Amplitude Modulation Systems

Modulation: is the process by which some characteristic of a carrier $c(t)$ is varied in accordance with a message signal *^m*(*t*).

Amplitude modulation is defined as the process in which the amplitude of the carrier $c(t)$ is varied linearly with $m(t)$. Four types of amplitude modulation will be considered in this chapter. These are normal amplitude modulation, double sideband suppressed carrier modulation, single sideband modulation, and vestigial sideband modulation.

A common form of the *carrier*, in the case of continuous wave modulation, is a sinusoidal signal of the form

$$
c(t) = A_C \cos(2\pi f_C t + \phi)
$$

The baseband (message) signal $m(t)$ is referred to as the *modulating signal* and the result of the modulation process is referred to as the *modulated signal* $s(t)$. The following block diagram illustrates the modulation process.

We should point out that modulation is performed at the transmitter and demodulation, which is the process of extracting $m(t)$ from $s(t)$, is performed at the receiver.

Normal Amplitude Modulation

A *normal AM* signal is defined as:

$$
s(t) = A_c \left(1 + k_a m(t)\right) \cos 2\pi f_c t
$$

where, k_a is the sensitivity of the AM modulator (units in 1/volt). $s(t)$ can be also be written in the form:

$$
s(t) = A(t) \cos 2\pi f_c t
$$

where, $A(t) = A_c + A_c k_a m(t)$. In this representation, we observe that $A(t)$ is related to $m(t)$ in a linear relationship of the form $y = a + bx$.

The *envelope* of $s(t)$ is defined as

$$
|A(t)| = A_c |1 + k_a m(t)|
$$

Notice that the envelope of $s(t)$ has the same shape as $m(t)$ provided that:

- 1. $|1 + k_a m(t)| \ge 0$ or, equivalently, $|k_a m(t)| \le 1$. Over-modulation occurs when $|k_a m(t)| > 1$, resulting in envelope distortion.
- 2. $f_c \gg w$, where *w* is bandwidth of *m*(*t*). f_c has to be at least 10 *w*. This ensures the formation of an envelope, whose shape resembles the message signal.

Matlab Demonstration

The figure below shows the normal AM signal $s(t) = (1 + 0.5 \cos 2\pi t) \cos 2\pi (10)t$ a. Make similar plots for the cases (μ = 0.5, 1, and 1.5) b.Show the effect of f_c on the envelope. (Take $f_c = 4$ Hz, and $f_c = 25$ Hz)

Spectrum of the Normal AM Signal

Let the Fourier transform of $m(t)$ be as shown (The B.W of $m(t) = w$ Hz).

Taking the Fourier transform, we get

$$
S(f) = \frac{A_C}{2}\delta(f - f_C) + \frac{A_C}{2}\delta(f + f_C) + \frac{A_C k_a}{2}M(f - f_C) + \frac{A_C k_a}{2}M(f + f_C)
$$

The spectrum of $s(t)$ is shown below

Remarks

- a. The baseband spectrum $M(f)$, of the message has been shifted to the bandpass region centered around the carrier frequency f_c .
- b. The spectrum $S(f)$ consists of two sidebands (upper sideband and lower sideband) and a carrier.
- c. The transmission bandwidth of $s(t)$ is:

$$
BW = (f_C + w) - (f_C - w) = 2w
$$

Which is twice the message bandwidth.

Power Efficiency

The *power efficiency* of a normal AM signal is defined as:

power in the sidebands power in the carrier power in the sidebands $\eta = \frac{1}{power\ in\ the\ sidebands + \frac{1}{2}}$

Now, we find the power efficiency of the AM signal for the single tone modulating signal $m(t) = A_m \cos(2\pi f_m t)$. Let $\mu = A_m k_a$, then $s(t)$ can be expressed as

$$
s(t) = A_C (1 + \mu \cos 2\pi f_m t) \cos 2\pi f_C t
$$

\n
$$
s(t) = A_C \cos 2\pi f_C t + A_C \mu \cos 2\pi f_C t \cos 2\pi f_m t
$$

\n
$$
s(t) = A_C \cos 2\pi f_C t + \frac{A_C \mu}{2} \cos 2\pi (f_C + f_m) t + \frac{A_C \mu}{2} \cos 2\pi (f_C - f_m) t
$$

\nCarrier
\nUpper
\nSideband
\nSideband

Power in carrier
$$
=
$$
 $\frac{A_c^2}{2}$
\nPower in sidebands $=$ $\frac{1}{2} \left(\frac{A_c \mu}{2} \right)^2 + \frac{1}{2} \left(\frac{A_c \mu}{2} \right)^2$
\n $= \frac{1}{8} A_c^2 \mu^2 + \frac{1}{8} A_c^2 \mu^2 = \frac{1}{4} A_c^2 \mu^2$

Therefore,

$$
\eta = \frac{\frac{1}{4}A_c^2 \mu^2}{\frac{A_c^2}{2} + \frac{1}{4}A_c^2 \mu^2} = \frac{\mu^2}{2 + \mu^2} \qquad ; \quad 1 \ge \mu \ge 0
$$

The following figure shows the relationship between η and μ

The maximum efficiency occurs when $\mu = 1$, i.e. for a 100% modulation index. The corresponding maximum efficiency is only $\eta = 1/3$. As a result, 2/3 of the transmitted power is wasted in the carrier.

Remark: Normal AM is not an efficient modulation scheme in terms of the utilization of the transmitted power.

Exercise:

a. Show that for the general AM signal $s(t) = A_c$ $1 + k_a m(t) \cos(2\pi f_c t)$, the power

efficiency is given by
$$
\eta = \frac{\frac{1}{2}A_c^2 \langle k_a^2 m(t)^2 \rangle}{\frac{A_c^2}{2} + \frac{1}{2}A_c^2 \langle k_a^2 m(t)^2 \rangle} = \frac{\langle k_a^2 m(t)^2 \rangle}{1 + \langle k_a^2 m(t)^2 \rangle}, \text{ where}
$$

 $\langle k_a^2 m(t)^2 \rangle$ is the average power in $k_a m(t)$

b. Apply the above formula for the single tone modulated signal $s(t) = A_c (1 + \mu \cos 2\pi f_n t) \cos 2\pi f_c t$

AM Modulation Index

Consider the AM signal

$$
s(t) = A_C(1 + k_a m(t)) \cos 2\pi f_C t = A(t) \cos 2\pi f_C t
$$

The envelope of $s(t)$ is defined as:

$$
|A(t)| = A_c |1 + k_a m(t)|
$$

The following block diagram illustrate the envelope detection process for a sinusoidal message signal.

To avoid distortion, the following condition must hold

 $1 + k_a m(t) \ge 0$ or $|k_a m(t)| \le 1$

The modulation index of an AM signal is defined as:

$$
Modulation \ Index (M.I) = \frac{|A(t)|_{\text{max}} - |A(t)|_{\text{min}}}{|A(t)|_{\text{max}} + |A(t)|_{\text{min}}}
$$

Example: (single tone modulation)

Let
$$
m(t) = A_m \cos 2\pi \pi t
$$

\nthen, $s(t) = A_C (1 + k_a A_m \cos 2\pi \pi t) \cos 2\pi f_C t$
\n $= A_C (1 + \mu \cos 2\pi \pi t) \cos 2\pi f_C t$ where, $\mu = k_a A_m$
\nTo avoid distortion $k_a A_m = \mu < 1$

The envelope $|A(t)| = A_c |(1 + \mu \cos 2\pi f_m t)|$ is plotted below

$$
A_{c}(1+\mu)
$$
\n
$$
A_{c}(1-\mu)
$$
\n
$$
A_{c}(1-\mu)
$$
\n
$$
A_{c}(1-\mu)
$$
\n
$$
A(t)|_{\max} = A_{c}(1+\mu), \qquad |A(t)|_{\min} = A_{c}(1-\mu)
$$
\n
$$
M.I = \frac{A_{c}(1+\mu) - A_{c}(1-\mu)}{A_{c}(1+\mu) + A_{c}(1-\mu)} = \frac{2A_{c}\mu}{2A_{c}} = \mu
$$

Therefore, the modulation index is μ .

Over-modulation

When the modulation index $\mu > 1$, an ideal envelope detector cannot be used to extract $m(t)$ and *distortio*n takes place.

Example: Let $s(t) = A_c(1 + \mu \cos 2\pi t_c) \cos 2\pi t_c$ be applied to an ideal envelope detector, sketch the demodulated signal for μ = 0.25, 1.0, *and* 1.25.

As was mentioned before, the output of the envelope detector is $y(t) = A_c \left| 1 + \mu \cos 2\pi \frac{f}{f} \right|$ <u>Case1</u> : (μ = 0.25)

Here, $m(t)$ can be extracted without distortion.

Here again, $m(t)$ can be extracted without distortion.

 $\text{Case3:} (\mu = 1.25)$

Here, $m(t)$ cannot be recovered without distortion.

Generation of Normal AM:

Square Law Modulator (will not be covered for ENCS students)

Consider the following circuit

For small variations of $V_1(t)$ around a suitable operating point, $V_2(t)$ can be expressed as: $V_2 = \alpha_1 V_1 + \alpha_2 V_1^2$; Where α_1 and α_2 are constants.

Let $V_1(t) = m(t) + A_c^{\prime} \cos 2\pi f_c t$

Substituting $V_1(t)$ into the nonlinear characteristics and arranging terms, we get

$$
V_2(t) = \alpha_1 A_C \left[1 + \frac{2\alpha_2}{\alpha_1} m(t) \right] \cos 2\pi f_C t + \alpha_1 m(t) + \alpha_2 m(t)^2 + \alpha_2 A_C \cos^2 (2\pi f_C t)
$$

$$
V_2(t) = (1) + (2) + (3) + (4)
$$

The first term is the desired AM signal obtained by passing $V_2(t)$ through a bandpass filter.

$$
s(t) = \alpha_1 A_c' \left[1 + \frac{2\alpha_2}{\alpha_1} m(t) \right] \cos 2\pi f_c t
$$

Note: the numbers shown in above figure represent the number of term in $V_2(f)$.

 (1) = The desired normal AM signal

$$
(2)=M(f)
$$

$$
(3) = M(f) * M(f)
$$

(4) = The cosine square term amounts to a term at $2f_c$ and a DC term.

Limitations of this technique:

- a. Variations of $V_1(t)$ should be small to justify the second order approximation of the nonlinear characteristic.
- b. The bandwidth of the filter should be such that $f_c w > 2w \implies f_c \ge 3w$

When $f_C \gg w$, a bandpass filter with reasonable edge could be used.

When f_c is of the order $3w$, a filter with sharp edges should be used.

Generation of Normal AM:

The switching Modulator (will be covered)

Assume that the carrier $c(t)$ is large in amplitude so that the diode –shown in the figure below- acts like an ideal switch.

When $m(t)$ is small compared to $|c(t)|$,

$$
V_2(t) = \begin{cases} m(t) + A_c \cos \omega_c t & ; & c(t) > 0 \\ 0 & ; & c(t) < 0 \end{cases}
$$

Here, the diode opens and closes at a rate equals to the carrier frequency f_c . This switching mechanism can be modeled as:

$$
V_2(t) = [A_C \cos \omega_C t + m(t)]g_P(t)
$$

where $g_p(t)$ is the periodic square function, expanded in a Fourier series as

A bandpass filter with a bandwidth $2w$, centered at f_c , passes the second term (a carrier) and the third term (a carrier multiplied by the message). The filtered signal is

$$
s(t) = \frac{A_C}{2} \cos \omega_C t + \frac{2}{\pi} m(t) \cos \omega_C t
$$

$$
s(t) = \frac{A_C}{2} \left(1 + \frac{4}{\pi A_C} m(t) \right) \cos \omega_C t \quad ; \qquad \text{Desired AM signal.}
$$

Modulation Index = $M.I = \frac{1}{-4} |m(t)|_{max}$ $I = \frac{m(t)}{t}$ *A M I* π A $_C$ $=$ IVI .1 $=$

Demodulation of AM signal: (The Ideal Envelope Detector)

The ideal envelope detector responds to the envelope of the signal, but is insensitive to phase variation. If

$$
s(t) = A_C(1 + k_a m(t)) \cos 2\pi f_C t
$$

then, the output of the ideal envelope detector is

$$
y(t) = A_C |1 + k_a m(t)|
$$

A simple practical envelope detector

It consists of a diode followed by an RC circuit that forms a low pass filter.

During the positive half cycle of the input, the diode is forward biased and *C* charges rapidly to the peak value of the input. When $s(t)$ falls below the maximum value, the diode becomes reverse biased and *C* discharges slowly through *R^L* . To follow the envelope of *^s*(*t*) , the circuit time constant should be chosen such that :

$$
\frac{1}{f_c} << R_L C << \frac{1}{w}
$$

Where *w* is the message B.W and f_c is the carrier frequency.

Output of half wave rectifier (without C)

When a capacitor C is added to a half wave rectifier circuit, the output follows the envelope of $s(t)$. The circuit output (with C connected) follows a curve that connects the tips of the positive half cycles, which is the envelope of the AM signal.

Example: (Demodulation of AM signal)

Let $s(t) = (1 + k_a m(t)) \cos \omega_c t$ be applied to the scheme shown below, find $y(t)$.

The filter suppresses the second term and passes only the first term. Hence,

$$
\omega(t) = \frac{1}{2} (1 + k_a m(t))^2
$$

$$
\overline{y}(t) = \sqrt{\omega(t)} = \frac{1}{\sqrt{2}} (1 + k_a m(t))
$$

$$
y(t) = \frac{1}{\sqrt{2}} k_a m(t)
$$

Note that the dc term is blocked by capacitor.

Concluding remarks about AM:

- i. Modulation is accomplished using a nonlinear device.
- ii. Demodulation is accomplished using a simple envelope detector.
- iii. AM is wasteful of power; most power resides in the carrier (not in the sidebands).
- iv. The transmission $B.W =$ twice message $B.W$