
Normal Amplitude Modulation
Time and Frequency Domain Characteristics 

Lecture Outline

•Why do we need modulation?

•Define the normal AM signal

• The normal AM in the time and frequency domains

•Power efficiency

• Effect of the modulation index
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Normal Amplitude Modulation
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Why Modulation?

• There are several reasons why modulation is needed in a communication system.

• Physical antenna size: For efficient transmission of a signal, the antenna length 
should be about λ/4, where λ is the wavelength. 

• For example, let the frequency of the message be 3KHz (audio signal)

• The wavelength 𝜆 =
𝑐

𝑓
=

3.0𝑋108

3.0𝑋103
= 105𝑚 = 100𝑘𝑚. 

• Hence, the size of the antenna should be around (λ/4 =25 km), which is not at all 
practical.

• Now, let us find the antenna length in the GSM band (1000 MHz):

• 𝜆 =
𝑐

𝑓
=

3.0𝑋108

1000𝑋106
= 0.3𝑚

• Hence, the size of the antenna should be around (λ/4 = 7.5 cm), which can easily fit 
into a mobile device. This is a challenging design issue in modern mobile technology.
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Why Modulation?

• Band-pass channels: Most, if not all, channels over which messages are 
transmitted are band-pass, while messages are low-pass signals. Hence, direct 
transmission of messages over band-pass channels would result in high 
attenuation (essentially no received signal). This necessitates shifting the 
message spectrum to coincide with the channel bandwidth.

Baseband Message Band-pass Channel

M f
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Pass-band

Stop-band
M f

Y(f) = M(f)H(f)



Why Modulation?

• Multiplexing: Modulation allows multiple users to use the same channel by 
assigning each user a portion of the available bandwidth without interfering 
with other users.

Band-pass Channel

𝑀1(𝑓)

𝑀2(𝑓)

𝑀3(𝑓)
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𝑴𝟒𝑴𝟑𝑴𝟐𝑴𝟏

Guard Band



Amplitude modulation 

• Amplitude modulation (AM) is defined as the process in which the amplitude of 
the carrier 𝑐 𝑡 is varied linearly with 𝑚 𝑡 . 

• Three types of amplitude modulation will be considered in detail. These are 
• Normal amplitude modulation

• Double sideband suppressed carrier modulation (DSB-SC)

• Single sideband modulation (SSB-SC)

• The baseband (message) signal 𝑚 𝑡 is referred to as the modulating signal and 
the result of the modulation process is referred to as the modulated signal 𝑠 𝑡 .

• Modulation is performed at the transmitter

• Demodulation, which is the process of extracting 𝑚 𝑡 from 𝑠 𝑡 , is performed 
at the receiver. 6



Normal Amplitude modulation 
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Spectrum of the Normal AM Signal

Remarks

a. The baseband spectrum  

𝑀(𝑓) , of the message has 

been shifted to the bandpass

region centered around the 

carrier frequency 𝑓𝑐.

b. The spectrum 𝑆(𝑓) consists 

of two sidebands (upper 

sideband and lower 

sideband) and a carrier.

c. The transmission bandwidth 

of 𝑠(𝑡) is:

𝐵.𝑊.= (𝑓𝑐 +𝑊) −
𝑓𝑐 −𝑊 = 𝟐𝑾 which is twice 

the message bandwidth.
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Spectrum of the Normal AM: Sinusoidal Modulation

Example: Consider the normal AM with sinusoidal modulation, where c t = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);  
m t = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); plot m(t), c(t), s(t) and find their spectrum.

Solution: s t = 𝐴𝑐(1 + 𝑘𝑎m t )cos 2𝜋(𝑓𝑐)𝑡

• 𝑠 𝑡 = 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) + 𝐴𝑐𝑘𝑎𝐴𝑚 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑚𝑡 ;

• 𝑠 𝑡 = 𝐴𝑐𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 +
𝐴𝑐𝐴𝑚𝑘𝑎

2
𝑐𝑜𝑠 2𝜋( 𝑓𝑐+𝑓𝑚)𝑡 +

𝐴𝑐𝐴𝑚𝑘𝑎

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

• 𝑆 𝑓 = ℑ{𝑠(𝑡)}

• M f =
𝐴𝑚

2
𝛿(𝑓 − 𝑓𝑚) +

𝐴𝑚

2
𝛿(𝑓 + 𝑓𝑚)

• The next figure shows all the plots 

when 𝑓𝑚 = 200 Hz and 𝑓𝑐 = 000 Hz
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𝑺 𝒇

𝒇𝒄 𝒇𝒄 + 𝒇𝒎𝒇𝒄 − 𝒇𝒎



Spectrum of the Normal AM Signal
An AM signal in the time and frequency domains. 

s t = (1 + 𝑘𝑎m t )cos 2𝜋(2000)𝑡 m t = cos 2𝜋(200)𝑡 𝜇 = 𝐴𝑚𝑘𝑎 = 1.0
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m t = cos 2𝜋(200)𝑡

c t = cos 2𝜋(2000)𝑡

s t

𝑘𝑎 = 1.0



Power Efficiency of Normal AM

• The maximum efficiency occurs when μ=1, 
i.e. for a 100% modulation index. The 
corresponding maximum efficiency is only η 
= 1/3. As a result, 2/3 of the transmitted 
power is wasted in the carrier

• Remark: Normal AM is not an efficient 
modulation scheme in terms of the 
utilization of the transmitted power.11

𝜇 = 𝐴𝑚𝑘𝑎



Amplitude Modulation: AM Modulation Index
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The modulation index μ (modulation depth) of 
an amplitude modulated signal is defined as the 
measure or extent of amplitude variation about 
an un-modulated carrier. In other words the 
amplitude modulation index describes the 
amount by which the modulated carrier 
envelope varies about the static level.

𝝁 = 𝑨𝒎𝒌𝒂



Amplitude Modulation: Effect of the Modulation Index

m t = cos 2𝜋(200)𝑡

𝜇 = 0.5

𝜇 = 1.0

𝜇 = 1.5

s t = (1 + 𝜇m t )cos 2𝜋(2000)𝑡
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𝜇 = 𝑘𝑎|𝑚 𝑡 |



Amplitude Modulation: Multi-tone Modulation

s t = (1 +𝑚1 t + 𝑚2 t )cos 2𝜋(2000)𝑡

𝑚1 t = 0.5cos 2𝜋(200)𝑡 𝑚2 t = 0.25cos 2𝜋(100)𝑡

𝑘𝑎 = 1; 𝐴𝑐 = 1
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A non-envelope distortion case 
for multitoned transmission

𝑚1 t + 𝑚2 t

c t

s t



Normal Amplitude Modulation
Generation and Demodulation 

Lecture Outline

• Last Lecture: 
• Why do we need modulation?
• Define the normal AM signal
• The normal AM in the time and frequency domains
• Power efficiency
• Effect of the modulation index

• This Lecture:
• AM generation techniques: the switching modulator
• The envelope detector
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Normal Amplitude Modulation: Standard Form

s(𝑡) = 𝐴𝐶(1 + 𝑘𝑎𝑚(𝑡))cos2𝜋𝑓𝑐𝑡

+𝑘𝑎
𝑚(𝑡)

𝑐 𝑡 = 𝐴𝐶cos2𝜋𝑓𝑐𝑡DC = 1

mixer
s(𝑡)
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𝑆(𝑓) =
𝐴𝐶

2
𝛿(𝑓 − 𝑓𝐶) +

𝐴𝐶

2
𝛿(𝑓 + 𝑓𝐶) +

𝐴𝐶𝑘𝑎

2
𝑀(𝑓 − 𝑓𝐶) +

𝐴𝐶𝑘𝑎

2
𝑀(𝑓 + 𝑓𝐶)



Generation of a Normal Amplitude Modulation: the Switching Modulator

Band-
pass 
Filter
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𝒄 𝒕 = 𝑨𝑪𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝒕



Generation of a Normal Amplitude Modulation: the Switching Modulator

)𝑽𝟐(𝒕) = )𝑨𝑪𝐜𝐨𝐬𝝎𝑪𝒕 +𝒎(𝒕 𝒈𝑷(𝒕

𝒈𝑷(𝒕) =
𝟏

𝟐
+
𝟐

𝝅
𝐜𝐨𝐬𝝎𝑪𝒕 −

𝟏

𝟑
𝐜𝐨𝐬𝟑𝝎𝑪𝒕 +

𝟏

𝟓
𝐜𝐨𝐬𝟓𝝎𝑪𝒕+. . .
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Demodulation of a Normal Amplitude Modulation: Envelope Detection

Ideal Envelope 
Detector

𝐴𝐶|1 + 𝑘𝑎m t |
∝ m t

Capacitor
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𝐴𝐶(1 + 𝑘𝑎𝑚(𝑡))cos2𝜋𝑓𝑐𝑡

To avoid envelope distortion, 
|1 + 𝑘𝑎m t | should  equal (1 + 𝑘𝑎𝑚(𝑡))
That is, (1 + 𝑘𝑎𝑚(𝑡)) ≥ 0 for all time



Example: single tone modulation (under-modulation)

Here, m(t) can be extracted without distortion. (1 + 𝑘𝑎𝑚(𝑡)) ≥
0 for all time. |𝟏 + 𝒌𝒂𝐦 𝒕 |= (𝟏 + 𝒌𝒂𝒎(𝒕)) . By removing the 

dc value, the output will be proportional to the message

𝜇 = 0.25
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s(𝑡) = 𝐴𝐶(1 + 0.25cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡

𝒚(𝒕) = 𝑨𝑪(𝟏 + 𝟎. 𝟐𝟓𝒄𝒐𝒔𝟐𝝅𝒇𝒎𝒕)



Example: single tone modulation (100% - modulation)

Here, m(t) can be extracted without distortion. (1 + 𝑘𝑎𝑚(𝑡)) ≥ 0 for all time. That 

is, |1 + 𝑘𝑎m t |= (1 + 𝑘𝑎𝑚(𝑡)). By removing the dc value, the output will be 

proportional to the message

𝜇 = 1.0
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𝒚(𝒕) = 𝑨𝑪(𝟏 + 𝒄𝒐𝒔𝟐𝝅𝒇𝒎𝒕)

s(𝑡) = 𝐴𝐶(1 + cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡



Example: single tone modulation (over-modulation)

Here, m(t) cannot be extracted without distortion. The shape of the 

envelope is not the same as the shape of the message. (1 + 𝑘𝑎𝑚(𝑡)) fails 
to remain positive for all time. |1 + 𝑘𝑎m t | ≠ (1 + 𝑘𝑎𝑚(𝑡))

𝜇 = 1.25
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s(𝑡) = 𝐴𝐶(1 + 1.25cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡



A Simple Practical Envelope Detector
• A practical envelope detector consists of a diode followed by an RC circuit that forms a low pass filter.

• During the positive half cycle of the input, the diode is forward biased and C charges rapidly to the peak value 
of the input. 

• When s(t) falls below the maximum value, the diode becomes reverse biased and C discharges slowly through 
𝑅𝐿. 

• To follow the envelope of s(t), the circuit time constant should be chosen such that : 
1

𝑓𝐶
<< 𝑅𝐿𝐶 <<

1

𝑊

where W is the message B.W and 𝑓𝐶 is the carrier frequency.
• When a capacitor C is added to a half wave rectifier circuit, the output follows the envelope of s(t). The circuit 

output (with C connected) follows a curve that connects the tips of the positive half cycles, which is the 
envelope of the AM signal.
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A Simple Practical Envelope Detector: Effect of the Time Constant

Consider the AM signal  𝑠 𝑡 = 𝐴𝑐 1 + μ cos 2πfmt cos(2πfct) that is demodulated using 
the envelope detector. Assume 𝑅𝑠 = 0, μ = 0.25, 𝐴𝑐 = 1, fm = 1Hz, fc = 25Hz. We show the 
effect of the time constant 𝜏 = 𝑅𝐿𝐶 on the detected signal

RC output when tau 0.1 RC output when tau 0.9

RC optimum tau 0.74

𝑇𝐶 << 𝑅𝐿𝐶 << 𝑇𝑚
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