CHAPTER 6

Problem 6.1

(a) ASK with coherent reception

x(t) b 1} Decision = 1
— e SEEEEEER—— .
fo at device

[
)

s(t)

Denoting the presence of s

ymbol 1 or symbol 0 by hypothesis H, or HO’ respectively,
we may write

Hiz x(t) = s(t) + w(t)’
Hot x(t) = w(t)

where s(t) = Accos(2ﬂfct), with l\.c = /2Eb/Tb, Therefore,

Tb .
L =17 x(t) s(t) dt j
0 g
If £ > E,/2, the receiver decides in favor of symbol 1, If % ¢ E,/2, it decides in
favor of symbol 0.

The conditional probability density functions of the random variable L, whose value
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is denoted by %, are defined by

2
210) = -2
leO( 10) s exp( NOEb)
£ (gl1) = —] [ (Z-Eb)zl
2il) = exple ————ou
L}1 E NoE,

The average probability of error is therefore,

o Eb/2
Pe = Py o f £ ,0(100dy + p, J L (rIDas
. Eb/2 —o
= E‘f exp(- ﬁ‘E—)dl + 5 J expl[- N E Jd2
E /2 YN E 0°b < /qN_E 0"b
b 0°b 0
© 2
= 1 J exp(- ﬁig-)dz
vnN_E E /2 0'b
0b b
1 1
=3 erfc(E-fEb/No)
(b) ASK with noncoherent reception
x(t) :\;ig;zd Envelope ¥ 2 Decision [ H1
. to s(t) ™1 detector - devi
. =Tb evice . HO

In this case, the signal s(t) is defined by

s(t) = Accos(2nfct + 6)

where Ac = Y2 Eb/Tb, and

= 0<8<2n

fe(e) =

o, otherwise

For the case when symbol 0 is transmitted, that is, under hypothesis HO’ we find that
the random variable L, at the input of the decision device, is Rayleigh-distributed:

2
£ £

leO(£IO) = NuT exp(- %—T—)
0'b 0'b

For the case when symbol 1 is transmitted, that is, under hypothesis H

1 we find that the
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random variable L is Rician-distributed:

" : 22 . AiTE/M) (2£Ac)
£ . (201 ) = —=- exp(- ——m—amee ) I (——
L4 N, T N T,/2 o'W

where Io(2£Ac/No) is the modified Bessel function of the first kind of zero order.

Before we can obtain a solution for the error pefformance of the receiver, we have to
determine a value for the threshold. Since symbols 1 and 0 occur with equal probability,
the minimum probability of error criterion yields:

( As b) (ZEAQ) ?1
expl - I < 1 QP
2N0 0 NO H

For large values of Eb/NO, we may approximate Ib(ZQAc/NO) as follows:

22Ac exp(22Ac/N0)

)
0 VHulAc/No

Using this approximation, we may rewrite Eq. (1) as follows:

A =& T) U1 /TER
exp| ] < S

N
0 Ho 0

Taking the logarithm of both sides of this relation, we get

1 Ach meN

T )
]

% 0

AV T
nj—

0

Neglecting the second term on the right hand side of this relation, and using the fact
that

. Ach

b~ 2

we may write
H fo———
1 E T

vy 1/bb

H0

1 /EpTp

The threshold Fl > is at the point corresponding to the crossover between the

two probability density functions, as illustrated below.
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Thg~average probability of error is therefore

Pe = Pg P1g * Pq Poy

where
P,. =/ £ ,.(210)d2
10 JET s202 L0
o 2
") )
= f = exp(- —=)d%
JET, /2/2 NoTp NoTp
2 o
2%
= |~exp(- <=-) ]
N.T
o'o’ VE T /272
E
= exp(~ —HE)
0
/BT /272
Poy =/ £ 1C4IT)aL
0
E Ty 272 us 22 4 Ai Tg/u 208
= s exp(- —75—) I,(——)de
. N,T NoT /2 o\ W
vE,Tp/272 a2 22 4 a2 Tg/u exp(22A _/N)
= v (- —xT 7 gl
0 0'b o'b /HmiA /N
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/Ebrb/zlz

2
(L - A T./2)
=/ TT"ZR' ‘/TT"'Z exp|- C D de (2)
0 { e'db "™o'b NoTp/2 ]

The integrand in Eq. (2) is the product of Wb and the probability density function
of a Gaussian random variable of mean Ach/Z and variance NoTb/ll. For high values of
Eb/NO, the standard deviation W is much 1less than the threshold fE—;'i‘.b/ZIZ.
Consequently, the area under the portion c_Jf the curve from 0 to /EbTb/2/2 is quite small,

that is, Pm' = 0. Then, we may approximate the average probability of error as

Pe ® P, Pyp

E
1 b
3 exp(- uNO)

where it is assumed that symbols 0 and 1 occur with equal probability.
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Problem 6.2

The transmitted binary PSK signal is defined by

JEL000), 0<t<T,,  symbol 1
s(t) =«

~JE,0(),  0<t<T,  symbol 0

where the basis function ¢() is defined by

o(r) = J%cos(anct)

The locally generated basis function in the receiver is

Av/zcos(anct + Q)
T,

A/Tz[cos(anct)cosq) —sin(2nf t)sin@]
b

‘Drec(t)

where @ is the phase error. The correlator output is given by

T
y = jo”x(z)cprec(z)dt

where
x(t) = 5,(8) + w(t), k=12

Assuming that f, is an integer multiple of 1/T}, and recognizing that sin(27f.f) is orthogonal to
cos(2mf ) over the interval 0 <z < T), we get

y=1=% A/E_bcosq) + W
when the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0, and W is

a zero-mean Gaussian variable of variance Ny/2. Accordingly, the average probability of error of

the binary PSK system with phase error ¢ is given by
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E, cos
P, = %erfc( / bNO (p)

When ¢ = 0, this formula reduces to that for the standard PSK system equipped with perfect
phase recovery. At the other extreme, when ¢ = +90°, P, attains its worst value of unity.
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Problem 6.3

(a) The noiseless PSK signal is given by

s(t)

Accos[2ﬂfct+kpm(t)]

Accos(2"fct)cos[kpm(t)] - Acsin(zﬂfct)sin[kpm(t)]

Since m(t) = +1, it follows that

008[kpm(t)] = cos(:kp) = cos(kp)
sin[kpm(t)] = sin(:kp) = :_sin(kp) = m(t)sin(kp)
Therefore,
s(t) = Accos(kp)cos(Zcht) - Acm(t)sin(kp)sin(Zﬁfct) (1)

The VCO output is
r(t) = Avsin[2nfct + 6(t)]
The multiplier output is therefore
1 . .
r(t)s(t) = E-AcAvcos(kp){31n[9(t)] + sin[47f t+0(t)]}
1
- - i 6
> AcAvm(t)81n(kp){cos[B(t)] + cos[uwfct+ (£)1}
The loop filter removes the double-frequency components, producing the output
1 : 1
- - 9 -
e(t) AcAvcos(kp)51n[ (t)] >

2
Note that if kp = 7/2, (i.e., the carrier is fully deviated), there would be no carrier
component for the PLL to track.

AcAvm(t)sin(kp)cos[e(t)]

(b) Since the error signal tends to drive the loop into lock (i.e., ©(t) approaches
zero), the loop filter output reduces to

e(t) = - % AcAvsin(kp)m(t)

which is proportional to the desired data signal m(t). Hence, the phase-locked loop may
be used to recover m(t).
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Problem 6.4

(a) The signal-space diagram of the scheme described in this problem is two-dimensional, as shown

by

Q\.\O\A}.*‘(’L\,'UL
C Sf'/\e)
I
Zn- /0/7“-‘4
° —o- C corire)

=
-A, i/z—*’(asz)

A J3E G-k

This signal-space diagram differs from that of the conventional PSK signaling scheme in that it
is two-dimensional, with a new signal point on the quadrature axis at Ack\/Tb/Z. If k is reduced
to zero, the above diagram reduces to the same form as that shown in Fig. 8.14.

(b
s(t)+w(t) T
I b dt Lo Decision Hy
0 device

e
0

cos (2mf t) 1

c n

The signal at the decision device input is
= -59/ 12 T, +f w(t) cos(2nf t)dt (0
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Therefore, following a procedure similar to that used for evaluating the average
probability of error for a conventional PSK system, we find that for the system defined by
Eq. (1) the average probability of error is

P = % erfc(v’Eb(1-k2)/N0)

1 .2

where Eb =35 Ac Tb.
- 2
(€) For the case when Py = 10 " and k“ = 0.1, we get
10-4 -4 erfe(u)

2

0.9 E
where u2 = b

No

Using the approximation

( u2)
erf‘c(u) =~ EEB._—__—-

T U
we obtain

exp(-uz) -2/ x 1070 u=0

The solution to this equation is u = 2.64. The corresponding value of Eb/No is

B een®
NO - 0.9 -0

Expressed in decibels, this value corresponds to 8.9 dB.

(d For a conventional PSK system, we have

1 ETN
Pe =3 er fo( Eb/NO)

In this case, we find that

E
2. (2.61)2 = 6.92

0
Expressed in decibels, this value corresponds to 8.4 dB. Thus, the conventional PSK system

requires 0.5 dB less in E;/N, then the modified scheme described herein.
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Problem 6.5
(a) The QPSK wave can be expressed as
s(t) = m1(t) cos(2nf t) + mz(t) sin(21rfct).
Dividing the binary wave into dibits and finding m1(t) and mz(t) for each dibit:
- dibit 11 00 10 00 10
m1(t) JE/T - YE/T VE/T - JE/T VE/T
m(t) VE/T  -YE/T  -Y/E/T - V/E/T - /T

m &)

£
2
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Problem 6.6

Let P,y = average probability of symbol error in to the in-phase channel

PeQ = average probability of symbol error in to the quadrature channel

Since the individual outputs of the in-phase and quadrature channels are statistically independent,
the overall average probability of correct reception is

Pc

(1 - P (1 - Pog)

1 - Pg1 - Peq + Per Peq

The overall average probability of error is therefore

Pe

n

i

1
o"d

[
o
+
g
o
o
|
=
)
o
@
¥-»)
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Problem 6.7

Let r denote the received signal vector. Suppose that the signal corresponding to message point
m,is transmitted. Then, referring to the signal-space diagram of Fig. 1, the conditional probability

of error is given

P, b, = P(r lies in shaded region)

P(r lies in =) + P(R lies in i)
- P(r lies in |Jf))

lerfc .E sin +_1_erfc _1.3_ sin
2 Ny M 2 Ny M

- P(r lies in |||)

E .
P <erfe| | — sin—
e lmy ~| N, M

Assuming that all the message points are equally likely to be transmitted, we have Pe=Pelm >

~1
P, < erfc E sin®
Ny M

Hence,

and so
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Problem 6.8

Figures 6.10 and 6.10b of the textbook, reproduced here for convenience of presentation, depict
the signal-space diagrams of QPSK and offset QPSK signals, respectively:

(I)Z ¢2
ST T T L
AN / | I |
N 7 |
| N\ / I | I
I BN I "I____O____I__
/N
I PN | I I(I)l
I S| | |
v \ v v
{ SV . e — — —|— — —
(a) QPSK (b) Offset QPSK
Figure 1

The two parts of this figure clearly show that the signal-space structure of the offset QPSK is
basically the same as that of the standard QPSK. They only differ from each other in the way in
which transition takes place from one signal point to another. Accordingly, they have the same
power spectral density, as shown by

S(f) = Eplsinc> (2T ,(f - f,)) + sinc*(2T,(f + £.))]

where T}, is the bit duration and f,. is the carrier frequency.

Problem 6.9
(a) In vestigial-sideband (VSB) modulation, there are two basis functions:

* The double-bandwidth sinc function, defined by

0,(t) = J;sinc(%’) cos(2nf, 1) 1)

where T is the symbol period and f. is the carrier frequency.

* The Hilbert transform of ¢;(#), defined by
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0,(1) = §1()

= J;sinc (2%) sin(2nf 1) (2)

where it is assumed that f, > 2/T.

(Here we have made use of the Hilbert-transform pair listed as entry 1 in Table A6.4, with the
low-pass signal m(¢) set equal to /1/Tsinc2(¢/T).)

The basis functions (1) and (2) imply the use of single-sideband modulation, which (as
discussed in Chapter 2) is a special form of vestigial sideband modulation. We have chosen
these definitions merely to simplify the discussion. The use of VSB substitutes a realizable

function for the sinc function that is unrealizable in practice.

Based on the definitions of the basis functions ¢;(¢) and ¢,(¢) given in Egs. (1) and (2), it may

be tempting to choose 2/T as the symbol rate for successive transmission of binary symbols
using binary VSB. However, such a choice of signaling destroys the orthonormality of ¢;(z)

and ¢,(?); that is,

T .
) ¢i(t)¢j(z—z)dz¢{ I for j=i
0 2 0 for j#i

To maintain orthogonality of ¢,(¢) and ¢,(z), successive translations of these basis functions
must be integer multiples of 1/7, as shown by

IT¢i(t)¢,-(t—kT)dz = { L for j=i
° 0 for j#i

for any integer k.

Suppose, however, we restrict k to assume only odd integer values, and choose the carrier
frequency f. to be an odd integer multiple of 1/27, that is,

fe= 7= ! = odd integer 3

We then have the following two properties:
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kT

() f;¢1(t)¢2(t - 7)611‘ = 0 for all odd integer £ 4)

(ii) sin(2nfc(t - %ZD = sin(2nf r)cos(kin/2) — cos(2nf t)sin(kin/2)

=cos(2nf,t)  for k = odd integer
I = odd integer

With such a choice, the implementation of the digital VSB transmission system is equivalent
to a time-varying one-dimensional data transmission system, which operates at the rate of 2/T
dimensions per second.

(b) The optimum receiver for the digital VSB transmission system just described consists of a pair
of matched filters, that are matched to the two basis functions ¢;(¢) and ¢,(¢) as defined in Egs.

(1) and (2). However, in order to conform to the design choices imposed on integer k and
carrier frequency f,. as described in Eqgs. (4) and (3), the instants of time at which the two

matched filter outputs are sampled are staggered by 7/2 with respect to each other. The two
sequences of samples so obtained are subsequently interleaved so as to produce a single one-
dimensional data stream as the overall receiver output. The delay by 772 is identical to what is
actually done in the offset QPSK, thereby establishing the equivalence of the digital VSB
system to the offset QPSK.

Problem 6.10

Assuming that modulator initially resides in a phase state of zero, we may construct the following
sequence of events in response to the input sequence 01101000.

Step & Phase 0;_4 Input Phase Transmitted
(radians) dibit change phase 0,
ACH (radians)
(radians)
1 0 01 3n/4 3m/4
2 3nt/4 10 -t/4 /2
3 /2 10 -1t/4 /4
4 /4 00 /4 /2

314



Problem 6.11

The output of a m/4-shifted QPSK modulator may be expressed in terms of its in-phase and
quadrature components as

s(t) = A/?cos(in/4)cos(2nfct)—Esin(in/4)sin(2nfct) i=0,1,2..7

The different values of interger i correspond to the eight possible phase states in which the
modulator can reside. But, unlike the 8-PSK modulator, the phase states of the m/4-shifted QPSK
modulator are divided into two QPSK groups that are shifted by m/4 relative to each other.

Therefore, s,(t) = IZTEcos(in/4)

so(1) = A/?sin(in/@

The orthonormal-basis functions for 1t/4-shifted QPSK may be defined as

¢,(2) = A/%cos(21tfct)

2 .
0,(1) = A/;sm(anCt)
Then the n/4-shifted QPSK signal is defined in terms of these two basis functions as

s(t) = JEcos(in/4)9,(r) — JEsin(in/4)0,(z)

On the basis of this representation, we may thus set up the following scheme for generating 7t/4-
shifted QPSK signals:

\]-Ecos(-)

Sequence of Phase
input dibits > map

A 4

1/4-shifted
QPSK signal

s(1)

VEsin(-)
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Problem 6.12

A 7t/4-shifted DQPSK signal can be expressed as follows:

s(t) = A/gfcos(q)k_1 +A(I)k)cos(27tfcz‘)—/\/¥5sin((i)k_1 +AQ,)sin(2nf 1)

= A/%cos(anct + 0, +Ad,)

where ¢y | + AQ; = ¢, and 0;_; is the absolute angle of symbol k-1, and Ady is the differentially
encoded phase change. In the demodulation process, the change in phase ¢, occurring over one
symbol interval needs to be determined.

If we demodulate the n/4-shifted DQPSK signal using a FM discriminator, the output of the FM
discriminator is given by

d[2nf 1 +0,]

Vour(t) = K pr

dik}

= K[anc § 2

K[2nf .+ Ao,]

where K is a constant. In a balanced FM discriminator, the DC offset 2nf,K will not appear at the
output. Hence, the output of the FM discriminator is KA.

Problem 6.13

The output of a n/4-shifted DQPSK modulator may be expressed as

s(t) = A/%:cos((%)k_1 + A8 )cos(2nf 1)- lz?Esin(Ok_l +A0,)sin(2nf 1)
_ 2E 0 0 0. s
= 7[cos k-1€08A0, —sinB,_;sinAO, Jcos (2 f 1)

- IZTE[sinGk_lcosAGk + cosB;_ sinAB,]sin(2nf 1)
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Let I, = cos(6;;+A0;) and Q, = sin(0,_; + AB,). We may then write

I, = cos6;_;cosAD, —sinO, | cosAB,

cos(0,., + A0, | )cosAO,—sin(0, , + AO, ;)cosAB,
from which we readily deduce the recursion
I, = I, {cosAb; - Q, ;sinAD,
Similarly, we may show that
O, = sinB;_;cosAB, + cosO,_;sinAB,
= Q.1CosAB, +1, ;sinAD,

From the definition of I; and Q,, we immediately see that I, and Q) may also be expressed as

I, = cosO,
and
Q, = sinf,

which are the desired results.
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Problem 6.14
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Problem 6.15

The transmission bandwidth of 256-QAM signal is

B

- log,M
where Ry, is the bit rate given by 1/T, and M = 256. Thus

2Ty 2
26 7 log,256 ~ 16T, 8T,

The transmission bandwidth of 64-QAM is

_21/Ty)y 2
67 log,64 ~ 8T, ~ 4T,

Hence, the bandwidth advantage of 256-QAM over 64-QAM is

111
4T, 8T, 8T,

The average energy of 256-QAM signal is

2(M-1)E, 2(256-1)E,
256 = 3 = 3

= 170E,
where Ej is the energy of the signal with the lowest amplitude. For the 64-QAM signal, we have

2(63)
3

Eg = E, = 42E,

Therefore, the increase in average signal energy resulting from the use of 256-QAM over 64-
QAM, expressed in dBs, is

170E
0) ~ 10log ,4(4)

10log (

6 dB
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Problem 6.16

The probability of symbol error for 16-QAM is given by

p o=of1-4 f I Eay
e—(—ﬁ)erc m

Setting P, = 103, we get

-3 _ 1 3Eav
10 ©~ = Z(I—Z)erfc( /5(71\/_0

Solving this equation for E,,/N,,

Eav = 58
Ny = 17.6dB

The probability of symbol error for 16-PSK is given by

P, = erfc(A/Esin(n/M))
NO

Setting P, = 1073, we get

10 = erfc( Fsin(n/l&)
NO

Solving this equation for E/N,, we get

E - 142 = 21548
NO

Hence, on the average, the 16-PSK demands 21.5 - 17.6 = 3.9 dB more symbol energy than the
16-QAM for P, = 1073,

Thus the 16-QAM requires about 4 dB less in signal energy than the 16-PSK for a fixed Ny and P,

= 10'3, However, for this advantage of the 16-QAM over the 16-PSK to be realized, the channel
must be linear.
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Problem 6.17

(a) An M-ary QAM signal is defined by

sp(t) = A/?akcos(anct)—A/%aksin(anct) (1)

We can redefine the M-ary QAM signal in terms of a general pulse-shaping function g(z) as
5,(1) = a,g(t—kT)cos(2nf t)-b,g(t —kT) sin(2nf .t) (2)

The M-ary QAM signal s(z) for an infinite succession of input symbols can be expressed as

oo

s() = Y s,(1)

k=-co

3 {ayg(t—kT)cos(2nf 1) - byg(t — kT)sin(2mf 1)}

k=-c0

= 2nf 1
- Re{ S (a, + jby)g(t—kT)e’ }
k=-00

= Re{ Y Akg(t—kT)ejznfct} (3)

k=-00

where A, is a complex number defined by
Ay =a, + jb,

By multiplying Eq. (3) by exp(=j2nf kT) x exp(j2nf.kT), we get

s(t) = Re{ D Akg(t—kT)exp(—j2nfckT)exp(j2nfct)}

k=-c0

= Re{ D Akg(t—kT)} “)

k=-0c0
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where A; = A,exp(j2nf kT)
g(t) = g(t)exp(j2nf 1)

The scalar Ay is a rotated version of the complex representation of the kth transmitted signal.

Equation (4), representing a QAM signal, appears to be carrierless, therefore, it is equivalent
to a CAP system.

(b) A CAP signal is defined as

s(t) = Re{ D Akg(t—kT)}

k=-c0

Re{ N Arexp(j2nf kT)g(t - kT)exp(j2mf (1 - kT))}
k=-o00

= Re{Ak D g(t—kT)exp(janct)}

k=-o00

= a,g(t—kT)cos(2nf 1) - Y byg(r—kT)sin(2nf 1) (5)

k=-00 k=-cc

Now the pulse shaping functions of CAP signal, g(z - kT), may be replaced by /2—75 for 0<i<T,

and the formulaton in Eq. (5) can be rewritten as

sy = ) A/—%akcos(%tfct)—A/gbksin(%tfct) (6)
k=-c0

The kth signal of the signal s(¢) defined in Eq. (6) is given by

s (2) = A/?akcos(%cfct)—A/?ngksin(anct), 0<t<T @)

The signal formulation given in Eq. (7) is recognized as the M-ary QAM signal of Eq. (1).
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Problem 6.18

The CAP signal can be expressed as

s(t)y = 2 a,p(t—nT) - 2 b,p(t—nT)
n=-o0 n=-o0

where p(z) is the Hilbert transform of the pulse p(r), and A,, = a,, +jb,. The CAP signal s(¢) can
be written in the equivalent form:

s(t) = {2 anﬁ(t—nT):| * p(t)

—[2 bnﬁ(t—nT)} * p(1)

where 0(z) is the delta function, and the star denotes convolution in the time domain. Hence, the
power spectral density of s(z) is

2 2
S, = 2P+ bl

where 6, and GZ are the variances of symbol a; and b;, respectively, where p(z) & P(f) and

2
a
p(r)== P(f). Noting that |P(f)] = P(f), we thus have

co+0,
S,(f) = —=IP(f)

Next, noting that

L

2 2 2 1 2 2

0,+0, = G, = ZE(ai +b))
i=1

we finally get

S.(f) = o)
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Problem 6.19

From the defining equations (6.74) and (6.75) of the textbook, we have

p(r) = g(t)cos(2nf 1) (L
and
p(r) = g(t)sin(2nf 1) 2

Applying the Fourier transform to Eqs. (1) and (2), we get

P(f) = 31G(f = £) + G(f + £,)] ©
and
P(f) = Zij[cxf—fc) ~G(f+1.)] @)

Accordingly, we may determine p(f) and p(z) by proceeding as follows:

* Given G(f), use Egs. (3) and (4) to evaluate P(f) and P(f).
* Using the inverse Fourier transform, compute p(t) = F~ l[P(f)] and p(t) = F _I[P(Af ).
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Problem 6.20

For binary FSK, the two signal vectors are

’E,
§«1=

L O

"o
R =

oy

where Eb is the signal energy per bit. The inner products of these two signal vectors

with the obsefvation vector
X1

e
"

)

are as follows, respectively,
=7

) = 7E] x

e

£p %2

(5 ’,§1

where (x, 8;) = x's, for i=1,2. The condition

X 81 > X 89

is therefore equivalent to
VEp % > \/Eb Xy
Cancelling the common factor \E']-b, we get

X1 > X9

which is the desired condition for making a decision in favor of symbol 1.

325



Problem 6.21

The bit duration is

1

2.5x106Hz

T, =

b = 0.4 us

-The signal energy per bit is

2
E, =5 A2 T,
(10™°

2 6

S x 0.4 x 10

(a) Coherent Binary FSK

The average probability of error is

erfc(/Eb/ZNo)

20

er fo(V2x10~19/4x10-20)

'
N -

= -;--erfc(@)

Using the approximation

2
erfo(u) = SXR(-U)

Y1 u

we obtain the result

P = 2 EXP(5) _ g5 ¢ 1073
e 2 /g;

(b) MSK

P = erfc(/Eb/No)

erfe(Y10)

=2 x 10"

19

Jjoules
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. exp(=10)
Y10m

0.81 x 1072

(¢) Noncoherent Binary FSK .

E

1 b

Pe =32 exp(= 2N
0

=4 exp(=5)

= 2 p -
= 3.37 x 1073
Problem 6.22

(a) The correlation coefficient of the signals so(t) and s1(t) is

Ty
J 7 s _(t)s, (t)dt
0 O 1
T 172 T
(s P sg(t)dt] s
0 0

172
b s?(t)dt]

2 Tb 1 1
A~ J 7 cos[2n(f + =Af)t] cos[2n(f - =Af)t] dt
c 0 c 2 ¢ 2

2. 1172

T 1,2, 172
[5 AJT,1 ' [3 ACT, ]

Ty

}; fo [cos(2mAft) + cos(4nf t)] dt

. A .
sin(2w fTb) 31n(unfeTb)

+ ]
Af 2fc

1
[
2ﬂTb

Since fc >> Af, then we may ignore the second term in Eq. (1), obtaining

sin(2nAfTb)
p = _TTb—_Kf_- = sinc(2AfTb)

(b) The dependence of p on Af is as shown ip Fie, 1.
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CaMCQx‘t;cn
coef{n'cieni:
1.4 - 0.7
rI\b Tb
i / AE
NG /%
T ] 2T T
b s b_ _‘+ o | b
Fig. 1
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So(t) and s, (t) are othogonal when p = 0. Therefore, the minimum value of Af for which

they are orthogonal, is 1/2Tb.

(e¢) The average probability of error is given by

-

Y -
E er fo( Eb(1 D)/ZNO)

The most negative value of p is -0.216, occuring at Af = 0.7/Tb. The minimum value of Pe
is therefore

=1 er fe( /0. 608E, /N )

Pe,min 2
(d) For a coherent binary PSK system, the average pﬁobability of error is

1
Pe =3 er‘fc(fEb/No)

Therefore, the Eb/N0 of this coherent binary FSK system must be increased by the factor

1/0.608 = 1.645 (or 2.16 dB) so as to realize the same average probability of error as a

coherent binary PSK system,

Problem 6.23

(a) Since the two oscillators used to represent symbols 1 and 0 are independent, we may
" view the resulting binary FSK wave as the sum of two on-off keying (00K) signals. One 00K

signal operates with the oscillator of frequency f1. The second 00K signal operates with

the oscillator of frequency f2

The power spectral density of a random binary wave X,(t), in which symbol 1 is
represented by A volts and symbol 0 by zero volts, is given by (see Problem §./D)

A2 A%T, . )
SX1(f) =1 S(f) + sine (fTb)

Where Tb is the bit duration. When this binary wave is multiplied by a sinusoidal wave of

unit amplitude and frequency f + Af/2, we get the first OOK signal with
A = Y2E /T
b b
The power spectral density of this 00K signal equals

1 Af Af
S0 =5 [Sx1(f -f -3+ SX1(f + £+ 5]
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The power spectral density of the random binary wave x2(t) = x1Z€S. in which symbol
1 is represented by zero volts and symbol 0 by A volts, is given by

SX (f) = SX ()

2 1

When x2(t) is multiplied by the second sinusoidal wave of unit amplitude and frequency
fc - Af/2, we get the second 00K signal whose power spectral density equals

1 Af Af
Sz(f) = U[SX (f - fc+3—) +Sx (f + f‘c-z—-)]

2 2

The power spectral density of the FSK signal eqi.lals:

SFSK(f) = 81(f) + Sz(f)
E
= '8—.17;[6(f-fc-§-)+ 8(f + fc+§-—)+ G(f-fc+-2—-)+ S(f + fc-ﬁ_)]

E .
b 2 Af 2 Af
+ 3 {sinc [Tb(f - fc -3 )] + sinc [Tb(f + fc + 5 )]

. sincz[Tb(f -f %5)] . sincz[Tb(f . - -g)]}

This result shows that the power spectrum of this binary FSK wave contains delta
functions at f = fc + Af/2.

(b) At high values of X, the function sinc(x) falls off as 1/x. Hence, at high
2

frequencies, SFSK falls off as 1/f".

330



Problem 6.24

-l,\ P\.L\’
binary
A
Sm(%) — ; A Sl.ﬂ(zﬂ’{{:)
4 CjuLhcgd‘
0°
phase FS K
shiften Waye
Problem 6.25

The similarities between offset
between the in-phase and
probability of error,

QPSK and MSK are that both have a half-symobl delay
quadrature components of each data symbol, and both have the same

The differences between the two techniques are:
QPSK are sinusoids multiplied by a rectangle function
are sinusoids multiplied by half a cosine pulse, and
modulation while MSK is a form of frequency modulation.

(1) the basis functions for offset
s While the basis functions for MSK
(2) offset QPSK is a form of phase
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Problem 6.26

For coherent MSK, the probability of error is

Pe = erfc(/Eb/No) ’

while for noncoherent MSK, (i.e., noncoherent binary FSK)

» E
1 b
Pe = —Z-exp[- 2N ) .
0
-5 Eb
To maintain Pe = 10 for coherent MSK, N = 9.8. To maintain the same probability of
0

symbol error for noncoherent MSK,

E .
2 = 21.6, which is an increase of 3.4 dB.

o

Problem 6.27

(a) | |
o 0 50 0
mee)
t
VI T E x x .z o ro x
z . £ FY z O -y
\ﬂft) — ’ +
m'(uc{»'(t)
(b)

S AWAWAY\WANWAYW W VA WA
1 ‘ “ VVI v, ’gl“‘\/!ij"\}[ L

332



Problem 6.28

(a) The Fourier transform of A(t) is given by (using entry 5 of the Fourier-transform pairs Table
A6.3)

N f
H = ¥ —

= exp—(f o) (1)

Substituting o = («/log2/2/W) into (1), we get

2 log2 1
exp(—f %x;z)

C:0)

Let fo denote the 3-dB cut-off frequency of the GMSK signal. Then, by definition,

H(f)

L

J2

|H(fo)| = —=IH(0)|

Hence, from Eq. (2) it follows that

o) - &

or

ex (10 2(&)2) =2
Taking the logarithm of both sides, we readily find that

fo=W
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The 3-dB bandwidth (cut-off frequency) of the filter used to shape GMSK signals is therefore
W.

(b) The response of the filter to a rectangular pulse of unit amplitude and duration T centered on
the origin is given by

T/2
f h(t —1T)dt
-1/2

1l

g(1)

T/2 ) 2
j %exp{__—n (-1) }dr 3

2
-T/2 o

Let £k = m,and
o

dk = ——=dz

T
a
Hence, we may reqrite Eq. (3) as

k

Wi
T 2.0
g(1) = —J.Eexp(—k ) dk (4)
kl
where k1 = n(_tﬂ and
(6
- T=T/2)
, = W= 172)
(6

Equation (4) is finally rewritten as

ky 0
g(1) = —% %jexp(—kz)dk+ifexp(-kZ)dk
0

A/’Fck

1

1 1
— zerf(ky) + serf(k;)

334



= —%[1 —erfc(k,)] + %[1 —erfc(k;)]

1 1
Eerfc(kz) - Eerfc(kl)

= %{erfc [n___(t _aT/z):I - erfc[n————-—(t _(XT/Z)J }

1 2 ro1 2 t .1
_1 = wr{ L_2)|—erfe|n [———wr[ L+2
z{erfc[n 1ngWT(T 2)] er c[n log2W (T 2)}}

Problem 6.29

0 1 2 3 4 5 6 7
Imaginary part
1 1 ] 1 i 1
0.5} ]
0 —
-0.51 ]
1 ’ : : —
0 1 2 3 4 5 6 7
Real part
1 | I i | i
0.5} §
ol _
-05 /
_1 | | 1 i
0 1 2 3 4 5 6 7
GMSK signal
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The GMSK signal, displayed in the bottom waveform, is very similar to that of the MSK signal in
Fig. 6.30, both of which are produced by the input sequence 1101000. This objective is indeed the
idea behind the GMSK signal.

Problem 6.30

Comparing the standard MSK and Gaussian-filtered GMS signals, we note the following:

(a) Similarities
* For a given input sequence, the waveforms produced by the MSK and GMSK modulators
are very similar, as illustrated by comparing the GMSK signal displayed in the solution to
Problem 6.29 and the corresponding MSK signal displayed in Fig. 6.30 of the textbook for
the input sequence 1101000.
¢ They both have a constant envelope.

(b) Differences

The use of GMSK results in a slight degradation in performance compared to the standard
MSK for a time-bandwidth product WT}, = 0.3. However, the GMSK makes up for this loss

in performance by providing a more compact power-spectral characteristic.
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Problem 6.31

In the binary FSK case, the transmitted signal is defined by

‘ Ep
S(t) = 2T_b cos(2nf;t), 0<r<Ty (1D

0, elsewhere

where the carrier frequency f; equals one of two possible values f; and fy. The transmission of
frequency f; represents symbol 1, and the transmission of frequency f, represents symbol 0.
For the noncoherent detection of this frequency-modulated wave, the receiver consists of a pair
of matched filters followed by envelope detectors, as in Fig. 1. The filter in the upper channel
of the receiver is matched to \/2Fb cos(2nf;t) and the filter in the lower channel is
matched to \/Z/TB cos(2nfyt),0 < t < Ty The resulting envelope detector outputs

are sampled at t = Ty, and their values are compared. Let 1, and 1, denote the envelope
samples of the upper and lower channels, respectively, Then, if1; > 1,, the receiver decides in
favor of symbol 1, and if 1; <1, it decides in favor of symbol 0.

Suppose symbol 1 or frequency f; is transmitted. Then a correct decision will be made by the
receiver if 1; > 1,. If, however, the noise is such that 1; < 1,, the receiver decides in favor of
symbol 0, and an erroneous decision will have been made. To calculate the probability of error,
we must have the probability density functions of the random variables L; and L, whose
sample values are denoted by 1, and 1,, respectively.

When frequency f; is transmitted, and there is no synchronism between the receiver and

transmitter, the received signal x(t) is of the form

x(t) = 333 cos(2rf;t + 6) + w(t)
N T @

2E 2E
= [2P cos@ cos(2nfyt) - b sne sin(2xnf;t) + w(t), 0<t<Ty
N Ty T
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12 3)

Xg = J;T" x(t) Tz— cos(2nf;t)dt, i

b
Filter matched to Samflf :;t time
5 ] =1y
> /:cos(21r], t) Envelope |4
Ty detector
0<t< Tb
11
11, >1,,
x(t) ey Comparison choose 1.
device
> 12, <1y,
‘ choose 0
Filter matched to P
2
— cos(2nf,t
> e L e |
Sample at
0<t<T, timer =T,
Figure 1
and
T 2 . .
Xgi = L b x(t) _T sm(21rfit)dt, 1= 1’27 (4)
b

The x; and x; i=1,2, define the coordinates of the received signal point. Note that, although
each transmitted signal s;(t), i=1,2, is represented by a point in a two-dimensional space, the
presence of the unknown phase 6 makes it necessary to use four orthonormal basis functions
in order to resolve the received signal x(t). With the received signal x(t) having the form shown
in Eq. (1), we find that the output of the upper channel in the receiver of Fig. 1 equals

(5)
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where

Xe1 = \/Eb cos O + wg; 6)
and
Xg1 = - \/Eb sin 0 + wg (M)

On the other hand, the corresponding value of the lower channel output is

I = xc22 + xsz2 ®)
where
Xc2 = We2 ©)
and
X2 = W2 (10)

i=1,2, are related to the noise w(t) as follows:

Wy = LTb w(t) "'1'?; cos(2nfit)dt, i =1,2 (1D

The w; and wy,

and

WSi = LTh W(t) Tl Sin(znflt)dt, i 1,2: (12)

b

Accordingly, w,; and w;, i=1,2, are sample values of independent Gaussian random variables

8i’
of zero mean and variance N0/2.

When symbol 1 or frequency f, is transmitted, we see from Eqs. (9) and (10) that x5 and x,
are sample values of two Gaussian and statistically independent random variables, X , and
X2 With zero mean and variance N/2. Accordingly, the lower channel output 1,, related to x,
and x, by Eq. (8), is the sample value of a Rayleigh-distributed random variable L,. We may
thus express the conditional probability density function of L,, given that symbol 1 was
transmitted, as follows: 339



frondy 11 = ENIE exp| - ;_20 , 1,20 (13)
Again under the condition that symbol 1 or frequency f, is transmitted, we see from Egs. (6)
and (7) that x; and x_; are sample values of two Gaussian and statistically independent
random variables, X ; and X,;, with mean values equal to \/ﬁ cos 8 and (E; sin 6,
respectively, and variance N/2. Therefore, the joint probability density function of X, and
X51, given that symbol 1 was transmitted and that the random phase © = 0, may be expressed
as follows

, . 4
TiNg 0

Define the transformations

Xe1 = 11 Cos yq )15)

and

Xg1 = 11 sin L'5h (16)

where y, = tan'l(xsl/xcl), with 0 < y; < 2r. Then, applying this transformation and following
a procedure similar to that described in Section 5.12, we find that the upper channel output
1, is the sample value of a Rician-distributed random variable L,. Hence, the conditional
probability density function of L;, given that symbol 1 was transmitted and that the random
phase ©® = 6, is given by the Rician distribution

falely 11, 0) = [™ 11 91,601 v 11, 0)dy

a7

—— exp

2
21, 1+ Ey I, 21, {Ep 1,30
Ny Ny Ny

where 10(211\/Eb/N0) is the modified Bessel function of the first kind of zero order. Since Eq.
(17) does not depend on 6, which is to be expected, it follows that the conditional probability
density function of L,, given that symbol 1 was transmitted, is -
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2] 17 + By | |21, /By (18)
fonly 11 = 2L exp| -1 Ip| =L , 1,20
L1 1t N, Y N, 0l —x 1
Note that by putting Ey, = 0 and recognizing that I;(0) = 1, Eq. (18) reduces to a Rayleigh

distribution.

When symbol 1 is transmitted, the receiver makes an error whenever the envelope sample 1,
obtained from the lower channel (due to noise alone) exceeds the envelope sample 1; obtained
from the upper channel (due to signal plus noise), for all possible values of 1;. Consequently,
the probability of this error is obtained by integrating fj 5| ,(l, | 1) with respect to 1, from 1, to
infinity, and then averaging over all possible values of 1,. That is to say,

py; = Pdg>ly | symbol 1 was sent)

(19)
= [T dufy, p [~ dbf, 0 1D

where the inner integral is the conditional probability of error for a fixed value of 1, given that
symbol 1 was transmitted, and the outer integral is the average of this conditional probability
for all possible values of 1,. Since the random variable L, is Rayleigh-distributed when symbol
1 is transmitted, the inner integral in Eq. (19) is equal to exp(-lllMo). Thus, using Eq. (18) in
(19), we get

L 21, 1 + Ey 214 \/Eb (20)
S exp Iy dl,
Ny N
Define a new variable v related to 1; by
21
v=_1 (21)

N

Then, changing the variable of integration from 1, to v, we may rewrite Eq. (20) in the form

E . 2, .2
Pop = %exp(-_zf;’; ] .L v exp[—%} Iy(av)dv (22)

where a = VE/N,. The integral in Eq. (22) represents the total area under the normalized form
of the Rician distribution. Since this integral must be equal to one, we may simplify Eq. (22)

as
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1 Eb
Por = QGXP(—WJ (23)

Similarly, when symbol O or frequency f, is transmitted, we may show that p;q, the probability
that /; > I, and therefore the probability that the receiver makes an error by deciding in favor of
symbol 1, has the same value as in Eq. (23). Thus, averaging p;q and py;, we find that the average
probability of symbol error for the noncoherent binary FSK equals

P, = —exp(—ﬂ (24)

which is exactly the same as that in Eq. (6.163) in the textbook.

Comparing the effort involved in the derivation of Eq. (24) presented in this problem with that in
deriving Eq. (6.163), we clearly see the elegance of the approach adopted in the textbook.
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Problem 6.32

Letf.

x(t)

Accos(21rfct + 0)

Acgos(anct) cos 6 = Acsin(21rf‘ct) sin ©

The output of the square-law envelope detector in Fig. P8¢2, sampled at time t=T, is

given by
T o T 2
y(T) = [J =x(¢t) cos(2nfct) datl® + IS x(t) sin(2nfct) dt]
0 ‘ 0

This may be written as

TT

y(T) = J’Ofo x(t1)x(tz)[cos(an‘ct1)cos(21rfct2) + sin(21rfct1)sin(21rf‘ct2)]dt1dt

2

Put t1 = t, and t2 = t+1. This transformation is illustrated below:

T
)
T T
t T t
0 T 1 0
-7 - —--

Then, we may rewrite Eq. (1) as follows
T T=-t

vty = [ x(t)x(t+1) [cos(2nf tlcos(2af t + 2nf 1)
0 -t ¢ c c

+ sin(2ﬂfct)sin(2ﬂfct + 2nfct)] dt d1t

However,

cos(21rfct)cos(21rfct + Zﬂfc't) + sin(21rf‘ct)sin(2nfct + 211fcr) = cos(21|fc't)
Therefore, we may simplify Eq. (2) as follows
T T-t

S 7 x(t) x(t+1) cos(2mf T) dT dt
0 -t - ¢

y(T)

T T-t

=2 fo Io x(t) x(t+T) cos(21rf°1') drdt, 0< t<T

343

G D)

(2)

(3)



Define
| T-t , |
Re(T) =/ x(t) x(t+1) dE 0 T<T
0

Then, we may rewrite Eq. (3) in terms of RX(T) as follows

T
y(T) =2 f RX(T) cos(2af 1) drt
0 c
= 2 Sx(fc)
where
T
Sx(f) = fo Rx(t) cos(2nfct) dt

Equation (3) is the desired result.
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Problem 6.33

(a) Dby 1 1 0 0 1 0 0 0 1
di; 1 1 1 0 1 1 0 1 0
dy 1 1 1 0 1 1 0 1 0 0
Transmitted
phase 0 0 0 s 0 0 T 0 T )

The Wavefoam of the DPSK sigr- s thus ar foous -

'WSKC&/\ AN A

o

wave /\/\ A/\A
L_J \ANS A NS NS

(b) Let xI = output of the integrator in the in-phase channel
Xq = output of the integrator in the quadrature channel
x{ = one-bit delayed version of x;

xQ/ = one-bit delayed version of XQ

I; = in-phase channel output
/
= XX1
IQ = quadrature channel output
= XQXQ’
y = lI + ].Q
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Transmitted
phase
(radians)
Polarity of x;
Polarity of x;
Polarity of 1;
Polarity of Xq
Polarity of XQ'
Polarity of IQ

Polarity of y

Reconstructed

data stream

+ +
+ -
- +
+ . -
+ .
+ -
0 1 0
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Problem 6.34

Coherent M-ary PSK requires exact knowledge of the carrier frequency and phase for the receiver
to be accurately synchronized to the transmitter. When carrier recovery at the receiver is
impractical, we may use differential encoding based on the phase difference between successive
symbols at the cost of some degradation in performance. If the incoming data are encoded by a
phase-shift rather than by absolute phase, the receiver performs detection by comparing the phase
of one symbol with that of the previous symbol, and the need for a coherent reference is thereby
eliminated. This procedure is the same as that described for binary DPSK. The exact calculation
of probability of symbol error for the differential detection of differential M-ary PSK (commonly
referred to as M-ary DPSK) is much too complicated for M > 2. However, for large values of E/N,

and M > 4, the probability of symbol error is approximately given by

2E . (™
= f — _ >
P, erc( /Nosm(z D M=>4 (D

For coherent M-ary PSK, the corresponding formula for the average probability of symbol error is
approximately given by

P,= erfc(A/Nf(—) sin(%}) (2)

(a) Comparing the approximate formulas of Egs. (1) and (2), we see that for M > 4 an M-ary
DPSK system attains the same probability of symbol error as the corresponding coherent M-ary
PSK system provided that the transmitted energy per symbol is increased by the following factor:

sin 2( E)
M
2
. T
2 ——
st (2M)

(b) For example, k(4) = 1.7. That is, differential QPSK (which is noncoherent) is approximately
2.3 dB poorer in performance than coherent QPSK.

k(M) = . M=>4
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Problem 6.35

(a) For coherent binary PSK,

E
b
er fc('—) .
N
0

]
Pe"2

-4 ' . . - - -10
For Pe to equal 10 7, v’F.b/NO = 2.64., This yields Eb/NO = 7.0. Hence Eb = 3.5 x 10 .
The required average carrier power is 0.35 mW.

(b) For DPSK,

e =2 ¥XP\=- ) -
0
4 Eb =10
For Pe to equal 10° ', we have V= 8.5. Hence Eb = 4.3 x 10 . The required average
0

power is 0.43 mW.

Problem 6.36

(a) For a coherent PSK system, the average probability of error is
_ 1 T
Pe =% erfc[n/(Eb/NO)1]

1 exp[-(Eb/No)1]

Ya V(E /NGY,

For a DPSK system, we have

expl- (Eb/No)2] (2)

o
(V]

Let
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Then, we may use Eqs. (1) and (2) to obtain

4 /(Eb/uo)1 = exp 8

We are given that

Hence,

6 = &n[Y7.2%]

= 1,56
Therefore,
E
b
10 log [-—)
10 No 1

Eb
10 l°g10(ﬁg)2

(b) For a coherent PSK system, we have

g/
"

e 2

expl-(E /N ),]

1

R

= 10 log10 7.2 = 8.57 dB

1 erfelv(E_/N.)

b" 01

b- 0’1

/n /(Eb/NO)1

For a QPSK system, we have

s
u

erfc[VZEb/No)ZJ

exP[-(Eb/NO)2]

/n /(Eb/ﬁgig

Here again, let
E E

(7 = ()

0

02 1

Then we may use Eqs. (3) and (4) to obtain

+ 9

10 10310(7.2 + 1.56)

9.42 dB
The separation between the two (Eb/NO) ratios is therefore 9.42 - 8.57 = 0.85 dB.

]

(3)

(4)



exp(-98)
= (5

1+ 5/(Eb/N0)1

Taking logarithms of both sides:

(VIR

-n 2

- & - 0.5 #n[1 + 6/(Eb/N0)1]

-
(E, /N,

-6_005

Solving for 6:

6 = in 2
1 4+ 0'5/(Eb/N0)1

.= 0.65
Therefore,

Eb
10 l°g10(ﬁ3)1

Eb~
10 10810(i;)2

10 log1o(7.2 + .65)

‘ 8.95 dB.
The separation between the two (Eb/No) ratios is 8.95 - 8.57 = 0.38 dB.

(e) For a coherent binary FSK system, we have

P

o % erfc[V(Eb/2N0)1]

E
1, b
exp(_ —=(—) )
1 2N,

= (6)
2 /= /(B 72N,

For a noncoherent binary F3K- system, we have
1 1
e =3 expl- 3 ) M

Hence,

E
b $ .
/) = e )

We are given that (Eb/NO)1 = 13.5. Therefore,
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§ = 2,,(_1_3-_2_11)

= 3.055
We thus find that

By
10 logw(ﬁa)

, 10 log10(13.5?

11.3 dB

Eb
10 1°g1o(ﬁ;)2

10 log10(13.5 + 3.055)

12.2 dB

*Hence, the separation between the two (Eb/No) ratios is 12.2. - 11.3 = 0.9 dB.

(d) For a coherent binary FSK system, we have

Pe

1
5 erfc[V(Eb/2N051]

E

exp(- —;—(N—b) )
1 01
= = (9)
2 /x Y (E 72N ),

For a MSK system, we have

o
1]

1
5 erfc[V(Eb/ZNoszl (10)

E
expt- JG2) 3
02
. (10)
Yu v (Eb/2N0'52'

Hence, using Egqs. (9) and (10), we
1 § 1
&n 2 -=4nf1 +m——1z=6 (11)
2 (Eb/No)1 2
Noting that

§
1
(Eb/NO)1
Wwe may approximate Eq. (11) to obtain

1 5 1
n2 -5 [T‘_Eb/NO>1] =38 (11)

Solving for 6, we obtain
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§ = 2 2n12
+——l———-—
(Eb/NO)1

-l

2 x 0.693
1
13.5

= 1.29
We thus find that

1 +

E
10 log1o(ip-) 10 log, (13.5) = 10 x 1.13 = 11.3 dB
0

1

Eb
10_1og10(ﬁ;)
2

Therefore, the separation between the two (E, /N,) ratios is 11.7 - 11.3 = 0.4 dB.

10 10310(13.5 +1.29) = 11.7 dB
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Problem 6.37

0.5

N

107!

-
<
N

P

(a) Coherent P'SK

(&) Coherent MSK

Coherent QPSK

Noncoherent FSK

Coherent FSK

Probability of error P,

]

DPSK

1073

1074

Figure 1

Comparison of the noise performances of different

PSK and FSK systems.

The important point to note here, in comparison to the results plotted in Fig. i

25

Ey
I.V;' ds

5.0

7.5 10

12.5

is that the error

performance of the coherent QPSK is slightly degraded with respect to that of coherent PSK and

coherent MSK. Otherwise, the observations made in Section 8.18 still hold here.
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Problem 6.38

The average power for any modulation scheme is

E

o
"

o ld
.

This can be demonstrated for the three types given by integrating their power spectral
densities from -« to o,

J S(f) df

o)
i

1
m J [SB(f - fc) + SB(f + fc)]df

- 00

«©

J SB(f)df .

1
2

The baseband power spectral densities for each of the modulation techniques are:

PSK QPSK MSK

) 5 32E fbos(znfTb)}2
Sp(f) | 2E. sinc(fT,) 4E_ sinc®(2fT,) | |
B b b b b - B
n ‘16fTb-13

: ! E, | ,
Since r a sinc(ax)dx = 1, P = T—b s easily derived for PSK and QPSK. For MSK we have
oo f
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16E o [(cos(2nfT )’2
P = b I b daf
- 2 i 2.2

n e | 16£°T) - 1

.

16Eb ® cosz(an)
=3 J > > dx
T Tb -® (16X = 1)
_ 8Eb fm 1+ cos(dm)
=72 2, 2 1, %
ki Tb - 16x% (x - -1—6-
E o '
_ b ; cos 0 + cos(dm) ,
=2 2 1.2 X
167 Tb - (x° = T6-)

From integral tables, (see Appendix Ail.b)

X
s cos(ax)dx

= I b) - abcos(ab)]
0 (82 - £3)2 3 [sin(ab) - a

4b

For a = 0, the integral is 0.

For a= 4m, b :-%, we have

Eb = cos{ax) E:b
Pe—or ) S5 dx =
167 Tb - (b° - x%) b
For the three schemes, the values of S(fc) are as follows:
| PSK QPSK MSK
E 8E
b b
S(fc) 5 Eb -

T

Hence, the noise equivalent bandwidth for each technique is as follows:

; PSK QPSK MSK
‘Bandwidth } L a 0,62
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Problem 6.39

(a) Table 1, presented below, describes the differential quadrant coding for the V.32 modem of
Fig. 6.48a in the textbook, which may operate with nonredundant coding at 9,600 b/s. The
entries in the table correspond to the following:

Presentinputs: Q) ,0;,
Previous outputs: Ij , 115, 1
Present outputs: 1) , I, ,

Table 1
Input Previous output Present output
dibit dibit dibit
Ql,n Q2,n Il,n-l I2,n-1 Il,n IZ,n
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 | 1 1 1
0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1
1 0 0 1 1 0
1 0 1 0 0 1
\ 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 1 1
1 1 1 1 0 1
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(b) Table 2, presented below, describes the mapping from the four bits Iy ,, 115 ,.1, Q3,04 , to the
output coordinates of the V.32 modem.

Table 2
Present output Present input Output
dibit dibit coordinates
Il h IZ,n Q3,n Q4,n (I)l ¢2

0 1 0 0 1 -1
0 1 0 1 1 -3 4th quadrant
0 1 1 0 3 -1
0 1 1 1 3 -3
0 0 0 0 -1 -1
0 0 0 1 -3 -1 \
0 0 | 0 1 3 3rd quadrant
0 0 1 1 -3 -3 J
| 0 0 0 -1 1
1 0 0 1 -1 3
1 0 1 0 3 1 J> 2nd quadrant
1 0 1 1 -3 3
1 | 0 0 1 1
1 1 0 1 3 1
1 1 1 0 1 3 Ist quadrant
1 1 1 1 3 3

(b) We are given the current input quadbit:
01,092, nC3,,Cy, » = 0001
and the previous output dibit:
Iy i1y oy = 01
From Table 1, we find that the resulting present output dibit is
Iy, =11

Hence, using this result, together with the given input dibit 05,04, = 01 in Table 2, we find
that the coordinates of the modem output are as follows:
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¢, =3, and 0, = 1

We may check this result by consulting Table 6.10 and Fig. 6.49 of the textbook. With
01,02, =00 we find from Table 6.10 that the modem experiences a phase change of 90°.
With Iy .1 Irpo1 = 01, we find from Fig. 6.49 that the modem was previously residing in the

fourth quadrant. Hence, ‘with a rotation of 90° in the counterclockwise direction, the modem
moves into the first quadrant. With Q3 ,Q4 » = 01, we readily find from Fig. 6.49 that

¢, =3, and ¢, = 1

which is exactly the same as the result deduced from Tables 1 and 2 of the solutions manual.
For another example, suppose we are given
Q1,,92, 1930940 = 1011
and
I o n1 = 11
Then, from Table 1, we find that
Iyl 0 = 00
Next, from Table 2, we find that the output coordinates are ¢ = -3 and ¢ = -3. Confirmation that

these tesults are in perfect accord with the calculations based on Table 6.10 and Figure 6.49 is left
as an exercise for the reader.

Problem 6.40

(a) The average signal-to-noise ratio is defined by

P
(o)

where P,, is the average transmitted power, and o2 is the channel noise variance. The transmitted
signal is defined by

5.(1) = akcos(2nfct)—bksin(Zchct), 0<t<T
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where (ap, bp) is the kth symbol of the QAM signal, and T is the symbol duration. The power
spectrum of s,(z) has the following graphical form:

| Power '
| spectrum '\ Main lobe
'\ of s,(0) l
! i
! PR .'
Je 0 Je

Fig. 1

On the basis of this diagram, we may use the null-to-null bandwidth of the power spectrum in Fig.
1 as the channel bandwidth:

E = av 2)

where E,, is the average signal energy per symbol.

To calculate the noise variance 62, refc ) the following figure:
P or
spectrum

of noise Ny/2

Fig. 2
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The noise variance is therefore

Hence, substituting Eqgs. (2) and (3) into (1):

(sNRy. o BEa?
& = "N,B

_ 1(E_2W)
- 2\ W,

Expressing the SNR in decibels, we may thus write

E
10log,o(SNR),, = -3 + 10log (N—av) dB
10M70

Given the value 10log)(, (E,,/Ny ) =20 dB or E,,/Ny = 100, we thus have

10log|((SNR), = 17 dB

(b) With M = 16, the average probability of symbol error is
1 3E,,
P, =21-—lerfc| [~
¢ ( m)er C( 2(M-1)N,

o 2

= 1.16x 10~

Problem 6.41

We are given the following set of passband basis functions:

{d()cos(2mf,1), o(1)sin(2mf, 1)}
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where f, = ; n=12-",N

and (1) = A/%sinc(%), o <i<e

Property 1

Jm (¢(t)cos(2nfnt))€b((t)sin(2nfnt))dt=O for all n (1)

To prove this property, we use the following relation from Fourier transform theory:
r (¢()cos(2mf,0))(0(2)sin(2nf,2))dt =0 for all n )

where g(£) = G(f) for i = 1,2, and the asterisk denotes complex conjugation. For the problem at
hand, we have

g.(2) = A/Yz,sinc((—;:)cos(27tfnt))
2,(1) = ﬁsinc((%)sin(znfnr))

The Fourier transform of the sinc function is

Fl:sinc(%):' = Trect(/T)

where

1 1
—_< <
rect(fT) = { 1 1" p =/ =37

0 otherwise

Hence,

G(f) = A/g[rect((f—fn)T)+re<:t((f+fn)T)]
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Gy(f) = = —[rect((f F)T) — rect((f + f,)T)]

Let 1) denote the integral on the left-hand side of Eq. (1). We may then use Eq. (2) to write

L= 3 el (=T = rect((f + £,)Ddf ()

where the integrand is depicted as follows:

: f
, 0 I
Fig. 1 " "
«— 1T «— /T —yp
From Fig. 1 we immediately see that the areas under the two rectangular functions are exactly
equal. Hence, Eq. (3) is zero, thereby proving Property 1 for any n.

Property 2
e (] 2nfy 1 for k=
j_w(ﬁw)e j( o(r)e’ j dr = { ) fork= 4)

Let I, denote the integral in Eq. (4). When k = 1, we have

(I (oo™ oo

1f o

A (o)
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= %J.c; sinc 2(%) dt
Using Rayleigh’s energy theorem, namely,
| dwar =] le(f)Fdf
we may write

1> . 2/t
_ff_m sinc (T)d

= sinc>(A)dh, A = t/T

4

f rect’(f)df

=1
which proves Property 2 for k = n.

To prove Property 2 for k # n, let

'21‘Cfn

1) = one "
= ﬁsinc(%)ejznf"t

21 f

(1) = o) ¥

jomf,t
A/%sinc(-%)e k, fe#®fa

Then applying the following relation from Fourier transform theory,

| _ae0) dr = [ 6,631 df

we may rewrite the integral I, of Eq. (4) as
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20 f 1 . 21 f 1
I, = %fmFI:sinc(%)ej :lF[smc(%)ej ]df

Since f, = n/T by definition, we may depict the two Fourier transforms constituting the integrand
of I, as shown in Fig. 2 for the worst possible case of k = n+1:

F [sinc(LT-)ej 2nf, "t]

Th- - - - __

Fig. 2

Syt

J2nf 1 Jj2n .
From Fig. 2 we immediately see that the Fourier transforms of ¢(¢)e and ¢(t)e will

never overlap for k # n. Hence, the integral I, is zero, proving the rest of Property 2.

Property 3
I @EOxhe " oaykhne Ky dr=0 for k#n

where the star denotes convolution. From the convolution theorem, we have

Flo(2)kh(2)] = P(NHHH(Sf)

where ®(f) = F[¢(¢)] and ®(f) = F[h(¢)].For k # n, the picture portrayed in Fig. 2 remains
equally valid except for the fact that the basic rectangular spectrum is now replaced by that

rectangular spectrum multiplied by the frequency response H(f). This multiplication does not
affect the nonoverlapping nature of the two spectra representing

J2nf,t J2Rft .
(0(2)*kh(t))e and (0(t)*kh(t)e ) for k # n, hence, proving Property 3.
Problem 6.42

Step 1 - Set £ = 0 and the initial noise-to-signal ratio NSR(k) = 0. Sort the subchannels used in
ascending order (i.e., from the smallest to largest ones).

Step 2 - Update the number of subchannels used by setting k = k+1.
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2
Ok

2
8k

Step 3 - Compute NSR(k+1) = NSR(k) +
Step 4 - Set A(k) = %[Pk+ TNSR(K)]

2
(0
Step 5-1f P, = A(k) - r[—’z‘} <0
8k

2
c

then compute P, = A(k—1) - P(——lzj
Pl

and

forl = 1,2, -, k-1
Otherwise, go to step 2.
For notations, refer to Section 6.12.

(The algorithm presented here is adapted from T. Starr, J.M. Cioffi, and P.J. Silverman (1999);’
see the bibliography.)

Problem 6.43
(@ Py +Py,+Py, =P (D
02 2
P -K =-TZ = Io @)
81
0’2 0‘2
Py-K = T% = I'T 3)
82 1
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Py-K = -I'— = -I— “4)

Adding Eqgs. (2), (3) and (4), and then using Eq. (1):

3K = P+rcz(1+l+l)
ll l2

Solving for K, we thus have

With this value of K at hand, we next solve for P}, P,, and P, obtaining

P T/l 1
Pl=c+—|-+--2
153773 (ll+l2 )

(b) P, = 19+1(§+3—2)

1
= 5(10+2.5)

12.5

P, = %’+%(1+3—3)

11
3

366



Py = E+1(1+§—6)

3 3 2
_ 10 1
=3 + 3(—3.5.)
_65
T3
Problem 6.44

(a) Using matrix notation, the channel output vector is defined by
x = Ha+w

where H is the channel matrix, a is the transmitted signal vector, and w is the channel noise
vector. Applying the singular value decomposition to H, we may write

H = U[AfO}VT

where 1 denotes Hermitian transposition. The vector-coding receiver uses a bank of discrete

matched filters defined as the rows of orthonormal matrix UT. Thus passing x through this
bank of matched filters, we get

X = U'x

= U'(Ha +w)

- UT(U[AEO}VT3+W) (1)
Defining
A = Vfa

and recognizing that UTU = I (identity matrix), Eq. (1) reduces to
X =AA+W 2

where

367



W = U'w
Each element of the vector X in Eq. (2) represents an independent channel, and so we write
X, =MA +W,, n=12,N

(b) In the multichannel transmission model, the channel capacity of the entire system in bits per
transmission is given by

| N+v P
_ L n
= 2N210g2(1 + 2}

n=1 I'c

N P 1/(n+v)
= %log 2|:H£1 + n2)i| (3)

n=1 FGn

where v is the length of the channel impulse response. We may also express the R as follows:

1 1
R = Elogz(l + I:(SNR)vector coding) @

Hence, combining (3) and (4):

1

N P, (N+v)
'+ (SNR)vector coding =T H 1+ 2

n=1 Fcn

1

N Pn (N+v)
(SNR)vector coding — r H 1+—_2 -

n=1 1—‘Gn

(c) As the block length goes to infinity, we may ignore v, in which case the channel matrix H
becomes nearly an N x N matrix. Therefore, H may be decomposed as

H = Q7AQ
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where Q is an orthonormal matrix, and A is a diagonal matrix of eigenvalues (i.e., singular
values). Correspondingly, the singular values approach the magnitude of the Fourier
transform.

Even though a vector coding receiver and discrete multitone receiver converge to the same
performance, they are not the same:

* The subchannel gains are the same in both cases, but in vector modulation all subchannels
have zero phase, while in DMT the subchannels have arbitrary phase angles.

* Unlike DMT, a vector-coding system does not require the use of a cyclic prefix.

* The computational complexity of the vector-coding multichannel system is much greater
than that of its DMT counterpart.

Problem 6.45"

Impulse noise
(produced in a subscriber
loop plant)

Narrowband interference
(picked up from a nearby
AM radio station)

Discrete multitone
(DMT) system

The DMT receiver spreads the
energy of an impulse over many
subchannels, thereby reducing its
degrading effect

Due to the sinc(x) spectral
characteristic of each subchannel,
the DMT receiver tends to pass the
interference into many
subchannels. Since the signal
power in each subchannel is only
I/N of the total signal power,
susceptibility of the receiver to
narrowband interference can be
acute.

Carrierless The CAP system relies on the use | The use of an adaptive equalizer is
amplitude/phase of a single carrier. It is therefore | based on the mean-square error
(CAP) modulation | susceptible to impulse noise. (This | criterion. The effect of narrowband
system problem may be mitigated by the | interference can therefore be

use of a powerful code such as the
Reed-Solomon code.)

reduced by creating a notch in the
receiver performance at the
frequency of the interferer.

"The comparative points made in the table presented herein are based on Saltzberg (1998); see the

bibliography

Problem 6.46

In M-ary FSK, the transmitted signal is defined by
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s,(1) = /%cos(g(nc+i)t), 0<t<Tandi= 1,2, M (1)

where E is the symbol energy, T is the symbol period, and the carrier frequency f, = n /2T for

some fixed integer n.. The signals s;(#) for i = 1,2,---, M constitute an orthogonal set over the

interval 0 <7 < 7, as shown by
T

[sin)s(tydt = 0 for i#j )
0

Each frequency in Eq. (1) (i.e., specified value of integer i) is modulated with binary data. The net
result is a set of parallel carriers, each of which contains a certain portion of the incoming user’s
data. What we have just described is a form of orthogonal frequency-division multiplexing
(OFDM).

Problem 6.47

(a) The M-ary PSK signal is given by

2E 2n, . .
y(t) = —T—cos(2nfct+ﬁ(z—1)), i=12- M (1)

The output of the Mth power-law device is the Mth power of the input signal y(z):

M

1) = (-2-75)2cosM(2nfcr+%‘(i- 1)) 2)

The signal z(#) generates a frequency component at Mf,, which can be used to drive a phase-
locked loop tuned to Mf,.. Specifically, expanding Eq. (2), we get

) M . | ) M -
(1) = (% M |5+ = M_, cos[2n(2k)fct+(2k)ﬁ(z—1):'
5o M &S

M

= (%E{Z_A}I-T(Ag)COS[ZRMfCt-FZR(i_ )] }
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+ —1;—1(1‘14) cos [2n(M-1 Vf 1+

(M-1)2m(i - 1)}
2

M

ﬁ((MZ)—I) cos(41tfct + 4ﬁn(i - 1))

(ro)5]

Therefore according to the first term of this series expansion, the output of the Mth power law
device contains a tone of frequency Mf,., where f, is the original carrier frequency.

+ ...+

(b) The phase-locked loop is set to a frequency equal to Mf,. The phase-locked loop acts as a
narrow-band filter, thereby passing the sinusoidal component of frequency Mf. and rejecting
the other components.

(c) Consider, for example, the simple case of binary PSK. Since a squaring loop contains a
squaring device at its input end, it is clear that changing the sign of the input signal leaves the
sign of the recovered carrier unaltered. In other words, the squaring loop with M=2 exhibits a
180° phase ambiguity. Generalizing this result, we may say that Mth power loop for M-ary
PSK exhibits M phase ambiguities in the interval [0,27].

One method of resolving the phase ambiguity problem is to exploit differential encoding.
Specifically, the incoming data sequence is first differentially encoded before modulation,
resulting in a small degradation in noise performance. This method is called the coherent
detection of differentially encoded M-ary PSK. As such, this method of modulation is
different from the M-ary DPSK considered in Problem 6.34. For the special case of coherent
detection of differentially encoded binary PSK, the average probability of symbol error is
given by

_ Ey) o1 2| [Ep
P, = erfc()\/];(—)] —Qerfc ()\/;-\;(-)] 3)

In the region where (E}/Ny) >>1, the second term on the right-hand side of Eq. (3) has a

negligible effect; hence, this modulation scheme has an average probability of symbol error
practically the same as that for coherent QPSK or MSK. For the coherent detection of
differentially encoded QPSK, the average probability of symbol error is given by

E E E E
P, = Zerfc£J]%J —Zerfcz(/\/]—\:z] +erfc3( ’]TZJ —%erfc‘t[ /ﬁi’-)]
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For large E}/N, this average probability of symbol error is approximately twice that of
coherent QPSK.

Problem 6.48

(a) Assuming that the input data sequence x[n] is measured in volts, and recognizing that the
symbol q,, is dimensionless, then from Eq. (6.271) we find that the error signal e[n] is also

measured in volts. Then, with the phase estimate é[n] measured in radians, it follows that the
step-size parameter y for carrier recovery in Eq. (6.272) is measured in radians/volts.

(b) From Eq. (6.282) defining the error signal in terms of the input data sequence, we see that the
error signal is measured in volts squared. Hence, with c[n] responsible for timing recovery,

measured in seconds, it follows that the step-size parameter y for timing recovery in Eq.
(6.286) is measured in seconds/volts.

Problem 6.49

(a) The complex envelope of the received waveform is given by

r(t) = 5(t) +w(z) (1)
LO—l

where §(1) = &/*™ VS g o(r—kT - 1)
k=0

and w(?) is the channel noise. The parameter v represents the frequency offset, 8 is the carrier
phase we want to estimate, 7 is the timing error, {a} is the sequence of information symbols,

T 1s the symbol period, and g(z) is the signaling pulse shape.

The likelihood function L(r|é) 1s given by

Ty Ty
oy 1 S 1 ~ N2
L(r|8) = exp ]—V:)'[Re{r(t)s(t)}dt — mﬂs(m dr @)
0 0
Lo-l
where 5(1) = /*™* VS ¢ o1 kT - 1)
k=0

Since [5(z)| is independent of the carrier phase 0, the log-likelihood function of 8 is given by
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Ty

1(0)=log(L(r|0)) = Re j;(r):c*(t)dr 3)
0
Ty | . ~L0-1
where [7(1)5 (t)dr = ¢™°Y (k)
0 k=0

where x(k) represents the sample taken at time 7 = kT + T in the formula for convolution:

x()=[r(1)e *™] *g(-1)
Therefore,
~Lo-l
1(0) = Re{e_jez a,tx(k)}
k=0

The maximum of {(0), i.e., maximum likelihood estimation of 8, is achieved for

Ly-1

6 = arg{ D aZx(k)} 4)

k=0

(b) Hence, from Eq. (4) we deduce the following system for estimating the phase 0 :

r(®) k A
—’@_—' g(-1) —’_T/X() 2 arg{"} —» 9

e-jvat

h 4

t=kT+7
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Problem 6.51

Matlab Codes

% Problem 6.51 a. CS: Haykin
%effect of a dispersive channel on BPSK signals
% M. Sellathurai

s number of bits and number of samples per bit
no_of_syms =10;

no_of_bits=no_of_syms*1;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 11°;

% gemerating QPSK signals
[syms]=BPSK_mod(no_of_bits, Bits);

ts=1e-3/16;
l=length(syms);

% baseband signal
s=zeros(samples_per_bit*(1),1);

for k=1:1-1

for kk=0:(samples_per_bit-1)
s((k—1)*samples_per_bit+kk+1,1)=syms(1,k);
end

end

t=0:ts: (length(s)-1)*ts;

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

Hi2=butter_channel (2B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel (2*B,N);

TT16=conv(H16, s);
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% channel bandwidth 2%B=20 filter order 2N=10
B=10; .

H20=butter_channel (2*B,N);

TT20=conv(H20, s);

“channel bandwidth 2%B=24 filter order 2N=10
B=12;

H24=butter_channel (2%B,N);

TT24=conv(H24, s);

% channel bandwidth 2%B=30 filter order 2N=10
B=15;

H30=butter_channel(2*B,N);

TT30=conv(H30, s);

% prints

subplot(2,3,1)

hold on

for k=1:10

plot(k, [syms(k)]’,’0’)
line([k, k1, [0 syms(k)1)
end

xlabel(’Bit period’);

title(’Transmitted bits’);

hold off

subplot(2,3,2)

[ m startl=max(real(H12));

hold on

plot(t,s,’—=?);
plot(t,real(TT12(start:160+start—1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=12kHz’');
hold off

subplot(2,3,3)

[m startl=max(real(H16));

hold on

plot(t,s,’—=?);

plot(t,real (TT16(start: 160+start-1)));
xlabel(’time (s)’);

title(’ Baseband BPSK, BW=16kHz’);
hold off
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subplot(2,3,4) .

[m start]l=max(real(H20));

hold on

plot(t,s,’--");
plot(t,real(TT20(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=20kHz’);
hold off

subplot(2,3,5)

[m start]l=max(real (H24));

hold on

plot(t,s,’—-);
plot(t,real(TT24(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=24kHz’);
hold off

subplot(2,3,6)

[m startl=max(real(H30));

hold on

plot(t,s,’-=’);
plot(t,real(TT30(start:160+start-1)));
xlabel(’time (s)’);

title(’Baseband BPSK, BW=30kHz’);
hold off
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% Problem 6.51 b. CS: Haykin
%effect of a dispersive channel on QPSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits=no_of_syms*2;

samples_per_bit=16;

% generating bits
%Bits=round(rand(no_of_bits,1));
Bits={1 1 0110100 117

% generating QPSK signals
[syms]=QPSK_mod(no_of_bits, Bits);

l=length(syms);

% baseband signal
s=zeros(samples_per_bit*(1-1),1);

for k=1:1-1

for kk=0:(samples_per_bit-1)
s((k—i)*samples_per_bit+kk+1,1)=syms(1,k);
end

end

t=0:ts:(length(s)-1)*ts;

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

H12=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel (2+B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2+B,N);

TT20=conv(H20, s);
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“channel bandwidth 2%B=24 filter order 2N=10
B=12; .

H24=butter_channel (2#B,N);

TT24=conv(H24, s5);

% channel bandwidth 2%B=30 filter order 2N=10
B=15;

H30=butter_channel (2%B,N);

TT30=conv(H30, s);

% prints

subplot(2,3,1)

hold on

for k=1:10

plot(k, [2#Bits(k)-1]’,%0’)
line([k, k1, [0 (2*Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);

hold off

subplot(2,3,2)

[ m start]=max(real(H12));

hold on

plot(t,s,’--?);
plot(t,real(TTiZ(start:64+start-1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=12kHz’);
hold off

subplot(2,3,3)

[m start]=max(real(H16));

hold on

plot(t,s,’--7);
plot(t,real(TT16(start:64+start-1)));
xlabel(’time (s)’);

title(’ Baseband QPSK, BW=16kHz’);
hold off

subplot(2,3,4)

[m start]=max(real(H20));

hold on

plot(t,s,’-=?);
plot(t,real(TTZO(start:64+start-1)));
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xlabel(’time (s)’);
title(’Baseband QPSK, BW=20kHz’);
hold off

subplot(2,3,5)

[m start]=max(real(H24));

hold on

plot(t,s,’--?);
plot(t,real(TT24(start:64+start—1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=24kHz’);
hold off

subplot(2,3,86)

[m start]=max(real(H30));

hold on

plot(t,s,’~-?);

plot(t,real (TT30(start:64+start-1)));
xlabel(’time (s)’);

title(’Baseband QPSK, BW=30kHz’);
hold off
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% Problem 6.51 c. CS: Haykin
heffect of a dispersive channel on MSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits=no_of_syms*2;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 0]°;

% generating QPSK signals
[s,phase]=MSK_mod(no_of_bits,samples_per_bit,Bits);

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=65;

H12=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi16=butter_channel (2*B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2%B,N);

TT20=conv(H20, s);

“channel bandwidth 2%B=24 filter order 2N=10
B=12;

H24=butter_channel (2%B,N);

TT24=conv(H24, s);

% channel bandwidth 2#B=30 filter order 2N=10
B=15;

H30=butter_channel (2*B,N);

TT30=conv(H30, s);

ts=1e-3/16;

t=0:ts:(length(s)-1)*ts

% prints
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subplot(2,3,1)
hold on -

for k=1:10

plot(k, [2*Bits(k)—1]’,’o’)
line([k, k], [0 (2#Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);

hold off

subplot(2,3,2)

[m startl=max(real(H12));

hold on

plot(t,abs(s), ' -=?);
plot(t,abs(TT12(start+5:165+start—1)));
xlabel(’time (s)’);

title(’MSK (envelope), BW=12kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,3)

[m start]=max(real (H16));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TTlG(start+5:165+start—1)));
xlabel(’time (s)?);

title(’ MSK (envelope), BW=16kHz’);
hold off

axis([0, 0.01,0.9,1.1 ])

subplot(2,3,4)

[m start]=max(real(H20));

hold on

plot(t,abs(s),'~-?);
plot(t,abs(TT20(start+5:165+start—1)));
xlabel(’time (s5)’);

title(’MSK (envelope), BW=20kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,5)

[m start]=max(real(H24));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT24(start+5:165+start—1)));
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xlabel(’time (s)’);

title(’MSK (envelope), BW=24kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,6)

[m start]l=max(real(H30));

hold on

plot(t,abs(s),’--?);
plot(t(1:155),abs(TT30(start+5: 160+start-1)));
xlabel(’time (s)’);

title(’MSK (envelope), BW=30kHz’);

hold off

axis([0, 0.01,0.9,1.1 1)
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% Problem 6.51 d. CS: Haykin
“effect of a dispersive channel on GMSK signals
% M. Sellathurai

% number of bits and number of samples per bit
no_of_syms =5;

no_of_bits= no_of_syms*2;

samples_per_bit=16;

% generating bits
Bits=[1 10110100 0]°;

» generating GMSK signals, WTb=0.3
(s, phase]=GMSK_mod(no_of_bits,samples_per_bit,Bits);

% channel bandwidths 2B=12, filter order 2N=10
B=6; N=5;

Hi2=butter_channel (2*B,N);

TT12=conv(H12, s);

% channel bandwidths 2B=16 filter order 2N=10
B=8;

Hi6=butter_channel(2#*B,N);

TT16=conv(H16, s);

% channel bandwidth 2%B=20 filter order 2N=10
B=10;

H20=butter_channel (2*B,N);

TT20=conv(H20, s);

“channel bandwidth 2#%B=24 filter order 2N=10
B=12;

H24=butter_channel (2*B,N);

TT24=conv(H24, s);

% channel bandwidth 2*B=30 filter order 2N=10
B=15;

H30=butter_channel (2*B,N);

TT30=conv(H30, s);

ts=1e-3/16;
t=0:ts:(length(s)-1)*ts
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% prints

subplot(2,3,1) .

hold on

for k=1:10

plot(k, [2*Bits(k)-1]1’,’0")
line([k, k1, [0 (2#Bits(k)-1)])
end

xlabel(’Bit period’);
title(’Transmitted bits’);
hold off

subplot(2,3,2)

[ m start]l=max(real(H12));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT12(start:160+start-1)));
xlabel(’time (s)’);

title(’GMSK (envelope), BW=12kHz’);
hold off

axis([0, 0.01,0.9,1.1 ])

subplot(2,3,3)

[m start]l=max(real(H16));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT16(start:160+start-1)));
xlabel(’time (s)’);

title(’ GMSK (envelope), BW=16kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,4)

[m start]=max(real (H20));

hold on

plot(t,abs(s),’—~’);
plot(t,abs(TT20(start: 160+start-1)));
xlabel(’time (s)’);

title(’GMSK (envelope), BW=20kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,5)

[m start]l=max(real(H24)):

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT24(start: 160+start-1)));
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xlabel(’time (s)’);

title(’GMSK (envelope), BW=24kHz’);
hold off

axis([0, 0.01,0.9,1.1 1)

subplot(2,3,6)

[m start]l=max(real(H30));

hold on

plot(t,abs(s),’--?);
plot(t,abs(TT30(start:160+start-1)));
xlabel(’time (s)’);

title('GMSK (envelope), BW=30kHz’) ;
hold off

axis([0, 0.01,0.9,1.1 1)
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function [amp]=BPSK_mod(no_of_bits, b)
% used in problem 6.51(a), CS: Haykin
% BPSK modulation

% Mathini Sellathurai

amp=[];

1=1;
m=size(b,1);

for k=1:1:m

if (b(k)==0)
amp(1)= (-1);
elseif (b(k)==1)
amp(1)= 1;

end

1=1+1;

end
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function [ampl=QPSK_mod(no_of_bits, b)
% used in problem 6.51(b), CS: Haykin
% QPSK modulation

% Mathini Sellathurai

amp=[];

1=1;
m=size(b,1);
for k=1:2:m

if (b(k)==0 & b(k+1) == 0)
amp(1l)= (-1+i*-1)/sqrt(2);
elseif (b(k)==1 & b(k+1) == 0)
amp(1l)= (1-i*1)/sqrt(2);
elseif (b(k)==1 & b(k+1) == 1)
amp(1)= (1+i*1)/sqrt(2);

else (b(k)==0& b(k+1) == 1)
amp(1)= (-1+i*1)/sqrt(2);

end

1=1+1
end
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function [amp,phase]=MSK_mod(no_of_bits, samples_per_bit, b)
% used in problem 6.51(c), CS: Haykin

% MSK signal generator

% Mathini Sellathurai

amp=[];

ini_phase=0;

for k=1:no_of_bits
ee=b(k);
for kk=0:samples_per_bit-1

% NRZ signal generator
if ee==
ee=-1;
elseif ee==
ee=1;
end

phase((k-1)*samples_per_bit+kk+1)=ini_phase +tee*(pi/(2*samples_per_bit));
ini_phase=phase((k~1)*samples_per_bit+kk+1);

end
end

phase=rem(phase,2*pi);
in=cos(phase);
quad=sin(phase);
amp=in+i*quad;
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function [amp, phase1]=GMSK_mod(no_of_bits, samples_per_bit, b)
% used in problem 6.561(d), CS: Haykin

% GMSK signal generator

% Mathini Sellathurai

amp=[];
for k =l:no_of_bits

\Generating NRZ sequence
if b(k,1)==0
im_bits(k,1)= -1;
else
im_bits(k,1) =1;
end
end

impulse_bits=im_bits;
Bits_to_transmit=max(size(impulse_bits));
BT=0.6;

inphase=0;

data(1,4)=0;

t=0;

for i=0:3

for k=0:(samples_per_bit -1)
co =GMSK_co(i—2,k+8,samp1es_per_bit,BT);
qmskcoef (1, i*xsamples_per_bit+k+1)=co;
end
end

for bitcount=1:Bits_to_transmit
ini_phase=inphase;
ini_phase=rem(ini_phase+data(1,4)*pi/2,2*pi);

data(1,1)=impulse_bits(bitcount,1);
for i =4:-1:2
data(1,i)=data(1,i-1);

end

inphase=ini_phase;
for pha_loop=1:samples_per_bit
phase=inphase;

for i=0:3
phase=phase+pi/2*data(1,i+1)*qmskcoef(1,samples_per_bit*i+pha_loop);
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end
samples_store(1,t+1)=t;

t=t+1;

phase=rem(phase,2*pi);

phasei(1, pha_loop+samples_per_bit*(bitcount—l))=phase;
rephase(i,pha;loop+samples_per_bit*(bitcount—i))=cos(phase):
quphase(l,pha_loop+samples_per_bit*(bitcount—i))=sin(phase);
end

end

amp=rephase+j*quphase;
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function [co] = GMSK_co(a, b, samples_per_bit,bt)
% used in GMSK signal generation Problem 651d, CS: Haykin
% Mathini Sellathurai

alpha=bt*5.336446225;
T=a+b/samples_per_bit:
co=T*erf(T*alpha)+exp(-alpha*alpha*T*T)/(alpha *1.772453855);

co=co—(T—1)*erf((T—1)*alpha)-exp(—alpha*alpha*(T—l)*(T-l))/(alpha*sqrt(pi));
c0=0.5+0.5%co;
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function hb=butter_channel(f,N)

% Used in Problem 6.51

% Butterworth filter of order 2N=10;
% M. Sellathurai

[B, Al=butter(N, f£/64);
(H,w]l=freqz(B,A,128, ’whole’);
hb=ifft(H);
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Answer to Problem 6.51
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