
Double Sideband Suppressed Carrier (DSB-SC) Modulation: 
Lecture Outline

• In this lecture, we consider a second type of AM modulation 
called DSB-SC. 

• We analyze this modulation technique in the time and 
frequency domains. 

• Consider the generation and demodulation techniques. 

• Study the effect of non-coherence in the phase and 
frequency of the locally generated carrier at the receiver on 
the demodulated signal. 
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Double Sideband Suppressed Carrier (DSB-SC) Modulation

• A DSB-SC signal is an amplitude-modulated signal that has the form

• 𝒔 𝒕 = 𝑨𝒄𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕), where

• 𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡):  is the carrier signal

• 𝑚 𝑡 :  is the baseband message signal

• 𝑓𝑐 >> 𝑊, 𝑊 is the bandwidth of the baseband message signal 𝑚 𝑡
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FIGURE: 𝒎 𝒕 𝒄(𝒕)
𝒎 𝒕 = 𝒄𝒐𝒔(𝟐𝝅(𝟏𝟎𝟎)𝒕)
𝒄 𝒕 = 𝒄𝒐𝒔(𝟐𝝅 𝟏𝟎𝟎𝟎 𝒕);



Spectrum of the Double Sideband Suppressed Carrier (DSB-SC)
• DSB-SC:   𝒔 𝒕 = 𝑨𝒄𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

• 𝑆 𝑓 = ℑ{𝐴𝑐𝑚 𝑡 co s 2𝜋𝑓𝑐𝑡 } =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 ]

Remarks: Similarities and Differences with Normal AM

• 1.  No impulses are present in the spectrum at ± fc , i.e., no carrier is transmitted as in the case of AM

• 2. The transmission B.W of s(t) = 2W;  twice the message bandwidth (same as that of normal AM).

• 3. Power efficiency = 
𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒 𝑏𝑎𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟
= 100%. This is a power efficient modulation scheme.

• 4. Coherent detector is required to extract m(t) from s(t), as we shall demonstrate shortly.

• 5. Envelope detection cannot be used for this type of modulation.
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Spectrum of DSB-SC: Sinusoidal Modulation

• Example: Consider the sinusoidal modulation case where c t = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);  
m t = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); plot m(t), c(t), s(t) and find their spectrum.

Solution:

• 𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) = 𝐴𝑐𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡);

• =
𝐴𝑐𝐴𝑚

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐+𝑓𝑚)𝑡 +

𝐴𝑐𝐴𝑚

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

• 𝑆 𝑓 = ℑ{𝐴𝑐𝑚 𝑡 𝑐𝑜 𝑠 2𝜋𝑓𝑐𝑡 } =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 ]

• M f =
𝐴𝑚

2
𝛿(𝑓 − 𝑓𝑚) +

𝐴𝑚

2
𝛿(𝑓 + 𝑓𝑚)

• The next figure shows all the plots when

𝑓𝑚 = 100 Hz and 𝑓𝑐 = 1000 Hz
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Spectrum of the DSB-SC Signal: Sinusoidal Modulation

𝑚 𝑡 = 𝐴𝑚𝑐𝑜𝑠(2𝜋(100)𝑡); c 𝑡 = 𝑐𝑜𝑠(2𝜋(1000)𝑡);  𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡); 

5

𝑓𝑐 = 1000

𝑓𝑢 = 1100

𝑓𝑙 = 900

𝑓𝑚 = 100

𝑚 𝑡

c 𝑡

𝑠 𝑡



Generation of DSB-SC: The Product Modulator

• Product Modulator: It multiplies the message signal m(t) with the carrier c(t). 
This technique is usually applicable when low power levels are possible and 
over a limited carrier frequency range.
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Generation of DSB-SC: The Ring Modulator

• Consider the scheme shown in the figure.

• Let c(t) >> m(t). Here the carrier c(t) controls the behavior of the diodes .
• During the positive half cycle of c(t), c(t) > 0, and D1 and D2 are ON while D3 and D4 are 

OFF. Here,  y(t) = m(t).

• During the negative half cycle of  c(t), c(t) < 0 and D3 and D4 are ON while and D1 and 
D2 are OFF. Here, y(t) = - m(t).

• So m(t) is multiplied by +1 during the +ve half cycle of 

c(t) and m(t) is multiplied by -1 during the -ve half cycle of c(t)
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c(t) > 0 c(t) < 0

y(t) = m(t) y(t) = - m(t)

D1 and D2 ON D3 and D4 ON 



Generation of DSB-SC: The Ring Modulator
• So m(t) is multiplied by +1 during the +ve half cycle of c(t) and m(t) is multiplied by -1 during 

the -ve half cycle.

• Mathematically, y(t) behaves as if m(t) is multiplied by the switching function gp(t) where  

gp(t) is the square periodic function with period Tc = 
1

𝑓𝑐
; Tc the period of c(t). By expanding 

gp(t) in a Fourier series, we get

• y(t) = m(t) gp(t) =  m(t)[
4

𝜋
cos2πfct -

4

3𝜋
cos 3(2πfct) + 

4

5𝜋
cos5(2πfct)]

• = m(t) 
4

𝜋
cos2πfct - m(t) 

4

3𝜋
cos 3(2πfct) + m(t) 

4

5𝜋
cos5(2πfct)

• When y(t) passes through the BPF with center frequency 𝑓𝑐,  and bandwidth = 2W, the only 
component that appears at the output is the desired DSB-SC signal, which is

𝒔 𝒕 =
𝟒

𝝅
𝒎 𝒕 𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝒕
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Demodulation of DSB-SC
• A DSB-SC signal is demodulated using what is known as coherent demodulation. This means that the 

modulated signal s(t) is multiplied by a locally generated signal at the receiver which has the same 
frequency and phase as that of the carrier c(t) at the transmitting side

Perfect Coherent Demodulation

• Let 𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

• 𝑐′ 𝑡 = 𝐴𝑐′cos(2𝜋𝑓𝑐𝑡)

• Mixing the received signal with the version of the carrier at the receiving side, we get

• v t = 𝑠(𝑡)𝐴𝑐′cos(2𝜋𝑓𝑐𝑡) = Ac 𝐴𝑐′m(t) cos22πfct

• = 
A
c
𝐴𝑐′

2
m(t) [1+ cos 2 (2πfct)]  =  

𝐀
𝐜
𝑨𝒄′

𝟐
m(t) +  

A
c
𝐴𝑐′

2
m(t) cos 2(2πfct)

• The first term on the RHS is proportional to 𝑚 𝑡 , while the second term is a DSB signal modulated 
on a carrier with frequency 2𝑓𝑐. The high frequency component can be eliminated using a LPF with 

B.W = W. The output is 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)

• Therefore, 𝑚(𝑡) has been recovered from 𝑠(𝑡) without distortion, i.e., the whole modulation-
demodulation process is distortion-less.
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X

𝑐′ 𝑡 = 𝐴𝑐′cos(𝟐𝝅𝒇𝒄𝒕)

𝑠 𝑡 = 𝐴𝑐m(t)cos(𝟐𝝅𝒇𝒄𝒕) Low pass 
filter

B.W = W

v(t) y(t)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift
A constant phase difference between c(t) and 𝒄′ 𝒕

• Let c(t) = Accos2πfct , 𝑐′ 𝑡 = 𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)

• We use the same demodulator  

• v(t) = Acm(t)cos2πfct . 𝐴𝑐′ cos(2πfct+Ø)

• = 
A
c
𝐴𝑐′

2
m(t)[ cos (4πfct + Ø) + cos Ø]

• = 
𝐴𝑐𝐴𝑐

′

2
m(t) cos (4πfct + Ø) +

𝑨𝒄𝑨𝒄
′

𝟐
m(t) cos Ø

• The low pass filter suppresses the first high frequency term and admits only the second low 

frequency term. The output is 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔∅

• For  0 < Ø < 
𝜋

2
,  0  < cos Ø < 1,  y(t) suffers from an attenuation due to Ø.

• However, for Ø =  
𝝅

𝟐
,  cos Ø = 0 and y(t) = 0, i.e., receiver loses the signal.

• The disappearance of a message component at the demodulator output is called 
quadrature null effect. This highlights the importance of maintaining synchronism between 
the transmitting and receiving carrier signals 𝑐′ 𝑡 and c(t). 10

X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift

Example: Let m1(t) = cos2π(1000)t;   m2(t) = cos2π(2000)t; m(t) = m1(t) + m2(t) 

c(t) = cos2π(10000)t  and let φ = 50 degrees.

Solution: From the analysis above, 

• 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔∅

• The next figure shows the input message, carrier, modulated, and 
demodulated signals in the time and frequency domains.       
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X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift
m1(t) = cos2π(1000)t;   m2(t) = cos2π(2000)t; m(t) = m1(t) + m2(t) c(t) = cos2π(10000)t  and let φ = 50 degrees.
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𝒎 𝒕

c 𝒕
c’ 𝒕

y(t)

s 𝒕

c’ 𝒕 = cos(2𝜋𝑓𝑐𝑡 + 𝜑)

c(t) = cos(2π𝑓𝑐t) 

𝑓𝑙 = 8000,9000

𝑓𝑢 = 11000,12000

𝑓𝑚 = 1000,2000

No distortion, just 
attenuation, unless φ = 90  



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

Constant Frequency Difference between c(t) and 𝒄′ 𝒕

• Let c(t) = Accos2πfct , 𝑐′ 𝑡 = 𝐴𝑐′ cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)

• Again, we use the same receiver structure as before.

• 𝑣 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡). 𝐴𝑐′ cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)

• = 
A
c
𝐴𝑐′

2
m(t)[ cos  (4πfct + 2π∆ft) + cos 2π∆ft]

• After low-pass filtering,

𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔(𝟐𝝅∆𝒇𝒕)

• As you can see, 𝑦(𝑡) ≠ 𝑘𝑚(𝑡) , but rather 𝑚(𝑡) is multiplied by a time function. Hence, the 
system is not distortion-less. 

• In addition, y(t) appears as a double side band modulated signal with a carrier with 
magnitude ∆f. The next example illustrates this case more.
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X
𝑠 𝑡 = 𝐴𝑐m(t)cos(𝟐𝝅𝒇𝒄𝒕) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(𝟐𝝅(𝒇𝒄+∆𝒇)𝒕)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

Example: Let m(t) = cos2π(1000)t; c(t) = cos2π(10000)t  and let ∆f =500 Hz 

Solution: From the analysis in case 2 above, 

𝑦 𝑡 =
𝐴𝑐𝐴𝑐

′

2
𝑚(𝑡)𝑐𝑜𝑠(2𝜋∆𝑓𝑡)

y(t) =
Ac𝐴𝑐′

2
cos2π(1000)t cos2π(500)t

= 
A
c
𝐴𝑐′

4
[cos 2π(1500)t + cos 2π(500)t]

• The original message is a signal with a single frequency of 1000 Hz, while the 
output consists of a signal with two frequencies at f1 =1500 Hz and f2 = 500 Hz       

• ⇒ 𝑫𝒊𝒔𝒕𝒐𝒓𝒕𝒊𝒐𝒏)
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X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

𝑚 𝑡 = 𝐴𝑐𝑐𝑜𝑠(2𝜋(1000)𝑡); c 𝑡 = 𝑐𝑜𝑠(2𝜋(10000)𝑡); c’ 𝑡 = 𝑐𝑜𝑠(2𝜋(10500)𝑡); ∆𝑓 = 500
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𝒎 𝒕

c 𝒕
c’ 𝒕

y(t)
1500

500

s 𝒕

𝑓𝑚 = 1000

𝑓𝑢 = 11000

𝑓𝑙 = 9000


