nothing but the convolution of 𝑔(𝜏) and −𝑔(𝜏). That is, 

 

 𝑅𝑔(𝜏) = 𝑔(𝜏) ∗ 𝑔(−𝜏) 

Taking the Fourier transform of both sides, we get 
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     𝐹{𝑅𝑔(𝜏)} = 𝐺(𝑓)𝐺
∗(𝑓) 

  

Therefore,    𝑆𝑔(𝑓) =  F{𝑅𝑔(𝜏)} = |𝐺(𝑓)|2. 

 

Cross Correlation Function 

 

The cross correlation function of two energy signals 𝑔1(𝑡) and 𝑔2(𝑡) is defined as; 

 

 𝑅1,2(𝜏) = ∫ 𝑔1(𝑡)𝑔2(𝑡 − 𝜏)𝑑𝑡
∞

−∞
 

 

Example: 

Find the auto-correlation function of the sine signal 𝑔(𝑡) = 𝐴cos (2𝜋𝑓0𝑡 + 𝜃), where 

𝐴 and 𝜃 are constants. 

Solution: 

As we know, 𝑔(𝑡) is a periodic signal. So, we find 𝑅𝑔(𝜏) using the definition 

 𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝐴cos (2𝜋𝑓0𝑡 + 𝜃)𝐴cos (2𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 𝜃)𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
𝐴2

2𝑇0
∫ [cos(4𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 2𝜃) + cos(2𝜋𝑓0𝜏)]𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
𝐴2

2𝑇0
[0 + cos(2𝜋𝑓0𝜏)𝑇0] 

 𝑅𝑔(𝜏) =
𝐴2

2
cos(2𝜋𝑓0𝜏); periodic with period 𝑇0. 

Example: 

Determine the autocorrelation function of the sinc pulse 𝑔(𝑡) = 𝐴𝑠𝑖𝑛𝑐2𝑊𝑡. 

Solution: 

Using the duality property of the Fourier transform, we can deduce that 

 𝐺(𝑓) =
𝐴

2𝑊
𝑟𝑒𝑐𝑡(

𝑓

2𝑊
) 

The energy spectral density of 𝑔(𝑡) is 

 𝑆𝑔(𝑓) = |𝐺(𝑓)|
2 = (

𝐴

2𝑊
)2𝑟𝑒𝑐𝑡(

𝑓

2𝑊
) 

Taking the inverse Fourier transform, we get the autocorrelation function 
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 𝑅𝑔(𝜏) =
𝐴2

2𝑊
𝑠𝑖𝑛𝑐2𝑊𝑡 

Exercise: 

a. Find and plot the cross correlation function of the two signals 

  𝑔1(𝑡) = {
1   0 ≤ 𝑡 ≤ 2
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

  𝑔2(𝑡) = {
1   0 ≤ 𝑡 ≤ 1
−1  1 < 𝑡 ≤ 2  

 

b. Are 𝑔1(𝑡) and 𝑔2(𝑡) orthogonal? 

Exercise: 

Find and plot the autocorrelation function for the periodic saw-tooth signal shown 

below: 
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Example: 

Find the autocorrelation function of the rectangular pulse g(t). 

Solution: 

As we saw earlier, this pulse is an energy signal and , therefore, we can find its 𝑅𝑔(𝜏) 

as: 

 𝑅𝑔(𝜏) = ∫ (𝐴)(𝐴)𝑑𝑡
1

𝜏
 = A2 (1-τ)  ;  0< τ <1 

Using the even symmetry property of the autocorrelation function, we can find 𝑅𝑔(𝜏) 

for – ve values of τ as: 

 𝑅𝑔(𝜏) = = A2 (1+τ)  ;  -1< τ <0 

This function is sketched below. Note that that the maximum value occurs at τ = 0 and 

that g(t) and g(t-τ) become uncorrelated for τ = 1 sec, which is the duration of the 

pulse. 

The energy spectral density is Sg(f)  =𝐹{Rg(τ)}= A2sinc2f 
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Bandwidth of Signals and Systems: 

Def: A signal g(t) is said to be (absolutely) band-limited to BHz if 

G(f) = 0                   for |f| >B 

Def: A signal x(t) is said to be (absolutely) time-limited if  

x(t) = 0                     for |t| >T 

Theorem: An absolutely band-limited waveform cannot be 

 absolutely time-limited (theoretically has an infinite time duration) and vice versa. 

We have earlier seen examples that support this theorem. For example, the delta 

function, which has an almost zero time duration, has a Fourier transform which 

extends uniformly over all frequencies (infinite bandwidth). Also, a constant value in 

the time domain (a dc) has a Fourier transform, which is an impulse in the frequency 

domain. This is repeated here for convenience. 

 

 

In general, there is an inverse relationship between the signal bandwidth and the time 

duration. The bandwidth and the time duration are related through a relation, called 

the time bandwidth product, of the form 

Bandwidth *Time Duration  ≥  constant  

The value of the constant depends on the way the bandwidth and the time duration of 

a signal are defined as will be illustrated later (Possible values of the constant = 
1

2
 , 
1

4𝜋
)  

Remarks:  

1. The bandwidth of a signal provides a measure of the extent of significant 

frequency content of the signal. 

2. The bandwidth of a signal is taken to be the width of a positive frequency 

band. 

G(f) 

B -B 

T -T 

X(t) 
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3. For baseband signals or networks , where the spectrum extends from –B to B, 

the bandwidth is taken to be B Hz. 

4. For bandpass signals or systems where the spectrum extends between (f1, f2)  

and (-f1, -f2), the B.W= f2 – f1. 

Some Definitions of Bandwidth: 

1- Absolute bandwidth 

Here, the Fourier transform of a signal is non zero only within a certain 

frequency band. If G(f) = 0 for |f| >B , then g(t) is  absolutely band-limited to 

BHz. When G(f) ≠ 0 for f 1< |f |< f2 , then the absolute bandwidth is  f2 - f 1. 

 

 

2- 3-dB (half power points) bandwidth 

The range of frequencies from 0 to some frequency B  

at which |G(f)| drops to 
1

√2
  of its maximum  

value (for a low pass signal). 

 As for a band pass signal, the  B.W =  f2 – f1 

  

 

 

3- The 95 %  (energy or power) bandwidth.  

Here , the B.W is defined as the band of frequencies where the area under the 

energy spectral density (or power spectral density) is at least 95% (or 99%) of 

the total area . 

 

Total  Energy = ∫ |𝐺(𝑓)|2
∞

−∞
𝑑𝑓 = 2∫ |𝐺(𝑓)|2𝑑𝑓

∞

0
 

 

 ∫ |𝐺(𝑓)|2𝑑𝑓
𝐵

−𝐵
 = 0.95  ∫ |𝐺(𝑓)|2

∞

−∞
𝑑𝑓 

 

4- Equivalent Rectangular Bandwidth. 

It  is the width of a fictitious rectangular spectrum such that the power in that 

rectangular band  is equal to the power associated with the actual spectrum 

over positive frequency  

Area under  rectangle = Area under  curve 

|G(0)|2*2Beq = ∫ |𝐺(𝑓)|2
∞

−∞
df 

|G(0)|2*2Beq = 2∫ |𝐺(𝑓)|2
∞

0
df 

Beq = 
1

|𝐺(0)|2
∫ |𝐺(𝑓)|2

∞

0
df 

  

1

√2
𝐺(0) 

G(0

) 

|𝐺(𝑓)| 

B f 0 

Gmax 

f2 f 0 f1 

G(f) 

1

√2
𝐺𝑚𝑎𝑥 
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5- Null – to –null  bandwidth: 

For baseband signals , B.W is the first null in the envelope of the magnitude 

spectrum above zero. 

 

rect(
𝑡

𝜏
) → τ sincfτ  = τ 

𝑠𝑖𝑛𝜋𝑓𝜏

𝜋𝑓𝜏
  

 

Zero crossing take place when sin(πfτ) = 0 

                       πfτ = nπ  →  f =  
𝑛

τ
  ; n = 1,2,……… 

B.W  =  
1

𝜏
         smaller τ large bandwidth. 

 

For a band pass signal, B.W= f2 – f1   

 

6- Bounded spectrum bandwidth: 

Range of frequencies as (0,B) such that outside the band , the  power spectral 

density must be down by say 50 dB below the maximum value  

-50 dB = 10 log 
|𝐺(𝐵)|2

|𝐺(0)|2
 

     7-  RMS Bandwidth: 

            Brms =(
 ∫ 𝑓2|𝐺(𝑓)|2

∞

−∞
df

 ∫ |𝐺(𝑓)|2
∞

−∞
df

)1\2 

The corresponding rms duration of g(t) is  

            Trms = =(
 ∫ 𝑡2|𝑔(𝑡)|2

∞

−∞
dt

 ∫ |𝑔(𝑡)|2
∞

−∞
dt

)1\2 

         (here g(t) is assumed to be centered around the origin). 

Remark: The time bandwidth product is  Trms Brms ≥ 
1

4𝜋
 

Time – Bandwidth Product 

To illustrate the time – bandwidth product, consider the equivalent rectangular 

bandwidth defined earlier as 

Beq = 
 ∫ |𝐺(𝑓)|2

∞

−∞
df

 2|𝐺(0)|2
 

Analogous to this definition, we define an equivalent rectangular time duration as : 
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Teq = 
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞
dt 

 

The time bandwidth product is 

BeqTeq = 
 ∫ |𝐺(𝑓)|2

∞

−∞
df

 2|𝐺(0)|2
 . 
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞
dt 

 

Note  ∫ |𝑔(𝑡)|2
∞

−∞
dt = ∫ |𝐺(𝑓)|2

∞

−∞
df  ; Rayleigh energy theorem. Note also that 

𝐺(0) = ∫ 𝑔(𝑡)𝑑𝑡
∞

−∞
. Using these relations, we get 

         BeqTeq = 
 1

 2
 
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

| ∫ 𝑔(𝑡)
∞

−∞
dt|2 

 

Case 1:  When g(t) is positive for all time t, then |g(t)| = g(t) and BeqTeq becomes 

BeqTeq =  
 1

 2
 

Case 2 : For a general g(t) that can take on positive as well as negative values, BeqTeq 

satisfies the inequality 

BeqTeq ≥ 
 1

 2
 

Note : For Brms and Trms , the time – bandwidth satisfies the inequality 

Brms Trms ≥ 
 1

 4𝜋
 

Example : Bandwidth of a trapezoidal signal 

Find the equivalent rectangular  bandwidth, Beq, for the trapezoidal pulse shown. 

Solution :  

Teq = 
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞
dt 

    

∫|𝑔(𝑡)|𝑑𝑡 = 𝐴 ( 𝑡𝑎 + 𝑡𝑏)

∞

−∞

 

∫ |𝑔(𝑡)|2𝑑𝑡 =
2𝐴2

3
 ( 2𝑡𝑎 + 𝑡𝑏)

∞

−∞
 

  𝑇𝑒𝑞 = 
3

2

(𝑡𝑎+𝑡𝑏)
2

(2𝑡𝑎+𝑡𝑏)
 

Beq = 
0.5

𝑇𝑒𝑞
 = 

2𝑡𝑎+𝑡𝑏

3(𝑡𝑎+𝑡𝑏)
2
. 

  

A 
g(t) 

tb -ta -tb ta 
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Remark: Note that using this method we were able to determine the signal bandwidth 

without the need to go through the Fourier transform. 

Exercise: Use the above method to find the equivalent rectangular bandwidth for the 

triangular signal 𝑔(𝑡) = 𝑡𝑟𝑖(
𝑡

𝑇
). 

Example: Bandwidth of a periodic signal: 

Find the bandwidth For the periodic square function define over one period as 

  𝑔(𝑡) = {
2𝐴,

−𝑇

4
≤ 𝑡 ≤

𝑇

4

−𝐴, 𝑜. 𝑤
  

Solution: 

The average power, computed using the time average, is  

𝑃𝑎𝑣 = 
1

𝑇0
∫|𝑔(𝑡)|2  𝑑𝑡

𝑇0

0

 

      =  
1

𝑇0
[4𝐴2𝜏 + 𝐴2𝜏] =  

5𝐴2𝜏

2𝜏
=  
5𝐴2

2
= 2.5𝐴2 

Also, by using the Parseval’s theorem, the average power can be computed as: 

 𝑃𝑎𝑣 = |𝐶0|
2 +  2∑ |𝐶𝑛|

2∞
𝑛=1  

We recall that the Fourier coefficients for this signal were found in Chapter 1. Using 

these values we get 

 𝑃𝑎𝑣  =  (
𝐴

2
)
2

+ 2∑
(3𝐴)2

(𝑛𝜋)2
∞
𝑛=1  

 𝑃𝑎𝑣 = 
𝐴2

4
+  2𝐴2 ∑

(3)2

(𝑛𝜋)2
∞
𝑛=1  

Let us take    n = 1 

𝑃1 = 𝐴
2 {0.25 + 2  .  

9

𝜋2
}  = 2.073𝐴2 

𝑃1
𝑃𝑎𝑣

= 
2.073𝐴2

2.5𝐴2
= 82.95% 

(This is the percentage of the total power that lies in the dc and the fundamental 

frequency ). 

For n  = 3 
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 𝑃3 = 𝐴
2 {0.25 + 2 (

32

𝜋2
+

32

32𝜋2
)}  = 2.276𝐴2 

𝑃3

𝑃𝑎𝑣
= 

2.276𝐴2

2.5𝐴2
= 91.05%  

(Fraction of power in the dc, fundamental and third harmonic terms) 

For n   =  5 

𝑃5 = 𝐴
2 {0.25 + 2 ((

3

𝜋
)
2

+ (
3

3𝜋
)
2

+ (
3

5𝜋
)
2

)}  = 2.349𝐴2 

𝑃5
𝑃𝑎𝑣

= 
2.349𝐴2

2.5𝐴2
= 93.97% 

Here , the 93% power band width is 5𝑓0 . 

 

Example: Bandwidth of an energy signal . 

If the signal 𝑔(𝑡) = 𝐴𝑒−∝𝑡  𝑢(𝑡) is passed through an ideal LPF with  B.W = B Hz, 

find the fraction of the signal energy contained in B. 

Solution 

The Fourier transform of g(t) is: 

 𝐺(𝑓) =  
𝐴

∝+𝑗2𝜋𝑓
 

The energy in g(t), using the time domain, is  

𝐸𝑔 = ∫|𝑔(𝑡)|
2 𝑑𝑡 =  ∫ 𝐴2𝑒−2∝𝑡 𝑑𝑡 =  

𝐴2

2 ∝

∞

0

∞

0

 

Energy contained in the filter output y(t) is  

𝐸𝑦 = ∫|𝐺(𝑓)|
2 𝑑𝑓 =  ∫

𝐴2

(∝2+ (2𝜋𝑓)2)
 𝑑𝑓 

𝐵

−𝐵

𝐵

−𝐵

 

𝐸𝑦 =  
2𝐴2

2𝜋 ∝
𝑡𝑎𝑛−1

2𝜋𝐵

∝
 

The ratio of 𝐸𝑦 to the total energy is 

𝐸𝑦

𝐸𝑔
=
2

𝜋
𝑡𝑎𝑛−1

2𝜋𝐵

∝
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The table below shows this ratio for various values of B . 

 

B (𝑬𝒚 𝑬𝒈⁄ ) × 𝟏𝟎𝟎 

∝

4
 

63.9 

∝

2
 

80.38 

∝ 89.95 

2 ∝ 94.94 

 

Thus, the 95% energy bandwidth is  2 ∝.  

Exercise: Find the 98% energy bandwidth. 
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Pulse Response and Risetime 

A rectangular pulse contains  significant high frequency  components. When that 

pulse is passed through a LPF, the high frequency components will be attenuated 

resulting in signal distortion. 

We need to investigate the relationship that should exist between the  pulse bandwidth 

and the channel bandwidth. This subject is of particular importance, especially, when 

we study the transmission of data over band-limited channels. In the simplest form, a 

binary digit 1 may be represented by a pulse 𝐴,   0 ≤ 𝑡 ≤ 𝑇𝑏 , while binary digit 0 

may be represented by the negative pulse −𝐴,   0 ≤ 𝑡 ≤ 𝑇𝑏. So, in order to retrieve the 

transmitted data, the channel bandwidth must be wide enough to accommodate the 

transmitted data. 

To convey this idea in a simple form, we first consider the response of a first order 

low pass filter to a unit step function and then to a pulse. 

Step response of a first order LPF (channel)  

Let x(t) = u(t) be applied to a first order RC circuit. This first order filter is a fair 

representation of a low pass communication channel. 

 

 

The system differential equation is 

x(t) = Ri(t) + g(t) = RC 
𝑑𝑔(𝑡)

𝑑𝑡
 + g(t) 

where g(t) is the channel output. 

RC 
𝑑𝑔(𝑡)

𝑑𝑡
 + g(t) = u(t) 

The solution to this first order system is 

g(t) = (1-𝑒−𝑡/𝑅𝐶) u(t)  

The 3-db  B.W of the channel  is 

B= 
1

2𝜋𝑅𝐶
 (to be derived shortly) 

        g(t) = (1-𝑒−2𝜋𝐵𝑡) u(t)  
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Define the difference between the input and the output as: 

 e(t) = u(t) - g(t) = 𝑒−2𝜋𝐵𝑡   

Note that e(t) decreases as B increases. Meaning that as the channel bandwidth 

increases, the output becomes closer and closer to the input. In the ideal case, when 

the channel bandwidth becomes infinity, the output becomes a step function. In 

essence, to reproduce a step function (or a rectangular pulse), a channel with infinite 

bandwidth is needed. 

 

 

 

The Risetime 

The Rise time is a measure of the speed of a step response. One common measure is 

the 10-90 % rise time defined as the time it takes for the output to rise between 10% 

to 90% of the final (steady state) value (1) when a step function is applied to a LIT 

system. For the step response g(t) and the first order RC circuit considered above, the 

rise time can be easily calculated as: 

tr = t2 - t1 ≈
0.35

𝐵
 

From this result, we conclude that: increasing the bandwidth of the channel will 

decrease the rise time (a faster response). 

Exercise: For the system above, verify that the rise time is given as 𝑡𝑟 =
0.35

𝐵
 

Exercise: Find the 10-90% rise time for a second order low pass filter with 3-dB 

bandwidth B and transfer function  

𝐻(𝑓) =
1

𝑃2(
𝑗𝑓
𝐵 )

 

Where,  𝑃2(𝑥) = 1 + √2𝑥 + 𝑥
2.  
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(Hints: You may let B=10, for example, use matlab to find the step response, and then 

find the rise time). 

 

Pulse response  

It is the response of the circuit to a pulse of duration τ. For the same circuit let us 

apply the pulse 

x(t) = u(t) - u(t- τ)  

Using the linearity and time invariance properties, the output can be obtained from the 

step response as: 

y(t) ={

0                                              𝑡 < 0
1 − 𝑒−𝑡/𝑅𝐶                    0 < 𝑡 <  τ

(1 − 𝑒−
 τ

𝑅𝐶 ) . 𝑒−
𝑡− τ

𝑅𝐶          t >  τ
} 

This is sketched in the figure below. 

 

 

Bandwidth Considerations 

The transfer function of the RC circuit is  

H (f) = 
1/𝑗2𝜋𝑓𝑐

𝑅+1/𝑗2𝜋𝑓𝑐
 = 

1

1+𝑗2𝜋𝑓𝑅𝑐
  

|H(f)| = 
1

√1+(2𝜋𝑓𝑅𝑐)²
  

Let B = 
1

2𝜋𝑅𝑐
  ; 3-db bandwidth ; 2𝜋𝑓𝑅𝑐 = 1   ; f = 

1

2𝜋𝑅𝑐
    

Then ,  H(f) = 
1

1+𝑗𝑓/𝐵
    

|H(f)| = 
1

√1+(
𝑓

𝐵
)²
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For the rectangular pulse x(t), we have  

   𝑋(𝑓) = 𝑠𝑖𝑛𝑐𝑓𝜏   

The first null frequency of X(f) is an estimate of the bandwidth Bx of x(t), which is of 

the order of  ≈
1

τ
 . 

1. When  τ is large, such that signal bandwidth Bx =  
1

τ
 << B   (channel B.W)   

 𝑌(𝑓) = 𝑋(𝑓)𝐻(𝑓)  ≈ 𝑋(𝑓) 
 

 and the output resembles the input. There is enough time for x(t) to reach the 

maximum value . 

2.  When  τ is small, such that signal  Bx = 
1

τ
 > > B   (channel B.W) 

𝑌(𝑓) = 𝑋(𝑓)𝐻(𝑓) ≈ 𝐻(𝑓) 

The signal suffers a considerable amount of distortion  and  𝑌(𝑓) is no longer 

proportional to  X(f). 
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Band-pass Signals and Systems 

(Details are not required for ENEE 339) 

A signal g(t) is called a band pass signal if its Fourier  transform G(f) is non-

negligible only in  a band  of frequencies  of total extent 2W centered about fc . 

A signal is called narrowband if 2W is small compared with fc. 

A band pass signal g(t) represented in the canonical form: 

g(t) = gI(t) cos 𝜔ct - gQ(t) sin𝜔ct. 

gI(t) is a low pass signal of B.W = W Hz called the in phase component of g(t) . 

gQ(t) is a low pass signal of B.W = W Hz called the quadrature component . 

g(t) appears as a modulated signal in which gI(t) and gQ(t) are the low pass signals and  

𝑓𝑐 is the carrier frequency. Recall the modulation property of the Fourier transform  : 

x(t) cos 𝜔ct → 
1

2
 (X(f- fc)+ X(f+ fc))                                                                                                                                                                  

x(t) sin  𝜔ct →
1

𝑗2
 (X(f- fc)- X(f+ fc)) 

Define the complex  envelope of a signal g(t) as: 

  𝑔 ̃(t)  =  gI(t) + j gQ(t)      

𝑔 ̃(t)  is a low pass signal of B.W =W. The signals g(t) and 𝑔 ̃(t)  are related by : 

 g(t) = Re{𝑔 ̃(t) 𝑒𝑗𝜔𝑐𝑡  } 

How to get gI(t) and gQ(t) from g(t) 

If we multiply g(t) by cos 𝜔ct, we get 

  g(t) cos𝜔ct = gI(t) cos2 𝜔𝑐t - gQ(t) sin 𝜔ct cos 𝜔ct 

     = 
1

2
 gI(t) + 

1 

2
 gI(t) cos 2𝜔ct- 

1

2
 gQ(t) sin 2𝜔ct . 

The first term is the desired low pass signal. The second and third terms are high 

frequency components centered about 2 fc.  

gI(t) =lowpass{2g(t) cos𝜔ct} 

Or, in the frequency domain 

GI(f)= {
𝐺(𝑓 − 𝑓𝑐 ) + 𝐺(𝑓 + 𝑓𝑐 )             − 𝑤 ≤ 𝑓 ≤ 𝑤
0                                                           𝑜𝑡herwise

} 
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Now if we multiply g(t) by sin𝜔ct, we get 

g(t) sin𝜔ct= gI(t) sin 𝜔Ct cos 𝜔C t - gQ(t) sin2 𝜔ct  

= - 
1

 2
 gQ(t) + 

1

2
 gI(t) sin 2𝜔ct+ 

1

 2
gQ(t) cos 2𝜔ct 

Again, the first term is a low pass signal, while the second and third are high 

frequency terms centered about 2 fc.  

gQ(t) = - low pass{2g(t) sin𝜔ct}In the frequency domain, this is equivalent to 

GQ(t)= {
𝑗[𝐺(𝑓 − 𝑓𝑐) − 𝐺(𝑓 + 𝑓𝑐)                   − 𝑤 ≤ 𝑓 ≤ 𝑤
0                                                              𝑜𝑡herwise

} 

 

 

 

Band pass systems: 

The analysis of  band pass systems can be simplified by using the complex envelope 

concept. Here, results and techniques from low pass systems can be easily applied to 

band pass systems .  

The problem to be addressed is : 

The input x(t) is a band pass signal 

x(t)=xI(t)cos𝜔ct - xQ(t)sin𝜔ct 

x(t) is applied to a band pass filter represented as: 

h(t) = hI(t)cos𝜔ct - hQ(t)sin𝜔ct 

The objective is to find the filter output y(t). The output is, of course, the convolution 

of x(t) and h(t)  (y(t) = x(t)*h(t)), which can also be expressed as: 

 y(t) = yI(t)cos𝜔ct - yQ(t)sin𝜔ct 
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Due to the band-pass nature of the problem, carrying out the direct convolution will 

be a tedious task due to the presence of the sin and cos functions in all terms. The 

complex envelope concept simplifies the problem to a very great extent. The 

procedure is summarized as follows: 

a. Form the complex envelope for both the input and the channel: 

 𝑥̃(t)= xI(t) + jxQ(t) 

 ℎ̃(t)= hI(t) + jhQ(t) 

b. Carry out the convolution between 𝑥̃(t) and ℎ̃(t). Note that both signals are low 

pass signals and so 𝑦̃(t) is also low pass. 

 

2 𝑦̃(t)= ℎ̃(t) * 𝑥̃(t) 

 

𝑦̃(t) = yI(t) + jyQ(t) 

c. The band-pass filter output is obtained from the low pass signal 𝑦̃(t) through 

the relation 

y(t) =Re{𝑦̃(t) 𝑒jwct} 

or through the relation 

  y(t) = yI(t)cos𝜔ct - yQ(t)sin𝜔ct 
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Example : 

The rectangular radio frequency (RF) pulse  

x(t) = {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

is applied to a linear filter with impulse response (We will see later that this is a filter 

matched to x(t), called the matched filter). 

h(t) = x(T - t) 

Assume that T= nTC; n is an integer, Tc = 
1

𝑓𝑐
, determine the response of the filter and 

sketch it. 

Solution: We follow the three steps outlined above. 

h(t) = 𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐(𝑇 − 𝑡) 

= 𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑇 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴 𝑠𝑖𝑛2𝜋𝑓𝑐𝑇𝑠𝑖𝑛2𝜋𝑓𝑐 t 

=𝐴 𝑐𝑜𝑠2𝜋 (
𝑛𝑇𝑐

𝑇𝑐
) 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴 𝑠𝑖𝑛2𝜋 (

𝑛𝑇𝑐

𝑇𝑐
) 𝑠𝑖𝑛2𝜋𝑓𝑐t 

       

               cos2𝑛𝜋≡1                                sin2𝑛𝜋≡0 

Therefore,  h(t) = {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

The complex envelopes of x(t) and h(t) are (step a) 

 𝑥 ̃(t) = {
𝐴             0 ≤ 𝑡 ≤ 𝑇
  0                          𝑜. 𝑤 

} 

 ℎ ̃(𝑡) = {
𝐴             0 ≤ 𝑡 ≤ 𝑇
  0                          𝑜. 𝑤 

} 

 

𝑦̃(t) = 𝑥̃(𝑡) ∗ ℎ̃(𝑡) is the triangular signal shown in the Figure (step b). 
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2𝑦̃(𝑡)={
𝐴²𝑡                                        0 ≤ 𝑡 ≤ 𝑇
  𝐴²(2𝑇 − 𝑡)                       T ≤ 𝑡 ≤ 2𝑇

} 

The bandpass signal is obtained as (step c) 

y(t)={

𝐴²

2
𝑡 𝑐𝑜𝑠𝑤𝑐𝑡                         0 ≤ 𝑡 ≤ 𝑇

𝐴2

2
(2𝑇 − 𝑡) 𝑐𝑜𝑠𝑤𝑐𝑡       𝑇 ≤ 𝑡 ≤ 2𝑇 

} 

   and is sketched as in the figure below. 

 

 

Exercise 

The band-pass signal 𝑥(𝑡) = 𝑒−
𝑡

𝜏 cos(2𝜋𝑓𝑐𝑡) 𝑢(𝑡) is applied to a band-pass filter with 

impulse response ℎ(𝑡) given as: 

 ℎ(𝑡) =  {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

Find and sketch the filter output. 

 

 


