CHAPTER 4

Problem 4.1

(a) The impulse response of the matched filter is
h(t) = s(T-t)

The s(t) and h(t) are shown below:

s(t)
A/2

-az2 F——-—

h(t)
A2 |5~

(NYE]

-A/2

(b) The corresponding output of the matched filter is obtained by convolving h(t) with
s(t). The result is shown below:

s (&)
(o]

3T/4 27

a’r/8

(e i
) The peak value of the filter output is equal to A2T/‘h occuring at t=T
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Problem 4.2

(a) The matched filter of impulse response £ (¢) for pulse s;(7) is given in the solution to Problem
~ 4.1. The matched filter of impulse response h,(¢) for s,(¢) is given by

which has the following waveform:

hy(8)

AR f---

3774
0 T/4 T

-A2

Fig.

(b) (i) The response of the matched filter, matched to $,(7) and due to s(¢) as input, is obtained by
convolving h,(¢) with s,(z), as shown by

T
Y (1) = jo 51(T)hy (2 - T)dr

The waveform of the output y,,(7) so computed is plotted in Figure 2. This figure also
includes the corresponding waveforms of input s, (¢) and impulse response A, (7).

(ii) Next, the response of the matched filter, matched to s;(r) and due to s,(¢) as input, is
obtained by convolving A;(f) with s,(¢), as shown by

T
NOE jo 5,(T)h,(t - T)dr

Figure 3 shows the waveforms of input s,(¢), impulse response 4,(z), and response y;5(2).
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Note that y;,(?) is exactly the negative of y,;(¢). However, in both cases we find that at # =
T, both outputs are equal to zero, as shown by

)’21(T) = ylz(T) =0

For n pulses 51(2) s5(1)....,s,(?) that are orthogonal to each other over the interval [0,T], the
n-dimensional matched filter has the following structure:

- Output |

> Output 2

Filter matched
——
to | (t)
- Filter matched
to Sz([)
_—>
input
Filter matched
> 0 5,(7)
Fig. 4
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Problem 4.3

Ideal low-pass filter with variable bandwidth. The transfer function of the matched filter for a
rectangular pulse of duration t and amplitude A is given by

Hopi(f) = sinc(fT)exp(-jnfT) (1)

The amplitude response |Hopt(f) | of the matched filter is plotted in Fig. 1(a). We wish to
approximate this amplitude response with an ideal low-pass filter of bandwidth B. The amplitude
response of this approximating filter is shown in Fig. 1(b). The requirement is to determine the
particular value of bandwidth B that will provide the best approximation to the matched filter.

We recall that the maximum value of the output signal, produced by an ideal low-pass filter in
response to the rectangular pulse occurs at t = T/2 for BT < 1. This maximum value, expressed
in terms of the sine integral, is equal to (2A/x)Si(nBT). The average noise power at the output of
the ideal low-pass filter is equal to BN,,. The maximum output signal-to-noise ratio of the ideal
low-pass filter is therefore

(SNR); - (2A/15)2BSI\} 2(1CBT) (2)
0

Thus, using Eqs. (1) and (2), and assuming that AT = 1, we get

SNR),
SNR, _ 2 g2¢BT)
(SNR),  #2BT

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product BT. The peak value on
this curve occurs for BT = 0.685, for which we find that the maximum signal-to-noise ratio of the
ideal low-pass filter is 0.84 dB below that of the true matched filter. Therefore, the " best" value
for the bandwidth of the ideal low-pass filter characteristic of Fig. 1(b) is B = 0.685/T.
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Problem 4.4

The output of the low-pass RC filter, produced by a rectangular pulse of amplitude A and duration
T, is as shown below:

s0(8)

A(L-exp(-2nfyT))

0 T t

The peak value of the output pulse power is
2 2
Py = AT[1 —exp(-2nf,T)]
where f; is the 3-dB cutoff frequency of the RC filter.

The average output noise power is

v = No _ df
ot T~ o) T 5
1+ (f/fo)
_ Nomfy
T2

The corresponding value of the output signal-to-noise ratio is therefore
24’

(SNR)oy = G2l

[1-exp(2nf,T)]

Differentiating (SNR), with respect to fo7 and setting the result equal to zero, we find that
(SNR),,, attains its maximum value at

0.2

fO'_‘"f

The corresponding maximum value of (SNR),,; is
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AT

2
m—o[l - CXp(—-O.47T)]

(SNR)g max =

_ L62A’T
NO

For a perfect matched filter, the output signal-to-noise ratio is

2FE
(SNR)O,matched = N_O
_ 24T
NO

Hence, we find that the transmitted energy must be increased by the ratio 2/1.62, that is, by 0.92
dB so that the low-pass RC filter with f = 0.2/T realizes the same performance as a perfectly

matched filter.

Problem 4.5

(1) po>py

The transmitted symbol is more likely to be 0. Hence, the average probability of symbol error is
smaller when a 0 is transmitted than when a 1 is transmitted. In such a situation, the threshold A in
Figs. 4.5(a) and (b) in the textbook is moved to the right.

(i1) p; > pg

The transmitted symbol is more likely to be 1. Hence, the average probability of symbol error is
smaller when a 1 is transmitted than when a 0 is transmitted. In this second situation, the threshold
A in Figs. 4.5(a) and (b) in the textbook is moved to the left.
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Problem 4.6

The average probability of error is

Pe = py [* fyly IDdx + pg J;“ fu(y 10)dx 1)

An optimum choice of A corresponds to minimum P,. Differentiating Eq. (1) with respect to A, we get:

oP,
a_; = pify (A [1) - pofy(A |0)

oP
Setting a_; = 0, we get the following condition for the optimum value of A:

fYo‘opt: |1) - Po

fyWop 100 Py

which is the desired result.
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Problem 4.7

In a binary PCM system, with NRZ signaling, the average probability of error is

1 /Eb
P, = — erfc| [——
e =5 erfc Ny

The signal energy per bit is

E, = A2T,

where A is the pulse amplitude and Ty, is the bit (pulse) duration. If the signaling rate is doubled,
the bit duration Ty is reduced by half. Correspondingly, E, is reduced by half.

Letu = JEb/No. We may then set

P, = 1076 = _21_ erfe(u)

Solving for u, we get

u =33

When the signaling rate is doubled, the new value of P, is

P; l erfc| %
2 V2

% erfc(2.33)

1073,
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Problem 4.8

(a) The average probability of error is

where E, = A2Tb. We may rewrite this formula as

P, = L erfe (_é) (1
2 c

where A is the pulse amplitude at ¢ = \fN—OTb. We may view o as playing the role of noise variance
at the decision device input. Let

E
u=|-b A
NO (¢}
We are given that
o2 =102 volts 2, o = 0.1 volt
P, = 1078

Since P, is quite small, we may approximate it as follows:

erfc(u) = M
Vru
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We may thus rewrite Eq. (1) as (with P, = 10®)

exp(—uz)ﬁu - 10-8
2

Solving this equation for u, we get

u = 3.97

The corresponding value of the pulse amplitude is

A =0u=01x397

0.397volts

(b) Let ozi denote the combined variance due to noise and interference; that is

2 _ 2, 2
Op = O G;

where o2 is due to noise and ozi is due to the interference. The new value of the average probability
of error is 10, Hence

2)
- _2’_ erfe(ur)

where



Equation (2) may be approximated as (with P, = 10°%)

2
exp(-ur)
ST L1076
2\/;uT
Solving for uy, we get
up = 3.37

The corresponding value of 0’2T is

Y
o2 =(AN - (9397F _ 00138 volts?
uT) 3.37

The variance of the interference is therefore

2 _ 2 2
O'i—GT—O'

0.0138 - 0.01
= 0.0038 volts 2
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Problem 4.9

Consider the performance of a binary PCM system in the presence of channel noise; the receiver
is depicted in Fig. 1. We do so by evaluating the average probability of error for such a system
under the following assumptions:

1. The PCM system uses an on-off format, in which symbol 1 is represented by A volts and
symbol 0 by zero volt.

2. The symbols 1 and 0 occur with equal probability.

3. The channel noise w(t) is white and Gaussian with zero mean and power spectral density
Ny/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the
correlator output in Fig. 1 will exceed the threshold A owing to the presence of noise, so the
transmitted symbol 0 is mistaken for symbol 1. Since the a priori probabilities of symbols 1 and
0 are equal, we have P=P Correspondingly, the expression for the threshold A simplifies as follows:

_ AT, 1)
2

A

where T}, is the bit duration, and AT} is the signal energy consumed in the transmission of
symbol 1. Let y denote the correlator output:

y = LTb s(t)x(t)dt (2)

Under hypothesis Hy, corresponding to the transmission of symbol 0, the received signal x(t) equals
the channel noise w(t). Under this hypothesis we may therefore describe the correlator output as

Hyy = A LTb w(t)dt 3)

Since the white noise w(t) has zero mean, the correlator output under hypothesis H also has zero
mean. In such a situation, we speak of a conditional mean, which (for the situation at hand) we
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describe by writing

po = EIY [Hyl = E[ [ W(t)dt] =0 )

where the random variable Y represents the correlator output with y as its sample value and W(t)
is a white-noise process with w(t) as its sample function. The subscript 0 in the conditional mean
By refers to the condition that hypothesis H, is true. Correspondingly, let 020 denote the
conditional variance of the correlator output, given that hypothesis H, is true. We may therefore
write

oy = E[Y2 [H]
A )
T
- E[ [T [ Wepwdt dty

The double integration in Eq. (5) accounts for the squaring of the correlator output. Interchanging
the order of integration and expectation in Eq. (5), we may write

A [ P Ewewa,

- LTh [ R(Ty - tpdt; dty

The parameter R, (t; - t,) is the ensemble-averaged autocorrelation function of the white-noise
process W(t). From random process theory, it is recognized that the autocorrelation function and
power spectral density of a random process form a Fourier transform pair. Since the white-noise
process W(t) is assumed to have a constant power spectral density of Ny/2, it follows that the

autocorrelation function of such a process consists of a delta function weighted by Ny/2.
Specifically, we may write

N
R, (t; - to) = T" 3(t - t; + tp) (7)

Substituting Eq. (7) in (6), and using the property that the total area under the Dirac delta
function &t - t; + t,) is unity, we get

'./'A\

o - N TpA 2 ®)
0 - o
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The statistical characterization of the correlator output is compitted by noting that it is Gaussian

distributed, since the white noise at the correlator input is itself Gaussian (by assumption). In
summary, we may state that under hypothesis H, the correlator output is a Gaussian random
variable with zero mean and variance NOTbA2/2, as shown by

1 y2
fo(y) = ————exp| - — 9)
mNoTp A NoTpA

where the subscript in fy(y) signifies the condition that symbol 0 was sent.

Figure 2(a) shows the bell-shaped curve for the probability density function of the correlator
output, given that symbol 0 was transmitted. The probability of the receiver deciding in favor of
symbol 1 is given by the area shown shaded in Fig. 2(a). The part of the y-axis covered by this area
corresponds to the condition that the correlator output y is in excess of the threshold A defined by
Eq. (1). Let P, denote the conditional probability of error, given that symbol 0 was sent.
Hence, we may write

Pio = o) dy
1 f 9 (10)
= o y
R — exp| - —~——— |dy
\/nNOTb a ATz [ NoTA? J
Define
Zz = _.._y__ (11)

NoTp, A

We may then rewrite Eq. (10) in terms of the new variable z as

Pio = 1 f‘” exp(-z2) dz (12)

ﬁ VAPTYIN,

which may be reformulated in terms of 214



complementary error function

2 (e 2
erfc(u) = =_ exp(-z“) dz (13)
(1'5 .fu

Accordingly, we may redefine the conditional probability of error P, o.s

. A2T 14
2 4N,

Consider next the second kind of error that occurs when symbol 1 is sent and the receiver chooses

symbol 0. Under this condition, corresponding to hypothesis H,, the correlator input consists
of a rectangular pulse of amplitude A and duration T, plus the channel noise w(t). We may
thus apply Eq. (2) to write

H;:y=A I;Tb [A + w(t)] dt (15)

The fixed quantity A in the integrand of £ q. (15) serves to shift the correlator output from a
mean value of zero volt under hypothesis H, to a mean value of A2Tb under hypothesis H,.
However, the conditional variance of the correlator output under hypothesis H; has the same value
as that under hypothesis H. Moreover, the correlator output is Gaussian distributed as before.
In summary, the correlator output under hypothesis H; is a Gaussian random variable with mean
A2Tb and variance NOTb2/2, as depicted in Fig. 2(b), which corresponds to those values of the
correlator output less than the threshold A set at A2Tb/2, From the symmetric nature of the
Gaussian density function, it is clear that

?OI = Fo. (16)

Note that this statement is only true when the a priori probabilities of binary symbols 0 and
1 are equal; this assumption was made in calculating the threshold A.

To determine the average probability of error of the PCM receiver, we note that the two possible

kinds of error just considered are mutually exclusive events. Thus, with the a priori probability

of transmitting a 0 equal to PD’ and the a priori probability of transmitting a 1 equal to pwe find
215



that the average probability of error, P, is given by

Pe =pP1o * p po

Since Poy = pll-D’ and po+ P = 1, Eq. (17) simplifies as

Pe = Pie © Poi
or
A2T
P, = L oerfe| L b
2 2 Ny
Choose H, if
T o A is exceeded
x(t) f dt »| Decision | |
0 device Otherwi
erwise,
T choose H,
s(t) A
Figure 1
foly)
R0
y
0 % Asz
(a)
i
|
I
|
Peor |
I
* 7777 ! y
3 AT, A?T,
-~
(b)
Figure 2
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Problem 4.10
For unipolar RZ signaling, we have

Binary symbol 1: s(f) =+A for0 <t < 7/2
and s(®)=0for 772 <t<T

Binary symbol 0: s(t) =0 forO<t< T

The a priori probabilities of symbols 1 and 0 are assumed to be equal, in which case we have
po=py=1/2.

To determine the average probability of error, we consider the two possible kinds of error
separately. We begin by considering the first kind of error that occurs when symbol 0 is sent and
the receiver chooses symbol 1. In this case, the probability of error is just the probability that the

matched filter output will exceed the threshold A owing to the presence of noise, so the
transmitted symbol O is mistaken for symbol 1.

A
Energy of symbol 1 = — = E,

Energy of symbol 0 =0

The conditional probability density function of the two signals is given below:

frOls=0) fyGls=1)
|
|
|
0 VE, y
A

With symbols 1 and 0 assumed to be equiprobable, the optimum threshold is

2
1 _ 1 /AT,
AT

Given that symbol 0 was transmitted, the probability of error is simply the probability that y > A,
as shown by
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P(error|0) = J.:ofy(}’lo)dy

_ ! Ay
Lot

Define a new variable z as

L= D
JNg
We then have
1 2
P(error|0) = — exp(—z")dz
o=zl s

= lerfc(—}i—)
2 N

= lerfc 1 ﬂ
T2 2NN,
2
_loe AT
T2 2N 2N,

Define 7 = , and so write

JE,—y
N

0

P(error|l) = 71_1;5? ) exp(—zz)dz
NTb &
JNo
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P(error|1) = lerfc[

i)

il

2
S 2 20 2N,

The average probability of error is therefore

P, = P(1)P(error|1) + P(error|0)P(0)

Il

1 1
Eerfc(i ’Eb/NO)

2
1 1 /A T,
§CrfC(§ m) (1)

The average probability of error for on-off (i.e., unipolar NRZ) type of encoded signals is

2
Lope L 2 T
27 24N,

Comparing this result with that of Eq. (1) for the unipolar RZ type of encoded signals, we
immediately see that, for a prescribed noise spectral density Ny, the symbol energy in unipolar RZ
signaling has to be doubled in order to achieve the same average probability of error as in unipolar
NRZ signaling.

Il

Problem 4.11
Probability of error for bipolar NRZ signal
Binary symbol 1 : s(f) = +A

Binary symbol 0: s(r) =0
Energy of symbol 1 = E, = A2Tb
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. 1 1 2
The absolute value of the threshold is A = QA/E—b = 5 A°T,.

Refering to Fig. 1 on the next page, we may write

2
1 —(y+ JE})
P =-A) = — = \d
(error|s=-A) A/TWO‘—?» exp|: N, } y

v+ JE,

Letz = A/—N_o
Then,
X+J_b
P(error|s = —A) = ﬁ'[ - ﬁexP(_ZZ)dz
N

- Y3 5] -end 32

Similarly, P(error|s = +A) = P(error|s = —A)

2
2x1
P(error|s = 0) = rexp[ )dy
[N "2 No

1 /Eb
= f - D —
er {2 NOJ

The average probability of error is therefore

P,= P(s=t A)P(error|s=t A)+ P(s=0)P(error|s = 0)

The conditional probability density functions of symbols 1 and 0 are given in Fig. 1:
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11 1 |E, 3 /Eb 1 1 [E,
Pe = ixé[erfc(i ]V())_erfc[é_‘ ]—\-]— +§Crf 5 ]v

= §erfc 1 Eé —lerfc § E
T4 24N,y) 4 4NN,

Problem 4.12
The rectangular pulse given in Fig. P4.12 is defined by
g(®) =rec(t/T)

The Fourier transform of g(¢) is given by

T/2
G(f) = [ exp(=janfrydr

= Tsinc (fT)
We thus have the Fourier-transform pair
rec(t/T) & Tsinc (fT)
The magnitude spectrum |G(f)/T is plotted as the solid line in Fig. 1, shown on the next page.
Consider next a Nyquist pulse (raised cosine pulse with a rolloff factor of zero). The magnitude
spectrum of this second pulse is a rectangular function of frequency, as shown by the dashed curve

in Fig. 1.

Comparing the two spectral characteristics of Fig. 1, we may say that the rectangular pulse of Fig.
P4.12 provides a crude approximation to the Nyquist pulse.
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Problem 4.13

Since P(f) is an even real function, its inverse Fourier transform equals

p(t) = 2 L“ P(f) cos(2nft) df (1)

The P(f) is itself defined by Eq. (7.60) which is reproduced here in the form

1, 0< kl<f
2W
2)
= - f
P® 14+ co Llf_l__l) » f; <f<2W-f]
4W 2W - 2f]
0, > 2w-£;

Hence, using Eq. (2) in (1):

2W-f, £-f )
1 (f , 1 v eoe| T
p(t) W L cos(2nft) df 5 ff [1 cos[ X J]ccs&nﬂ;) df

1 o

, [(sin(2nft)] . [sin(znﬂ:) w-Fy

2nTWt 4tWt

1

) 2W —fl
T(E-fy) ]

_ 2W-f,
sin(21tﬂ: + sin(ant A i’.)

+ 2w

4 2t + W2Wa £, 4W 2nt - /2Wa £,

_ sin(2rfyt) . sin[2nt(2W -f;)]
47Wt 4nWt

_ 1 sin(@rfyt) + sin[2nt(2W -f;)] . sin(2nf t) + sin[2nt(2W-f;t)]

4W 2nt - P2Wa 2nt - ©/2Wa

1 .. . 1 nt
= __ [sin(2nf;t) + sin[2rt(2W-f,)] -

L [ ] Lnt (2rt)? - (1c/2Wa)2]

224



223

2
L [sin(2nWt)cos(2naW)] [ - (n/2Wa) ]
w 4nt [(2nt)? - (W2Wor)?

sinc(2Wt) cos(2raWt) 1
1 - 16 a?W?2 t2

Problem 4.14

The minimum bandwidth, By, is equal to 1/2T, where T is the pulse duration. For 64 quantization
levels, log,64 = 6 bits are required.

Problem 4.15

The effect of a linear phase response in the channel is simply to introduce a constant delay 1 into
the pulse p(t). The delay 7 is defined as -1/2r)times the slope of the phase response; see Eq. 2.171.
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Problem 4.16

The Bandwidth B of a raised cosine pulse spectrum is 2W - f1. where W =\/2Tb and

f1 =W (1-@). Thus B = W (1+). For a data rate of 56 kilobits per second, W = 28 kHz.

(a) For q = 0.25,
B = 28 kHz x 1.25
= 35 kHz
(b) B = 28 kHz x 1.5
: = 42 KkHz
(e) B = 49 kHz
(d) B = 56 kHz

Problem 4.17

The use of eight amplitude levels ensures that 3 bits can be transmitted per pulse.
The symbol period can be increased by a factor of 3. All four bandwidths in problem 7./2

will be reduced to 1/3 of their binary PAM values.

Problem 4.18

(a) For a unity rolloff, raised cosine pulse spectrum, the bandwidth B equals 1/T, where
T is the pulse length. Therefore, T in this case is 1/12kHz. Quarternary PAM ensures 2
bits per pulse, so the rate of information is

E_E%EE = 24 kilobits per second.

-(b) For 128 quantizing levels, 7 bits are required to transmit an amplitude. The
additional bit for synchronization makes each code word 8 bits. The signal is transmitted
at 24 kilobits/s, so it must be sampled at

24 kbits/s
8 bits/sample

= 3 kHz.

The maximum possible value for the signal's highest frequency component is 1.5 kHz, in
order to avoid aliasing.
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Problem 4.19

The raised cosine pulse bandwidth B = 2W - f1, where W = 1/2Tb. For this channel,

B = 75 kHz. For the given bit duration, W= 50 kHz. Then,

f1 =2W-B
= 25 kHz
«=1-f/B
= 0.5
Problem 4.20

The duobinary technique has correlated digits, while the other two methods have
independent digits.

227



Problem 4.21

(a) binary sequence b, 0 0 1
polar representation -1 1 1
duobinary coder output ey -2 0
receiver output ;k ‘ -1 =1 1
output'binary sequence 0 | 0 1

(b) receiver input 0 o0
receiver output ;k -1 1 =1
output binary sequence 0 1 0

We see that not only is the second digit in error, but

Problem 4.22

(a) binary sequence b, 0 o 1
coded sequence dk 1 1 1 0
polar representation 1 1 1 -1
duobinary coder output ck 2 2 0
receiver output 0 o0 1

(b) receiver input 2 0 o0
receiver output 0 1 1

In this case we see that only the second digit
propagation,

Problem 4.23

_(a) The correlative coder has output

Zn * Yn T Ypaq

Its impulse response is
(11{
1

hk:-‘] k
0 otherwise.

The frequency response is 228

0

0 1 0
-1 1 =1

2 0 0 0
-1 1 -
o 1 o0

-1 1 =

is in error,

0 1
-1 1
-2 0
-1 1

0 1
-2 0
-1 1

0 1

also the error propagates.

0 1
0o 1
-1 1
-2 0
0 1
-2 0
0 1

and there is no error



H(f)

L h, exp(-:]21rf‘k’rb)

K==

1 - exp(-j2nf’l‘b)

(b) Let the input to the differential encoder be xn" the input to the correlative coder

be Yo and the output of the correlative coder be Z.. Then, for the sequence 010001101 in

its on-off form, we have

Then z, has the following waveform

The sequence z, is a bipolar representation of the input sequence x_.

r ' y — £

n

Problem 4.24

(a) The output symbols of the modulo-2 adder are independent because:

1.

2.

the input sequence to the adder has independent symbols, and therefore

knowing the previous value of the adder does not improve prediction of the
present value, i.e.

£y by, ) = £y )

where yn is the value of the adder output at time nTb. The adder output
sequence is another on-off binary wave with independent symbols. Such a wave
has the power spectral density (from problem £./0),

2

22 A°T '2
SY(f) =7 8(f) «+ g Sinc (f'rb) .
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The correlative coder has the transfer function
H(f) = 1 = exp(-j21rf'Tb),

Hence, the output wave has the power spectral density

2
Sz(f) {H(D) SY(f)

[1 - exp(-j2mfT )] [1 - exp(jznf'rb)]' S¢(f)

[2 -2 cos(21rf'1‘b)] SY(f)

. 2
4 sin (nfTb) SY(f)

2 A2T

2 A
4 sin®(nfT,) (- &(£) + —

b sincz(fTb)]

a2

2 2
'I’b sin (nfTb) sinc (.fTb)
In the last line we have used the fact that

sin(nfTb) =0at f = 0.

A
S8 Jr oL r\fé f
;’: T Tb T T

S )L

E
T
&

Note that the bipolar wave has no dc component.
(Note: The power spectral density of a bipolar signal derived in part (a) assumes the use of a pulse
of full duration 7. On the other hand, the result derived for a bipolar signal in part (d) of Problem
3.11 assumes the use of a pulse of half symbol duration T}.)
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Problem 4.25

(a)

(b)

Here we see that not only is the third digit

The modified duobinary receiver estimate is &, =

binary sequence a,

bipolar representation
modified duobinary ck
receiver output a,
output binary sequence
receiver input

receiver output ﬁk
output binary sequence

Problem 4.26

=217 3 ¥ i SV 4]

(a)

(v)

coded sequence a

binary sequence bk

k

polar representation

modified duobinary ¢

receiver output b

k

k

output binary sequence
receiver input

receiver output

output binary sequence °

= Je

1 1 1

1 1 1

2 0
11 1
1 1 1

0 O
1 =1 1
1 0 1
in error,
1 1 1
1 1 0
1 1 -1
2 2 =2
2 2 2
1 1 1
2 0 =2
2 0 2
1 0 1

k k-2°
0 0
-1 -1
-2 =2
-1 =1
0 0
-2 =2
-3 =1
0 o0
but also
0 0
1 0
1 =1
0 0
0 0
0 0
0 0
0 0
0 0

-1

0 1
-1 1
0 O
-1 1
0o 1
0 o0
-1 =1
0 ©

the error propagates.

.This time we find that only the third digit is in error,
propagation,
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0 1
0o 1
-1 1
0 2
0 2
0 1
0 2
0 2
0 1

and there 1is no error



Problem 4.27

(a) Polar Signalling (M=2)

In this case, we have

m(t) = I A sinc(E - n)
n n T

where An = + A/2. Digits 0 and 1 are thus represented by -A/2 and +A/2, respectively,

The Fourier transform of m(t) is

M(f) z An F[sinc(% - n)l

n

T rect(fT) g An exp(-j2mfT)

~ Therefore, m(t) is passed through the ideal low-pass filter with no distortion.

The noise appearing at the low-pass filter output has a variance given by

2 _ 0
° =37

Suppose we transmit digit 1. Then, at the sampling instant, we obtain a random
variable at the input of the decision device, defined by

X:%+N

where N denotes the contribution due to noise. The decision level is 0 volts, If X > 0,
the decision device chooses symbol 1, which is a correct decision. If X < 0, it chooses
symbol 0, which is in error. The probability of making an error is

0
P(X<0) = J fy(x) dx

- 00

2
The expected value of X is A/2, and its variance is o°. Hence,
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A
() L exple 2
£f,(x) = — expl-
X Y210 202
2
1 0 (x —‘5)
P(X<0) = —= J exp(- ——=—) dx
Y210 - 20
1
:-é-erfc( )
2720

Similarly, if we transmit symbol 0, an error is made

when X > 0, and the probability
of this error is .

A
2720

P(X>O) = — erfe( )

1
2

Since the symbols 1 and 0 are equally probable, we find that the average probability of
error is

Pe % P(X<0 | transmit 1) + % P(X>0 | transmit 0)

1 erfe(

2

Ay
2720

(b) Polar ternary signaling

In this case we have

m(t) = L A sinc(E-- n)
n B T

where

The 3 digits are defined as follows

Digit Level
0 -A
1 0
2 +A

Suppose we transmit digit 2, which, at the input of the decision device, yields the
random variable

X=4+N 233



The probability density function of X is

(x- A)

fx(x) = > -_—3")

exp(-
V21 o 20

The decision levels are set at —A/2 and A/2 volts. Hence, the probability of choosing
digit 1 is ’

: A/2 2
P(-%—(X <%) = ! exp[- 51'—'%—-] dx
-A/2 Y21 o 20
= %-[erfb( ) - erfe( EL )]

22 o 2’2 o
Next, the probability of choosing digit 0 is

P(X € - %) = l-erfc( 34

2 o’2 o

)

If we transmit digit 1, the random variable at the input of the decision device is

X =N

The probability density function of X is therefore

1 x2
fx(x) = — exp(~ ——5)
21 o 20

The probability of choosing digit 2 is

P(X > %) = % erfo(—2
2’2 o

> )

The probability of choosing digit 0 is

P(X € - %) = l-erfc( A

2 V2 o

)

Next, suppose we transmit digit 0. Then, the random variable.at the input of the
decision device is

X =<A +N

The probability density function of X is therefore
234



(x+A)2]
2

fx(x) = expl-
2% O 20

The probability of choosing digit 1 is

P(- % <X K %0 = % lerfo (——) - erfo( 3&_ )]

V2 o 2¥2 o

The probability of choosing digit 2 is

erfe( EL

P<x>—;->=15
V20

)

Assuming that digits 0, 1, and 2 are equally probable, the average probability of
error is

Pg = % [%-erfc(——é—-) -1 erfe( 34 )] + 1. %-[erfC( L )]

2v2 ¢ 2 2V2 ¢ 3 2/2 o

.1

> {erfe(

LS I N % [erfo(

)]
2/3 o 3 273 o

wi—

. %-[erfc( A )} = erfe( 34 )] + %-- % erfe( EL )
2/2 ¢ 22 ¢ /2 o

TN

erfe(

)

w|n

22 ¢

‘ (¢) Polar quaternary signaling

In this case, we have

91'15
2

P>

A = 4+
n—

and the Y4 digits are represented as follows

Digit Level
TN
2 + %-

3 + %ﬁ

Suppose we transmit digit 3, which,

at the input of the decision device, yields the
random variable:
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The decision levels are 0, * A, The probability of choosing digit 2 is

2
1 A (x - ;%
P(O< X<A) = J expl- 51 dx
21 6 0 20
=1 [erfe( A ) -~ erfe( 34 )]

N

2V2 o 2/2 o

The probability of choosing digit 1 is

0 (x = 3—202
P(-A < X <0) = J expl- > 1 dx
Y27 o -A 20
= 3 lerfe(-324 ) - erfo(2A )
22 o 22 o
The probability of choosing digit 0 is
2
-A (x - %A)
P(X < -A) = S expl- > ] dx
Y21 ¢ - 20
=‘% erfc( L ).
22 o

Suppose next we transmit digit 2, obtaining

A 2
1 ® (x - 3
P(X > A) = — S exp[_ > ] dx
2r o A 20
= % erfe( A Y.
2vV2 o
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The probability of choosing digit 1 is

2
P(-A < X<0) = /' exp(- 5—) dx
Y21 0 -A 20
= % [erfe( A ) - erfe( 34 )]
2’2 ¢ " 2v2 o
The probability of choosing digit 0 is
2
A (x - %)
P(X < -8) = S expl- > ] dx
V2T 0 = 20
=-% erfo( EL Y.
2/2 g

Suppose next we transmit digit 1, obtaining
A
X-—2+N

The probability of choosing digit 0 is

erfe( A

P(X < =A) =%
22 ¢

)

The probability of choosing digit 2 is

lerfe(

) - erfe( 34 )]

P(O(X(A):—;- = 2
; 2 o 2Y2 ¢

The probability of choosing digit 3 is

erfc(—ié——) .

P(X>A)=—;_- 2
2 o

Finally, suppose we transmit digit 0, obtaining
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The probability of choosing digit 1 is

Ay _ erfe(=32 3
22 o 22 ¢

P(-A < X <0) = [erfe(

1
2
The probability of choosing digit 2 is

34 ) = erfe( L )]
22 ¢ 22 o

P(0 < X < A) = 5 [erfe(

1
2
The probability of choosing digit 3 is

54
22 o

P(X > A) =

)

1
> erfe(

Since all 4 digits are equally probable, with a probability of occurence equal to |
1/4, we find that the average probability of error is

A ) - erfc( 34

22 ¢ 2/2 o

ferfe(

)

1
Pe=4°2°

1
2

3A ) = erfe( L
2/2 o 2/2 o

+ erfe(

)

"

=lw
®
=
*»
)
~~

Problem 4.28

The average probability of error is (from the solution to Problem 7-23)

1 A

P = (1 = =) erfe(
2’2 ¢

e M

) Qp)
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The received signal-to-noise ratib is

2,2
(SNR)R - ﬁ_ﬁﬂ__%_ll
12 ¢
That is
A i 12(SNR)R (2)
o Mo - 1

Substituting Eq. (2) in (1), we get

L f3CNRY,
= (1 =3 erfe( f —8y
e M 2(M%-1)

o
1

With P_ = 10’6, we may thus write
-6 1
107" = (1 - ¥) erfe(u) (3)
where
5 3(SNR)R
u = ———
2(M =1)

For a specified value of M, we may solve Eq. (3) for the corresponding value of u.
We may thus construct the following table:

M u

2 3.37
it - 3.42
8 3.45
16 3.46

We thus find that to a first degree of approximation, the minimum value of received

signal-to-noise ratio required for Pe < 10-6 is given by

3(SNR), .
OB L (3,42)°
2(M°=1)

That s, (SNR)g .., =7.8 (M*—1) 239



Problem 4.29

Typically, a cable contains many twisted pairs. Therefore, the received signal can be written as

N
r(n) =Y vi(n)+d(n), large N

i=1

N
where d(n) is the desired signal and Zvi(n) is due to cross-talk. Typically, the v; are statistically
i=1
independent and identically distributed. Hence, by using the central limit theorem, as N becomes
N

infinitely large, the term Ev ;(n) is closely approximated by a Gaussian random variable for each
i=1
time instant n.

Problem 4.30

(a) The power spectral density of the signal generated by the NRZ transmitter is given by

2
S(f) = F6(HI ()

where 62 is the symbol variance, T is the symbol duration, and

T/2

G(f) = [ 1-e™ar = Tsinc(fT) = Ilesinc(@ )

-T/2

is the Fourier transform of the generating function for NRZ symbols. Here, we have used the
fact that the symbol rate R = 1/T. A 2BIQ code is a multi-level block code where each block
has 2 bits and the bit rate R = 2/T (i.e., m/T, where m is the number of bits in a block). Since
the 2B1Q pulse has the shape of an NRZ pulse, the power spectral density of 2BIQ signals is
given by

2
SZBIQ = %IGZBIQ(f)|2

where

sin(21(f/R))

J2nf

GzBIQ(f) =
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The factor 4/2 in the denominator is introduced to make the average power of the 2BIQ signal
equal to the average power of the corresponding NRZ signal. Hence,

2(sin(2n(f/R))\2
Sopig(f) = GT(—“_SIH(A/E(TQ R)))

202. 2
= =psinc"(2(f/R)) 3)

(b) The transfer functions of pulse-shaping filters for the Manchester code, modified duobinary
code, and bipolar return-to-zero code are as follows:

(i) Manchester code:

G(f) = f[l—cos(nléﬂ @)

(i1)Modified duobinary code:

]«/—n [cos(?m:f) - cos(n}—;ﬂ (5)

(iii)Bipolar return-to-zero code:

G(f) = f[sm(nzj;) X sm(nlfeﬂ 6)

Hence, using Eqs. (4), (5), and (6) in the formula of Eq. (1) for the power spectral density of
PAM line codes, we get the normalized spectral plots shown in Fig. 1. In this figure, the
spectral density is normalized with respect to the symbol variance 62 and the frequency is
normalized with respect to the data rate R.

G(f) =

From Fig. 1, we may make the following observations: Among the four line codes displayed
here, the 2BIQ code has much of its power concentrated inside the frequency band

-R/2 < f < R/2, which is much more compact than all the other three codes: Manchester code,
modified duobinary code, and bipolar return-to-zero code.
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S(f)/c?

1.8

1.6

1.4} LS

0.8
0.6
0.4

0.2

Manchester
Modified duo—binary
Bipolar RZ

2B1Q

Bipolar NRZ

D N WU SO S o e
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Problem 4.31

The tapped-delay-line section of the adaptive filter is shown below:

x[n]

x[n-1]

x[n-2] x[n-3] 1 x[n-m]

#n] = x [n]W[n]
dln] = x[n]+r[n]

Error signal e[n] = d[n] - #[n]
Win+1] = Wn] +px[n](d[n] - x' [n]W[n])
where W[n] = [Wolnl, -, W, [n]']

x[n] = [x[n], x[n—1], -+, x[n-m]"]

U = learning parameter

Problem 4.32

(a)
tput Dutput
c(t) h(r)
The k(1) is defined by
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N
h(r) = ) w,8(z—kT)

k=-N

The impulse response of the cascaded system is given by the convolution sum

N
P, = 2 Wi, _;
j=N

where p, = p(nT). The kth sample of the output of the cascaded system due to the input
sequence {1} is defined by

I = poly+ ZInpk—n
n#k

where pgl; is a scaled version of the desired symbol ;. The summation term 2 I.p,_, is

n#k
the intersymbol interference.

The peak value of the interference is given by

N N | N

DIN) = X |pal = X | X WiCuor
n=-N n=-Nlk=-N
n#0 n+0

To make the ISI equal to zero, we require
< 1 0
, ono=
Py = Zwkcn—k = { }
k=-N

(b) By taking the z-transform of the convolution sum

N
2 WiCh_k
k=-N

and recalling that convolution in the discrete-time domain is transformed into multiplication
in the z-domain, we get

P(z) = H(z)C(z)
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For the zero-forcing condition, we require that P(z) = 1. Under this condition, we have
H(z) = 1/C(2)
which represents the transfer function of an inverse filter.

If the channel contains a spectral null at f = 1/27T in its frequency response, the linear zero-
forcing equalizer attempts to compensate for this null by introducing an infinite gain at
frequency f = 1/2T. However, the channel distortion is compensated at the expense of
enhancing additive noise: With H(z) = 1/C(z), we find that when C(z) = 0,

H(Z) = oo
which results in noise enhancement.

Similarly, when the channel spectral response takes a smaller value, the equalizer will
introduce a high gain at that frequency. Again, this tends to enhance the additive noise.

Problem 4.33

(a) Consider Eq. (4.108) of the textbook, which is rewritten as

fm(Rq(t—'t)+1—\;96(t—'c))c(r)dr = g(~1)

Expanding the left-hand side:

J.qu(t—r)c('c)d’c+fw%)5(t—r)c(r)dr = q(-t)

Applying the Fourier transform:
F{meq(t—r)c(‘c)d'r} = F{R(1-1)} x F{(c(1))}
= S, (HC)

F{f &S(I—T)C(T)df} = 1-\;—0C(f)
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Fiq(-0)} = Q(-f) = Q*(f)

In these three relations we have used the fact that convolution in the time domain corresponds
to multiplication in the frequency domain.

Putting these results together, we get
Ny
SNCUN) +5C() = 0*(f)
or
Ny .
(5,0 + L)) = o)

which is the desired result.

(b) The autocorrelation function of the sequence is given by
R, (T},Ty) = ;q(ka—Tl)q(ka—Tz)
Using the fact that the autocorrelation function and power spectral density (PSD) form a
Fourier transform pair, we may write
PSD = F{Rq(rl,rz)}
= F{zk)q(ka—rl)q(ka—rz)}
o f+ Tﬁb)lz

where F{q(t)} = Q(f)

1
=T_b2

k
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Problem 4.34 .
(a) The channel output is

x(t) = 2, s(t—tm) ta, s(t—toz)

Taking the Fourier transform of both sides:

X(f) = [a.1 exp(-j2nfto1) + a, exp(-jznftoz)] S(f)

The transfer function of the channel is

X(f)
S(f)

H,(f)

a, exp(-j2ﬂft01) +a, exp(-j2ﬂfto )

2
(b)

Channel
H (f) I—
c

Equalizer
He(f) .

Ideally, the equalizer should be designed so that

Hc(f) He(f) = KO exp(-j2nft0)

where KO is a constant gain and tO is the transmission delay., The transfer function of

the equalizer is

He(f) = Wy + W, exp(-jZTfT) + W, exp(-jUnfT)

W W
= w_ [1+— exp(=j2nfT) + 2 exp(=jUnfT)] (1
0 Wy Wy
Therefore
K exp(-j2nft )
H (1) = 2 0

Hc(f)

KO exp(-janto)
@, exp(-j2ﬂft01) *ta, exp(-Janto

5)
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i (Ko/q1) exp[-j21rf(to-t01)]
= 3,
1+ a. exP[-JZﬂf(t02 - t5)]

1

Since a, 144 @+ We may approximate He(f) as follows

K Q.
-9 i -2 .
H () = a expl J21rf(to - t5921 {1 - a, exp[-Jznf‘(t02 - tm)]
a2 2
+ (31-) exp[—Junf(toa - to1)]}

Comparing Eqs. (1) and (2), we deduce that

w0=1
a
w1 = ——-2-
aq
a, 2
[N
"’2‘(:{1)

248
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Problem 4.35

The Fourier transform of the tapped-delay-line equalizer output is defined by

Youe® = HO X;p(D (1)

where H(f) is the equalizer’s transfer function and X; (f) is the Fourier transform of the input
signal. The input signal consists of a uniform sequence of samples, denoted by {x(nT)}. We may
therefore write (see Eq. 6.2):

1

k

where T is the sampling period and s(t) is the signal from which the sequence of samples is
derived. For perfect equalization, we require that
Yout) = 1 for all f.

From Eqs. (1) and (2) we therefore find that

T

Y, X{E-KT) (@)
k

H(f) =

@eqmnuuﬂ
Let the impulse responsefof the equalizer be denoted by {w,}. Assuming an infinite number of taps,

we have
Hf) = Y w, exp(2rfT)
n=-oo

We now immediately see that H(f) is in the form of a complex Fourier series with real coefficients
defined by the tap weights of the equalizer. The tap-weights are themselves defined by

W, = % _[11//?1‘* H(f)exp( - j2rt/T), n=0, +1, +2,...
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The transfer function H(f) is itself defined in terms of the input signal by Eq, (3). Accordingly, a

tapped-delay-line equalizer of infinite length can approximate any function in the frequency
interval (-1/2T, 1/2T).

Problem 4.36
(a) As an example, consider the following single-parameter model of a noisy system:
d[n] = wylnlx[n] +v[n]

where x[n] is the input signal and v[n] is additive noise. To track variations in the parameter
woln], we may use the LMS algorithm, which is described by

Error signal

wln+1] = wln] +ux[n] ~ (d[n] - W[nlx[n])

= (1-px’[nl)win] + px[nldin] 1)

To simplify matters, we assume that Ww[n] is independent of x[n]. Hence, taking the
expectation of both sides of Eq. (1):

EWln+1]] = (1-po)EWln]]l +pr,, )
where E is the statistical expectation operator, and

o> = E[x’[n]]

rqa. = Eld[n]x[n]]

Equation (2) represents a first-order difference equation in the mean value E[Ww[n]]. For this
difference equation to be convergent (i.e., for the system to be stable), we require that

Il - uoi' <1
or equivalently

() 1-po-<l1, ie, p>0

(i) -l+poo<l, ie, p<

W
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Stated in yet another way, the LMS algorithm for the example considered herein is stable
provided that the step-size parameter u satisfies the following conditions:

2
0<u<—2

Gx

2. . . .
where o is the variance of the input signal.

(b) When a small value is assigned to W, the adaptation is slow, which is equivalent to the LMS
algorithm having a long “memory”. The excess mean-squared error after adaptation is small,
on the average, because of the large amount of data used by the algorithm to estimate the
gradient vector. On the other hand, when W is large, the adaptation is relatively fast, but at the
expense of an increase in the excess mean-squared error after adaptation. In this case, less data
enter the estimation, hence a degraded estimation error performance. Thus, the reciprocal of
the parameter W may be viewed as the memory of the LMS algorithm.

Problem 4.37

A decision-feedback equalizer consists of a feedforward section, a feedback section, and a
decision device connected together as shown in Fig. 1. The feed-forward section consists of a
tapped-delay-line filter whose taps are spaced at the reciprocal of the signaling rate. The data
sequence to be equalized is applied to this section. The feedback section consists of another
tapped-delay-line filter whose taps are also spaced at the reciprocal of the signaling rate. The
input applied to the feedback section consists of the decisions made on previously detected
symbols of the input sequence. The function of the feedback section is to subtract out that portion
of the intersymbol interference produced by previously detected symbols from the estimates of
future samples.

Note that the inclusion of the decision device in the feedback loop makes the equalizer
intrinsically nonlinear and therefore more difficult to analyze than an ordinary tapped-delay-line
equalizer. Nevertheless, the mean-square error criterion can be used to obtain a mathematically
tractable optimization of a decision-feedback equalizer. Indeed, the LMS algorithm can be used to
jointly adapt both the feedforward tap-weights and the feedback tap-weights based on a common
error signal. To be specific, let the augmented vector ¢,, denote the combination of the feedforward

and feedback tap-weights, as shown by

c, = (D

251



0>

— section, .
A (1) device

n

" Feedforward + /z\ Decision

Feedback

section,
~ (2)
wﬂ

Figure 1

where the vectoerll) denotes the tap-weights of the feedforward section, and va,z) denotes the

tap-weights of the feedback section. Let the augmented vector v, denote the combination of input
samples for both sections:

X
ol
an

where x,, is the vector of tap-inputs in the feedforward section, and 4, is the vector of tap-inputs
(i.e., present and past decisions) in the feedback section. The common error signal is defined by

T
€, = a,—¢, v, 3)

where the superscript 7 denotes matrix transposition and a,, is the polar representation of the nth

transmitted binary symbol. The LMS algorithm for the decision-feedback equalizer is described
by the update equations:

wb Wil)

n+l + Mlenxn

W(z) _ A(2)+ A
n+l = Wy MZenan

where 1, and W, are the step-size parameters for the feedforward and feedback sections,
respectively.
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Problem 4.33

Matlab codes

% Problem 4.3§, CS: haykin

% Eyediagram

% baseband PAM transmission, M=4
% Mathini Sellathurai

clear all

% Define the M-ary number, calculation sample frequency
M=4; Fs=20;

% Define the number of points in the calculation
Pd=500;

% Generate an integer message in range [0, M-1].
msg_d = exp_randint(Pd,1,M);

% Use square constellation PAM method for modulation
msg_a = exp_modmap(msg_d,Fs,M);

% nonlinear channel
alpha=0.0
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msg_a=msg_a +alpha*msg_a."2;

“iraised cosine filtering
rcv_a=raisecos_n(msg_a,Fs);

% eye pattern

eyescat(rcv_a,0.5,Fs)
axis([-0.5 2.5 -1.5 1.5])
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function y = exp_modmap(x, Fs,M);
% PAM modulation

% used in Problem 4.3%

% Mathini Sellathurai

x=x-(M-1)/2;
x=2*x/(M~1)
y=zeros(length(x)*Fs,1);

p=0;

for k=1:Fs:length(y)

pP=p+1;

y(k: (k+Fs-1))=x(p)*ones(Fs,1);
end
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function out = exp_randint(p, q, r);
% random interger generator

used for Problem 4.3§

% Mathini Sellathurai

r = [0, r-1];

r = sort(r);

r(1) = ceil(r(1));

r(2) = floor(r(2));

if r(1) == r(2)
out = ones(p, q) * r(1);
return;

end;

d = 1r(2) - r(1);
rl = rand(p, q);
out = ones(p,q)*r(1);
for i = 1:d
index = find(ri >= i/(d+1));

out(index) = (r(1) + i) * index./index;
end;
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Answer to Problem 4.38

t(s)

asuodsay

0

Eye pattern for o

Figure 4 :
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Problem 4.3%
Matlab codes

Haykin

% problem 4.39, ¢S

%

root raised-cosine and raised cosine sequences

% M. Sellathurai

L

=[1 0110 0]
% sample frequency 20
sample

Data

freq=20;

generate antipodal signal

?

_mod(Data, sample_freq, 2)

syms=PAM

% root raised cosine pulse

sample_freq )

= raisecos_sqrt(syms,

rc.r

% normal raised cosine pulse

_freq );

, sample

= raisecos_n(syms

r_c_n

% plots

r)-1;

hold on

-C

length(r
figure

t=
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plot(0:1/20:t/20, r_c_r);

plot(0:1/20:t/20, r_c_n,’—~’);
xlabel(’time’)

legend(’root raised-cosine’,’raised-cosine’)
hold off
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function osyms = raisecos_n(syms, sample_freq )
% function to generate raised-cosine sequence
% used in Problem 4.39, CS: Haykin

“M. Sellathurai

% size of data
[1_syms, w_syms] = size(syms);

% data
R=0.3;
W_T=[3, 3*3];

% Calculation of Raised cosine pulse

W_T(1) = -abs(W_T(1));

time_T = [0 : 1/sample_freq : max(W_T(2), abs(W_T(1)))];
time_T_R = R * time_T;

den = 1 - (2 * time_T_R)."2;
index1 = find(den"= 0);
index2 = find(den == 0);

% when denominator not equal to zero
b(index1) = sinc(time_T(index1)) .=* cos(pi * time_T_R(index1)) ./ den(index1l);

% when denominator equal to zero, (using L’Hopital rule)
if “isempty(index2)
b(index2) = 0;
end;

b = [b(sample_freq * abs(W_T(1))+1 : -1 : 1), b(2 : sample_freq * W_T(2)+1)];
b=b(:)’;
% filter parameters
order= floor(length(b)/2);
bb=[];
for i = 1: order
bb = [bb; b(1+i:order+i)];
end,;

[u, 4, v] = svd(bb);
d = diag(d);

index = find(d/d(1) < 0.01);
if isempty(index)
o = length(bb);
else
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o = index(1)-1;
end;

a4 = bb(1);
ul = u(1 : length(bb)-1, 1 : o);

vl = v(1 : length(bb)-1, 1 : o);
u2 = u(2 : length(bb), 1: 0);
dd = sqrt(d(1i:0));

vdd =1 ./ dd;

uu ul’ * u2;

al = uu .* (vdd * dd’);
a2 =dd .* vi(1, :)?;
a3 = ui(i, :) .* dd’;

[num, den] = ss2tf(al, a2, a3, a4, 1);

fsyms = zeros(1l_syms+3*sample_freq, w_syms);
for i = 1 : sample_freq : 1l_syms
fsyms(i, :) = syms(i, :);
end;

% filtering
for i = 1:w_syms

fsyms(:, i) = filter(num, den, fsyms(:, i));
end;

osyms = fsyms(( (3 - 1) * sample_freq + 2):(size(fsyms, 1) - (sample_freq - 1)),
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function osyms = raisecos_sqrt(syms, sample_freq )
% function to generate root raised-cosine sequence
s used in Problem 4.39, CS: Haykin

%M. Sellathurai

% size of data
[1_syms, w_syms] = size(syms);

% rolloff factor
R=0.3;

% window

W_T=[3, 3*3];

% Calculation of Raised cosine pulse
W_T(1) -abs(W_T(1));
time T = [0 : 1/sample_freq : max(W_T(2), abs(W_T(1)))1;

1}

den = 1 - (4 * time_T*R)."2;
index1 = find(den "= 0);
index2 = find(den == 0);

s when denominator not equal to zero
b(index1)=( cos((1 + R) * pi * time_T(index1))+...
(sinc((1-R)*time_T(index1))*(1-R)*pi/4/R))./den(index1)*4+R/ pi ;

% when denominator equal to zero t=\pm T/4/alpha

if “isempty(index2)
b(index2)=((1+2/pi)*sin(pi/4/R)+(1—2/pi)*cos(pi/4/R))*R/sqrt(2)

end;

b(1)=1-R+4*R/pi; %t=0;

b = [b(sample_freq * abs(W_T(1))+1 : -1 : 1), b(2 : sample_freq * W_T(2)+1)];
b=b(:)’;

% filter parameters
order= floor(length(b)/2);
bb=[];
for i = 1: order

bb = [bb; b(i+i:order+i)];
end;

[u, d, vl = svd(bb);
d = diag(d);
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index = find(d/d(1) < 0.01);
if isempty(index)
0 = length(bb);
else
o = index(1)-1;
end;

a4 = bb(1);

ul = u(1 : length(bb)-1, 1 : o);

vl =v(l : 1length(bb)-1, 1 : 0);
u2 = u(2 : 1length(bb), 1: 0);

dd = sqrt(d(1:0));
vdd = 1 ./ dd;

uu = ui’ * u2;

al = uu .* (vdd * dd’);
a2 =dd .* vi(1, :)?;
a3 = ui(1, :) .x dd’;

[num, den] = ss2tf(al, a2, a3, a4, 1);

fsyms = zeros(l_syms+3*sample_freq, w_syms);
for i = 1 : sample_freq : 1_syms
fsyms(i, :) = syms(i, :);
end;

% filtering
for i = 1:w_syms

fsyms(:, i) = filter(num, den, fsyms(:, 1));
end;

osyms = fsyms(( (3 - 1) * sample_freq + 2):(size(fsyms, 1) - (sample_freq - 1)), :);
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Answer to Problem 4.39
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Figure 1: Raised-cosine and root raised-cosine pulse for sequence [101100]
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