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Frequency and Phase Modulation 

To generate an angle modulated signal, the amplitude of the modulated carrier is held 

constant while either the phase or the time derivative of the phase is varied linearly with 

the message signal m(t). 

The expression for an angle modulated signal is: 

 𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡 + 𝜃(𝑡)) ,  𝜔c  is the carrier frequency. 

The instantaneous frequency of s(t) is : 

  𝑓𝑖(𝑡) =
1 

2𝜋

𝑑

𝑑𝑡
(𝜔𝑐𝑡 + 𝜃(𝑡)) = 𝑓𝑐 +  

1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
 

For phase modulation, the phase is directly proportional to the modulating signal : 

 𝜃(𝑡) = 𝑘𝑝𝑚(𝑡),  kp is the phase sensitivity measured in rad/volt. 

The peak phase deviation is 

 ∆𝜃 = 𝑘𝑝 × max  (𝑚(𝑡)).  

For frequency modulation, the frequency deviation of the carrier is proportional to the 

modulating signal: 

1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑘𝑓𝑚(𝑡)  ⟹ 𝑓𝑖 = 𝑓𝑐 + 𝑘𝑓𝑚(𝑡).  

The frequency deviation from the un-modulated carrier is 

 𝑓𝑖(𝑡) − 𝑓𝑐 =
1

2𝜋

𝑑𝜃

𝑑𝑡
 

The peak frequency deviation is 

 ∆𝑓 = max  {
1

2𝜋

𝑑𝜃

𝑑𝑡
}. 

The time domain representation of a phase modulated signal is : 

 𝑠(𝑡) = 𝐴𝑐 cos (𝜔𝑐𝑡 + 𝑘𝑝𝑚(𝑡)). 

The time domain representation of a frequency modulated signal is  

 𝑠(𝑡) = 𝐴𝑐 cos (𝜔𝑐𝑡 + 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
). 

where  𝜃(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
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The average power in 𝑠(𝑡), for frequency modulation (FM) or phase modulation (PM) is: 

𝑝𝑎𝑣𝑎 =
(𝐴𝑐)2

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

Example:  Binary Frequency Shift Keying. 

The periodic square signal m(t), shown below,  frequency modulates the carrier   

𝑐(𝑡) =  𝐴𝑐 cos (2𝜋100𝑡) to produce the signal 𝑠(𝑡) = 𝐴𝑐cos  ( (2𝜋100𝑡) +

2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼) where kf =10 HZ/V. 

 

a. Find and plot the instantaneous frequency fi(t). 

b. Find s(t). 

 
Solution: 

a) The instantaneous frequency is 

𝑓𝑖 = 𝑓𝑐 + 𝑘𝑓 × 𝑚(𝑡) 

      𝑓𝑖 =  100+10 =110 Hz    when 𝑚(𝑡) = +1 

      𝑓𝑖 =    100 -10 = 90Hz    when 𝑚(𝑡) = −1 

For   0 < 𝑡 ≤ 𝑇𝑏  ,    𝑓𝑖 = 110 Hz 

For  𝑇𝑏 ≤ 𝑡 ≤ 2𝑇𝑏,  𝑓𝑖 = 90 Hz 

The instantaneous frequency hops between the two values 110 Hz and 90 Hz as shown 

below 
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In digital transmission, we will see that a binary (1) may be represent by a signal of 

frequency f1 for 0 ≤ 𝑡 ≤ 𝑇𝑏 and a binary (0) by a signal of frequency f2 for 0 ≤ 𝑡 ≤

𝑇𝑏 .  

 

b)  The two signals that represent the binary data are: 

𝑠1(𝑡) = Ą cos(2𝜋(110)𝑡 ), 𝑤ℎ𝑒𝑛 𝑚(𝑡) = +1 

𝑠2(𝑡) = Ą cos(2𝜋(90)𝑡   ),          𝑤ℎ𝑒𝑛 𝑚(𝑡) = −1 

Exercise: Plot the transmitted signal 𝑠(𝑡) for 0 ≤ 𝑡 ≤ 4𝑇𝑏 assuming 𝑇𝑏 = 10𝑇𝑐. You 

should obtain a figure similar to this figure 

 

 

Single Tone Frequency Modulation: 

Assume that the message 𝑚(𝑡) = 𝐴𝑚 cos 𝜔𝑚𝑡. 

The instantaneous frequency is: 

𝑓𝑖 = 𝑓𝑐 + 𝑘𝑓𝑚(𝑡) = 𝑓𝑐 + 𝐴𝑚𝑘𝑓 cos 2𝜋𝑓𝑚𝑡. 

This frequency is plotted in the figure. 

The peak frequency deviation (from the un-modulated  

carrier) is : 

 ∆𝑓 = 𝑘𝑓𝐴𝑚. 

The FM signal is: 

𝑠(𝑡) = 𝐴𝑐 cos  (𝜔𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡). 

Where 𝛽 is the FM modulation index: 
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𝛽 =
𝑘𝑓𝐴𝑚

𝑓𝑚
=

𝑝𝑒𝑎𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

∆𝑓

𝑓𝑚
 

In the figure below, we plot an FM signal when fm=2;fc=20;Ac=1;beta=5;  

 

Spectrum of a Single-Tone FM Signal 

The objective is to find a meaningful definition of the bandwidth of an FM signal: 

Let 𝑚(𝑡) = 𝐴𝑚 cos 2𝜋𝑓𝑚𝑡  be the message signal, then the FM signal is: 

𝑠(𝑡) = 𝐴𝑐 cos( 2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 ) 

𝑠(𝑡) can be rewritten as: 

𝑠(𝑡) = 𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡+𝛽 sin 2𝜋𝑓𝑚𝑡} 

                = 𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡) × 𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡)} 

Remember that:   𝑒𝑗𝜃 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛 𝜃  and that  𝑐𝑜𝑠𝜃 = 𝑅𝑒{𝑒𝑗𝜃} 

The function [ 𝛽 sin 2𝜋𝑓𝑚𝑡 ] is “sinusoidal” and periodic with 𝑇𝑚 =
1

𝑓𝑚
  . Therefore, 

𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡) is also periodic with 𝑇𝑚 =
1

𝑓𝑚
  (but not sinusoidal) 

  As we know, a periodic function g(t) can be expanded into a complex Fourier series as: 

𝑔(𝑡) = ∑ 𝐶𝑛 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞    . 

where, 

 𝐶𝑛 =
1

𝑇𝑚
∫ 𝑔(𝑡) 𝑒−𝑗𝜔𝑚𝑛𝑡

𝑇𝑚

0

𝑑𝑡 

⟹ If we let  𝑔(𝑡) = 𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡)   
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then,  𝐶𝑛 =
1

𝑇𝑚
∫  𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡)  ×  𝑒−𝑗𝜔𝑚𝑛𝑡𝑇𝑚

0
𝑑𝑡 

It turns out that  ⟹  𝐶𝑛 = 𝐽𝑛(𝛽). 

where  𝐽𝑛(𝛽) is the Bessel function of the first kind of order n. 

Hence,     𝑔(𝑡) = ∑ 𝐽𝑛(𝛽) 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞   

Substituting into  𝑠(𝑡), we get: 

 ⟹  𝑠(𝑡) = 𝐴𝑐  𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡)  × ∑ 𝐽𝑛(𝛽) 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞  }  

                  = 𝐴𝑐  𝑅𝑒{ ∑ 𝐽𝑛(𝛽) × 𝑒𝑗2𝜋(𝑓𝑐+𝑛𝑓𝑚)𝑡 }∞
−∞   

               = 𝐴𝑐 ∑ 𝐽𝑛(𝛽) × cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)∞
−∞  

Finally, the FM signal can be represented as 

  𝑠(𝑡) = 𝐴𝑐  ∑ 𝐽𝑛(𝛽) × cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)∞
−∞  

Bessel Functions:       

         The Bessel equation of order n is: 

           𝑥2
𝑑𝑦

𝑑𝑥2

2

+ 𝑥
𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0 

This is a second order differential equation with variable coefficient. We can solve it by 

the power series method, for example: 

Let  𝑦 = ∑ 𝐶𝑛  𝑥
𝑛∞

𝑛=0    ,   
𝑑𝑦

𝑑𝑥
= ∑ 𝑛 𝐶𝑛  𝑥

𝑛−1∞
𝑛=1     ,   

𝑑𝑦

𝑑𝑥2

2
= ∑ 𝑛(𝑛 − 1)𝐶𝑛  𝑥

𝑛−2∞
𝑛=2  . 

Substituting  𝑦,
𝑑𝑦

𝑑𝑥
 𝑎𝑛𝑑  

𝑑2𝑦

𝑑𝑥2 into the differential equation and equating terms of equal 

power results in: 

    𝑦 = ∑
(−1)𝑚 × (

1
2 𝑥)𝑛+2𝑚

𝑚! (𝑛 + 𝑚)!

∞

𝑚=0

 

The solution for each value of n (see the D.E where n appears) is 𝐽𝑛(𝑥), the Bessel 

function of the first kind of order n. The figure, below, shows the first three Bessel 

functions. 
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Some Properties of 𝑱𝒏(𝒙): 

 

1- 𝐽𝑛(𝑥) = (−1)𝑛𝐽−𝑛(𝑥). 

 

2- 𝐽𝑛(𝑥) = (−1)𝑛𝐽𝑛(−𝑥). 

 

3- Recurrence formula 

  𝐽𝑛−1(𝑥) + 𝐽𝑛+1(𝑥) =
2𝑛

𝑥
𝐽𝑛(𝑥) . 

4- For small values of x:  ⟹  𝐽𝑛(𝑥) ≅  
𝑥𝑛

2𝑛  𝑛!
   

Therefore, 𝐽0(𝑥) ≅ 1 

                 𝐽1(𝑥) ≅  
𝑥

2
. 

          𝐽𝑛(𝑥) ≅ 0  𝑓𝑜𝑟 𝑛 > 1  

5- For large value of 𝑥: 

𝐽𝑛(𝑥) ≅ √
2

𝜋𝑥
 cos(𝑥 −

𝜋

4
−

𝑛𝜋

2
) ,    𝐽𝑛(𝑥) behaves like a sine function with progressively 

decreasing amplitude. 

6- For real 𝑥 and fixed, 𝐽𝑛(𝑥) ⟶ 0 𝑎𝑠 𝑛 ⟶ ∞ . 

 

7- ∑ (𝐽𝑛(𝑥))2 = 1 ,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥.∞
−∞    
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Table of Bessel Functions 

β J0(β) J1(β) J2(β) J3(β) J4(β) J5(β) J6(β) J7(β) J8(β) J9(β) J10(β) 

0 1 0 0 0 0 0 0 0 0 0 0 
0.1 0.9975 0.0499 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.2 0.9900 0.0995 0.0050 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.3 0.9776 0.1483 0.0112 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.4 0.9604 0.1960 0.0197 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.5 0.9385 0.2423 0.0306 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.6 0.9120 0.2867 0.0437 0.0044 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.7 0.8812 0.3290 0.0588 0.0069 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.8 0.8463 0.3688 0.0758 0.0102 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
0.9 0.8075 0.4059 0.0946 0.0144 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.7652 0.4401 0.1149 0.0196 0.0025 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
1.1 0.7196 0.4709 0.1366 0.0257 0.0036 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 
1.2 0.6711 0.4983 0.1593 0.0329 0.0050 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 
1.3 0.6201 0.5220 0.1830 0.0411 0.0068 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 
1.4 0.5669 0.5419 0.2074 0.0505 0.0091 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 
1.5 0.5118 0.5579 0.2321 0.0610 0.0118 0.0018 0.0002 0.0000 0.0000 0.0000 0.0000 
1.6 0.4554 0.5699 0.2570 0.0725 0.0150 0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 
1.7 0.3980 0.5778 0.2817 0.0851 0.0188 0.0033 0.0005 0.0001 0.0000 0.0000 0.0000 
1.8 0.3400 0.5815 0.3061 0.0988 0.0232 0.0043 0.0007 0.0001 0.0000 0.0000 0.0000 
1.9 0.2818 0.5812 0.3299 0.1134 0.0283 0.0055 0.0009 0.0001 0.0000 0.0000 0.0000 
2 0.2239 0.5767 0.3528 0.1289 0.0340 0.0070 0.0012 0.0002 0.0000 0.0000 0.0000 
2.1 0.1666 0.5683 0.3746 0.1453 0.0405 0.0088 0.0016 0.0002 0.0000 0.0000 0.0000 
2.2 0.1104 0.5560 0.3951 0.1623 0.0476 0.0109 0.0021 0.0003 0.0000 0.0000 0.0000 
2.3 0.0555 0.5399 0.4139 0.1800 0.0556 0.0134 0.0027 0.0004 0.0001 0.0000 0.0000 
2.4 0.0025 0.5202 0.4310 0.1981 0.0643 0.0162 0.0034 0.0006 0.0001 0.0000 0.0000 
2.5 -0.0484 0.4971 0.4461 0.2166 0.0738 0.0195 0.0042 0.0008 0.0001 0.0000 0.0000 
2.6 -0.0968 0.4708 0.4590 0.2353 0.0840 0.0232 0.0052 0.0010 0.0002 0.0000 0.0000 
2.7 -0.1424 0.4416 0.4696 0.2540 0.0950 0.0274 0.0065 0.0013 0.0002 0.0000 0.0000 
2.8 -0.1850 0.4097 0.4777 0.2727 0.1067 0.0321 0.0079 0.0016 0.0003 0.0000 0.0000 
2.9 -0.2243 0.3754 0.4832 0.2911 0.1190 0.0373 0.0095 0.0020 0.0004 0.0001 0.0000 
3 -0.2601 0.3391 0.4861 0.3091 0.1320 0.0430 0.0114 0.0025 0.0005 0.0001 0.0000 
3.1 -0.2921 0.3009 0.4862 0.3264 0.1456 0.0493 0.0136 0.0031 0.0006 0.0001 0.0000 
3.2 -0.3202 0.2613 0.4835 0.3431 0.1597 0.0562 0.0160 0.0038 0.0008 0.0001 0.0000 
3.3 -0.3443 0.2207 0.4780 0.3588 0.1743 0.0637 0.0188 0.0047 0.0010 0.0002 0.0000 
3.4 -0.3643 0.1792 0.4697 0.3734 0.1892 0.0718 0.0219 0.0056 0.0012 0.0002 0.0000 
3.5 -0.3801 0.1374 0.4586 0.3868 0.2044 0.0804 0.0254 0.0067 0.0015 0.0003 0.0001 
3.6 -0.3918 0.0955 0.4448 0.3988 0.2198 0.0897 0.0293 0.0080 0.0019 0.0004 0.0001 
3.7 -0.3992 0.0538 0.4283 0.4092 0.2353 0.0995 0.0336 0.0095 0.0023 0.0005 0.0001 
3.8 -0.4026 0.0128 0.4093 0.4180 0.2507 0.1098 0.0383 0.0112 0.0028 0.0006 0.0001 
3.9 -0.4018 -0.0272 0.3879 0.4250 0.2661 0.1207 0.0435 0.0130 0.0034 0.0008 0.0002 
4 -0.3971 -0.0660 0.3641 0.4302 0.2811 0.1321 0.0491 0.0152 0.0040 0.0009 0.0002 
4.1 -0.3887 -0.1033 0.3383 0.4333 0.2958 0.1439 0.0552 0.0176 0.0048 0.0011 0.0002 
4.2 -0.3766 -0.1386 0.3105 0.4344 0.3100 0.1561 0.0617 0.0202 0.0057 0.0014 0.0003 
4.3 -0.3610 -0.1719 0.2811 0.4333 0.3236 0.1687 0.0688 0.0232 0.0067 0.0017 0.0004 
4.4 -0.3423 -0.2028 0.2501 0.4301 0.3365 0.1816 0.0763 0.0264 0.0078 0.0020 0.0005 
4.5 -0.3205 -0.2311 0.2178 0.4247 0.3484 0.1947 0.0843 0.0300 0.0091 0.0024 0.0006 
4.6 -0.2961 -0.2566 0.1846 0.4171 0.3594 0.2080 0.0927 0.0340 0.0106 0.0029 0.0007 
4.7 -0.2693 -0.2791 0.1506 0.4072 0.3693 0.2214 0.1017 0.0382 0.0122 0.0034 0.0008 
4.8 -0.2404 -0.2985 0.1161 0.3952 0.3780 0.2347 0.1111 0.0429 0.0141 0.0040 0.0010 
4.9 -0.2097 -0.3147 0.0813 0.3811 0.3853 0.2480 0.1209 0.0479 0.0161 0.0047 0.0012 
5 -0.1776 -0.3276 0.0466 0.3648 0.3912 0.2611 0.1310 0.0534 0.0184 0.0055 0.0015 



 

8 
 

The Fourier Series Representation of the FM Signal 

 

We saw earlier that a single tone FM signal can be represented in a Fourier series as :  

𝑠(𝑡) = 𝐴𝑐  ∑ 𝐽𝑛(𝛽) cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)

∞

−∞

 

The first few terms in this expansion are: 

 

𝑠(𝑡) = 𝐴𝑐  { 𝐽0(𝛽) cos(2𝜋𝑓𝑐𝑡) + 𝐽1(𝛽) cos 2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡 + 𝐽−1(𝛽) cos 2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡  +

    𝐽2(𝛽) cos 2𝜋(𝑓𝑐 + 2𝑓𝑚)𝑡 + 𝐽−2(𝛽) cos 2𝜋(𝑓𝑐 − 2𝑓𝑚)𝑡 + ⋯ . .    

 

The FM signal consists of an infinite number of spectral components concentrated around 

𝑓𝑐. Therefore, the theoretical bandwidth of the signal is infinity. That is to say, if we need 

to recover the FM signal without any distortion, all spectral components must be 

accommodated. This means that a channel with infinite bandwidth is needed. This is, of 

course, not practical since the frequency spectrum is shared by many users. 

 

In the following discussion we need to truncate the series so that say 99% of the total 

average power is contained within a certain bandwidth. But first let us find the total 

average power using the series approach. 

 

 Power in the spectral components of s(t) 

 

Note that s(t) consists of an infinite number of Fourier terms, and the power in s(t) will be 

equal the power in the respective Fourier components . 

 

Any term in s (t) takes the form:  𝐴𝑐𝐽𝑛(𝛽) cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡) 

 

The average power in this term is:    
(𝐴𝑐)2(𝐽𝑛(𝛽))2

2
 

 

Hence the total power in s(t) is: 

 

< 𝑆2(𝑡) >  =   
𝐴𝐶

2 𝐽0
2(𝛽)

2
+

𝐴𝐶
2𝐽1

2(𝛽)

2
+

𝐴𝐶
2𝐽−1

2(𝛽)

2
+

𝐴𝐶
2𝐽2

2(𝛽)

2
+

𝐴𝐶
2𝐽−2

2(𝛽)

2
+ ⋯ 

                       

                       =  
𝐴𝐶

2

2
 { 𝐽0

2(𝛽) + 𝐽1
2(𝛽)+𝐽−1

2(𝛽)+𝐽2
2(𝛽)+𝐽−2

2(𝛽) + ⋯ . . } 

 

=    
𝐴𝐶

2

2
 { ∑  𝐽𝑛

2(𝛽) ∞
𝑛=−∞ } , where  ∑  𝐽𝑛

2(𝛽) ∞
𝑛=−∞ = 1, ( A property of Bessel 

Functions).  
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The average power becomes 

 < 𝑆2(𝑡) > =     
𝐴𝐶

2

2
 . 

 

  Spectrum of an Fm Signal 

 

 
 

 

 Fourier transform of  𝑠(𝑡) = 𝐴𝑐 cos  (𝜔𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡) (only + ve frequencies 

shown) 

 

Note that in the figure above  as 𝑓𝑚 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠, the spectral lines become closely 

clustered about 𝑓𝑐.  

 

 The power spectral density, which is a plot of |𝐶𝑛|2 versus 𝑓, is shown below: 

 

 
 

Example: 99% power bandwidth of an FM signal  

Plot the FM spectrum and find the 99% power bandwidth when 𝛽 = 1  and 𝛽 = 0.2 

 

Solution: 
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   𝑠(𝑡) = 𝐴𝑐  ∑ 𝐽𝑛(𝛽) cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)∞
−∞  

 

Case a:   𝜷 = 𝟏 (wideband FM) 

 

The first five terms corresponding to  𝛽 = 1, are 

𝐽0(1) = 0.7652,  𝐽1(1) = 0.4401,   𝐽2(1) = 0.1149,  𝐽3(1) = 0.01956,   𝐽4(1) = 0.002477 

The power in s(t) is     < 𝑆2(𝑡) >  =     
𝐴𝐶

2

2
  

Let us try to find the average power in the terms at  𝑓𝑐 , 𝑓𝑐 + 𝑓𝑚, 𝑓𝑐 − 𝑓𝑚, 𝑓𝑐 + 2𝑓𝑚, 𝑓𝑐 −

2𝑓𝑚 

The average power in these five components can be calculated as: 

1. 𝑓𝑐 :                      
𝐴𝐶

2 𝐽0
2(𝛽)

2
  

2. 𝑓𝑐 + 𝑓𝑚:                
𝐴𝐶

2𝐽1
2(𝛽)

2
 

3. 𝑓𝑐 − 𝑓𝑚:                 
𝐴𝐶

2𝐽−1
2(𝛽)

2
 

4. 𝑓𝑐 + 2𝑓𝑚:             
𝐴𝐶

2𝐽2
2(𝛽)

2
 

5. 𝑓𝑐 − 2𝑓𝑚:              
𝐴𝐶

2𝐽−2
2(𝛽)

2
 

The average power in the five spectral components is the sum: 

    𝑃𝑎𝑣 =
𝐴2

𝑐

2
[𝐽0

2(1) + 2𝐽1
2(1) + 2𝐽2

2(1)] 

𝑃𝑎𝑣 =
𝐴2

𝑐

2
 [(0.7652)2 + 2 ∗ (0.4401)2 + (0.1149)2] =  0.9993 

𝐴2
𝑐

2
 

So, these terms have 99.9 % of the total power. 

Therefore, the 99.9 %  power bandwidth is 

                𝐵𝑊 = (𝑓𝑐 + 2𝑓𝑚) − (𝑓𝑐 − 2𝑓𝑚) = 4𝑓𝑚 

Case b:   𝛃 = 𝟎. 𝟐 (Narrowband FM) 

For  𝛽 = 0.2, 𝐽0(0.2) = 0.99, 𝐽1(0.2) = 0.0995,   𝐽2(0.2) = 0.00498335  

The power in the carrier and the two sidebands (at 𝑓𝑐 , 𝑓𝑐 + 𝑓𝑚, 𝑓𝑐 − 𝑓𝑚) is  

 𝑃 =
𝐴2

𝑐

2
[𝐽0

2(0.2) + 2𝐽1
2(0.2)]  
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              𝑃 =
𝐴2

𝑐

2
[0.9999]  

Therefore, 99.99% of the total power is found in the carrier and the two sidebands. The 

99% bandwidth is 

B.W= (𝑓𝑐 + 𝑓𝑚) − (𝑓𝑐 − 𝑓𝑚) = 2𝑓𝑚 

Remark: 

We observe that the spectrum of an FM signal when 𝛽 ≪ 1 ( called narrow band FM)  is 

“similar” to the spectrum of a normal AM signal, in the sense that it consists of a carrier 

and two sidebands. The bandwidth of both signals is 2𝑓𝑚. 

Carson’s Rule 

A 98% power B.W of an FM signal can be estimated using Carson’s rule: 

 𝐵𝑇 = 2(𝛽 + 1)𝑓𝑚   

Generation  of an FM Signal 

First:  Generation of a Narrowband FM Signal 

Consider an angel modulated signal: 

𝑠(𝑡) =  𝐴𝑐 cos (2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)) 

When  𝑠(𝑡) is an FM signal,      𝜃(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝑡)𝑑𝑡 

𝑠(𝑡) can be expanded as: 

 𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) cos(𝜃(𝑡)) − 𝐴𝑐 sin(2𝜋𝑓𝑐𝑡) sin(𝜃(𝑡)) 

When |𝜃(𝑡)| ≪ 1 , 𝑐𝑜𝑠 𝜃 ≅ 1 , sin(𝜃) ≅ 𝜃 and 𝑠(𝑡) , termed narrowband, can be 

approximated as: 

          𝑠(𝑡) ≅ 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝜃 sin(2𝜋𝑓𝑐𝑡)  

Using this expression, one can generate a narrowband FM or PM signals. This is 

illustrated in the block diagram below: 
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   When      𝑚(𝑡) = 𝐴𝑚 cos(2𝜋𝑓𝑚𝑡) 

      𝜃(𝑡) = 𝛽sin (2𝜋𝑓𝑚𝑡) 

the modulated signal takes the form 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝛽 sin(2𝜋𝑓𝑚𝑡) sin (2𝜋𝑓𝑐𝑡) 

To generate  a narrow band PM signal, we can use the scheme: 

 

Spectrum of a single- tone NBFM: 

For an FM signal, 𝜃(𝑡) = 𝛽sin (2𝜋𝑓𝑚𝑡) 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝛽 sin(2𝜋𝑓𝑚𝑡) sin (2𝜋𝑓𝑐𝑡) 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) −
𝐴𝑐𝛽

2
[cos(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡) − cos (2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)] 

The spectrum of 𝑠(𝑡) is shown below: 
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The spectrum consists of a component at the carrier frequency 𝑓𝑐 , two components at  

(𝑓𝑐 + 𝑓𝑚) and 𝑓𝑐 − 𝑓𝑚). Note the negative sign at the lower sideband.  

The bandwidth of this signal is 2𝑓𝑚.  

Now, consider the normal AM signal with sinusoidal modulation.  

 𝑠(𝑡)𝐴𝑀 = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) + 𝐴𝑐𝐴𝑚 cos (2𝜋𝑓𝑚𝑡) cos (2𝜋𝑓𝑐𝑡) 

It can be represented as 

 𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) −
𝐴𝑐𝐴𝑚

2
[cos(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡) + cos (2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)] 

As we recall this signal consists of a term at the carrier and two terms at 𝑓𝑐 + 𝑓𝑚 and 𝑓𝑐 −

𝑓𝑚. 
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Frequency multiplier 

It is a device for which the frequency of the output signal is an integer multiple of the 

frequency of the input signal. It is primarily a nonlinear characteristic followed by a band 

pass filter. Now we illustrate the operation of this device.  

 

The Square law device:                                                                                                 

Let the input be an FM signal of the form: 

 𝑥(𝑡) = 𝐴𝑐 cos(2π𝑓 ′
𝑐

+  𝛽′ sin 2π𝑓𝑚𝑡) = 𝐴𝑐 cos(𝜙) 

The output of the square law characteristic is: 

𝑦(𝑡) = 𝑥(𝑡)2 = 𝐴𝑐
 2𝑐𝑜𝑠2(𝜙) =

𝐴𝑐
 2

2
[1 + cos (2𝜙)] =

𝐴𝑐
 2

2
+

𝐴𝑐
 2

2
cos(2𝜙)

=
𝐴𝑐

 2

2
+

𝐴𝑐
 2

2
𝑐𝑜𝑠[2π(2𝑓 ′

𝑐
) + 2𝛽′sin (2π𝑓𝑚𝑡)] 

The bandpass filter 

If 𝑦(𝑡) is passed through a BPF of center frequency  2𝑓𝑐 , then the DC term will be 

suppressed and the filter output is: 

 𝑦 ′(𝑡) =
𝐴𝑐

 2

2
𝑐𝑜𝑠[2π(2𝑓 ′

𝑐
) + 2𝛽′sin (2π𝑓𝑚𝑡)] 

 𝑦 ′(𝑡) =
𝐴𝑐

 2

2
𝑐𝑜𝑠[2π(𝑓𝑐) + 𝛽sin (2π𝑓𝑚𝑡)] 

As can be seen from this result, the output is a signal with twice the frequency of the 

input signal and a modulation index twice that of the input. To get frequency 

multiplication higher than two, a cascade of units, similar to what was described above, 

can be formed with the number of stages that achieve the desired frequency.   

Indirect Method for Generating a Wideband FM: 

A wideband FM can be generated indirectly using the block diagram below (Armstrong 

Method). First, a narrowband FM is generated, and then the wideband FM is obtained by 

using frequency multiplication. Next, we analyze the operation of this modulator. 
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Let  𝑚(𝑡) = 𝐴𝑚cos 2π𝑓𝑚𝑡  be the baseband signal, then 

 𝑠1(𝑡) = 𝐴𝑐 cos(2π𝑓𝑐
′𝑡 + 𝛽′sin 2π𝑓𝑚𝑡)  ;  𝛽′ =

𝑘𝑓𝐴𝑚

𝑓𝑚
 

is a narrowband FM with  𝛽′ ≪ 1. The frequency of 𝑠1(𝑡) is 

𝑓′
𝑖

= 𝑓𝑐
′ +  𝑘𝑓𝐴𝑚cos 2π𝑓𝑚𝑡 

Multiplying  𝑓𝑖 by  𝑛 (through frequency multiplication), we get the frequency of  𝑠(𝑡) as 

𝑓𝑖 = 𝑛𝑓𝑐
′ +  𝑛𝑘𝑓𝐴𝑚𝑐𝑜𝑠2π𝑓𝑚𝑡 

This result is 

𝑠(𝑡) = 𝐴𝑐 cos[2π(𝑛𝑓𝑐
′)𝑡 + 𝑛𝛽′ sin 2π𝑓𝑚𝑡] 

= 𝐴𝑐 cos[2π𝑓𝑐𝑡 + 𝛽 sin 2π𝑓𝑚𝑡] 

Where 𝛽 = 𝑛𝛽′  is the desired modulation index of WBFM 

             𝑓𝑐 = 𝑛𝑓𝑐
′ is the desired carrier frequency of WBFM                                                                        

Direct method for generating an FM signal: 

In a direct FM system, the instantaneous frequency of the carrier is varied in accordance 

with a message signal by means of a voltage controlled oscillator (VCO). The voltage – 

frequency characteristic of a VCO is given by 

𝑓𝑖 =  𝑓𝑐 +  𝑘𝑓 𝑚(𝑡) 

A schematic diagram of a VCO is shown in the figue 

 

 

 

  

A realization of the CVO may be obtained by considering an oscillator (like the Hartley 

oscillator) shown below in which a varactor ((voltage variable capacitor) is used. The 

capacitance of the varactor varies in response to variations in the message signal. The 

variation is linear when the variation in the message is too small. 

 



 

16 
 

The frequency of the oscillator is  

𝑓𝑖(𝑡) =
1

2𝜋√(𝐿1 +  𝐿2)𝐶(𝑡)
 

Let      𝐶(𝑡) = 𝐶0 − 𝑘 𝑚(𝑡)  (A diode 

operating in the reverse bias region can act like 

a variable capacitor)       

 k:  is a constant,  

When m(t) = 0, 𝐶(𝑡) = 𝐶0, and the 

unmodulated frequency of oscillation is 

𝑓𝑐 =
1

√(𝐿1+𝐿2)𝐶0
 

When m(t) has a finite value, the frequency of oscillation is 

𝑓𝑖(𝑡) =
1

2𝜋√(𝐿1 + 𝐿2)(𝐶0 − 𝑘 𝑚(𝑡))

 

= 𝑓𝑐 (1 −
𝑘 𝑚(𝑡)

𝐶0
)

−1
2⁄

             ,            [(1 + 𝑥)𝑛 ≅ 1 + 𝑛𝑥] 

When   
𝑘 𝑚(𝑡)

𝐶0
≪ 1 , we can make the approximation  

𝑓𝑖(𝑡) = 𝑓𝑐 (1 +  
𝑘 𝑚(𝑡)

2𝐶0
) = 𝑓𝑐 + 𝑘𝑓 𝑚(𝑡) 

Here it is clear that the instantaneous frequency varies linearly with the message signal. 

Demodulation of the FM signal: 

An FM signal may be demodulated by means of what is called a discriminator.  

Let    𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡 + 𝜃(𝑡))  be an angle 

modulated signal. The output of an ideal  

discriminator is defined as: 

𝑦(𝑡)   =   
1

2𝜋
  𝑘𝐷   

𝑑𝜃

𝑑𝑡
 

Hartley Oscillator 

Discriminator 
𝑠(𝑡) 𝑦(𝑡) 
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When   𝜃 = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
  , then   

𝑑𝜃

𝑑𝑡
 = 2𝜋𝑘𝑓 𝑚(𝑡) and y(t) becomes  

𝑦(𝑡) = 𝑘𝐷𝑘𝑓 𝑚(𝑡) 

One practical realization of a discriminator is a differentiator followed by an envelope 

detector. 

 

The operation of this discriminator can be explained as follows: 

Let      𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡 + 𝜃(𝑡))  

𝑑𝑠(𝑡)

𝑑𝑡
= −𝐴𝑐 (𝜔𝑐 +

𝑑𝜃

𝑑𝑡
) sin(𝜔𝑐𝑡 + 𝜃(𝑡)) 

The output of the envelope detector is   𝐴𝑐| (𝜔𝑐 +
𝑑𝜃

𝑑𝑡
) |   

The capacitor blocks the DC term and so output is: 

𝑉0 = 𝐴𝑐

𝑑𝜃

𝑑𝑡
= 2𝜋𝑘𝑓 𝐴𝑐𝑚(𝑡) 

A typical FM signal and its derivative are shown in the figure below. 
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We already know what an envelope detector (recall the material on the demodulation of a 

normal AM signal). Now we explain how differentiation is accomplished.  
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𝑠(𝑡) 

From the properties of Fourier transform we know that if  𝐹{𝑔(𝑡)} = 𝐺(𝑓) , then  

𝐹 {
𝑑𝑔(𝑡)

𝑑𝑡
} = 𝑗2𝜋𝑓 𝐺(𝑓) 

 

This means that multiplication by   𝑗2𝜋𝑓   in the frequency 

domain amounts to differentiating the signal in the time-

domain. Hence, we need a circuit whose frequency response is 

linear in  𝑓   to perform time differentiation. A circuit that 

performs this task is a tuned circuit, provided that the signal 

frequency falls within the linear part of the characteristic, i.e., 

between either (𝑓1, 𝑓2) 𝑜𝑟 (𝑓3, 𝑓4). 

A balanced FM detector called balanced discriminator is such a 

circuit. 

 

Tuned circuit demodulator 

To extend the dynamic range of the differentiating circuit, two tuned circuits with center 

frequencies  𝑓𝑜1 𝑎𝑛𝑑 𝑓𝑜2   are used as shown in the figure 

Balanced slope detector: 

Two tuned circuits are tuned to two different frequencies  

𝑓𝑜1
> 𝑓𝑜2

 . The primary circuit is tuned to  𝑓𝑐 .  

 This circuit has a wider range of linear frequency 

response. 

 No DC blocking is necessary.  

Output 
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Phase shift discriminator (not required to ENCS students) 

The quadrature detector:  This demodulator converts frequency variations into phase 

variation and detects the phase changes. The block diagram of the demodulator is shown 

below  

 

 

 

 

 

Let   𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡 +  𝜑(𝑡)) ;    𝜑(𝑡) = 2𝜋𝐾𝑓 ∫ 𝑚(𝛼)
𝑡

0
𝑑𝛼    

 𝑠(𝑡 − ∆𝑡) = 𝐴𝑐 cos[2𝜋𝑓𝑐(𝑡 − ∆𝑡) + 𝜑(𝑡 − ∆𝑡)]  

                           =  𝐴𝑐 cos[2𝜋𝑓𝑐𝑡 −  2𝜋𝑓𝑐∆𝑡 +  𝜑(𝑡 − ∆𝑡)] 

The delay ∆𝑡 is chosen such that  2𝜋𝑓𝑐∆𝑡 = 𝜋
2⁄  

Hence,  

 𝑠(𝑡 − ∆𝑡) = 𝐴𝑐 cos [2𝜋𝑓𝑐𝑡 −
𝜋

2
+ 𝜑(𝑡 − ∆𝑡)] 

                             = 𝐴𝑐 sin[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡 − ∆𝑡)]  

 𝑉(𝑡) = 𝑠(𝑡)𝑠(𝑡 − ∆𝑡)   = 𝐴𝑐
2 sin[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡 − ∆𝑡)] 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡)]  

        =  
𝐴𝑐

2

2
sin[2𝜋(2𝑓𝑐)𝑡 + 𝜑(𝑡) + 𝜑(𝑡 − ∆𝑡)]  +

𝐴𝑐
2

2
sin[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]   

The high frequency component is suppressed by the LPF. What remains is the second 

term  

𝐴𝑐
2

2
sin[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]  ≅  

𝐴𝑐
2

2
[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]  

where ∆𝑡 is small to justify the approximation sin (𝑥) ≅ 𝑥. Hence,  

 𝑦(𝑡) =
𝐴𝑐

2

2
[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)] 

 𝑦(𝑡) =
𝐴𝑐

2

2
  ∆𝑡

𝜑(𝑡)−𝜑(𝑡−∆𝑡)

∆𝑡
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𝑉𝑖(𝑡) 𝑉𝑜(𝑡) 

The second term is the derivative  
𝑑𝜑(𝑡)

𝑑𝑡
 . The output then becomes 

 𝑦(𝑡) =
𝐴𝑐

2

2
∆𝑡

𝑑𝜑

𝑑𝑡
 

But            𝜑(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)
𝑡

0
𝑑𝛼 and  

𝑑

𝑑𝑡
𝜑(𝑡) = 2𝜋𝑘𝑓𝑚(𝑡) 

   𝑦(𝑡) =
𝐴𝑐

2

2
∆𝑡2𝜋𝑘𝑓𝑚(𝑡) 

   𝑦(𝑡) = 𝐾 𝑚(𝑡) 

Therefore,  𝑚(𝑡) has been demodulated. 

Transfer function of the delay: 

From the Fourier transform properties  

  𝑔(𝑡) → 𝐺(𝑓)  

 𝑔(𝑡 − ∆𝑡) → 𝐺(𝑓)𝑒−𝑗2𝜋𝑓∆𝑡 

The transfer function of the time delay is 

 𝐻(𝑓) = 𝑒−𝑗2𝜋𝑓∆𝑡  

Therefore, a circuit whose phase characteristic is linear in 𝑓 can provide time delay of the 

type that we need.  

A circuit with linear phase characteristic is the network shown  

 

 

 

 

 

If  𝑓𝑜 =
1

2𝜋√𝐿𝐶
,   𝑓𝑏 =

𝑅

2𝜋𝐿
then it can be shown that arg (𝐻(𝑓)) for this circuit is  

 arg(𝐻(𝑓)) = −
𝜋

2
−

2𝑄

𝑓𝑜
(𝑓 − 𝑓𝑐)  ,  𝑄 =

𝑓𝑜

𝑓𝑏
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            Θ(f) = 𝑎 − 𝑏𝑓  

Remarks:  

1. To perform time differentiation, we searched for a circuit whose amplitude 

spectrum varies linearly with frequency 

2. To perform time delay, we searched for a circuit with a linear phase spectrum. 

 

The Super heterodyne Receiver: 

Practically, all radio and TV receivers are made of the super heterodyne type. The 

receiver performs the following functions : 

o Carrier frequency tuning: The purpose of which is to select the desired 

signal. 

o Filtering: the desired signal is to be separated from other modulated 

signals. 

o Amplification: to compensate for the loss of signal power incurred in the 

course of transmission. 

The description of the receiver is summarized as follows: 

 

 

o The incoming signal is picked up by the antenna and amplified in the RF 

section that is tuned to the carrier frequency of the incoming signal. 

o  The incoming RF section is down converted to a fixed intermediate 

frequency (IF).   𝑓𝐼𝐹 = 𝑓𝑙𝑂 − 𝑓𝑅𝐹    

o The IF section provides most of the amplification and selectivity in the 

receiver. The IF bandwidth corresponds to that required for the particular 

type of modulation.  

o The IF output is applied to a demodulator, the purpose of which is to 

recover the baseband signal. 
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o The final operation in the receiver is the power amplification of the 

recovered signal. 

o The basic difference between AM and FM super heterodyne lies in the 

use of an FM demodulator such as a discriminator (differentiator 

followed  envelope detector) 

            

Quadrature Carrier Multiplexing (QAM) (will be covered) 

Quadrature Carrier Multiplexing: Modulation 

This scheme enables two DSB-SC modulated signals to occupy the same transmission 

B.W and yet allows for the separation of the message signals at the receiver. 

𝑚1(𝑡) and 𝑚2(𝑡) are low pass signals each with a  B.W = W Hz . 

The composite signal is: 

 𝑠(𝑡) = 𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜋𝑓𝑐𝑡 

 𝑠(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) 

 where 𝑠1(𝑡) and 𝑠2(𝑡) are both DSB-SC signals. 

B.W of  𝑠1(𝑡) = 2W 

B.W of  𝑠2(𝑡) = 2W 

B.W of  𝑠(𝑡)  = 2W 

This method provides bandwidth conservation. That is, two DSB-SC signals are 

transmitted within the bandwidth of one DSB-SC signal. Therefore, this multiplexing 

technique provides  bandwidth reduction by one half. 
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Quadrature Carrier Multiplexing: Demodulation 

 Given 𝑠(𝑡), the objective is to recover 𝑚1(𝑡) and  𝑚2(𝑡) from   𝑠(𝑡) . Consider first the 

in-phase channel 

 𝑥1(𝑡)  = 2𝑐𝑜𝑠2𝜋𝑓𝑐𝑡  𝑠(𝑡) 

  = 2 cos 2𝜋𝑓𝑐𝑡  (𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 +  𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜋𝑓𝑐𝑡) 

  = 2𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠22𝜋𝑓𝑐𝑡 + 2𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡 𝑐𝑜𝑠𝜔𝑐𝑡   

  = 2𝐴𝑐𝑚1(𝑡) (
1+𝑐𝑜𝑠2𝜔𝑐𝑡

2
) + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜔𝑐𝑡  

  = 𝐴𝑐𝑚1(𝑡) +  𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜔𝑐𝑡 + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜔𝑐𝑡 

After low pass filtering, the output of the in-phase channel is 

  𝑦1(𝑡) = 𝐴𝑐𝑚1(𝑡). 

Likewise, it can be shown that 

  𝑦2(𝑡) = 𝐴𝑐𝑚2(𝑡) . 

Note:  Synchronization is a problem. That is to recover the message signals it is 

important that the two carrier signals (the sine and the cosine functions) at the receiver 

should have the same phase and frequency as the signals at the transmitting side. A phase 

error or a frequency error will result is an interference type of distortion. That is, A 

component of 𝑚2(𝑡) will appear in the in-phase channel in addition to the desired signal 

𝑚1(𝑡) and a component of 𝑚1(𝑡) will appear at the quadrature output.  
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 A multiple access channel is one where a set of users at one end want 

to communicate with another set of users at the other end. 

 Channel Allocation: The coordination of the usage of a single 

channel among multiple source – destination pairs. 

 The algorithm which implements the channel allocation are called 

medium access control (MAC) or multiple access protocols. 

 MAC protocols can be classified into  

o Conflict free protocols:  

o Random access protocols: 

 

 A Conflict free protocols: Collisions are completely avoided by 

allocating the channel access to sources in a predetermined manner. 

Examples are TDMA,  FDMA and CDMA. This is equivalent to 

circuit switching and is inefficient for bursty type of loads. 

 Random access protocols: These are classified as contention systems 

where the stations compete to access the channel. The contention 

could be completely random or controlled. 

 Collisions can occur between transmitted packets of different users 

trying to access the channel. 

 A collided packet has to be transmitted until it is received properly at 

the destination.  
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Frequency Division Multiplexing: (will be covered) 

A number of independent signals can be combined into a composite signal suitable for 

transmission over a common channel. The signals must be kept apart so that they do not 

interfere with each other and thus they can be separated at the receiving end. 

Transmitter: 

 

 

Receiver: 
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Example: Single Sideband Frequency Division Multiplexed Signals 

 

 

Example: Double Sideband Frequency Division Multiplexed Signals 

Let 𝑚1, 𝑚2 𝑎𝑛𝑑 𝑚3  be three baseband message signals each with a B.W = w. 

The composite modulated signal 𝑠(𝑡) is  

𝑠(𝑡) =  𝐴𝑐1
𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝐴𝑐2

𝑚2(𝑡)𝑐𝑜𝑠2𝜋𝑓2𝑡 +  𝐴𝑐3
𝑚3(𝑡)𝑐𝑜𝑠2𝜋𝑓3𝑡      

=  𝑠1(𝑡) +  𝑠2(𝑡) +  𝑠3(𝑡)  

𝑠1, 𝑠2 𝑎𝑛𝑑 𝑠3 are DSB-SC signals with carrier frequencies 𝑓1,  𝑓2 𝑎𝑛𝑑 𝑓3 , respectively. If 

the spectrum of 𝑚1(𝑡), 𝑚2(𝑡) 𝑎𝑛𝑑 𝑚3(𝑡) are as shown, the spectrum of 𝑠(𝑡) can be 

found as shown below.  
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To prevent interference we demand that  

𝑓2 − 𝑤 ≥  𝑓1 + 𝑤   𝑜𝑟   𝑓2 − 𝑓1 ≥ 2𝑤   

𝑓3 − 𝑤 ≥  𝑓2 + 𝑤   𝑜𝑟   𝑓3 − 𝑓2 ≥ 2𝑤  

The structure of the receiver is as follows: 

 

 


