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Module 1 

Signal Analysis 

Model of a Communication System 

 Communication is defined as “exchange of information“. 

 Telecommunication refers to communication over a distance greater than would normally 

be possible without artificial aids. 

 Telephony is an example of point-to-point communication and normally involves a two –

way flow of information. 

 Broadcast radio and television : Information is transmitted from one location but is 

received at many locations using different receivers (point to multi-point communication) 

 Model of  a communication system : 

                                        x(t)                                              y(t) 

 

 

                                                    Message                                                                            y(t) + n(t) 

 

 

                                                                    Message estimate 𝑥(𝑡)                                                 Noise n(t) 

 The purpose of a communication system is to transmit information-bearing signals from a 

source located at one point to a user located at another end. 

 The input transducer is used to convert the physical message generated by the source into 

a time-varying electrical signal called the message signal. 

 The original message is recreated at the destination using an output transducer. 

 The transmitter modifies the message signal into a form suitable for transmission over 

the channel. Here modulation takes place. 

 The channel is the medium over which signal is transmitted, (like free space, an optical 

fiber, transmission lines, twisted pair of wires…). Here signal is distorted due to 

A. Nonlinearities and/or imperfections in the frequency response of the channel. 

B. Noise and interference are added to the signal during the course of transmission. 

 The purpose of the receiver is to recreate the original signal x(t) from the degraded 

version x(t) + n(t) of the transmitted signal after propagating through channel . 

Here, demodulation takes place. 

  

Information source 

and input transducer 

Transmitter Communication 

Channel 

Receiver Output transducer 

and destination 
∑ 
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Milestones in Communications 

 

 Smoke Signals: used to alert soldiers on an impending danger. 

 Pigeons: Used for long distance communication. 

 Pony Express: Relay messages and packages between stations. 

  

 1837: Samuel Morse developed the Morse code used in telegraph. 

 1843 – Samuel Morse builds the first long distance electric telegraph line. 

 Telegraph remained in service in the US until 2006. 

 1864: Maxwell formulated the electromagnetic (EM) theory1864 

 1875:  Bell invented the telephone 

 1887: Hertz demonstrated physical evidence of EM waves, meaning that EM 

waves can be transmitted and received. 

 1889 – Almon Strowger patents the direct dial telephone. 

 1890’s-1900’s: Marconi & Popov long-distance radio 

 1906:  Radio broadcast began 

 1918: Armstrong invented superheterodyne radio receiver (and FM in 1933) 

 1925 – John Logie Baird transmits the first television signal. 

 1928: Nyquist proposed the sampling theorem. 

 1947: Microwave relay system. 

 1947 – Full-scale commercial television is first broadcast. 

 1948:  Information theory formulated by Shannon. 

 1957: Era of satellite communication began. 

 1965 – First email sent (at MIT) 

 1966: Kuen Kao pioneered fiber-optical communications (Nobel Prize 

Winner). 

 1970’s: Era of computer networks began. 

 1981: Analog cellular system (1-G AMPS System). 

 1988: Digital cellular system debuted in Europe. 

 1988: Digital cellular system debuted in Europe (2-G Mobile System) 

 2000: 3G Mobile network. 

 1990’s: Era of internet. 

  

https://en.wikipedia.org/wiki/Samuel_Morse
https://en.wikipedia.org/wiki/Almon_Strowger
https://en.wikipedia.org/wiki/John_Logie_Baird
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/MIT
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Classification of Signals 

Definition: A signal may be defined as a single valued function of time that conveys 

information. 

Depending on the feature of interest, we may distinguish four different classes of signals: 

1. Periodic and Non-periodic Signals 

A periodic signal g(t) is a function of time that satisfies the condition 𝑔(𝑡) = 𝑔(𝑡 + 𝑇0), ∀𝑡. 

The smallest value of 𝑇0 that satisfies this condition is called the period of 𝑔(𝑡). 

Example: A Periodic Signal 

The saw-tooth function shown below is an example of a periodic signal. 

 

Example: A Non-periodic Signal 

The signal  

 𝑔(𝑡) = {
𝐴, 0 ≤ 𝑡 ≤ 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is non-periodic, since there does not exist a 𝑇0 for which the condition 𝑔(𝑡) = 𝑔(𝑡 + 𝑇0) is 

satisfied. 

2. Deterministic and Random Signals 

A deterministic signal is one about which there is no uncertainty with respect to its value at any 

time. It is a completely specified function of time. 

Example: A Deterministic Signal 

   𝑥(𝑡) = 𝐴𝑒−𝑎𝑡𝑢(𝑡) ; 𝐴 and α are constants. 
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A random signal is one about which there is some degree of uncertainty before it actually occurs. 

(It is a function of a random variable) 

Example: A Random Signal 

 𝑥(𝑡) = 𝐴𝑒−𝑎𝑡𝑢(𝑡); α is a constant and A is a random variable with the following probability 

density function (pdf). 

 𝑓𝐴(𝑎) = {
1         0 ≤ 𝑎 ≤ 1

 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Example: A Random Signal 

  𝑥(𝑡) = cos (2𝜋𝑓𝑐𝑡 + Θ) ; 𝑓𝑐 is a constant and Θ is a random variable uniformly distributed over 

the interval (0, 2𝜋) with the following probability density function (pdf). 

 𝑓Θ(𝜃) = {
1

2𝜋
         0 ≤ 𝜃 ≤ 2𝜋

 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3. Energy and Power Signals 

The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-Ω resistor, i.e., 

  𝑝(𝑡) = |𝑔(𝑡)|2  

The average power is defined as: 

   𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇 
∫ |𝑔(𝑡)|2
𝑇

−𝑇
𝑑𝑡 

The total energy of a signal 𝑔(𝑡) is  

𝐸 = lim
𝑇→∞

∫ |𝑔(𝑡)|2
𝑇

−𝑇

𝑑𝑡 

A signal g(t) is classified as energy signal if it has a finite energy, i.e, 0 < 𝐸 < ∞. 

A signal g(t) is classified as power signal if it has a finite power, i.e,  0 < 𝑃𝑎𝑣 < ∞. 

The average power in a periodic signal 𝑔(𝑡) is  

  𝑷𝒂𝒗 =
𝟏

𝑻𝟎
∫ |𝒈(𝒕)|𝟐
𝑻𝟎

𝟎
𝒅𝒕 ; 𝑇0 is the period; 

𝑓0 = 1/𝑇0  is referred to as the fundamental frequency 

Usually, periodic signals and random signals are power signals. Both deterministic and non-

periodic signals are energy signals (we will present a counterexample shortly). 
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4. Analog and Digital Signals 

An analog signal is a continuous time - continuous amplitude function of time. 

Example: The sinusoidal signal 𝑥(𝑡) = 𝐴𝑐𝑜𝑠 2𝜋𝑓0𝑡 , −∞ < 𝑡 < ∞, is an example of an analog 

signal. 

A discrete time- discrete amplitude (digital) signal is defined only at discrete times. Here, the 

independent variable takes on only discrete values. 

Example: The sequence x[n] shown below is an examples of a digital signal. The amplitudes are 

drawn from the finite set {1, 0, 2}. 

 

Example: The Exponential Pulse 

Find the energy in the signal 𝑔(𝑡) = 𝐴𝑒−∝𝑡𝑢(𝑡) 

 𝐸 = ∫ 𝐴2
∞

0
𝑒−2∝𝑡𝑑𝑡 = 𝐴2

−𝑒−2∝𝑡

2∝
| =

  𝐴2

  2∝0
∞ . Since E is finite, then 𝑔(𝑡) is an energy signal. 

Example: The Rectangular Pulse 

Find the energy in the signal: 

𝑔(𝑡) = {
𝐴, 0 < 𝑡 < 𝜏
0,                    𝑜. 𝑤

 

 𝐸 = ∫ 𝐴2 𝑑𝑡
𝜏

0
 = 𝐴2𝜏. This is an energy signal since E is finite. 

Example: The Periodic Sinusoidal Signal 

Find the average power in the signal 

  𝑔(𝑡)= 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡) ,   −∞ < 𝑡 < ∞ 

Since 𝑔(𝑡) is periodic, then 

  𝑃𝑎𝑣 = 
1

𝑇0
∫ 𝐴2 cos2𝜔𝑡 𝑑𝑡 =
𝑇0
0

𝐴2

𝑇0
∫ (

1+cos2𝜔𝑡

2

𝑇0
0

) = (
𝐴2

𝑇0
) . (

𝑇0

2
) = 

𝐴2

2
. 
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Here, 𝑃𝑎𝑣 is finite and, therefore, 𝑔(𝑡) is a power signal. 

Example: The Periodic Saw-tooth Signal 

Find the average power in the saw-tooth signal 𝑔(𝑡) plotted in Fig.1. 

 𝑔(𝑡) =
𝐴

𝑇0
𝑡, 0 ≤ 𝑡 ≤ 𝑇0 

 𝑃𝑎𝑣 =
1

𝑇0
∫

𝐴2

𝑇0
2

𝑇0

0
𝑡2𝑑𝑡 =  

1

𝑇0

𝐴2

𝑇0
2

𝑡3

3
|0
𝑇0  =  

𝐴2𝑇0
3

3 𝑇0
3  = 

𝐴2

3
. 

Example: The Unit Step Function 

Consider the signal 𝑔(𝑡) = 𝐴𝑢(𝑡) 

 

This is a non-periodic signal. Let us first try to find its energy 

 𝐸 = ∫ 𝐴2 𝑑𝑡 → ∞
∞

0
  

Sine E is not finite, then 𝑔(𝑡) is not an energy signal. To find the average power, we employ the 

definition 

𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇 
∫ |𝑔(𝑡)|2
𝑇

−𝑇
𝑑𝑡, 

where 2T is chosen to be a symmetrical interval about the origin, as in Fig. 1.2 above. 

 𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇 
∫ 𝐴2
𝑇

0
𝑑𝑡   = lim

𝑇→∞

𝐴2 𝑇

2𝑇 
 = 

𝐴2

2
. 

So, even-though 𝑔(𝑡) is non-periodic, it turns out that it is a power signal. 

Remark: This is an example where the general rule (periodic signals are power signals and non-

periodic signals are energy signals) fails to hold. 
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Fourier Series 

Let 𝑔(𝑡) be a periodic signal with period 𝑇0 =
1

𝑓0
 such that it absolutely integrable over one 

period, i.e., 

 ∫ |𝑔(𝑡)| 𝑑𝑡
𝑇0

0
< ∞. 

The signal g(t), satisfying the above integrability condition, may be expanded in one of three 

possible Fourier series forms (we will not address the question of series convergence in this 

discussion). 

The complex Form: 

  𝑔(𝑡) = ∑ 𝐶𝑛𝑒
𝑗𝑛𝜔0𝑡

∞

𝑛=−∞
 

where,   𝐶𝑛 =
1

𝑇0
∫ 𝑔(𝑡)
𝑇0

0
𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡. 

Note that 𝐶𝑛 is a complex valued quantity, which can be written as 

 𝐶𝑛 = |𝐶𝑛|𝑒
𝑗𝜃𝑛 

The plot of |𝐶𝑛| versus frequency is called the Discrete Amplitude Spectrum. 

The plot of 𝜃𝑛 versus frequency is called the Discrete Phase Spectrum. 

The term at 𝑓0 is referred to as the fundamental frequency. The term at 2𝑓0 is referred to as the 

second order harmonic, the term at 3𝑓0 is referred to as the third order harmonic and so on. 

The Trigonometric Form: 

𝑔(𝑡) = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡)

∞

𝑛=1

 

where, 

𝑎0 =
1

𝑇0
∫ 𝑔(𝑡) 𝑑𝑡
𝑇0

0
   ;   (dc or average value) 

𝑎𝑛 =
2

𝑇0
∫ 𝑔(𝑡) cos 𝑛𝜔0𝑡 𝑑𝑡

𝑇0

0

 

𝑏𝑛 =
2

𝑇0
∫ 𝑔(𝑡) sin 𝑛𝜔0𝑡 𝑑𝑡

𝑇0

0

 

The Polar Form 

𝑔(𝑡) = 𝑐0 +∑2|𝐶𝑛| cos(𝑛𝜔0𝑡 +

∞

𝑛=1

𝜃𝑛 ) 

where 𝐶𝑛 and 𝜃𝑛 are those terms defined in the complex form. 
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Remark: The above three forms are equivalent and are representations of the same waveform. If 

you know one representation, you can easily deduce the other. 

Example: Find the trigonometric Fourier series of the periodic rectangular signal defined over 

one period 𝑇0 as: 

 𝑔(𝑡) = {
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Solution:  

 𝑎0= 
1

𝑇0
∫ 𝑔(𝑡) 𝑑𝑡
𝑇0/2

−𝑇0/2
 = 

1

𝑇0
∫ 𝐴 𝑑𝑡
𝑇0/4

−𝑇0/4
 = 𝐴/2 

 𝑏𝑛 =
2

𝑇0
∫ 𝑔(𝑡) sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/2

−𝑇0/2
 = 

2

𝑇0
∫ 𝐴 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/4

−𝑇0/4
 = 0 

 𝑎𝑛 =
2

𝑇0
∫ 𝑔(𝑡) cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/2

−𝑇0/2
 = 

2

𝑇0
∫ 𝐴 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

𝑇0/4

−𝑇0/4
 

 𝑎𝑛 =

{
 
 

 
 2𝐴

𝑛𝜋
,               𝑛 = 1, 5, 9, …

−2𝐴

𝑛𝜋
,             𝑛 = 3, 7, 11,… 

0,                𝑛 = 2, 4, 6…  

 

The first four terms in the expansion of 𝑔(𝑡) are:  

𝑔̃(𝑡) =
𝐴

2
+
2𝐴

𝜋
{cos(2𝜋𝑓0𝑡) −

1

3
cos(2𝜋3𝑓0𝑡) +

1

5
cos(2𝜋5𝑓0𝑡)} 

The function 𝑔̃(𝑡) along with 𝑔(𝑡) are plotted in the figure for  −1 ≤ 𝑡 ≤ 1 assuming 𝐴 = 1 and 

𝑓0 = 1 
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Remark: As more terms are added to 𝑔̃(𝑡), 𝑔̃(𝑡) becomes closer to 𝑔(𝑡) and in the limit as 𝑛 →

 ∞, 𝑔̃(𝑡) becomes equal to 𝑔(𝑡) at all points except at the points of discontinuity. 

Parseval’s  Power Theorem  

The average power of a periodic signal g(t) is given by: 

𝑷𝒂𝒗 =
𝟏

𝑻𝟎
∫ |𝒈(𝒕)|𝟐
𝑻𝟎

𝟎
𝒅𝒕 = ∑ |𝑪𝒏|

𝟐∞

𝒏=−∞
   = |𝐶0|

2 + 2∑ |𝐶𝑛|
2∞

𝑛=1
 

         = |𝑎0|
2 +

1

2
∑ (|𝑎𝑛 |

2∞

𝑛=1
+ |𝑏𝑛|

2 

Power Spectral Density 

The plot of |Cn|
2 versus frequency is called the power spectral density (PSD). It displays the 

power content of each frequency (spectral) component of a signal. For a periodic signal, the PSD 

consists of discrete terms at multiples of the fundamental frequency. 

Exercise: Consider again the saw-tooth function defined over one period as 𝑔(𝑡) = 𝑡, 0 ≤ 𝑡 ≤ 1 

a. Use matlab to find the dc terms and the first three harmonics(i.e., let n = 3) in the Fourier 

series expansion 

𝑔̃(𝑡) = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡)

3

𝑛=1

 

b. Plot 𝑔̃(𝑡) and 𝑔(𝑡) versus time for −1 ≤ 𝑡 ≤ 1 on the same graph. 

c. Find the fraction of the power contained in 𝑔̃(𝑡) to that in 𝑔(𝑡). 

d. Sketch the power spectral density. 

Example: Find the power spectral density of the periodic function 𝑔(𝑡) shown in the figure. 

 

Solution: Here, we need to find the complex Fourier series expansion, where the period T0 =  2𝜏 

 𝑔(𝑡) = ∑ Cne
jnω0t

∞

𝑛=−∞
;   Cn =

1

𝑇0
∫ 𝑔(𝑡)
𝑇0

0
𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 

Cn =

{
 
 

 
 

𝐴

2
 ,                    𝑛 = 0                 

3𝐴

|𝑛|𝜋
,               𝑛 = ±1,±5,±9,…

−3𝐴

|𝑛|𝜋
,             𝑛 = ±3,±7, ±11,… 

0,                𝑛 = ±2,±4,…  

                 |Cn|
2 = {

(
𝐴

2
)2,         𝑛 = 0    

(
3𝐴

𝑛𝜋
)2,       𝑛: 𝑜𝑑𝑑  

0 ,            𝑛: 𝑒𝑣𝑒𝑛
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𝑆𝑔(𝑓) = ∑ |Cn|
2 δ(f − nf0)

∞

𝑛=−∞

 

 

As can be seen, the power spectral density of this periodic signal is a discrete function in 

frequency. 

Exercise: Verify Parseval’s power theorem for this signal, i.e., show that 

             𝑃𝑎𝑣 =
1

𝑇0
∫ |𝑔(𝑡)|2
𝑇0

0
𝑑𝑡 = ∑ |𝐶𝑛|

2∞

𝑛=−∞
 = 2.5𝐴2 
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Fourier Transform 

Let 𝑔(𝑡) be a non-periodic square integrable function of time. That is one for which  

 ∫ |𝑔(𝑡)|2
∞

−∞
𝑑𝑡 < ∞  

The Fourier transform of 𝑔(𝑡) exists and is defined as: 

𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

 𝑑𝑡 

The time function 𝑔(𝑡) can be recovered from 𝐺(𝑓) using the inverse Fourier Transform: 

𝑔(𝑡) = ∫ 𝐺(𝑓)𝑒𝑗2𝜋𝑓𝑡
∞

−∞

 𝑑𝑓 

Remarks: 

 All energy signals for which 𝐸 = ∫ |𝑔(𝑡)|2
∞

−∞
𝑑𝑡 < ∞  are Fourier transformable. 

 G(f) is a complex function of frequency f, which can be expressed as: 

 

      𝐺(𝑓) = |𝐺(𝑓)|𝑗𝜃(𝑓)  

where,  |𝐺(𝑓)| : is the continuous amplitude spectrum of 𝑔(𝑡), (an even function of f). 

𝜃(𝑓) : is the continuous phase spectrum of 𝑔(𝑡), (an odd function of f). 

 

Rayleigh Energy Theorem 

The energy in a signal g(t) is given by: 

 𝑬 = ∫ |𝒈(𝒕)|𝟐 𝒅𝒕
∞

−∞
 = ∫ |𝑮(𝒇)|𝟐𝒅𝒇

∞

−∞ 
 

The function |𝐺(𝑓)|2 is called the energy spectral density. It illustrates the range of frequencies 

over which the signal energy extends and the frequency bands which are significant in terms of 

their energy contents.  For a non-period signal energy signal, the energy spectral density is a 

continuous function of f. 

A General Form of the Rayleigh Energy Theorem 

For two energy functions 𝑔(𝑡) and 𝑣(𝑡), the following result holds: 

∫ 𝑔(𝑡)𝑣(𝑡)∗ 𝑑𝑡
∞

−∞
= ∫ 𝐺(𝑓)𝑉(𝑓)∗ 𝑑𝑓

∞

−∞
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Example: Energy Spectral Density of the Exponential Signal 

      𝑣(𝑡) =  {𝐴 𝑒
−𝑏𝑡    𝑡 > 0

0             𝑡 < 0
 

      𝑉(𝑓) = ∫ 𝑣(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

0
 𝑑𝑡 = ∫ 𝐴𝑒−𝑏𝑡

∞

0
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

      𝑉(𝑓) = 𝐴∫ 𝑒−(𝑏+𝑗2𝜋𝑓)𝑡
∞

0
 𝑑𝑡 =  𝐴

𝑒−(𝑏+𝑗2𝜋𝑓)𝑡

−(𝑏+𝑗2𝜋𝑓)
|0
∞ =

𝐴

𝑏+𝑗2𝜋𝑓
. 

      𝑉(𝑓) =
𝐴

𝑏+𝑗2𝜋𝑓
, |𝑉(𝑓)| =

𝐴

(𝑏2+(2𝜋𝑓)2)1/2
 

The energy spectral density is:  𝑆𝑣(𝑓) = |𝑉(𝑓)|2 =
𝐴2

𝑏2+(2𝜋𝑓)2
 

Remark: The signal 𝑣(𝑡) is called a baseband signal since the signal occupies the low frequency 

part of the spectrum. That is, the energy in the signal is found around the zero frequency. When 

the signal is multiplied by a high frequency carrier, the spectrum becomes centered around the 

carrier and the modulated signal is called a bandpass signal. 

Exercise: For the exponential pulse, verify Rayleigh energy theorem, i.e., show that  

      ∫ |𝑣(𝑡)|2𝑑𝑡
∞

0
= 2∫ |𝑉(𝑓)|2𝑑𝑓

∞

0
 = 

𝐴2

2𝑏
. 

Example: The Rectangular Pulse 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
) 

        𝐺(𝑓) = ∫ 𝐴𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 =  
𝐴

𝜋𝑓

𝑇/2

−𝑇/2
sin 𝜋𝑓𝑇        ,    𝐴𝑇

sin𝜋𝑓𝑇

𝜋𝑓𝑇
≜ 𝐴𝑇 𝑠𝑖𝑛𝑐𝑓𝑇  

       |𝑮(𝒇)| = 𝑨𝑻 |𝒔𝒊𝒏𝒄𝒇𝑻| 

The maximum of |𝐺(𝑓)| occurs at 𝑓 = 0 since lim
𝑥→0

sin𝑥

𝑥
= 1. Also, 𝐺(𝑓) = 0 when 𝑠𝑖𝑛(𝜋𝑓𝑇) =

0, which occurs at the points that satisfy 𝜋𝑓𝑇 = 𝑛𝜋, ⇒ 𝑓𝑇 = 𝑛, 𝑜𝑟 𝑓 =
𝑛

𝑇
, 𝑛 = ±1,±2,±3, … 
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Remark: Time Duration and Bandwidth 

Note that as the signal time duration 𝑇 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠, the first zero crossing at 𝑓 =
1

𝑇
  decreases, 

implying that the bandwidth of the signal decreases. More on this will be said later when we 

discuss the time bandwidth product.  

Exercise: For the rectangular pulse 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
), verify Rayleigh energy theorem, i.e., show 

that 

                ∫ |𝑔(𝑡)|2𝑑𝑡
∞

0
= 2∫ |𝐺(𝑓)|2𝑑𝑓

∞

0
  = 𝐴2𝑇. 
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Properties of the Fourier Transform 

 

 Linearity (superposition) 

Let 𝑔1(𝑡) ↔ 𝐺1(f) 

and 𝑔2(𝑡) ↔ 𝐺2(f) , then 

         𝑐1𝑔1(𝑡)+𝑐2𝑔2(𝑡) ↔ 𝑐1𝐺1(𝑓)+𝑐2𝐺2(𝑓) ; 𝑐1, 𝑐2 are constants 

 

 Time Scaling  

𝑔(𝑡) ↔ 𝐺(𝑓) 
𝑔(𝑎𝑡) ↔  

1

|𝑎|
 𝐺(𝑓 𝑎)⁄  

 

 Duality  

𝑔(𝑡) ↔ 𝐺(𝑓) 𝐺(𝑡) ↔ 𝑔(−𝑓) 

 

 Time Shifting  

𝑔(𝑡) ↔ 𝐺(𝑓) 𝑔(𝑡 − 𝑡0) ↔ 𝐺(𝑓)𝑒−𝑗2𝜋𝑓𝑡0 

Delay in time domain corresponds to a phase shift in frequency domain 

 

 Frequency Shifting 

𝑔(𝑡) ↔ 𝐺(𝑓) 𝑔(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 ↔ 𝐺(𝑓 − 𝑓𝑐) ; 𝑓𝑐 is constant 

 

 

 Modulation Property 

𝑔(𝑡) ↔ 𝐺(𝑓) 2𝑔(𝑡)cos (2𝜋𝑓0𝑡) ↔ 𝐺(𝑓 − 𝑓0) + 𝐺(𝑓 + 𝑓0) ; 𝑓0 is a constant 
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 Area under 𝑮(𝒇)  

𝑔(𝑡) ↔ 𝐺(𝑓) 𝑔(𝑡 = 0)= ∫ 𝐺(𝑓)𝑑𝑓
∞

−∞
 

The value 𝑔(𝑡 = 0) is equal to the area under its Fourier transform function 

 

 Area under 𝒈(𝒕) 

𝑔(𝑡) ↔ 𝐺(𝑓) 𝐺(0) = ∫ 𝑔(𝑡)𝑑𝑡
∞

−∞
 

The area under a function g(t) is equal to the value of its Fourier transform G(f)  at f = 

0, where 𝐺(0) implies the presence of a dc component. 

 

 Differentiation in the Time Domain  

If  𝑔(𝑡) and its derivative 𝑔′(𝑡) are Fourier transformable, then, 

 𝑔′(𝑡) ↔ (𝑗2𝜋𝑓)𝐺(𝑓) 

i.e., differentiation in the time domain         multiplication by j2𝜋𝑓 in the frequency domain. 

(Differentiation in the time domain enhances high frequency components of a signal) 

Also,          
𝑑𝑛 𝑔(𝑡)

𝑑𝑡𝑛
↔ (𝑗2𝜋𝑓)𝑛𝐺(𝑓) 

 Integration in the Time Domain  

 ∫ 𝑔(𝜏)𝑑𝜏
𝑡

−∞
↔

1

𝑗2𝜋𝑓
𝐺(𝑓); assuming 𝐺(0) = 0 

i.e., integration in the time domain corresponds to division by (j2𝜋𝑓) in the frequency 

domain. This amounts to low pass filtering, where high frequency components are 

attenuated due to filtering. 

When 𝐺(0) ≠ 0, the above result becomes: 

  ∫ 𝑔(𝜏)𝑑𝜏
𝑡

−∞
↔

1

𝑗2𝜋𝑓
𝐺(𝑓) + 

1

2
 𝐺(0)𝛿(𝑓). 

 Conjugate Functions 

For a complex – valued time signal 𝑔(𝑡), we have: 

                           𝑔∗(𝑡) ↔ 𝐺∗(−𝑓)    ; 

Also,                 𝑔∗(−𝑡) ↔ 𝐺∗(𝑓)    ; 

Therefore,  Re{g(t)}    ↔
1

2
 { 𝐺(𝑓) +𝐺∗(−𝑓)} 

                  Im{g(t)}  ↔
1

2𝑗
 { 𝐺(𝑓)-𝐺∗(−𝑓)} 

 Multiplication in the Time Domain  

  𝑔1(𝑡) 𝑔2(𝑡) ↔ ∫ 𝐺1(𝜆)
∞

−∞
𝐺2(𝑓 − 𝜆)𝑑𝜆 = 𝐺1(𝑓) ∗ 𝐺2(𝑓) 
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Multiplication of two signals in the time domain is transformed into the convolution of their 

Fourier transforms in the frequency domain. 

 Convolution in the Time Domain 

  𝑔1(𝑡) ∗  𝑔2(𝑡) ↔ 𝐺1(𝑓)𝐺2(𝑓) 

Convolution of two signals in the time domain is transformed into a multiplication of their 

Fourier transforms in the frequency domain. 

 

Fourier Transform of Power Signals 

For a non-periodic (energy) signal g(t), the Fourier transform exists when 

        𝐸 = ∫ |𝑔(𝑡)|
2∞

−∞
𝑑𝑡 < ∞  

so that          𝐺(𝑓) =  ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞ 
. 

For power signals, the integral    ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞ 
    does not exist. 

However, one can still finds the Fourier transform of power signals by employing the delta 

function. This function is defined next. 

 

Dirac – Delta Function (Impulse Function) 

This function is defined as 

 𝛿(𝑡) =     {
∞     𝑡 = 0
0      𝑡 ≠ 0

   

such that:          ∫ 𝛿(𝑡)𝑑𝑡 = 1
∞

−∞
                                                               

and                   ∫ 𝑔(𝑡)𝛿(𝑡)𝑑𝑡 = 𝑔(0)
∞

−∞
 

(Here, g(t) is a continuous function of time. The second property shows that the delta function 

samples the function g(t) at the  time of its occurrence). 

 

Some Properties of the Delta Function 

1. 𝑔(𝑡)𝛿(𝑡 − 𝑡0) = 𝑔(𝑡0)𝛿(𝑡 − 𝑡0); (Multiplication) 

2. ∫ 𝑔(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑔(𝑡0)
∞

−∞
 ; (Sifting or sampling property) 
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3. 𝛿(𝛼𝑡) =
1

|𝛼|
𝛿(𝑡) 

4. 𝛿(𝑡) ∗ 𝑔(𝑡) = 𝑔(𝑡) 

5. 𝛿(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
      ⇒ 𝑢(𝑡) = ∫ 𝛿(𝑡)𝑑𝑡

𝑡

−∞
 

6. 𝛿(𝑡) =  𝛿(−𝑡); an even function of its argument. 

7. Fourier transform: ℑ{𝛿(𝑡)} = 1  

 
(Note how the time-bandwidth relationship holds for this pair. A narrow pulse in time 

extends over a large frequency spectrum) 

 

8. ℑ{𝛿(𝑡 − 𝑡0)} = 𝑒
−𝑗2𝜋𝑓𝑡0 

 

Applications of the Delta Function  

 DC or a Constant Signal 

 Since  ℑ{𝛿(𝑡)} = 1, then by the duality property  ℑ{1} = 𝛿(𝑓) 

 

(Again, note that the transform of a dc signal is an impulse at f =0) 

 Complex Exponential Function  

   ℑ{𝐴𝑒𝑗2𝜋𝑓𝑐𝑡} = 𝐴𝛿(𝑓 − 𝑓𝑐)  

 Sinusoidal Functions  

 ℑ{cos 2𝜋𝑓0𝑡} =  
1

2
 {𝛿(𝑓 − 𝑓0) + 𝛿(𝑓 + 𝑓0)} 

 ℑ{sin 2𝜋𝑓0𝑡} =  
1

2𝑗
 {𝛿(𝑓 − 𝑓0) − 𝛿(𝑓 + 𝑓0)} 
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 Signum Function 

𝑠𝑔𝑛(𝑡) = {
1       𝑡 > 0
0       𝑡 = 0
−1    𝑡 < 0

 ℑ{𝑠𝑔𝑛(𝑡)} =  
1

𝑗𝜋𝑓
 

 

 

 Unit Step Function 

𝑢(𝑡) = {

1       𝑡 > 0
1

2
       𝑡 = 0

0    𝑡 < 0

 

           𝑠𝑔𝑛(𝑡) = 2𝑢(𝑡) − 1 

           𝑢(𝑡) =
1

2
{𝑠𝑔𝑛(𝑡)+ 1} 

          ℑ{𝑢(𝑡)} =
1

𝑗2𝜋𝑓
+ 

1

2
 𝛿(𝑓) 

 

 

 Periodic Signals 

A periodic signal g(t) is expanded in the complex form as: 

𝑔(𝑡) = ∑ 𝐶𝑛𝑒
𝑗𝑛𝜔0𝑡

∞

𝑛=−∞

 ℑ{𝑔(𝑡) = ∑ 𝐶𝑛 𝛿(𝑓 − 𝑛𝑓0) 

∞

𝑛=−∞

 

 

Example: Consider the following train of impulses 

𝑔(𝑡) = ∑ 𝛿(𝑡 − 𝑚𝑇0) 

∞

𝑚=−∞
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The Fourier coefficients are obtained by integrating over one period of 𝑔(𝑡). 

 𝐶𝑛 =
1 

𝑇0
∫ 𝑔(𝑡)

𝑇0/2

−𝑇0/2

𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡,
1

𝑇0
= 𝑓0 

Therefore, the complex Fourier series of  𝑔(𝑡) is 

𝑔(𝑡) =
1 

𝑇0
∑ 𝑒𝑗𝑛𝜔0𝑡
∞

𝑛=−∞

 

Recognizing that 

{𝑒𝑗𝑛𝜔0𝑡} = 𝛿(𝑓 − 𝑛𝑓0) 

Combing the above results, we obtain 

ℑ{𝑔(𝑡)} = ∑ 𝛿(𝑡 − 𝑚𝑇0) 

∞

m=−∞

=
1

𝑇0
∑ 𝛿(𝑓 − 𝑛𝑓0) 

∞

𝑛=−∞

 

        

Note that the signal is periodic in the time domain and its Fourier transform is periodic in the 

frequency domain. 

Remark: This sequence will be found useful when the sampling theorem is considered later in 

the course. 
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Module 2 

Transmission of Signals through Linear Systems 

Definition: A system refers to any physical device that produces an output signal in 

response to an input signal. 

 

Definition: A system is linear if the principle of superposition applies. 

If   x1(t)    produces output   y1(t) 

 x2(t)    produces output   y2(t) 

then    a1x1(t)+ a2x2(t)   produces an output   a1y1(t)+ a2y2(t)  

Also,  a zero input   should produce   a zero output. 

Example of linear systems include filters and communication channels. 

Definition: A filter refers to a frequency selective device that is used to limit the 

spectrum of a signal to some band of frequencies. 

Definition: A channel refers to a transmission medium that connects the transmitter 

and receivers of a communication system. 

Time domain and frequency domain may be used to evaluate system performance.  

Time response 

 Definition: The impulse response h(t) is defined as the 

response of a system to an impulse 𝛿(𝑡) applied to the 

input at t=0 . 

Definition: A system is time-invariant when the shape of 

the impulse response is the same no matter when the 

impulse is applied to the system. 

𝛿(𝑡)  h(t),     then    𝛿(t − td)               h(t - td) 

When the input to a linear time-invariant system in a signal 

x(t) , then the output is given by 

y(t) = ∫ x(λ)h(t −  λ)  dλ   
∞

−∞
   

       = ∫ h(λ)x(t −  λ)  dλ
∞

−∞
;    convolution integral  
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Definition: A system is said to be causal if it does not respond before the excitation is 

applied, i.e., 

 h(t) = 0                  t < 0  

The causal system is physically realizable. 

Definition: A system is said to be stable if the output signal is bounded for all 

bounded input signals.                                                                                                                                                                                                                                                                              

If  | x(t) | ≤  M ;    M is the maximum value of the input 

then  | y(t) |  ≤  ∫  | h(τ) ||x(t − τ ) | dτ 
∞

−∞
  

= M  ∫ | h(τ) | dτ   
∞

−∞
 

A necessary and sufficient condition for stability (a bounded output) is 

∫ |h(t)| dt  <   ∞    
∞

−∞
  ; h(t) is absolutely integrable. 

                                     ∴  zero initial conditions assumed. 

Frequency response 

Definition: The transfer function of a linear time invariant system is defined as the 

Fourier transform of the impulse response h(t) 

𝐻(𝑓) = ℑ{ℎ(𝑡)} 

Since 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡), then  𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓). The system transfer function is 

thus the ratio of the Fourier transform of the output to that of the input. 

 𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
 

The transfer function 𝐻(𝑓) is a complex function of frequency, which can be 

expressed as 

 𝐻(𝑓) = |𝐻(𝑓)|𝑒𝑗 𝜃(𝑓) 

where, 

|𝐻(𝑓)|:  Amplitude spectrum  

 𝜃(𝑓):    Phase spectrum. 

 

System input–output energy spectral density 

Let  𝑥(𝑡) be applied to a LTI system, then the Fourier transform of the output is 

related to the Fourier transform of the input through the relation 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓).  

Taking the absolute value and squaring both sides, we get 
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|𝑌(𝑓)|2 = |𝐻(𝑓)|2|𝑋(𝑓)|2 

𝑆𝑌(𝑓) = |𝐻(𝑓)|
2𝑆𝑋(𝑓) 

𝑆𝑌(𝑓):   Output Energy Spectral Density 

𝑆𝑋(𝑓):  Input Energy Spectral Density. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = (|𝐻(𝑓|2) (𝑖𝑛𝑝𝑢𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 

 

The total output energy is 

 𝐸𝑦 = ∫ 𝑆𝑌(𝑓)𝑑𝑓
+∞

−∞
  

     = ∫ |H(f)|2 𝑆𝑋(𝑓)𝑑𝑓
+∞

−∞
. 

The total input energy is 

 𝐸𝑥 = ∫ 𝑆𝑥(𝑓)𝑑𝑓
+∞

−∞
.  

Example: response of a filter to a sinusoidal input 

The signal 𝑥(𝑡) = cos(2𝜋𝑓0𝑡) , −∞ < 𝑡 < ∞, is applied to a filter described by the 

transfer function 𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
,  𝐵 is the 3-dB bandwidth. Find the filter output 𝑦(𝑡) 

using the frequency domain approach. 

Solution: we will find the output using the frequency domain approach. 

 𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓) 

 𝐻(𝑓) =
1

√1+(
𝑓

𝐵
)2
𝑒−𝑗𝜃;  𝜃 = tan−1

𝑓

𝐵
 ;   𝜃0 = tan

−1 𝑓0

𝐵
 

 𝑌(𝑓) = 𝐻(𝑓)[
1

2
𝛿(𝑓 − 𝑓0) +

1

2
𝛿(𝑓 + 𝑓0)] 

 𝑌(𝑓) =
1

2
𝐻(𝑓0)𝛿(𝑓 − 𝑓0) +

1

2
𝐻(−𝑓0)𝛿(𝑓 + 𝑓0) 

 𝑌(𝑓) =
1

2

1

√1+(
𝑓0
𝐵
)2
𝑒−𝑗𝜃0𝛿(𝑓 − 𝑓0) +

1

2

1

√1+(
𝑓0
𝐵
)2
𝑒𝑗𝜃0𝛿(𝑓 + 𝑓0) 

Taking the inverse Fourier transform, we get 

 𝑦(𝑡) =
1

√1+(
𝑓0
𝐵
)2

1

2
[𝑒𝑗(2𝜋𝑓0𝑡−𝜃0) + 𝑒−𝑗(2𝜋𝑓0𝑡−𝜃0)] 

 𝑦(𝑡) =
1

√1+(
𝑓0
𝐵
)2
cos(2𝜋𝑓0𝑡 − 𝜃0)  

Note that in the last step we have made use of the Fourier transform pair 
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 𝑒𝑗2𝜋𝑓0𝑡 ↔ 𝛿(𝑓 − 𝑓0) 

Remark: Note that the amplitude of the output as well as its phase depend on the 

frequency of the input, 𝑓0, and the bandwidth of the filter, 𝐵. 

Assume, for instance, that 𝑓0 = 𝐵, then 𝜃0 = tan
−1 𝑓0

𝐵
= tan−1 1 = 45°. The output 

can be written as 

  𝑦(𝑡) =
1

√1+1
cos(2𝜋𝑓0𝑡 − 45°)  

  𝑦(𝑡) =
1

√2
cos(2𝜋𝑓0𝑡 − 45°)  

Exercise: The signal 𝑥(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡  is applied to a filter described by 

the transfer function 𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
. 

a. Use the result of the previous example to find the filter output 𝑦(𝑡). 

b. Is the transmission through this filter distortion-less? 

Exercise: Consider the periodic rectangular signal 𝑔(𝑡) defined over one period 𝑇0 as 

 𝑔(𝑡) = {
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If 𝑔(𝑡)  is applied to a filter described by the transfer function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
,  use 

the result of the previous example to find the filter output 𝑦(𝑡). 

Example: input and output energy spectral densities 

The signal 𝑔(𝑡) = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
) is applied to a filter with (𝑓) =

1

1+𝑗𝑓/𝐵
 . Find the output 

energy spectral density. 

Solution: system input-output energy spectral densities are related by 

   𝑆𝑌(𝑓) = |𝐻(𝑓)|
2𝑆𝑋(𝑓) 

  𝑆𝑌(𝑓) =
1

1+(
𝑓

𝐵
)2
(𝐴𝑇 |𝑠𝑖𝑛𝑐 𝑇𝑓|)2 

Example: channel response due to two impulses 

The signal 𝑔(𝑡) = 𝛿(𝑡) − 𝛿(𝑡 − 1) is applied to a channel described by the transfer 

function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
 . Use the convolution integral to find the channel output. 

Solution: 

The impulse response of the channel is obtained by taking the inverse Fourier 

transform of 𝐻(𝑓), which is 
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 ℎ(𝑡) = 2𝜋𝐵𝑒−2𝜋𝐵𝑡𝑢(𝑡) 

Using the linearity and time invariance property, the output can be obtained as 

𝑦(𝑡) = ℎ(𝑡) ∗ [𝛿(𝑡) − 𝛿(𝑡 − 1)] 

 𝑦(𝑡) = ℎ(𝑡)𝑢(𝑡) − ℎ(𝑡 − 1)𝑢(𝑡 − 1) 

 𝑦(𝑡) = 2𝜋𝐵[𝑒−2𝜋𝐵𝑡𝑢(𝑡) − 𝑒−2𝜋𝐵(𝑡−1)𝑢(𝑡 − 1)]   

Exercise: channel response due to a pulse 

The signal 𝑔(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) is applied to a channel described by the transfer 

function  𝐻(𝑓) =
1

1+𝑗𝑓/𝐵
 . Find the channel output 𝑦(𝑡). 
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Signal Distortion in Transmission 

As we have said before, the objective of a communication system is to deliver to the 

receiver almost an exact copy of what the source generates. However, communication 

channels are not perfect in the sense that impairments on the channel will cause the 

received signal to differ from the transmitted one. During the course of transmission, 

the signal undergoes attenuation, phase delay, interference from other transmissions, 

Doppler shift in the carrier frequency, and many other effects. In this introductory 

discussion we will explain some of the reasons that cause the received signal to be 

distorted. 

Linear distortion 

A signal transmission is said to be distortion-less if the output signal y(t) is an exact 

replica of the input signal x(t) , i.e.,  y(t) has the same shape as the input, except for a 

constant amplification (or attenuation) and a constant time delay. 

Condition for a distortion-less transmission in the time domain is: 

 

 𝒚(𝒕) = 𝒌𝒙(𝒕 − 𝒕𝒅); Condition for a distortion-less transmission 

  

where     k: is a constant amplitude scaling  

              𝑡𝑑: is a constant time delay 

   

 
In the frequency domain, the condition for a distortion-less transmission becomes  

 

Y(f) = k X(f) 𝑒−𝑗2𝜋𝑓𝑡𝑑   

 

or H(f) = 
Y(f)

𝑋(𝑓)
 = k 𝑒−𝑗2𝜋𝑓𝑡𝑑 = 𝑘𝑒−𝑗𝜃(𝑓) 

That is, for a distortion-less transmission, the transfer function should satisfy two 

conditions: 

 

1. |H(f)| = k  ; The amplitude of the transfer function is constant (gain or attenuation) 

over the frequency range of interest. 

2. 𝜽(𝒇) = −𝟐𝝅𝒇𝒕𝒅 = −(𝟐𝝅𝒕𝒅)𝒇 ; The phase function is linear in frequency with a 

negative slope that passes through the origin (or multiples of π). 

When |H(f)| is not constant for all frequencies of interest, amplitude  distortion results. 
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When  𝜃(𝑓) ≠  −2𝜋𝑓𝑡𝑑  ± 180
0, then we have phase distortion  (or delay distortion).   

 

The following examples demonstrate the two types of distortion mentioned above. 

 

Example: amplitude distortion 

Consider the signal 𝑥(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

3
 𝑐𝑜𝑠 3𝑤0𝑡. If this signal passes through a 

channel with zero time delay (i.e., td = 0) and amplitude spectrum as shown in the 

figure  

a. Find y(t) 

b. Is this a distortion-less transmission?   

 

Solution: 

x(t) consists of two frequency components, f0 and 3f0 . Upon passing through the 

channel, each component will be scaled by a different factor. 

𝑦(𝑡) =  𝑐𝑜𝑠 𝑤0𝑡 −
1

2
 .  
1

3
 𝑐𝑜𝑠 3𝑤0𝑡 

Since       𝑦(𝑡) =  (𝑐𝑜𝑠 𝑤0𝑡 −
1

2
 .  
1

3
 𝑐𝑜𝑠 3𝑤0𝑡) ≠ 𝑘 (𝑐𝑜𝑠 𝑤0𝑡 −

1

3
 𝑐𝑜𝑠 3𝑤0𝑡) 

 then this is not a distortion-less transmission. 

 

Example: phase distortion 

If x(t) in the previous example passes through a channel whose amplitude spectrum is 

a constant k. Each component in x(t) suffers a −
𝜋

2
 phase shift. 

a. Find y(t). 

b. Is this a distortion-less transmission?  

Solution: 

𝑥(𝑡) = cos𝑤𝑜𝑡 −
1

3
cos 3𝑤𝑜𝑡 

𝑦(𝑡) = k cos(𝑤𝑜𝑡 −
𝜋

2
)  −  

1

3
 𝑘 cos (3𝑤𝑜𝑡 −

𝜋

2
) 
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𝑦(𝑡) = k cos𝑤𝑜(𝑡 −
𝜋

2𝑤𝑜
)  −   

1

3
 𝑘 cos (3𝑤𝑜(𝑡 −

𝜋

2𝑥3𝑤𝑜
)) 

𝑦(𝑡) = k cos𝑤𝑜(𝑡 − 𝑡𝑑1)  −   
1

3
 𝑘 cos(3𝑤𝑜(𝑡 − 𝑡𝑑2)) 

Since  𝑡𝑑1 ≠ 𝑡𝑑2, we cannot write 𝑦(𝑡) = 𝑘𝑥(𝑡 − 𝑡𝑑).  Here, each component in 𝑥(𝑡) 

suffers from a different time delay. Hence, this transmission introduces phase (delay) 

distortion. 

 

Nonlinear distortion 

   When a system contains nonlinear elements, it is not described by a transfer function 

H(f), but rather by a transfer characteristic of the form  

 

y(t) = a1 x(t) +a2 x
2(t) +a3 x

3(t) + … (time domain) 

 

In the frequency domain, 

 

Y(f) = a1 X(f) +a2 X(f)*X(f)  +a3 X(f)*X(f)*X(f) + … 

 

Here, the output contains new frequencies not originally present in the original signal. 

The nonlinearity produces undesirable frequency component for |f|≤ W, in which W is 

the signal bandwidth. 

 
Harmonic distortion in nonlinear systems 

Let the input to a nonlinear system be the single tone signal 

  x(t) = cos(2𝜋𝑓0𝑡) 

This signal is applied to a channel with characteristic  

y(t) = a1x(t) + a2x(t)2 + a3x(t)3 

upon substituting x(t) and arranging terms, we get 

 𝑦(𝑡) =
1

2
𝑎2 + (𝑎1 +

3

4
𝑎3) cos2πf0t +

1

2
 𝑎2 cos 4𝜋𝑓0𝑡 +

1

4
𝑎3𝑐𝑜𝑠6𝜋 𝑓0𝑡 

 

Note that the output contains a component proportional to x(t), which is 

(𝑎1 +
3

4
𝑎3) cos2πf0t, in addition to a second and a third harmonic terms (terms at 

twice and three times the frequency of the input). These new terms are the result of 

the nonlinear characteristic and are, therefore, considered as harmonic distortion. The 
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DC term does not constitute a distortion, for it can be removed using a blocking 

capacitor. 

 

Define second harmonic distortion 

𝐷2 =
|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 |

|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚|
 

 

 𝐷2  =
|
1
2 𝑎2 |

| (𝑎1 +
3
4𝑎3) |

 𝑥 100% 

 

In a similar way, we can define the third harmonic distortion as: 

𝐷3 =
|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑖𝑟𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 |

|𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚|
 

 

Therefore,     

𝐷3  =
|
1
4 𝑎3 |

| (𝑎1 +
3
4𝑎3) |

 𝑥 100% 

Remark: In the solution above, we have made use of the following two identities 

Cos2x = 
1

2
{1 + 𝑐𝑜𝑠2𝑥} 

Cos3x=
1

4
{3𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠3𝑥}. 
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Filters and Filtering 

A filter is a frequency selective device. It allows certain frequencies to pass almost 

without attenuation while it suppresses other 

frequencies 

 

A. Ideal filter 

Ideal low pass filter 

 

𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  |𝑓| < 𝐵

0                                     𝑜. 𝑤
 

 

ℎ(𝑡) = 2𝐵𝑘 𝑠𝑖𝑛𝑐2𝐵(𝑡 − 𝑡𝑑) 

 

 
 

since h(t) is the response to an impulse applied at  t=0, and because h(t) has nonzero 

values for t < 0 , the filter is non-causal (physically non realizable). 

 

Band-pass filter 

 𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  𝑓𝑙 < |𝑓| < 𝑓𝑢
0                                     𝑜. 𝑤

 

 

Filer bandwidth  B = fu ─ fl; difference between upper and lower positive frequencies 

 𝑓𝑐 = 
𝑓𝑢+𝑓𝑙

2
; Center frequency of the filter 

 ℎ(𝑡) = 2𝐵𝑘 𝑠𝑖𝑛𝑐𝐵(𝑡 − 𝑡𝑑)𝑐𝑜𝑠 𝑤𝑐(𝑡 − 𝑡𝑑); impulse response. 
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High-pass filter  

 𝐻(𝑓) = {𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑                  |𝑓| > 𝐵

0                                     𝑜. 𝑤
 

 

 
Band rejection or notch filter 

 

 𝐻(𝑓) = {
𝑘 𝑒−𝑗2𝜋𝑓𝑡𝑑                                     𝑜. 𝑤 
0                                      𝑓1 < |𝑓| < 𝑓2

 

 

 
 

Real filters 

Here, we only consider a Butterworth low pass filter. The transfer function of a low 

pass Butterworth filter is of the form. 

𝐻(𝑓) =
1

𝑃𝑛 (
𝑗𝑓
𝐵)

 

B is the 3-dB bandwidth of the filter and 𝑃𝑛 (
𝑗𝑓

𝐵
) is a complex polynomial of order n. 

The family of Butterworth polynomials is defined by the property 

(|𝑃𝑛 (
𝑗𝑓

𝐵
) |)

2

= 1 + (
𝑓

𝐵
)
2𝑛

 

So that 

 |𝐻(𝑓)| =
1

√1+(
𝑓

𝐵
)
2𝑛
 

  

 

The first few polynomials are: 

𝑃1(𝑥) = 1 + 𝑥     

𝑃2(𝑥) = 1 + √2𝑥 + 𝑥
2 

𝑃3(𝑥) = (1 + 𝑥)(1 + 𝑥 + 𝑥
2)     
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A first order LPF 

𝐻(𝑓) =

1

𝑗2𝜋𝑓𝑐

𝑅+
1

𝑗2𝜋𝑓𝑐

=
1

1+𝑗2𝜋𝑓𝑅𝐶
 

Let 𝐵 =
1

2𝜋𝑅𝐶
 

𝐻(𝑓) =
1

1 + 𝑗𝑓/𝐵
=

1

𝑃1(𝑗𝑓/𝐵)
=

1

𝑃1(𝑥)
 

 

 

A second order LPF 

𝐻(𝑓) =
1

1+
𝑗𝑤𝐿

𝑅
−(2𝜋√𝐿𝐶𝑓)

2 

𝐻(𝑓) =
1

1 + 𝑗√2𝑓/𝐵 − (𝑓/𝐵)2
 

𝑤ℎ𝑒𝑟𝑒  𝑅 = √
𝐿

2𝐶
, 𝐵 =

1

2𝜋√𝐿𝐶
 

 

𝐻(𝑓) =
1

1 + 𝑗√2𝑓/𝐵 − (𝑓/𝐵)2
 

 

𝐻(𝑓) =
1

𝑃2(𝑗𝑓/𝐵)
 

  



Fall 2018-2019 Transmission of Signals through Linear Systems ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

Hilbert Transform 

The quadrature filter is an all pass filter that shifts the phase of positive frequency 

by (-90°) and negative frequency by (+90°). The transfer function of such a filter is 

𝐻(𝑓) = {
−𝑗            𝑓 > 0
 𝑗               𝑓 < 0

  

Using the duality property of Fourier transform, the impulse response of the filter is  

 ℎ(𝑡) =
1

𝜋𝑡
  

The Hilbert transform is the output of the quadrature filter to the signal 𝑔(𝑡) 

 𝑔̂(𝑡) =  
1

𝜋𝑡
∗ 𝑔(𝑡)  =  ∫

𝑔( λ)

𝜋(𝑡− λ)

∞

−∞
𝑑 λ 

Note that the Hilbert transform of a signal is a function of time (not frequency as in 

the case of the Fourier transform). The Fourier transform of 𝑔̂(𝑡) 

 𝐺̂(𝑓) = −𝑗𝑠𝑔𝑛(𝑓)𝐺(𝑓) 

Hilbert transform can be found using either the time domain approach or the 

frequency domain approach depending on the given problem. That is 

 Time-domain: Perform the convolution 
1

𝜋𝑡
∗ 𝑔(𝑡). 

 Frequency-domain: Find the Fourier transform 𝐺̂(𝑓), then find the inverse 

Fourier transform 

 𝑔̂(𝑡) = ∫ 𝐺̂(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
∞

−∞
 

Some properties of the Hilbert transform 

1. A signal 𝑔(𝑡) and its Hilbert transform 𝑔̂(𝑡) have the same energy spectral 

density 

|𝐺̂(𝑓)|
2
= |−𝑗 𝑠𝑔𝑛(𝑓)|𝐺(𝑓)||2 = |−𝑗 𝑠𝑔𝑛(𝑓)|2|𝐺(𝑓)|2 

        = |𝐺(𝑓)|2  

  The consequences of this property are: 

 If a signal g(t) is bandlimited, then  𝑔̂(𝑡) is bandlimited  to the same 

bandwidth (note that  |𝐺̂(𝑓)| = |𝐺(𝑓)|) 

 𝑔̂(𝑡) and 𝑔(𝑡)  have the same total energy (or power). 

 𝑔̂(𝑡) and 𝑔(𝑡)  have the same autocorrelation function. 

2. A signal g(t) and 𝑔̂(𝑡) are orthogonal, i.e.,  

  ∫ g(t) 𝑔̂(𝑡)𝑑𝑡 = 0
∞

−∞
 

This property can be verified using the general formula of Rayleigh energy 

theorem 
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∫ g(t) 𝑔̂(𝑡)𝑑𝑡
∞

−∞
 = ∫ G(f) 𝐺̂∗(𝑓)𝑑𝑓 =

∞

−∞
∫ G(f) {−𝑗𝑠𝑔𝑛(𝑓) 𝐺(𝑓)}∗𝑑𝑓
∞

−∞
 

   = ∫ 𝑗𝑠𝑔𝑛(𝑓) |𝐺(𝑓)|2𝑑𝑓 = 0
∞

−∞
. 

The result above follows from the fact that |𝐺(𝑓)|2 is an even function of 𝑓 while 

𝑠𝑔𝑛(𝑓) is an odd function of 𝑓. Their product is odd. The integration of an odd 

function over a symmetrical interval is zero. 

3. If 𝑔̂(𝑡) is a Hilbert transform of 𝑔(𝑡), then the Hilbert transform of 𝑔̂(𝑡) is 

−𝑔(𝑡) (each Hilbert transform introduces 90 degrees phase shift). 

 
 

Example on Hilbert transform 

Find the Hilbert transform of the impulse function 𝑔(𝑡) = 𝛿(𝑡) 

Solution: Here, we use the convolution in the time domain 

  𝑔̂(𝑡)  =
1

𝜋𝑡
∗ 𝛿(𝑡)  

As we know, the convolution of the delta function with a continuous function is the 

function itself. Therefore, 

 𝑔̂(𝑡) =
1

𝜋𝑡
. 
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Example on Hilbert transform 

Find the Hilbert transform of  𝑔(𝑡) =
sin 𝑡

𝑡
 

Solution 

Here, we will first find the Fourier transform of 𝑔(𝑡), find 𝐺̂(𝑓), and then find 𝑔̂(𝑡). 

 

𝐴 𝑟𝑒𝑐𝑡 (
𝑡

𝜏
 )                          

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                     𝐴𝜏 𝑠𝑖𝑛𝑐 𝑓𝜏    ;    𝑤ℎ𝑒𝑛 𝜏 =

1

𝜋
 

𝐴 rect (
𝑡

1/𝜋
 )                     

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                     𝐴 

1

𝜋
 
sin 𝜋𝑓𝜏

𝜋𝑓𝜏
=  
1

𝜋

sin 𝑓

𝑓
 

𝜋 𝑟𝑒𝑐𝑡 (
𝑡

1/𝜋
 )                     

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                       

sin 𝑓

𝑓
 

So, by the duality property, we get the pair 

𝜋 𝑟𝑒𝑐𝑡 (
𝑓

1/𝜋
 )                 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
↔                       

sin 𝑡

𝑡
 

i.e. ,           𝐺(𝑓) = 𝜋 𝑟𝑒𝑐𝑡(
𝑓

1/𝜋
) ,  (See the figure below) 

𝐺̂(𝑓) = −𝑗𝑠𝑔𝑛(𝑓)𝐺(𝑓) = {
−𝑗𝜋                                              0 < 𝑓 < 1/2𝜋
 𝑗𝜋                                             − 1/2𝜋 < 𝑓 < 0

 

𝑔̂(𝑡)   =  ∫ 𝐺̂(𝑓) 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
∞

−∞
 

                         =  ∫ 𝑗𝜋   𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓
0

−1/2𝜋
 −  ∫ 𝑗𝜋   𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

1/2𝜋

0
 

                         =  
1

2𝑡
(1 − 𝑒−𝑗𝑡) −

1

2𝑡
(𝑒𝑗𝑡 − 1) 

                         =  
1

𝑡
−
1

𝑡 
 
(𝑒𝑗𝑡+𝑒−𝑗𝑡)

2
 

                         =  
1−cos𝑡

𝑡
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Correlation and Spectral Density 

Here, we consider the relationship between the autocorrelation function and the power 

spectral density. In this discussion, we restrict our attention to real signals. First, we 

consider power signals and then energy signals. 

Definition: The autocorrelation function of a signal 𝑔(𝑡) is a measure of similarity 

between 𝑔(𝑡) and a delayed version of 𝑔(𝑡). 

a. Autocorrelation function of a power signal 

The autocorrelation function of a power signal 𝑔(𝑡) is defined as 

 𝑅𝑔(𝜏) = 〈𝑔(𝑡)𝑔(𝑡 − 𝜏)〉; Where 〈. 〉 denotes time average. 

 𝑅𝑔(𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇

−𝑇
  

Exercise: Show that for a periodic signal with period T0, the above definition 

becomes 

  𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇0

0
 

Remark: We can take this as a definition for the autocorrelation function of a 

periodic signal. 

Exercise: Show that if 𝑔(𝑡) is periodic with period 𝑇0, then 𝑅𝑔(𝜏) is also periodic 

with the same period 𝑇0. 

Hint: Expand 𝑔(𝑡) in a complex Fourier series 𝑔(𝑡) = ∑ 𝐶𝑛𝑒
𝑗𝑛𝜔0𝜏∞

𝑛=−∞ .  Form the 

delayed signal 𝑔(𝑡 − 𝜏), and then perform the integration over a complete period 𝑇0. 

You should get the following result: 

 𝑅𝑔(𝜏) = ∑ 𝐷𝑛𝑒
𝑗𝑛𝜔0𝜏∞

𝑛=−∞ ; Fourier series expansion of 𝑅𝑔(𝜏). 

 𝐷𝑛 = |𝐶𝑛|
2 are the Fourier series coefficients of 𝑅𝑔(𝜏) 

 𝐶𝑛 are the Fourier series coefficients of 𝑔(𝑡). 

This formula bears two conclusions 

a. 𝑅𝑔(𝜏) is periodic with period 𝑇0. 

b. The Complex Fourier coefficients 𝐷𝑛 of 𝑅𝑔(𝜏) are related to the complex 

Fourier coefficients 𝐶𝑛 of 𝑔(𝑡) by the relation 𝐷𝑛 = |𝐶𝑛|
2. 

Properties of R(τ) 

 𝑅𝑔(𝜏 = 0) =
1

𝑇0
∫ 𝑔(𝑡)2𝑑𝑡
𝑇0

0
;   is the total average signal power. 
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 𝑅𝑔(𝜏) is an even function of 𝜏, i.e., 𝑅𝑔(𝜏) = 𝑅𝑔(−𝜏). 

 𝑅𝑔(𝜏) has a maximum (positive) magnitude at τ = 0 , i.e. |𝑅𝑔(𝜏)| ≤ 𝑅𝑔(0). 

 If g(t) is periodic with period T0, then 𝑅𝑔(𝜏) is also periodic with the same 

period T0. 

 The autocorrelation function of a periodic signal and its power spectral density 

(represented by a discrete set of impulse functions) are Fourier transform pairs 

 

 𝑆𝑔(𝑓) =  ℑ{𝑅𝑔(𝜏)} 

 

 𝑆𝑔(𝑓) = ∑ |𝐶𝑛|
2𝛿(𝑓 − 𝑛𝑓0)

∞
𝑛=−∞ ; Discrete spectrum 

 

Cross correlation function 

The cross correlation function of two periodic signals 𝑔1(𝑡) and 𝑔2(𝑡) with the same 

period 𝑇0 is defined as 

𝑅1,2(𝜏) =
1

𝑇0
∫ 𝑔1(𝑡)𝑔2(𝑡 − 𝜏)𝑑𝑡
𝑇0

0

 

 

b-  Autocorrelation function of an energy signal 

When g(t) is an energy signal, 𝑅𝑔(𝜏)  is defined as 

 𝑅𝑔(𝜏) = ∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
∞

−∞
 

Properties of R(τ) 

 𝑅𝑔(𝜏 = 0) = ∫ 𝑔(𝑡)2𝑑𝑡
∞

−∞
;   is the total signal energy. 

 𝑅𝑔(𝜏) is an even function of 𝜏, i.e., 𝑅𝑔(𝜏) = 𝑅𝑔(−𝜏). 

 𝑅𝑔(𝜏) has a maximum ( positive ) magnitude at τ = 0 , i.e. |𝑅𝑔(𝜏)| ≤ 𝑅𝑔(0). 

 The autocorrelation function of an energy signal and its energy spectral 

density (a continuous function of frequency) are Fourier transform pairs, 

i.e.,  

 𝑆𝑔(𝑓) =  ℑ{𝑅𝑔(𝜏)}  

 

 𝑆𝑔(𝑓) = ∫ 𝑅𝑔(𝜏)𝑒
−𝑗2𝜋𝑓𝜏𝑑𝜏

∞

−∞
; Continuous spectrum. 

 

 𝑅𝑔(𝜏) = ∫ 𝑆𝑔(𝑓)𝑒
𝑗2𝜋𝑓𝜏𝑑𝑓

∞

−∞
. 

 

Proof:  
The autocorrelation function is defined as: 

  

 𝑅𝑔(𝜏) = ∫ 𝑔(𝜆)𝑔(𝜆 − 𝜏)𝑑
∞

−∞
𝜆 

In this integral we have replaced t by 𝜆 (both are dummy variables of integration). 

With this substitution, we can rewrite the integral as 
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 𝑅𝑔(𝜏) = ∫ 𝑔(𝜆)𝑔(−(𝜏 − 𝜆))𝑑
∞

−∞
𝜆 

One can realize that 𝑅𝑔(𝜏) is nothing but the convolution of 𝑔(𝜏) and −𝑔(𝜏). That is, 

 

 𝑅𝑔(𝜏) = 𝑔(𝜏) ∗ 𝑔(−𝜏) 

Taking the Fourier transform of both sides, we get 

 

    𝐹{𝑅𝑔(𝜏)} = 𝐺(𝑓)𝐺
∗(𝑓) 

  

Therefore,   𝑆𝑔(𝑓) =  ℑ{𝑅𝑔(𝜏)} = |𝐺(𝑓)|2. 

 

Cross correlation function 

 

The cross correlation function of two energy signals 𝑔1(𝑡) and 𝑔2(𝑡) is defined as; 

 

 𝑅1,2(𝜏) = ∫ 𝑔1(𝑡)𝑔2(𝑡 − 𝜏)𝑑𝑡
∞

−∞
 

 

Example: Autocorrelation of a periodic sinusoidal signal 

Find the auto-correlation function of the sine signal 𝑔(𝑡) = 𝐴cos (2𝜋𝑓0𝑡 + 𝜃), where 

𝐴 and 𝜃 are constants. 

Solution 

As we know, 𝑔(𝑡) is a periodic signal. Therefore, we find 𝑅𝑔(𝜏) using the definition 

 𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝑔(𝑡)𝑔(𝑡 − 𝜏)𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
1

𝑇0
∫ 𝐴cos (2𝜋𝑓0𝑡 + 𝜃)𝐴cos (2𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 𝜃)𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
𝐴2

2𝑇0
∫ [cos(4𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 2𝜃) + cos(2𝜋𝑓0𝜏)]𝑑𝑡
𝑇0

0
 

 𝑅𝑔(𝜏) =
𝐴2

2𝑇0
[0 + cos(2𝜋𝑓0𝜏)𝑇0] 

 𝑅𝑔(𝜏) =
𝐴2

2
cos(2𝜋𝑓0𝜏); Periodic with period 𝑇0. 

Example: Autocorrelation of a non-periodic signal 

Determine the autocorrelation function of the sinc pulse 

  𝑔(𝑡) = 𝐴𝑠𝑖𝑛𝑐2𝑊𝑡. 

Solution: 

Using the duality property of the Fourier transform, we can deduce that 
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 𝐺(𝑓) =
𝐴

2𝑊
𝑟𝑒𝑐𝑡(

𝑓

2𝑊
) 

The energy spectral density of 𝑔(𝑡) is 

 𝑆𝑔(𝑓) = |𝐺(𝑓)|
2 = (

𝐴

2𝑊
)2𝑟𝑒𝑐𝑡(

𝑓

2𝑊
) 

Taking the inverse Fourier transform, we get the autocorrelation function 

 𝑅𝑔(𝜏) =
𝐴2

2𝑊
𝑠𝑖𝑛𝑐2𝑊𝜏 

Exercise: 

a. Find and plot the cross correlation function of the two signals 

  𝑔1(𝑡) = {
1      0 ≤ 𝑡 ≤ 2
 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

  𝑔2(𝑡) = {
1       0 ≤ 𝑡 ≤ 1
−1    1 < 𝑡 ≤ 2  

 

b. Are 𝑔1(𝑡) and 𝑔2(𝑡) orthogonal? 

Exercise: 

Find and plot the autocorrelation function for the periodic saw-tooth signal shown 

below: 
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Example: 

Find the autocorrelation function of the rectangular pulse 

  𝑔(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡−0.5𝑇

𝑇
) , 𝑇 = 1. 

Solution: 

As we saw earlier, this pulse is an energy signal and therefore, we can find its 𝑅𝑔(𝜏) 

as: 

 𝑅𝑔(𝜏) = ∫ (𝐴)(𝐴)𝑑𝑡
1

𝜏
 = A2 (1-τ)  ;  0 < τ  <1 

Using the even symmetry property of the autocorrelation function, we can find 𝑅𝑔(𝜏) 

for – ve values of τ as: 

 𝑅𝑔(𝜏) = = A2 (1+τ)  ;  -1< τ <0 

This function is sketched below. Note that that the maximum value occurs at τ = 0 and 

that g(t) and g(t-τ) become uncorrelated for τ = 1 sec, which is the duration of the 

pulse. 

The energy spectral density is 

  𝑆𝑔(f) = ℑ{𝑅𝑔(𝜏)} = 𝐴
2((𝑠𝑖𝑛𝑐𝑓)2)  
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Bandwidth of Signals and Systems 

Definition: The amount of positive frequency spectrum that a signal 𝑔(𝑡) occupies is 

called the bandwidth of the signal. 

Definition: A signal g(t) is said to be (absolutely) band-limited to B Hz if 

G(f) = 0                   for |f| >B 

Definition: A signal g(t) is said to be (absolutely) time-limited if  

g(t) = 0                     for |t| >T 

Theorem: An absolutely band-limited waveform cannot be absolutely time-limited 

and vice versa, i.e., a signal g(t) cannot be both time-limited and bandlimited. 

 

We have earlier seen examples that support this theorem. For example, the delta 

function, which has an almost zero time duration, has a Fourier transform which 

extends uniformly over all frequencies (infinite bandwidth). Also, a constant value in 

the time domain (a dc) has a Fourier transform, which is an impulse in the frequency 

domain. This is repeated here for convenience. 

 

 

In general, there is an inverse relationship between the signal bandwidth and the time 

duration. The bandwidth and the time duration are related through a relation, called 

the time bandwidth product, of the form 

(𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉)(𝑻𝒊𝒎𝒆 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏) ≥ 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 
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The value of the constant depends on the way we define the bandwidth and the time 

duration. Two possible values of the constant, that we will encounter in this chapter, 

are 
1

2
 (for the equivalent rectangular bandwidth) and 

1

4𝜋
 (for the root mean square 

bandwidth). 

Remarks:  

1. The bandwidth of a signal provides a measure of the extent of significant 

frequency content of the signal. 

2. The bandwidth of a signal is taken to be the width of a positive frequency 

band. 

3. For baseband signals or networks, where the spectrum extends from –B to B, 

the bandwidth is taken to be B Hz. 

4. For bandpass signals or systems where the spectrum extends between (f1, f2)  

and (-f1, -f2), the B.W = f2 – f1. 

 

Definition of a baseband signal: A baseband signal is one for which most of the 

energy is contained within a band centered around the zero frequency and negligible 

elsewhere. Another term synonymous with baseband is low-pass. In the 

communication systems, the message to be transmitted is a baseband signal. 

Definition of a band-pass signal: A band-pass signal is one for which the energy is 

concentrated around some high frequency carrier 𝑓0  and negligible elsewhere. This 

type of signal will arise in this course when the baseband message signal 𝑚(𝑡) 

modulates a high frequency carrier 𝑐(𝑡) to produce the modulated signal 𝑠(𝑡). 

 

Some definitions of bandwidth 

1- Absolute bandwidth 

Here, the Fourier transform of a signal is non-zero only within a certain 

frequency band. If G(f) = 0 for |f| > B, then g(t) is  absolutely band-limited to 

BHz. When G(f) ≠ 0 for f 1< |f |< f2 , then the absolute bandwidth is  f2 - f 1. 

 

2- 3-dB (half power points) bandwidth 

 The range of frequencies from 0 to some frequency B at which |G(f)| drops to 

 
1

√2
  of its maximum value (for a low pass signal). As for a band pass signal, 

the B.W = f2 – f1. 
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3- The 95 %  (energy or power) bandwidth.  

Here, the B.W is defined as the band of frequencies where the area under the 

energy spectral density (or power spectral density) is at least 95% (or 99%) of 

the total area. 

 

 
 

Total Signal Energy 𝐸 = ∫ |𝐺(𝑓)|2
∞

−∞
𝑑𝑓 = 2∫ |𝐺(𝑓)|2𝑑𝑓

∞

0
 

The 95% energy bandwidth B should satisfy the relationship 

 

     ∫ |𝐺(𝑓)|2𝑑𝑓
𝐵

−𝐵
 =  0.95 ∫ |𝐺(𝑓)|2

∞

−∞
𝑑𝑓 = 0.95 𝐸 

 

4- Equivalent rectangular bandwidth. 

It is the width of a fictitious rectangular spectrum such that the power in that 

rectangular band is equal to the energy associated with the actual spectrum 

over positive frequency. Let 𝐵𝑒𝑞 be the equivalent rectangular bandwidth. To 

find 𝐵𝑒𝑞 we set 

 

      Area under fictitious rectangle = Total Signal Energy E 

 

  |G(0)|2*2Beq =∫ |𝐺(𝑓)|2𝑑𝑓
∞

−∞
= 𝐸 

  |G(0)|2*2Beq = 2∫ |𝐺(𝑓)|2
∞

0
df 

      𝐵𝑒𝑞 =
1

|𝐺(0)|2
∫ |𝐺(𝑓)|2𝑑𝑓
∞

0
 

 

5- Null – to – null bandwidth 

For baseband signals, the null bandwidth is taken to be the band from zero to 

the first null in the envelope of the magnitude spectrum. 

 
For example, consider the rectangular pulse g(t), for which the Fourier 

transform is G(f). Note that  

         𝑟𝑒𝑐𝑡 (
𝑡

𝜏
) → τ sincfτ  = τ 

𝑠𝑖𝑛𝜋𝑓𝜏

𝜋𝑓𝜏
. 
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The zero crossings occur when sin(πfτ) = 0 

      πfτ = nπ  →  f =  
𝑛

τ
  ; n = 1,2, … The smallest value of 𝑛 = 1, gives 

         𝑁𝑢𝑙𝑙 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1

𝜏
. 

 

For a band pass signal, B.W= f2 – f1 

 

6- Bounded spectrum bandwidth 

Range of frequencies (0, B) such that outside the band, the power spectral 

density must be down by say 50 dB below the maximum value. 

 

         -50 dB = 10 log 
|𝐺(𝐵)|2

|𝐺(0)|2
. 

     7-  RMS bandwidth     

             𝐵𝑟𝑚𝑠 = √(
 ∫ 𝑓2|𝐺(𝑓)|2

∞

−∞
df

 ∫ |𝐺(𝑓)|2
∞

−∞ df
) 

The corresponding rms duration of g(t) is 

           𝑇𝑟𝑚𝑠 = √(
 ∫ 𝑡2|𝑔(𝑡)|2

∞

−∞ dt

 ∫ |𝑔(𝑡)|2
∞

−∞ dt
) 

(here g(t) is assumed to be centered around the origin). 

Remark: The time bandwidth product is (𝑇𝑟𝑚𝑠)(𝐵𝑟𝑚𝑠) ≥
1

4𝜋
 (the proof is beyond the 

scope of this presentation). 

Time – bandwidth product 

To illustrate the time – bandwidth product, consider the equivalent rectangular 

bandwidth defined earlier as 

  𝐵𝑒𝑞 =
 ∫ |𝐺(𝑓)|2

∞

−∞ df

 2|𝐺(0)|2
 

Analogous to this definition, we define an equivalent rectangular time duration as 

 𝑇𝑒𝑞 =
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞ dt 
 

The time bandwidth product is 

 𝐵𝑒𝑞𝑇𝑒𝑞 = (
 ∫ |𝐺(𝑓)|2

∞

−∞ df

 2|𝐺(0)|2
) (

(∫ |𝑔(𝑡)|𝑑𝑡)
∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞ dt 
) 
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Note that              ∫ |𝑔(𝑡)|2
∞

−∞
dt = ∫ |𝐺(𝑓)|2

∞

−∞
df  ; Rayleigh energy theorem.  

Note also that       𝐺(0) = ∫ 𝑔(𝑡)𝑑𝑡
∞

−∞
.  

Using these two relations, we get 

           𝐵𝑒𝑞𝑇𝑒𝑞 =
1

2

(∫ |𝑔(𝑡)|𝑑𝑡)
∞

−∞

2

| ∫ 𝑔(𝑡)
∞

−∞
dt|2 

 

Case 1:  When g(t) is positive for all time t, then |g(t)| = g(t) and 𝐵𝑒𝑞𝑇𝑒𝑞 becomes 

   𝑩𝒆𝒒𝑻𝒆𝒒 =
𝟏

𝟐
 

Case 2 : For a general g(t) that can take on positive as well as negative values, 𝐵𝑒𝑞𝑇𝑒𝑞 

satisfies the inequality 

  𝑩𝒆𝒒𝑻𝒆𝒒 ≥
𝟏

𝟐
 

Note : For 𝐵𝑟𝑚𝑠 and 𝑇𝑟𝑚𝑠 , the time – bandwidth product satisfies the inequality 

𝑩𝒓𝒎𝒔𝑻𝒓𝒎𝒔 ≥
𝟏

𝟒𝝅
 

Example: bandwidth of a trapezoidal signal 

Find the equivalent rectangular bandwidth, 𝐵𝑒𝑞, for the trapezoidal pulse shown. 

Solution 

  𝑇𝑒𝑞 =
(∫ |𝑔(𝑡)|𝑑𝑡)

∞

−∞

2

∫ |𝑔(𝑡)|2
∞

−∞ dt 
   

∫|𝑔(𝑡)|𝑑𝑡 = 𝐴 ( 𝑡𝑎 + 𝑡𝑏)

∞

−∞

 

∫ |𝑔(𝑡)|2𝑑𝑡 =
2𝐴2

3
 ( 2𝑡𝑎 + 𝑡𝑏)

∞

−∞
 

 𝑇𝑒𝑞 = 
3

2

(𝑡𝑎+𝑡𝑏)
2

(2𝑡𝑎+𝑡𝑏)
 

𝐵𝑒𝑞 =
0.5

𝑇𝑒𝑞
=

2𝑡𝑎+𝑡𝑏

3(𝑡𝑎+𝑡𝑏)
2. 

Remark: Note that using this method we were able to determine the signal bandwidth 

without the need to go through the Fourier transform. 

Exercise: Use the above method to find the equivalent rectangular bandwidth for the 

triangular signal 𝑔(𝑡) = 𝑡𝑟𝑖(
𝑡

𝑇
). 

A 
g(t) 

tb -ta -tb ta 
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Example: bandwidth of a periodic signal 

Find the 93% power bandwidth for the periodic square function define over one 

period as 

  𝑔(𝑡) = {
2𝐴,

−𝑇0

4
≤ 𝑡 ≤

𝑇0

4

−𝐴, 𝑜. 𝑤
  

Solution: The average power, computed using the time average, is  

𝑃𝑎𝑣 = 
1

𝑇0
∫|𝑔(𝑡)|2  𝑑𝑡

𝑇0

0

 

      =  
1

𝑇0
[4𝐴2

𝑇0
2
+ 𝐴2

𝑇0
2
] =  

5𝐴2𝑇0
2𝑇0

= 
5𝐴2

2
= 2.5𝐴2 

Also, by using the Parseval’s theorem, the average power can be computed as: 

 𝑃𝑎𝑣 = |𝐶0|
2 +  2∑ |𝐶𝑛|

2∞
𝑛=1  

We recall that the Fourier coefficients for this signal were found in Chapter 1. Using 

these values, we get 

 𝑃𝑎𝑣  =  (
𝐴

2
)
2

+ 2∑
(3𝐴)2

(𝑛𝜋)2
∞
𝑛=1  

 𝑃𝑎𝑣 = 
𝐴2

4
+  2𝐴2 ∑

(3)2

(𝑛𝜋)2
∞
𝑛=1  

Let us take n = 1, then the power in the DC and the fundamental frequency is 

𝑃1 = 𝐴
2 {0.25 + 2 (

9

𝜋2
)} = 2.073𝐴2 ⇒ 

𝑃1
𝑃𝑎𝑣

= 
2.073𝐴2

2.5𝐴2
= 82.95% 

The fraction of power in these two terms relative to the total average power is only 

82.95%. The 93% power limit is not yet reached. So, let us add one more term. 

When n = 3, the power in the DC, the fundamental term, and the third harmonic is 

 𝑃3 = 𝐴
2 {0.25 + 2 (

32

𝜋2
+

32

32𝜋2
)}  = 2.276𝐴2 ⇒

𝑃3

𝑃𝑎𝑣
= 

2.276𝐴2

2.5𝐴2
= 91.05%. 

The fraction of power in these three terms relative to the total average power is now 

91.05%. Still, the 93% power limit is not reached yet. So, let us add one more term. 

For n = 5, the power in the DC, the fundamental term, the third harmonic, and the 

fifth harmonic is 

𝑃5 = 𝐴
2 {0.25 + 2 ((

3

𝜋
)
2

+ (
3

3𝜋
)
2

+ (
3

5𝜋
)
2

)} = 2.349𝐴2 

 ⇒
𝑃5

𝑃𝑎𝑣
= 

2.349𝐴2

2.5𝐴2
= 93.97%. 

With n=5, the 93% power limit has been reached. Therefore, the 93% power 

bandwidth is  𝑩𝟗𝟑% = 𝟓𝒇𝟎. 
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Example: bandwidth of an energy signal 

Find the 95% energy bandwidth for the exponential pulse 𝑔(𝑡) = 𝐴𝑒−𝛼𝑡  𝑢(𝑡). 

Solution: The Fourier transform of g(t) is 

 𝐺(𝑓) =  
𝐴

𝛼+𝑗2𝜋𝑓
 

The total energy in g(t) (calculated in the time domain) is  

𝐸𝑔 = ∫|𝑔(𝑡)|
2 𝑑𝑡 =  ∫ 𝐴2𝑒−2𝛼𝑡 𝑑𝑡 =  

𝐴2

2𝛼

∞

0

∞

0

 

Let B be the 95% energy bandwidth, then the energy contained within B is 

𝐸𝐵 = ∫|𝐺(𝑓)|
2 𝑑𝑓 =  ∫

𝐴2

(𝛼2 + (2𝜋𝑓)2)
 𝑑𝑓 

𝐵

−𝐵

𝐵

−𝐵

 

𝐸𝐵 =  
2𝐴2

2𝜋𝛼
𝑡𝑎𝑛−1

2𝜋𝐵

𝛼
 

B should be chosen such that it satisfies the condition 

 𝐸𝐵 = 0.95𝐸𝑔 

2𝐴2

2𝜋𝛼
𝑡𝑎𝑛−1

2𝜋𝐵

𝛼
= 0.95 (

𝐴2

2𝛼
) 

The table below shows the ratio 𝐸𝐵 𝐸𝑔⁄ for various values of B. 

B (𝑬𝑩 𝑬𝒈⁄ ) × 𝟏𝟎𝟎% 

𝛼/4 63.9% 

𝛼/2 80.38% 

𝛼 89.95% 

𝟐𝜶 94.94% 

 

 

Thus, the 95% energy bandwidth is  𝑩𝟗𝟓% = 𝟐𝜶 
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Example: 3-dB bandwidth of a first order RC low pass filter 

Consider the RC circuit shown in the figure 

 
The transfer function of the circuit is 

𝐻(𝑓) =

1
𝑗2𝜋𝑓𝐶

𝑅 +
1

𝑗2𝜋𝑓𝐶

=
1

1 + 𝑗2𝜋𝑓𝑅𝐶
 

The magnitude of 𝐻(𝑓) is 

|𝐻(𝑓)| =
1

√1 + (2𝜋𝑓𝑅𝐶)2
 

 

The 3-dB bandwidth is some frequency 𝑓 = 𝐵 at which |𝐻(𝑓)| drops to 1/√2 of its 

maximum value. Note that the maximum value of |𝐻(𝑓)| is 1 and occurs at 𝑓 = 0. 

Therefore, B should satisfy  

|𝐻(𝐵)| =
1

√1 + (2𝜋𝐵𝑅𝐶)2
=
1

√2
 

From this relationship, we notice that B occurs when 

 

2𝜋𝐵𝑅𝐶 = 1 

Therefore, 

𝑩 =
𝟏

𝟐𝝅𝑹𝑪
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Pulse Response and Rise-time 

A rectangular pulse contains significant high frequency components. When that pulse 

is passed through a LPF, the high frequency components will be attenuated resulting 

in signal distortion. 

We need to investigate the relationship that should exist between the pulse bandwidth 

and the channel bandwidth. This subject is of particular importance, especially, when 

we study the transmission of data over band-limited channels. In the simplest form, a 

binary digit 1 may be represented by a pulse , 0 ≤ 𝑡 ≤ 𝑇𝑏 , while binary digit 0 may 

be represented by the negative pulse −𝐴,   0 ≤ 𝑡 ≤ 𝑇𝑏. Therefore, in order to retrieve 

the transmitted data, the channel bandwidth must be wide enough to accommodate the 

transmitted data. 

To convey this idea in a simple form, we first consider the response of a first order 

low pass filter to a unit step function and then to a pulse. 

Step response of a first order LPF (channel)  

Let 𝑥(𝑡) = 𝑢(𝑡) be applied to a first order RC circuit. This first order filter is a fair 

representation of a low-pass communication channel 

 

The system differential equation (D.E.) is 

𝑥(𝑡) = 𝑅𝑖(𝑡) + 𝑔(𝑡) = 𝑅𝐶
𝑑𝑔(𝑡)

𝑑𝑡
+ 𝑔(𝑡)  

where g(t) is the channel output. Now let 𝑥(𝑡) = 𝑢(𝑡). The system D.E. becomes 𝑥(𝑡) 

𝑅𝐶
𝑑𝑔(𝑡)

𝑑𝑡
+ 𝑔(𝑡) = 𝑢(𝑡) 

The solution to this first order system is 

𝑔(𝑡) = (1 − 𝑒−𝑡/𝑅𝐶)𝑢(𝑡) 

The 3- dB bandwidth of the channel (was derived in a previous example in this 

chapter) is 

𝐵𝑐ℎ =
1

2𝜋𝑅𝐶
 

The output 𝑔(𝑡), expressed in terms of 𝐵𝑐ℎ becomes 

𝑔(𝑡) = (1 − 𝑒−2𝜋𝐵𝑐ℎ𝑡)𝑢(𝑡) 

Define the difference between the input and the output as 
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𝑒(𝑡) = 𝑢(𝑡) − 𝑔(𝑡) = 𝑒−2𝜋𝐵𝑐ℎ𝑡 

Note that 𝑒(𝑡) decreases as 𝐵𝑐ℎ increases. This means that as the channel bandwidth 

increases, the output becomes closer and closer to the input. In the ideal case, when 

the channel bandwidth becomes infinity, the output becomes a step function. In 

essence, to reproduce a step function (or a rectangular pulse), a channel with infinite 

bandwidth is needed. 

 

The rise-time 

The rise-time is a measure of the speed of rise of the output of a system due to step 

function applied at its input. One common measure is the 10-90 % rise-time, defined 

as the time it takes for the output to rise between 10% to 90% of the final steady state 

value when a unit step function is applied to the system input. The 10% - 90% rise-

time for the first order RC circuit considered above is 

𝑻𝒓 = 𝒕𝟐 − 𝒕𝟏 =
𝟎. 𝟑𝟓

𝑩𝒄𝒉
  

From this result, we conclude that increasing the bandwidth of the channel will 

decrease the rise-time, implying a faster response. 

Exercise: For the system above, verify that the rise-time is given as 𝑇𝑟 =
0.35

𝐵𝑐ℎ
. 
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Pulse Response 

It is the response of the circuit to a pulse of duration τ. For the same RC circuit, 

considered above, let us apply the pulse 

𝑥(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 𝜏) 

Using the linearity and time invariance properties, the output due to the pulse can be 

obtained from the step response as 

𝑦(𝑡) = {
0                                                          𝑡 < 0
1 − 𝑒−2𝜋𝐵𝑐ℎ𝑡                             0 < 𝑡 <  τ
(1 − 𝑒−2𝜋𝐵𝑐ℎ𝜏)𝑒−2𝜋𝐵𝑐ℎ(𝑡−𝜏)             t >  τ

} 

This response is sketched in the figure below. 

 

From the equation above, we observe that the output 𝑦(𝑡) approximates the input 𝑥(𝑡) 

provided that 

𝐵𝑐ℎ𝜏 ≥ 1 or 

𝑩𝒄𝒉 ≥
𝟏

𝝉
 

Relationship to data transmission 

In digital communication systems, data are transmitted at a rate of 𝑅𝑏 bits/sec. The 

time allocated for each bit is 𝜏 =
1

𝑅𝑏
. To enable the receiver to recognize the 

transmitted bit within its allocated slot and to prevent cross talk between neighboring 

time slots, we require that 

𝑩𝒄𝒉 ≥
𝟏

𝝉
= 𝑹𝒃 

Result: the channel bandwidth in binary digital communication systems should be 

larger than the rate of the data sent over the channel. 
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Band-pass Signals and Systems 

(Details are not required for ENEE 339) 

A signal g(t) is called a band pass signal if its Fourier  transform G(f) is non-

negligible only in  a band  of frequencies  of total extent 2W centered about fc . 

A signal is called narrowband if 2W is small compared with fc. 

A band pass signal g(t) can be represented in the canonical form 

𝑔(𝑡) = gI(t) cos 𝜔ct - gQ(t) sin𝜔ct. 

gI(t) is a low pass signal of B.W = W Hz called the in phase component of 𝑔(𝑡). 

gQ(t) is a low pass signal of B.W = W Hz called the quadrature component of 𝑔(𝑡) 

g(t) appears as a modulated signal in which gI(t) and gQ(t) are the low pass signals and  

𝑓𝑐 is the carrier frequency. Recall the modulation property of the Fourier transform 

x(t) cos 𝜔ct → 
1

2
 (X(f- fc)+ X(f+ fc))                                                                                                                                                                  

x(t) sin  𝜔ct →
1

𝑗2
 (X(f- fc)- X(f+ fc)) 

Define the complex envelope of a signal g(t) as: 

  𝑔 ̃(t)  =  gI(t) + j gQ(t)      

𝑔 ̃(t)  is a low pass signal of B.W =W. The signals g(t) and 𝑔 ̃(t)  are related by : 

 g(t) = Re{𝑔 ̃(t) 𝑒𝑗𝜔𝑐𝑡 } 

How to get gI(t) and gQ(t) from g(t) 

If we multiply g(t) by cos 𝜔ct, we get 

g(t) cos𝜔ct = gI(t) cos2 𝜔𝑐t - gQ(t) sin 𝜔ct cos 𝜔ct 

          = 
1

2
 gI(t) + 

1 

2
 gI(t) cos 2𝜔ct- 

1

2
 gQ(t) sin 2𝜔ct . 

The first term is the desired low pass signal. The second and third terms are high 

frequency components centered about 2 fc.  

gI(t) =lowpass{2g(t) cos𝜔ct} 

Or, in the frequency domain 

 𝐺𝐼(𝑓) = {
𝐺(𝑓 − 𝑓𝑐 ) + 𝐺(𝑓 + 𝑓𝑐 )             − 𝑤 ≤ 𝑓 ≤ 𝑤
0                                                           𝑜𝑡herwise

} 
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Now if we multiply g(t) by sin𝜔ct, we get 

g(t) sin𝜔ct= gI(t) sin 𝜔Ct cos 𝜔C t - gQ(t) sin2 𝜔ct  

= - 
1

 2
 gQ(t) + 

1

2
 gI(t) sin 2𝜔ct+ 

1

 2
gQ(t) cos 2𝜔ct 

Again, the first term is a low pass signal, while the second and third are high 

frequency terms centered about 2 fc.  

gQ(t) = - low pass{2g(t) sin𝜔ct}In the frequency domain, this is equivalent to 

 𝐺𝑄(𝑓) = {
𝑗[𝐺(𝑓 − 𝑓𝑐) − 𝐺(𝑓 + 𝑓𝑐)                   − 𝑤 ≤ 𝑓 ≤ 𝑤
0                                                              𝑜𝑡herwise

} 

 

 

 

Band pass systems 

The analysis of band pass systems can be simplified by using the complex envelope 

concept. Here, results and techniques from low pass systems can be easily applied to 

band pass systems.  

The problem to be addressed is: 

The input x(t) is a band pass signal 

x(t)=xI(t)cos𝜔ct - xQ(t)sin𝜔ct 

x(t) is applied to a band pass filter with impulse response 

h(t) = hI(t)cos𝜔ct - hQ(t)sin𝜔ct 

The objective is to find the filter output y(t). The output is, of course, the convolution 

of x(t) and h(t)  

 y(t) = x(t)*h(t)),   
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which can also be expressed as 

 y(t) = yI(t)cos𝜔ct - yQ(t)sin𝜔ct 

Due to the band-pass nature of the problem, carrying out the direct convolution will 

be a tedious task due to the presence of the sin and cos functions in all terms. The 

complex envelope concept simplifies the problem to a very great extent. The 

procedure is summarized as follows: 

a. Form the complex envelope for both the input and the channel: 

 𝑥̃(t)= xI(t) + jxQ(t) 

 ℎ̃(t)= hI(t) + jhQ(t) 

b. Carry out the convolution between 𝑥̃(t) and ℎ̃(t). Note that both signals are 

low-pass signals and so is 𝑦̃(t). 

 

2 𝑦̃(t)= ℎ̃(t) * 𝑥̃(t) 

 

𝑦̃(t) = yI(t) + jyQ(t) 

c. The band-pass filter output is obtained from the low pass signal 𝑦̃(t) through 

the relation 

y(t) =Re{𝑦̃(t) 𝑒jwct} 

or through the relation 

  y(t) = yI(t)cos𝜔ct - yQ(t)sin𝜔ct 
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Example : 

The rectangular radio frequency (RF) pulse  

x(t) = {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

is applied to a linear filter with impulse response (We will see later that this is a filter 

matched to x(t), called the matched filter). 

h(t) = x(T - t) 

Assume that T= nTC; n is an integer, Tc = 
1

𝑓𝑐
. Determine the response of the filter and 

sketch it. 

Solution: We follow the three steps outlined above. 

h(t) = 𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐(𝑇 − 𝑡) 

= 𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑇 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴 𝑠𝑖𝑛2𝜋𝑓𝑐𝑇𝑠𝑖𝑛2𝜋𝑓𝑐 t 

=𝐴 𝑐𝑜𝑠2𝜋 (
𝑛𝑇𝑐

𝑇𝑐
) 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴 𝑠𝑖𝑛2𝜋 (

𝑛𝑇𝑐

𝑇𝑐
) 𝑠𝑖𝑛2𝜋𝑓𝑐t 

       

               cos2𝑛𝜋≡1                                sin2𝑛𝜋≡0 

Therefore,  h(t) = {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

The complex envelopes of x(t) and h(t) are (step a) 

 𝑥 ̃(t) = {
𝐴             0 ≤ 𝑡 ≤ 𝑇
  0                          𝑜. 𝑤 

} 

 ℎ ̃(𝑡) = {
𝐴             0 ≤ 𝑡 ≤ 𝑇
  0                          𝑜. 𝑤 

} 

 

𝑦̃(t) = 𝑥̃(𝑡) ∗ ℎ̃(𝑡) is the triangular signal shown in the Figure (step b). 
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2𝑦̃(𝑡)={
𝐴2𝑡                                       0 ≤ 𝑡 ≤ 𝑇
  𝐴2(2𝑇 − 𝑡)                       T ≤ 𝑡 ≤ 2𝑇

} 

The bandpass signal is obtained as (step c) 

𝑦(𝑡) =

{
 

 
𝐴2

2
𝑡 𝑐𝑜𝑠𝑤𝑐𝑡                         0 ≤ 𝑡 ≤ 𝑇

𝐴2

2
(2𝑇 − 𝑡) 𝑐𝑜𝑠𝑤𝑐𝑡       𝑇 ≤ 𝑡 ≤ 2𝑇 }

 

 
 

  𝑦(𝑡)  is sketched as in the figure below. 

 

 

Exercise 

The band-pass signal 𝑥(𝑡) = 𝑒−
𝑡

𝜏 cos(2𝜋𝑓𝑐𝑡) 𝑢(𝑡) is applied to a band-pass filter with 

impulse response ℎ(𝑡) given as: 

 ℎ(𝑡) =  {
𝐴 𝑐𝑜𝑠2𝜋𝑓𝑐𝑡         0 ≤ 𝑡 ≤ 𝑇
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

Find and sketch the filter output. 

 

 



ENEE 339 Normal Amplitude Modulation Fall 2018-2019 

1 

 

Module 3 

Normal Amplitude Modulation 
 

Modulation: is the process by which some characteristic of a carrier )(tc  is varied in 

accordance with a message signal )(tm . 

 

Amplitude modulation is defined as the process in which the amplitude of the carrier )(tc  is 

varied linearly with )(tm . Four types of amplitude modulation will be considered in this 

chapter. These are normal amplitude modulation, double sideband suppressed carrier 

modulation, single sideband modulation, and vestigial sideband modulation. 

 

A common form of the carrier, in the case of continuous wave modulation, is a sinusoidal 

signal of the form 

 

( ) cos(2 )C Cc t A f t    

 

The baseband (message) signal )(tm  is referred to as the modulating signal and the result of 

the modulation process is referred to as the modulated signal )(ts . The following block 

diagram illustrates the modulation process.  

 

 
 

We should point out that modulation is performed at the transmitter and demodulation, which 

is the process of extracting )(tm  from )(ts , is performed at the receiver. 

ADD a section explaining why we need modulation 

 

Normal Amplitude Modulation 
 

A normal AM signal is defined as 

 

𝒔(𝒕) = 𝑨𝒄(𝟏 + 𝒌𝒂𝒎(𝒕)) 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕) 
 

where, ak   is the sensitivity of the AM modulator (units in  1/volt). )(ts  can be also be 

written in the form: 

)()( tAts  tfC2cos  

where, aCC kAAtA )( )(tm . In this representation, we observe that ( )A t  is related to 

)(tm  in a linear relationship of the form bxay  . 

 

The envelope of )(ts  is defined as  

)(1)( tmkAtA aC   
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Notice that the envelope of )(ts  has the same shape as )(tm  provided that: 

 

1. 0)(1  tmka   or, equivalently, 1)( tmka . Over-modulation occurs when  

1)( tmka ,  resulting in envelope distortion. 

2. wfC   , where w  is bandwidth of )(tm . 
Cf  has to be at least 10 w . This ensures 

the formation of an envelope, whose shape resembles the message signal. 

 

Matlab Demonstration  

 

The figure below shows the normal AM signal 𝑠(𝑡) = (1 + 0.5 cos 2𝜋𝑡) cos(2𝜋(10𝑡)  
a. Make similar plots for the cases (   = 0.5, 1, and 1.5) 

b.Show the effect of 
Cf  on the envelope. (Take 

Cf  = 4 Hz, and
Cf  = 25Hz) 

 
 

 

 Spectrum of the Normal AM Signal 

Let the Fourier transform of  )(tm  be as shown (The B.W of )(tm  = w  Hz). 

 
 )(1)( tmkAts aC  tfC2cos    (dc + message)*carrier 

CAts )( tfC2cos  tftmkA CaC 2cos)(  (carrier + message*carrier) 
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Taking the Fourier transform, we get 

)(
2

)(
2

)(
2

)(
2

)( C
aC

C
aC

C
C

C
C ffM

kA
ffM

kA
ff

A
ff

A
fS     

 

The spectrum of )(ts  is shown below 

 
 

Remarks 

a. The baseband spectrum )( fM , of the message has been shifted to the bandpass 

region centered around the carrier frequency 
Cf . 

b. The spectrum ( )S f  consists of two sidebands (upper sideband and lower sideband) 

and a carrier. 

c. The transmission bandwidth of )(ts  is: 

wwfwfWB CC 2)()(.   

             Which is twice the message bandwidth. 

 

Power Efficiency 

 

The power efficiency of a normal AM signal is defined as: 

 

carriertheinpowersidebandstheinpower

sidebandstheinpower


  

 

Now, we find the power efficiency of the AM signal for the single tone modulating signal 

( ) cos(2 )m mm t A f t . Let m aA k , then )(ts  can be expressed as 

  

tftfAts CmC  2cos)2cos1()(   

tff
A

tff
A

tfAts

tftfAtfAts

mC
C

mC
C

CC

mCCCC

)(2cos
2

)(2cos
2

2cos)(

2cos2cos2cos)(














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Power in carrier 
2

2

CA
  

Power in sidebands 
2

1

22

1
2











CA
2

2







 CA
 

                                  
222222

4

1

8

1

8

1
 CCC AAA   

Therefore, 

2

2

22
2

22

2

4

1

2

4

1

















C
C

C

A
A

A

        ;     01    

 

The following figure shows the relationship between   and   

 
 

The maximum efficiency occurs when   = 1, i.e. for a 100% modulation index. The 

corresponding maximum efficiency is only   = 1/3. As a result, 2/3 of the transmitted power 

is wasted in the carrier. 

 

Remark: Normal AM is not an efficient modulation scheme in terms of the utilization of the 

transmitted power. 

 

Exercise 

a. Show that for the general AM signal ( ) 1 ( ) cos(2 )C a cs t A k m t f t , the power 

efficiency is given by 

2 2 2
2 2

2 2 2
2 2 2

1
( ) ( )2

1 1 ( )( )
2 2

C a
a

C a
C a

A k m t k m t

A k m tA k m t
, where 

2 2( )ak m t  is the average power in ( )ak m t  

b. Apply the above formula for the single tone modulated signal 

tftfAts CmC  2cos)2cos1()(   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

 

 
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AM Modulation Index 

 

Consider the AM signal 

 )(1)( tmkAts aC  tfC2cos tftA C2cos)(  

 

The envelope of )(ts  is defined as: 

)(1)( tmkAtA aC   

The following block diagram illustrate the envelope detection process for a sinusoidal message 

signal. 

 
 

To avoid distortion, the following condition must hold 

 

0)(1  tmka         or          1)( tmka  

 

The modulation index of an AM signal is defined as:  

 

max min

max min

( ) ( )
 ( . )

( ) ( )

A t A t
Modulation Index M I

A t A t
 

Example (single tone modulation) 

 

Let tfAtm mm 2cos)(   

maCmC

CmmaC

AkwheretftfA

tftfAkAtsthen









,2cos)2cos1(

2cos)2cos1()(,
 

To avoid distortion 1 ma Ak  

The envelope  tfAtA mC  2cos1)(   is plotted below 

 
 

max min
( ) (1 ),               ( ) (1 )

C C
A t A A t A  

(1 ) (1 ) 2
.

(1 ) (1 ) 2
C C C

C C C

A A A
M I

A A A
 



ENEE 339 Normal Amplitude Modulation Fall 2018-2019 

6 

 

Therefore, the modulation index is . 

 

Over-modulation 

When the modulation index 1 , an ideal envelope detector cannot be used to extract )(tm  

from s(t) and distortion takes place. 

 

Example: Let tftfAts CmC  2cos)2cos1()(   be applied to an ideal envelope 

detector, sketch the demodulated signal for 25.1,0.1,25.0 and . 

As was mentioned before, the output of the envelope detector is tfAty mC  2cos1)(   

Case1 : (  = 0.25) 

tfAty mC 2cos25.01)(   

 
 

 

Here, )(tm  can be extracted without distortion. 

 

Case2: (   = 1.0) 

tfAty mC 2cos1)(   

 
Here again, )(tm  can be extracted without distortion. 

 

Case3: (  = 1.25) 

)(ty 
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tfAty mC 2cos25.11)(   

 
 

Here, )(tm  cannot be recovered without distortion. 

 

Generation of Normal AM 
 

Square Law Modulator (will not be covered for ENCS students) 

Consider the following circuit 

 

 
 

For small variations of )(1 tV  around a suitable operating point, )(2 tV  can be expressed as: 

2

12112 VVV    ;   Where 1  and 2  are constants.        

Let tfAtmtV CC 2cos)()(1


  

Substituting 1( )V t  into the nonlinear characteristics and arranging terms, we get 

)2(cos)()(2cos)(
2

1)( 2
2

2

2

21

1

2
12 tfAtmtmtftmAtV CCCC 



















  

2( ) (1) (2) (3) (4)V t  

The first term is the desired AM signal obtained by passing  )(2 tV   through a bandpass filter. 

tftmAts CC 



 2cos)(

2
1)(

1

2
1 











   
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Note: the numbers shown in above figure represent the number of term in )(2 fV . 

(1) = The desired normal AM signal 

(2) = )( fM   

(3) = )(*)( fMfM  

(4) = The cosine square term amounts to a term at 2fc and a DC term. 

 

 

Limitations of this technique: 

a. Variations of )(1 tV  should be small to justify the second order approximation 

of the nonlinear characteristic. 

b. The bandwidth of the filter should be such that wfwwf CC 32   

When wfC  , a bandpass filter with reasonable edge could be used. 

When Cf  is of the order w3 , a filter with sharp edges should be used. 

 

Generation of Normal AM  
 

 The Switching Modulator (will be covered) 

 

Assume that the carrier )(tc  is large in amplitude so that the diode –shown in the figure 

below- acts like an ideal switch. 

 

 
 

When )(tm  is small compared to )(tc , 
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2

( ) cos ; ( ) 0
( )

0 ; ( ) 0

C Cm t A t c t
V t

c t

 
 


 

Here, the diode opens and closes at a rate equals to the carrier frequency Cf . This switching 

mechanism can be modeled as: 

 

  )()(cos)(2 tgtmtAtV PCC    

where )(tgP  is the periodic square function, expanded in a Fourier series as 









 ...5cos

5

1
3cos

3

1
cos

2

2

1
)( ttttg CCCP 


 

 
 

   

  ...cos)(

3cos
3

2
)(coscos

2

2

1
)(cos)(2































tAtm

ttmtAttmtAtV

CC

CCCCCC










 

 

 

...2cos
3

2

3cos)(
3

2
2coscos)(

2
cos

22

)(
)(2





tA

ttmt
AA

ttmt
Atm

tV

CC

CC

CC

CC

C















 

 

 
 

A bandpass filter with a bandwidth w2 , centered at Cf , passes the second term (a carrier) 

and the third term (a carrier multiplied by the message). The filtered signal is 

Cf2 
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ttmt
A

ts CC

C 


 cos)(
2

cos
2

)(   

ttm
A

A
ts C

C

C 


cos)(
4

1
2

)( 







   ;        Desired AM signal. 

Modulation Index 
max

)(
4

. tm
A

IM
C

  

 

Demodulation of AM Signal: The Ideal Envelope Detector 

 

The ideal envelope detector responds to the envelope of the signal, but is insensitive to phase 

variation. If  

 )(1)( tmkAts aC  tfC2cos  

then, the output of the ideal envelope detector is  

)(1)( tmkAty aC   

  

A Simple Practical Envelope Detector 

 

It consists of a diode followed by an RC circuit that forms a low pass filter. 

 
 

During the positive half cycle of the input, the diode is forward biased and C  charges rapidly 

to the peak value of the input. When )(ts  falls below the maximum value, the diode becomes 

reverse biased and C  discharges slowly through LR . To follow the envelope of )(ts , the 

circuit time constant should be chosen such that : 

w
CR

f
L

C

11
  

Where w  is the message B.W and Cf  is the carrier frequency. 
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When a capacitor C  is added to a half wave rectifier circuit, the output follows the envelope 

of )(ts . The circuit output (with C connected) follows a curve that connects the tips of the 

positive half cycles, which is the envelope of the AM signal. 
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Example: Demodulation of AM Signal 

 

Let   ttmkts Ca cos)(1)(   be applied to the scheme shown below, find )(ty . 

 

 

𝑣(𝑡) = 𝑠(𝑡)2 = (1 + 𝑘𝑎𝑚(𝑡))
2
𝑐𝑜𝑠2(2𝜋𝑓𝑐𝑡) 

 

𝑣(𝑡) = 0.5(1 + 𝑘𝑎𝑚(𝑡))
2
+ 0.5(1 + 𝑘𝑎𝑚(𝑡))

2
𝑐𝑜𝑠(4𝜋𝑓𝑐𝑡) 

 

The filter suppresses the second term and passes only the first term. Hence, 

𝜔(𝑡) = 0.5(1 + 𝑘𝑎𝑚(𝑡))
2
 

 

𝑦(𝑡) = √𝜔(𝑡) =
1

√2
(1 + 𝑘𝑎𝑚(𝑡)) 

The capacitor blocks the dc term (first term on the RHS) and the output becomes 

 

𝑦(𝑡) =
1

√2
𝑘𝑎𝑚(𝑡) 

 

Concluding remarks about AM: 

 

i. Modulation is accomplished using a nonlinear device. 

ii. Demodulation is accomplished using a simple envelope detector. 

iii. AM is wasteful of power; most power resides in the carrier (not in the 

sidebands). 

iv. The transmission B.W = twice message B.W 
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Module 3 

Double Sideband, Single Sideband, and Vestigial Sideband Modulation 

In this chapter, we will study in detail three other types of amplitude modulation 

techniques, namely, Double Sideband Suppressed Carrier Modulation, Single Sideband 

Suppressed Carrier Modulation, and Vestigial Sideband Modulation. For each type, we 

will study the generation, demodulation, spectrum, transmission bandwidth, required 

power, and other relevant aspects. First, we start with Double Sideband Suppressed 

Carrier Modulation. 

Double Sideband Suppressed Carrier Modulation (DSB-SC) 

A DSB-SC signal is an amplitude-modulated signal that has the form 

𝒔(𝒕) = 𝑨𝒄𝒎(𝒕)𝐜𝐨𝐬⁡(𝟐𝝅𝒇𝒄𝒕), where 

 𝑐(𝑡) = 𝐴𝑐cos⁡(2𝜋𝑓𝑐𝑡):  is the carrier signal 

 𝑚(𝑡):  is the baseband message signal 

 𝑓𝑐 >> 𝑊 ,⁡𝑊  is the bandwidth of the baseband message signal 𝑚(𝑡) 

                                                                                

The spectrum of 𝑠(𝑡) is 

𝑆(𝑓) = ℑ{𝐴𝑐𝑚(𝑡)co s(2𝜋𝑓𝑐𝑡)} 

           =
𝐴𝑐

2
[𝑀(𝑓 − 𝑓𝑐) + 𝑀(𝑓 + 𝑓𝑐)] 
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  Remarks: 

1.  No impulses are present in the spectrum at⁡± fc , i.e., no carrier is transmitted. 

2. The transmission B.W of s(t) = 2W, twice the message bandwidth (same as that of 

normal AM). 

3. Power efficiency = 
𝑝𝑜𝑤𝑒𝑟⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑠𝑖𝑑𝑒⁡𝑏𝑎𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙⁡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑⁡𝑝𝑜𝑤𝑒𝑟
 = 100%. This is a power efficient 

modulation scheme. 

4. Coherent detector is required to extract m(t) from s(t), as we shall demonstrate shortly. 

5. Envelope detection cannot be used for this type of modulation. 

Computer Simulation: The next figure shows a DSB-SC signal when 𝑚(𝑡) = cos(2𝜋𝑡) 

and 𝑐(𝑡) = cos(2𝜋(10)𝑡). 
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Demodulation of a DSB-SC Signal 

A DSB-SC signal is demodulated using what is known as coherent demodulation. This 

means that the modulated signal s(t) is multiplied by a locally generated signal at the 

receiver which has the same frequency and phase as that of the carrier c(t) at the 

transmitting side. 

 

a.  Perfect Coherent Demodulation 

   Let   𝑐(𝑡) = 𝐴𝑐cos⁡(2𝜋𝑓𝑐𝑡),  𝑐′(𝑡) = 𝐴𝑐′cos⁡(2𝜋𝑓𝑐𝑡) 

Mixing the received signal with the version of the carrier at the receiving side, we get 

v(t) = s(t)  A c
\ cos2πfct = Ac A c

\ m(t) cos22πfct 

      = 
Ac⁡A⁡c\⁡

2
 m(t) [1+ cos 2 (2πfct)] 

     = 
Ac⁡A⁡c\⁡

2
 m(t) + ⁡

Ac⁡A⁡c\⁡

2
 m(t) cos 2(2πfct) 

The first term on the RHS is proportional to⁡𝑚(𝑡), while the second term is a DSB signal 

modulated on a carrier with frequency 2𝑓𝑐. The high frequency component can be 

eliminated using a LPF with B.W = W. The output is 

𝒚(𝒕) =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕) 

Therefore, 𝑚(𝑡) has been recovered from 𝑠(𝑡) without distortion, i.e., the whole 

modulation-demodulation process is distortion-less. 

b. Effect of Carrier Non-Coherence on Demodulated Signal 

Here we consider two cases. 

Case 1: A constant phase difference between c(t) and c\(t) 

        Let c(t) = Accos2πfct             , c
\(t) = A c

\ cos(2πfct+Ø) 

We use the demodulator considered above  
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v(t) = Acm(t)cos2πfct . A c
\ cos(2πfct+Ø) 

      = 
Ac⁡A⁡c\⁡

2
m(t)[ cos (4πfct+Ø)+cos Ø] 

      = 
Ac⁡A⁡c\⁡

2
m(t) cos (4πfct+Ø)+⁡

Ac⁡A⁡c\⁡

2
m(t) cos Ø 

The low pass filter suppresses the first high frequency term and admits only the second 

low frequency term. The output is 

𝒚(𝒕) =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔∅ 

For  0 < Ø <
𝜋

2
 ,  0  < cos Ø < 1,  y(t) suffers from an attenuation due to Ø. 

However, for Ø= 
𝜋

2
,  cos Ø = 0 and y(t) = 0, i.e., receiver loses the signal. 

The disappearance of a message component at the demodulator output is called 

quadrature null effect. This highlights the importance of maintaining synchronism 

between the transmitting and receiving carrier signals c\(t) and c(t). 

Case 2:    Constant Frequency Difference between c(t) and c\(t) 

Let c(t) = Accos2πfct  ,  c
\(t) = A c

\ cos2π(fc+∆f)t 

In an analysis similar to that carried out in case 1, we get 

v(t) = Acm(t)cos2πfct . A c
\ cos2π(fc+∆f)t 

                = 
Ac⁡A⁡c\⁡

2
m(t)[ cos  (4πfct+2π∆ft)+cos 2π∆ft] 

After low-pass filtering, 

𝒚(𝒕) =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔(𝟐𝝅∆𝒇𝒕) 

As you can see, 𝑦(𝑡) ≠ 𝑘𝑚(𝑡) , but rather 𝑚(𝑡) is multiplied by a time function. Hence, 

the system is not distortion-less. In addition, y(t) appears as a double side band modulated 

signal with a carrier with magnitude ∆f. 

Example: Let m(t) = cos2π(1000)t and let ∆f =100 Hz  

From the analysis in case 2 above,  

y(t) =⁡
Ac⁡A⁡c\⁡

2
 cos2π(1000)t cos2π(100)t 



Fall 2018-2019 DSB-SC, SSB-SC, Vestigial Sideband Modulation ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

             = 
Ac⁡A⁡c\⁡

4
[cos 2π(1100)t + cos 2π(900)t] 

The original message was a signal with a single frequency of 1000 Hz while the output 

consists of a signal with two frequencies at f1 =1100 Hz and f2  = 900 Hz (⇒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛) 

Exercise: Use Matlab to plot both m(t) and y(t) and see the distortion caused by the lack 

of synchronization between the transmitting and receiving oscillators in the previous 

example. 
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Generation of DSB-SC  

a. Product Modulator: It multiplies the message signal m(t) with the carrier c(t). 

This technique is usually applicable when low power levels are possible and over a 

limited carrier frequency range. 

                

b . Ring Modulator 

Consider the scheme shown in the figure. 

Let c(t) >> m(t). Here the carrier c(t) controls the behavior of the diodes . 

 

During the positive half cycle of c(t), c(t) > 0, and D1 and D2 are ON while D3 and D4 

are OFF. Here,  y(t) = m(t)  and the circuit appears like this 
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During the negative half cycle of  c(t), c(t) < 0 and D3 and D4 are ON while and D1 and 

D2 are OFF. Here, y(t) = -m(t) , and the circuit appears like this 

 

So m(t) is multiplied by +1 during the +ve half cycle of c(t) and m(t) is multiplied by -1 

during the -ve half cycle of c(t). Mathematically, y(t) behaves as if multiplied by the 

switching function gp(t) where  gp(t) is the square periodic function with period Tc = 
1

𝑓𝑐
, 

where fc the period of c(t). By expanding gp(t) in a Fourier series, we get 

 

       y(t) = m(t)[
4

𝜋
 cos2πfct  - 

4

3𝜋
 cos 3(2πfct) + 

4

5𝜋
  cos5(2πfct)]⁡ 

             = m(t) 
4

𝜋
 cos2πfct  - m(t) 

4

3𝜋
 cos 3(2πfct) + m(t) 

4

5𝜋
  cos5(2πfct) 

When y(t) passes through the BPF with center frequency 𝑓𝑐,  and bandwidth = 2W, the 

only component that appears at the output is the desired DSB-SC signal, which is 

  𝒔(𝒕) =
𝟒

𝝅
𝒎(𝒕)𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝒕 

C. Nonlinear Characteristic 

Consider the scheme shown in the figure  
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Let the non-linear characteristic be of the form  

 y(t) = a0x(t) + a1x
3(t) 

Let x(t) = Acos2πfct + m(t), (m(t) is the message signals)  

 Y = a0( Acos2πfct + m(t)) + a1 (Acos2πfct + m(t))3 

       = a0 Acos2πfct + a0m(t)+ a1A
3cos32πfct + a1 m(t)3 + 3 a1A

2 m(t)cos22πfct 

       + 3A a1cos2πfct 

After some algebraic manipulations, a DSB-SC term appear in x(t) along with other 

undesirable terms. The band pass filter will admit the desired signal, which is 

 s(t) = 
3(A)2a1

2
 m(t) cos(4πfct). 

Note that the carrier frequency=2fc in this case. 
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Carriers Recovery for Coherent Demodulation 

We consider briefly two circuits, which are used to extract the carrier fc from the 

incoming DSB-SC signal. We recall that demodulation of DSB-SC signal requires the 

availability of a signal with the same frequency and phase as that of the carrier c(t) at the 

transmitter side. 

a. Squaring Loop 

The basic elements of squaring loop are shown in the figure below. The incoming signal 

is the DSB-SC signal 𝒔(𝒕) = 𝑨𝒄𝒎(𝒕)𝐜𝐨𝐬⁡(𝟐𝝅𝒇𝒄𝒕). In the figure, we mark seven points 

that demonstrate the operation of the loop. In summary the signals at the points are: 

 

1- 𝑠(𝑡) = 𝐴𝑐𝑚(𝑡)cos⁡(2𝜋𝑓𝑐𝑡); The incoming DSB-SC 

2- 𝑠(𝑡)2 = (𝐴𝑐𝑚(𝑡)cos⁡(2𝜋𝑓𝑐𝑡))
2 =

(𝐴𝑐𝑚(𝑡))2

2
(1 + cos⁡(4𝜋𝑓𝑐𝑡))⁡  

𝑠(𝑡)2 =
(𝐴𝑐𝑚(𝑡))2

2
+
(𝐴𝑐𝑚(𝑡))2

2
cos(4𝜋𝑓𝑐𝑡)⁡ 

            𝑙𝑜𝑤𝑝𝑎𝑠𝑠⁡𝑡𝑒𝑟𝑚 + 𝑏𝑎𝑛𝑑𝑝𝑎𝑠𝑠⁡𝑡𝑒𝑟𝑚⁡𝑎𝑟𝑜𝑢𝑛𝑑⁡2𝑓𝑐 

                                            

3- ⁡Kcos(4𝜋𝑓𝑐𝑡)⁡ (The BPF suppresses the first term and admits the second term. 

When the bandwidth of the filter is narrow, its output is a signal with 

frequency 2𝑓𝑐) 

4- Kcos(4𝜋𝑓𝑐𝑡)⁡ (The limiter removes any variation in the amplitude but keeps 

the frequency unchanged). 
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5- 𝐴𝑐
′cos⁡(2𝜋𝑓𝑐𝑡); The frequency divider produces a signal with frequency 𝑓𝑐, as 

required. 

6- 𝑠(𝑡)𝐴𝑐
′cos⁡(2𝜋𝑓𝑐𝑡) = 𝐴𝑐𝐴𝑐

′𝑚(𝑡)cos⁡(2𝜋𝑓𝑐𝑡)cos⁡(2𝜋𝑓𝑐𝑡)  

=
𝐴𝑐𝐴𝑐

′

2
𝑚(𝑡) +

𝐴𝑐𝐴𝑐
′

2
𝑚(𝑡)cos⁡(4𝜋𝑓𝑐𝑡); Product Demodulator 

7- 𝒚(𝒕) =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕); Demodulator output. The LPF suppresses the second term. 

Even though the receiver did not have a copy of the carrier, yet it was able to 

perform coherent demodulation by generating its own version of the carrier via 

this loop. 
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Costas Loop:  

 

 

The VCO: is an oscillator that produces a signal whose frequency is proportional to the 

voltage 𝑒(𝑡). In this analysis, it is assumed that the instantaneous frequency of the VCO 

is related to 𝑒(𝑡)  by  𝒇𝒓(𝒕) = 𝒇𝒄 − 𝒌𝒂𝒆(𝒕). 

When 𝑒𝑐(𝑡) = 0 , the frequency of the VCO 𝑓𝑟(𝑡) = 𝑓𝑐 . This is called the free running 

frequency. In the initialization stage, the frequency of the VCO is set to 𝑓𝑐, which should 

be the same as that used by the transmitter. During transmission, the frequency (or phase) 

of the received signal may change. The objective of the loop is to keep track of this 

change. Let the frequency of the received 𝑠(𝑡) be ⁡𝑓𝑠 ⁡= ⁡𝑓𝑐 + ∆𝑓 

Initial Frequency Difference is: ⁡𝑓𝑠 − ⁡𝑓𝑟 = (⁡𝑓𝑐 + ∆𝑓) − ⁡𝑓𝑐 = ∆𝑓 . 

Initial phase shift Δ∅ = 2𝜋Δ𝑓 

Assume that the received DSB signal takes the form, 

 𝑠(𝑡) = 𝐴𝑐𝑚(𝑡) cos(2𝜋𝑓𝑐𝑡 + 2𝜋∆𝑓𝑡) = 𝐴𝑐𝑚(𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅) 

At the initial stage, the VCO produces the signal 𝑐′(𝑡) = 𝐴0 cos(2𝜋𝑓𝑐𝑡) 

 𝑉1 = 𝐴𝑐𝐴0𝑚(𝑡) cos(2𝜋𝑓𝑐𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅)   

 𝑦(𝑡) = 𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡{𝑉1} = 𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡{𝐴𝑐𝐴0𝑚(𝑡) cos(2𝜋𝑓𝑐𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅)} 



Fall 2018-2019 DSB-SC, SSB-SC, Vestigial Sideband Modulation ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

 𝑦(𝑡) =
𝐴𝑐𝐴0

2
𝑚(𝑡)𝑐𝑜𝑠∅ 

 𝑉2 = 𝐴𝑐𝐴0𝑚(𝑡) sin(2𝜋𝑓𝑐𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅) 

 𝑉3(𝑡) = 𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡{𝑉2} = 𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡{𝐴𝑐𝐴0𝑚(𝑡) sin(2𝜋𝑓𝑐𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅)} 

 𝑉3(𝑡) = −
𝐴𝑐𝐴0

2
𝑚(𝑡)𝑠𝑖𝑛∅ 

           𝑉4(𝑡) = (
𝐴𝑐𝐴0

2
𝑚(𝑡)𝑐𝑜𝑠∅)(−

𝐴𝑐𝐴0

2
𝑚(𝑡)𝑠𝑖𝑛∅) 

 When the bandwidth of LPF 3 is very narrow, the output can be approximated as 

 𝑒(𝑡) = −𝑐0𝑠𝑖𝑛2∅, 𝑐0 is a constant. 

The received frequency of 𝑠(𝑡)  is  ⁡𝑓𝑠(𝑡) = 𝑓𝑐 + ∆𝑓.  The frequency produced by the 

VCO is 𝑓𝑟(𝑡) = 𝑓𝑐 − 𝑘𝑎𝑒(𝑡). Note that if ∅ = 2𝜋∆𝑓 > 0, then 𝑒(𝑡) < 0. Meaning that  

𝑓𝑟(𝑡) = 𝑓𝑐+𝑘𝑎𝑐0𝑠𝑖𝑛2∅. That is 𝑓𝑟(𝑡) increases trying to be the same as that of 𝑠(𝑡). 

When ∅ is small, then sin⁡(2∅) ≅ 2∅. Substituting into 𝑓𝑟(𝑡), we get 

 𝑓𝑟(𝑡) = 𝑓𝑐+𝑘𝑎𝑐0(2∅)⁡;   New frequency of the VCO 

Also, 𝑓𝑠(𝑡) = ⁡𝑓𝑐 + ∅/𝟐𝝅  ;    Received frequency of 𝑠(𝑡) 

One can chose the loop constants so that 2𝑘𝑎𝑐0 = 1/2𝜋. In this case, 

  𝑓𝑟(𝑡) = 𝑓𝑠(𝑡);  Both frequencies become equal. 

New Frequency Difference is: 𝑓𝑠 − 𝑓𝑟 = 0 (practically, it is not zero but a small 

difference) 

New phase shift Δ∅ = 0 (practically, it is not zero but a small difference) 

Here, any change that takes in the frequency of the incoming signal s(t) is immediately 

felt by the VCO, which changes its frequency accordingly keeping the difference 

between the two frequencies very small. The loop output 𝑦(𝑡) will always be 

proportional to 𝑚(𝑡).  
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Single Sideband Modulation 

In this type of modulation, only one of the two sidebands of DSB-SC is retained while 

the other sideband is suppressed. This mean that B.W of the SSB signal is one half that of 

DSB-SC. The saving in the bandwidth comes at the expense of increasing modulation 

complexity. 

The time-domain representation of a SSB signal is 

 𝒔(𝒕) = ⁡𝑨𝑪𝒎(𝒕)𝒄𝒐𝒔𝝎𝒄𝒕 ± 𝑨𝑪𝒎̂(𝒕)𝒔𝒊𝒏𝝎𝒄𝒕⁡  

𝑚̂(𝑡): Hilbert transform of 𝑚(𝑡) obtained by passing 𝑚(𝑡) through a 90-degree phase 

shifter. 

           - sign: upper sideband is retained.  

          + sign: lower sideband is retained. 

 

Generation of SSB: Filtering Method 

A DSB-SC signal 𝑥(𝑡) = 2𝐴𝐶𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 is generated first. A band pass filter with 

appropriate B.W and center frequency is used to pass the desired side band only and 

suppress the other sideband. 

                    

                    

 

 

 

 

 

 



Fall 2018-2019 DSB-SC, SSB-SC, Vestigial Sideband Modulation ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

 

  

The band pass filter must satisfy two conditions: 

a. The pass band of the filter must occupy the same frequency range as the desired 

sideband. 

b. The width of the transition band of the filter separating the pass band and the stop 

band must be at least 1% of the center frequency of the filter. i.e., 0.01f0 ≤ ∆f. 

This is sort of a rule of thumb for realizable filters on the relationship between the 

transition band and the center frequency. 
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Two remarks should be considered when generating a SSB signal.  

1. Ideal filter do not exist in practice meaning that a complete elimination of the 

undesired side band is not possible. The consequence of this is that either part of the 

undesired side band is passed or the desired one will be highly attenuated. SSB 

modulation is suitable for signals with low frequency components that are not rich in 

terms of their power content. 

2. The width of the transition band of the filter should be at most twice the lowest 

frequency components of the message signal so that a reasonable separation of the two 

side band is possible. If the message significant frequency components extends between  

(𝑓𝑙, 𝑓𝑢), then 2𝑓𝑙 ≥ ∆𝑓. 

Δf ≥ 0.01𝑓0 
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Generation of SSB Signal: Phase Shift Method 

The method is based on the time –domain representation of the SSB signal 

 𝑠(𝑡) = ⁡𝐴𝐶𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 ± 𝐴𝐶𝑚̂(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡⁡  

Double Sideband Signal 
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Two- Stage Generation of SSB Signal 

When the conditions on the filter cannot be met in a single-stage SSB system, a two-stage 

scheme is used instead where less stringent conditions on the filters can be imposed. The 

block diagram illustrates this procedure. 

 

m1(t) is the base band signal with a gap in its spectrum extending over (0, fI). 
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y1(t):  is a DSB-SC signal on a carrier frequency f1. 

BPF1 selects the upper side band of y1(t).  The parameters of the filter are f01 (center 

frequency) and the transition band length ∆f1. 

We must maintain that  

∆f1 ≥ 0.01 f01                    and                   ∆f1 ≤ 2 fI 

s1(t) is a single side band signal. The frequency gap of this signal extends over (0, f1+ fL). 

The second modulator views this signal as the baseband signal to be modulated on a 

carrier with frequency f2. 

The second modulator generates a DSB signal. The second BPF with center frequency f02 

and transition band ∆f2  selects the upper side band. Again, we maintain that  

∆f2  ≥ 0.01 f02                  and                   ∆f2  ≤  2 (f1+fI) 
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Demodulation of SSB: Time-Domain Analysis 

A SSB signal can be demodulated using coherent demodulation (oscillator at the receiver 

should have the same frequency and phase as those of transmitter carrier ) as shown in 

the figure: 

 

Let the received signal be the upper single sideband   

 𝑠(𝑡) = ⁡𝐴𝐶𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 − 𝐴𝐶𝑚̂(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡⁡  

At the receiver,⁡𝑠(𝑡) is mixed with the carrier signal. The result is 

 𝑣(𝑡) = ⁡𝑠(𝑡)𝐴𝐶 ⁡𝑐́𝑜𝑠𝜔𝑐𝑡 

               ⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡𝐴𝐶 ⁡⁡́[𝐴𝐶𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 − 𝐴𝐶𝑚̂(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡]𝑐𝑜𝑠𝜔𝑐𝑡 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡𝐴𝐶𝐴𝐶 ⁡𝑚́(𝑡)𝑐𝑜𝑠2𝜔𝑐𝑡 − 𝐴𝐶𝐴𝐶 ⁡𝑚̂́(𝑡)⁡𝑠𝑖𝑛𝜔𝑐𝑡⁡𝑐𝑜𝑠𝜔𝑐𝑡 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ⁡
𝐴𝐶𝐴𝐶 ⁡́

2
𝑚(𝑡) +

𝐴𝐶𝐴𝐶 ⁡́

2
𝑚(𝑡)𝑐𝑜𝑠2𝜔𝑐𝑡 −

𝐴𝐶𝐴𝐶 ⁡́

2
𝑚̂(𝑡)⁡𝑠𝑖𝑛2𝜔𝑐𝑡 

The low pass filter admits only the first terms. The output is: 

 𝒚(𝒕) = ⁡
𝑨𝑪𝑨𝑪⁡́

𝟐
𝒎(𝒕) 

The following steps demonstrate the demodulation process viewed in the frequency 

domain .  

 𝑉(𝑓) = ⁡
𝐴𝐶⁡́

2
𝑆(𝑓 − 𝑓𝐶) +⁡

𝐴𝐶⁡́

2
𝑆(𝑓 + 𝑓𝐶) 

 𝑌(𝑓) = ⁡𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡ {⁡
𝐴𝐶⁡́

2
𝑆(𝑓 − 𝑓𝐶) +⁡

𝐴𝐶⁡́

2
𝑆(𝑓 + 𝑓𝐶)⁡} 

 

 



Fall 2018-2019 DSB-SC, SSB-SC, Vestigial Sideband Modulation ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

Why One Side Band is Enough: A Frequency-Domain Perspective 
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Demodulation of SSB: Coherent Demodulation  

a. Perfect Coherence  

 

 

 

when ⁡⁡⁡⁡𝑐(𝑡) = 𝐴𝑐 cos𝜔𝑐𝑡 ⁡⁡ , 𝑐́(𝑡) = 𝐴́𝑐 cos𝜔𝑐𝑡  ,  

we have perfect coherence and   

 𝒚(𝒕) =
𝑨𝒄𝑨𝒄́

𝟐
𝒎(𝒕)    

as was  derived  earlier. 

b. Constant Phase Difference  

 

The local oscillator takes the form 

𝑐́(𝑡) = 𝐴́𝑐 cos(𝜔𝑐𝑡 + ∅);   

𝑣(𝑡) = [𝐴𝑐𝑚(𝑡) cos𝜔𝑐𝑡 − 𝐴𝑐𝑚̂(𝑡) sin𝜔𝑐𝑡]𝐴́𝑐 cos(𝜔𝑐𝑡 + ∅) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝐴𝑐𝐴́𝑐𝑚(𝑡) cos𝜔𝑐𝑡 cos(𝜔𝑐𝑡 + ∅) − 𝐴𝑐𝐴́𝑐𝑚̂(𝑡) sin𝜔𝑐𝑡 cos(𝜔𝑐𝑡 + ∅) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
𝐴𝑐𝐴́𝑐
2

𝑚(𝑡) cos(2𝜔𝑐𝑡 + ∅) +
𝐴𝑐𝐴́𝑐
2

𝑚(𝑡) cos(∅) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−
𝐴𝑐𝐴́𝑐
2

𝑚̂(𝑡) cos(2𝜔𝑐𝑡 + ∅) −
𝐴𝑐𝐴́𝑐
2

𝑚̂(𝑡) sin(∅) 

    ⁡𝒚(𝒕) =
𝑨𝒄𝑨́𝒄

𝟐
𝒎(𝒕) 𝐜𝐨𝐬(∅) −

𝑨𝒄𝑨́𝒄

𝟐
𝒎̂(𝒕) 𝐬𝐢𝐧(∅) 

Note that there is a distortion due to the appearance of the Hilbert transform of the 

message signal at the output. 

c. 𝑐́(𝑡) = 𝐴́𝑐 cos ⁡2𝜋(𝑓𝑐 + ∆𝑓)𝑡;  Constant frequency shift 

              𝑣(𝑡) = [𝐴𝑐𝑚(𝑡) cos𝜔𝑐𝑡 − 𝐴𝑐𝑚̂(𝑡) sin𝜔𝑐𝑡]𝐴́𝑐 cos ⁡2𝜋(𝑓𝑐 + ∆𝑓)𝑡 
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                               =
𝐴𝑐𝐴́𝑐

2
𝑚(𝑡)[cos(2𝜔𝑐 + ∆𝜔)𝑡 + cos 2𝜋∆𝑓𝑡] 

    −
𝐴𝑐𝐴́𝑐

2
𝑚̂(𝑡)[sin(2𝜔𝑐 + ∆𝜔)𝑡 − sin2𝜋∆𝑓𝑡] 

  𝒚(𝒕) =
𝑨𝒄𝑨́́𝒄

𝟐
𝒎(𝒕) 𝐜𝐨𝐬 𝟐𝝅∆𝒇𝒕 +

𝑨𝒄𝑨́𝒄

𝟐
𝒎̂(𝒕) 𝐬𝐢𝐧 𝟐𝝅∆𝒇𝒕 

 

Once again we have distortion and  m(t) appears as if single sideband modulated on a 

carrier frequency = ∆ f. 

 

Example : 

Let  m( t ) = ⁡𝑐𝑜𝑠2𝜋(1000)𝑡⁡⁡, ∆𝑓 =⁡  100Hz and let s ( t ) be an upper sideband signal. 

Then, 

  𝑦(𝑡) = ⁡
𝐴𝑐𝐴́𝑐

2
𝑐𝑜𝑠2𝜋(1000)𝑡⁡𝑐𝑜𝑠2𝜋(100)𝑡 +

𝐴𝑐𝐴́𝑐

2
𝑠𝑖𝑛2𝜋(1000)𝑡⁡⁡𝑠𝑖𝑛2𝜋(100)𝑡 

 cos(𝑎 − 𝑏) = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 

 𝑦(𝑡) = cos 2𝜋(900)𝑡 ≠ cos 2𝜋(1000)𝑡 

     Distortion  

So, a message component with f = 1000Hz appears as a 900Hz component at the 

demodulator output. 

Again, distortion occurs because of failing to synchronize the transmitter and receiver 

carrier frequencies. 
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Vestigial Sideband (VSB) Modulation 

 This type of modulation finds applications in the transmission of video signal. 

 Unlike the audio signal, the video signal is rich in low frequency components 

around the zero frequency. 

 The B.W of a video signal is about 5MHz. 

 If a video signal is to be transmitted using DSB, it requires a 10 MHz B.W; 

too large. 

 If a video signal is to be transmitted using SSB (B.W = 5MHz) distortion will 

results due to the inability to suppress one of the sidebands completely using 

practical filters. 

 A compromise between DSB and SSB was proposed called vestigial sideband 

modulation. 

 Here, a DSB-SC signal is first generated The DSB is applied to a band pass 

filter (called a vestigial filter) that has an asymmetrical frequency response 

about (-+fc).  

 The filter allows one of the sidebands to pass almost without attenuation , 

while a trace or a vestige of the second sideband is allowed to pass (most of 

the second sideband is attenuated ) 

 A typical spectral density of an audio and a video signal is shown below. 

 

  



Fall 2018-2019 DSB-SC, SSB-SC, Vestigial Sideband Modulation ENEE 339 

Dr. Wael Hashlamoun-Birzeit University 
 

Generation of a VSB: Filtering Method 

 

 

 

Let Hv(f) be the transfer function of the vestigial filter. We need to find a condition on the 

characteristic of the filter such that the demodulated signal at the receiver is proportional 

to the message signal. Now we proceed to find such a condition.  

 𝑥(𝑡) = 𝐴𝑐𝑚(𝑡) cos𝜔𝑐𝑡  ;  A DSB-SC signal 

 𝑆(𝑓) = ⁡𝑋(𝑓)𝐻𝑣(𝑓)  ; The Fourier transform of the filter output. 

          =
𝐴𝑐

2
{𝑀(𝑓 − 𝑓𝑐) + 𝑀(𝑓 + 𝑓𝑐)}𝐻𝑣(𝑓) ; VSB signal 

 

 

 

 

 

 

 

The objective is to specify a condition on Hv(f) such that V0(t) is an exact replica of m(t) . 

  𝑦(𝑡) = 𝐴𝑐́ 𝑠(𝑡) cos𝜔𝑐𝑡 

  𝑌(𝑓) =
𝐴𝑐́

2
{𝑆(𝑓 − 𝑓𝑐) + 𝑆(𝑓 + 𝑓𝑐)} 

   =
𝐴𝑐𝐴𝑐́

4
{𝑀(𝑓 − 2𝑓𝑐) + 𝑀(𝑓)}𝐻𝑣(𝑓 − 𝑓𝑐) 

   +
𝐴𝑐𝐴𝑐́

4
{𝑀(𝑓 + 2𝑓𝑐) + 𝑀(𝑓)}𝐻𝑣(𝑓 + 𝑓𝑐) 

 

The LPF will eliminate the high frequency component and retains only the low frequency 

terms. 
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  𝑉𝑜(𝑓) =
𝐴𝑐𝐴𝑐́

4
{𝐻𝑣(𝑓 − 𝑓𝑐) + 𝐻𝑣(𝑓 + 𝑓𝑐)}𝑀(𝑓) 

In order for V0(f) to be proportional to M( f ) , we require that  

 𝐻𝑣(𝑓 − 𝑓𝑐) + 𝐻𝑣(𝑓 + 𝑓𝑐) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2𝐻𝑣(𝑓𝑐) 

When this condition is imposed on the filter, the output becomes 

 𝑉𝑜(𝑓) =
𝐴𝑐𝐴𝑐́

2
𝐻𝑣(𝑓𝑐)𝑀(𝑓) 

 𝑣𝑜(𝑡) =
𝐴𝑐𝐴𝑐́

2
𝐻𝑣(𝑓𝑐)𝑚(𝑡) 
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Two remarks :  

 B.W = 𝑊 + 𝑓𝑣 ;  𝑓𝑣 is the size of the vestige. 

 VSB can be demodulated using coherent demodulation. 

 

Generation of VSB: Phase Discrimination Method  

The time-domain representation of a VSB signal is  

 𝑠(𝑡) = ⁡𝐴𝑐𝑚(𝑡) cos𝜔𝑐𝑡 ∓ 𝐴𝑐𝑚𝑠(𝑡) sin𝜔𝑐𝑡 

Where ms(t) is the response of a vestigial filter (in the base band spectrum) to the message m(t). 

Using the time-domain representation , 

 the following scheme may be used 

 to generate a VSB signal  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The – sign means that most of the upper sideband is admitted  

       + sign means that most of the lower sideband is admitted  
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The transfer function HS(f) of the low pass filter is related to the band pass characteristic 

by: 

           𝐻𝑠(𝑓) = 𝐿𝑜𝑤⁡𝑝𝑎𝑠𝑠⁡{𝐻𝑣(𝑓 + 𝑓𝑐) − 𝐻𝑣(𝑓 − 𝑓𝑐)}  

 

Coherent Detection of VSB: Time Domain Analysis 

Let the received VSB signal be given as: 

 

𝑠(𝑡) = 𝐴𝑐𝑚(𝑡) cos𝜔𝑐𝑡 − 𝐴𝑐𝑚𝑠(𝑡) sin𝜔𝑐𝑡 

This signal is mixed with a version of the  

transmitted carrier of the same phase and frequency. 

𝑣(𝑡) = 𝑠(𝑡)𝐴𝑐́ cos 2𝜋𝑓𝑐𝑡 

= 𝐴𝑐𝐴𝑐́ [𝑚(𝑡) cos𝜔𝑐𝑡 − 𝑚𝑠(𝑡) sin𝜔𝑐𝑡] cos𝜔𝑐𝑡 

= 𝐴𝑐𝐴𝑐́ 𝑚(𝑡) cos2𝜔𝑐𝑡 − 𝐴𝑐𝐴𝑐́ 𝑚𝑠(𝑡) sin𝜔𝑐𝑡 cos𝜔𝑐𝑡 

=
𝐴𝑐𝐴𝑐́

2
𝑚(𝑡) +

𝐴𝑐𝐴𝑐́

2
𝑚(𝑡) cos 2𝜔𝑐𝑡 −

𝐴𝑐𝐴𝑐́

2
𝑚𝑠(𝑡) sin 2𝜔𝑐𝑡 
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The low pass filter admits only the low pass component, which is nothing but a scaled 

version of the message signal. 

𝑦(𝑡) =
𝐴𝑐𝐴𝑐́

2
𝑚(𝑡) 

 

Envelope Detection of VSB + Carrier 

This type of modulation takes the form: 

𝑠(𝑡) = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 + 𝑉𝑆𝐵 

        𝑠(𝑡) = 𝐴𝑐 cos𝜔𝑐𝑡 + 𝐴𝑐𝛽𝑚(𝑡) cos𝜔𝑐𝑡 ∓ 𝐴𝑐𝛽𝑚𝑠(𝑡) sin𝜔𝑐𝑡 

𝛽 is a scaling factor chosen to minimize envelope distortion. The addition of the carrier is 

meant to simplify the demodulation of the video signal in practical TV systems and 

avoids the complexity of coherent demodulation. It is also less expensive since a simple 

envelope detector, of the type described in demodulating a normal AM signal, can be 

used. 

𝑠(𝑡) = (𝐴𝑐 + 𝐴𝑐𝛽𝑚(𝑡)) cos𝜔𝑐𝑡 ∓ 𝐴𝑐𝛽𝑚𝑠(𝑡) sin𝜔𝑐𝑡 

𝑠(𝑡) = √(𝐴𝑐 + 𝐴𝑐𝛽𝑚(𝑡))
2
+ 𝐴𝑐

2𝛽2𝑚𝑠
2(𝑡)⁡⁡cos(𝜔𝑐𝑡 + ⁡∅) 

If s( t ) is applied to an envelope detector (which is insensitive to phase variations), the 

output is 

𝑦(𝑡) = √(𝐴𝑐(1 + 𝛽𝑚(𝑡))
2
+ 𝐴𝑐

2𝛽2𝑚𝑠
2(𝑡) 

If   𝐴𝑐 ≫ 𝛽𝑚(𝑡) , then  

 

𝑦(𝑡) ≅ 𝐴𝑐(1 + 𝛽𝑚(𝑡)) 

 

 

Hence , m(t) can be demodulated, almost without distortion,  using simple envelope 

detection techniques if the above condition is satisfied . 
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Example: A VSB is generated from the DSB-SC signal 2𝑚(𝑡) cos𝜔𝑐𝑡 .  M(f) and Hv(f) 

are shown below . Find the spectrum of the transmitted signal s(t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 +FC 
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Baseband Signal 

The input signal consists of five frequency components. It is represented as: 

⁡𝑚(𝑡) = ⁡0.6 cos 2𝜋𝑓1𝑡 + 1.6 cos 2𝜋𝑓2𝑡 

+2cos 2𝜋𝑓3𝑡 + 1.3 cos 2𝜋𝑓4𝑡 + 0.8 cos 2𝜋𝑓5𝑡 

 

Transmitted Signal 

The spectrum of the transmitted signal is: 

   

𝑆(𝑓) = 𝐻𝑣(𝑓)𝑀(𝑓 − 𝑓𝑐) + 𝐻𝑣(𝑓)𝑀(𝑓 + 𝑓𝑐) 

If we perform the multiplication in the frequency domain and take the inverse Fourier 

transform, we get the time domain representation of the transmitted signal.  

𝑠(𝑡) = ⁡0.4 cos 2𝜋(𝑓𝑐 − 𝑓2)𝑡 + 0.2 cos 2𝜋(𝑓𝑐 + 𝑓1)𝑡 

+0.4 cos 2𝜋(𝑓𝑐 + 𝑓1)𝑡 + 1.2 cos 2𝜋(𝑓𝑐 + 𝑓2)𝑡 + 2 cos 2𝜋(𝑓𝑐 + 𝑓3)𝑡 

+⁡1.3⁡ cos 2𝜋(𝑓𝑐 + 𝑓4)𝑡 + 0.8⁡ cos 2𝜋(𝑓𝑐 + 𝑓5)𝑡 
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Module 5 

Frequency and Phase Modulation 

To generate an angle modulated signal, the amplitude of the modulated carrier is held 

constant, while either the phase or the time derivative of the phase is varied linearly with 

the message signal m(t). 

The expression for an angle modulated signal is 

 𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)) ,   𝑓𝑐   is the carrier frequency in Hz. 

The instantaneous frequency of s(t) is : 

 𝑓𝑖(𝑡) =
1 

2𝜋

𝑑

𝑑𝑡
(2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)) = 𝑓𝑐 +  

1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
 

For phase modulation, the phase is directly proportional to the modulating signal 

𝜃(𝑡) = 𝑘𝑝𝑚(𝑡),  kp is the phase sensitivity measured in rad/volt. 

The peak phase deviation is 

 ∆𝜃𝑚𝑎𝑥 = 𝑘𝑝 × max  (𝑚(𝑡)).  

For frequency modulation, the frequency deviation of the carrier is proportional to the 

modulating signal: 

1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑘𝑓𝑚(𝑡)  ⟹ 𝒇𝒊(𝒕) = 𝒇𝒄 + 𝒌𝒇𝒎(𝒕).  

The frequency deviation from the un-modulated carrier is 

 𝑓𝑖(𝑡) − 𝑓𝑐 =
1

2𝜋

𝑑𝜃

𝑑𝑡
 

The peak frequency deviation is 

 ∆𝑓 = max  {
1

2𝜋

𝑑𝜃

𝑑𝑡
}. 

The time domain representation of a phase modulated signal is 

 𝑠(𝑡) = 𝐴𝑐 cos (2𝜋𝑓𝑐𝑡 + 𝑘𝑝𝑚(𝑡)). 

The time domain representation of a frequency modulated signal is  

 𝑠(𝑡) = 𝐴𝑐 cos (2𝜋𝑓𝑐𝑡 + 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
). 
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where    𝜃(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
 

The average power in 𝑠(𝑡), for frequency modulation (FM) or phase modulation (PM) is: 

𝑝𝑎𝑣 =
(𝐴𝑐)2

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Example:  Binary Frequency Shift Keying 

The periodic square signal m(t), shown below, frequency modulates the carrier 

 𝑐(𝑡) =  𝐴𝑐  cos (2𝜋100𝑡)  

 to produce the FM signal 

 𝑠(𝑡) = 𝐴𝑐cos  ( (2𝜋100𝑡) + 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼) where 𝑘𝑓 = 10𝐻𝑧/𝑉. 

a. Find and plot the instantaneous frequency 𝑓𝑖(𝑡). 

b. Find the time domain expression for 𝑠(𝑡). 

 
Solution: 

a) The instantaneous frequency is 

𝑓𝑖 = 𝑓𝑐 + 𝑘𝑓 × 𝑚(𝑡) 

      𝑓𝑖 =  100+10 =110 Hz    when 𝑚(𝑡) = +1 

      𝑓𝑖 =    100 -10 = 90Hz    when 𝑚(𝑡) = −1 

For   0 < 𝑡 ≤ 𝑇𝑏  ,    𝑓𝑖 = 110 Hz 

For  𝑇𝑏 ≤ 𝑡 ≤ 2𝑇𝑏,  𝑓𝑖 = 90 Hz 

The instantaneous frequency hops between the two values 110 Hz and 90 Hz as shown 

below 
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In digital transmission, we will see that a binary (1) may be represent by a signal of 

frequency f1 for 0 ≤ 𝑡 ≤ 𝑇𝑏 and a binary (0) by a signal of frequency f2 for 0 ≤ 𝑡 ≤

𝑇𝑏 .  

 

b) Depending on the input binary digit, 𝑠(𝑡) may take any one of the following 

expressions 

𝑠(𝑡) = Ą cos(2𝜋(110)𝑡 ), 𝑤ℎ𝑒𝑛 𝑚(𝑡) = +1 

`𝑠(𝑡) = Ą cos(2𝜋(90)𝑡   ),         𝑤ℎ𝑒𝑛 𝑚(𝑡) = −1 

Exercise: Plot the transmitted signal 𝑠(𝑡) for 0 ≤ 𝑡 ≤ 4𝑇𝑏 assuming 𝑇𝑏 = 10𝑇𝑐. You 

should obtain a figure similar to this figure 

 

 

Single Tone Frequency Modulation: 

Assume that the message 𝑚(𝑡) = 𝐴𝑚 cos 𝜔𝑚𝑡. 

The instantaneous frequency is: 

𝑓𝑖 = 𝑓𝑐 + 𝑘𝑓𝑚(𝑡) = 𝑓𝑐 + 𝐴𝑚𝑘𝑓 cos 2𝜋𝑓𝑚𝑡. 

This frequency is plotted in the figure. 

The peak frequency deviation (from the un-modulated  
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carrier) is : 

∆𝑓 = 𝑘𝑓𝐴𝑚. 

The FM signal is: 

𝑠(𝑡) = 𝐴𝑐 cos  (𝜔𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡). 

Where 𝛽 is the FM modulation index, defined as 

𝛽 =
𝑘𝑓𝐴𝑚

𝑓𝑚
=

𝑝𝑒𝑎𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

∆𝑓

𝑓𝑚
 

In the figure below, we show a sinusoidal message signal 𝑚(𝑡) and the resulting FM 

signal 𝑠(𝑡). 

 

 

Spectrum of a Single-Tone FM Signal 

The objective is to find a meaningful definition of the bandwidth of an FM signal. To 

accomplish that we need to find the spectrum (the Fourier expansion) of 𝑠(𝑡). 

Let 𝑚(𝑡) = 𝐴𝑚 cos 2𝜋𝑓𝑚𝑡  be the message signal, then the FM signal is 

𝑠(𝑡) = 𝐴𝑐 cos( 2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 ) 

𝑠(𝑡) can be rewritten as: 

𝑠(𝑡) = 𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡+𝛽 sin 2𝜋𝑓𝑚𝑡} 

                    = 𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡) × 𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡)} 

Remember that:   𝑒𝑗𝜃 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛 𝜃  and that  𝑐𝑜𝑠𝜃 = 𝑅𝑒{𝑒𝑗𝜃} 
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The sinusoidal waveform (𝛽 sin 2𝜋𝑓𝑚𝑡 ) is periodic with period 𝑇𝑚 =
1

𝑓𝑚
 . The 

exponential function 𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡) is also periodic with the same period  𝑇𝑚 =
1

𝑓𝑚
  (but is 

not sinusoidal) 

  As we know, a periodic function g(t) can be expanded into a complex Fourier series as: 

𝑔(𝑡) = ∑ 𝐶𝑛 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞    . 

where, 

𝐶𝑛 =
1

𝑇𝑚
∫ 𝑔(𝑡) 𝑒−𝑗𝜔𝑚𝑛𝑡

𝑇𝑚

0

𝑑𝑡 

 Now, let  𝑔(𝑡) = 𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡)   

then,  𝐶𝑛 =
1

𝑇𝑚
∫  𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡) ( 𝑒−𝑗𝜔𝑚𝑛𝑡)

𝑇𝑚

0
𝑑𝑡 

It turns out that the Fourier coefficients 𝑪𝒏 = 𝑱𝒏(𝜷). 

where  𝐽𝑛(𝛽) is the Bessel function of the first kind of order n. 

Hence,  

 𝑔(𝑡) = ∑ 𝐽𝑛(𝛽) 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞  ;  

Substituting 𝑔(𝑡) into 𝑠(𝑡), we get 

  𝑠(𝑡) = 𝐴𝑐  𝑅𝑒{𝑒𝑗(2𝜋𝑓𝑐𝑡)  × ∑ 𝐽𝑛(𝛽) 𝑒𝑗𝑛𝜔𝑚𝑡∞
−∞  }  

            = 𝐴𝑐  𝑅𝑒{ ∑ 𝐽𝑛(𝛽) × 𝑒𝑗2𝜋(𝑓𝑐+𝑛𝑓𝑚)𝑡 }∞
−∞   

         = 𝐴𝑐 ∑ 𝐽𝑛(𝛽) × cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)∞
−∞  

Finally, the FM signal can be represented as 

  𝒔(𝒕) = 𝑨𝒄  ∑ 𝑱𝒏(𝜷) 𝐜𝐨𝐬(𝟐𝝅(𝒇𝒄 + 𝒏𝒇𝒎)𝒕)∞
−∞  

Bessel Functions 

The Bessel equation of order n is 

 𝑥2
𝑑𝑦

𝑑𝑥2

2

+ 𝑥
𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0 

This is a second order differential equation with variable coefficients. We can solve it 

using the power series method. In this method, we let 
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𝑦 = ∑ 𝐶𝑛  𝑥
𝑛∞

𝑛=0 ,   
𝑑𝑦

𝑑𝑥
= ∑ 𝑛 𝐶𝑛  𝑥

𝑛−1∞
𝑛=1 ,   

𝑑𝑦

𝑑𝑥2

2
= ∑ 𝑛(𝑛 − 1)𝐶𝑛  𝑥

𝑛−2∞
𝑛=2  . 

Substituting  𝑦,
𝑑𝑦

𝑑𝑥
 𝑎𝑛𝑑  

𝑑2𝑦

𝑑𝑥2
 into the differential equation and equating terms of equal 

power results in 

𝑦(𝑥) = 𝐽𝑛(𝑥) = ∑
(−1)𝑚 × (

1
2 𝑥)𝑛+2𝑚

𝑚! (𝑛 + 𝑚)!

∞

𝑚=0

 

The solution for each value of n (see the D.E where n appears) is 𝐽𝑛(𝑥), the Bessel 

function of the first kind of order n. The figure, below, shows the first three Bessel 

functions. 

 

Some Properties of 𝑱𝒏(𝒙): 

 

1- 𝐽𝑛(𝑥) = (−1)𝑛𝐽−𝑛(𝑥). 

 

2- 𝐽𝑛(𝑥) = (−1)𝑛𝐽𝑛(−𝑥). 

 

3- Recurrence formula 

  𝐽𝑛−1(𝑥) + 𝐽𝑛+1(𝑥) =
2𝑛

𝑥
𝐽𝑛(𝑥) . 

4- For small values of x, 𝐽𝑛(𝑥) ≅  
𝑥𝑛

2𝑛  𝑛!
   

Therefore, 𝐽0(𝑥) ≅ 1 

                    𝐽1(𝑥) ≅  
𝑥

2
. 
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          𝐽𝑛(𝑥) ≅ 0  𝑓𝑜𝑟 𝑛 > 1  

5- For large value of 𝑥: 

𝐽𝑛(𝑥) ≅ √
2

𝜋𝑥
 cos(𝑥 −

𝜋

4
−

𝑛𝜋

2
) ,  𝐽𝑛(𝑥) behaves like a sine function with 

progressively decreasing amplitude. 

6- For real 𝑥 and fixed, 𝐽𝑛(𝑥) ⟶ 0 𝑎𝑠 𝑛 ⟶ ∞ . 

 

7- ∑ (𝐽𝑛(𝑥))2 = 1 ,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥.∞
−∞    
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Table of Bessel Functions 

β J0(β) J1(β) J2(β) J3(β) J4(β) J5(β) J6(β) J7(β) J8(β) J9(β) J10(β) 

0 1 0 0 0 0 0 0 0 0 0 0 
0.1 0.9975 0.0499 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.2 0.9900 0.0995 0.0050 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.3 0.9776 0.1483 0.0112 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.4 0.9604 0.1960 0.0197 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.5 0.9385 0.2423 0.0306 0.0026 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.6 0.9120 0.2867 0.0437 0.0044 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.7 0.8812 0.3290 0.0588 0.0069 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.8 0.8463 0.3688 0.0758 0.0102 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
0.9 0.8075 0.4059 0.0946 0.0144 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.7652 0.4401 0.1149 0.0196 0.0025 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
1.1 0.7196 0.4709 0.1366 0.0257 0.0036 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 
1.2 0.6711 0.4983 0.1593 0.0329 0.0050 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 
1.3 0.6201 0.5220 0.1830 0.0411 0.0068 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 
1.4 0.5669 0.5419 0.2074 0.0505 0.0091 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 
1.5 0.5118 0.5579 0.2321 0.0610 0.0118 0.0018 0.0002 0.0000 0.0000 0.0000 0.0000 
1.6 0.4554 0.5699 0.2570 0.0725 0.0150 0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 
1.7 0.3980 0.5778 0.2817 0.0851 0.0188 0.0033 0.0005 0.0001 0.0000 0.0000 0.0000 
1.8 0.3400 0.5815 0.3061 0.0988 0.0232 0.0043 0.0007 0.0001 0.0000 0.0000 0.0000 
1.9 0.2818 0.5812 0.3299 0.1134 0.0283 0.0055 0.0009 0.0001 0.0000 0.0000 0.0000 
2 0.2239 0.5767 0.3528 0.1289 0.0340 0.0070 0.0012 0.0002 0.0000 0.0000 0.0000 
2.1 0.1666 0.5683 0.3746 0.1453 0.0405 0.0088 0.0016 0.0002 0.0000 0.0000 0.0000 
2.2 0.1104 0.5560 0.3951 0.1623 0.0476 0.0109 0.0021 0.0003 0.0000 0.0000 0.0000 
2.3 0.0555 0.5399 0.4139 0.1800 0.0556 0.0134 0.0027 0.0004 0.0001 0.0000 0.0000 
2.4 0.0025 0.5202 0.4310 0.1981 0.0643 0.0162 0.0034 0.0006 0.0001 0.0000 0.0000 
2.5 -0.0484 0.4971 0.4461 0.2166 0.0738 0.0195 0.0042 0.0008 0.0001 0.0000 0.0000 
2.6 -0.0968 0.4708 0.4590 0.2353 0.0840 0.0232 0.0052 0.0010 0.0002 0.0000 0.0000 
2.7 -0.1424 0.4416 0.4696 0.2540 0.0950 0.0274 0.0065 0.0013 0.0002 0.0000 0.0000 
2.8 -0.1850 0.4097 0.4777 0.2727 0.1067 0.0321 0.0079 0.0016 0.0003 0.0000 0.0000 
2.9 -0.2243 0.3754 0.4832 0.2911 0.1190 0.0373 0.0095 0.0020 0.0004 0.0001 0.0000 
3 -0.2601 0.3391 0.4861 0.3091 0.1320 0.0430 0.0114 0.0025 0.0005 0.0001 0.0000 
3.1 -0.2921 0.3009 0.4862 0.3264 0.1456 0.0493 0.0136 0.0031 0.0006 0.0001 0.0000 
3.2 -0.3202 0.2613 0.4835 0.3431 0.1597 0.0562 0.0160 0.0038 0.0008 0.0001 0.0000 
3.3 -0.3443 0.2207 0.4780 0.3588 0.1743 0.0637 0.0188 0.0047 0.0010 0.0002 0.0000 
3.4 -0.3643 0.1792 0.4697 0.3734 0.1892 0.0718 0.0219 0.0056 0.0012 0.0002 0.0000 
3.5 -0.3801 0.1374 0.4586 0.3868 0.2044 0.0804 0.0254 0.0067 0.0015 0.0003 0.0001 
3.6 -0.3918 0.0955 0.4448 0.3988 0.2198 0.0897 0.0293 0.0080 0.0019 0.0004 0.0001 
3.7 -0.3992 0.0538 0.4283 0.4092 0.2353 0.0995 0.0336 0.0095 0.0023 0.0005 0.0001 
3.8 -0.4026 0.0128 0.4093 0.4180 0.2507 0.1098 0.0383 0.0112 0.0028 0.0006 0.0001 
3.9 -0.4018 -0.0272 0.3879 0.4250 0.2661 0.1207 0.0435 0.0130 0.0034 0.0008 0.0002 
4 -0.3971 -0.0660 0.3641 0.4302 0.2811 0.1321 0.0491 0.0152 0.0040 0.0009 0.0002 
4.1 -0.3887 -0.1033 0.3383 0.4333 0.2958 0.1439 0.0552 0.0176 0.0048 0.0011 0.0002 
4.2 -0.3766 -0.1386 0.3105 0.4344 0.3100 0.1561 0.0617 0.0202 0.0057 0.0014 0.0003 
4.3 -0.3610 -0.1719 0.2811 0.4333 0.3236 0.1687 0.0688 0.0232 0.0067 0.0017 0.0004 
4.4 -0.3423 -0.2028 0.2501 0.4301 0.3365 0.1816 0.0763 0.0264 0.0078 0.0020 0.0005 
4.5 -0.3205 -0.2311 0.2178 0.4247 0.3484 0.1947 0.0843 0.0300 0.0091 0.0024 0.0006 
4.6 -0.2961 -0.2566 0.1846 0.4171 0.3594 0.2080 0.0927 0.0340 0.0106 0.0029 0.0007 
4.7 -0.2693 -0.2791 0.1506 0.4072 0.3693 0.2214 0.1017 0.0382 0.0122 0.0034 0.0008 
4.8 -0.2404 -0.2985 0.1161 0.3952 0.3780 0.2347 0.1111 0.0429 0.0141 0.0040 0.0010 
4.9 -0.2097 -0.3147 0.0813 0.3811 0.3853 0.2480 0.1209 0.0479 0.0161 0.0047 0.0012 
5 -0.1776 -0.3276 0.0466 0.3648 0.3912 0.2611 0.1310 0.0534 0.0184 0.0055 0.0015 
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The Fourier Series Representation of the FM Signal 

 

We saw earlier that a single tone FM signal can be represented in a Fourier series as  

𝒔(𝒕) = 𝑨𝒄  ∑ 𝑱𝒏(𝜷) 𝐜𝐨𝐬(𝟐𝝅(𝒇𝒄 + 𝒏𝒇𝒎)𝒕)

∞

−∞

 

The first few terms in this expansion are: 

 

𝑠(𝑡) = 𝐴𝑐  { 𝐽0(𝛽) cos(2𝜋𝑓𝑐𝑡) + 𝐽1(𝛽) cos 2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡 + 𝐽−1(𝛽) cos 2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡  +

    𝐽2(𝛽) cos 2𝜋(𝑓𝑐 + 2𝑓𝑚)𝑡 + 𝐽−2(𝛽) cos 2𝜋(𝑓𝑐 − 2𝑓𝑚)𝑡 + ⋯ . .    

 

The FM signal consists of an infinite number of spectral components concentrated around 

𝑓𝑐. Therefore, the theoretical bandwidth of the signal is infinity. That is to say, if we need 

to recover the FM signal without any distortion, all spectral components must be 

accommodated. This means that a channel with infinite bandwidth is needed. This is, of 

course, not practical since the frequency spectrum is shared by many users. 

 

In the following discussion we need to truncate the series so that say 99% of the total 

average power is contained within a certain bandwidth. But, first let us find the total 

average power using the series approach. 

 

 Power in the Spectral Components of s(t) 

 

Note that s(t) consists of an infinite number of Fourier terms, and the power in s(t) will be 

equal the power in the respective Fourier components . 

 

Any term in s (t) takes the form:  𝐴𝑐𝐽𝑛(𝛽) cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡) 

 

The average power in this term is:    
(𝐴𝑐)2(𝐽𝑛(𝛽))2

2
 

 

Hence the total power in s(t) is 

 

< 𝑆2(𝑡) >  =   
𝐴𝐶

2 𝐽0
2(𝛽)

2
+

𝐴𝐶
2𝐽1

2(𝛽)

2
+

𝐴𝐶
2𝐽−1

2(𝛽)

2
+

𝐴𝐶
2𝐽2

2(𝛽)

2
+

𝐴𝐶
2𝐽−2

2(𝛽)

2
+ ⋯ 

                       

                       =  
𝐴𝐶

2

2
 { 𝐽0

2(𝛽) + 𝐽1
2(𝛽)+𝐽−1

2(𝛽)+𝐽2
2(𝛽)+𝐽−2

2(𝛽) + ⋯ . . } 

 

=    
𝐴𝐶

2

2
 { ∑  𝐽𝑛

2(𝛽) ∞
𝑛=−∞ } ,  where  ∑  𝐽𝑛

2(𝛽) ∞
𝑛=−∞ = 1, ( A property of Bessel 

Functions).  
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The average power becomes 

 < 𝑆2(𝑡) > =     
𝐴𝐶

2

2
 . 

 

  Spectrum of an FM Signal 

 

 
 

 Figure: Fourier transform of  𝑠(𝑡) = 𝐴𝑐 cos  (𝜔𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡) (only + ve 

frequencies are shown) 

 

Note that in the figure above, as 𝑓𝑚 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠, the spectral lines become closely 

clustered about 𝑓𝑐.  

 

Example: 99% Power Bandwidth of an FM Signal  

Find the 99% power bandwidth of an FM signal when 𝛽 = 1  and when 𝛽 = 0.2 

 

Solution: 

  𝑠(𝑡) = 𝐴𝑐  ∑ 𝐽𝑛(𝛽) cos(2𝜋(𝑓𝑐 + 𝑛𝑓𝑚)𝑡)∞
−∞  

 

Case a:   𝜷 = 𝟏 (wideband FM) 

 

The first five terms corresponding to 𝛽 = 1 (obtained from the table) are 

𝐽0(1) = 0.7652,  𝐽1(1) = 0.4401,   𝐽2(1) = 0.1149,  𝐽3(1) = 0.01956,   𝐽4(1) = 0.002477 

The power in s(t) is     < 𝑆2(𝑡) >  =     
𝐴𝐶

2

2
  

Let us try to find the average power in the terms at (𝑓𝑐), (𝑓𝑐 + 𝑓𝑚), (𝑓𝑐 − 𝑓𝑚), (𝑓𝑐 + 2𝑓𝑚), 

(𝑓𝑐 − 2𝑓𝑚) 

1. 𝑓𝑐 :                      
𝐴𝐶

2 𝐽0
2(𝛽)

2
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2. 𝑓𝑐 + 𝑓𝑚:                
𝐴𝐶

2𝐽1
2(𝛽)

2
 

3. 𝑓𝑐 − 𝑓𝑚:                 
𝐴𝐶

2𝐽−1
2(𝛽)

2
 

4. 𝑓𝑐 + 2𝑓𝑚:             
𝐴𝐶

2𝐽2
2(𝛽)

2
 

5. 𝑓𝑐 − 2𝑓𝑚:              
𝐴𝐶

2𝐽−2
2(𝛽)

2
 

The average power in the five spectral components is the sum 

   𝑃𝑎𝑣 =
𝐴2

𝑐

2
[𝐽0

2(1) + 2𝐽1
2(1) + 2𝐽2

2(1)] 

𝑃𝑎𝑣 =
𝐴2

𝑐

2
 [(0.7652)2 + 2 ∗ (0.4401)2 + (0.1149)2] =  0.9993 

𝐴2
𝑐

2
 

Hence, these terms contain 99.9 % of the total power. Therefore, the 99.9 % power 

bandwidth is 

  𝐵𝑊 = (𝑓𝑐 + 2𝑓𝑚) − (𝑓𝑐 − 2𝑓𝑚) = 4𝑓𝑚 

Case b:   𝛃 = 𝟎. 𝟐 (Narrowband FM) 

For  𝛽 = 0.2, 𝐽0(0.2) = 0.99, 𝐽1(0.2) = 0.0995,   𝐽2(0.2) = 0.00498335  

The power in the carrier and the two sidebands at (𝑓𝑐 , 𝑓𝑐 + 𝑓𝑚, 𝑓𝑐 − 𝑓𝑚) is  

𝑃 =
𝐴2

𝑐

2
[𝐽0

2(0.2) + 2𝐽1
2(0.2)]  

 𝑃 =
𝐴2

𝑐

2
[0.9999]  

Therefore, 99.99% of the total power is found in the carrier and the two sidebands. The 

99% bandwidth is 

 𝐵. 𝑊 = (𝑓𝑐 + 𝑓𝑚) − (𝑓𝑐 − 𝑓𝑚) = 2𝑓𝑚 

Remark: 

We observe that the spectrum of an FM signal when 𝛽 ≪ 1 (called narrow band FM) is 

“similar” to the spectrum of a normal AM signal, in the sense that it consists of a carrier 

and two sidebands. The transmission bandwidth of both signals is 2𝑓𝑚. 

Carson’s Rule 

A 98% power B.W of an FM signal can be estimated using Carson’s rule 

 𝑩𝑻 = 𝟐(𝜷 + 𝟏)𝒇𝒎 
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Generation of an FM Signal 

The Narrowband FM Signal 

Consider an angle-modulated signal 

𝑠(𝑡) =  𝐴𝑐 cos (2𝜋𝑓𝑐𝑡 + 𝜃(𝑡)) 

When  𝑠(𝑡) is an FM signal,  

 𝜃(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝑡)𝑑𝑡 

𝑠(𝑡) can be expanded as 

 𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) cos(𝜃(𝑡)) − 𝐴𝑐 sin(2𝜋𝑓𝑐𝑡) sin(𝜃(𝑡)) 

When |𝜃(𝑡)| ≪ 1 , 𝑐𝑜𝑠 𝜃 ≅ 1 , sin(𝜃) ≅ 𝜃 and 𝑠(𝑡) , termed narrowband, can be 

approximated as 

          𝑠(𝑡) ≅ 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝜃 sin(2𝜋𝑓𝑐𝑡)  

Using this expression, one can generate a narrowband FM or PM signals. This is 

illustrated in the block diagram below: 

                       

When  𝑚(𝑡) = 𝐴𝑚 cos(2𝜋𝑓𝑚𝑡), 𝜃(𝑡) = 𝛽sin (2𝜋𝑓𝑚𝑡). The modulated signal takes the 

form 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝛽 sin(2𝜋𝑓𝑚𝑡) sin(2𝜋𝑓𝑐𝑡) ;  𝑁𝐵𝐹𝑀 

To generate a narrow band PM signal, we can use the scheme: 
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Spectrum of a Single-Tone NBFM 

For an FM signal, 𝜃(𝑡) = 𝛽sin (2𝜋𝑓𝑚𝑡) 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) − 𝐴𝑐𝛽 sin(2𝜋𝑓𝑚𝑡) sin (2𝜋𝑓𝑐𝑡) 

𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) −
𝐴𝑐𝛽

2
[cos(2𝜋(𝑓𝑐 − 𝑓𝑚)𝑡) − cos (2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)] 

The spectrum of 𝑠(𝑡) is shown below 

 

The spectrum consists of a component at the carrier frequency 𝑓𝑐  and two components at  

(𝑓𝑐 + 𝑓𝑚) and 𝑓𝑐 − 𝑓𝑚). Note the negative sign at the lower sideband. 

The bandwidth of this NBFM signal is 2𝑓𝑚.  
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Frequency Multiplier 

It is a device for which the frequency of the output signal is an integer multiple of the 

frequency of the input signal. It is primarily a nonlinear characteristic followed by a band 

pass filter. Now we illustrate the operation of this device.  

The Square Law Device                                                                                               

Let the input be an FM signal of the form:  

  𝑥(𝑡) = 𝐴𝑐 cos(2π𝑓 ′
𝑐

+  𝛽′ sin 2π𝑓𝑚𝑡) = 𝐴𝑐 cos(𝜙) 

The output of the square law characteristic is: 

𝑦(𝑡) = 𝑥(𝑡)2 = 𝐴𝑐
 2𝑐𝑜𝑠2(𝜙) =

𝐴𝑐
 2

2
[1 + cos (2𝜙)] =

𝐴𝑐
 2

2
+

𝐴𝑐
 2

2
cos(2𝜙)

=
𝐴𝑐

 2

2
+

𝐴𝑐
 2

2
𝑐𝑜𝑠[2π(2𝑓 ′

𝑐
) + 2𝛽′sin (2π𝑓𝑚𝑡)] 

 

 

If 𝑦(𝑡) is passed through a BPF of center frequency  2𝑓𝑐 , then the DC term will be 

suppressed and the filter output is 

 𝑦 ′(𝑡) =
𝐴𝑐

 2

2
𝑐𝑜𝑠[2π(2𝑓 ′

𝑐
) + 2𝛽′sin (2π𝑓𝑚𝑡)] 

 𝑦 ′(𝑡) =
𝐴𝑐

 2

2
𝑐𝑜𝑠[2π(𝑓𝑐) + 𝛽sin (2π𝑓𝑚𝑡)] 

As can be seen from this result, the output is a signal with twice the frequency of the 

input signal and a modulation index twice that of the input.  

𝑓𝑐 = 2𝑓𝑐
′; 𝛽 = 2𝛽′ 

To get frequency multiplication higher than two, a cascade of units, similar to what was 

described above, can be formed with the number of stages that achieve the desired 

frequency.   
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Indirect Method for Generating a Wideband FM 

A wideband FM can be generated indirectly using the block diagram below (Armstrong 

Method). First, a narrowband FM is generated. Then, the wideband FM is obtained by 

using frequency multiplication. Next, we analyze the operation of this modulator. 

 

Let  𝑚(𝑡) = 𝐴𝑚cos 2π𝑓𝑚𝑡  be the baseband signal, then 

𝑠1(𝑡) = 𝐴𝑐 cos(2π𝑓𝑐
′𝑡 + 𝛽′sin 2π𝑓𝑚𝑡)  ;  𝛽′ =

𝑘𝑓𝐴𝑚

𝑓𝑚
 

is a narrowband FM with  𝛽′ ≪ 1. The frequency of 𝑠1(𝑡) is 

𝑓′
𝑖

= 𝑓𝑐
′ +  𝑘𝑓𝐴𝑚cos 2π𝑓𝑚𝑡 

Multiplying 𝑓𝑖 by  𝑛 (through frequency multiplication), we get the frequency of  𝑠(𝑡) as 

𝑓𝑖 = 𝑛𝑓𝑐
′ +  𝑛𝑘𝑓𝐴𝑚𝑐𝑜𝑠2π𝑓𝑚𝑡 

This result is 

𝑠(𝑡) = 𝐴𝑐 cos[2π(𝑛𝑓𝑐
′)𝑡 + 𝑛𝛽′ sin 2π𝑓𝑚𝑡] 

        = 𝐴𝑐 cos[2π𝑓𝑐𝑡 + 𝛽 sin 2π𝑓𝑚𝑡] 

Where 𝛽 = 𝑛𝛽′    is the desired modulation index of WBFM 

             𝑓𝑐 = 𝑛𝑓𝑐
′   is the desired carrier frequency of WBFM                                                                        

Direct Method for Generating an FM Signal 

In a direct FM system, the instantaneous frequency of the carrier is varied in accordance 

with a message signal by means of a voltage-controlled oscillator (VCO). The voltage – 

frequency characteristic of a VCO is given by 

𝑓𝑖 =  𝑓𝑐 +  𝑘𝑓 𝑚(𝑡) 

A schematic diagram of a VCO is shown in the figue 
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A realization of the CVO may be obtained by considering an oscillator (like the Hartley 

oscillator) shown below in which a varactor ((voltage variable capacitor) is used. The 

capacitance of the varactor varies in response to variations in the message signal. The 

variation is linear when the variation in the message is too small. 

The frequency of the oscillator is  

𝑓𝑖(𝑡) =
1

2𝜋√(𝐿1 +  𝐿2)𝐶(𝑡)
 

Let      𝐶(𝑡) = 𝐶0 − 𝑘 𝑚(𝑡)  (A diode 

operating in the reverse bias region can act like 

a variable capacitor); k is a constant, 

When m(t) = 0, 𝐶(𝑡) = 𝐶0, and the 

unmodulated frequency of oscillation is 

 𝑓𝑐 =
1

√(𝐿1+𝐿2)𝐶0
 

When m(t) has a finite value, the frequency of oscillation is 

 𝑓𝑖(𝑡) =
1

2𝜋√(𝐿1+ 𝐿2)(𝐶0−𝑘 𝑚(𝑡))
 

           = 𝑓𝑐 (1 −
𝑘 𝑚(𝑡)

𝐶0
)

−1
2⁄

  

When  
𝑘 𝑚(𝑡)

𝐶0
≪ 1, we can make the approximation (using the formula [(1 + 𝑥)𝑛 ≅ 1 +

𝑛𝑥] when x is small) 

 𝑓𝑖(𝑡) = 𝑓𝑐 (1 +  
𝑘 𝑚(𝑡)

2𝐶0
) = 𝑓𝑐 + 𝑘𝑓 𝑚(𝑡) 

Here it is clear that the instantaneous frequency varies linearly with the message signal. 

  

Hartley Oscillator 
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Demodulation of the FM Signal 

An FM signal may be demodulated by means of what is called a discriminator. 

Let   𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡 + 𝜃(𝑡))  be an angle-modulated signal. The output of an ideal 

discriminator is defined as 

𝑦(𝑡)   =   
1

2𝜋
  𝑘𝐷   

𝑑𝜃

𝑑𝑡
 

When 𝜃 = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)𝑑𝛼
𝑡

−∞
 , then   

𝑑𝜃

𝑑𝑡
 = 2𝜋𝑘𝑓 𝑚(𝑡) and y(t) becomes 

 𝑦(𝑡) = 𝑘𝐷𝑘𝑓  𝑚(𝑡) 

Hence, a discriminator can demodulate an FM signal. In this section, we will 

consider three techniques through which an FM (or PM) signal can be demodulated. 

 

First Method: Differentiator Followed by an Envelope Detector 

One practical realization of a discriminator is a differentiator followed by an envelope 

detector, as illustrated in the figure. The operation of this discriminator can be explained 

as follows 

 

 Let      𝑠(𝑡) = 𝐴𝑐 cos(𝜔𝑐𝑡 + 𝜃(𝑡)) 

 
𝑑𝑠(𝑡)

𝑑𝑡
= −𝐴𝑐 (𝜔𝑐 +

𝑑𝜃

𝑑𝑡
) sin(𝜔𝑐𝑡 + 𝜃(𝑡)) 

The output of the envelope detector is   𝐴𝑐| (𝜔𝑐 +
𝑑𝜃

𝑑𝑡
) |   

The capacitor blocks the DC term and so output is: 

𝑉0 = 𝐴𝑐

𝑑𝜃

𝑑𝑡
= 2𝜋𝑘𝑓 𝐴𝑐𝑚(𝑡) 

A typical FM signal and its derivative are shown in the figure below. 
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We already know what an envelope detector is (recall the material on the demodulation 

of the normal AM signal). Now we explain how differentiation is accomplished. 

Realization of the Differentiator 

From the properties of Fourier transform, we know that if 

  ℑ{𝑔(𝑡)} = 𝐺(𝑓), then 

 ℑ {
𝑑𝑔(𝑡)

𝑑𝑡
} = 𝑗2𝜋𝑓𝐺(𝑓) 
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𝑠(𝑡) 

 

This means that multiplication by 𝑗2𝜋𝑓  in the frequency domain amounts to 

differentiating the signal in the time-domain. Hence, we need a circuit whose frequency 

response is linear in  𝑓  to perform time differentiation. A circuit that performs this task is 

a tuned circuit, provided that the signal frequency variation falls within the linear part of 

the characteristic, i.e., either between  (𝑓1, 𝑓2) 𝑜𝑟 (𝑓3, 𝑓4). 

The circuit below is a realization of an FM demodulator. The primary and secondary 

tuned circuits perform the task of differentiation, while the envelope detector extracts the 

envelope, which is supposed to be proportional to the message signal. 

 

Balanced Slope Detector 

To extend the dynamic range of the differentiating 

circuit, two tuned circuits with center frequencies  

𝑓𝑜1 𝑎𝑛𝑑 𝑓𝑜2   are used as shown in the figure. 

 This circuit has a wider range of linear frequency 

response. 

 No DC blocking is necessary. 

Output 
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Method 2: Phase-Locked Loop 

ADD A NEW SECTION on PLL 
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Method 3: Phase Shift Discriminator 

The Quadrature Detector:  This demodulator converts frequency variations into phase 

variation and detects the phase changes. The block diagram of the demodulator is shown 

below  

 

 

 

 

 

Let   𝑠(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡 +  𝜑(𝑡)) ;    𝜑(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)
𝑡

0
𝑑𝛼    

 𝑠(𝑡 − ∆𝑡) = 𝐴𝑐 cos[2𝜋𝑓𝑐(𝑡 − ∆𝑡) + 𝜑(𝑡 − ∆𝑡)]  

                           =  𝐴𝑐 cos[2𝜋𝑓𝑐𝑡 −  2𝜋𝑓𝑐∆𝑡 +  𝜑(𝑡 − ∆𝑡)] 

The delay ∆𝑡 is chosen such that  2𝜋𝑓𝑐∆𝑡 = 𝜋
2⁄  

Hence,  

 𝑠(𝑡 − ∆𝑡) = 𝐴𝑐 cos [2𝜋𝑓𝑐𝑡 −
𝜋

2
+ 𝜑(𝑡 − ∆𝑡)] 

                             = 𝐴𝑐 sin[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡 − ∆𝑡)]  

 𝑉(𝑡) = 𝑠(𝑡)𝑠(𝑡 − ∆𝑡)   = 𝐴𝑐
2 sin[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡 − ∆𝑡)] 𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + 𝜑(𝑡)]  

        =  
𝐴𝑐

2

2
sin[2𝜋(2𝑓𝑐)𝑡 + 𝜑(𝑡) + 𝜑(𝑡 − ∆𝑡)]  +

𝐴𝑐
2

2
sin[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]   

The high frequency component is suppressed by the LPF. What remains is the second 

term 

𝐴𝑐
2

2
sin[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]  ≅  

𝐴𝑐
2

2
[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)]  

where ∆𝑡 is small to justify the approximation sin (𝑥) ≅ 𝑥. Hence,  

 𝑦(𝑡) =
𝐴𝑐

2

2
[𝜑(𝑡) − 𝜑(𝑡 − ∆𝑡)] 

 𝑦(𝑡) =
𝐴𝑐

2

2
  ∆𝑡

𝜑(𝑡)−𝜑(𝑡−∆𝑡)

∆𝑡
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𝑉𝑖(𝑡) 𝑉𝑜(𝑡) 

The second term is the derivative  
𝑑𝜑(𝑡)

𝑑𝑡
 . The output then becomes 

 𝑦(𝑡) =
𝐴𝑐

2

2
∆𝑡

𝑑𝜑

𝑑𝑡
 

But       𝜑(𝑡) = 2𝜋𝑘𝑓 ∫ 𝑚(𝛼)
𝑡

0
𝑑𝛼  and  

𝑑

𝑑𝑡
𝜑(𝑡) = 2𝜋𝑘𝑓𝑚(𝑡) 

   𝑦(𝑡) =
𝐴𝑐

2

2
∆𝑡2𝜋𝑘𝑓𝑚(𝑡) 

   𝑦(𝑡) = 𝐾 𝑚(𝑡) 

Therefore,  𝑚(𝑡) has been demodulated. 

Transfer Function of the Delay 

From the Fourier transform properties  

  𝑔(𝑡) → 𝐺(𝑓)  

 𝑔(𝑡 − ∆𝑡) → 𝐺(𝑓)𝑒−𝑗2𝜋𝑓∆𝑡 

The transfer function of the time delay is 

 𝐻(𝑓) = 𝑒−𝑗2𝜋𝑓∆𝑡  

Therefore, a circuit whose phase characteristic is linear in 𝑓 can provide time delay of the 

type that we need.  

A circuit with linear phase characteristic is the network shown  

 

 

 

 

 

If  𝑓𝑜 =
1

2𝜋√𝐿𝐶
,   𝑓𝑏 =

𝑅

2𝜋𝐿
  

then it can be shown that arg (𝐻(𝑓)) for this circuit is  
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 arg(𝐻(𝑓)) = −
𝜋

2
−

2𝑄

𝑓𝑜
(𝑓 − 𝑓𝑐)  ,  𝑄 =

𝑓𝑜

𝑓𝑏
 

            Θ(f) = 𝑎 − 𝑏𝑓  

Remarks:  

1. To perform time differentiation, we searched for a circuit whose amplitude 

spectrum varies linearly with frequency 

2. To perform time delay, we searched for a circuit with a linear phase spectrum. 
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The Super Heterodyne Receiver 

Practically, all radio and TV receivers are made of the super heterodyne type. The 

receiver performs the following functions : 

o Carrier frequency tuning: The purpose of which is to select the desired 

signal. 

o Filtering: the desired signal is to be separated from other modulated 

signals. 

o Amplification: to compensate for the loss of signal power incurred in the 

course of transmission. 

The description of the receiver is summarized as follows: 

 

 

o The incoming signal is picked up by the antenna and amplified in the RF 

section that is tuned to the carrier frequency of the incoming signal. 

o  The incoming RF section is down converted to a fixed intermediate 

frequency (IF).   𝑓𝐼𝐹 = 𝑓𝑙𝑂 − 𝑓𝑅𝐹    

o The IF section provides most of the amplification and selectivity in the 

receiver. The IF bandwidth corresponds to that required for the particular 

type of modulation.  

o The IF output is applied to a demodulator, the purpose of which is to 

recover the baseband signal. 

o The final operation in the receiver is the power amplification of the 

recovered signal. 

o The basic difference between AM and FM super heterodyne lies in the 

use of an FM demodulator such as a discriminator (differentiator 

followed  envelope detector) 
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Quadrature Carrier Multiplexing (QAM) 

Modulation 

This scheme enables two DSB-SC modulated signals to occupy the same transmission 

B.W and yet allows for the separation of the message signals at the receiver. 

𝑚1(𝑡) and 𝑚2(𝑡) are low pass signals each with a  B.W = W Hz . 

The composite signal is: 

 𝑠(𝑡) = 𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜋𝑓𝑐𝑡 

 𝑠(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) 

 where 𝑠1(𝑡) and 𝑠2(𝑡) are both DSB-SC signals. 

B.W of  𝑠1(𝑡) = 2W 

B.W of  𝑠2(𝑡) = 2W 

B.W of  𝑠(𝑡)  = 2W 

This method provides bandwidth conservation. That is, two DSB-SC signals are 

transmitted within the bandwidth of one DSB-SC signal. Therefore, this multiplexing 

technique provides  bandwidth reduction by one half. 

 

Demodulation 

Given 𝑠(𝑡), the objective is to recover 𝑚1(𝑡) and  𝑚2(𝑡) from   𝑠(𝑡). Consider first the 

in-phase channel 

 𝑥1(𝑡)  = 2𝑐𝑜𝑠2𝜋𝑓𝑐𝑡  𝑠(𝑡) 

  = 2 cos 2𝜋𝑓𝑐𝑡  (𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓𝑐𝑡 +  𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜋𝑓𝑐𝑡) 
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  = 2𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠22𝜋𝑓𝑐𝑡 + 2𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛𝜔𝑐𝑡 𝑐𝑜𝑠𝜔𝑐𝑡   

  = 2𝐴𝑐𝑚1(𝑡) (
1+𝑐𝑜𝑠2𝜔𝑐𝑡

2
) + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜔𝑐𝑡  

  = 𝐴𝑐𝑚1(𝑡) +  𝐴𝑐𝑚1(𝑡)𝑐𝑜𝑠2𝜔𝑐𝑡 + 𝐴𝑐𝑚2(𝑡)𝑠𝑖𝑛2𝜔𝑐𝑡 

After low pass filtering, the output of the in-phase channel is 

  𝑦1(𝑡) = 𝐴𝑐𝑚1(𝑡). 

Likewise, it can be shown that 

  𝑦2(𝑡) = 𝐴𝑐𝑚2(𝑡) . 

Note:  Synchronization is a problem. That is to recover the message signals it is 

important that the two carrier signals (the sine and the cosine functions) at the receiver 

should have the same phase and frequency as the signals at the transmitting side. A phase 

error or a frequency error will result is an interference type of distortion. That is, A 

component of 𝑚2(𝑡) will appear in the in-phase channel in addition to the desired signal 

𝑚1(𝑡) and a component of 𝑚1(𝑡) will appear at the quadrature output.  
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 A multiple access channel is one where a set of users at one end want 

to communicate with another set of users at the other end. 

 Channel Allocation: The coordination of the usage of a single 

channel among multiple source – destination pairs. 

 The algorithm which implements the channel allocation are called 

medium access control (MAC) or multiple access protocols. 

 MAC protocols can be classified into  

o Conflict free protocols  

o Random access protocols 

 

 A Conflict free protocols: Collisions are completely avoided by 

allocating the channel access to sources in a predetermined manner. 

Examples are TDMA,  FDMA and CDMA. This is equivalent to 

circuit switching and is inefficient for bursty type of loads. 

 Random access protocols: These are classified as contention systems 

where the stations compete to access the channel. The contention 

could be completely random or controlled. 

 Collisions can occur between transmitted packets of different users 

trying to access the channel. 

 A collided packet has to be transmitted until it is received properly at 

the destination.  
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Frequency Division Multiplexing 

A number of independent signals can be combined into a composite signal suitable for 

transmission over a common channel. The signals must be kept apart so that they do not 

interfere with each other and thus they can be separated at the receiving end. 

Transmitter: 

 

 

Receiver: 
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Example: Single Sideband Frequency Division Multiplexed Signals 

 

 

Example: Double Sideband Frequency Division Multiplexed Signals 

Let 𝑚1, 𝑚2 𝑎𝑛𝑑 𝑚3  be three baseband message signals each with a B.W = w. 

The composite modulated signal 𝑠(𝑡) is  

𝑠(𝑡) =  𝐴𝑐1
𝑚1(𝑡)𝑐𝑜𝑠2𝜋𝑓1𝑡 + 𝐴𝑐2

𝑚2(𝑡)𝑐𝑜𝑠2𝜋𝑓2𝑡 +  𝐴𝑐3
𝑚3(𝑡)𝑐𝑜𝑠2𝜋𝑓3𝑡      

=  𝑠1(𝑡) +  𝑠2(𝑡) +  𝑠3(𝑡)  

𝑠1, 𝑠2 𝑎𝑛𝑑 𝑠3 are DSB-SC signals with carrier frequencies 𝑓1,  𝑓2 𝑎𝑛𝑑 𝑓3 , respectively. If 

the spectrum of 𝑚1(𝑡), 𝑚2(𝑡) 𝑎𝑛𝑑 𝑚3(𝑡) are as shown, the spectrum of 𝑠(𝑡) can be 

found as shown below.  
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To prevent interference we demand that  

𝑓2 − 𝑤 ≥  𝑓1 + 𝑤   𝑜𝑟   𝑓2 − 𝑓1 ≥ 2𝑤   

𝑓3 − 𝑤 ≥  𝑓2 + 𝑤   𝑜𝑟   𝑓3 − 𝑓2 ≥ 2𝑤  

The structure of the receiver is as follows: 
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