
Problem 8.26 A Gaussian random variable has zero mean and a standard deviation of 10 V. A constant 
voltage of 5 V is added to this random variable. 
(a) Determine the probability that a measurement of this composite signal yields a positive value. 
(b) Determine the probability that the arithmetic mean of two independent measurements of this 
signal is positive. 
 
Solution 
(a)   Let Z represent the initial Gaussian random variable and Y the composite random 
variable. Then 
 

ZY += 5  
 

and the density function of Y is given by  
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where µ corresponds to a mean of 5V and σ corresponds to a standard deviation of 10V. 
The probability that Y is positive is 
 

[ ] ( ){ }

( )
⎟
⎠
⎞

⎜
⎝
⎛ −=

−=

−−=>

∫

∫
∞

−

∞

σ
µ

π

σµ
σπ

σ
µ

Q

dss

dyyYP

2exp
2
1

2exp
2
10

2

0

2

 

 
where, in the second line, we have made the substitution  

σ
µ−

=
ys  

 
Making the substitutions for µ and σ, we have P[Y>0] = Q(- ½). We note that in 
Fig. 8.11, the values of Q(x) are not shown for negative x; to obtain a numerical 
result, we use the fact that Q(-x)  = 1- Q(x). Consequently, Q(-½) = 1- 0.3 = 0.7. 
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Problem 8.26 continued 
 

(b) Let W represent the arithmetic mean of two measurements Y1 and Y2, that is 
 

2
21 YYW +

=  

 
It follows that W is a Gaussian random variable with E[W] = E[Y] = 5. The variance of W 
is given by  
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The first two terms correspond to the variance of Y. The third term is zero because the 
measurements are independent. Making these substitutions, the variance of W reduces to 
                          

[ ] 2Var
2σ=W  

 
Using the result of part (a), we then have 
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