Problem 8.28 Consider the sinusoidal process

$$X(t) = A\cos(2\pi f_c t)$$

where the frequency is constant and the amplitude A is uniformly distributed:

$$f_A(a) = \begin{cases} 1 & 0 < a < 1 \\ 0 & \text{otherwise} \end{cases}$$

Determine whether or not this process is stationary in the strict sense.

Solution

At time t = 0, X(0) = A, and $F_{X(0)}(0)$ is uniformly distributed over 0 to 1. At time $t = (4f_c)^{-1}$, $X((4f_c)^{-1}) = 0$ and

$$F_{X\left(\frac{1}{4f_c}\right)}(x) = \delta(0)$$

Thus, $F_{X(0)}(x) \neq F_{X(1/4f_c)}(x)$ and the process X(t) is not stationary to first order. Hence not strictly stationary.