Signal Classifications

* Definition: A signal may be defined as a single valued function of time that
conveys information.

* Depending on the feature of interest, we may distinguish four different
classes of signals:
* Periodic and Non-periodic Signals
* Deterministic and Random Signals
* Analog and Digital Signals
* Energy and Power Signals



Classification of Signals: Periodic and Non-periodic

A periodic signal g(t) is a function of time that
satisfies the condition

g(t) = g(t +Tp), Vt.
The smallest value of T, that satisfies this
condition is called the period of g(t).
Example: The sinusoidal signal x(t) =
cos(2m(5)t) is periodic with period Ty = 1/5. 0 0.2 0.4 0.6 0.8 :
The reciprocal of the period is the fundamental

frequency f, = Ti In this example, fo = 5 Hz.
0

Example: The saw-tooth function shown is
another example of a periodic signal. A

m(t)=%t, 0 <t<T,

If T, = 0.001 sec, then the fundamental

frequency fo = 1000 Hz -Ty 0 Ty



Non-periodic Signals

* A non-periodic signal g(t) is one for which there does not exist a T for which
the condition g(t) = g(t + T,) is satisfied, i.e., the signal does not repeat

itself each T, .

A
0
gt) = {g:

Rectangular Function

A Exponential Function

0 0 | |
T 0 1 2 3
0<t =T (t) = Aexp(—at), 0<t<o
otherwise g\t) = 0, t <0
A
0

t) =
Step Function Au(t) (&) {O t<O0



Deterministic and Random Signals

* A deterministic signal is one about which there is no uncertainty with respect to its
value at any time. It is a completely specified function of time.

* Deterministic Signal Example: x(t) = Ae~*u(t) ; A = 1 and a is a constant.

* A random signal is one about which there is some degree of uncertainty before it
actually occurs. (It is a function of a random variable)

e Random Signal Example: x(t) = Ae~%u(t); ais a constant and A is a random
variable with the following probability density function (two possible realizations shown below)

)1 0<ac<l
fala) = { 0 otherwise

* Random Signal Example: x(t) = cos(2nf.t + O); f. is a constant and © is a random
variable uniformly distributed over the interval (0, 2m) with the following probability
density function (pdf).

1 0<g <9 0.723 | 0.5812
fo(8) = {E == . f . |
0 otherwise \ \

x(t) = cos(2rfet +30)  x(t) = cos(2uf,t + 63) o 1 2 3 0 1 2 3




Analog and Digital Signals

* In an analog signal the amplitude takes on any value within a defined range
of continuous values.

* Example: The sinusoidal signal x(t) = Acos 2mfyt, —o0 <t < 00, is an
example of an analog signal.

* A digital signal : The values assumed by the signal belong to a finite and
countable set.

* Example: The sequence x[n] shown below is an examples of a digital signal.
The amplitudes are drawn from the finite set {1, O, 2}.

x[n]
4

2.0

1.0 140 l.




Analog and Digital Signals: Continuous Valued and Discrete Valued
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centered at the origin is:

1

gav ZT

* The average value of a periodic signal g(t) is

Jap = TlofOTO g(t)dt ; T, is the period; f, is the fundamental frequency.

Tg(t) dt

Average Value of a Signal
* The average value of a signal g(t) over an observation interval of 2T

d

A

'TO

* Example: Find the average value of the sinusoidal signal

e x(t) = Acos 2mfyt, —0 < t < 0
. 1 (T
 Solution: xg,, = — [° Acos 2 fotdt = —
0
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Energy and Power Signals

* The instantaneous power in a signal g(t) is defined as that power dissipated in a 1-
Q) resistor, i.e.,

p(t) =g
* The average power over an observation interval of 2T centered at the origin is:
.1 (T

Pav — 711_[)2105_[_,1, |g(t)|2 dt

* The total energy of a signal g(t) is
. T

E = Jim [ 1g(0)]* dt

e Assignal g(t) is classified as energy signal if it has a finite energy, i.e,0 < E < oo,

* Assignal g(t) is classified as power signal if it has a finite power, i.e, 0 < P,,,< 0o.
 The average power in a periodic signal g(t) is

P,, = TiOfOTO |g(t)|* dt ; T, is the period; f, is the fundamental frequency.



Energy and Power Signals

 Example: Consider the Exponential Pulse
g(t) = Ae~*tu(t). Is it an energy or a power signal?
Solution: Let us first find the energy in the signal

0e) — 2
E=[ A2e 2dt=42"2—% ==

2x 2x
Since E is finite, then g(t) is an energy signal.

 Example: Consider the Rectangular Pulse

4 O<t<Tt :
g(t) = 0 oy |Sitanenergyorapower signal?

Exponential Function

A

0

* Solution: Let us first find the energy in the signal

E = fOTAZ dt = A%7. This is an energy signal since E is finite.



Energy and Power Signals
Example: Consider the Periodic Sinusoidal Signal

e g(t) = Acos(2mfyt), —o0 < t < oo; Is it an energy or a power signal
* Since g(t) is periodic, then

1 (Ty 4o 2 A% Ty 1+cos 2wt
P, = T—Ofo A% cos* wt dt == |,

=) B =Py =5

* Here, P,, is finite. Therefore, g(t) is a power signal

1

) AAA N

Example: Consider the Periodic Saw-tooth Signal

« g(t) = %t, 0 <t <T,.lsitan energy or a power signal? |

* Let us evaluate the average power in g(t)

1 (To A 2 1 A2 t3 1, A?Ty> A2 A
'Pavz_f tedt = — ==y = 3 T3

To 70 T,? To To? 3 3T,3 3
* Here, P,, is finite. Therefore, g(t) is a power signal.

1




Energy and Power Signals
Example: The Unit Step Function g(t) = Au(t)

* This is a non-periodic signal. Let us first try to find its energy
E = fooo A2 dt > oo

* Sine E is not finite, then g(t) is not an energy signal. To find the average
power, we employ the definition A g(t)

. 1 T
Fav = %EEOEI—T |g(®)]? dt,

‘ T 0 T ‘
* where 2T is chosen to be a symmetrical interval about the origin.
.1 (T ,» . A*T A®
. P, =lim— [  A?dt = lim ==,
T =00 2T ~0 T—oco 2T 2

* So, even-though g(t) is non-periodic, it turns out that it is a power signal.

* Remark: This is an example where the general rule (periodic signals are
power signals and non-periodic signals are energy signals) fails to hold.



Fourier Series
Let g(t) be a periodic function of time with period Ty = fi such that
0

« The function g(t) is absolutely integrable over one period, i.e.,, fOTO lg(t)| dt < o
* Any discontinuities in g(t) are finite (the amount of jump at points of discontinuity is finite).

 g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in the
period

When these conditions (called the Dirichlet’s conditions) apply, g(t) may be expanded in a
trigonometric Fourier series of the form

git) ~ag+ Y.-4(a, cosnwyt + b,, sinnwyt), where,
* ag = TifOTog(t) dt ; (dcor average value) g(t)
0
0

v

2 T,
cq, = T—Ofoog(t) cos nwot dt

2 T, .
« b, = T—Ofoog(t) sin nwyt dt

These conditions are sufficient (but not necessary)
In this representation, we can associate with g(t) a FS. This does not mean equality.
At points where g(t) is continuous, the FS converges to the function g(t)

At a point of discontinuity t,, the FS converges to % (g(to —) + g(t, +))



Coefficients of the Fourier Series
c g(t) ~ay+ ), -1(a, cosnwyt + b, sinnwyt), (1)
* Orthogonality Relations: You can easily verify the following relations:

. [0 t =
o COSTMWot COSMwot =

To . .
* J,”sinnwgt sinmwyt

||
———
N | S
I

0 n+m

To .
* J,”sinnwgt cosmwgt = 0 for all nand m.

* To get a,, we integrate both sides of (1) with respect to t over one period.
T, T, To r—oo .
g dt ~ [ Pagdt+ [ °[E5=1(an cosnwet + by, sinnw,t)] dt

+ Result: @y = — [.° (t) dt ; (dcoraverage value)
0 T, 0 g



Coefficients of the Fourier Series
e g(t) ~ayg+ ),-1(a, cosnwyt + b, sinnwyt), (1)

* To get a,,, we multiply both sides of (1) by cos mw,t, integrate over one period and use
the orthogonality relations.

T T
* foo g(t) cosmwytdt ~ fOO Ay Cos Myt dt
T ']
+ ., [En=1(an cosnwgt + by sinnwet) cos mw,t] dt
2 T,
* Result: a, = T—foo g(t) cosnwyt dt
0

* To get b,,, we multiply both sides of (1) by sin mwt, integrate over one period and use
the orthogonality relations.

T, . T, :
* [0 9@ sinmwotdt ~ [ °aysinmwytdt
T, . :
+J,°[En=1(an cosnwot + by sinnwgt) sinmwgt] dt

* Result: b, = TifOTO g(t) sinnwyt dt
0



Example: Existence of Fourier Series

The Dirichlet conditions apply to the waveform given below.

The function g(t) is absolutely integrable, i.e., fOTO |g(t)] dt < oo,

The function g(t) is continuous over the period (no discontinuities)
Has one maximum and one minimum within one period.
Therefore, the FS exists. Moreover, the FS converges to g(t) at all points. That is,

gt) = ag+),-1(a, cosnwyt + b,, sinnwyt); Note the equality sign

g(t)




Example: Existence of Fourier Series

Let g(t), defined over one period, be given by
_|-In(1—-¢t), 0<t<1
g(t)_{l, 1<t<2
%irrll(g(t)) =—In(l1—-1¢t) > o
the function g(t) has a discontinuity. However, this discontinuity is infinite.

Therefore, the FS does not exists o
Function is

g(t) i unbounded at t=1.

0

0 |



Example: Fourier Series Coefficient Evaluation

 Example: Find the trigonometric Fourier series of the periodic rectangular signal defined
over one period T, as:

() = { 0, otherwise
e Solution: The FSis given as g(t) ~ ay + Y. =1(a, cosnwyt + b,, sinnwyt)
_1 (To/2 To/4 _ Dirichlet conditions apply.
' Gp= f; g(t) dt = —f Adt=A)2 pply
0/2 To/4 .
Therefore, a FS t
I./2 2 2 T m_n erefore, a FS exists
* fTo/zg(t) sm( t) dt fTO/4A 1n( t)dt=0
® 2 TO/2 4 4 T0/4 Zmn
an Tof T, /2 g(t) COS( t) dt— T, /4 os( T t) dt
( 8®),
J %, n=159,..
° ., = B
"), n=3711. .
L 0, n=24%6.. ~To/2 0 To/2



Example: Convergence of Fourier Series
* The first four terms in the expansion of g(t) are:

¢ g(t) = g + %{cos(anOt) — %cos(ZﬂBfOt) + %cos(ZnSfOt)}
* The function §(t) along with g(t) are plotted in the figure for —1 <t <1
assumingA=1and f, =1

Fourier series approximation to a square functions

12— R R —— ]
Comments: As more terms are h |
added to §(t), g(t) becomes g 08
closer to g(t) and in the limit as ::;z 0.6/
n— oo, g(t)'becomes equal to 5 o4l |
g(t) at all points except at the 2 |
points of discontinuity. '
Or |

o2t

-1 -0.5 0 0.5 1

Time in Seconds



Convergence of the Fourier Series

— <t<
The Fourier series of the signal g(t) = {+64’ TO/4o_thte;W7;g£4 is given by

e g(t) ~ay+ Xn=1(a, cosnwyt + b, sinnwgyt). The FS is shown in the figure below
¢ a():A/Z ,bn —_ O,
(

{ %, n=159,..
*0n =\ -24
E' Tl—3,7,11,...
L 0, n=24,6..

The FS converges to g(t) at all points where g(t) is continuous

* Converges to A/2, the average value at points of discontinuity. g(t)1

* * * x




Fourier Cosine and Sine Series
Let g(t) be a periodic function of time with period Ty = fisuch that its FS exists.
0

Fourier Cosine Series:

Let g(t) be an even function of t, then

fT;/fz g(t) sin(zn—n t)dt =0

=15, 9@® cos<2f—0” 0y dt == [}/ g(6) cosE2 1) dt

The FS becomes a Fourier cosine series g(t) ~ ag + )., -1 @,, COS nwyt

Fourier Sine Series:
Let g(t) be an odd function of t, then

Ty /2 To/2 2
* AT %/2 t)dt=0, a, = f %/Zg(t) cos(TLOn t)dt =0
To/2 2 To/2 2
. f ;/Zg(t) sm(%.n t) dt = T—Ofoo g(t) sm(TLOn t) dt

* The FS becomes a Fourier sine series g(t) ~ ).—1 b, sinnwgt



Complex Form of the Fourier Series
The Fourier series can also be expressed in the complex form:

g(t) = Z:;_OO C, eJnwot
where, C, = TlfOTO g(t) e /n@ot g,
0
* Note that C,, is a complex valued quantity, which can be written as
* (= |Cn|ej9n
* The plot of |C,,| versus frequency is called the Discrete Amplitude Spectrum.
* The plot of 8,, versus frequency is called the Discrete Phase Spectrum.

* The term at f, is referred to as the fundamental frequency. The term at 2f,
is referred to as the second order harmonic, the term at 3 is referred to as
the third order harmonic and so on.



Parseval’s Power Theorem
* The average power of a periodic signal g(t) is given by:

1 T 00
Py, = T_Of00|g(t)|2 dt=) _ |Chl* =]Col? +ZZ _,1Cal?
1 (0'e)
. =laol* +5 2 _;(an > + |by|?
co : 1 (T, i
* Proof: g(t) = ), ___ Cre/™®t, where, C, =T—Of0°g(t)e Jn@ot g

g@®1F = g(0)g"(©) = (2, __, /™) (X, _,, Cme™I™0")
1 T 1 T 00 00 * (n—
‘T J, lg@®)|%dt = o Jo ' X oo Ximm—oo Cn Gy €/ (7M@0t gt

To, ,n=m

* Orthogonality: fOTO e/ (M=M)@ol (¢ — {O "= m

1 T
o tlg@Rde = T |Gl = 1Go2+2 3 1yl



Power Spectral Density

* The plot of |C,,|? versus frequency is called the power spectral density
(PSD).

* |t displays the power content of each frequency (spectral) component of a
signal.

* For a periodic signal, the PSD consists of discrete terms at multiples of the
fundamental frequency.

* The next example demonstrate these properties



Power Spectral Density
Example: Find the power spectral density of the g(t) shown in the figure.

Here, we need to find the complex Fourier series expansion, where the period T, = 27

00 i LT =J

g(t) _ an_oo Cne]nwot; Cn =T_0 fO 0 g(t) e~ Inwot J¢

(A n=0 (
2’ %)? =

34 (5) , n=o

—, n = il, is; i9, 2 3A
C,=q Inim Gl =12 niodd

I n = i3) i7; ill' )

o \ 0, n:even
\ O, n = iZ, i4,

S5(D =y 1Cal? 8(F = nfy)

= 3A 3A
4 (%) 5)°
F 9 ' 3

-

) ()’

! I » 1 T T T(z_:)z

] T T '5f,  -4f,  -3f, 2f, - 0 fo 2f, 3y, 4f, 5f,




Fourier Transform

Let g(t) be a function of time t. The Fourier transform maps the function g(t) into another function G(f)
defined into the frequency domain. The Fourier transform is defined as:

G(f) = [°. g®e 2t dt
The inverse Fourier transform is defined as

g = [ G(Het df
Conditions for existence (Dirichlet conditions, which are the same as those for the FS)

* The function g(t) is absolutely integrable, i.e.,, fOTO |g(t)] dt < oo,
* Any discontinuities in g(t) are finite

e g(t) has only a finite number of discontinuities and only a finite number of maxima and minima in any
finite interval.

Remarks:
 These conditions are sufficient but not necessary
* A weaker sufficient condition for existence is ffooo lg(t)|? dt < oo (g(t) is an energy signal). This is
the finite-energy condition that is satisfied by all physically realizable waveform:s.
* Generally, physical waveforms encountered in engineering practice are Fourier transformable.

* The Fourier transform can be derived from the Fourier series by allowing the period T, to go to
infinity, but this will not be covered in this presentation.



Fourier Transform: Amplitude and Phase Spectrum

Observations: G(f) = ffooog(t)e_fz”ft dt

e G(f) is a complex function of frequency f, which can be expressed as:
G(f) = 16()|j°V
* The function G(f) is often referred to as the spectrum of g(t).

* |G(f)]: is the continuous amplitude spectrum of g(t), (an even function of f).
* 6(f):is the continuous phase spectrum of g(t), (an odd function of f).

* Notation:

* To denote that G(f) is the Fourier transform of g(t), we write G(f) = J(g(t))
* To denote that g(t), is the inverse Fourier transform of G(f), we write g(t) =

ITHGEU)

* Sometimes, the following notation is used for a Fourier transform pair g(t) < G(f).



Rayleigh Energy Theorem
Rayleigh Energy Theorem: The energy in a signal g(t) is given by:

E=[_ |lg®*dt=[__|G("I*df
* The proof of this result is the same as that for Parseval’s power theorem

* The function |G (f)]|? is called the energy spectral density. It depicts the
range of frequencies over which the signal energy extends and the
frequency bands which are significant in terms of their energy contents.

* For a non-period signal energy signal, the energy spectral density is a
continuous function of f.

A General Form of the Rayleigh Energy Theorem
* For two energy functions g(t) and v(t), the following result holds:

[Cog@®v®) dt=["_G(HV() df



Example: Exponential Pulse

: vu)—{f‘e >0 a N v

- E=["_|g®? dt—f A% e72Ptdt = (A%/2b), ET exists
« V(f) =f0 v(t)e J2m/t dt=f0 Ae bt g=J2nft gy

V() =Af °°e—<b+1'2”f>t dt = Ai(;b:::; = 0 \ —

- V() = bﬂzﬂf — —
WO = oo

* The energy spectral density is: S,(f) = |V(f)|* = b2+2422ﬂf)2

Exercise: For the given v(t), verify Rayleigh Energy Theorem:

E=[_ lv@®Pdt=[__IV(PI*df

0 frequency
* Remark: The signal v(t) is called a baseband signal since the signal occupies the low
frequency part of the spectrum. That is, the energy in the signal is found around the zero
frequency. When the signal is multlplled by a high frequency carrier, the spectrum becomes
centered around the carrier and the modulated signal is called a bandpass signal.



Example: The Rectangular Pulse g(t) = Arect(%)

T/2 A sintfT

° — —jZTL'ft — —Qqj A ]
G(f)=] T/2 dt - sintfT , AT m— AT sincfT

*  |G(f)| = AT |sincfT]

* The maximum of |G(f)]| occurs at f = 0 since lim Inx _ 1. Also, G(f) =0

x—>0 X
when sin(rtfT) = 0, which occurs at the points that satisfy nfT = nm, =

fT =n,or f = g,n =+1,42,+3, ...

A | 8(t)

time

_sz 0 sz 2 Ve 7 L Vi i/l [ [2/1 |3/3

frequency




Properties of the Fourier Transform
Linearity (superposition)
Let g,(t) « G(f) and g,(t) < G,(f), then
c191(t)*tc9,(t) © ¢1G{(f)+c,G,(f) 5 ¢4, C, are constants  G(f) = jg(t)e —jznft qi
Time Scaling

g(t) & G(f) g(at) & |a\ 6(F/a)
Duality

9B < 6() 6 < g(=f)
Time Shifting

g(t) — G(f) g(t — t[]) — G(f)e—jznftn

Delay in time domain corresponds to a phase shift in frequency domain




Properties of the Fourier Transform

e Frequency Shifting

g(t) < G(f)

g(®)e’?™<t & G(f —f.); f. is constant

/T\ g(t)

G(f)

0

()80 N

G(f-fo)

- |
0 fc f

27 [ oo
‘ el e G(f) = J g(D)e 2t dt

Frequency Shifting Property of the Fourier Transfer

e Modulation Property

g) < G(f)

2G(f)

Low-pass signal /\ —>

0

/

G(f + fo) G(f = fo) Band-pass signal
AN AN

+o 0 fo !



Properties of the Fourier Transform

Area under G(f)

g(t) © G(f)

gt =0)=[" G(Hdf

The value g(t = 0) is equal to the area under its Fourier transform function

Area under g(t)

g(t) < G(f)

G(0)=[" g(t)dt

The area under a function g(t) is equal to the value of its Fourier transform G(f) atf=
0, where G (0) implies the presence of a dc component.

co

g(®) = ] G(e2 It df

—CO

6= | germm




Properties of the Fourier Transform

e Differentiation in the Time Domain

If g(t) and its derivative g'(t) are Fourier transformable, then,

g'®) = (276
1.e., differentiation in the time domain ==> multiplication by j27f in the frequency domain.

(Differentiation in the time domain enhances high frequency components of a signal)

(0]

g(®) = j (eIt df

— 00

Also, IO o (2rH"G(f)

datm

¢ Integration in the Time Domain

[f g@dt &

1
jenf

G(f); assuming G(0) = 0

i.e., integration in the time domain corresponds to division by (j27f) in the frequency
domain. This amounts to low pass filtering, where high frequency components are_
attenuated due to filtering.

When G (0) # 0, the above result becomes:

[£.9@dr & ——G(f) +3 G0)5(f).



Properties of the Fourier Transform

e Multiplication of two signals in the time domain

91(6) g2(0) © [2, 61 (D) G2(f — DdA = G1(f) * G2 (f)
Multiplication of two signals in the time domain is transformed into the convolution
of their Fourier transforms in the frequency domain.

e Convolution of two signals in the time domain

g1(t) * g,(t) © G1(f)G(f)

Convolution of two signals in the time domain is transformed into a multiplication of

their Fourier transforms in the frequency domain

 Multiplication by t in the time domain corresponds to differentiation in the
frequency domain

~ J_da(f) °
\S{tg(t)} = - df G(f)= Jg(t)e—jant




Examples: The RF Negative Exponential Pulse
Example: Find the Fourier transform of x(t) = A e ?tcos(2rfyt), t>0

Solution: Note that x(t) can be expressed as

x(t) = g(t)cos(2fot), g(t) = {‘0‘ S

v(t)

A _0 | . —
G(f) = (b+j27rf) 0 o tme
Use the modulation property Baseband signal V()

X(F) = 2{G(f = fo) + G(f + fo)}

1

X(H) =31

2

A n A
b+j2n(f—fo) b+j2r(f+fo)

}; Band-pass signal

1 1X(P)I

0 frequency




Example: double-sided exponential pulse

 Example: Find the Fourier transform of the double-sided exponential pulse
g(t) = Ade Pltl —c0o < t < o0

 Solution: You can easily find that the energy in g(t) is finite, and hence the FT.

exists.
«  G(f) = f_Ooerbte‘jZ”ft dt + fOOOAe‘bte‘jZ”ftdt
A A 2bA ’
G(f) - b—j2nf T b+j2mf  b2+(27f)>2 |

i




Examples: Fourier Transform of an RF Pulse
Find the Fourier transform of the RF pulse x(t) = cos(2nfyt);1 <t <1,

Solution: x(t) can be viewed as a product of the rectangular pulse and the
cosine function x(t) = g(t)cos(2mf,t) , where

gty =ut+1)—-u(t+1) = rect(%) %ﬂuﬂuﬂﬂﬂﬂﬂﬂ%}}ﬂ%ﬂﬂ;
G(f) = AT sincfT = 2sinc(2f) M .

* X(f) = X = fo) + X(f + fo)}

* X(f) = - {2sinc(2(f - fo)) + ZSlnC(Z(f + fo))}

A 8t cos(2mfyt)

T/2 0 T/2




Examples: Fourier Transform of the doublet pulse

Find the Fourier transform of the pulse x(t) shown in the figure
Solution: x(t) can be expressed in terms of the rectangular pulse g(t) as

x(t) = g(t —T/2) — g(t = 3T/2) ()
j2rfT _j2mf3T A
X(f) =G(fle 2z —G(fle =2
j2mfT _j2nfT
*X(f)=G(fle?T(e 2 —e 2 ) O 2T
T

« X(f) = G(f)e‘fZ”fTQZ)Sm(znfT
 Remark: Note that in this example, we have made use -A
of the linearity and time shifting properties. A |8t

T1/2 0 T/2



Examples: Fourier Transform of the triangular pulse
Find the Fourier transform of the pulse y(t) shown in the figure
Solution: If we differentiate y(t), we get x(t) of the previous example

® — x(t). Taking the ET of both sides,

2T

2T

o AT | V()
i2nfY(f) = X(f)
X(f)  G(Pe 2T (j2)sinZLTy
j2mf j21f
G
TG —J27fT oin (D T |
G(f) — (f)e Sln( T[f ) — ATZ(SianT)Ze—]Zn-fT
tf T
A () Same result can be obtained by 0
sinfT realizing that y(t)=g(t)*g(t) and T

AT

= 2 AT sincfT using the convolution property
f Y(f)=G(f).G(f) and then using
/2 0 T/2 the time shifting property




Fourier Transform of Power Signals
For a non-periodic (energy) signal g(t), the Fourier transform exists when

E = ffooo |lg(t)|* dt < oo (sufficient condition for existence)
so that G(f)= [ . gt)e 2tdt  exists
For power signals, the integral f_oooo g(t)e 12 tdt does not exist.

However, one can still finds the Fourier transform of power signals by employing the delta

function. This function is defined next. a(t) g(0)
Dirac — Delta Function (Impulse Function)
This function is defined as 6(t)
co t=0 > 1 9 t
o(t) =
) {0 t % 0 0

such that: f_oooo 5(t)dt =1 and ffooog(t)cY(t)dt = g(0)

Here, g(t) is a continuous function of time. The second property, known as the sifting
property, shows that the delta function samples the function g(t) at the time of its
occurrence. '



Some Properties of the Delta Function

c g(t)6(t —ty) = g(ty)d(t — ty); (Multiplication)
. foo g()d(t —ty)dt = g(ty) ; (Sifting or sampling property)
e §(at) = —5(t)

||

*6(t) x g(t) = g(t)

5 =22 su = [ st)dt
* §(t) = 5( t); an even function of its argument.

* Fourier transform: 3{6(t)} =1
e 3{5(t —ty)) = e /2™ Lo

‘ o(t —to)
Lo
1 g(to)d(t — to)

Lo



Applications of the Delta Function

Fourier transform of the delta function

J{6(t)} = ffooo 5(t)e I tdt = 1. This follows from the sifting property

[ g®s®)dt = g(0) =1

I{8(t — ty)} = e /2™ to; (using the time delay property I{g(t — ty)} = G(f)e /2™ to

DC or a Constant Signal

Since 3{8(t)} = 1, then by the duality property 3{1} = 6(f)

Note how the time-bandwidth
relationship holds for this pair. A narrow
pulse In time extends over a large
frequency spectrum).

Also, the transform of a dc signal is an
impulse at f =0.

A

g(t) < G(f)
G(t) < g(=f)

F{o(1)}
1

g(t)

i\

>
f

Ad(f)

>




 Complex Exponential Function
+ S{Aes2mIet) = AS(f — £)
» follows from the duality property, since J{5(t — ty)} = e /2™ to

Applications of the Delta Function

e Sinusoidal Functions
e {cos 21f,t} = S%{Aejznfct + Ae I2mict} = % {6(f —fo) +6(f + fo)}
e 3{sin 2mfyt} = i”sjlz{AejZ”fCt — AeJ2mfet} = % {6(f = fo) = 6(f + fo)}

g(t) = cos(2mfot)

il

|

|

|

f

|

|

|

|

|

f

|

|

I

J [

G(f)

| ‘ 1sz

N

JO

0

Jo

— Y

g(t) < G(f)
G(t) « g(=f)



Applications of the Delta Function

* Signum Function

° 1 t>0
sgn(t) =40 t=0
-1 t<0

* Unit Step Function

(1 t>0
u(t)=<% £=0
L0 t<0
sgn(t)
b

1
Slsgn(®} = = o -

11 —j@enf
b+j2nf b—j2nf  b2+(21f)>?

1
logp—o G(f) = ol

sgn(t) = 2u(t) — 1
u(t) = %{Sgn(t) + 1}

Iu(t)} = —+ = 6(f)

j21f 2
u(t)
1

0.5 ¢

2 15 -1 -05 05 1 15 2



co

Applications of the Delta Function
 Periodic Signals: A periodic signal g(t) is expanded in the complex Fourier Series form as:

0o

cg®) = 3 Cem 0t s Fg(H) = Y Co8(f — nfo)
Example: Consider the following train of impulses g(t) = Z::L:_oo o(t —mT,)

Solution: The Fourier coefficients are obtained by integrating over one period of g(t).

To/2

e C, = Lf_T ,9(t) e Inwotdr = = = fo ; Note that the sifting property has been used.
TO 0/ TO

* Therefore, the complex Fourier series of g(t) is

0.0)

* 9(0) = IR @M S S0} = B o S = N 8(f ~ nfy)

co

'3 L B mTo) =7 % 80 o).

g(t)

111

B

G(f)

kg

t

—2fo —fo

0

fﬂ zf.;}

f

Remark 1: Note that the signal is periodic in the
time domain and its Fourier transform is periodic in
the frequency domain.

Remark 2: This sequence will be found useful when
the sampling theorem is considered later in the
course. 6



Examples
Ae P t>0

e Let g(t) be given as: g(t) = : *
g(t) be g g(t) {0 F2 0
. . A *
* The Fourier transform of g(t) is: G(f) = (b+j2nf)

* Evaluate the following

> g(t)6(t—0.5) =g(t =0.5)8(t—0.5) =Ae %°P§(t —0.5).

> g()s(t+1) =gt =-1)8+1) = (0)8t+1) =0

Ae b1 51
> o(t)*8(t—1D)=g(t—1) =
g(t) *6( ) = g( ) { f 21

>i"s{g(t)*g(t)}=6(f)6(f)=( . )( . ):( ? )2

b+j2f/) \b+j2ntf b+j2f




Examples
Ae P t>0 g(t)

e Let g(t) be given as: g(t) = : *
g(t) be g g(t) {0 F2 0
. . A *
* The Fourier transform of g(t) is: G(f) = (bﬂ,mf)

* Evaluate the following
> f_oooog(t)cY(t —1)dt = g(t = 1) = A e~ " ; (sifting property)

> 3{g®) — gt - 1D} =G6(f) - G(fle /> = bﬂznf( — e/
~ _fAte Pt t>0

> 3{tg(t)} = { 0 F 20

>S{tg(t)} _ j da(f) _ j ()j2m _ 1

2 df 21 (b+j2mf)?2  (b+j2mf)?

»Note: Prove that J{tg(t)} = (zj;r) d(;;f) and 3 {dg(t)} (2rf)G(f)

8



Transmission of Signals through Linear Systems

Definition: A system refers to any physical device that produces an output signal in response
to an input signal.

Definition: A system is linear if the principle of superposition applies.

|f X,(t) produces output y,(t) input System output
Xz(t) produces output yz(t) "excitation” | Rit)HIT | "response”

then a x;(t)+ a,x,(t) produces an output  a,y,(t)+ a,y,(t)

Also, a zero input should produce a zero output.

Examples of linear systems include filters and communication channels.

Definition: A filter refers to a frequency selective device that is used to limit the spectrum of
a signal to some band of frequencies (will be discussed in detail in a later lecture)

Definition: A channel refers to a transmission medium that connects the transmitter and
receiver of a communication system.

Time domain and frequency domain may be used to evaluate system performance.



Basic Time-domain Definitions
* Definition: The impulse response h(t) is defined as the response of a system to
an impulse 0 (t) applied to the input at t=0.

 Definition: A system is time-invariant when the shape of the impulse response
is the same no matter when the impulse is applied to the system.

- 6(t) > h(t), then 6(t—ty) = h(t—t,)

 When the input to a linear time-invariant system in a signal x(t) , then the
output |S§|ven by 6(1:)‘ ‘5@ —to) MPUL— ] oyctern | _OUtRUL

e y(t) = f_oo x(A)h(t — A)dA A () h(t]

x(4) y(t)

0 Lo
r_oooo h(A)x(t — A)dA; convolution integral
nit) N hi(tt)

t 4

C—




Basic Time-domain Definitions
* Definition: A system is said to be causal if it does not respond before the excitation is
applied, i.e.,
* h(t) =0 for t<0; the causal system is physically realizable.

* Definition: A system is said to be stable if the output signal is bounded for all

bounded input signals. %
y(t) = fh( )x(t — 1) dt

— 00

e |If | x(t) | £ M ; M is the maximum value of the input
s then |y(t) | < [ [h(¥) ||x(t—1)|dt =M [__|h(T) |dT

* Therefore, a necessary and sufficient condition for stability (a bounded output) is

IA

. f_oooo lh(t)| dt < oo ; h(t) is absolutely integrable ( zero initial conditions assumed)

hit) ©
5(t)‘ mput_____| system output j |h(t)| dt < o

t L |
) 5 t) hit) . /\m

t




Basic Frequency-domain Definitions

* Definition: The transfer function of a linear time invariant system is defined as
the Fourier transform of the impulse response h(t)

H(f) = 3{h(t)}
e Since y(t) =x(t) «h(t), then Y(f)=Hf)X(f).
* The system transfer function is thus the ratio of the Fourier transform of the

output to that of the input H(f) = ;Eg

* The transfer function H(f) is a complex function of frequency, which can be
expressed as

© H() = [H()le! OO
* where, |H(f)]: Amplitude spectrum 0, H(f) e

X(f) Y(f)
o(f): Phase spectrum.



* Y ()

* Sx(f),

System input—output energy spectral density

* Let x(t) be applied to a LTI system, then the Fourier transform of the output is
related to the Fourier transform of the input through the relation

* Y(f) = H(F)X(f).

* Taking the absolute value and squaring both sides, we get () v(®)

* = [HOPPIXOI?

—_— H (f) —

X(f) Y(f)

Sy(f) = |H()|*Sx(f) Sx(f) Sy(f)

Sy (f): Input and output Energy Spectral Density

output energy spectral densit = |H(f|? (input energy spectral density)

e Total input and output energies

.Ex:J

[t

Se(fldf = |

T

— 00

oEy—

F+°°Sy(f)df =

[t

— 00

X(f)|?df; Recall Rayleigh Energy Theorem
H()|" Sx(fdf




Example: Response of a LPF filter to a sinusoidal input
Example: The signal x(t) = cos(2mfyt), —o0 < t < o, is applied to a filter described by the transfer

function H(f) = 1+j1f/B, B is the 3-dB bandwidth. Find the filter output y(t).
Solution: Here, we will find the output using the frequency domain approach. B o
. X Y
Y(f) = HOX(), H() =—=e% 6 =tan"'L; G =tan"' 2  — WO ——
1+(5)?

Y(f)—H(f)[ o(f —fo) t3 5(f+fo) =>Y(f)—-H(fo)5(f fo) +5 H( fo)6(f + fo)
— = —Jj6o = 100
Y= /1+(f0) U T + /1+(%0)2 &80l + /o) g()é(t —to) = g(te)o(t —to);

Taking the inverse Fourier transform, we get

_ 1 o) —j(2Ttfot—00) _ 1
y(t) = [eJ(ZRfot 0 + e ot=0o)] y(t) =
/1+(f0)2 /1+(%0)2

Note that in the last step we have made use of the Fourier transform pair e/?™/ot & §(f — f,)

cos(2ntfot — tan~! %)

Remark: Note that the amplitude of the output as well as its phase depend on the frequency of the
input, fo, and the bandwidth of the filter, B.



Response of a LPF to a sum of two sinusoidal signals

1

* Example: The signal x(t) = cos wyt — —cos 3wyt is applied to a filter
described by the transfer function H(f) = 1+j1f/B. Use the result of the
previous example to find the filter output y(t).

 Solution: From the previous example, we have

e cos(2mft) - cos(2mfyt — tan_lj;jo

[+
* Therefore, using linearity property
1

* COs Wot — —COs 3wyt —

) 7 COS (Zﬂfot — tan™* %) — = = COS (27T3f0t — tan™1 %")



Example: Response of a LPF to a periodic square pulse

* Example: Consider the periodic rectangular signal g(t) defined over one period T, as
g(6) = {+A, ~To/4 <t <T,/4

0, otherwise
* If g(t) is applied to a filter described by the transfer function H(f) =
the result of the previous example to find the filter output y(t).

1
1+jf/B

use

 Solution: The Fourier series of g(t) is:
e g(t) = % + %{cos(anot) — gcos(ZnSfOt) + %COS(ZnSfOt) — %COS(ZTL’7fOt)

e Using the result of the previous example:

1
()

— == = COS (2n3f0t —tan~?! %) +...

« y(t) = g + 27;4\/ = COS (anot —tan~?! %)




Transmission of Signals through Linear Systems: A Convolution Example

* Example: The signal g(t) = 6(t) — §(t — 1) is applied to a channel described
. Use the convolution integral to find

by the transfer function H(f) =

the channel output.

1+jf/B

* Solution: The impulse response of the channel is obtained by taking the inverse
Fourier transform of H(f), whichis h(t) = 2mrBe *™5tu(t)

* Using the linearity and time invariance property, the output can be obtained as

*y(t) =h(t) *[6(t) —6(t — 1)];

y(t) = h(t) —h(t - 1)

« y(t) = 2nB[e 2Bty (t) — e 2™B=Dy (¢t — 1)]

g(t)‘

t

1

t=0

H(F)

y(t)




Transmission of Sighals through Linear Systems: A Convolution Example
 Example: channel response due to a rectangular pulse
* The signal x(t) = u(t) — u(t — 1) is applied to a channel
described by the transfer function H(f) = . Find the
channel output y(t).

1+jf/B

* Solution: The impulse response of the channel is:
h(t) = 2mBe ?™Bty(t)

The output is the convolution
y(t) = h(t) * [u(t) — u(t — 1)]. The answer is

y(®) = [7 h(Dx(t — 1) dA

y(t)=0fort<0

y(t) = f; 2mBe 2MBA dh =1 —e72™Bt for0<t<1

o y(t) — fi1+t zn-Be—ZnBA d\ = (QZnB_l)e—ZnBt’ fort>1

y(t) = f h( )x(t— 1) dA




x(1) 1/2 2(6)
Example: Find the 0 -l—l 2 3 4 - 1
convolution of the 1 A-axis t —[4 —t]
two signals x(t) and y(4) 1/2 4 4
y(t) shown in the 0
: . N
figure. v(=2) 5 p
— (00)

| . t<0, Z() =0 ; 2(t)= " x (1) y(t — 1) dA

- t

2 y(t—4) 0<i<? ; 11t

| <tz 20= [5x; dimy
> 0
-2+t t 2
t =2 Zt—Jlxld/l—1
v(E=4) =4 L= gxg dh=3
. 0
-2+% t g .
< B 11 1, 1
y(t{— A1) I | 2<t<4, Lt = jzxzd,l_ZLZH_ Z[4_t]
—2+t
-2+t t
y(t—21) I I t=4, Z(t)=0

-2+t -t



Signal Distortion in Transmission

The objective of a communication system is to deliver to the receiver almost an exact copy of
what the source generates.

However, communication channels are not perfect in the sense that impairments on the
channel will cause the received signal to differ from the transmitted one. During the course
of transmission, the signal undergoes attenuation, phase delay, interference from other
transmissions, Doppler shift in the carrier frequency, AWGN, and many other effects.

In this lecture, we consider the conditions for a distortion-less transmission over a channel.
In addition, we consider linear and non-linear distortion

Distortion-less Transmission: A signal transmission is said to be distortion-less if the output
signal y(t) is an exact replica of the input signal x(t) , i.e., y(t) has the same shape as the
input, except for a constant amplification (or attenuation) and a constant time delay.

x(t) y(t) Distortion-less y(t) Signal distorted




Signal Distortion in Transmission

Condition for distortion-less transmission in the time-domain:

y(t) = kx(t — t;); where k is a constant amplitude scaling, t; is a constant time delay.

In the frequency domain, the condition for a distortion-less transmission becomes

* That is, for a distortion-less transmission, the transfer function should satisfy two conditions:

* |H(f)| = k ; The magnitude of the transfer function is constant (gain or attenuation) over the
frequency range of interest.

* 0(f) = —2nft; = —(2mt,)f ; The phase function is linear in frequency with a negative
slope that passes through the origin (or multiples of n).

 When |H(f)| is not constant for all frequencies of interest, amplitude distortion results.
* When 8(f) # —2nfty; + 1809, then we have phase distortion (or delay distortion).

* The following examples demonstrate the two types of distortion mentioned above.



Example: amplitude distortion

. . 1 .
Consider the signal x(t) = cos wyt — 5 €OS 3wpt. If this signal passes through a channel
with zero time delay (i.e., t;= 0) and amplitude spectrum as shown in the figure

Find y(t)

Is this a distortion-less transmission?

Solution: x(t) consists of two frequency components, f, and 3f, . Upon passing through the
channel, each component will be scaled by a different factor.

+ y(t) = (Dcos wot — () . 7 cos 3wyt

. 1 1 1
* Since y(t) = (cos Wot — > . 7 cos 3W0t) * k (cos Wot — = cOs 3W0t)

* then this is not a distortion-less transmission. 7"
X
1
05 F
In this figure, only the positive part T
of the spectrum is shown ' >
2fo 4fo 7T fo 3fe



Example: phase distortion

: . 1
Consider the signal x(t) = cos wyt — 5 €OS 3wyt. If x(t) passes through a channel whose
amplitude spectrum is a constant h. Each component in x(t) suffers a —% phase shift.

* Find y(t). S
* Is this a distortion-less transmission? L
* Solution:
1
e x(t) = cosw,t — 5 COS 3w,t nf2 20)
T 1 n
° y(t) = h COS(WOt — E) — 5 h COS (3W0t - E) f
s 1 T :
* y(t) =h cosw,(t — Zwo) 3 h cos (3W0 (t - 2x3w0)) /2

* y(t) =h cosw,(t —tz1) — % h cos(3w, (t —tz))

e Since tyq * tgy, we cannot write y(t) = kx(t — t;). Here, each component in x(t) suffers
from a different time delay. Hence, this transmission introduces phase (delay) distortion.



Example: Amplitude and Phase Distortion
* Example: The signal x(t) = cos wyt — %cos 3wyt is applied to a filter described by the

transfer function H(f) = 1+;/B
output y(t).

* Solution: From the previous example, we have

1
Ji+oy

* Therefore, using linearity property

. Use the result of the previous example to find the filter

« cos(2mfyt) —

cos(2mfyt — tan‘l%0

1
* COS Wot ——cos 3wyt —

° 1 -1 & _ l 1 . -1 3_f0
COS (Zﬂfot — tan B) = COS (2n3f0t tan™" — )

f0)? ﬂ 3f
1+ () 1+
* Note that we cannot write y(t) = kx(t — t;). Here, each component in x(t) suffers from

a different amplitude attenuation and a different time delay. Hence, this
transmission introduces both amplitude and phase distortion.




Nonlinear distortion

* When a system contains nonlinear elements, it is not described by a transfer
function H(f), but rather by a transfer characteristic of the form

* y(t) = a; x(t) +a, x3(t) +a;x3(t) +... (time domain)
* In the frequency domain,
* Y(f) = a; X(f) +a, X(f)*X(f) + a5 X(f)*X(f)*X(f) + ...

* Here, the output contains new frequencies not originally present in the original
signal. The nonlinearity produces undesirable frequency component for [f|< W,
in which W is the signal bandwidth.



Harmonic distortion in nonlinear systems
Let the input to a nonlinear system be the single tone signal x(t) = cos(2mf,t).
This signal is applied to a channel with characteristic y(t) = ax(t) + a,x(t)?+ ax(t)*;
y(t) = a; cos(2mfyt) + a,(cos(2mfyt))? + as(cos(2mfyt))?3;
upon substituting x(t) and arranging terms, we get
y(t) = %az + (a1 + %ag) cos2tfyt + % a, cos 4mfyt + %a3cos6n fot
Note that the output contains a component proportional to x(t), which is

3 : . : : :
(a1 7 a3) cos2Tifyt, in addition to a second and a third harmonic terms (terms at twice
and three times the frequency of the input).

These new terms are the result of the nonlinear characteristic and are, therefore, considered
as harmonic distortion. The DC term does not constitute a distortion, for it can be removed
using a blocking capacitor.

Note: Use was made of the inequalities Cos?x = % {1+ cos2x}; Cos3x=i {3cosx + cos3x}.



Harmonic distortion in nonlinear systems
* Let the input to a nonlinear system be the single tone signal

. y(t) = ax(t) + ax(t)? + azx(t)3; X(t) = cos(2mfyt);
* y(t) = %az + (a1 + Zag) cos2tfyt + % a, cos 2(2nfyt) + %achSB(Zn fot)

e Define the second harmonic distortion
Zaz |

3
|(a1+za3)|

* In a similar way, we can define the third harmonic distortion as:

lamplitude of second harmonic|

D, = x 100

D2=

lamplitude of fundamental term|’

Fas |
43

3
|(a1+za3)|

lamplitude of third harmonic |

e Dy = D; = x 100%.

lamplitude of fundamental term|’
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