CHAPTER 8
Problem 8.1

2
(a) Free space loss =10log (4—2—4)
10

= 20log ( 4 xmx150

" 9)dB
1083 % 10°/4 x 10

88 dB

(b) The power gain of each antenna is

10log ,,G, = 10log,,G, = 10log (4”—;‘“‘)
10~ A
- 10lo (4><n><n><20.6)
108 (3740)

= 36.24 dB

(¢) Received Power= Transmitted power +G, - Free space loss

= 1+36.24-88
=-50.76 dBW

Problem 8.2

The antenna gain and free-space loss at 12 GHz can be calculated by simply adding 20log;o(12/4)
for the values calculated in Problem 8.1 for downlink frequency 4 GHz. Specifically, we have:

(a) Free-space loss= 88 + 20log;((3)
= 97.54 dB

(b) Power gain of each antenna
= 36.24 + 20log;((3)

= 4578 dB
(c) Received power = -50.76 dBW
The important points to note from the solutions to Problems 8.1 and 8.3 are:
1. Increasing the operating frequency produces a corresponding increase in free-space loss, and an

equal increase in the power gain of each antenna.
2. The net result is that, in theory, the received power remains unchanged.
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Problem 8.3

The Friis free-space equation is given by

A 2
Pr = PthGr(Zn—d)

(a) Using the relationship

A 22
A, = EGr, and A, = EG’ , We may write
4TA 4TA 2
Pr — Pt > t 5 r |: }\. :|
A by 4nd
P,AA,
A2 d
A, A2
(b) P, = P[_z} (m)
P.AG,
4nd2

(1)

)

In both Egs. (1) and (2) the dependent variable is the received signal power, but the

independent variables are different.

(c) Equation (1) is the appropriate choice for calculating P, performance when the dimensions of
both the transmitting and receiving antennas are already fixed. Equation (1) states that for

fixed size antennas, the received power increases as the wavelength is decreased.

Equation (2) is the appropriate choice when both A, and G, are fixed and the requirement is to
determine the required value of the average transmitted power P, in order to realize a specified

Pl’

Problem 8.4

The free space loss is given by
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4nd\?
Liree space = (T

According to the above formulation for free space loss, free space loss is frequency dependent.
Path loss, as characterized in this formulation, is a definition based on the use of an isotropic
receiving antenna (G, = 1).

The power density, p(d), is a function of distance and is equal to

EIRP
p(d) = —
4ntd

The received power of an isotropic antenna is equal to

)\’2
;= P x =

=
]

4nd® 4T

EIRP )?
— X
_ EIRP
(ﬂn_ ?
A

= EIRP/Lfree-space (D

Equation (1) states the power received by an isotropic antenna is equal to the effective transmitted
power EIRP, reduced only by the path loss. However, when the receiving antenna is not isotropic,
the received power is modified by the receiving antenna gain G,, that is, Eq. (1) is multiplied by
Gr

Problem 8.5

In a satellite communication system, satellite power is limited by the permissible antenna size.
Accordingly, a sensible design strategy is to have the path loss on the downlink smaller than the

pass loss on the uplink. Recognizing the inverse dependence of path loss on the wavelength A, it
follows that we should have

}‘uplink < }"downlink

or, equivalently,

Juplink > fdownlink
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Problem 8.6

Received power in dBW is defined by
Pr =EIRP + G, —Free-space loss

For these three components, we have

(1) EIRP

IOloglo(P,G,)

10log 4P, + 10log, (G,)

10log,(0.1) + 1010g10(G,)

Transmit antenna gain (in dB):

10log ,G, = 1010g10(4 X1 x0.7 % n/4)

(3/40)*
= 30.89 dB

(2) Receive antenna gain:

2
10log (G, = lOlogm(4 XTX0.55 X T X5 J

(3/40)*
= 49.84 dB
(3) Free-space loss:

L_ = 20log IO(M)

A

7
_ 4x7mx4x10
= 2010%( 3/40 )

= 196.25 dB

Hence, using Egs. (1) to (5), we find that
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P, = 10log1o(0.1) + 30.89+49.84 — 196.52

= —206.52 + 8.073

-125 dBW
Problem 8.7

(a) RMS value of thermal noise = JE [v2] = J4kTRAf volts, where k is Boltzmann’s constant

equal to 1.38 x 1023, T is the absolute temperature in degrees Kelvin, and R is the resistance
in ohmns. Hence,

RMS value = A4 x 138 x 1075 %290 x 75 x 1 x 10°

J4x 138 %290 x 75 x 10~

1.096 x 107 volts

(b) The maximum available noise power delivered to a matched load is

kTAf = 1.38 x 1072 x 290 x 10°

4.0 x 1071 watts

Problem 8.8
The wavegude loss is 1 dB; that is,

Gwaveguide =0.78

The noise temperature at the input to the LNA due to the combined presence of antenna and
waveguide is

T, =G

e

xT +(1-G

waveguide antenna

waveguide ) Twaveguide

= 0.78 X 50 + 290(1 — 0.78)
= 102.8K

The overall noise temperature of the system is
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500 1000
Tsystem = Te + 50 + 2TO + 2—00—

160.3K

The system noise temperature referred to the antenna terminal is
160.3/0.78 = 205.5K

Problem 8.9

In this problem, we are given the noise figures (F) and the available power gains (G) of the
devices. By using the following relationship, we can estimate the equivalent noise temperature of
each device:

F T+ Te
T
T, = T(F-1)

where T is room temperature (290K) and 7,, is the equivalent noise temperature.

(a) The equivalent noise temperatures of the given four components are

Waveguide
Twaveguide = 290(2-1)
= 290K

Mixer
T

290(3 - 1)
580K

mixer

Low-noise RF amplifier
Trr = 290(1.7-1)

= 203K

IF amplifier
T;p =290(5-1)
= 1160K

(b) The effective noise temperature at the input to the LNA due to the antenna and waveguide is
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T, =G xT +(1-G

e waveguide antenna

)X T

waveguide waveguide

= 0.2 %50 +290(1 — 0.2)
= 242K

The effective noise temperature of the system is

T . T
T =T +Tpp + —2Xer IF
system e RF GRF GRF X Gmixer
580 1160
= 242 +203 + — + ———
424203+ 95 * o3
= 526.2K

Problem 8.10

(a) For the uplink power budget, the ratio]% is given by

C G

= =0,-G,-BO;+=-k-L
N uplink ’ T ’
where

0, = Power density at saturation
G, = Gain of Im?

BO; = Power back-off

g = Figure of Merit

k = Boltzmann constant in dBK
L = Losses due to rain

~

For the given satellite system, we have

9 = -81-445-00+1.9+2286+0.0
N uplink

105.0 dB-Hz
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where we have used the following gain of 1m? antenna:

G, = 10log ( 4xmx1 2)
10

(3x10%/14 x 10°)
= 44.5dB

Boltzmann constant £ = -228.6 dB

E
(b) Given the data rate in the uplink = 33.9 Mb/s and link margin of 6 dB, the required N—b is
0

E
(—”0) = (%) ~ (10log ;M + 10log (R)
N required N uplink

105 - 6 - 10log;(33.9 x 109)

105-6-75.3

= 23.77dB

Equivalently, we have

Ey 234
N =

Given the use of 8-PSK, the symbol error rate is defined by

P, = erfc(/\/}—vf—osin(n/&J

For 8-PSK

3E
E _ 7% _oo34x3 = 02
NO NO

Hence,

P, = erfc(J/702 x sin(m/8))
=0
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This result further confirms the statement we made in Example 8.2 in that the satellite
communication system is essentially downlink-limited. Recognizing that we have more powerful
resources available at an earth station then at a satellite, it would seem reasonable that the BER at
the satellite can be made practically zero by transmitting enough signal power along the uplink.

Problem 8.11

For the downlink, the relationship between

E
(Eo) and (_bo) , expressed in decibels, is described by
N N req

(—C—O) = (—E—bo) + 10logM + 10logR 1)
N downlink N req

where M is the margin and R is the bit rate in bits/second.

Solving Eq. (1) for the the link margin in dB and evaluating it for the problem at hand, we get
10log ,,M = 85— 10— 10log 10(10°%)

= 5dB

For the downlink budget, the equation for (NEJ , expressed in decibels, is as follows:

v )
Y = EIRP +|— -L —10log ok
(N downlink T /4B freespace 10

where k is Boltzmann’s constant.

For a satisfactory reception at any situation, we consider additional losses due to rain etc. up to the
calculated link margin of 5 dB. Hence, we may write

C G
(Fo)d link = EIRP  + (%)dB - Lfreespace — 10log 10k —10log IOM(dB) (2)
ownlin
where
EIRP = 57 dBW
Lfreespace = free-space loss
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= 92.4 +20log, (12.5) + 20log (40, 000)

= 206 dB
10log ok = 228.6 dBK

10log (M = 5 dB
Using these values in Eq. (2) and solving for G /T, we get

r

G
(_) = 85-57 +206—228.6 +5
T /4B

= 10.4 dB

With T = 310K, we thus find

G, = 10.4 + 10log ,(310)

= 35.31 dB

The receiving antenna gain in is given by

47rAn)
101 G, = 101
O81077 Oglo( 32

For a dish antenna (circular) with diameter D, the area A equals nD?/4. Thus,

10log,,G, = 2Olog10D + 2Olog10f + 10log ;,(n) +20.4(dB)

where D is measured in meters and f'is measured in GHz. Solving for the antenna diameter for the
given system, we finally get

Dpjin = 0.6 meters

Problem 8.12

(a) Similarities between satellite and wireless communications:
* They are both bandwidth-limited.
* They both rely on multiple-access techniques for their operation.
* They both have uplink and downlink data transmissions.

* The performance of both systems is influenced by intersymbol interference
and external interference signals.
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(b) Major differences between satellite and wireless communications:
* Multipath fading and user mobility are characteristic features of wireless
communications, which have no counterparts in satellite communications.
* The carrier frequency for satellite communications is in the gigahertz range
(Ku-band), whereas in satellite communications it is in the megahertz range.
» Satellite communication systems provide broad area coverage, whereas wireless
communications provide local coverage with provision for mobility
in a cellular type of layout.
Problem 8.13
In a wireless communication system, transmit power is limited at the mobile unit, whereas no
such limitation exists at the base station. A sensible design strategy is to make the path loss (i.e.,

free-space loss) on the downlink as small as possible, which, in turn, suggests that we make

(Path IOSS)uplink < (Path 1088) 4ownlink
Recognizing that path loss is inversely proportional to wavelength, it follows that

)‘uplink > A downlink
or, equivalently,
Juptink <Jfdownlink
Problem 8.14

The phase difference between the direct and reflected waves can be expressed as

o S BT [

where A is the wave length. For large d, Eq. (1) may be approximated as

4n(hyh,,)

AV radians

With perfect reflection (i.e., reflected coefficient of the ground is -1) and assuming small ¢ (i.e.,
large d), the received power P, is defined by

612 2r4amt(h,h
P, =P |1-¢/" =P, sin (_(712_"1))
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AT (hyh, 2
= o m 2
P{—) @
A 2
where Po = PthGm(m) (3)

Using Eq. (3) in (2):

An(hyh, N2 A N2
Fr=p ’Gme( rd m) (4nd)
2,2
hoh
= PthGm(—lszmJ

which shows that the received power is inversely proportional to the fourth power of distance d
between the two antennas.

Problem 8.15

The complex (baseband) impulse response of a wireless channel may be described by

~ -j¢ -j®

h(t) = aje '8(1-1)+ae  8(t-1) (1)
where the amplitudes a; and a, are Rayleigh distributed, and the phase angles 0; and ¢, are
uniformly distributed. This model assumes (2) the presence of two different clusters with each

one consisting of a large number of scatterers, and (2) the absence of line-of-sight paths in the
wireless environment. Define

h(t) = il(t)ejq)l

0=0,-9,
We may then rewrite Eq. (1) in the form
h(1) = a;8(1=1) + aye 8(1 - 1)

as stated in the problem.

(a) (i) The transfer function of the model is
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H(f)

Flh(1)]

-j2nfT, -j(2nft, +0)
ale +a2€

(i) The power-delay profile of the model is

P, = E[|h(1)’]

1

Ela,8(1-1,) + aye™°8(1 - 1,)(a,8(1 - 1)) + a,e’°8(1 ~ 1)

I

E[@:8°(1— 1)) + 30 (1 ~ T,) + a,a,c0808(1 - T,)8(t - T,)]

E[a3)8%(1-1,) + E[a3]8°(1 - 1,) (1)

(b) The magnitude response of the model is

-j2nft, ~j2nf (1, +0)
ale + a2€

Il

[H ()

Ja® +d +2a,a,c08(2mf (1, - 1,) +6)

which exhibits frequency selectivity due to two factors: (1) variations in the coefficients a; and a,.
and (2) variations inthe delay difference 1,-1,.

Problem 8.16

The multipath influence on a communication system is usually described in terms of two effects -
selective fading and intersymbol interference. In a Rake receiver, selective fading is mitigated by
detecting the echo signals individually, using a correlation method, and adding them algebraically
(with the same sign) rather than vectorially, and intersymbol interference is dealt with by
reinserting different delays into the various detected echoes so that they fall into step again.

Making each correlator perform at its assigned value of delay can be done by inserting the right
amount of delay in either the reference (called the delayed-reference) or received signals (called
the delayed-signal). Independent of the form of the reference signals employed, the output SNR
from the integrating filters is substantially the same for both configurations, under the assumption
that the length of the delay 7} is significantly smaller than the symbol duration T. Each integrating

filter responds to signals only within about +l/T of the frequency f. Therefore, the noises adding
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shorter than 7, regardless of the form of reference signal. The only difference between the tap
circuit contributions of the delayed-signal scheme and those of the delayed-reference scheme is
that the latter are staggered in time by various fractions of T, and since such staggering is small
compared to the significant fluctuation period of the contributions, we conclude that the noise
outputs of the two configurations are equivalent.

However, there are three practical advantages of the delayed-signal scheme over the delayed-
reference scheme. First, one delay line instead of two is required. Second, in the latter

configuration. corresponding taps in the mark (symbol 0) and space (symbol 1) lines would have
to be adjusted and be kept in phase coincidence. Third, coherent intersymbol interference
(eliminated in the delayed-signal scheme) is still present in the latter scheme, (Price and Green
1958), see the Bibliography.

Problem 8.17

(a) The output of the linear combiner is given by

N
x(t) = Z(ijj(t)
j=1

N
Y a(z;m(r) +n (1))

j=1

N N
= Y ozm(r)+ Y on )
j=1 j=1
W—J ;—Y—J
signal noise

The output signal-to-noise ratio is therefore

Average signal power
Average noise power

1

(SNR),

N 2
E[Z ocj(zjm(t)):l

Jj=1

N 2
E{Zocjnj(t)]
j=1
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- N N
E ZZOcjockzjzkmz(t)]

L j=1k=1

rN N
E ZZOLjaknj(t)nk(t):|

Lj=1k=1

N N

ZzujukzjzkE[mz(l)]
— _i=lk=1 (l)

N N
Y Yooy Elng(tyn(n)]

j=lk=1

Using the following expectations
E[mz(t)] = | for all 7 (i.e., unit message power)

2 .
. o; for k =
Elnj(0m ()] = { j !

0 for k#j

we find that Eq. (1) simplifies to

N N

- j=lk=1
(SNR), = L=L&]

(1.20'2
i%

Jj=1

)

R E— )
0(2()'2
i%J
j=1

(b) Equation (2) can be rewritten in the equivalent form
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N 3)

where u; = o; 0; and (SNR)j = z?/c?. We now invoke the Schwarz inequality, which, in

discrete form for the problem at hand, is stated as follows

N 2 N N )
(ZuJ(SNR);/Z] s(zuf)[Z((SNR)}/z) j (4)

J=1 J=1 Jj=1
Hence, inserting this inequality into the right-hand side of Eq. (3), we may write

N
(SNR)( < Y (SNR);
j=1

which proves the formula under subpart (i).

To prove subpart (ii), we recall that the Schwarz inequality of Eq. (4) is satisfied with the
equality sign if (except for a scaling factor)

(SNR),? = u,

or, equivalently,

Z:
2 = a0,
%50

~

That is,
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Problem §.18
For the problem at hand, we have M = N = 2. Therefore,
M-N+l1=1

and so the weight subspace W is one-dimensional. We thus have the following representation for
the action of the antenna array:

C2 A
(Interferer),
*
Cy
(User)” |
I
| One-di ional
| ne-dimensiona
9 : g sub-space W
Weight
Problem 8.19

(a) The cost function is
J = slelnll® = Selnle’(n]

where the error signal is

M
eln] = d[n] =Y wylnlx[n]
k=1

Let
wiln] = ay[n]+ jb,[n]

Hence
9 _ 1 . deln] 1+ deln]
é—c—l—k = 2e[n] aak +2e [n]—-——aak



= —%e[n]x;:[n] - %e*[n]xk[n]

= —%Re{xk[n]e*[n]} (1)
o/ 1. 9en] 1+ deln
a—bk = 2e[n] abk +2(: [} abk

= —%e[n]x;:[n] + %e*[n]xk[n]

= ~Im{x,[n](e [n])} 2)
The adjustment applied to the kth weight is therefore
Aw[n] = Aay[n] + jAb,[n]

o . dJ 3)

= - ME =J “eﬁ;
where W is the step-size parameter. Substituting Egs. (1) and (2) into (3),

Aw,[n] = uRe{x,[n]e [n]} +pnIm{x,[nle [n]}

*

wxilnle [n]

(b) The complex LMS algorithm is described by the following pair of relations:
wiln+l] = w[n] + Aw,[n]
= wk[n]+uxk[n]e*[n], k=12 M

M
e(n) = dn]- ¥ wexln]
k=1

453



Problem §8.20

(a) We are told that the speed of response of the weights in the LMS algorithm is proportional to
the average signal power at the antenna array input. Conversely, we may say that the average
signal power at the array input is proportional to the speed of response of the weights in the
LMS algorithm. Moreover, the maximum speed of response of the LMS weights is

proportional to Ry/fi.x, Where Ry, is the bit rate and f;,,, is the maximum fade rate in Hz. It

follows therefore that the dynamic range of the average signal power at the antenna array
input ig proportional to R, /f;..«, as shown by

P = AR,/ f

max waltts (1)

max

where o is the proportionality constant.

(b) Foroe=0.2, R, =32 x 103 brs, and f.., = 70 Hz, the use of Eq. (1) yields
P = 0.2x32x 10°/70

= 640/7
= 91 watts
which is somewhat limited in value.
Problem 8.21

(a) According to the Wiener filter, derived for the case of complex data, the optimum weight
vector is defined by

Rxwo = rxd (l)

where

R, = correlation matrix of the input signal vector x[n]

= E[x[n]x"[n]] )

ryy = cross-correlation vector between x[n] and desired response d[n]

= E[x[n]d [n]] 3)

W, = optimum weight vector.

454



Note that the formulation of Eq. (1) is based on the premise that the array output is defined as

the inner product w'x[n]. The Wiener filter for real data is a special case of Eq. (1), where the
Hermitian transpose H in Eq. (2) is replaced by ordinary transposition and the complex
conjugation in Eq. (3) is omitted. Assuming that the input x[n] and desired response d[n] are
jointly ergodic, we may use the following estimates for R, and r, ;:

K
A 1 H
R, = I—(Zx[n]x [n] 4)
k=1
| w *
£, = EZx[n]d [n] 5)
k=1

where K is the total number of snapshots used to train the antenna array. Correspondingly, the
estimate of the optimum weight vector w,, is computed as

w =R, ¢, ©6)

-1, .
where R ° is the inverse of R,.

(b) The DMI algorithm for computing the estimate W may now proceed as follows:

1. Collect K snapshots of data denoted by
K
{x[k], d[k]}

where K is sufficiently large for W to approach w, and yet small enough to ensure
stationarity of the data.

2. Use Egs. (4) and (5) to compute the correlation estimates lix and f, ;.
3. Invert the correlation matrix R, and then use Eq. (6) to compute the weight estimate W .

For an antenna array consisting of M elements, the matrix R, is an M-by-M matrix and Fyq 18
an M-by-1 vector. Therefore, the inversion of R, and its multiplication by F,, requires

multiplications and additions on the order of M3
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