
Fourier Series
• Let 𝑔(𝑡) be a periodic function of time with period 𝑇0 =

1

𝑓0
such that

• The function g(t) is absolutely integrable over one period, i.e.,, 0׬
𝑇0 |𝑔 𝑡 | 𝑑𝑡 < ∞

• Any discontinuities in g(t) are finite (the amount of jump at points of discontinuity is finite).
• g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in the 

period

• When these conditions (called the Dirichlet’s conditions) apply, g(t) may be expanded in a 
trigonometric Fourier series of the form

• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , where,

• 𝑎0 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ;   (dc or average value)

• 𝑎𝑛 =
2

𝑇0
׬
0

𝑇0 𝑔 𝑡 cos 𝑛𝜔0𝑡 𝑑𝑡

• 𝑏𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 sin 𝑛𝜔0𝑡 𝑑𝑡

• These conditions are sufficient (but not necessary)
• In this representation, we can associate with g(t) a FS. This does not mean equality.
• At points where g(t) is continuous, the FS converges to the function g(t)

• At a point of discontinuity 𝑡0, the FS converges to 
1

2
𝑔 𝑡0 − + 𝑔 𝑡0 +

𝑻𝟎

0

𝒈 𝒕

t



Coefficients of the Fourier Series
• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏

∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , (1)

• Orthogonality Relations: You can easily verify the following relations:

• 0׬
𝑇0 cos 𝑛𝜔0𝑡 cos𝑚𝜔0𝑡 = ൝

𝑇0

2
, 𝑛 = 𝑚

0 𝑛 ≠ 𝑚
,

• 0׬
𝑇0 sin 𝑛𝜔0𝑡 sin𝑚𝜔0𝑡 = ൝

𝑇0

2
, 𝑛 = 𝑚

0 𝑛 ≠ 𝑚

• 0׬
𝑇0 sin 𝑛𝜔0𝑡 cos𝑚𝜔0𝑡 = 0 for all n and m.

• To get 𝑎0, we integrate both sides of (1) with respect to t over one period.

• 0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝑑𝑡 + 0׬
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝑑𝑡

• Result: 𝑎0 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ;   (dc or average value)



Coefficients of the Fourier Series
• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏

∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , (1)

• To get 𝑎𝑛, we multiply both sides of (1) by cos𝑚𝜔0𝑡, integrate over one period and use 
the orthogonality relations.

• 0׬
𝑇0 𝑔 𝑡 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡

0׬+
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡

• Result:  𝑎𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 cos 𝑛𝜔0𝑡 𝑑𝑡

• To get 𝑏𝑛, we multiply both sides of (1) by sin𝑚𝜔0𝑡, integrate over one period and use 
the orthogonality relations.

• 0׬
𝑇0 𝑔 𝑡 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡

0׬+
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡

• Result:  𝑏𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 sin 𝑛𝜔0𝑡 𝑑𝑡



Example: Existence of Fourier Series
• The Dirichlet conditions apply to the waveform given below.

• The function g(t) is absolutely integrable, i.e., 0׬
𝑇0 |𝑔 𝑡 | 𝑑𝑡 < ∞.

• The function g(t) is continuous over the period (no discontinuities)
• Has one maximum and one minimum within one period.
• Therefore, the FS exists. Moreover, the FS converges to g(t) at all points. That is,

• 𝒈 𝒕 = 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 ;          Note the equality sign

0 𝑻𝟎−𝑻𝟎

g 𝒕



Example: Existence of Fourier Series
• Let g(t), defined over one period, be given by

𝑔 𝑡 = ቊ
− ln 1 − 𝑡 , 0 < 𝑡 < 1
1, 1 < 𝑡 < 2

• lim
𝑡→1

𝑔 𝑡 = − ln 1 − 𝑡 → ∞

• the function g(t) has a discontinuity. However, this discontinuity is infinite.

• Therefore, the FS does not exists 

0 𝑻𝟎 = 𝟐

g 𝒕

1

1

Function is 
unbounded at t=1.



Example: Fourier Series Coefficient Evaluation
• Example: Find the trigonometric Fourier series of the periodic rectangular signal defined 

over one period 𝑇0 as:

𝑔 𝑡 = ቊ
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Solution: The FS is given as 𝑔 𝑡 ~ 𝑎0 + σ𝑛=1
∞ 𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡

• 𝑎0= 
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 𝑑𝑡 = 

1

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 𝑑𝑡 = 𝐴/2

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 

2

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑎𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 

2

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• 𝑎𝑛 =

2𝐴

𝑛𝜋
, 𝑛 = 1, 5, 9,…

−2𝐴

𝑛𝜋
, 𝑛 = 3, 7, 11,…

0, 𝑛 = 2, 4, 6…

g 𝒕

𝑻𝟎/𝟐−𝑻𝟎/𝟐 0

A

Dirichlet conditions apply. 
Therefore, a FS exists



Example: Convergence of Fourier Series
• The first four terms in the expansion of 𝑔 𝑡 are: 

• ෤𝑔(𝑡) =
𝐴

2
+

2𝐴

𝜋
{cos 2𝜋𝑓0𝑡 −

1

3
cos 2𝜋3𝑓0𝑡 +

1

5
cos 2𝜋5𝑓0𝑡 }

• The function ෤𝑔(𝑡) along with 𝑔 𝑡 are plotted in the figure for  −1 ≤ 𝑡 ≤ 1
assuming 𝐴 = 1 and 𝑓0 = 1

Comments: As more terms are 
added to ෤𝑔(𝑡), ෤𝑔(𝑡) becomes 
closer to 𝑔 𝑡 and in the limit as 
𝑛 → ∞, ෤𝑔(𝑡) becomes equal to 
𝑔 𝑡 at all points except at the 
points of discontinuity.



Convergence of the Fourier Series

The Fourier series of the signal 𝑔 𝑡 = ቊ
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is given by

• 𝑔 𝑡 ~ 𝑎0 + σ𝑛=1
∞ 𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡 . The FS is shown in the figure below

• 𝑎0= 𝐴/2 , 𝑏𝑛 = 0, 

• 𝑎𝑛 =

2𝐴

𝑛𝜋
, 𝑛 = 1, 5, 9,…

−2𝐴

𝑛𝜋
, 𝑛 = 3, 7, 11,…

0, 𝑛 = 2, 4, 6…

• The FS converges to g(t) at all points where g(t) is continuous

• Converges to A/2, the average value at points of discontinuity. g 𝒕

𝑻𝟎/𝟐−𝑻𝟎/𝟐 0

A



Fourier Cosine and Sine Series
• Let 𝑔(𝑡) be a periodic function of time with period 𝑇0 =

1

𝑓0
such that its FS exists. 

• Fourier Cosine Series: 

• Let  g(t) be an even function of t, then

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑎𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 =

4

𝑇0
0׬
𝑇0/2𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• The FS becomes a Fourier cosine series 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕

• Fourier Sine Series: 

• Let  g(t) be an odd function of t, then

• 𝑎0= 
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 𝑑𝑡 = 0, 𝑎𝑛 =

2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 =

4

𝑇0
0׬
𝑇0/2𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• The FS becomes a Fourier sine series 𝒈 𝒕 ~ σ𝒏=𝟏
∞ 𝒃𝒏 𝐬𝐢𝐧𝒏𝝎𝟎𝒕



Complex Form of the Fourier Series

The Fourier series can also be expressed in the complex form: 

𝑔 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡

where,  𝐶𝑛 =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡.

• Note that 𝐶𝑛 is a complex valued quantity, which can be written as

• 𝐶𝑛 = |𝐶𝑛|𝑒
𝑗𝜃𝑛

• The plot of |𝐶𝑛| versus frequency is called the Discrete Amplitude Spectrum.

• The plot of 𝜃𝑛 versus frequency is called the Discrete Phase Spectrum.

• The term at 𝑓0 is referred to as the fundamental frequency. The term at 2𝑓0
is referred to as the second order harmonic, the term at 3𝑓0 is referred to as 
the third order harmonic and so on.



Parseval’s Power Theorem 

• The average power of a periodic signal g(t) is given by:

𝑷𝒂𝒗 =
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐 𝒅𝒕 = ෌

𝒏=−∞

∞
𝑪𝒏

𝟐 = 𝑪𝟎
𝟐 + 2෌

𝒏=𝟏

∞
𝑪𝒏

𝟐

• = 𝒂𝟎
𝟐 +

𝟏

𝟐
෌

𝒏=𝟏

∞
( 𝒂𝒏

𝟐 + 𝒃𝒏
𝟐

• Proof: 𝑔 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡,    where,  𝐶𝑛 =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡.

• 𝒈 𝒕 𝟐 = 𝑔 𝑡 𝑔∗ 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡 ෌
𝑚=−∞

∞
𝐶𝑚
∗ 𝑒−𝑗𝑚𝜔0𝑡

•
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐𝒅𝒕 =

𝟏

𝑻𝟎
𝟎׬
𝑻𝟎σ𝑛=−∞

∞ σ𝑚=−∞
∞ 𝐶𝑛 𝐶𝑚

∗ 𝑒𝑗(𝑛−𝑚)𝜔0𝑡𝑑𝑡

• Orthogonality: 0׬
𝑇0 𝑒𝑗(𝑛−𝑚)𝜔0𝑡𝑑𝑡 = ቊ

𝑇0 , 𝑛 = 𝑚
0 𝑛 ≠ 𝑚

•
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐𝒅𝒕 = ෌

𝑛=−∞

∞
𝐶𝑛

2 = 𝐶0
2 + 2෌

𝑛=1

∞
𝐶𝑛

2



Power Spectral Density

• The plot of Cn
2 versus frequency is called the power spectral density

(PSD).

• It displays the power content of each frequency (spectral) component of a 
signal. 

• For a periodic signal, the PSD consists of discrete terms at multiples of the 
fundamental frequency.

• The next example demonstrate these properties



Power Spectral Density

• Example: Find the power spectral density of the 𝑔 𝑡 shown in the figure.

• Here, we need to find the complex Fourier series expansion, where the period T0 = 2𝜏

• 𝑔 𝑡 = ෌
𝑛=−∞

∞
Cne

jnω0t; Cn =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

• Cn =

𝐴

2
, 𝑛 = 0

3𝐴

𝑛 𝜋
, 𝑛 = ±1,±5,±9,…

−3𝐴

𝑛 𝜋
, 𝑛 = ±3,±7,±11,…

0, 𝑛 = ±2,±4,…

Cn
2 =

(
𝐴

2
)2, 𝑛 = 0

(
3𝐴

𝑛𝜋
)2, 𝑛: 𝑜𝑑𝑑

0 , 𝑛: 𝑒𝑣𝑒𝑛

𝑆𝑔 𝑓 =෍
𝑛=−∞

∞

)Cn
2 δ(f − nf0


