CHAPTER 5

Problem 5.1
(a) Unipolar NRZ code.

The pair of signals s;(¢) and s,(¢) used to represent binary symbols 1 and 0, respectively are
defined by

E
SI(I)ZJ;’ 0<t<T,
b

s,(1) = 0, 0<:<T,
where Ej, is the transmitted signal energy per bit and T is the bit duration. From the

definitions of s1(¢) and s,(¢), it is clear that, in the case of unipolar NRZ signals, there is only
one basis function of unit energy. The basis function is given by

wo:F, 0<I<T,
Tb

Then, we may expand the transmitted signals s;(¢) and s,(?) in terms of ¢;(t) as follows:

51(2) = JE,0,(2), 0<t<T,

s,(1) =0, 0<I1<T,

Hence, the signal-space diagram for unipolar NRZ code is (+ JE;, 0), as shown

- |
0 +\/Eb (I)l

(b) Polar NRZ code.

In this code, binary symbols 1 and O are defined by
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E
s(r) = +J;’, 0<t<T,
b
E
Sz(t)z—J;), 0<:<T,
b

The basis function is given by

1
01() = JT:,) 0<i<T,

Then, the transmitted signals in terms of ¢(z) are as follows:
s1(1) = JE,0,(r) 0<z<T,
s55(1) = = JE,0,(t)  0<t<T,

Hence, the signal-space diagram for the polar NRZ code is (+ A/E,, - A/E—b) as shown below:

g -
\/E b 0 +\/E b q)l

(c¢) Unipolar return-to-zero code.

In this third code, binary symbols 1 and 0 are defined by

E,
+ ,  0<51<T, /2
T

0 T,/2<t<T,

s1(7)

s5(0) =0 0<t<T,
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The energy of signal s(7) is

T

Tb/2 2 b
Eb
Ey= [ | [Z|di+ [ oar
Tb
0 T,/2
Eb
T2

The energy of signal s,(¢) is zero.

The basis function is given by

q)l(t) = i@

JET,
Pl

The signal-space diagram for the RZ code is as follows:

*— o
0 E o
7

(d) Manchester code |

Binary symbols 1 and 0 are defined by

Eb
L 0<i<T,/2
Tb

r

5(1) = < B
—F, T,/2<t<T,
Tb
\
E
—A/;’, 0<t<T,/2
b
5o(1) = <
E
+ [, T,/2<1<T,
Tb
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The energy of signal s;() is

T,/2 ) T 2
E [ [ d ([ d
= —_ — !
= TR ([
0 Tb/2
=Eb

Similarly, the energy of symbol s,(¢) is
E, = E,
The basis function is given by

¢l(t)__JIE—;,

The signal-space diagram of the Manchester code is thus as follows:

® |
-\/E b 0 +\/E b q)l

Thus all the four line codes in this problem are one-dimensional.

Problem 5.2

The given 8-level PAM signal is defined by

t T
5;(1) = Airect(f—z)

The energy of signal 5,(7) is given by

T
E, = [(A)dr
0
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= AJT, A, = £1,43,+5 7
The basis function is given by
5;(1) _ 5;(1)

v

The signal-space diagram of the 8-level PAM signal is as follows:

—— o o Fle . ’ ’ 0y

0
INT -SNT -3NT  NT l VT 3WT sSNT 7T

Problem 5.3

Consider the signals s(7), s5(¢), s3(7), and s4(r) shown in Fig. 1a. We wish to use the Gram-
Schmidt orthogonalization procedure to find an orthonormal basis for this set of signals.

Step 1 We note that the energy of signal s;(¢) is

L)
E, = fo s(t)dt

T/3 2
j (1)°dr
0
r
3
The first basis function ¢(?) is therefore

0,(1) = ——=

_{A/3/T, 0<t<T/3 }

0, otherwise
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s1(t) s2(0) salt)
1 1 1}-
t ¢ 0 T
0T 0 2T T
3 3 3
(a)
1 (2) ¢2(t)
3T V3IT
¢ { p t
orT 0 r2r
3 3 3
(b)
Figure 1

¢3(t)

Step 2 Evaluating the projection of s,(¢) onto ¢(r), we find that

T
§y = jo 55(2)0,(1)dt

The energy of signal s,(¢) is

E, = j:sg(z)

2T/3 )
jo (1)“dt

2T

3
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The second basis function ¢,() is therefore

55(2) = 5510,(7)

2
E, -5y

¢2(l) =

_ {A/3/T, TI3<2T/3

0 otherwise

Step 3 Evaluating the projection of s3(f) onto ¢;(?),

S31

T
jo s3(1)0,(1)dt

=0

and the coefficient s3, equals

T
S3y = fo s4(1)0,(1)dt

The corresponding value of the intermediate function g,(¢), with i = 3, is therefore

85(1) = 53() —53,0,(2) = 53,0,(7)

|1, 2T/3<i<T
- 0, elsewhere
Hence, the third basis function ¢5(?) is

g5(?)

Uzgi(t)dz

¢3(t) =
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_ {A/3/T, 2T/3<t<T

0, elsewhere

The orthogonalization process is now complete.

The three basis functions ¢;(#), ¢,(7) , and ¢5(z) form an orthonormal set, as shown in Fig. 1b. In
this example, we thus have M = 4 and N = 3, which means that the four signals s1(2), s,(?), s3(?),
and s4(7) described in Fig. 1a do not form a linearly independent set. This is readily confirmed by
noting that s4(z) = s;(¢) + s3(¢). Moreover, we note that any of these four signals can be expressed

as a linear combination of the three basis functions, which is the essence of the Gram-Schmidt
orthogonalization procedure.
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Problem 5.4

(a) We first observe that s1(t), sz(t) and 53(t) are linearly independent.
The energy of s1(t) is
1 2
E1.= J (2)%dt = 4
0

The~first basis function is therefore

s1(t)
¢1(t) = =
E1
1, 0<t<
0, otherwsie
Define
T
Sy = IO sz(t) ¢1(t)dt
1
=1 (~u)(1)dt = -4
.0
Bz(t) = sz(t) - 521¢1(t)
-1, 1<tg2
0, otherwise

Hence, the second basis function is

gz(t)

/T >
I gatidt

0

9,(t) =
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-1, 1<t<2
o, otherwise

Define
T
331 = fo s3(t) ¢1(t)dt
1
=J (3)(1)dt = 3
0
2T
332 = LT s3(t) ¢2(t)dt
2
=/ (3)(-1)dt = =3
1
83(t) = s3(t) - S3 ¢1(t) - S3 ¢2(t)
3, 2<t<3
) 0, otherwise
Hence, the thrid basis function is
g,(t)
45(t) = -3
/T
2
/ 33(t)dt
0
1, 2<{t<3
) 0, otherwise
The three basis functions are as follows (graphically)
& ) ey 43(9
\.0-————————] D
4
A E ®
0 ] 0 0 ,
0 ---=-
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(b) 51(t) 2¢1(t)
sz(t) = -ll¢1(t) + 4¢2(t)

s3(t)

3¢,(t) - 3¢,(t) + 3¢3(t)
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Problem 5.5

Signals s1(z) and s,(7) are orthogonal to each other. The energy of s1(¢) is

T/2 T
E, = [ Udr+ [ »lar =T
0 T/2
The energy of s,(?) is
T
E,= (1% =T
0

To represent the orthogonal signals s;(¢) and s,(¢), we need two basis functions. The first basis
function is given by

si(t) _ sy(1)
o) = 2 = L
1 A/El ﬁ

The second basis function is given by

5,(1) _ 5,(1)

0p(0) = 22 = 2
2 A/E—,2 .\/T

The signal-space diagram for s(z) and s,(z) is as shown below:

A9
NT ®

> 0

o 7

Problem 5.6

The common properties of PDM and PPM are as follows: In both cases a time parameter of the
pulse is modulated and the pulses have a constant amplitude. In PDM, the samples of the message
signals are used to vary the duration of the individual pulses, as illustrated in Fig. 1a for M =4 on
the next page. In PPM, the position of the pulse is varied in accordance with the message, while
keeping the duration of the pulse constant, as illustrated in Fig. 1b for M = 4.

From these two illustrative figures, it is perfectly clear that the set of PDM signals is
nonorthogonal, whereas the PDM signals form an orthogonal set.
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Problem 5.7

(a) The biorthogonal signals are defined as the negatives of orthogonal signals. Consider for
example the two orthogonal signals s;(f) and s,(¢) defined as follows:

s1(t) = JEO (1)

Sz(f) = A/Eq)z(t)

where ¢(7) and 0,(¢) are orthonormal basis functions. The biorthogonal signals are given by
-s1(2) and -s,(#), which are respectively expressed in terms of the basis functions as \/E(])l(t)
and —\/-E—q)z(t). Hence, the inclusion of these two biorthogonal signals leaves the dimensionality

of the signal-space diagram unchanged. This result holds for the general case of M orthogonal
signals.

(b) The signal-space diagram for the biorthogonal signals corresponding to those shown in Fig.
P5.5 is as shown in Fig. 1a. Incorporating this diagram with that of the solution to Problem
5.5, we get the 4-signal constellation shown in Fig. 1b.

¢
0 NT @
o 5 0 . . o
NT T T
- \]T ® - \]T ®
(a) (b)
Figure 1
Problem 5.8

(a) A pair of signals s/z) and s (f), belonging to an N-dimensional signal space, can be
represented as linear combinations of N orthonormal basis functions. We thus write

N
si (1) = Ysy0,0), Osi=<T 1)
=1 i=1,2
where the coefficients of the expansion are defined by
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T
i=1,2
5 = El).si(t)(j)j(t)dt, - 12 (2)

The real-valued basis functions ¢{(z) and ¢,(¢) are orthonormal. Hence,

T
J'q)i(;)q)j(z) =3, = { 1, if i=j 3)
0

0, otherwise

The set of coefficients s.-}IY_ may be viewed as an N-dimensional vector defined by
4 j=1 y

s, = |%2|, i=1,2 ..M (4)

where M is the number of signals in the setl, with M > N. The inner product of the pair of
signal 5,(#) and s;(?) is given by

T

j s(1)s,(1)dt 5

0

By substituting (1) in (5), we get the following result for the inner product:
T-N N

J.I:ZSU(I)].(I)} {Zsk,q)l(z)}dz

oLj=1 =1

T

N
=Y Dsysuf0,(1)0(r)de (6)
j 0

Jj=1 I=1

Since the q)j(t) form an orthonormal set, then, in accordance with the two conditions of Eq. (3)
and (4), the inner product of s;(#) and s;(r) reduces to

T N
[sinsi(nyde = Y sy
0 j=1
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T
= 5;8;

(b) Consider next the squared Euclidean distance between s; and s;, which can be expressed as

follows:
2 T
”Si_sk” = (8;—58;) (5;—5;)
T T T
=8;8;+8;8; — 251. S,
T T T
= fsf(t)dt + js,f(t)dt ~2[s(0)s,dr
0 0 0
T
2
= [(si()-s(n)) de
0
Problem 5.9

Consider the pair of complex-valued signals s1(¢) and s,(¢), which are defined by
s1(1) = a;10,(8) +a;0,() (D)

5p(1) = ay,0,(2) + ay0,(t) (2)

The basis functions ¢;(7) and ¢,(¢) are real-valued and the coefficients ayy, a5, @y and ay, are
complex-valued. We may denote the complex-valued coefficients as follows:

ajp=oayp +jBy;
app =0 +jBio
a1 =01 +jBy;
ayy = 0y +jBy;

On this basis, we may represent the signals s(z) and s,(¢) by the following respective pair of
vectors:
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& Uy

B Bay
5= 8 -

3P )

B _Bzz_

The angle subtended between the vectors g; and g, is

T
218

cosQ = ——=
ERER

0ty 0y + By By + 0p0y + By By

T[22 2 2 ) 2 2
A/O‘nf’u + o, + B, A/O‘zlﬁzl + 00 + P,

H

il - s

ay 4 .
where s, = and s, = are complex vectors. Recognizing that
a a

12 22

H
5784

cos = ———— <1
[s4]] - Is

we may go on to write

oo

f 5,()sy(2)dt

= — 1= 73S
[f |s1(t)|2dtJ (_[ ]sz(t)|2dtj

The complex form of the Schwarz unequality becomes

=]

[ 5,(t)sy()dt

—o0

2

< [ syt [ [sy(0)]a
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The equality holds when s(f) and s,(f) are co-linear, that is, s1(f) = ks,(f) where k is any real-
valued constant.

Problem 5.10

E[XJ.W'(tk)] = E[(si + Wj)W'(tk)]

J

I~I[si‘j W'(tk)] =8, E[W'(tk)] =0

J
We also note that

N .
W'('ck) = W(tk) - i§1 Wi ¢i(tk)

We therefore have

E[xjw'(tk)] E[Wj W'(tk)]

N
= E[ij(tk) - 151 ¢i(tk) E[iji]
T ‘ T
But E[W, W(t = E[W(t W t)dt] = E{w W(t)ldt
u [ 3 ( k)] [W( k) fo (t) ¢J.( )dt) IO ¢j(t) [ (tk) (t)]
T NO N0
= IO ¢j(t) ‘5 G(t—tk)dt = 5+ ¢j(tk)
1‘9_ ’ i=j
2
E[iji] =
0 i#j
Hence, we get the final result
No No
ELX, W (tk_)] =3 05080 =5 et
= 0.
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Problem 5.11
For the noiseless case, the received signal 1(7) = s(¢), 0 <t < T.
(a) The correlator output is

T

WT) = [r()s(v)de
0

T
(1) = [s*()dr
0

T/2

(b) The matched filter is defined by the impulse response
h(t) = s(T-1)
The matched filter output is therefore

f r(AMA(E - A)dh

—0

y(1)

= j s(A)s(T =t + L)dA

—00

oo

= j sin(@) sin(—-——sn(T ;t A M)dk

—o0
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= %jcos

]

[SR(T— z)] -

f [Sn(T—Hx)] "

Since -T < A <0, we have

0= oD

1 T .(8n(T—t+2k)ﬂ}‘=°
— = g=S8In
2 STC T A=-T

¢ Ton{SRED)_ (o) T b

(c) When the matched filter output is sampled at ¢ = 7, we get
wWT)=T/2
which is exactly the same as the correlator output determined in part (a).
Problem 5.12

(a) The matched filter for signal s(z) is defined by the impulse response
hi(t) = s(T-1)
The matched filter for signal s,(¢) is defined by the impulse response
hy(t) = 5,(T 1)

The matched filter receiver is as follows

[
‘ ! Matz?(et;l filter > | > X
I
I
’ 9 I
x(1) |
Matched filter
P hy(t) - ! - X
Sample at
t=T
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The receiver decides in favor of s,(7) if, for the noisy received signal,
x(2) = s, (t) +w(z), 01T
()= sy +w(e), 91T

we find that x| > x,. On the other hand, if x, > x1, it decides in favor of s,(2). If x; = x,, the
decision is made by tossing a fair coin.

(b) Energy of signal s,(¢) is given by

T 2T 3T
7, = j(1)2dt+j(—1)2dt+ [ (1)a
0 T 2T
=3T = E

Energy of signal s,(7) is

T/2 37/2 5T/2 T
Ey= [ (V%ar+ [ (War+ [ D'+ [ ()
0 T/2 3T1/2 5T/2

=3T =E

The orthornomal basis functions for the signal-space diagram of these two orthogonal signals
are given by

0,(1) = 20
1 m

and

q)z(t) = sz_(t)

3T

The signal-space diagram of signals s and s, is as follows:
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*4)2

® 3T

® -

0 3T

The distance between the two signal points s;(¢) and s,(¢) is

d = J2E = J6T

The average probability of error is therefore
1 1 d

P, = —erfc(— —)
2 2 /NO

= lerfc(l Z—E)
T2 2 N,

For E/N,, we therefore have

P, = %erfc(l A/2><4)

2

%erfc(ﬁ)

4% 107

Problem 5.13

Energy of binary symbol 1 represented by signal s;(¢) is

T/2 T
E, = [ (+1)%dr+ [ Dar=T
0 T/2

Energy of binary symbol O represented by signal s,(¢) is the same as shown by
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T/2 T
E, = J.(—l)zdt+ [« + )2 =T
0 T/2

The only basis function of the signal-space diagram is

51(8) _ s1(7)

¢1(l)=ﬁ__ﬁ—

The signal-space diagram of the Manchester code using the doublet pulse is as follows:

T O T

Hence, the distance between the two signal points is d = 2.J/T . The average probability of error

over an AWGN channel is given by
1 d 1 T
P, = Qerfc(2 NO) = éerfc( /]Vo)

Problem 5.14

(a) Let Z denote the total observation Space, which is divided into two parts Z_ and 2
Whenever an observation falls i ’ "
g oo . in Zq, we say HO’ and whenever an observation falls in 21,

1° S, expressing the risk R in terms of the conditional probability density
functions and the decision regions, we may write

R =
00 Po fzof_)gao(lfﬂo)di
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C10 PO fZ fX'H (X|H )dx

]
Ci1 P 7z Fxm (2iHq 0

01 p1 IZ fx'H (X=H1)dl(. (1)

For an N-dimensional observation space, the integrals in Eq. (1) are N-fold integrals.

To find the Bayes test, we must choose the decision regions ZO and Z1 in such a

manner that the risk R will be minimized. Because we require that a decision be made,

this means that we must assign each point X in the observation space Z to Z or Z.; thus

0 1?
Z= ZO + Z1
Hence, we may rewrite Eq. (1) as
R = PoCoo /2 fxjn (XIHQ)AX + pCyg f7 5 fyy (xJHy)dx
0-="0 0= 0
+ Py, IZ-ZOfKIH (xH,)dx + 21 fzo X, (xH)dx » » (2)
We observe that
i) = =
ZfXIH (x{Hy)dx = J,f XIH (xIH,)dx = 1
Hence, Eq. (2) reduces to
R = poC1o * Py
0{ [po(Cm Coo’f XlH (xIHD1 + [p1(Co1-C”)fyH1(5_!H1)]}d5 (3)

The first two terms in Eq. (3) represent the fixed cost. The integral represents the cost
controlled by those points x that we assign to ZO. Since C10 > COO and (101 > C11’ we find
-that the two terms inside the square brackets are positive., Therefore, all values of x
o because theY
conbhfbute a negative amount to the integral. Similarly, all values of x where the

second term is larger than the first should be excluded from Z0 (i.e., assigned to 21)

where the first term is larger than the second should be included in Z

because they would contribute a positive amount to the integral. Values of x where the
two terms are equal have no effect on the cost and may be assigned arbitrarily. Thus the

decision regions are defined by the following statement: If
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p1(001 - C“)f"llH (le ) > po(C10 00 XIH (leo),

assign x to Z1 and consequently say that H1 is true.

Z0 and say H0 is true.

Alternatively, we may write

f (xjH,) H

Xid, T pglC5=Coo)

___—xm EIEM) < P, (Cgy—Cq )
0

The quantity on the left is the likelihood ratio:

f)111-11(-’5'“1)
A(x) = C CITIS)
- xtH (xIH )
Let
4. °F (C1o Co0?

If the reverse is true, assign x to

Thus, Bayes criterion yields a likelihood ratio test described by

A(x)

T AV
>

0

(b) For the minimum probability of error criterion, the 1likelihood ratio test is

described by

H
a7 Po
H

.Thus, we may view the minimum probability of error criterion as a special case of the

Bayes criterion with the cost values defined as

COO = C11 =0

€0 = o1

That is, the cost of a correct decision is zero, and the cost of an error of one kind is

the same as the cost of an error of the other kind.
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Problem 5.15

From the signal-space diagrams derived in the solution to Problem 5.1, we immediately observe
the following:

1. Unipolar NRZ and unipolar RZ codes are non-minimum energy signals.
2. Polar NRZ and Manchester codes are minimum energy signals.

Problem 5.16

The orthonormal matrix that transforms the signal constellation shown in Fig. 5.11(a) of the
textbook into the one shown in Fig. 5.11(b) is

1 1
0| 2 P
1 1

22

To prove this statement, we note that the constellations of Fig. 5.11(a) is defined by the four points
{(a, o), (-, ), (-0, —av), (a1, —at) }. The new constellation is defined by

Si rorate = Q8;, which for i =1 yields
11
o
S1, rotate = A/E ﬁ (O() = (ﬁ) fora=1.
) 1 1 0

0
Similarly, $5 e = ( 2)
e = { g

_ (42
S3, rotate —

0

0
S4, rotate (_,\/—J

Hence, the transformation from Fig. 5.11(a) to Fig. 5.11(b) is given by Q, except for a scaling
factor.
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Problem 5.17

(a) The minimum distance between any two adjacent signal points in the constellation of Fig.
P5.17a of the textbook is

dE:I)n =20

The minimum distance between any two adjacent signal points in the constellation of Fig.
P5.17b of the textbook is

i = d(o) + (o) = 24

which is the same as dffl)n Hence, the average probability of symbol error using the
constellation of Fig. P5.17a is the same as that of Fig. P5.17b.

(b) The constellation of Fig. P5.17a has minimum energy, whereas that of Fig. P5.17b is of non-
minimum energy. Applying the minimum energy translate to the constellation of Fig. P5.17b,

which involves translating it bodily to the left along the ¢;-axis by the amount 20, we get
the corresponding minimum energy configuration:

0
» V2o
. . )
Ve O Ve
- 20

Problem 5.18

Consider a set of three orthogonal signals denoted by{si(t)}lio, each with energy E,. The

average of these three signals is
1 2

a(t) = §2si(t)
i=0

Applying the minimum energy translate to the signal set {s,(z) }l.2=0, we get a new signal set
defined by
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si(r) =s(t)~a(t), i=0,1,2 (1)

The signal energy of the new set is

E= [ (syn) d

|_siwar-2[ sna@di+ | a(r)ds

2. .1
E,-3E, +5(3E,)

The correlation coefficient p;; between the signals si(¢) and s}-(t) is given by

_ ELsi()(s(1)]
Py = —f

22 _Eo(si(t) —a(1))(s;(1) —a(r))dt

oo

- 2iEs(J._wsi(f)Sj(f)dl - fw a(t)(s,(1) +s,(1))dt + J.: a2(r)dt) )

Since s,(¢) and sj(t) are orthogonal by choice, Eq. (2) reduces to

3 1 1 1
pij - 2ES(O - §Es - §Es + §(3Es))

=5 for i)

which is the maximum negative correlation that characterizes a simplex signal with M = 3. thus,

2
the signal set {s7(¢)},., defined in Eq. (1) is indeed a simplex signal.
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2 . .
To represent the signal set {sj(¢)},., in geometric terms, we use the Gram-Schmidt
orthogonalization procedure. Specifically, we first set

sn(t)
0o(t) = _OI'E 3)

or equivalently
so(t) = NEQo(1)

The projection of s{(¢) unto ¢y() is
510 = [__si0do(n)as

- jl_gfws’l(t)sb(t)dt

= VE(3]”_siwsotnar)

- &

The second basis function is therefore

si(t) - S1o¢0(t)

./E—s%o

_ 510 + (JE/2)(9o(1))
JE —(E/4)

¢1(t) =

- _JizE(s’l(t) + §E¢O(t))

Accordingly, we may express s7(¢) in terms of the basis functions 0o(®) and ¢;(¢) as
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JE

$1(1) = =5200(0) +

The remaining signal s5(7) may be expressed in terms of ¢y(¢) and ¢,(7) as

JE

s5(1) = 5

Po(2) —

By (1)

4)

)

Thus, using Egs. (3) to (5), we may represent the simplex code by the following signal-space

diagram:

o

’\

| ~
VE )1 TR
0 ~

| VE2 A

| g //‘fE
\3E )| ///
2 v

| -

"/

Problem 5.19

(a) An upper bound on the complementary error function is given by

erfc(u) <

1
Pe = Eer

exp(-u’)

Jrou

Hence, we may bound the given P, as follows:

E,
fo| [—|<—= =
No) 2,[rE,N,

ey

For large positive u, we may further simplify the upper bound on the complementary error
function as shown here:
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exp(—uz)

Jn

Correspondingly, we may bound P, as follows:

erfc(u) <

exp(-E,./N
P < p( b 0)

e 2,\/7_'5

(b) For E;/Ny =9, we get the following results:

(2)

(1) The exact calculation of P, yields

P, = %erfc(3)

=1.0x 107

(i) Using the bound in (1), we have the approximate value:

P = exp(-9)

e 6,\/7_12

=116 x107

(iti)  Using the looser bound of (2), we have

P =~ exp(-9)

e 2A/7—t

= 3.48%x10"°

As expected, the first bound is more accurate than the second bound for calculating P,.

Problem 5.20

According to Eq. (5.91) of the textbook, the probability of error is over-bounded as follows:
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i=12--M (1)

1 & d
ik
P(m)<s Y erfc( - j
2 < 2,/N,

k#i

where dy; is the distance between message points s; and s;. With the M transmitted messages
assumed equally likely, the average probability of symbol error is overbounded as follows:

M
1
P, = MZPe(m,.) (2)
i=1
M M
1 d'k
S—-—Z Zerfc( ! ]
2 i=l k=1 2 NO
k#i

The second line of Eq. (2) defines the union bound on the average probability of symbol error for
any set of M equally likely signals in an AWGN channel. Equation (2) is particularly useful for
the special case of a signal set that has a symmerric geometry, which is of common occurrence in
practice. In such a case, the conditional error probability P,(m;) is the same for all i, and so we

may simplify Eq. (2) as

Pe = Pe(mi)
M
1 dix J .
<= 2 erfc( , for all { (3)
2k =1 2'\1N0
k#i

The complementary error function may be upper-bounded as follows:

2

d. 1 d:
erfc] —a— | < —exp| ——X
(2 /NO) Jn 2N

Hence, we may rewrite Eq. (3) as

| M 7
" ‘
P,<— 3 exp[—2—') for all i 4)

297



Provided that the transmitted signal energy is high enough compared to the noise spectral density
Ny, the exponential term with the smallest distance d;; will dominate the summation in Eq. (4).

Accordingly, we may approximate the bound on P, as

2

M_. d.

P < min . ik 5
i#

where M, i, is the number of transmitted signals that attain the minimum Euclidean distance for
each m;. Equation (5) describes a simplified form of the union bound for a symmetric signal set,
which is easy to calculate.
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