
Signal Classifications

• Definition: A signal may be defined as a single valued function of time that 
conveys information.

• Depending on the feature of interest, we may distinguish four different 
classes of signals:

• Periodic and Non-periodic Signals

• Deterministic and Random Signals

• Analog and Digital Signals

• Energy and Power Signals



Classification of Signals: Periodic and Non-periodic

• A periodic signal g(t) is a function of time that 
satisfies the condition

𝑔 𝑡 = 𝑔 𝑡 + 𝑇0 , ∀𝑡.
• The smallest value of 𝑇0 that satisfies this 

condition is called the period of 𝑔 𝑡 .
• Example: The sinusoidal signal 𝑥 𝑡 =
cos(2𝜋(5)𝑡) is periodic with period 𝑻𝟎 = 𝟏/5.

• The reciprocal of the period is the fundamental 

frequency 𝑓0 =
1

𝑇0
. In this example, 𝒇𝟎 = 𝟓 Hz. 

• Example: The saw-tooth function shown is 
another example of a periodic signal.

• 𝑚 𝑡 =
𝐴

𝑇0
𝑡, 0 ≤ 𝑡 ≤ 𝑇0

• If 𝑇0 = 0.001 𝑠𝑒𝑐, then the fundamental 
frequency 𝒇𝟎 = 𝟏𝟎𝟎𝟎 Hz

𝒎 𝒕

𝑻𝟎0- 𝑻𝟎



Non-periodic Signals
• A non-periodic signal g(t) is one for which there does not exist a 𝑇0 for which 

the condition 𝑔 𝑡 = 𝑔 𝑡 + 𝑇0 is satisfied, i.e., the signal does not repeat 
itself each 𝑇0 . 

𝑔 𝑡 = ቊ
𝐴, 𝑡 > 0
0 𝑡 < 0

A

τ

𝑔 𝑡 = ቊ
𝐴exp(−αt), 0 ≤ 𝑡 < ∞

0, 𝑡 < 0

A

000

A

0

𝑔 𝑡 = ቊ
𝐴, 0 ≤ 𝑡 ≤ 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Step Function Au(t)

Rectangular Function
Exponential Function



Deterministic and Random Signals

• A deterministic signal is one about which there is no uncertainty with respect to its 
value at any time. It is a completely specified function of time.

• Deterministic Signal Example: 𝑥 𝑡 = 𝐴𝑒−𝑎𝑡𝑢(𝑡) ; 𝐴 = 1 and α is a constant.

• A random signal is one about which there is some degree of uncertainty before it 
actually occurs. (It is a function of a random variable)

• Random Signal Example: 𝑥 𝑡 = 𝐴𝑒−𝑎𝑡𝑢(𝑡); α is a constant and A is a random 
variable with the following probability density function (two possible realizations shown below)

𝑓𝐴 𝑎 = ቊ
1 0 ≤ 𝑎 ≤ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Random Signal Example: 𝑥 𝑡 = co𝑠(2𝜋𝑓𝑐𝑡 + Θ) ; 𝑓𝑐 is a constant and Θ is a random 
variable uniformly distributed over the interval (0, 2𝜋) with the following probability 
density function (pdf).

𝑓Θ 𝜃 = ൝
1

2𝜋
0 ≤ 𝜃 ≤ 2𝜋

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0.723 0.5812

𝑥 𝑡 = co𝑠(2𝜋𝑓𝑐𝑡 + 30) 𝑥 𝑡 = co𝑠(2𝜋𝑓𝑐𝑡 + 63)



Analog and Digital Signals

• In an analog signal the amplitude takes on any value within a defined range 
of continuous values.

• Example: The sinusoidal signal 𝑥 𝑡 = 𝐴𝑐𝑜𝑠 2𝜋𝑓0𝑡 , −∞ < 𝑡 < ∞, is an 
example of an analog signal.

• A digital signal : The values assumed by the signal belong to a finite and 
countable set.

• Example: The sequence x[n] shown below is an examples of a digital signal. 
The amplitudes are drawn from the finite set {1, 0, 2}.

0



Analog and Digital Signals: Continuous Valued and Discrete Valued

Continuous time 
continuous amplitude

Discrete time 
continuous amplitude

Continuous time discrete 
amplitude (PNRZ)

discrete time discrete 
amplitude

෍

−∞

∞

𝑎𝑛𝛿(𝑡 − 𝑘𝑇𝑠)



Average Value of a Signal
• The average value of a signal 𝑔(𝑡) over an observation interval of 2T 

centered at the origin is:

𝑔𝑎𝑣 =
1

2𝑇
𝑇−׬
𝑇
𝑔(𝑡) 𝑑𝑡

• The average value of a periodic signal 𝑔 𝑡 is 

𝒈𝒂𝒗 =
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎𝒈(𝒕) 𝒅𝒕 ; 𝑇0 is the period; 𝑓0 is the fundamental frequency.

• Example: Find the average value of the sinusoidal signal 

• 𝑥 𝑡 = 𝐴𝑐𝑜𝑠 2𝜋𝑓0𝑡 , −∞ < 𝑡 < ∞

• Solution: 𝑥𝑎𝑣 =
1

𝑇0
0׬
𝑇0 𝐴𝑐𝑜𝑠 2𝜋𝑓0𝑡𝑑𝑡 = −

𝐴𝑠𝑖𝑛 2𝜋𝑓0𝑡

2𝜋𝑓0
|0
𝑇0 = 0

0 T-T

g 𝒕

𝑻𝟎0- 𝑻𝟎



Energy and Power Signals

• The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-
Ω resistor, i.e.,

𝑝(𝑡) = |𝑔 𝑡 |2

• The average power over an observation interval of 2T centered at the origin is:

𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇
𝑇−׬
𝑇
|𝑔 𝑡 |2 𝑑𝑡

• The total energy of a signal 𝑔 𝑡 is 

𝐸 = lim
𝑇→∞

𝑇−׬
𝑇
|𝑔 𝑡 |2 𝑑𝑡

• A signal g(t) is classified as energy signal if it has a finite energy, i.e,0 < 𝐸 < ∞.

• A signal g(t) is classified as power signal if it has a finite power, i.e,  0 < 𝑃𝑎𝑣< ∞.

• The average power in a periodic signal 𝑔 𝑡 is 

𝑷𝒂𝒗 =
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 |𝒈 𝒕 |𝟐 𝒅𝒕 ; 𝑇0 is the period; 𝑓0 is the fundamental frequency.



Energy and Power Signals
• Example: Consider the Exponential Pulse 

𝑔 𝑡 = 𝐴𝑒−∝𝑡𝑢(𝑡). Is it an energy or a power signal?

Solution: Let us first find the energy in the signal 

𝐸 = 0׬
∞
𝐴2 𝑒−2𝛼𝑡𝑑𝑡 = 𝐴2

−𝑒−2𝛼𝑡

2𝛼 0
∞| =

𝐴2

2𝛼
. 

Since E is finite, then 𝑔 𝑡 is an energy signal.

• Example: Consider the Rectangular Pulse

𝑔 𝑡 = ቊ
𝐴, 0 < 𝑡 < 𝜏
0, 𝑜. 𝑤

Is it an energy or a power signal?

• Solution: Let us first find the energy in the signal 

𝐸 = 0׬
𝜏
𝐴2 𝑑𝑡 = 𝐴2𝜏. This is an energy signal since E is finite.

A

00

τ

Exponential FunctionA



Energy and Power Signals
Example: Consider the Periodic Sinusoidal Signal

• 𝑔 𝑡 = 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡), −∞ < 𝑡 < ∞; Is it an energy or a power signal

• Since 𝑔(𝑡) is periodic, then

𝑃𝑎𝑣 =
1

𝑇0
0׬
𝑇0 𝐴2 cos2𝜔𝑡 𝑑𝑡 =

𝐴2

𝑇0
0׬
𝑇0(

1+cos 2𝜔𝑡

2
) = (

𝐴2

𝑇0
) . (

𝑇0

2
) ⇒ 𝑷𝒂𝒗 =

𝑨𝟐

𝟐
.

• Here, 𝑃𝑎𝑣 is finite. Therefore, 𝑔(𝑡) is a power signal.

Example: Consider the Periodic Saw-tooth Signal

• 𝑔 𝑡 =
𝐴

𝑇0
𝑡, 0 ≤ 𝑡 ≤ 𝑇0. Is it an energy or a power signal?

• Let us evaluate the average power in 𝑔(𝑡)

• 𝑃𝑎𝑣 =
1

𝑇0
0׬
𝑇0 𝐴2

𝑇0
2 𝑡

2𝑑𝑡 =
1

𝑇0

𝐴2

𝑇0
2

𝑡3

3
|0
𝑇0 =  

𝐴2𝑇0
3

3 𝑇0
3 = 

𝐴2

3
.

• Here, 𝑃𝑎𝑣 is finite. Therefore, 𝑔(𝑡) is a power signal.

A

g 𝒕

𝑻𝟎0- 𝑻𝟎



Energy and Power Signals
Example: The Unit Step Function 𝒈 𝒕 = 𝑨𝒖(𝒕)

• This is a non-periodic signal. Let us first try to find its energy

𝐸 = 0׬
∞
𝐴2 𝑑𝑡 → ∞

• Sine E is not finite, then 𝑔(𝑡) is not an energy signal. To find the average 
power, we employ the definition

𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇
𝑇−׬
𝑇
|𝑔 𝑡 |2 𝑑𝑡,

• where 2T is chosen to be a symmetrical interval about the origin.

• 𝑃𝑎𝑣 = lim
𝑇→∞

1

2𝑇
0׬
𝑇
𝐴2 𝑑𝑡 = lim

𝑇→∞

𝐴2 𝑇

2𝑇
= 
𝐴2

2
.

• So, even-though 𝑔(𝑡) is non-periodic, it turns out that it is a power signal.

• Remark: This is an example where the general rule (periodic signals are 
power signals and non-periodic signals are energy signals) fails to hold.

A

0 TT

g 𝒕



Fourier Series
• Let 𝑔(𝑡) be a periodic function of time with period 𝑇0 =

1

𝑓0
such that

• The function g(t) is absolutely integrable over one period, i.e.,, 0׬
𝑇0 |𝑔 𝑡 | 𝑑𝑡 < ∞

• Any discontinuities in g(t) are finite (the amount of jump at points of discontinuity is finite).
• g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in the 

period

• When these conditions (called the Dirichlet’s conditions) apply, g(t) may be expanded in a 
trigonometric Fourier series of the form

• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , where,

• 𝑎0 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ;   (dc or average value)

• 𝑎𝑛 =
2

𝑇0
׬
0

𝑇0 𝑔 𝑡 cos 𝑛𝜔0𝑡 𝑑𝑡

• 𝑏𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 sin 𝑛𝜔0𝑡 𝑑𝑡

• These conditions are sufficient (but not necessary)
• In this representation, we can associate with g(t) a FS. This does not mean equality.
• At points where g(t) is continuous, the FS converges to the function g(t)

• At a point of discontinuity 𝑡0, the FS converges to 
1

2
𝑔 𝑡0 − + 𝑔 𝑡0 +

𝑻𝟎

0

𝒈 𝒕

t



Coefficients of the Fourier Series
• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏

∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , (1)

• Orthogonality Relations: You can easily verify the following relations:

• 0׬
𝑇0 cos 𝑛𝜔0𝑡 cos𝑚𝜔0𝑡 = ൝

𝑇0

2
, 𝑛 = 𝑚

0 𝑛 ≠ 𝑚
,

• 0׬
𝑇0 sin 𝑛𝜔0𝑡 sin𝑚𝜔0𝑡 = ൝

𝑇0

2
, 𝑛 = 𝑚

0 𝑛 ≠ 𝑚

• 0׬
𝑇0 sin 𝑛𝜔0𝑡 cos𝑚𝜔0𝑡 = 0 for all n and m.

• To get 𝑎0, we integrate both sides of (1) with respect to t over one period.

• 0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝑑𝑡 + 0׬
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝑑𝑡

• Result: 𝑎0 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑑𝑡 ;   (dc or average value)



Coefficients of the Fourier Series
• 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏

∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 , (1)

• To get 𝑎𝑛, we multiply both sides of (1) by cos𝑚𝜔0𝑡, integrate over one period and use 
the orthogonality relations.

• 0׬
𝑇0 𝑔 𝑡 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡

0׬+
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝒄𝒐𝒔𝒎𝝎𝟎𝒕 𝑑𝑡

• Result:  𝑎𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 cos 𝑛𝜔0𝑡 𝑑𝑡

• To get 𝑏𝑛, we multiply both sides of (1) by sin𝑚𝜔0𝑡, integrate over one period and use 
the orthogonality relations.

• 0׬
𝑇0 𝑔 𝑡 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡 ~ 0׬

𝑇0 𝑎0 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡

0׬+
𝑇0 σ𝑛=1

∞ 𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔0𝑡 + 𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔0𝑡 𝒔𝒊𝒏𝒎𝝎𝟎𝒕 𝑑𝑡

• Result:  𝑏𝑛 =
2

𝑇0
0׬
𝑇0 𝑔 𝑡 sin 𝑛𝜔0𝑡 𝑑𝑡



Example: Existence of Fourier Series
• The Dirichlet conditions apply to the waveform given below.

• The function g(t) is absolutely integrable, i.e., 0׬
𝑇0 |𝑔 𝑡 | 𝑑𝑡 < ∞.

• The function g(t) is continuous over the period (no discontinuities)
• Has one maximum and one minimum within one period.
• Therefore, the FS exists. Moreover, the FS converges to g(t) at all points. That is,

• 𝒈 𝒕 = 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝝎𝟎𝒕 ;          Note the equality sign

0 𝑻𝟎−𝑻𝟎

g 𝒕



Example: Existence of Fourier Series
• Let g(t), defined over one period, be given by

𝑔 𝑡 = ቊ
− ln 1 − 𝑡 , 0 < 𝑡 < 1
1, 1 < 𝑡 < 2

• lim
𝑡→1

𝑔 𝑡 = − ln 1 − 𝑡 → ∞

• the function g(t) has a discontinuity. However, this discontinuity is infinite.

• Therefore, the FS does not exists 

0 𝑻𝟎 = 𝟐

g 𝒕

1

1

Function is 
unbounded at t=1.



Example: Fourier Series Coefficient Evaluation
• Example: Find the trigonometric Fourier series of the periodic rectangular signal defined 

over one period 𝑇0 as:

𝑔 𝑡 = ቊ
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Solution: The FS is given as 𝑔 𝑡 ~ 𝑎0 + σ𝑛=1
∞ 𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡

• 𝑎0= 
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 𝑑𝑡 = 

1

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 𝑑𝑡 = 𝐴/2

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 

2

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑎𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 

2

𝑇0
𝑇0/4−׬
𝑇0/4 𝐴 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• 𝑎𝑛 =

2𝐴

𝑛𝜋
, 𝑛 = 1, 5, 9,…

−2𝐴

𝑛𝜋
, 𝑛 = 3, 7, 11,…

0, 𝑛 = 2, 4, 6…

g 𝒕

𝑻𝟎/𝟐−𝑻𝟎/𝟐 0

A

Dirichlet conditions apply. 
Therefore, a FS exists



Example: Convergence of Fourier Series
• The first four terms in the expansion of 𝑔 𝑡 are: 

• ෤𝑔(𝑡) =
𝐴

2
+

2𝐴

𝜋
{cos 2𝜋𝑓0𝑡 −

1

3
cos 2𝜋3𝑓0𝑡 +

1

5
cos 2𝜋5𝑓0𝑡 }

• The function ෤𝑔(𝑡) along with 𝑔 𝑡 are plotted in the figure for  −1 ≤ 𝑡 ≤ 1
assuming 𝐴 = 1 and 𝑓0 = 1

Comments: As more terms are 
added to ෤𝑔(𝑡), ෤𝑔(𝑡) becomes 
closer to 𝑔 𝑡 and in the limit as 
𝑛 → ∞, ෤𝑔(𝑡) becomes equal to 
𝑔 𝑡 at all points except at the 
points of discontinuity.



Convergence of the Fourier Series

The Fourier series of the signal 𝑔 𝑡 = ቊ
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is given by

• 𝑔 𝑡 ~ 𝑎0 + σ𝑛=1
∞ 𝑎𝑛 cos 𝑛𝜔0𝑡 + 𝑏𝑛 sin 𝑛𝜔0𝑡 . The FS is shown in the figure below

• 𝑎0= 𝐴/2 , 𝑏𝑛 = 0, 

• 𝑎𝑛 =

2𝐴

𝑛𝜋
, 𝑛 = 1, 5, 9,…

−2𝐴

𝑛𝜋
, 𝑛 = 3, 7, 11,…

0, 𝑛 = 2, 4, 6…

• The FS converges to g(t) at all points where g(t) is continuous

• Converges to A/2, the average value at points of discontinuity. g 𝒕

𝑻𝟎/𝟐−𝑻𝟎/𝟐 0

A



Fourier Cosine and Sine Series
• Let 𝑔(𝑡) be a periodic function of time with period 𝑇0 =

1

𝑓0
such that its FS exists. 

• Fourier Cosine Series: 

• Let  g(t) be an even function of t, then

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑎𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 =

4

𝑇0
0׬
𝑇0/2𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• The FS becomes a Fourier cosine series 𝒈 𝒕 ~ 𝒂𝟎 + σ𝒏=𝟏
∞ 𝒂𝒏 𝒄𝒐𝒔𝒏𝝎𝟎𝒕

• Fourier Sine Series: 

• Let  g(t) be an odd function of t, then

• 𝑎0= 
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 𝑑𝑡 = 0, 𝑎𝑛 =

2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 cos(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 = 0

• 𝑏𝑛 =
2

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡 =

4

𝑇0
0׬
𝑇0/2𝑔 𝑡 sin(

2𝜋𝑛

𝑇0
𝑡) 𝑑𝑡

• The FS becomes a Fourier sine series 𝒈 𝒕 ~ σ𝒏=𝟏
∞ 𝒃𝒏 𝐬𝐢𝐧𝒏𝝎𝟎𝒕



Complex Form of the Fourier Series

The Fourier series can also be expressed in the complex form: 

𝑔 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡

where,  𝐶𝑛 =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡.

• Note that 𝐶𝑛 is a complex valued quantity, which can be written as

• 𝐶𝑛 = |𝐶𝑛|𝑒
𝑗𝜃𝑛

• The plot of |𝐶𝑛| versus frequency is called the Discrete Amplitude Spectrum.

• The plot of 𝜃𝑛 versus frequency is called the Discrete Phase Spectrum.

• The term at 𝑓0 is referred to as the fundamental frequency. The term at 2𝑓0
is referred to as the second order harmonic, the term at 3𝑓0 is referred to as 
the third order harmonic and so on.



Parseval’s Power Theorem 

• The average power of a periodic signal g(t) is given by:

𝑷𝒂𝒗 =
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐 𝒅𝒕 = ෌

𝒏=−∞

∞
𝑪𝒏

𝟐 = 𝑪𝟎
𝟐 + 2෌

𝒏=𝟏

∞
𝑪𝒏

𝟐

• = 𝒂𝟎
𝟐 +

𝟏

𝟐
෌

𝒏=𝟏

∞
( 𝒂𝒏

𝟐 + 𝒃𝒏
𝟐

• Proof: 𝑔 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡,    where,  𝐶𝑛 =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡.

• 𝒈 𝒕 𝟐 = 𝑔 𝑡 𝑔∗ 𝑡 = ෌
𝑛=−∞

∞
𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡 ෌
𝑚=−∞

∞
𝐶𝑚
∗ 𝑒−𝑗𝑚𝜔0𝑡

•
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐𝒅𝒕 =

𝟏

𝑻𝟎
𝟎׬
𝑻𝟎σ𝑛=−∞

∞ σ𝑚=−∞
∞ 𝐶𝑛 𝐶𝑚

∗ 𝑒𝑗(𝑛−𝑚)𝜔0𝑡𝑑𝑡

• Orthogonality: 0׬
𝑇0 𝑒𝑗(𝑛−𝑚)𝜔0𝑡𝑑𝑡 = ቊ

𝑇0 , 𝑛 = 𝑚
0 𝑛 ≠ 𝑚

•
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒈 𝒕 𝟐𝒅𝒕 = ෌

𝑛=−∞

∞
𝐶𝑛

2 = 𝐶0
2 + 2෌

𝑛=1

∞
𝐶𝑛

2



Power Spectral Density

• The plot of Cn
2 versus frequency is called the power spectral density

(PSD).

• It displays the power content of each frequency (spectral) component of a 
signal. 

• For a periodic signal, the PSD consists of discrete terms at multiples of the 
fundamental frequency.

• The next example demonstrate these properties



Power Spectral Density

• Example: Find the power spectral density of the 𝑔 𝑡 shown in the figure.

• Here, we need to find the complex Fourier series expansion, where the period T0 = 2𝜏

• 𝑔 𝑡 = ෌
𝑛=−∞

∞
Cne

jnω0t; Cn =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

• Cn =

𝐴

2
, 𝑛 = 0

3𝐴

𝑛 𝜋
, 𝑛 = ±1,±5,±9,…

−3𝐴

𝑛 𝜋
, 𝑛 = ±3,±7,±11,…

0, 𝑛 = ±2,±4,…

Cn
2 =

(
𝐴

2
)2, 𝑛 = 0

(
3𝐴

𝑛𝜋
)2, 𝑛: 𝑜𝑑𝑑

0 , 𝑛: 𝑒𝑣𝑒𝑛

𝑆𝑔 𝑓 =෍
𝑛=−∞

∞

)Cn
2 δ(f − nf0



Fourier Transform
• Let 𝑔(𝑡) be a function of time t. The Fourier transform maps the function g(t) into another function G(f) 

defined into the frequency domain. The Fourier transform is defined as:

𝑮 𝒇 = ∞−׬
∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕 𝒅𝒕

• The inverse Fourier transform is defined as

𝒈 𝒕 = ∞−׬
∞

𝑮 𝒇 𝒆𝒋𝟐𝝅𝒇𝒕 𝒅𝒇

• Conditions for existence (Dirichlet conditions, which are the same as those for the FS)

• The function g(t) is absolutely integrable, i.e.,, 0׬
𝑇0 |𝑔 𝑡 | 𝑑𝑡 < ∞.

• Any discontinuities in g(t) are finite

• g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in any 
finite interval.

• Remarks: 

• These conditions are sufficient but not necessary

• A weaker sufficient condition for existence is ׬−∞
∞

|𝒈 𝒕 |𝟐 𝒅𝒕 < ∞ (g(t) is an energy signal). This is 
the finite-energy condition that is satisfied by all physically realizable waveforms.

• Generally, physical waveforms encountered in engineering practice are Fourier transformable.

• The Fourier transform can be derived from the Fourier series by allowing the period 𝑇0 to go to 
infinity, but this will not be covered in this presentation.



Fourier Transform: Amplitude and Phase Spectrum

Observations:  𝑮 𝒇 = ∞−׬
∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕 𝒅𝒕

• G(f) is a complex function of frequency f, which can be expressed as:

𝐺 𝑓 = |𝐺 𝑓 |𝑗𝜃(𝑓)

• The function 𝐺 𝑓 is often referred to as the spectrum of 𝑔 𝑡 .

• |𝐺 𝑓 |: is the continuous amplitude spectrum of 𝑔 𝑡 , (an even function of f).

• 𝜃(𝑓): is the continuous phase spectrum of 𝑔 𝑡 , (an odd function of f).

• Notation:

• To denote that 𝐺 𝑓 is the Fourier transform of 𝑔 𝑡 , we write 𝐺 𝑓 = ℑ(𝑔 𝑡 )

• To denote that 𝑔 𝑡 , is the inverse Fourier transform of 𝐺 𝑓 , we write 𝑔 𝑡 =
ℑ−1(𝐺 𝑓 )

• Sometimes, the following notation is used for a Fourier transform pair g(𝑡) ↔ 𝐺(𝑓).



Rayleigh Energy Theorem

Rayleigh Energy Theorem: The energy in a signal g(t) is given by:

𝑬 = ∞−׬
∞

|𝒈 𝒕 |𝟐 𝒅𝒕 ∞−׬ =
∞

𝑮 𝒇 𝟐𝒅𝒇

• The proof of this result is the same as that for Parseval’s power theorem

• The function 𝐺 𝑓 2 is called the energy spectral density. It depicts the 
range of frequencies over which the signal energy extends and the 
frequency bands which are significant in terms of their energy contents.

• For a non-period signal energy signal, the energy spectral density is a 
continuous function of f.

A General Form of the Rayleigh Energy Theorem

• For two energy functions 𝑔(𝑡) and 𝑣(𝑡), the following result holds:

∞−׬
∞

𝒈 𝒕 𝒗(𝒕)∗ 𝒅𝒕= ׬−∞
∞

𝑮(𝒇)𝑽(𝒇)∗ 𝒅𝒇



Example: Exponential Pulse
• 𝑣 𝑡 = ቊ𝐴 𝑒−𝑏𝑡 𝑡 > 0

0 𝑡 < 0

• 𝑬 = ∞−׬
∞

|𝒈 𝒕 |𝟐 𝒅𝒕 = 𝟎׬
∞
𝑨𝟐 𝑒−2𝑏𝑡𝒅𝒕 = (𝑨𝟐/𝟐𝒃) , F.T exists

• 𝑉 𝑓 = 0׬
∞
𝑣(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 = 0׬

∞
𝐴𝑒−𝑏𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

𝑉(𝑓) = 𝐴0׬
∞
𝑒−(𝑏+𝑗2𝜋𝑓)𝑡 𝑑𝑡 =  𝐴

𝑒−(𝑏+𝑗2𝜋𝑓)𝑡

−(𝑏+𝑗2𝜋𝑓)
|0
∞ =

𝐴

𝑏+𝑗2𝜋𝑓
.

• 𝑉 𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓
,

• 𝑉 𝑓 =
𝐴

(𝑏2+ 2𝜋𝑓 2)1/2

• The energy spectral density is:  𝑆𝑣 𝑓 = |𝑉 𝑓 |2 =
𝐴2

𝑏2+ 2𝜋𝑓 2

Exercise: For the given v(t), verify Rayleigh Energy Theorem:

𝑬 = ∞−׬
∞

|𝒗 𝒕 |𝟐 𝒅𝒕 ∞−׬ =
∞

𝑽 𝒇 𝟐𝒅𝒇

• Remark: The signal 𝑣 𝑡 is called a baseband signal since the signal occupies the low 
frequency part of the spectrum. That is, the energy in the signal is found around the zero 
frequency. When the signal is multiplied by a high frequency carrier, the spectrum becomes 
centered around the carrier and the modulated signal is called a bandpass signal.

A

0

𝑉 𝑓

𝑣 𝑡

0 frequency

time



Example: The Rectangular Pulse 𝑔 𝑡 = 𝐴𝑟𝑒𝑐𝑡(
𝑡

𝑇
)

• 𝐺 𝑓 = 𝑇/2−׬
𝑇/2

𝐴𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 =
𝐴

𝜋𝑓
sin 𝜋𝑓𝑇 ,    𝐴𝑇

sin 𝜋𝑓𝑇

𝜋𝑓𝑇
≜ 𝐴𝑇 𝑠𝑖𝑛𝑐𝑓𝑇

• 𝑮 𝒇 = 𝑨𝑻 |𝒔𝒊𝒏𝒄𝒇𝑻|

• The maximum of |𝐺 𝑓 | occurs at 𝑓 = 0 since lim
𝑥→0

sin 𝑥

𝑥
= 1. Also, 𝐺 𝑓 = 0

when 𝑠𝑖𝑛 𝜋𝑓𝑇 = 0, which occurs at the points that satisfy 𝜋𝑓𝑇 = 𝑛𝜋, ⇒
𝑓𝑇 = 𝑛, 𝑜𝑟 𝑓 =

𝑛

𝑇
, 𝑛 = ±1,±2,±3,…

time

frequency



Properties of the Fourier Transform

𝑮 𝒇 = න

−∞

∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕 𝒅𝒕



Properties of the Fourier Transform

𝑮 𝒇 = න

−∞

∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕 𝒅𝒕

Low-pass signal Band-pass signal



Properties of the Fourier Transform

𝒈 𝒕 = න

−∞

∞

𝑮 𝒇 𝒆𝒋𝟐𝝅𝒇𝒕 𝒅𝒇 𝑮 𝒇 = න

−∞

∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕



Properties of the Fourier Transform

𝒈 𝒕 = න

−∞

∞

𝑮 𝒇 𝒆𝒋𝟐𝝅𝒇𝒕 𝒅𝒇



Properties of the Fourier Transform

 Multiplication of two signals in the time domain 

𝑔1(𝑡) 𝑔2(𝑡) ↔ ∞−׬
∞

𝐺1 𝜆 𝐺2(𝑓 − 𝜆)𝑑𝜆 = 𝐺1 𝑓 ∗ 𝐺2 𝑓

Multiplication of two signals in the time domain is transformed into the convolution 

of their Fourier transforms in the frequency domain.

 Convolution of two signals in the time domain

𝑔1 𝑡 ∗ 𝑔2 𝑡 ↔ 𝐺1 𝑓 𝐺2 𝑓

Convolution of two signals in the time domain is transformed into a multiplication of 

their Fourier transforms in the frequency domain

• Multiplication by t in the time domain corresponds to differentiation in the 
frequency domain

ℑ 𝐭𝐠 𝑡 =
𝒋

𝟐𝝅

𝒅𝑮(𝒇)

𝒅𝒇 𝑮 𝒇 = න

−∞

∞

𝒈 𝒕 𝒆−𝒋𝟐𝝅𝒇𝒕



Examples: The RF Negative Exponential Pulse 
• Example: Find the Fourier transform of 𝑥 𝑡 = 𝐴 𝑒−𝑏𝑡𝑐𝑜𝑠(2𝜋𝑓0𝑡),  t > 0

• Solution:  Note that x(t) can be expressed as

• 𝐱 𝐭 = 𝐠 𝑡 𝑐𝑜𝑠(2𝜋𝑓0𝑡), 𝑔(𝑡) = ቊ𝐴 𝑒−𝑏𝑡 𝑡 > 0
0 𝑡 < 0

• 𝐺 𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓

• Use the modulation property

• 𝑋 𝑓 =
1

2
𝐺 𝑓 − 𝑓0 + 𝐺 𝑓 + 𝑓0

• 𝑋 𝑓 =
1

2

𝐴

𝑏+𝑗2𝜋(𝑓−𝑓0)
+

𝐴

𝑏+𝑗2𝜋(𝑓+𝑓0)
;   Band-pass signal

0 𝑓0-𝑓0

|𝑿 𝒇 |

time

Baseband signal



Example: double-sided exponential pulse 

• Example: Find the Fourier transform of the double-sided exponential pulse

𝐠 𝑡 = 𝐴𝑒−𝑏|𝑡|, −∞ < 𝑡 < ∞

• Solution: You can easily find that the energy in g(t) is finite, and hence the F.T. 
exists.

• G 𝑓 = ∞−׬
0

𝐴𝑒𝑏𝑡𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 + 0׬
∞
𝐴𝑒−𝑏𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

• G 𝑓 =
𝐴

𝑏−𝑗2𝜋𝑓
+

𝐴

𝑏+𝑗2𝜋𝑓
=

2𝑏𝐴

𝑏2+ 2𝜋𝑓 2

0



Examples: Fourier Transform of an RF Pulse 

Find the Fourier transform of the RF pulse 𝑥 𝑡 = cos 2𝜋𝑓0𝑡 ; 1 ≤ 𝑡 ≤ 1,       

Solution: x(t) can be viewed as a product of the rectangular pulse and the 
cosine function 𝑥 𝑡 = g(t)cos 2𝜋𝑓0𝑡 , where

𝑔 𝑡 = 𝑢 𝑡 + 1 − 𝑢 𝑡 + 1 = 𝑟𝑒𝑐𝑡(
𝑡

2
)

G 𝑓 = 𝐴𝑇 𝑠𝑖𝑛𝑐𝑓𝑇 = 2𝑠𝑖𝑛𝑐(2𝑓)

• 𝑋 𝑓 =
1

2
𝑋 𝑓 − 𝑓0 + 𝑋 𝑓 + 𝑓0

• 𝑋 𝑓 =
1

2
2𝑠𝑖𝑛𝑐 2 𝑓 − 𝑓0 + 2𝑠𝑖𝑛𝑐 2 𝑓 + 𝑓0

0

1-1

0

cos 2𝜋𝑓0𝑡
𝐵.𝑊 = 2𝑟𝑏,

𝑟𝑏 = 1/𝜏

𝑓0−𝑓0



Examples: Fourier Transform of the doublet pulse  

Find the Fourier transform of the pulse 𝑥 𝑡 shown in the figure

Solution: x(t) can be expressed in terms of the rectangular pulse g(t) as

𝑥 𝑡 = 𝑔 𝑡 − 𝑇/2 − 𝑔 𝑡 − 3𝑇/2

X 𝑓 = 𝐺 𝑓 𝑒−
𝑗2𝜋𝑓𝑇

2 − 𝐺 𝑓 𝑒−
𝑗2𝜋𝑓3𝑇

2

• X 𝑓 = 𝐺 𝑓 𝑒−𝑗2𝜋𝑓𝑇(𝑒
𝑗2𝜋𝑓𝑇

2 − 𝑒−
𝑗2𝜋𝑓𝑇

2 )

• X 𝑓 = 𝐺 𝑓 𝑒−𝑗2𝜋𝑓𝑇(𝑗2)𝑠𝑖𝑛(
2𝜋𝑓𝑇

2
)

• Remark: Note that in this example, we have made use

of the linearity and time shifting properties.

A

T
2T0

-A

𝑥 𝑡



Examples: Fourier Transform of the triangular pulse  

Find the Fourier transform of the pulse 𝑦 𝑡 shown in the figure

Solution: If we differentiate y(t), we get x(t) of the previous example
𝑑𝑦(𝑡)

𝑑𝑡
= 𝑥(𝑡).   Taking the F.T of both sides,

j2π𝑓𝑌 𝑓 = 𝑋(𝑓)

Y 𝑓 =
𝑋(𝑓)

j2π𝑓
=

𝐺 𝑓 𝑒−𝑗2𝜋𝑓𝑇(𝑗2)𝑠𝑖𝑛(
2𝜋𝑓𝑇

2
)

j2π𝑓

𝐺 𝑓 =
𝑇𝐺 𝑓 𝑒−𝑗2𝜋𝑓𝑇𝑠𝑖𝑛(2𝜋𝑓𝑇)

π𝑓𝑇
= 𝐴𝑇2 𝑠𝑖𝑛𝑐𝑓𝑇 2𝑒−𝑗2𝜋𝑓𝑇

AT

T 2T

0

y 𝑡

A

T
2T0

-A

𝑥 𝑡

𝐴𝑇
sin 𝜋𝑓𝑇

𝜋𝑓𝑇
≜ 𝐴𝑇 𝑠𝑖𝑛𝑐𝑓𝑇

Same result can be obtained by 
realizing that y(t)=g(t)*g(t) and 
using the convolution property 
Y(f)=G(f).G(f) and then using 
the time shifting property



Fourier Transform of Power Signals
• For a non-periodic (energy) signal g(t), the Fourier transform exists when

• 𝐸 = ∞−׬
∞
|𝑔 𝑡 |2 𝑑𝑡 < ∞ (sufficient condition for existence)

• so that          𝐺 𝑓 = ∞−׬
∞

𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 exists

• For power signals, the integral    ׬−∞
∞

𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 does not exist.

• However, one can still finds the Fourier transform of power signals by employing the delta 
function. This function is defined next.

• Dirac – Delta Function (Impulse Function)

This function is defined as

𝛿 𝑡 = ቊ
∞ 𝑡 = 0
0 𝑡 ≠ 0

• such that: ׬−∞
∞
𝛿 𝑡 𝑑𝑡 = 1 and ׬−∞

∞
𝑔 𝑡 𝛿 𝑡 𝑑𝑡 = 𝑔 0

• Here, g(t) is a continuous function of time. The second property, known as the sifting 
property, shows that the delta function samples the function g(t) at the  time of its 
occurrence.

0

1



Some Properties of the Delta Function

• 𝑔(𝑡)𝛿 𝑡 − 𝑡0 = 𝑔 𝑡0 𝛿(𝑡 − 𝑡0); (Multiplication)

• ∞−׬
∞
𝑔 𝑡 𝛿 𝑡 − 𝑡0 𝑑𝑡 = 𝑔(𝑡0) ; (Sifting or sampling property)

• 𝛿 𝛼𝑡 =
1

|𝛼|
𝛿(𝑡)

• 𝛿 𝑡 ∗ 𝑔 𝑡 = 𝑔 𝑡

• 𝛿 𝑡 =
𝑑𝑢(𝑡)

𝑑𝑡
⇒ 𝑢 𝑡 = ∞−׬

𝑡
𝛿(𝑡)𝑑𝑡

• 𝛿 𝑡 = 𝛿(−𝑡); an even function of its argument.

• Fourier transform: ℑ 𝛿 𝑡 = 1

• ℑ{𝛿(𝑡 − 𝑡0)} = 𝑒−𝑗2𝜋𝑓𝑡0

𝑔(𝑡)

𝛿(𝑡 − 𝑡0)

𝑡0

𝑔 𝑡0 𝛿(𝑡 − 𝑡0)

𝑡0
2



Applications of the Delta Function 

• Fourier transform of the delta function

• ℑ 𝛿 𝑡 = ∞−׬
∞

𝛿 𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 = 1 . This follows from the sifting property      

∞−׬
∞
𝑔 𝑡 𝛿 𝑡 𝑑𝑡 = 𝑔 0 = 1

• ℑ{𝛿(𝑡 − 𝑡0)} = 𝑒−𝑗2𝜋𝑓𝑡0; (using the time delay property ℑ 𝑔 𝑡 − 𝑡0 = 𝐺(𝑓)𝑒−𝑗2𝜋𝑓𝑡0

• DC or a Constant Signal

• Since ℑ 𝛿 𝑡 = 1, then by the duality property  ℑ 1 = 𝛿(𝑓)

• Note how the time-bandwidth 

relationship holds for this pair. A narrow 

pulse in time extends over a large 

frequency spectrum).

• Also, the transform of a dc signal is an 

impulse at f =0.

)𝑔 𝑡 ↔ 𝐺(𝑓

)𝐺(𝑡) ↔ 𝑔(−𝑓

3



Applications of the Delta Function 

• Complex Exponential Function 

• ℑ 𝐴𝑒𝑗2𝜋𝑓𝑐𝑡 = 𝐴𝛿(𝑓 − 𝑓𝑐) ; 

• follows from the duality property, since   ℑ{𝛿(𝑡 − 𝑡0)} = 𝑒−𝑗2𝜋𝑓𝑡0

• Sinusoidal Functions 

• ℑ{cos 2𝜋𝑓0𝑡} = ℑ
1

2
𝐴𝑒𝑗2𝜋𝑓𝑐𝑡 + 𝐴𝑒−𝑗2𝜋𝑓𝑐𝑡 =

1

2
{𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0 }

• ℑ{sin 2𝜋𝑓0𝑡} = ℑ
1

𝑗2
𝐴𝑒𝑗2𝜋𝑓𝑐𝑡 − 𝐴𝑒−𝑗2𝜋𝑓𝑐𝑡 =

1

2𝑗
{𝛿 𝑓 − 𝑓0 − 𝛿 𝑓 + 𝑓0 }

)𝒈 𝒕 ↔ 𝑮(𝒇

)𝑮(𝒕) ↔ 𝒈(−𝒇

4



Applications of the Delta Function 

• Signum Function

•

• Unit Step Function

𝑠𝑔𝑛(𝑡) = ቐ
1 𝑡 > 0
0 𝑡 = 0
−1 𝑡 < 0

ℑ 𝑠𝑔𝑛 𝑡 =
1

𝑗𝜋𝑓

𝑢 𝑡 =

1 𝑡 > 0
1

2
𝑡 = 0

0 𝑡 < 0

𝑠𝑔𝑛 𝑡 = 2𝑢 𝑡 − 1

𝑢 𝑡 =
1

2
{𝑠𝑔𝑛 𝑡 + 1}

ℑ 𝑢 𝑡 =
1

𝑗2𝜋𝑓
+

1

2
𝛿(𝑓)

𝑣 𝑡 = ቊ 𝑒
−𝑏𝑡 𝑡 > 0
−𝑒𝑏𝑡𝑡 < 0

G 𝑓 =
1

𝑏+𝑗2𝜋𝑓
−

1

𝑏−𝑗2𝜋𝑓
=

−𝑗(2)2𝜋𝑓

𝑏2+ 2𝜋𝑓 2

log𝑏→0 𝐺(𝑓) =
1

𝑗𝜋𝑓

5



Applications of the Delta Function 
• Periodic Signals: A periodic signal g(t) is expanded in the complex Fourier Series form as:

• 𝒈 𝒕 = ෌
𝒏=−∞

∞
𝑪𝒏𝒆

𝒋𝒏𝝎𝟎𝒕 ⇒ 𝕴{𝒈 𝒕 = ෌
𝒏=−∞

∞
𝑪𝒏 𝜹(𝒇 − 𝒏𝒇𝟎)

Example: Consider the following train of impulses 𝑔 𝑡 = ෌
𝑚=−∞

∞
𝛿(𝑡 − 𝑚𝑇0)

Solution: The Fourier coefficients are obtained by integrating over one period of 𝑔 𝑡 .

• 𝐶𝑛 =
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑔(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 =

1

𝑇0
= 𝑓0 ; Note that the sifting property has been used.

• Therefore, the complex Fourier series of  𝑔 𝑡 is

• 𝑔 𝑡 =
1

𝑇0
σ𝑛=−∞
∞ 𝑒𝑗𝑛𝜔0𝑡; ⇒ ℑ 𝑔(𝑡) =

1

𝑇0
σ𝑛=−∞
∞ ℑ{𝑒𝑗𝑛𝜔0𝑡} = 

1

𝑇0
෌

𝑛=−∞

∞
𝛿(𝑓 − 𝑛𝑓0)

• 𝕴෌
𝐦=−∞

∞
𝜹(𝒕 −𝒎𝑻𝟎) =

𝟏

𝑻𝟎
෌

𝒏=−∞

∞
𝜹(𝒇 − 𝒏𝒇𝟎) .

Remark 1: Note that the signal is periodic in the 
time domain and its Fourier transform is periodic in 
the frequency domain.
Remark 2: This sequence will be found useful when 
the sampling theorem is considered later in the 
course. 6



Examples 

• Let g(t) be given as: 𝐠 𝑡 = ቊ𝐴 𝑒
−𝑏𝑡 𝑡 > 0

0 𝑡 < 0
.   

• The Fourier transform of g(t) is: 𝐺 𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓

• Evaluate the following

 𝐠 𝑡 𝛿 𝑡 − 0.5 = 𝐠 𝑡 = 0.5 𝛿 𝑡 − 0.5 = 𝐴 𝑒−0.5𝑏𝛿 𝑡 − 0.5 .

 𝐠 𝑡 𝛿 𝑡 + 1 = 𝐠 𝑡 = −1 𝛿 𝑡 + 1 = 0 𝛿 𝑡 + 1 = 0.

 𝐠 𝑡 ∗ 𝛿 𝑡 − 1 = 𝑔 𝑡 − 1 = ቊ𝐴 𝑒
−𝑏(𝑡−1) 𝑡 > 1

0 𝑡 < 1

 ℑ 𝐠 𝑡 ∗ 𝐠 𝑡 = 𝐺 𝑓 𝐺 𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓

𝐴

𝑏+𝑗2𝜋𝑓
=

𝐴

𝑏+𝑗2𝜋𝑓

2

𝑔(𝑡)

7



Examples 

• Let g(t) be given as: 𝐠 𝑡 = ቊ𝐴 𝑒
−𝑏𝑡 𝑡 > 0

0 𝑡 < 0
.   

• The Fourier transform of g(t) is: 𝐺 𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓

• Evaluate the following

 ∞−׬
∞
𝑔 𝑡 𝛿 𝑡 − 1 𝑑𝑡 = 𝑔 𝑡 = 1 = 𝐴 𝑒−𝑏 ; (sifting property)

 ℑ 𝐠 𝑡 − 𝐠 𝑡 − 1 = 𝑮 𝒇 − 𝑮 𝒇 𝒆−𝑗2𝜋𝑓 =
𝐴

𝑏+𝑗2𝜋𝑓
(1 − 𝒆−𝑗2𝜋𝑓)

 ℑ 𝐭𝐠 𝑡 = ቊ𝐴𝑡 𝑒
−𝑏𝑡 𝑡 > 0

0 𝑡 < 0

ℑ 𝐭𝐠 𝑡 =
𝒋

𝟐𝝅

𝒅𝑮(𝒇)

𝒅𝒇
=

𝒋

𝟐𝝅

(−)𝑗2𝜋

𝑏+𝑗2𝜋𝑓 𝟐 =
1

𝑏+𝑗2𝜋𝑓 𝟐

Note: Prove that ℑ tg 𝑡 =
𝑗

2𝜋

𝑑𝐺(𝑓)

𝑑𝑓
and   ℑ

𝑑𝑔(𝑡)

𝑑𝑡
= (𝑗2𝜋𝑓)𝐺(𝑓)

𝑔(𝑡)
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Transmission of Signals through Linear Systems
• Definition: A system refers to any physical device that produces an output signal in response 

to an input signal.

• Definition: A system is linear if the principle of superposition applies.

• If x1(t) produces output y1(t)

• x2(t) produces output y2(t)

• then   a1x1(t)+ a2x2(t)  produces an output a1y1(t)+ a2y2(t) 

• Also, a zero input should produce a zero output.

• Examples of linear systems include filters and communication channels.

• Definition: A filter refers to a frequency selective device that is used to limit the spectrum of 
a signal to some band of frequencies (will be discussed in detail in a later lecture)

• Definition: A channel refers to a transmission medium that connects the transmitter and 
receiver of a communication system.

• Time domain and frequency domain may be used to evaluate system performance. 
1



Basic Time-domain Definitions
• Definition: The impulse response h(t) is defined as the response of a system to 

an impulse 𝛿(𝑡) applied to the input at t=0 .

• Definition: A system is time-invariant when the shape of the impulse response 
is the same no matter when the impulse is applied to the system.

• 𝛿(𝑡) →  h(t),     then    𝛿 t − 𝑡0 →   h(t – t0)

• When the input to a linear time-invariant system in a signal x(t) , then the 
output is given by

• 𝐲 𝒕 = ∞−׬
∞

𝐱 𝝀 𝐡 𝒕 − 𝝀 𝐝𝛌

= ∞−׬
∞

𝐡 𝝀 𝐱 𝒕 − 𝝀 𝒅𝝀;    convolution integral 

𝛿(𝑡 − 𝑡0)

𝑡00

𝛿(𝑡)

2

𝐱 𝝀 𝐲 𝒕



Basic Time-domain Definitions
• Definition: A system is said to be causal if it does not respond before the excitation is 

applied, i.e.,

• h(t) = 0  for  t < 0 ;  the causal system is physically realizable.

• Definition: A system is said to be stable if the output signal is bounded for all 
bounded input signals.                                                                                                       

• If | x(t) | ≤ M ; M is the maximum value of the input

• then | y(t) |  ≤ ∞−׬
∞

h τ |x t − τ | dτ = M  ׬−∞
∞

h τ dτ

• Therefore, a necessary and sufficient condition for stability (a bounded output) is

• ∞−׬
∞

|𝐡 𝒕 | 𝐝𝐭 < ∞ ; h(t) is absolutely integrable ( zero initial conditions assumed)

0

𝛿(𝑡)

0

𝐲 𝒕 = න

−∞

∞

𝐡 𝝉 𝐱 𝒕 − 𝝉 𝐝𝛕

3

න

−∞

∞

|𝐡 𝒕 | 𝐝𝐭 < ∞



Basic Frequency-domain Definitions
• Definition: The transfer function of a linear time invariant system is defined as 

the Fourier transform of the impulse response h(t)

𝑯 𝒇 = 𝕴{𝒉 𝒕 }

• Since     𝒚 𝒕 = 𝒙 𝒕 ∗ 𝒉 𝒕 ,     then      𝒀 𝒇 = 𝑯 𝒇 𝑿(𝒇).

• The system transfer function is thus the ratio of the Fourier transform of the 

output to that of the input 𝑯 𝒇 =
𝒀(𝒇)

𝑿(𝒇)

• The transfer function 𝐻 𝑓 is a complex function of frequency, which can be 
expressed as

• 𝐻 𝑓 = |𝐻 𝑓 |𝑒𝑗 𝜃(𝑓)

• where, |𝐻 𝑓 |: Amplitude spectrum 

𝜃(𝑓): Phase spectrum.

4

H(f)
𝒙 𝒕 y 𝒕

𝒀 𝒇𝑿(𝒇)



System input–output energy spectral density
• Let  𝑥 𝑡 be applied to a LTI system, then the Fourier transform of the output is 

related to the Fourier transform of the input through the relation

• 𝑌 𝑓 = 𝐻 𝑓 𝑋(𝑓). 

• Taking the absolute value and squaring both sides, we get

• |𝑌(𝑓)|2 = |𝐻 𝑓 |2|𝑋 𝑓 |2

𝑺𝒀(𝒇) = |𝑯 𝒇 |𝟐𝑺𝑿(𝒇)

• 𝑆𝑋(𝑓),   𝑆𝑌(𝑓): Input and output Energy Spectral Density
𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡 = |𝐻(𝑓|2 𝑖𝑛𝑝𝑢𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

• Total input and output energies

• 𝐸𝑥 = ∞−׬
+∞

𝑆𝑥 𝑓 𝑑𝑓 = ∞−׬
+∞

|𝑋 𝑓 |2𝑑𝑓; Recall Rayleigh Energy Theorem

• 𝐸𝑦 = ∞−׬
+∞

𝑆𝑌 𝑓 𝑑𝑓 = ∞−׬
+∞

|H(f)|
2

𝑆𝑋 𝑓 𝑑𝑓

5

H(f)
𝒙 𝒕 y 𝒕

𝒀 𝒇𝑿(𝒇)

𝑺𝒀(𝒇)𝑺𝑿(𝒇)



Example: Response of a LPF filter to a sinusoidal input
• Example: The signal 𝑥 𝑡 = cos 2𝜋𝑓0𝑡 , −∞ < 𝑡 < ∞, is applied to a filter described by the transfer 

function 𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
,  𝐵 is the 3-dB bandwidth. Find the filter output 𝑦(𝑡).

• Solution: Here, we will find the output using the frequency domain approach.

• 𝑌 𝑓 = 𝐻 𝑓 𝑋(𝑓), 𝐻 𝑓 =
1

1+(
𝑓

𝐵
)2
𝑒−𝑗𝜃; 𝜃 = tan−1

𝑓

𝐵
;  𝜃0 = tan−1

𝑓0

𝐵

• 𝑌 𝑓 = 𝐻 𝑓 [
1

2
𝛿(𝑓 − 𝑓0) +

1

2
𝛿 𝑓 + 𝑓0 ,  ⇒ 𝑌 𝑓 =

1

2
𝐻 𝑓0 𝛿(𝑓 − 𝑓0) +

1

2
𝐻 −𝑓0 𝛿 𝑓 + 𝑓0

• 𝑌 𝑓 =
1

2

1

1+(
𝑓0
𝐵
)2
𝑒−𝑗𝜃0𝛿(𝑓 − 𝑓0) +

1

2

1

1+(
𝑓0
𝐵
)2
𝑒𝑗𝜃0𝛿 𝑓 + 𝑓0

• Taking the inverse Fourier transform, we get

• 𝑦 𝑡 =
1

1+(
𝑓0
𝐵
)2

1

2
[𝑒𝑗(2𝜋𝑓0𝑡−𝜃0) + 𝑒−𝑗(2𝜋𝑓0𝑡−𝜃0)],        𝒚 𝒕 =

𝟏

𝟏+(
𝒇𝟎
𝑩
)𝟐
𝒄𝒐𝒔(𝟐𝝅𝒇𝟎𝒕 − 𝒕𝒂𝒏−𝟏

𝒇𝟎

𝑩
)

• Note that in the last step we have made use of the Fourier transform pair 𝑒𝑗2𝜋𝑓0𝑡 ↔ 𝛿(𝑓 − 𝑓0)

• Remark: Note that the amplitude of the output as well as its phase depend on the frequency of the 
input, 𝑓0, and the bandwidth of the filter, 𝐵.

H(f)
𝑥 𝑡 y 𝑡

𝒈(𝒕)𝜹 𝒕 − 𝒕𝟎 = 𝒈 𝒕𝟎 𝜹(𝒕 − 𝒕𝟎); 

6



Response of a LPF to a sum of two sinusoidal signals

• Example: The signal 𝑥 𝑡 = 𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡 is applied to a filter 

described by the transfer function 𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
. Use the result of the 

previous example to find the filter output 𝑦(𝑡).

• Solution: From the previous example, we have 

• cos 2𝜋𝑓0𝑡 →
1

1+(
𝑓0
𝐵
)2
cos(2𝜋𝑓0𝑡 − tan−1

𝑓0

𝐵
)

• Therefore, using linearity property

• 𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡 →

•
1

1+
𝑓0
𝐵

2
cos 2𝜋𝑓0𝑡 − tan−1

𝑓0

𝐵
−

1

𝜋

1

1+
3𝑓0
𝐵

2
cos 2𝜋3𝑓0𝑡 − tan−1

3𝑓0

𝐵

7



Example: Response of a LPF to a periodic square pulse

• Example: Consider the periodic rectangular signal 𝑔 𝑡 defined over one period 𝑇0 as

𝑔 𝑡 = ቊ
+𝐴, −𝑇0/4 ≤ 𝑡 ≤ 𝑇0/4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

• If 𝑔 𝑡 is applied to a filter described by the transfer function  𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
.  use 

the result of the previous example to find the filter output 𝑦(𝑡).

• Solution:  The Fourier series of g(t) is:

• 𝑔(𝑡) =
𝐴

2
+

2𝐴

𝜋
{cos 2𝜋𝑓0𝑡 −

1

3
cos 2𝜋3𝑓0𝑡 +

1

5
cos 2𝜋5𝑓0𝑡 −

1

7
cos 2𝜋7𝑓0𝑡

• Using the result of the previous example:

• 𝑦 𝑡 =
𝐴

2
+

2𝐴

𝜋

1

1+
𝑓0
𝐵

2
cos 2𝜋𝑓0𝑡 − tan−1

𝑓0

𝐵

−
2𝐴

𝜋

1

3

1

1+
3𝑓0
𝐵

2
cos 2𝜋3𝑓0𝑡 − tan−1

3𝑓0

𝐵
+…

8



Transmission of Signals through Linear Systems: A Convolution Example

• Example: The signal 𝑔 𝑡 = 𝛿 𝑡 − 𝛿(𝑡 − 1) is applied to a channel described 

by the transfer function  𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
. Use the convolution integral to find 

the channel output.

• Solution: The impulse response of the channel is obtained by taking the inverse 
Fourier transform of 𝐻 𝑓 , which is   ℎ 𝑡 = 2𝜋𝐵𝑒−2𝜋𝐵𝑡𝑢(𝑡)

• Using the linearity and time invariance property, the output can be obtained as

• 𝑦 𝑡 = ℎ 𝑡 ∗ [𝛿 𝑡 − 𝛿 𝑡 − 1 ];     𝑦 𝑡 = ℎ 𝑡 − ℎ(𝑡 − 1)

• 𝑦 𝑡 = 2𝜋𝐵[𝑒−2𝜋𝐵𝑡𝑢 𝑡 − 𝑒−2𝜋𝐵 𝑡−1 𝑢 𝑡 − 1 ]

H(F)
t=0

t=1

9

𝑔 𝑡 𝑦 𝑡



Transmission of Signals through Linear Systems: A Convolution Example

• Example: channel response due to a rectangular pulse

• The signal x 𝑡 = 𝑢 𝑡 − 𝑢(𝑡 − 1) is applied to a channel 

described by the transfer function  𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
. Find the 

channel output 𝑦 𝑡 .

• Solution: The impulse response of the channel is:

• ℎ 𝑡 = 2𝜋𝐵𝑒−2𝜋𝐵𝑡𝑢(𝑡)

• The output is the convolution 

• 𝑦 𝑡 = ℎ 𝑡 ∗ [𝑢 𝑡 − 𝑢 𝑡 − 1 ]. The answer is

• y(t) = ∞−׬
∞

ℎ 𝜆 𝑥(𝑡 − 𝜆) dλ

• 𝑦 𝑡 = 0 𝑓𝑜𝑟 𝑡 < 0

• y t = 0׬
t
2𝜋𝐵𝑒−2𝜋𝐵𝜆 dλ = 1 − 𝑒−2𝜋𝐵𝑡,  for 0 ≤ 𝑡 < 1

• y t = t+1−׬
t

2𝜋𝐵𝑒−2𝜋𝐵𝜆 dλ = (𝑒2𝜋𝐵−1)𝑒−2𝜋𝐵𝑡, for 𝑡 ≥ 1

𝐲 𝒕 = න

−∞

∞

𝐡 𝝀 𝐱 𝒕 − 𝝀 𝐝𝝀

10



x(𝜆)

y(𝜆)

y(−𝜆)

y(𝑡 − 𝜆)

y(𝑡 − 𝜆)

y(𝑡 − 𝜆)

y(𝑡 − 𝜆)

43210

-2
0

-2+t t

-2+z

-2+t

-2+t

t

t

-t

0 ≤ 𝑡 ≤ 2, Z(t) = න

0

𝑡
1

2
×
1

2
𝑑𝜆 =

𝑡

4

2 ≤ 𝑡 ≤ 4, Z(t) = න

−2+𝑡

2
1

2
×
1

2
𝑑𝜆 =

𝜆

4
|−2+𝑡
2 =

1

4
4 − 𝑡

𝑡 ≥ 4, Z(t) = 0

𝑡 ≤ 0, Z(t) = 0

𝑡 = 2, Z(t) = න

0

2
1

2
×
1

2
𝑑𝜆 =

1

2

Z(t)= ∞−׬
∞

𝒙 (𝝀) 𝐲(𝐭 − 𝝀) 𝒅𝝀

Example: Find the 
convolution of the 
two signals x(t) and 
y(t) shown in the 
figure.

1/2

1/2
λ-axis

2 4

0

Z 𝑡
𝑡

4

1

4
4 − 𝑡



Signal Distortion in Transmission
• The objective of a communication system is to deliver to the receiver almost an exact copy of 

what the source generates. 

• However, communication channels are not perfect in the sense that impairments on the 
channel will cause the received signal to differ from the transmitted one. During the course 
of transmission, the signal undergoes attenuation, phase delay, interference from other 
transmissions, Doppler shift in the carrier frequency, AWGN, and many other effects.

• In this lecture, we consider the conditions for a distortion-less transmission over a channel. 
In addition, we consider linear and non-linear distortion 

• Distortion-less Transmission: A signal transmission is said to be distortion-less if the output 
signal y(t) is an exact replica of the input signal x(t) , i.e.,  y(t) has the same shape as the 
input, except for a constant amplification (or attenuation) and a constant time delay.

12 4

0

x 𝑡
5

3 5
0

y 𝑡

2

3 5.5
0

y 𝑡

5

1

Distortion-less Signal distorted

0.8



Signal Distortion in Transmission

• Condition for distortion-less transmission in the time-domain: 

• 𝒚 𝒕 = 𝒌𝒙(𝒕 − 𝒕𝒅); where k is a constant amplitude scaling, 𝑡𝑑 is a constant time delay.

• In the frequency domain, the condition for a distortion-less transmission becomes 

• 𝑌 𝑓 = 𝑘𝑋(𝑓)𝑒−𝑗2𝜋𝑓𝑡𝑑 or 𝑯(𝒇) =
𝐘 𝒇

𝑿 𝒇
= 𝒌𝒆−𝒋𝟐𝝅𝒇𝒕𝒅 = 𝒌𝒆−𝒋𝜽 𝒇

• That is, for a distortion-less transmission, the transfer function should satisfy two conditions:

• |H(f)| = k ; The magnitude of the transfer function is constant (gain or attenuation) over the 
frequency range of interest.

• 𝜽 𝒇 = −𝟐𝝅𝒇𝒕𝒅 = −(𝟐𝝅𝒕𝒅)𝒇 ; The phase function is linear in frequency with a negative 
slope that passes through the origin (or multiples of π).

• When |H(f)| is not constant for all frequencies of interest, amplitude  distortion results.

• When  𝜃 𝑓 ≠ −2𝜋𝑓𝑡𝑑 ± 1800, then we have phase distortion (or delay distortion).  

• The following examples demonstrate the two types of distortion mentioned above.

2



Example: amplitude distortion

• Consider the signal 𝑥(𝑡) = 𝑐𝑜𝑠 𝑤0𝑡 −
1

3
𝑐𝑜𝑠 3𝑤0𝑡. If this signal passes through a channel 

with zero time delay (i.e., td = 0) and amplitude spectrum as shown in the figure 

• Find y(t)

• Is this a distortion-less transmission?  

• Solution: x(t) consists of two frequency components, f0 and 3f0 . Upon passing through the 
channel, each component will be scaled by a different factor.

• 𝑦 𝑡 = (𝟏)𝑐𝑜𝑠 𝑤0𝑡 − (
𝟏

𝟐
) .

1

3
𝑐𝑜𝑠 3𝑤0𝑡

• Since 𝑦 𝑡 = 𝑐𝑜𝑠 𝑤0𝑡 −
1

2
.
1

3
𝑐𝑜𝑠 3𝑤0𝑡 ≠ 𝑘 𝑐𝑜𝑠 𝑤0𝑡 −

1

3
𝑐𝑜𝑠 3𝑤0𝑡

• then this is not a distortion-less transmission.

3

In this figure, only the positive part 
of the spectrum is shown



Example: phase distortion

• Consider the signal 𝑥(𝑡) = 𝑐𝑜𝑠 𝑤0𝑡 −
1

3
𝑐𝑜𝑠 3𝑤0𝑡. If x(t) passes through a channel whose 

amplitude spectrum is a constant h. Each component in x(t) suffers a −
𝜋

2
phase shift.

• Find y(t).

• Is this a distortion-less transmission? 

• Solution:

• 𝑥 𝑡 = cos𝑤𝑜𝑡 −
1

3
cos 3𝑤𝑜𝑡

• 𝑦 𝑡 = h cos(𝑤𝑜𝑡 −
𝝅

𝟐
) −

1

3
ℎ cos 3𝑤𝑜𝑡 −

𝝅

𝟐

• 𝑦 𝑡 = h cos𝑤𝑜(𝑡 −
𝜋

2𝑤𝑜
) −

1

3
ℎ cos 3𝑤𝑜(𝑡 −

𝜋

2𝑥3𝑤𝑜
)

• 𝑦 𝑡 = h cos𝑤𝑜(𝑡 − 𝑡𝑑1) −
1

3
ℎ cos 3𝑤𝑜(𝑡 − 𝑡𝑑2)

• Since  𝑡𝑑1 ≠ 𝑡𝑑2, we cannot write 𝑦 𝑡 = 𝑘𝑥 𝑡 − 𝑡𝑑 .  Here, each component in 𝑥 𝑡 suffers 
from a different time delay. Hence, this transmission introduces phase (delay) distortion.

f

-π/2

π/2

f

4

|H(f)| = h

𝜽 𝒇



Example: Amplitude and Phase Distortion

• Example: The signal 𝑥 𝑡 = 𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡 is applied to a filter described by the 

transfer function 𝐻 𝑓 =
1

1+𝑗𝑓/𝐵
. Use the result of the previous example to find the filter 

output 𝑦(𝑡).

• Solution: From the previous example, we have 

• cos 2𝜋𝑓0𝑡 →
1

1+(
𝑓0
𝐵
)2
cos(2𝜋𝑓0𝑡 − tan−1

𝑓0

𝐵
)

• Therefore, using linearity property

• 𝑐𝑜𝑠 𝑤0𝑡 −
1

𝜋
𝑐𝑜𝑠 3𝑤0𝑡 →

•
1

1+
𝑓0
𝐵

2
cos 2𝜋𝑓0𝑡 − tan−1

𝑓0

𝐵
−

1

𝜋

1

1+
3𝑓0
𝐵

2
cos 2𝜋3𝑓0𝑡 − tan−1

3𝑓0

𝐵

• Note that we cannot write 𝑦 𝑡 = 𝑘𝑥 𝑡 − 𝑡𝑑 .  Here, each component in 𝑥 𝑡 suffers from 
a different amplitude attenuation and a different time delay. Hence, this 
transmission introduces both amplitude and phase distortion. 5



Nonlinear distortion

• When a system contains nonlinear elements, it is not described by a transfer 
function H(f), but rather by a transfer characteristic of the form 

• y(t) = a1 x(t) + a2 x2(t)  + a3 x3(t)  + … (time domain)

• In the frequency domain,

• Y(f) = a1 X(f) + a2 X(f)*X(f)  +  a3 X(f)*X(f)*X(f) + …

• Here, the output contains new frequencies not originally present in the original 
signal. The nonlinearity produces undesirable frequency component for |f|≤ W, 
in which W is the signal bandwidth.

6



Harmonic distortion in nonlinear systems

• Let the input to a nonlinear system be the single tone signal  x t = cos 2𝜋𝑓0𝑡 .

• This signal is applied to a channel with characteristic y(t) = a1x(t) + a2x(t)2 + a3x(t)3 ; 

• 𝑦 𝑡 = 𝑎1 cos 2𝜋𝑓0𝑡 + 𝑎2 cos 2𝜋𝑓0𝑡
2 + 𝑎3 cos 2𝜋𝑓0𝑡

3;

• upon substituting x(t) and arranging terms, we get

• 𝑦 𝑡 =
1

2
𝑎2 + 𝑎1 +

3

4
𝑎3 cos2πf0t +

1

2
𝑎2 cos 4𝜋𝑓0𝑡 +

1

4
𝑎3𝑐𝑜𝑠6𝜋 𝑓0𝑡

• Note that the output contains a component proportional to x(t), which is

• 𝑎1 +
3

4
𝑎3 cos2πf0t, in addition to a second and a third harmonic terms (terms at twice 

and three times the frequency of the input).

• These new terms are the result of the nonlinear characteristic and are, therefore, considered 
as harmonic distortion. The DC term does not constitute a distortion, for it can be removed 
using a blocking capacitor.

• Note: Use was made of the inequalities Cos2x =
1

2
1 + 𝑐𝑜𝑠2𝑥 ;  Cos3x=

1

4
3𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠3𝑥 .

7



Harmonic distortion in nonlinear systems

• Let the input to a nonlinear system be the single tone signal

• y(t) = a1x(t) + a2x(t)2 + a3x(t)3;             x t = cos 2𝜋𝑓0𝑡 ; 

• 𝑦 𝑡 =
1

2
𝑎2 + 𝑎1 +

3

4
𝑎3 cos2πf0t +

1

2
𝑎2 cos 2(2𝜋𝑓0𝑡) +

1

4
𝑎3𝑐𝑜𝑠3(2𝜋 𝑓0𝑡)

• Define the second harmonic distortion

• 𝐷2 =
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚
; 𝐷2 =

|
1

2
𝑎2 |

| 𝑎1+
3

4
𝑎3 |

𝑥 100

• In a similar way, we can define the third harmonic distortion as:

• 𝐷3 =
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑖𝑟𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑒𝑟𝑚
; 𝐷3 =

|
1

4
𝑎3 |

| 𝑎1+
3

4
𝑎3 |

𝑥 100%.
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