Normal Amplitude Modulation Time and Frequency Domain Characteristics Lecture Outline

- Why do we need modulation?
- Define the normal AM signal
- The normal AM in the time and frequency domains
- Power efficiency
- Effect of the modulation index

# Normal Amplitude Modulation

*Modulation*: is the process by which some characteristic of a high frequency signal c(t), called the carrier, is varied in accordance with a message signal m(t). A common form of the *carrier*, in the case of continuous wave modulation, is a sinusoidal signal

 $c(t) = A_C \cos(2\pi f_C t + \varphi)$ 

The three parameters of c(t), amplitude, phase, and frequency may be varied in accordance of the message signal resulting in amplitude modulation, phase modulation, and frequency modulation.



# Why Modulation?

- There are several reasons why modulation is needed in a communication system.
- Physical antenna size: For efficient transmission of a signal, the antenna length should be about  $\lambda/4$ , where  $\lambda$  is the wavelength.
- For example, let the frequency of the message be 3KHz (audio signal)
- The wavelength  $\lambda = \frac{c}{f} = \frac{3.0X10^8}{3.0X10^3} = 10^5 m = 100 km.$
- Hence, the size of the antenna should be around  $(\lambda/4 = 25 \text{ km})$ , which is not at all practical.
- Now, let us find the antenna length in the GSM band (1000 MHz):

• 
$$\lambda = \frac{c}{f} = \frac{3.0X10^8}{1000X10^6} = 0.3m$$

• Hence, the size of the antenna should be around  $(\lambda/4 = 7.5 \text{ cm})$ , which can easily fit into a mobile device. This is a challenging design issue in modern mobile technology.

# Why Modulation?

 Band-pass channels: Most, if not all, channels over which messages are transmitted are band-pass, while messages are low-pass signals. Hence, direct transmission of messages over band-pass channels would result in high attenuation (essentially no received signal). This necessitates shifting the message spectrum to coincide with the channel bandwidth.



# Why Modulation?

• Multiplexing: Modulation allows multiple users to use the same channel by assigning each user a portion of the available bandwidth without interfering with other users.



# Amplitude modulation

- Amplitude modulation (AM) is defined as the process in which the amplitude of the carrier c(t) is varied linearly with m(t).
- Three types of amplitude modulation will be considered in detail. These are
  - Normal amplitude modulation
  - Double sideband suppressed carrier modulation (DSB-SC)
  - Single sideband modulation (SSB-SC)



- The baseband (message) signal m(t) is referred to as the modulating signal and the result of the modulation process is referred to as the modulated signal s(t).
- Modulation is performed at the transmitter
- **Demodulation**, which is the process of extracting m(t) from s(t), is performed at the receiver.

## Normal Amplitude modulation

A normal AM signal is defined as:  $s(t) = A_c(1 + k_a m(t)) \cos(2\pi f_c t)$ 

where,  $k_a$  is the sensitivity of the AM modulator (units in 1/volt). s(t) can be also be written in the form:  $s(t) = A(t) \cos 2\pi f_c t$ 

The **envelope** of s(t) is defined as

 $\left|A(t)\right| = A_C \left|1 + k_a m(t)\right|$ 

Notice that the envelope of s(t) has the same shape as m(t) provided that:

- 1.  $(1+k_a m(t)) \ge 0$  Or equivalently,  $|k_a m(t)| \le 1$ .
- 2. Over-modulation occurs when  $|k_a m(t)| > 1$  resulting in envelope distortion
- 3.  $f_C >> W$ , where W is the bandwidth of m(t).  $f_C$  has to be at least 10W. This ensures the formation of an envelope, whose shape resembles the message signal.

# Spectrum of the Normal AM Signal

Let the Fourier transform of m(t) be as shown (the B.W of m(t) = W Hz).

 $s(t) = A_C (1 + k_a m(t)) \cos 2\pi f_C t \qquad (dc + message)^* carrier$  $s(t) = A_C \cos 2\pi f_C t + A_C k_a m(t) \cos 2\pi f_C t \qquad (carrier + message^* carrier)$ 

Taking the Fourier transform, we get

$$S(f) = \frac{A_C}{2}\delta(f - f_C) + \frac{A_C}{2}\delta(f + f_C) + \frac{A_Ck_a}{2}M(f - f_C) + \frac{A_Ck_a}{2}M(f + f_C)$$



#### **Remarks**

a. The baseband spectrum M(f), of the message has been shifted to the bandpass region centered around the carrier frequency f<sub>c</sub>.
b. The spectrum S(f) consists of two sidebands (upper sideband and lower

sideband) and a carrier.

c. The transmission bandwidth of s(t) is:  $B.W. = (f_c + W) - (f_c - W) = 2W$  which is twice the message bandwidth.

## Spectrum of the Normal AM: Sinusoidal Modulation

**Example**: Consider the normal AM with sinusoidal modulation, where  $c(t) = A_c cos(2\pi f_c t)$ ;  $m(t) = A_m cos(2\pi f_m t)$ ; plot m(t), c(t), s(t) and find their spectrum. **Solution**:  $s(t) = A_c(1 + k_a m(t))cos 2\pi (f_c)t$ 

- $s(t) = A_c cos(2\pi f_c t) + A_c k_a A_m cos(2\pi f_c t) cos(2\pi f_m t);$
- $s(t) = A_c cos(2\pi f_c t) + \frac{A_c A_m k_a}{2} cos(2\pi (f_c + f_m)t) + \frac{A_c A_m k_a}{2} cos(2\pi (f_c f_m)t)$
- $S(f) = \Im\{s(t)\}$
- M(f) =  $\frac{A_m}{2}\delta(f f_m) + \frac{A_m}{2}\delta(f + f_m)$
- The next figure shows all the plots when  $f_m = 200$  Hz and  $f_c = 000$  Hz



# Spectrum of the Normal AM Signal

An AM signal in the time and frequency domains.



# Power Efficiency of Normal AM

The *power efficiency* of a normal AM signal is defined as:

 $\eta = \frac{power \text{ in the sidebands}}{power \text{ in the sidebands} + power \text{ in the carrier}}$ 

Now, we find the power efficiency of the AM signal for the single-tone modulating signa  $\eta$  $m(t) = A_m \cos(2\pi f_m t)$ . Let  $\mu = A_m k_a$ , then s(t) can be expressed as  $s(t) = A_c (1 + \mu \cos 2\pi f_m t) \cos 2\pi f_c t$  $s(t) = A_C \cos 2\pi f_C t + A_C \mu \cos 2\pi f_C t \cos 2\pi f_m t$  $s(t) = A_C \cos 2\pi f_C t + \frac{A_C \mu}{2} \cos 2\pi (f_C + f_m)t + \frac{A_C \mu}{2} \cos 2\pi (f_C - f_m)t$ Power in carrier =  $\frac{A_C^2}{2}$ Power in sidebands  $=\frac{1}{2}\left(\frac{A_C\mu}{2}\right)^2 + \frac{1}{2}\left(\frac{A_C\mu}{2}\right)^2 = \frac{1}{4}A_C^2\mu^2$  $\eta = \frac{\frac{1}{4}A_c^2 \mu^2}{\frac{A_c^2}{2} + \frac{1}{4}A_c^2 \mu^2} = \frac{\mu^2}{2 + \mu^2} \qquad ; \quad 1 \ge \mu \ge 0$ Therefore,

![](_page_10_Figure_4.jpeg)

- The maximum efficiency occurs when μ=1, i.e. for a 100% modulation index. The corresponding maximum efficiency is only η = 1/3. As a result, 2/3 of the transmitted power is wasted in the carrier
- <u>Remark:</u> Normal AM is not an efficient modulation scheme in terms of the utilization of the transmitted power.11

#### Amplitude Modulation: AM Modulation Index

Consider the AM signal:  $s(t) = A_C (1 + k_a m(t)) \cos 2\pi f_C t = A(t) \cos 2\pi f_C t$ 

**The envelope** of s(t) is:

$$A(t) = A_C |1 + k_a m(t)|$$

The following block diagram illustrate the envelope detection process for a sinusoidal message signal.

$$s(t) \longrightarrow \text{Ideal Envelope} \qquad \qquad \downarrow y(t) = A_c |1 + \mu \cos 2\pi f_m t| \qquad \mu = A_m k_a$$

To avoid distortion, the following condition must hold

$$(1+k_a m(t) \ge 0 \quad \text{or} \quad |k_a m(t)| \le 1$$

The modulation index of an AM signal is defined as:

Modulation Index 
$$(M.I) = \frac{|A(t)|_{\max} - |A(t)|_{\min}}{|A(t)|_{\max} + |A(t)|_{\min}}$$

The modulation index  $\mu$  (modulation depth) of an amplitude modulated signal is defined as the measure or extent of amplitude variation about an un-modulated carrier. In other words the amplitude modulation index describes the amount by which the modulated carrier envelope varies about the static level.

> Activate Go to Setti

12

## Amplitude Modulation: Effect of the Modulation Index

![](_page_12_Figure_1.jpeg)

#### Amplitude Modulation: Multi-tone Modulation

![](_page_13_Figure_1.jpeg)

A non-envelope distortion case for multitoned transmission

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

Normal Amplitude Modulation Generation and Demodulation Lecture Outline

- Last Lecture:
  - Why do we need modulation?
  - Define the normal AM signal
  - The normal AM in the time and frequency domains
  - Power efficiency
  - Effect of the modulation index
- This Lecture:
  - AM generation techniques: the switching modulator
  - The envelope detector

#### Normal Amplitude Modulation: Standard Form

![](_page_15_Figure_1.jpeg)

#### Generation of a Normal Amplitude Modulation: the Switching Modulator

Assume that the carrier c(t) is large in amplitude so that the diode –shown in the figure below- acts like an ideal switch.

![](_page_16_Figure_2.jpeg)

Generation of a Normal Amplitude Modulation: the Switching Modulator

$$V_2(t) = \left[A_C \cos \omega_C t + m(t)\right] \left(\frac{1}{2}\right) + \left(\frac{2}{\pi} \cos \omega_C t\right) \left(A_C \cos \omega_C t + m(t)\right) - \left(\frac{2}{3\pi} \cos 3\omega_C t\right)$$
$$\left(m(t) + A_C \cos \omega_C t\right) + \dots$$

$$V_{2}(t) = \frac{m(t)}{2} + \frac{A_{c}}{2} \cos \omega_{c} t + \frac{2}{\pi} m(t) \cos \omega_{c} t + \frac{A_{c}}{\pi} + \frac{A_{c}}{\pi} \cos 2\omega_{c} t + \frac{2}{3\pi} m(t) \cos 3\omega_{c} t$$
$$V_{2}(t) = [A_{c} \cos \omega_{c} t + m(t)]g_{P}(t)$$
$$V_{2}(t) = [A_{c} \cos \omega_{c} t + m(t)]g_{P}(t)$$
$$g_{P}(t) = \frac{1}{2} + \frac{2}{\pi} \left( \cos \omega_{c} t - \frac{1}{3} \cos 3\omega_{c} t + \frac{1}{5} \cos 5\omega_{c} t + \dots \right)$$

A band-pass filter with a bandwidth 2w, centered at  $f_c$ , passes the second term (a carrier) and the third term (a carrier multiplied by the message). The filtered signal is

$$s(t) = \frac{A_C}{2} \cos \omega_C t + \frac{2}{\pi} m(t) \cos \omega_C t$$
  

$$s(t) = \frac{A_C}{2} \left( 1 + \frac{4}{\pi A_C} m(t) \right) \cos \omega_C t \quad \text{; Desired AM signal.}$$
  
Modulation Index =  $M I = \frac{4}{\pi A_C} \left| m(t) \right|_{\text{max}}$ 

 $-f_{c} - w - f_{c} - f_{c} + w - w = 0 \qquad w = f_{c} - w - f_{c} - f_{c} + w - 2f_{c}$ 

**BPF** 

Demodulation of a Normal Amplitude Modulation: Envelope Detection

**The Ideal Envelope Detector:** The ideal envelope detector responds to the envelope of the signal, but is insensitive to phase variation. If

 $s(t) = A_c (1 + k_a m(t)) \cos 2\pi f_c t$ 

then, the output of the ideal envelope detector is  $y(t) = A_c \left| 1 + k_a m(t) \right|$ 

![](_page_18_Figure_5.jpeg)

To avoid envelope distortion,  $|1 + k_a m(t)|$  should equal  $(1 + k_a m(t))$ That is,  $(1 + k_a m(t)) \ge 0$  for all time

# **Example:** single tone modulation (under-modulation) **Example:** Let $s(t) = A_C(1 + \mu \cos 2\pi f_m t) \cos 2\pi f_C t$ be applied to an ideal envelope detector, sketch the demodulated signal for $\mu = 0.25, 1.0, and 1.25$ .

As was mentioned before, the output of the envelope detector is  $y(t) = A_c |1 + \mu \cos 2\pi f_m t|$ 

![](_page_19_Figure_2.jpeg)

Here, m(t) can be extracted without distortion.  $(1 + k_a m(t)) \ge 0$  for all time.  $|1 + k_a m(t)| = (1 + k_a m(t))$ . By removing the dc value, the output will be proportional to the message

![](_page_19_Figure_4.jpeg)

# Example: single tone modulation (100% - modulation)

![](_page_20_Figure_1.jpeg)

Here, m(t) can be extracted without distortion.  $(1 + k_a m(t)) \ge 0$  for all time. That is,  $|1 + k_a m(t)| = (1 + k_a m(t))$ . By removing the dc value, the output will be proportional to the message

# Example: single tone modulation (over-modulation)

![](_page_21_Figure_1.jpeg)

Here, m(t) cannot be extracted without distortion. The shape of the envelope is not the same as the shape of the message.  $(1 + k_a m(t))$  fails to remain positive for all time.  $|1 + k_a m(t)| \neq (1 + k_a m(t))$ 

# A Simple Practical Envelope Detector

- A practical envelope detector consists of a diode followed by an RC circuit that forms a low pass filter.
- During the positive half cycle of the input, the diode is forward biased and C charges rapidly to the peak value of the input.
- When s(t) falls below the maximum value, the diode becomes reverse biased and C discharges slowly through R<sub>L</sub>.
- To follow the envelope of s(t), the circuit time constant should be chosen such that  $\frac{1}{f_c} << R_L C << \frac{1}{W}$  where W is the message B.W and  $f_c$  is the carrier frequency.
- When a capacitor C is added to a half wave rectifier circuit, the output follows the envelope of s(t). The circuit output (with C connected) follows a curve that connects the tips of the positive half cycles, which is the envelope of the AM signal.

23

![](_page_22_Figure_6.jpeg)

## A Simple Practical Envelope Detector: Effect of the Time Constant

Consider the AM signal  $s(t) = A_c [1 + \mu \cos(2\pi f_m t)] \cos(2\pi f_c t)$  that is demodulated using the envelope detector. Assume  $R_s = 0$ ,  $\mu = 0.25$ ,  $A_c = 1$ ,  $f_m = 1$ Hz,  $f_c = 25$ Hz. We show the effect of the time constant  $\tau = R_L C$  on the detected signal

![](_page_23_Figure_2.jpeg)